HIGH COST LENDERS AND THE GEOGRAPHIC CONCENTRATION OF FORECLOSURES

Stephen L. Ross
Yuan Wang

Working Paper 28781
http://www.nber.org/papers/w28781

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 2021, Revised October 2021

The authors thank Bob Avery for inspiring the paper, and Kris Gerardi, Fernando Ferreira and conference and seminar participants at the Econometric Society meetings, the Federal Reserve Banks of Boston, Kansas City and New York, the Furman Center at New York University, and the Housing-Urban-Labor-Macro Conference for providing advice on this research. The authors thank Gordon MacDonald, Kyle Mangum, Yuan Wang, Ailing Zhang, and Samantha Minieri for outstanding research assistance. The analyses presented in this paper use information provided by one of the major credit reporting agencies. The credit agency has the legal right to view the research prior to its public release. However, the substantive content of the paper is the responsibility of the authors and does not reflect the specific views of any credit reporting agencies, nor does it reflect the views of Freddie Mac or its board of directors. This work was supported by the Ford Foundation, the Research Sponsors Program of the Zell/Lurie Real Estate Center at Wharton, and the Center for Real Estate and Urban Economic Studies at the University of Connecticut. Professor Ross has worked in the past as a consultant on fair housing and fair lending issues, but he has not done any consulting in this area within the last three years. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2021 by Stephen L. Ross and Yuan Wang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

Half of the cross-sectional correlation between location foreclosure rates and market share of high cost lenders is explained by borrower observables, and only a modest portion of the remaining correlation can be explained by observable loan terms, lender or location. We develop a shift-share measure to capture changes in high cost lender market representation across origination years and find that foreclosure rates are explained by the representation of high cost lenders among those mortgages. Further analyses suggest servicer behavior in response to rising, localized foreclosure rates, rather than unobservable borrower or loan attributes, as an explanation for these remaining effects.

Stephen L. Ross
Department of Economics
University of Connecticut
341 Mansfield Road, Unit 1063
Storrs, CT 06269-1063
and NBER
stephen.l.ross@uconn.edu

Yuan Wang
FreddieMac
McLean, VA
wangyuansdu@gmail.com
High Cost Lenders and the Geographic Concentration of Foreclosures

Stephen L Ross, University of Connecticut and NBER
Yuan Wang, FreddieMac

A central feature of the U.S. foreclosure crisis is that effects were concentrated in specific locations. Subprime lending was concentrated in low income and minority neighborhoods (Calem, Gillen and Wachter 2004; Calem, Hershaff, Wachter 2004; Mayer and Pence 2009; Ghent, Hernández-Murillo and Owyang 2014; Bayer, Ferreira and Ross 2014, 2018).\(^1\) Minority and low income neighborhoods experienced especially severe foreclosure rates (Bayer, Ross and Ferreira 2016; Ghent, Hernández-Murillo and Owyang 2014; Chan, Gedal, Been and Haughwout 2013; Geradi and Willen 2009; Fisher, Lambie-Hanson and Willen 2011; Edminston 2009).\(^2\) Finally, several studies document that the neighborhoods experiencing high foreclosure rates had high rates of subprime or high cost lending leading up to the crisis (Reid and Laderman 2009; Mian and Sufi 2009; LaCour-Little, Calhoun and Yu 2011; Reid, Bocian, Li and Quercia 2016).\(^3\)

However, to our knowledge, only three other studies use explicit identification strategies to examine the geography of the foreclosure crisis and the great recession. Palmer (2016) uses historic geographic price volatility to demonstrate that equity losses explain the majority of the increase in foreclosures. Agarwal, Amromin, Ben-David, Chomsisengphet and Piskorski (2017) exploit zip code variation in servicer location finding higher housing prices and lower foreclosure

\(^1\) This empirical regularity has been established using many different indicators including the Department of Housing and Urban Development (HUD) subprime lender list, non-agency securitized lending, high cost lending based on rate spread loans in the Home Mortgage Disclosure Act data, and measures of ex-post foreclosure rates.

\(^2\) Ghent, Hernández-Murillo and Owyang (2014) find higher rates of foreclosure in low income neighborhoods, but find lower rates of foreclosure in minority neighborhoods in their sample of privately securitized mortgages.

\(^3\) For recent reviews, see Foote and Willen (2018) and Chan, Haughwout and Tracy (2015). For a more general discussion of redlining see Ross and Yinger (2002).
rates in zip codes with servicers who had more loan modification experience. Greenstone, Mas and Ngyuen (2020) use pre-existing bank local market shares to explain declines in small business lending. None of these studies bring such tools to bear on the role of pre-crisis lending activity in explaining the geographic concentration of foreclosures.4

We examine the effect of geographic lending patterns using a shift-share approach like Greenstone, Mas and Ngyuen (2020), except using the market share of “high cost” lenders. We categorize lenders as high cost if 20 percent or more of their mortgages were rate spread loans, i.e. mortgages with a substantial rate spread above the return on comparable maturity treasury bonds (3 points above treasury yields). Rate spread mortgages have been studied as an outcome, high cost loans (Bayer, Ross and Ferreira 2014), as well as an indicator of subprime mortgage lending (Mayer and Pence 2008; Chan, Haughwout, and Tracy 2015). As shown below (Table 2), volatility in “high cost” lender share was much larger than volatility over traditional measures of underwriting risk, like loan to value or debt to income ratios. Bayer, Ferreira and Ross (2018) also conclude that “high cost” lenders served a different segment of the market, having unusually high unexplained ex-post foreclosure rates.

First, we carefully document the correlation between foreclosures and the geographic concentration of “high cost” lenders using home purchase mortgages originated between 2004 and 2007 from seven large metropolitan/regional sites.5 We define our housing submarkets as Public Use Microdata Areas (PUMAs), geographically contiguous areas containing at least 100,000 people.6 We find a strong cross-sectional correlation between foreclosure and the PUMA high cost lenders.

4 Also, see papers on neighborhood spillovers from foreclosure (Campbell et al., 2011; Gerardi et al., 2015; Gupta, 2016; Munroe and Wilse-Samson, 2013) that examine effects of close proximity to a foreclosure.
5 See Bayer, Ferreira and Ross (2014, 2016, 2018) for recent analyses of minority borrowers using this data.
6 Our data agreement prevents the use of census tract specific identifiers. PUMA’s also have the advantage of being at a scale well above the geographic level of foreclosure spillovers discussed earlier. Further, this geographic scale captures dramatic variation in foreclosures.
lender share. However, controlling for borrower credit score and demographics reduces the estimated effect by half. The remaining conditional correlation with foreclosure is reduced by only an additional 13% by the inclusion of both loan terms, e.g. loan to value and debt to income ratios, whether an adjustable rate mortgage and use of subordinate debt, and lender fixed effects. After conditioning on PUMA fixed effects and origination year trends within PUMA, the correlation between foreclosure and high cost lender share for an origination year is similar to the cross-sectional correlation after conditioning on borrower, loan and lender controls, and the inclusion of controls has only modest effects on the estimates. In summary, a substantial portion of the cross-sectional correlation between foreclosure and the activity of high cost lenders is explained by borrower observables, and after conditioning on borrower observables only a small portion of this correlation is explained by loan attributes, lender identity or geographic location.

Next, we proxy for high cost lender share using a Bartik or shift-share prediction (Autor and Duggen 2003; Brunner, Ross and Washington 2011; Greenstone, Mas and Nguyen 2020). We use the 2004 initial distribution of loans across lenders in each PUMA and scale those shares by national changes in each lender’s market share. We continue to control for PUMA to mitigate any correlation between initial shares and location unobservables (Goldsmith-Pinkham, Sorkin and Swift 2020). To assure that results are not driven by national changes in the market share of each borrower’s lender, we also include lender by origination year fixed effects.

7 We do not observe some terms like loan is no or low documentation, lock period for adjustable rates, information on teaser rates, or prepayment penalties. However, these unobserved features are concentrated in the subprime sector where adjustable rates loans and the use of subordinate debt are much more common and also at subprime lenders. So, our controls for loan terms and lender identity should capture some of the effect of these product attributes.

8 A cross-sectional shift share model yields results similar to the cross-sectional model using actual share: correlation between foreclosure and predicted high cost lender share that is eroded by 50% using credit score and borrower attributes, and only another 8% with loan terms and lender fixed effects.
The estimated relationship between foreclosure and our shift-share proxy is very stable in magnitude to the inclusion of borrower attributes and loan terms. A one standard deviation increase in the proxy implies a 1.46 percentage point change in foreclosure likelihood or approximately a 27% increase in foreclosure rate. Based on this estimate, the difference between the top and bottom terciles on high cost lender share can explain 56% of the across tercile foreclosure rate differences. Similarly, high cost lender share differences by tercile explain 22% of the black-white differences in foreclosure, 15% of Hispanic-white differences and 66% of differences between the top and bottom income quintiles.9

These results are robust to changing the definition of high cost lenders to using thresholds of 15 or 25 percent of loans, adjusting the rate spread threshold, selecting a balanced panel of credit report/crisis years, and weighting using the inverse of our sampling probability. Further, Goldsmith-Pinkham, Sorkin and Swift (2020) observe that shift-share models with geographic fixed effects are difference-in-differences analyses. While our panel of origination years is too short for an event study, we address concerns about staggered roll-out using pairs of origination years so that one year is the pre-period and the second is the treatment period. This strategy also provides a falsification test showing that origination changes between 2006 and 2007 cannot explain differences between 2004 and 2006 foreclosures. As suggested by Callaway and Sant’Anna (In Press), the PUMA cohort trends addresses heterogeneous trends over observables, see Abadie (2005). Finally, results are robust to controlling for detailed fixed effects based on clusters of PUMA’s that have very similar initial (2004) shares of loans from high cost lenders and were originated in the same year and to clustering standard errors over these fixed effects.

9 We do not instrument for the share of loans from high cost lenders with the shift share prediction because both variables are proxies for the variable of interest and instrumenting for one proxy with another when measurement error is non-classical may lead to significant bias (Chalak 2019).
These estimated effects are broad based. We estimate similar magnitude effects of high cost lender representation whether the predicted changes over time imply either an increase or a decrease in high cost lender share. Foreclosure effects exist for both rate spread and non-rate spread loans, white and minority loans, regardless of the source of securitization, and whether originated by high cost lenders or not. Notably, however, high cost lender share effects are significantly larger in absolute terms for loans issued by high cost lenders, a standardized effect of 3.07 percentage points relative to 1.06 percentage points for non-high cost lenders. However, given the higher baseline foreclosure rates, the percent changes in foreclosure likelihood are similar, 28 and 31 percent, respectively. We also investigate whether our results can be driven by changes in the market share of the lender who originated the loan, and our estimates are robust, even though lender market share also appears to influence foreclosure rates.

We consider three possible mechanisms. First, this geographic concentration of foreclosures may result from reverse causality where increased demand for credit among riskier borrowers leads to the entry of high cost lenders. The very stable estimates as controls for credit score and borrower demographics are added are inconsistent with bias from borrower unobservables. We also show that the results are not eroded by including contemporaneous information on bank card and health expense delinquencies, which might correlate with unobserved risk factors. Finally, Bayer, Ferriera and Ross (2016) suggest that high risk borrowers will rationally enter credit markets as access to credit increases. We control for changes in the PUMA composition of borrowers on credit score, race/ethnicity and income. Results are robust, even though changes in borrower composition explain foreclosure.

\[^{10}\text{It is very unlikely that unobservable attributes will erode the estimates if important observable attributes like credit score or race/ethnicity have no impact on the estimates (Altonji, Elder and Tabor 2005).}\]
Next, the estimated effects may arise because high cost lender representation leads to mortgages with minimal assessment of risk (Keys, Mukherjee, Seru, and Vig 2009; Dell’Ariccia, Igan, and Laeven 2012; Bhutta and Keys In Press), little documentation (Jiang, Nelson and Vytlacil 2014a; LaCour-Little and Yang 2013) and/or high risk and possibly predatory terms (Reid and Laderman 2009; Jiang, Nelson and Vytlacil 2014b; Agarwal, Amromin, Ben-David, Chomsisengphet, and Evanoff 2014, 2020; Reid, Bocian, Lie and Quecia 2016). As with borrower unobservables, the stability of our estimates to controlling for loan terms and lender identity works against subprime loan features as an explanation. We also show robustness to controls for PUMA wide changes in loan attributes (rate spread loans, loan to value ratio and debt to income ratio) that might indicate an overall shift in the types of loans being originated. We also consider Mian and Sufi’s (2009) argument that local expansion of subprime credit increases housing prices leading to greater equity losses and higher foreclosure rates during the crisis. We calculate PUMA price indices to measure the level of negative equity. While negative equity explains foreclosure, the inclusion of negative equity had minimal influence on our estimates. Finally, our proxy for high cost lender share has no effect on the likelihood of a loan being high cost, which might be expected if these effects were due to an increase in high risk lending activity.

Finally, we consider whether this geographic clustering of foreclosures can be explained by differential mortgage servicing. A large literature has examined the role of servicers in the foreclosure crisis. For example, Piskorski, Seru and Vig (2010), Agarwal, Amromin, Ben-David, Chomsisengphet and Evanoff (2011a), and Kruger (2018) show that securitization created

11 Also see Carozzi, Hilber and Yu (2020) for evidence of local price effects in England from a policy that expanded access and affordability of mortgage credit.

12 These measures of current negative equity are also interacted with the current employment rates at the county level because default in response to negative equity is often triggered by income shocks (Bayer, Ferreira and Ross 2016; Gerardi, Ross and Willen 2011).
incentives favoring foreclosure over modification, while Adelino, Gerardi and Willen (2013) and Conklin, Diop, Le and D’Lima (2019) find that information asymmetries were important.13 Notably, Agarwal, Amromin, Bend-David, Chomsisenphetand, Evanoff (2011b) and Reid, Urban and Collins (2017) document heterogeneity across servicers in whether modifications are offered and in the terms and types of modifications. Ding (2013) also shows that mortgage modifications were least likely in the neighborhoods hardest hit by the foreclosure crisis.14

While we do not observe servicer, we are able to examine the possible role of servicers indirectly. First, we estimate models of 90-180 day delinquencies, rather than foreclosure filings. Mortgage delinquency represents failure of borrowers to make mortgage payments, while foreclosure represents the combined effects of mortgage delinquency and lender servicer decisions on foreclosure filings and/or loan modifications. A one standard deviation change in our proxy results in only a 3.5 percent change in the sample delinquency rate and is statistically insignificant. Second, we recognize that foreclosure is purely administrative in California, while courts play a significant role in the other states in our sample, creating more opportunities for lender discretion. Splitting our sample between California and the other sites, we find that high cost lender share effects are concentrated almost entirely outside of California. For judicial role states, the standardized estimate is 40 percent of the baseline foreclosure rate, and while the estimates for California are noisy the point estimates imply an effect of only 7 percent.

Therefore, high cost lender share effects captured within PUMA over time appear to be driven by loan servicing, rather than borrower or loan term unobservables. While indirect, these findings suggest that loan servicers are responding to the experiences of specific cohorts of loans

13 For an alternative view on remediation and securitization, see Ghent (2011).

14 Agarwal, Amromin, Ben-David, Chomsisengphet and Piskorski (2017) use zip code variation in servicers who have more modification experience to show that modifications lower foreclosure rates and raise housing prices, and so indirectly show that the spatial distribution of servicers contributes to geographic variation in foreclosure.
in specific locations. We provide evidence consistent with such responses by including previous year foreclosure experiences within a PUMA for each cohort of loans (based on a hold-out sample). The standardized effect of preceding year foreclosure rates is similar in magnitude to the effect of high cost lender share. The inclusion of this control also erodes the high cost lender share effect by 25%, and the estimate is no longer statistically significant.

Returning to our original question on lending activity and the geographic concentration of foreclosures, our findings suggest that loans terms played at most a modest direct role in the geographic concentration of foreclosures. Half of the cross-sectional correlation is associated with borrower attributes, and much of this correlation remains after controlling for individual loan attributes, lender identify and geography. This remaining correlation is potentially explained by servicers responding to the overall high foreclosure rates among borrowers who tended be served by high cost lenders. Therefore, the concentration of these lenders likely played an indirect roll by increasing the number of mortgages with higher risk borrower attributes and/or risky loan terms leading to higher unconditional foreclosure rates, which then may have spilled over to influence the outcomes of all area borrowers through the behavior of servicers.

Finally, servicers exhibit substantial heterogeneity in decision making (Agarwal, Amromin, Ben-David, Chomsisenphetand, Evanoff 2011b; Reid, Urban and Collins 2017), and so these findings suggest possible efficiency and equity costs from how servicers handle distressed loans. Spatially concentrated foreclosures have high costs (Mian, Sufi and Trebbi 2015; Huang, Nelson and Ross 2018; Guren and McQuade 2020). Foreclosures tend to be disproportionately concentrated in poor and minority neighborhoods, and servicing treatment for similarly situated mortgages may have differed substantially based on local foreclosure experiences.
1. Methods

We start by creating a proxy for the market penetration or representation of high cost lenders in a housing submarket within a broad metropolitan or regional area. In order to do this, we define lenders as high cost (H) based on whether the share of their originated mortgages that meet the definition of a high cost loan (α_l) exceeds some pre-specified threshold ($\bar{\alpha}$).

$$l = \begin{cases} H & \text{if } \alpha_l \geq \bar{\alpha} \\ L & \text{if } \alpha_l < \bar{\alpha} \end{cases}$$

Our proxy for market penetration is the fraction of home purchase mortgages originated by high cost lenders in a submarket (n) during a given year (p) defined as

$$Z_{np} = \frac{\sum_{l = H} N_{lnp}}{\sum_{l} N_{lnp}}$$

where N_{lnp} is the number of mortgages issued by lender l in the submarket during the time period considered. Details on the definition of high cost loans is provided in the data section below.

Then, we document the conditional correlation between foreclosure and this proxy for market penetration, the share of loans in a housing submarket originated by high cost lenders. We follow Bayer, Ferreira and Ross (2016) and estimate foreclosure models using an annual panel of foreclosure notices from a sample of home purchase mortgages using a linear probability model. The model controls for share of loans from a high cost lender (Z) in the submarket (n) and purchase year (p), a host of borrower and mortgage attributes (X), and site (s) by credit report or foreclosure year (t) by purchase year fixed effects to allow each metropolitan or regional market (s) to have its own time path of foreclosures for each cohort of loans

$$y_{instp} = \alpha Z_{np} + \beta X_t + \delta_{stp} + \epsilon_{instp} \quad (1)$$

Our next model removes cross-sectional variation by including submarket by credit/foreclosure year fixed effects and submarket trends over purchase year on location observables.
Submarket fixed effects capture the constant (across purchase years) impact of unobservables, while the submarket trends allow the relationship between submarket and foreclosure to vary across origination cohorts based on observables. Specifically, submarket trends are captured by adding purchase year fixed effects interacted with time invariant submarket attributes (W) allowing for non-linear trends over purchase year cohorts. The resulting specification is

$$y_{instp} = \alpha Z_{np} + \beta X_t + \delta_{stp} + \theta_{nt} + \varphi_p W_n + \varepsilon_{instp}$$ (2)

The geographic fixed effects in equation (2) yield a difference-in-differences analyses (in our case over purchase cohorts). The PUMA trends on observables, $\varphi_p W_n$, follow Callaway and Sant’Anna’s (In Press) recommendation of including trends associated with time-invariant, geographic covariates when the sample fails balance to insulate against failures of parallel trends that arise from heterogeneous trends across subgroups (Abadie 2005).

Finally, to capture a causal relationship between high cost lender market representation and foreclosure, we create an exogenous proxy for or prediction of changes in the high cost lender share for each submarket and purchase year. Specifically, we create a Bartik or shift-share style prediction similar to those used in Autor and Duggen (2003), Brunner, Ross and Washington (2011) and Greenstone, Mas and Nguyen (2020). We measure the fraction of loans in a housing submarket for a base year (\bar{p}) from each lender (α_{pnl}) to capture the share and also measure the national market share for each of those lenders for every purchase year (μ_{pl}) to capture the shift over time. For all lenders l with non-zero market share in a submarket for the base year, we calculate a predicted growth in the housing submarket volume of both high cost lenders (H) and all lenders as a weighted average of the percentage changes in each lender’s overall market share ($\mu_{pl} - \mu_{pl}$) where the weights are the base year housing submarket share for each lender (α_{pnl}). The predicted percentage change for high cost lenders is added to the original high cost lender
share in the base year, divided by one plus the predicted percentage change for all lenders, and finally the base year share is subtracted to obtain a predicted change.

\[
\Delta Z_{np} = \frac{Z_{np} + \sum_{i \in H} \alpha_{np}(\mu_{pl} - \mu_{pl})}{1 + \sum_{i} \alpha_{np}(\mu_{pl} - \mu_{pl})} - Z_{np}
\]

(3)

where \(Z_{np}\) is the PUMA market share of high cost lenders in the base year \(\bar{p}\) so that \(\Delta Z_{np}\) is always zero in \(\bar{p}\). We also add lender by purchase year fixed effects (\(\rho_{pl}\)) so that national trends in the market share of specific lenders cannot drive our results. The final model specification is

\[
y_{instpl} = a\Delta Z_{pn} + \beta X_i + \rho_{pl} + \delta_{stp} + \theta_{nt} + \varphi_p W_n + \epsilon_{instpl}
\]

(4)

Standard errors in all models are clustered at the submarket level \((n)\). Note, we do not instrument for the change in high cost lender loan share with the shift-share predicted change. Both variables are noisy proxies for the market representation of high cost or subprime lenders and instrumenting for one proxy with another may lead to significant bias (Chalak 2019).

Goldsmith-Pinkham, Sorkin and Swift (2020) examine panel applications of shift-share variables in models that control for geographic fixed effects. They observe that strict exogeneity need only be established conditional on model controls and argue that identification based on changes (geographic fixed effects) makes the strict exogeneity assumption much more reasonable. Nonetheless, areas with high exposure to treatment based on initial shares may have unobservables that correlate with the predicted changes, not just predicted levels. For example, perhaps submarkets with similar levels of initial loan shares from high cost lenders, \(Z_{np}\), share unobservables that influence the evolution of mortgage markets in the run-up to the foreclosure crisis. In this case, we might rewrite the unobservable as

\[
\epsilon_{instpl} = \mu_{\Omega n} + \tilde{\epsilon}_{instpl} \quad n \in \Omega_n
\]
where Ω_n is a set of locations that are similar to submarket n. With a small number of purchase cohorts, the submarket fixed effects could suffer from an incidental parameters bias in $\mu_{\Omega_n p}$. We attempt to absorb $\mu_{\Omega_n p}$ by dividing submarkets into bins of similar initial high cost lender share

$$n \in \Omega_k \text{ if } \bar{Z}_k \leq Z_{np} < \bar{Z}_{k+1}$$

where \bar{Z}_k represents the bottom threshold of high cost lender share for the k^{th} group. As a robustness test, we then estimate a revised model where we add initial high cost lending share group by purchase year fixed effects τ_{knp}

$$y_{instpl} = \alpha \Delta Z_{pn} + \beta X_i + \rho_{pl} + \delta_{stp} + \theta_{nt} + \varphi_p W_n + \tau_{knp} + \epsilon_{instpl}$$

where k_n represents the group to which submarket n belongs.

This structure also helps us address a second concern raised by Adão, Kolesár and Morales (2019). They demonstrate that inference in shift-share analyses could be biased if places with similar initial shares also have similar unobservables creating a correlation across geographies. While their analysis is cross-sectional and concerns should in part be addressed by geographic fixed effects, submarkets that are similar on initial shares could also have similar purchase cohort time trends in the unobservables. After including fixed effects for loans belonging to the same cohort in similar submarkets, we can address any general pattern of correlations between these similar submarkets by clustering at the level of the τ_{knp} fixed effects (Abadie et al. 2017). We will use two-way clustering to preserve clustering at the individual submarket level.

Finally, as noted by Goldsmith-Pinkham et al. (2020), shift-share analyses with fixed effects should be validated using techniques developed for difference-in-differences analyses. Our panel is too short to support event study approaches used address bias from staggered roll-out of treatment (Sun and Abraham In Press, Callaway and Sant’Anna In Press) or to test for parallel pre-
trends. Therefore, we eliminate staggered roll-out by examining pairs of mortgage cohorts p so that treatment takes a before and after form.

$$y_{\text{inst}Tl} = \alpha \Delta Z_{Tn} + \beta X_l + \rho_{Tl} + \delta_{stT} + \theta_{nt} + \varphi_T W_n + \epsilon_{\text{inst}T0}$$

$$y_{\text{ins}} = \beta X_l + \rho_{ol} + \delta_{st} + \theta_{nt} + \varphi_0 W_n + \epsilon_{\text{inst}0}$$

where $p = T$ represents the treatment year and $p = 0$ represents the base year of 2004. Using these pairs, we can also conduct a falsification test using changes between the treatment year T and a future falsification year F by replacing ΔZ_{Tn} with $\left(\Delta Z_{F_n} - \Delta Z_{Tn}\right)$: Do predicted future cohort changes in high cost lending explain foreclosure for earlier cohorts?

2. Mortgage Foreclosure Sample

Our data set is based on public Home Mortgage Disclosure Act (HMDA) data from between 2004 and 2007. We begin with a convenience sample of seven metropolitan/regional housing markets based on the counties comprising these areas: Chicago IL CMSA, Cleveland OH MSA, Denver CO MSA, Los-Angeles CA CMSA, Miami-Palm Beach Corridor, San Francisco CA CMSA, and Washington DC-Baltimore MD suburban Corridor. We matched the HMDA mortgage originations to housing transaction data purchased from Dataquick Inc., and then selected a stratified random sample of mortgages to match to credit reporting data collected by Experian PLC annually from the year of origination to end of our data in 2009, see Bayer, Ferriera and Ross (2014, 2016, 2018) for earlier applications of this data related to the outcomes of black and Hispanic borrowers.15

15 Miami-Palm Beach Corridor contains Miami-Dade, Broward and Palm Beach counties. The Washington DC-Baltimore MD suburban Corridor contains all counties in the state of Maryland, but the population of transactions is dominated by Baltimore and Annapolis, their suburbs, and Washington’s northern and western suburbs. The mortgage data set assembled originations from 2004 to 2008, but this study does not include originations made in 2008 due to the on-going financial crisis during that year.
Beginning in 2004, HMDA data began reporting information for whether the Adjusted Percentage Rate (APR) of each loan exceeds the yield on treasury bonds of comparable maturity by at least 3 percentage points, and these loans are referred to as rate spread or high cost loans.\footnote{The Annual Percentage Rate (APR) estimates cost of credit including interest rate and closing costs. These high cost or rate spread loans are sometimes referred to as subprime loans (Mayer and Pence 2009; Chan, Haughwout and Tracy 2015), but other authors study the subprime market based on a list of top subprime lenders, e.g. Ferreira and Gyourko (2015), based on borrowers who have a low credit score, e.g. Mian and Sufi (2009), or private label securitized loans, e.g. Ghent, Hernández-Murillo and Owyang (2014).} HMDA also identifies lenders using a respondent identification number. For all loans originated in HMDA during our sample period and in our seven sites, we calculate the cross-sectional fraction of rate spread loans originated during the entire period by each lender. We then define “high cost lenders” as any lender that had at least 20 percent of their loans classified as rate spread loans in HMDA over the sample period from 2004-2007 including all loans originated in the seven sites. Then, we define the housing submarkets for each major/metropolitan market as Public Use Microdata Area’s (PUMA). PUMA’s are defined by the U.S. Census as geographically contiguous areas containing at least 100,000 people, and the U.S. Census uses the PUMA definitions in order to provide residential location information at the individual level for the Decennial Censuses and American Community Surveys. We calculate the share of loans originated by high cost lenders in each PUMA by purchase year for each year between 2004 and 2007 based on the census tract location of the purchased property again using the population of owner-occupied, home purchase mortgages contained in HMDA.\footnote{The Census Bureau provides detailed cross-reference files mapping census tracts into PUMA’s.}

We calculate the market share of high cost lenders in a PUMA and purchase year for several additional definitions of high cost lender. First, we redefine high cost lender based on the lender having at least 15 or 25 percent of their loans classified as rate spread. Next, we recognize that the share of rate spread loans is sensitive to the yield curve over bond maturities because APR is
compared to treasury rates of comparable maturity to mortgage terms, but mortgages are often pre-paid (Avery, Brevoort and Canner 2007). Therefore, we redefine the rate spread variable adjusting the high cost loan threshold by year in order to keep the share of high cost loans constant over time, anchored to 2004 which had the lowest share. This revised rate spread variable is then used to identify a new set of high cost lenders that is not affected by lenders issuing large numbers of “high cost” loans in years when the yield curve leads to larger numbers. 18 We calculate PUMA time invariant characteristics using both the 2000 Decennial Census for residents and the 2004 HMDA data for the attributes of home purchasers, 19 and calculate time varying (over origination year) attributes based on HMDA, transaction data and matched credit history data.

The home purchase sample is constructed as a sample of owner-occupied, 1-4 family properties drawn from HMDA and merged to both proprietary housing transaction/lien and assessor’s databases purchased from Dataquick based on year, loan amount, name of lender, state, county, and census tract. 20 These mortgages were sampled from May through August and matched using name and address by Experian PLC to the March 31st archival record preceding the mortgage transaction and March 31st record for every year following this transaction through 2009. 21 Our panel contains one observation for every year following the year of origination through 2009, and

18 The threshold for a high cost lender is lowered from 20 to 13 percent to hold total share of loans from high cost lenders fixed during the sample period. HMDA reports the actual APR for all loans where the APR exceeds the 3 percentage point threshold. Therefore, by adjusting the threshold upwards from 3 percent in years with a higher share of rate spread loans, we can set the share of rate spread loans to the same percentage for each year.
19 These controls include share of residents black, Hispanic, Asian, 65 years old or older, or married, share of households in poverty, and median household income; and from the 2004 HMDA data share of borrowers black, Hispanic, Asian and in poverty, and median family income of borrowers.
20 In the Dataquick sample, we eliminate non-arm’s length transactions, transactions where the name field contains the name of a church, trust, or where the first name is missing, and transactions where the address could not be matched to a 2000 Census tract or the zip code was missing. Data was provided by DataQuick Information Systems, Inc. www.dataquick.com.
21 The sample includes oversamples of mortgages to minority borrowers, mortgages to white borrowers in minority or low-income neighborhoods, and high cost mortgages as designated in HMDA as high rate spread loans. The match rate for the pre-mortgage archive is 81.4 for the home purchase sample. For years following the mortgage origination, the match rate rises by 4 to 5 percentage points.
the foreclosure variable is set to 1 if one or more foreclosure reports are present in the credit record in that year and zero otherwise. Weights are calculated at the loan level based on the probability of selection where each site receives equal weight in the pooled sample, and we use these weights as a robustness test.22 See Bayer, Ferriera and Ross (2016) for more details on the data.

Table 1 shows the means for our final home purchase sample of post mortgage credit reports by tercile of the share of loans from high cost lenders in a PUMA. The high cost lender share is strongly correlated with many loan attributes. Both the foreclosure rate and the likelihood that an individual loan is a high cost or rate spread loan increases dramatically across the terciles. In the highest, high cost lender share tercile, Borrowers are less white, lower income, less likely to have a co-borrower and have lower credit scores. The highest tercile mortgages also have higher loan to value ratios, higher expense to income ratios, are more likely to have subordinate debt and are more likely to have adjustable interest rates. Highest tercile PUMA’s also have a higher share of black and Hispanic residents, and a lower median family income.

Table 2 shows the means of PUMA variables measured by origination or purchase year and weighted for our sample of home purchase mortgages. The table contains four columns, one for each purchase year between 2004 and 2007. Depending upon the threshold selected, the share of loans from high cost lenders doubles or even triples between 2004 and 2006, and falls by between 60 and 80 percent in 2007. This volatility in share of loans from high cost lenders is larger than any other observed volatility in the sample. The share of rate spread or high cost loans in a PUMA exhibits a similar, but less dramatic, pattern doubling between 2004 and 2006 and falling by half in 2007. All other borrower and loan attributes exhibit notably less variation over the

22 The sampling is explicitly based on 8 strata for each site: black borrowers, Hispanic borrowers, white borrowers in minority or low-income neighborhoods, and all other borrowers divided into rate spread and non-rate spread loans. All loans from the same strata and year receive equal weight.
period. Among traditional credit risk variables, only the PUMA composition over loan to value ratio increases substantially by about 25%, and similarly only share subprime credit score and high loan to value ratio exhibit large changes in 2007 falling by about 25%. The largest demographic composition change is in share of black borrowers increasing by 35% between 2004 and 2006 and falling by 12% in 2007. Application denial rates increase throughout the entire period of 37%, and application volume decreases by 41% between 2006 and 2007. County level price indices rise by 29 percent between 2004 and 2006, but only fell by 4 to 5 percent in 2007.

2. Descriptive Results

We begin our analysis by creating some simple scatter plots of unexplained foreclosure rates versus the high cost lender share by PUMA and origination/purchase year cohorts. Using a loan level sample, we regress whether each loan ever faced foreclosure by the end of our credit profile data (March 2009) and high cost lender share (over entire pre-period) on whether the loan is a rate spread loan and on purchase year by site fixed effects. We condition on whether the loan is a rate spread loan to separate the risk associated with high cost loans from risks associated with the activity of lenders that tend to issue high cost loans. We also include purchase year by site fixed effects because Table 2 illustrates large changes in the volume of high cost loans and in the activity of high cost lenders over time. The timing and magnitude of these changes also vary significantly across our seven sites. These residuals for the ever foreclosed variable and for high cost lender share are then collapsed into purchase year by PUMA cells.

Figure 1A on the left hand side of the figure presents the scatter plot for the cell means of residuals from the regression above with a linear regression line plotted for the PUMA by purchase year data. The scatter plot and the regression line indicates a strong positive cross-sectional correlation between the unexplained variation in foreclosure rates in a PUMA and the unexplained
portion of high cost lender share. Figure 1B on the right hand side uses cell means from residuals after also controlling for detailed borrower and loan attributes, including race and ethnicity, family income deciles, borrower gender, presence of a co-borrower, Vantage credit score in 20 point bins, bins for loan to value and expense to income ratios,23 dummies for whether the loan is adjustable rate, has a mortgage amount above the conforming loan limit and whether the purchase involves the use of subordinate debt (a second lien), whether held in portfolio or if not the source of securitization, and structural attributes of the housing unit.24 As shown by the much flatter regression line, the inclusion of these controls leads to a substantially weaker cross-sectional relationship between foreclosure high cost lender share, consistent with a relationship that may be driven by omitted variable bias.

Figure 2 is based on residuals from the same models except that the models also include PUMA fixed effects so that the scatter plot residuals are based on changes over time within PUMA’s. Again, Figure 2B also conditions on borrower and loan attributes. Figures 2A and 2B are virtually identical. The inclusion of borrower and loan attributes in the regression models yield residuals in Figure 2B that imply a very similar relationship between changes in foreclosure rates and changes in high cost lender share. Figure 2 suggests that PUMA fixed effects successfully capture much of the bias from omitted borrower and loan attributes observed in Figure 1.

Table 3 Panel 1 shows the cross-sectional estimates from equation (1) and is comparable to the scatterplot in Figure 1. The first column only includes the PUMA share of loans from high cost lenders, whether the borrower has a high cost loan and the site by purchase year by credit year

23 Loan to value ratio bins are based on thresholds of 0.6, 0.8, 0.85, 0.9, 0.95, 1.0 and 1.05. Mortgage payment and debt payment to income ratio bins are based on 0.02 and 0.03 increments, respectively, with larger bins on the edges of the distribution.

24 The housing attributes include number of bedrooms, number of bathrooms, square feet of living space, lot size, whether the units is single or multi-family, condominium or mobile home, and the number of stories and number of units for multi-family structures.
fixed effects. The next columns in order add controls for borrower vantage (credit) score, the borrower demographics listed above, the detailed mortgage attributes plus controls for housing unit attributes, and lender fixed effects. The first column shows the strong conditional correlation between the likelihood of foreclosure and the share of loans from high cost lenders. However, as in Figure 1B, the inclusion of controls substantially erode the magnitude of the estimates, and the estimate in column 4 is approximately half the size of the estimate in column 1.

Borrower (rather than loan) attributes explain most of the decline in the estimated effect. The inclusion of credit score reduces the initial estimate by 20 percent, and the inclusion of demographics further reduces the initial estimate by another 26 percent. On the other hand, controls for loan terms such as LTV, income ratios, subordinate debt and adjustable rates loans, which are expected to correlate strongly with subprime lending activity, only reduce the estimated effect by 4 percent of the original estimate, and the inclusion of lender fixed effects only reduces the estimate by 2.5 percent, both of which should correlate with high risk mortgage attributes, such as rate resets or prepayment penalties (Reid, Bocian, Li and Quercia 2016). Based on observables, much of the cross-sectional relationship between foreclosure and the activity of high cost lenders is associated with borrower attributes. These findings appear consistent with conclusions of Bayer, Ferriera and Ross (2018) that lenders with high cost lenders had high “ex post” foreclosure rates and so appeared to systematically operate in mortgage submarkets involving a priori higher risk lending opportunities.

Table 3 Panel 2 shows the estimates for equation (2). These models include PUMA by credit report year fixed effects and so are comparable to the scatterplots in Figures 2A and 2B. The model also includes the interaction of time invariant PUMA with purchase cohort dummies.

25 The controls include the share of residents who are black, Hispanic, Asian, 65 years old or older or married, the share of families in poverty and the median family income in the PUMA based on the 2000 Decennial Census, as
estimates in Panel 2 are very similar in magnitude to the smaller estimates in columns 4 and 5 of Panel 1. Only the controls for borrower demographics have an appreciable effect on the estimates for share of loans from high cost lenders, and the reduction is modest at 9 percent. PUMA fixed effects appear to eliminate most of the bias associated with omitting our observed borrower and loan attributes. In terms of magnitude, a one standard deviation change in the high cost lender share is approximately 9.7 percentage points, and the standardized effect column 4 is 1.23 percentage points or 23 percent of the 0.053 sample foreclosure rate.

4. Quasi-experimental Results

The last panel of Table 3 presents results from regressions that replace the high cost lender share the shift-share prediction and also includes lender by year fixed effects. The estimates are very stable in magnitude as additional borrower and loan attributes are added. Further, while not shown, the inclusion of lender by year fixed effects have minimal effects on our estimates. In order to calculate the standardized effect, we add the 2004 level back into the predicted change to include the cross-sectional variation. The standard deviation of this prediction is smaller than the deviation for the actual share at 0.067, while the point estimate is about double the point estimate from panel 2. As a result, the standardized effect from panel 3 column 4 is 19% higher than the panel 2 estimates with a one standard deviation change implying a 1.46 percentage point change in foreclosure, or approximately 27 percent of the baseline foreclosure rate.

well as the share of homebuyers who are black, Hispanic, Asian, or in poverty, and the median family income of homebuyers from 2004 HMDA data.

26 Oster (2019) argues for evaluating parameter stability by comparing the change in the parameter estimate to the change in the residual variation based on the R-squared. Assuming that 50 percent of the variation in foreclosure can be explained by observed and unobserved factors at the time of mortgage origination (a conservative assumption relative to Oster’s recommendations for setting the maximum R-squared), a comparison of column 1 to column 4 in panel 3 implies that unobservables would have to bias estimates in the opposite direction of observables and be 2.6 times as influential as the observables, which in our case contain all critical underwriting variables, in order to eliminate our estimated effects.
We also can evaluate the magnitude of these effects by comparing differences in exposure to elevated PUMA shares of high cost lending. Using the terciles from Table 1, the top tercile on high cost lender share has a share that is 11.5 percentage points higher than the bottom tercile share. Multiplying by our estimated effect implies a difference in foreclosure likelihood of 2.5 percentage points, which explains 56% of the sample foreclosure rate differences between those terciles. Table 1 also shows that black, Hispanic and lower income borrowers are exposed to higher PUMA shares of high cost lending. Those differences can explain 22% of the black-white differences in foreclosure, 15 percent of Hispanic-white differences and 66% of the differences in foreclosure between the top and bottom income quintiles. The larger share explained for income arises primarily from smaller income differentials in baseline foreclosure rates.

Next, we conduct a series of robustness tests. In Table 4 Panel 1, we present the estimates for our model from Panel 3 of Table 3 using two alternative shift-share predictions for high cost lender share based on high cost lender thresholds of 15 percent and 25 percent or more of loans being high cost. Results are shown for both the baseline model specification in column 1 of Panel 3 in Table 3 and for the specification including all borrower and loan controls (column 4).

Panel 2 of Table 4 presents a series of additional robustness tests using the Table 3 column 4 specification that includes all controls. The first column presents results from a balanced panel of credit reports where foreclosure outcomes are only included for the 2008 and 2009 credit report years that are responsible for the vast majority of foreclosure filings. The second column assigns lenders as high cost using an alternative rate spread definition that is designed to keep the total share of rate spread loans constant over purchase year, as discussed above. The threshold is set to 13% for high cost lenders due to the substantial decline in the number of high cost loans given this approach. The third column estimates a regression using the sample weights based on the stratified
sampling strategy used for collecting the sample of mortgages, see Bayer et al. (2016) for more discussion of the weights. Column 4 allows effects to differ by whether the predicted change is negative or positive. The results in Panel 1 are robust with the standardized foreclosure effects ranging between 1.2 and 1.5 percentage points. The estimated effects for negative and positive changes are virtually identical. The effects for predicted declines are more precisely estimated because predicted declines include significant closures of large subprime lenders in 2006 and 2007, unlike predicted increases that arise from expansions of existing lenders.

In panels 3 and 4, we address recent concerns raised about shift share analyses. We first organize PUMA’s into clusters with similar 2004 shares of loans originated by high cost lenders, and then include purchase year by initial share cluster fixed effects in the model from Table 3 Panel 3 Column 4. Panel 3 of Table 4 shows these results for several initial share cluster definitions. Column 1 presents results based on a separate cluster for 0.01 intervals on the fraction of loans in 2004 originated by high cost lenders leading to 124 purchase year by initial share cluster cells. Columns 2, 3 and 4 present similar results except the intervals are based on 0.02, 0.03 and 0.04 with the number of cells falling to 60, 48, and 36, respectively. The magnitude of the estimates on the predicted change in market share rise from 0.217 in Table 3 to 0.279 in column 1 for a 0.01 interval, falling as the interval is enlarged to 0.244 and 0.182 for columns 2 and 3, and finally rising back to 0.204 in column 4 with an interval of 0.04. While these estimates are not as stable as the rest of the estimates in Tables 3 and 4, they are always sizable and strongly significant, and never separated from the estimates in Table 3 by more than a standard deviation. Further, in terms of inference, after a modest increase in standard errors with the addition of purchase cohort by
cluster fixed effect, the standard error estimates are quite stable as we change the interval even when the number of clusters falls to only 36.27

In panel 4, we address the recent concerns that difference-in-differences models with staggered roll-out and two-way fixed effects can be biased. We eliminate staggered roll-out by estimating models with only two cohorts at a time comparing mortgages originated in the base year of 2004 to 2005 mortgages in column 1, to 2006 in column 2 and to 2007 in column 3. While the results for 2005 prior to the onset of the financial crisis are small and insignificant, the results for 2006 and 2007 are sizable and highly significant. The largest estimates are for 2006, which are about 65 percent larger than our estimates in Table 3 Panel 3, and the estimates for 2006 are about 75 percent of the Table 3 Panel 3 estimates. In column 4, we conduct a falsification test comparing foreclosures for 2004 and 2006 mortgage cohorts replacing the 2006 shift share prediction with the change between 2006 and 2007, and find no effects. We now return to our baseline shift-share models in Panel 3 of Table 3 for all follow-up analyses below.28

\textit{4.1 Heterogeneity and Lender Market Share}

To understanding what might drive this relationship, we first examine whether the effect of the shift-share prediction is isolated among only a subset of loans. Table 5 estimates a model where the effect of PUMA share of loans from high cost lenders is allowed to be heterogeneous across borrowers, loans or lenders. The first column presents results where effects are allowed to vary by whether the loan itself is a high cost or rate spread loan. The second column allows effects

27 We can also change the cluster definition by altering where the intervals start. In column 1, for example, the intervals always start on a round value of 0.01 or 1 percentage point. Alternatively, we can always start intervals at points involving 0.005 with the interval ending on the next 0.005. This alternative clustering yields very similar estimates and standards errors, 0.277 (0.079) as compared to 0.0279 (0.079) in column 1 of panel 3.

28 All of the robustness test models presented in Table 4 exhibit stability in the parameter estimate magnitudes as controls are added. We also run the robustness tests shown in Panels 1 and 2 for the non-shift share models from Panels 1 and 2 of Table 3, and the qualitative and quantitative results in Table 3 continue to be robust.
to vary by the race or ethnicity of the borrower. The third column allows for differential effects based on whether the loan was securitized by one of the government sponsored enterprises, held in portfolio, or privately securitized. The final column interacts the predicted change in high cost lender share with whether the borrower’s lender was a high cost lender. We do not find any evidence that effects are larger for high cost loans, minority borrowers or for privately securitized loans. However, Column 4 indicates that the high cost lender share is substantially larger for borrowers who obtained loans from high cost lenders. The total standardized effect for these high cost lenders using the shift-share prediction is 3.07 percentage points or 28 percent of the higher average foreclosure rate of 10.7 percent. For lenders who are not high cost, the standardized effect falls to 1.06 percentage points, but these loans have a smaller baseline foreclosure rate of only 3.5 percent so the percentage increase is similar to high cost lenders at 31 percent.

Given the larger absolute effect for high cost lenders, perhaps some of the high cost lender share effects arise because the market share of the borrower’s lender influences foreclosure outcomes. We include a control for changes in the lender’s market share (column 2), or predicted changes in the lender’s share (column 3) using a shift-share for a single lender’s PUMA weighted change in market share. The results are shown in Table 6. Panel 1 shows models that add either lender’s actual market share or predicted changes in market share. The estimates on these variables are small and insignificant, and the estimates on the high cost lender share are unchanged.

Panel 2 column 1 of Table 6 presents the estimates from Table 5 Column 4 where predicted high cost lender share is interacted with whether the borrower’s lender is high cost. In column 2, the borrower’s lender market share is also interacted with the high cost lender dummy, and in column 3 the predicted change in lender market share is interacted with high cost lender. An

29 The coefficient on the interaction with whether the borrower is Hispanic is significant at the 10% level, but the estimate is negative suggesting that these effects are less concentrated among Hispanic borrowers.
increase in predicted lender’s market share over time leads to higher foreclosure rates, a standardized effect of 2.1 percentage points, but only when the borrower’s lender is a high cost lender. However, controlling lender market share has at most a modest effect on the predicted high cost lender share coefficients. Specifically, the effect of predicted high cost lender share falls by less than 8 percent for low cost lenders and 10 percent for high cost lenders.

In summary, the effects of high cost lender representation are broad based, and are not concentrated among especially vulnerable groups of borrowers. These effects occur for loans made by both high cost and non-high cost lenders, even after controlling for the market representation of the individual lenders. However, these shift-share prediction effects are substantially larger in absolute (but not relative) terms among loans from high cost lenders.

5. Potential Mechanisms

We investigate three mechanisms that might explain the correlation between changes in predicted high cost lender share and changes in the foreclosure rates over origination years. First, the correlation may arise because high cost lenders increase their representation within submarkets in response to changes in the demand for mortgage credit from risky borrowers. Second, high cost lenders may play a role in the concentration of foreclosures by issuing mortgages that have risky features like high combined loan to value ratios, resetting variable rates or pre-payment penalties. Finally, cohorts of loans may be serviced differently in submarkets and origination years where high cost lenders issued a substantial fraction of loans.

5.1 Unobserved Borrower Heterogeneity

Table 3 Panels 2 and 3 show that the inclusion of observed borrower attributes has little effect on the conditional correlation between changes in the market representation of high cost lenders’ PUMA market share is approximately 0.01.
lenders and foreclosure rates. Next, we identify information from contemporaneous credits reports, bank card delinquencies and medical collection trades, which were not directly related to mortgage distress and might be driven by unobserved borrower attributes and experiences during the crisis. Table 7 presents the estimates from models that include these controls. The first column presents the results after including a control for the number of bank card delinquencies, the second column presents results conditional on the number of medical collection trades and the aggregate dollar amount of those trades, and the third column presents results for a model including both the bank card and medical collection controls. While bank card delinquencies have a strong correlation with foreclosure, the inclusion of these controls does nothing to erode the relationship between high cost lender share and foreclosure.

Next, borrower unobservables might affect the likelihood of a borrower’s mortgage being a high cost or rate spread loan. Therefore, we estimate models similar to our foreclosure models except that we move whether the loan was a rate spread loan to the left hand side of the regression equation. We estimate this model using our sample of mortgages (as opposed to mortgages by credit report year) and condition on PUMA fixed effects, the trends based on PUMA observables over origination year, site by origination year fixed effects and lender by origination year fixed effects. The fourth column of Table 7 presents these results with no additional controls other than predicted share, and the fifth column presents results after including all borrower, loan and housing unit controls. The resulting estimates are small and statistically insignificant. Unlike like foreclosure, the predicted high cost lender share does not predict whether a loan is high cost after controlling for PUMA and lender.

Finally, Bayer et al. (2016) find that the foreclosure risk is substantially larger for loans originated near the peak of the housing market, even after controlling for negative equity. They
argue that as credit constraints relax higher risk borrowers will choose to enter the mortgage market. We create three PUMA by purchase year variables: share of mortgages with reported family income below the poverty line, share of mortgages with either a black or Hispanic borrower and share of mortgages where the borrower has a subprime credit score (Vantage score under 701). While individual level controls capture the direct effect of borrower attributes, the time varying PUMA attributes capture shifts in the borrowing population. Family income and minority borrower variables are based on the full HMDA sample, while credit score must be based on our matched sample. We include these variables one at a time to test whether their inclusion erodes our estimates on predicted high cost lender share in Table 8 Panel 1. While foreclosure rates increase as minority borrower share increases and decrease with the share of borrowers in poverty, the relationship between the high cost lender share and foreclosure rates is robust.

5.2 Unobserved aspects of Subprime Lending Activity

As noted above, controls for observed loan terms and lender fixed effects had no impact on our estimated effects, even though the adjustable rates and subordinate debt, as well as lender identity, strongly correlate with subprime lending activity. Further, in Panel 2 of Table 8, we develop additional controls for PUMA by purchase year to capture changes in composition of loans being made in a PUMA. Controls include share of loans that are HMDA rate spread loans, have a high loan to value ratio (above 0.95), and have a conforming loan disqualifying total debt expense to income ratio (above 0.45). The share with high debt ratio must be calculated using our matched sample. The final panel in Table 8 presents estimates including controls from HMDA on the denial rate, the application volume and a Herfindahl measure of market concentration of mortgage

31 Similar results arise including share black loans and share Hispanic loans as separate control variables.
32 The denial rate is calculated as the number of loan applications denied divided by the sum of the number of loan applications denied and the number of loans applications originated.
lenders. While some variables explain foreclosure, their inclusion has virtually no impact on the estimate effect of predicted high cost lender share. Finally, as shown in Table 7 above, high cost lender share does not predict whether a borrower has a high cost loan, which would be expected if borrowers in these cohorts of loans had riskier mortgage terms.

Another potential way high cost lender share may have influenced foreclosures is through an expansion of credit that increased demand for housing and drove up local housing prices as these home purchases were occurring and so led to larger price declines during the crisis. For example, Mian and Sufi (2009) observe that zip codes with a high share of subprime mortgages experienced greater increases in housing prices followed by higher foreclosure rates. We calculate housing price indices by county by quarter by year and by PUMA by quarter by year using the full sample of Dataquick housing transactions. The price level for a purchase cohort of loans is based on the average of the second and third quarter price index in each year because we have a sample of matched transactions between May and August, and the price level in each credit report year is based on the average of the first and second quarter price indices because our credit profile data is based on March 31 archives. Using the price indices, the purchase year and the initial loan to value ratio, we create dummy variables for whether the mortgage was near negative equity (above 0.9 or above 0.95), in negative equity, or has negative equity levels 10-30%, 30-50% and above 50%.

We also use the American Community Survey (ACS) to create measures of employment for each credit report year at the county level. Specifically, we calculate the fraction of all prime aged males from age 26-55 (whether in the labor market or not) who report being employed. We

33 For example, an increase in the share of loans with high loan to value ratios is associated with lower foreclosure rates overall after conditioning on the actual loan to value ratio of the individual loans, perhaps because lenders become more restrictive in lending as the share of low down payment loans increase.

34 Given the broad negative equity bins and the short period of time between origination and the foreclosure crisis, we do not consider amortization of the mortgage balance.
also calculate a race specific employment rate for each year and county using white, black, Hispanic and Asian subsamples. We interact employment rate with the negative equity variables because households in negative equity often do not enter foreclosure without some trigger event, such as loss of a job.

Table 9 presents our estimates after including controls for negative equity based on county (Panel 1) and PUMA (Panel 2) housing price indices. The first column simply includes the negative equity dummy variables. The second column includes the interaction of negative equity with the employment variables, and the third column includes the same interactions using the own-race county employment rate. While not shown, the negative equity variables are strongly associated with foreclosure using either county or PUMA price indices, and those effects weaken as county employment rates rise. However, these controls have at most a modest impact on the estimated effects of predicted high cost lender share. Controls for negative equity using county price indices increases our estimates by 5 to 10 percent, while using PUMA price indices increases our estimates by 15 to 17 percent. Estimates never fall as negative equity controls are added.

5.3 Mortgage Servicers and Foreclosure Decisions

A final explanation relates to the behavior of loan servicers. Potentially, the entry of high cost lenders into a submarket affects the foreclosure strategy of loan servicers during the crisis. Since each cohort of loans could follow a different time path of foreclosure during, changes in lender management of delinquent loans might vary across cohorts. For example, local or regional mortgage servicer offices likely track foreclosure rates and may alter foreclosure processing when a group of loans from the same area and originated at a similar time are experiencing high foreclosure rates.
While our data does not contain information on servicers, we pursue two analyses that are suggestive of a role for servicers in the geographic concentration of foreclosures. First, we estimate models to explain whether the loan experienced a 90 to 180 day mortgage delinquency because mortgage delinquency represents the borrower’s failure to make their mortgage payments independent of any lender actions or decisions. Column 1 of Table 10 presents the foreclosure results from Table 3 Panel 3 column 4, while column 4 presents the comparable 90 day delinquencies estimates. While the estimated standardized effect for 90 day delinquency is positive, the estimates are statistically insignificant, and the standardized effect is only $\frac{1}{3}$rd of the size of the estimated foreclosure effect, which implies only a 3.5 percent change in the sample average delinquency rate.

A second way to examine servicer discretion is to compare California, a purely administrative foreclosure state, to the other states in our sample where judicial review plays a substantial role in the foreclosure process. In California, loans that enter severe delinquency typically move to auction after 120 days delinquent without requiring any court filings or approval.\footnote{During our sample period, delinquent loans in California were regularly issued a Notice of Default when the loan became 90 days delinquent followed by a Notice of Trustee Sale when the loan became 120 days delinquent. The Notice of Trustee Sale should typically lead to a foreclosure report to the credit reporting agencies. While Maryland and Colorado officially have administrative foreclosure, their foreclosure process is court supervised and still allows for substantial lender discretion in the timing of mortgage delinquency.} So, if our effects arise from servicer discretion in foreclosure filings, we should not see these effects in California. We re-estimate our models separately for California, Los Angeles and the San Francisco bay area, and for our other five sites. Due to the size of the California sites, the number of clusters is similar in the two subsamples with over 150 PUMA’s in California and about 180 PUMA’s in the other sites. For the other sites, the standardized estimate is 1.83 percentage points or a 40 percent increase in foreclosure likelihood (Table 10 column 3). On the other hand,
the point estimate for the California sites in column 4 (while noisily estimated) is only 7 percent of the baseline California foreclosure rate. Notably, having a rate spread loan remains a significant predictor in California, even though high cost lender share is statistically insignificant.

Servicer behavior appears important for explaining geographic patterns in foreclosure. For example, servicers may react to their experiences with specific groups of loans, in this case loans located near each other and originated at about the same time. As an indirect test of this premise, we select a hold-out sample of loans in each PUMA and origination year and use that hold-out sample to calculate foreclosure rates in 2005 through 2008 for PUMA by cohort cells, and then from 2006-2009 we use this foreclosure rate, i.e. experience from the preceding year, as a control in a sample that excludes the hold-out loans. This foreclosure experience variable is highly significant and sizable. A one standard deviation change in PUMA by cohort preceding foreclosure rate is associated with a 1.44 percentage point increase in foreclosure, 27 percent of the baseline rate (Table 10 column 6), and shockingly similar to our baseline estimates of 1.46 percentage points for the effect of predicted high cost lender share (column 5). Further, unlike every other control examined, the inclusion of foreclosure experience in a horse race model (column 7) reduces the impact of high cost lender representation by 25 percent, doubles the standard error (leaving the standard error on foreclosure experience unchanged), and the estimate on predicted share is insignificant. Together, the evidence points towards servicers as a key mechanism for the impact of high cost lending on the geographic concentrations of foreclosure.

6. Summary and Conclusions

In this paper, we estimate the cross-sectional correlation between foreclosure and the share of loans originated by lenders who tend to issue a large number of high cost loans. However, controlling for credit score, borrower race and ethnicity, age and co-borrower status reduces the
estimated relationship between foreclosure and the high cost lender share by half. Borrower unobservables may be a very important factor for explaining the concentration of foreclosure in housing submarkets. On the other hand, detailed controls for standard underwriting risk variables, lender fixed effects, and geographic controls had only modest effects on the estimated relationship.

We also document a strong within submarket across cohort relationship between foreclosure and the market representation of high cost lenders using both the high cost lender share and a shift-share prediction of this share. After controlling for submarket, the estimates are robust to a wide variety of specifications including detailed controls for borrower and loan attributes, lender fixed effects, alternative definitions of high cost lenders, purchase year by initial high cost lender share cluster fixed effects, and the inclusion of a wide variety of time varying mortgage market composition variables. The effects are broad based influencing foreclosure for non-rate spread loans, white loans, loans sold to Government Sponsored Enterprises, and loans made by lenders that are not labelled high cost.

We investigate several potential mechanisms. Our effects cannot be explained by contemporaneous shocks to borrowers, as captured by bank card delinquencies and medical collections, or by trends in the composition of PUMA borrowers. We also find no evidence that our effects can be explained by changes in observable mortgage attributes, changes in the patterns of lending or greater equity losses due to housing prices fluctuations. However, our results do not arise when considering mortgage delinquency, which unlike foreclosure, is not directly affected by servicer decisions. Further, our effects are concentrated in the sites outside of California, where foreclosure is purely administrative limiting servicer discretion. Finally, we provide a mechanism for why servicer behavior might be influenced by high cost lender representation. We show that foreclosure experience with a cohort loans, which can be observed by servicers, explains
foreclosure rates in the next year. Therefore, we find little evidence that loan terms directly explain the geographic concentration of foreclosures, but risky lending patterns can indirectly contribute to such concentrations by increasing the likelihood of foreclosure for those risky loans, which then alters servicer behavior for all loans.

In summary, this paper suggests that mortgage servicers likely played a significant role in explaining the foreclosure concentrations that we document. Earlier work by Agarwal, Amromin, Ben-David, Chomsisengphet and Piskorski (2017) uses zip code variation to demonstrate that modifications lead to lower foreclosure rates, which implies that some locations had substantially worse foreclosure rates due to the servicers who happened to manage those mortgages. Similarly, our findings provide new evidence that servicer behavior, possibly in response to local foreclosure experiences, contributed to high levels of dispersion in foreclosure rates over space. The large aggregate impacts of neighborhood foreclosure spillovers (Mian, Sufi and Trebbi 2015; Huang, Nelson and Ross 2018; Gupta 2019; Guren and McQuade 2020) imply that geographic concentration of foreclosures is costly, and large racial and income differences in exposure to high cost lenders suggests that heterogeneity in servicing could have large equity impacts, as well.
References

Figure 1: Mean Residuals by PUMA and Purchase Year

Notes: Residuals for foreclosure rates are based on regressing either foreclosure or share of loans from high cost lenders on rate spread loan and MSA by purchase year fixed effects. These residuals are then collapsed by PUMA and purchase year to get the means for these variables. The graph on the right hand side of the figure also includes additional risk factor controls, including individual level information on credit score and demographics, as well as loan and home characteristics. For a complete list of these controls, see Table 1.
Figure 2: Mean Residuals Conditional on PUMA

Notes: Residuals for foreclosure rates are based on regressing either foreclosure or share of loans from high cost lenders on rate spread loan, MSA by purchase year fixed effects, and PUMA fixed effects. These residuals are then collapsed by PUMA and purchase year to get the means for these variables. The graph on the right hand side of the figure also includes additional risk factor controls, including individual level information on credit score and demographics, as well as loan and home characteristics. For a complete list of these controls, see Table 1.
Table 1: Sample Descriptive Statistics

<table>
<thead>
<tr>
<th>PUMA Shr from Lndrs >0.20</th>
<th>Lowest</th>
<th>Medium</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev</td>
<td>Mean</td>
</tr>
<tr>
<td>Foreclosure</td>
<td>0.021</td>
<td>0.143</td>
<td>0.035</td>
</tr>
<tr>
<td>Rate Spread Loan</td>
<td>0.047</td>
<td>0.211</td>
<td>0.134</td>
</tr>
<tr>
<td>American Indian</td>
<td>0.003</td>
<td>0.052</td>
<td>0.004</td>
</tr>
<tr>
<td>Asian</td>
<td>0.014</td>
<td>0.348</td>
<td>83.000</td>
</tr>
<tr>
<td>Black</td>
<td>0.036</td>
<td>0.186</td>
<td>0.081</td>
</tr>
<tr>
<td>White</td>
<td>0.398</td>
<td>0.459</td>
<td>0.678</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.112</td>
<td>0.328</td>
<td>0.154</td>
</tr>
<tr>
<td>Male</td>
<td>0.681</td>
<td>0.466</td>
<td>0.648</td>
</tr>
<tr>
<td>Female</td>
<td>0.316</td>
<td>0.465</td>
<td>0.350</td>
</tr>
<tr>
<td>Loan Amount (in 1000s)</td>
<td>340.834</td>
<td>240.105</td>
<td>269.724</td>
</tr>
<tr>
<td>Applicant Income (in 1000s)</td>
<td>119.413</td>
<td>111.695</td>
<td>103.532</td>
</tr>
<tr>
<td>Coborrower Present</td>
<td>0.417</td>
<td>0.493</td>
<td>0.382</td>
</tr>
<tr>
<td>Jumbo Loan</td>
<td>0.410</td>
<td>0.492</td>
<td>0.246</td>
</tr>
<tr>
<td>Adjustable Interest Rate</td>
<td>0.543</td>
<td>0.498</td>
<td>0.481</td>
</tr>
<tr>
<td>Subordinate Debt</td>
<td>0.436</td>
<td>0.496</td>
<td>0.411</td>
</tr>
<tr>
<td>Loan to Value Ratio</td>
<td>0.867</td>
<td>0.249</td>
<td>0.882</td>
</tr>
<tr>
<td>Vantage Score</td>
<td>801.688</td>
<td>100.245</td>
<td>784.211</td>
</tr>
<tr>
<td>Mortgage Payment to Income Ratio</td>
<td>0.246</td>
<td>0.309</td>
<td>0.249</td>
</tr>
<tr>
<td>Debt Payment to Income Ratio</td>
<td>0.307</td>
<td>0.379</td>
<td>0.318</td>
</tr>
<tr>
<td>Condo</td>
<td>0.206</td>
<td>0.404</td>
<td>0.199</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.001</td>
<td>0.036</td>
<td>0.001</td>
</tr>
<tr>
<td>Single Family</td>
<td>0.788</td>
<td>0.409</td>
<td>0.796</td>
</tr>
<tr>
<td>Lot Size (sf in 1000s)</td>
<td>14,086.73</td>
<td>136,283.00</td>
<td>14,018.82</td>
</tr>
<tr>
<td>Unit square feet (in 1000s)</td>
<td>2,102.00</td>
<td>42,079.06</td>
<td>1,812.32</td>
</tr>
<tr>
<td>Number of Bathrooms</td>
<td>2.048</td>
<td>1.297</td>
<td>2.170</td>
</tr>
<tr>
<td>Number of Bedrooms</td>
<td>2.283</td>
<td>1.605</td>
<td>2.304</td>
</tr>
<tr>
<td>Number of Stories</td>
<td>1.253</td>
<td>2.001</td>
<td>1.221</td>
</tr>
<tr>
<td>Units in Building</td>
<td>1.584</td>
<td>10.797</td>
<td>1.538</td>
</tr>
<tr>
<td>PUMA Share Residents Black</td>
<td>0.060</td>
<td>0.074</td>
<td>0.077</td>
</tr>
<tr>
<td>PUMA Share Residents Hispanic</td>
<td>0.083</td>
<td>0.094</td>
<td>0.092</td>
</tr>
<tr>
<td>PUMA Median Family Income (1,000s)</td>
<td>65.02</td>
<td>16.75</td>
<td>59.60</td>
</tr>
<tr>
<td>PUMA Homebuyers Share Black</td>
<td>0.030</td>
<td>0.044</td>
<td>0.062</td>
</tr>
<tr>
<td>PUMA Homebuyers Share Hispanic</td>
<td>0.074</td>
<td>0.087</td>
<td>0.089</td>
</tr>
<tr>
<td>PUMA Homebuyer Med Inc (1,000s)</td>
<td>88.38</td>
<td>25.17</td>
<td>74.82</td>
</tr>
<tr>
<td>Number 90 day bankcard</td>
<td>0.040</td>
<td>0.322</td>
<td>0.057</td>
</tr>
<tr>
<td>Number medical collection</td>
<td>0.001</td>
<td>0.034</td>
<td>0.001</td>
</tr>
<tr>
<td>Agg Med coll ($1000's)</td>
<td>0.590</td>
<td>54.839</td>
<td>0.279</td>
</tr>
<tr>
<td># 90 Day Delinquencies</td>
<td>0.069</td>
<td>0.669</td>
<td>0.111</td>
</tr>
<tr>
<td>Current Loan to Value (County Prices)</td>
<td>1.003</td>
<td>0.617</td>
<td>1.036</td>
</tr>
</tbody>
</table>

| Sample size | 103,018 | 102,200 | 97,802 |

Notes. This table presents the means and standard deviations of variables by terciles defined by PUMA by origination year share of loans issued by high cost lenders where high cost lenders are defined as lenders for whom 20 percent or more of their loans in our seven sites qualified as rate spread loans, i.e. APR 300 basis points over treasury rates of comparable maturity.
Table 2: PUMA Attributes in Home Purchase Sample

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Loans from Lenders >0.15</td>
<td>0.140</td>
<td>0.248</td>
<td>0.284</td>
<td>0.119</td>
</tr>
<tr>
<td>Share Loans from Lenders >0.20</td>
<td>0.106</td>
<td>0.208</td>
<td>0.230</td>
<td>0.065</td>
</tr>
<tr>
<td>Share Loans from Lenders >0.25</td>
<td>0.064</td>
<td>0.188</td>
<td>0.193</td>
<td>0.040</td>
</tr>
<tr>
<td>Share Loans w/ Subprime Credit Score</td>
<td>0.237</td>
<td>0.241</td>
<td>0.251</td>
<td>0.190</td>
</tr>
<tr>
<td>Share High LTV Loans</td>
<td>0.338</td>
<td>0.370</td>
<td>0.427</td>
<td>0.329</td>
</tr>
<tr>
<td>Share High DTI Loans</td>
<td>0.450</td>
<td>0.457</td>
<td>0.477</td>
<td>0.504</td>
</tr>
<tr>
<td>High Cost/Rate Spread Loans</td>
<td>0.059</td>
<td>0.115</td>
<td>0.123</td>
<td>0.064</td>
</tr>
<tr>
<td>Share Black Loans</td>
<td>0.080</td>
<td>0.088</td>
<td>0.108</td>
<td>0.095</td>
</tr>
<tr>
<td>Share Hispanic Loans</td>
<td>0.140</td>
<td>0.160</td>
<td>0.166</td>
<td>0.141</td>
</tr>
<tr>
<td>Share Low Income Borrowers</td>
<td>0.319</td>
<td>0.325</td>
<td>0.342</td>
<td>0.342</td>
</tr>
<tr>
<td>Denial Rate</td>
<td>0.251</td>
<td>0.271</td>
<td>0.302</td>
<td>0.343</td>
</tr>
<tr>
<td>Number of Applications</td>
<td>9,713.103</td>
<td>9,973.553</td>
<td>8,505.152</td>
<td>5,742.987</td>
</tr>
<tr>
<td>Herfindahl</td>
<td>0.266</td>
<td>0.267</td>
<td>0.263</td>
<td>0.263</td>
</tr>
<tr>
<td>Employment Rate</td>
<td>0.944</td>
<td>0.944</td>
<td>0.940</td>
<td>0.933</td>
</tr>
<tr>
<td>PUMA Housing Price Index</td>
<td>158.739</td>
<td>189.079</td>
<td>204.180</td>
<td>193.084</td>
</tr>
<tr>
<td>Sample Size</td>
<td>83,894</td>
<td>95,210</td>
<td>74,588</td>
<td>49,328</td>
</tr>
</tbody>
</table>

Notes. Table presents sample means by year of origination of variables measured at the PUMA level.
Table 3: Foreclosure Notice in Credit Report on Share of Loans in PUMA Originated by High Cost Lenders

<table>
<thead>
<tr>
<th></th>
<th>Rate Spread</th>
<th>Credit Score</th>
<th>Demographic</th>
<th>Risk Factors</th>
<th>Lender FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.093***</td>
<td>0.079***</td>
<td>0.066***</td>
<td>0.051***</td>
<td>0.038***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>PUMA Shr from Lndrs >0.2</td>
<td>0.256***</td>
<td>0.204***</td>
<td>0.138***</td>
<td>0.128***</td>
<td>0.122***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.019)</td>
<td>(0.019)</td>
<td>(0.019)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,020</td>
<td>303,020</td>
<td>303,020</td>
<td>303,020</td>
<td>303,019</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.091</td>
<td>0.095</td>
<td>0.115</td>
<td>0.126</td>
<td>0.132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rate Spread</th>
<th>Credit Score</th>
<th>Demographic</th>
<th>Risk Factors</th>
<th>Lender FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.092***</td>
<td>0.077***</td>
<td>0.065***</td>
<td>0.049***</td>
<td>0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>PUMA Shr from Lndrs >0.2</td>
<td>0.135***</td>
<td>0.136***</td>
<td>0.122***</td>
<td>0.121***</td>
<td>0.127***</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.045)</td>
<td>(0.044)</td>
<td>(0.043)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,020</td>
<td>303,020</td>
<td>303,020</td>
<td>303,020</td>
<td>303,019</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.097</td>
<td>0.101</td>
<td>0.119</td>
<td>0.131</td>
<td>0.136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rate Spread</th>
<th>Credit Score</th>
<th>Demographic</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.055***</td>
<td>0.047***</td>
<td>0.041***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.211***</td>
<td>0.211***</td>
<td>0.212***</td>
<td>0.217***</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.061)</td>
<td>(0.061)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.116</td>
<td>0.118</td>
<td>0.133</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Notes. Table presents estimates from regressions of whether the credit report contained a report of foreclosure in a given year based on a sample of annual credit reports following the mortgage origination controlling for whether the loan was a rate spread loan, the PUMA share of loans from high cost lenders in the year of purchase/origination, and purchase year by credit report year by metropolitan/regional site. Panel 1 presents these regression with column 2 adding controls for 20 point vantage score bins; column 3 additionally adding demographic controls for race, ethnicity, gender, coborrower status and age; column 4 adding loan terms like loan to value ratio bins, mortgage payment to income ratio bins, debt payment to income ratio bins, whether adjustable rate, whether a jumbo loan amount and whether the purchase included a subordinate lien; and finally column 5 adds lender fixed effects. Panel 2 presents the same models except that the models also include PUMA by credit report year fixed effects. Panel 3 presents similar models except that the share of loans from high cost lenders is replaced by a shift-share style prediction in the change in expected change in share of loans from high cost lenders and all models include both PUMA by credit report year and lender by purchase year fixed effects. Standard errors are clustered at the PUMA level, and significance on two tailed t-test is designated by *** p<0.01, ** p<0.05, * p<0.1.
Table 4: Robustness Tests for Relationship between High Cost Lender Market Representation and Foreclosure

<table>
<thead>
<tr>
<th></th>
<th>Market Share > 15</th>
<th>Market Share > 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate Spread</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.180***</td>
<td>0.197***</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.116</td>
<td>0.143</td>
</tr>
</tbody>
</table>

	Balanced Panel 04-07, 08-09	Constant Share Rate Spread	Sample Weights	Asymmetric Effects
Predicted Change in Market Share	0.222***	0.190***	0.202***	
	(0.074)	(0.039)	(0.067)	

| Positive Predicted Change | 0.203 |
| | (0123) |

| Negative Predicted Change | 0.227*** |
| | (0.065) |

| Observations | 179,994 | 303,015 | 303,015 | 303,015 |
| R-squared | 0.169 | 0.143 | 0.138 | 0.143 |

Additional Robustness Tests with Risk Factor Controls

<table>
<thead>
<tr>
<th></th>
<th>Cluster Size over Share High Cost</th>
<th>Predicted Change in Market Share</th>
<th>Number of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.279***</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.244***</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.182**</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.204***</td>
<td>36</td>
</tr>
</tbody>
</table>

| Observations | 302,959 | 302,959 | 302,959 | 302,959 |
| R-squared | 0.116 | 0.118 | 0.133 | 0.143 |

Conditional and Clustered Standard Errors by Mortgage Year by PUMA Initial Share High Cost Loans

<table>
<thead>
<tr>
<th></th>
<th>Purchase Cohorts in Sample 04 to 05</th>
<th>04 to 06</th>
<th>04 to 07</th>
<th>04 to 06 False 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.057</td>
<td>0.361**</td>
<td>0.162**</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.142)</td>
<td>(0.068)</td>
<td>(0.126)</td>
</tr>
</tbody>
</table>

| Observations | 179,101 | 158,478 | 133,218 | 158,478 |
| R-squared | 0.109 | 0.149 | 0.118 | 0.149 |

Notes. Table presents models from Panel 3 Table 3. Panel 1 presents column 1 and 4 models for alternative shift share predictions using 15 percent or 25 percent share of rate spread loans for defining high cost lenders. Panel 2 presents the column 4 model for three different samples/models. Column 1 is a balanced panel only retaining credit report years of 2008 and 2009. Column 2 adjusts the rate spread variable so that total fraction of rate spread loans is constant across years, and column 3 weights the sample based on sampling probability. Column 4 allows the estimated effect to vary based on whether the predicted change is positive or negative. Standard errors for panels 1 and 2 are clustered at the PUMA level. Panel 3 presents the same models as column 4 of Panel 3 Table 3 with the addition of fixed effects for mortgage origination year by PUMA initial (2004) share of loans from high cost lender bins where the bins are based on 0.01, 0.02, 0.03 and 0.04 increments of initial share for columns 1-4, respectively. Standard errors in Panel 3 use two-way clustering based on PUMA and on mortgage year by PUMA initial share of loans from high cost lender bins. Panel 4 presents models including only two cohorts of loans where the last column tests whether the changes in the shift share proxy between the 2006 and 2007 cohorts can explain changes in foreclosure between the 2004 and 2006 cohorts. Significance is designated by *** p<0.01, ** p<0.05, * p<0.1.
Table 5: Heterogeneity in the Effect of the Market Representation of High Cost Lenders

<table>
<thead>
<tr>
<th></th>
<th>Lender by Purchase Year by Rate Spread Loan FE</th>
<th>Lender by Purchase Year by Race/Ethnicity FE</th>
<th>Lender by Purchase Year by Type of Loan Purchase FE</th>
<th>Lender by Purchase Year FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.194***</td>
<td>0.309***</td>
<td>0.169**</td>
<td>0.165**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.073)</td>
<td>(0.072)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*Rate Spread Loan</td>
<td>0.074</td>
<td>-0.116</td>
<td>-0.208*</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.080)</td>
<td>(0.107)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*Black</td>
<td></td>
<td></td>
<td>-0.208*</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.080)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*Hispanic</td>
<td></td>
<td></td>
<td>-0.208*</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.107)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*Held in Portfolio</td>
<td></td>
<td></td>
<td>-0.019</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.083)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*Non-agency Securitization</td>
<td></td>
<td></td>
<td>0.102</td>
<td>0.261**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.072)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Predicted Change in Market Share*High Cost Lender (>0.20)</td>
<td></td>
<td></td>
<td>0.261**</td>
<td>0.261**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.116)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,011</td>
<td>302,999</td>
<td>303,014</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.147</td>
<td>0.154</td>
<td>0.145</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Notes. This table presents estimates for the shift share prediction of changes in share of loans from high cost lenders based on the model from Table 3 Panel 3 column 4, but adds interactions of this predicted change variable. Column 1 includes the interaction with whether the loan is a rate spread or high cost loan, column 2 includes interactions with both whether the borrower is black and whether the borrower is Hispanic, column 3 includes interactions with whether the loan was held in portfolio or was securitized outside of traditional government sponsored channels, and column 4 includes an interaction with whether the lender that originated the loan is defined as a high cost lender. Standard errors are clustered at the PUMA level, and significance is designed by *** p<0.01, ** p<0.05, * p<0.1.
Table 6: Controlling for the Effect of Originating Lender’s Market Share

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Share</th>
<th>Predicted Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.217***</td>
<td>0.216***</td>
<td>0.218***</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.060)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Change in lender share</td>
<td>-0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted change in lender share</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Differential Effects for Origination by High Cost Lender

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Share</th>
<th>Predicted Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.165**</td>
<td>0.163**</td>
<td>0.153**</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.063)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>Predicted Change*High cost lender</td>
<td>0.261**</td>
<td>0.263**</td>
<td>0.230***</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.117)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Change in lender share</td>
<td>-0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change*High cost lender</td>
<td>-0.358</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.456)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted change in lender share</td>
<td>-0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted change lender*high cost</td>
<td>1.178**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.478)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Notes. This table presents models that add controls for either the change in lender market share by purchase year or the shift-share predicted change in share. Panel 1 presents baseline models based on Table 3 Panel 3 column 4, and Panel 2 presents models including interactions with whether the originating lender was a high cost lender based on the model in Table 5 column 4. Column 1 repeats models without information on lender share, column 2 includes actual lender share and column 3 includes the shift share based prediction. Standard errors are clustered at the PUMA level, and significance is designed by *** p<0.01, ** p<0.05, * p<0.1.
Table 7: Additional Tests for Whether Borrower Unobservables Matter

<table>
<thead>
<tr>
<th></th>
<th>Contemporaneous Risk Factors</th>
<th>Whether Rate Spread Loan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bankcard Trades</td>
<td>Medical Collection Trades</td>
</tr>
<tr>
<td>Rate Spread Loan</td>
<td>0.034***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.210***</td>
<td>0.217***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.060)</td>
</tr>
<tr>
<td># of Bankcard Trades</td>
<td>0.064***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Acl190 Log(amount+1)</td>
<td>0.000008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>Acl200 Log(#trades+1)</td>
<td>-0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.158</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Notes: The first three columns of this table present estimates of models from the fourth column of Table 3 Panel 3. The first column contains of estimates based on including a control for the logarithm of 1 plus the number of bank card accounts that are 90 days past due or longer, the next column includes controls for number of medical collection trades and the aggregate amount of medical collection trades, again using the transformation of the logarithm of 1 plus variable, and the third column includes both the bankcard and medical collection information. The last two columns estimate very similar models where whether the loan is rate spread or high cost is moved to the left hand side of the model. These models models are estimates using a sample of mortgages (as opposed to mortgages by credit report year) and conditional on the purchase/originiation year trends, and PUMA, lender by origination year and metro area by origination year fixed effects. The first of these columns contains no additional controls (equivalent to column 1 Table 3 Panel 3), and the last column includes all controls as in column 4. Standard errors are clustered at the PUMA level, and significance is designed by *** p<0.01, ** p<0.05, * p<0.1.
Table 8: Measures of Trends in Mortgage Borrowers, Attributes and Market Conditions

<table>
<thead>
<tr>
<th>PUMA Borrower Attributes</th>
<th>Share low income</th>
<th>Share Black & Hispanic</th>
<th>Share subprime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.222***</td>
<td>0.235***</td>
<td>0.221***</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.060)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>PUMA share</td>
<td>-0.143***</td>
<td>0.124***</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.042)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUMA Loan Attributes</th>
<th>Share High Cost Loans</th>
<th>Share high ltv</th>
<th>Share high dti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.212***</td>
<td>0.216***</td>
<td>0.216***</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.059)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>PUMA share</td>
<td>0.122</td>
<td>-0.022**</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.009)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUMA Mortgage Attributes</th>
<th>Denial Rate</th>
<th>No. Applications (10,000)</th>
<th>Herfindahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.236***</td>
<td>0.245***</td>
<td>0.227***</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.060)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>PUMA attribute</td>
<td>0.067</td>
<td>-0.000001**</td>
<td>-0.118**</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.000)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Notes: This table presents estimates of models from the fourth column of Table 3 Panel 3 adding additional controls for PUMA variables that vary by purchase year one at a time. Panel 1 adds borrower controls: share borrowers with family income below the federal poverty line, share of borrowers who are black or Hispanic and share of borrowers with subprime credit scores (below 701) by PUMA and origination year for columns 1, 2 and 3, respectively. Panel 2 adds loan attributes: share of high cost loans, share of loans with an LTV over 0.95, and share of loans with a debt to income ration of 0.45. Finally, Panel 3 adds common market descriptors from HMDA: the denial rate, number of applications and a Herfindahl of market concentration among lenders. Standard errors are clustered at the PUMA level, and significance is designed by *** p<0.01, ** p<0.05, * p<0.1.
Table 9: Negative Equity and Employment Rate Controls

<table>
<thead>
<tr>
<th></th>
<th>Equity based on County Price Indices</th>
<th>Equity based on PUMA Price Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Equity</td>
<td>Negative Equity and Employment</td>
</tr>
<tr>
<td>Rate Spread Loan</td>
<td>0.035***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.228***</td>
<td>0.226***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>Observations</td>
<td>303,015</td>
<td>303,015</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.146</td>
<td>0.146</td>
</tr>
</tbody>
</table>

Notes: This table presents estimates of models from the fourth column of Table 3 Panel 3 adding controls for whether the individual is in negative equity. Panel 1 presents results based on county price indices, and panel 2 presents results based on PUMA price indices. Column 1 includes only the negative equity variables, column 2 interacts negative equity with county level by credit report year employment rates from the American Community Survey, and column 3 includes the same interactions with a county by credit report employment rate for the individual's race or ethnicity. Standard errors are clustered at the PUMA level, and significance is designed by *** p<0.01, ** p<0.05, * p<0.1.
Table 10: Foreclosure Models Relevant to the Role of Loan Servicers

<table>
<thead>
<tr>
<th></th>
<th>Foreclosure vs. Delinquency</th>
<th>Judicial vs. Administrative</th>
<th>Lagged Foreclosure Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreclosure 0.035***</td>
<td>90 Day Delinquency 0.025***</td>
<td>Outside California 0.033***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Rate Spread Loan</td>
<td></td>
<td></td>
<td>California 0.038***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline 06-09 0.036***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experience 0.036***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horse Race 0.036***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Predicted Change in Market Share</td>
<td>0.217***</td>
<td>0.069</td>
<td>0.269***</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.052)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Foreclosure rate by PUMA by Origination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.377***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year for Preceding Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303,015</td>
<td>303,015</td>
<td>212,142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90,872</td>
</tr>
<tr>
<td></td>
<td>286191</td>
<td>142,818</td>
<td>142,818</td>
</tr>
<tr>
<td></td>
<td>0.143</td>
<td>0.092</td>
<td>0.128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.144</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.152</td>
</tr>
</tbody>
</table>

Notes: This table presents estimates of models from the fourth column of Table 3 Panel 3. Columns 1 and 2 present these estimates for foreclosure and for 90-180 day mortgage delinquency as the dependent variable, respectively. Columns 3 and 4 present the foreclosure model for all non-California sites and the two California sites, respectively. Column 5-7 present models of foreclosure dropping credit reports in 2005. Column 5 replicates Table 3 Panel 3 column 4 without 2005 foreclosures. Column 6 replaces predicted high cost lender share with the foreclosure rate from a hold-out sample for the same PUMA and origination year in the preceding crisis year, e.g. 2005 experience for credit report data in 2006. Column 7 presents a model containing both the shift share proxy and the previous year foreclosure experience. The hold-out sample of mortgages represents half of all mortgages in each PUMA by cohort cell, and estimations are conducted using the other half of the observations. In Columns 6 and 7, estimates are averaged across a set of 500 randomly sampled hold-out samples, standard errors are bootstrapped by resampling PUMA and resampling PUMA by cohort hold-out samples 500 times, and observation counts and R-squareds are averaged across hold-out samples. Significance is designated by *** p<0.01, ** p<0.05, * p<0.1.