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1 Introduction

The 2007-09 financial crisis spurred regulatory efforts to move the trading of many finan-

cial instruments from decentralized over-the-counter markets to centralized platforms. The

argued benefits of trading in centralized markets include liquidity and transparency. These

arguments are almost always made on the premise that the set of securities designed by

financial intermediaries is immune to the market structure in which trading occurs. Do all

securities trading in decentralized markets migrate to the centralized platform rather than

ceasing to be issued? How can a regulator ensure that they do migrate? We present a

framework to study these questions here.

We consider a regulator who redesigns the market structure for certain financial contracts

to increase liquidity. In particular, the regulator introduces an exchange in which financial

securities that have traditionally traded in fragmented (local) markets can also trade. Fi-

nancial intermediaries design asset-backed securities taking into account investor demand in

the markets in which the securities will be traded. Babus and Hachem (2020) show that in-

termediaries will create increasingly riskier securities when facing deeper, more concentrated

markets. We now consider two dimensions of market power: the depth of the local market

and the market power of the intermediary relative to the investors in that market. Both

dimensions are important for security design, but the latter is the critical one studied here

relative to our earlier work. The regulator understands that simply shifting trade from a

decentralized market to a centralized one will result in financial intermediaries having more

market power relative to investors, and this will lead to the design of riskier securities.

In our baseline model, the market structure is given and consists of a set of local markets

in addition to an exchange in which securities can be traded. In each local market, investors

trade strategically whereas the exchange is perfectly competitive and thus highly liquid.

Each intermediary designs an asset-backed security for his local market. This security can

also be traded on the exchange. The payoff of the security is backed by an underlying asset,

with the intermediary choosing how much of the underlying asset to acquire (or originate)
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at a cost.

We characterize the effect of introducing the exchange on security design and the welfare

of investors. For a given market structure, investors would like to trade a less risky security

and, for a given security, they would like to trade in a larger market. The introduction of the

exchange therefore makes investors better off holding constant the payoffs of the security.

However, we show that the security that intermediaries design after the introduction of the

exchange is of lower quality, in the sense of a lower expected payoff per unit of standard

deviation. This reflects the relative dilution of investor market power, which is a powerful

tool in disciplining the incentives of intermediaries in security design (Babus and Hachem

(2020)). The decline in the quality of the security issued to investors then makes them

worse off, all else constant. For a suffi ciently small exchange, that is, an exchange where the

intermediary does not have very high market power, the decline in the quality of the security

is not large enough to offset the benefits to investors of trading in a larger, more liquid

market. The investor is then unambiguously better off. However, for a larger exchange, the

decline in the quality of the security is severe enough that the investor can be worse off as a

result of the introduction of the exchange.

The next part of the paper considers how the introduction of the exchange affects an

intermediary’s incentive to originate higher quality assets. We find that introducing an

exchange leads the intermediary to originate better underlying assets, as indicated by a higher

expected payoff per unit of standard deviation, in order to relax the feasibility constraint

on the payoffs in his security design problem. However, the quality of the asset-backed

securities sold by intermediaries to investors still declines as a result of the introduction of

the exchange, reflecting once again the relative loss of market power by investors in the

local market. The local market power of investors is thus a powerful disciplining device on

intermediary security design, so much so that even with better quality underlying assets, the

asset-backed security can still be worse.

These results motivate the need to coordinate regulations aimed at enhancing market
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liquidity with those that control security design. A policy tool that the regulator could use

to counter the negative effects of the exchange on security design is a subsidy that lowers

the cost to intermediaries of originating more and/or better underlying assets. For the same

quality underlying asset, higher origination means that the intermediary has more returns,

in any given state, from which to design the payoff of the asset-backed security. This allows

him to create a security with higher average payoff, without increasing the variability of those

payoffs across states. The same is true if the intermediary is incentivized to originate better

quality underlying assets, holding constant their quantity. Alternatively, the regulator could

impose explicit floors on origination (or asset purchases) and supervise to ensure compliance.

This would be more budget neutral than origination subsidies provided supervision costs are

not too high.

Our paper is motivated by post-crisis regulation of over-the-counter (OTC) derivatives.

Lack of transparency in OTC markets is widely cited as an amplifier of the 2007-09 financial

crisis, resulting in a regulatory push to have all “standardized” OTC derivatives cleared

through central counterparties (Geithner (2009)). An important attribute of a standard-

ized contract is high transaction volume. Illiquid contracts, i.e., those with low transaction

volume, are not amenable to central clearing (Spatt (2017)). Thus, G-20 leaders agreed

in September 2009 that all standardized OTC derivatives should be traded on exchanges

or electronic trading platforms, in addition to being centrally cleared. Exchanges improve

market access, enhancing the liquidity of contracts and facilitating migration into central

clearing.

While derivatives, and in particular swaps, have been the prime target of these efforts

because of their role in the crisis, the objective of market access transcends any one financial

product. It is then important to understand more broadly the implications of trade cen-

tralization. In the case of swaps, the distinction between primary and secondary markets is

blurred, hence the debates about centralization have not focused on one market as opposed

to the other. For products where this distinction is sharper, liquidity in the secondary market
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is generally believed to positively affect liquidity in the primary market, making it natural

to consider what happens if both markets are effectively centralized.

Our results suggest that caution is warranted when trying to improve market access:

exchange trading also alters security design, to the detriment of investors. In practice,

the move to a more centralized market structure has faced pushback from some market

participants. As discussed in Spatt (2017), end-users hedge risk in a variety of ways, including

the use of customized derivative contracts. Highly customized contracts will never achieve the

transaction volume necessary for centralized clearing, and end-users have complained about

the imposition of seemingly punitive rules on non-centrally-cleared contracts as regulators

try to disincentivize them. Our results support some of the concerns voiced by end-users.

Holding constant the products being traded, investors are better off in more liquid markets.

This serves as a motivation for centralization in our model. However, once security design

is endogenized, the optimal amount of centralization is lower because investors need market

power to elicit their preferred securities.1

Related Literature There is a large literature on financial innovation, with many studies

concentrating on whether market competition affects the introduction of new securities (e.g.,

Allen and Gale (1991), Axelson (2007), Carvajal, Rostek, and Weretka (2012)). In recent

work, Rostek and Yoon (2020a,b) show that under imperfect competition even derivatives

need not be a redundant financial innovation. We contribute to this literature by exploring

how the introduction of a centralized market affects the incentives of financial intermediaries

that design securities for fragmented markets. In Babus and Hachem (2020), we considered

the joint determination of market structure and security design and showed that investors

choose to trade in thinner, more fragmented markets to obtain safer securities. Here, we take

market structure as given and focus on how adding access to an exchange affects security

1The securities in our model are designed before individual preference shocks are realized so they are
not customized to these realizations. However, the more market power investors have, the more they can
customize the security to align with their expected preferences. In this regard, centralization leads to a loss
of customization, which negatively impacts the welfare of end-users.
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design and investor welfare.

The role of market structure for welfare has received renewed attention, spurred by the

regulations introduced in the aftermath of the 2007-09 financial crisis. Traders in fragmented,

decentralized markets exercise market power, often resulting in ineffi ciencies that do not exist

in centralized markets. For instance, market power leads to distortions in risk-sharing and

investment decisions (Neuhann and Sockin (2020)). Moreover, even when externalities arise

under perfect competition, such as in models of fire sales, market power can exacerbate the

associated ineffi ciency (Eisenbach and Phelan (2020)). At the same time, several studies have

shown that centralized trading does not unambiguously increase welfare. In Dugast, Üslü,

and Weill (2019), increasing the participation of banks that can take large positions to a

centralized market can improve welfare, but conditions have to be met. In Chen and Duffi e

(2020), fragmentation allows market participants to split their trades, generating welfare

gains, while in Malamud and Rostek (2017), a decentralized market can increase welfare

by reallocating systematic risk toward less risk-averse agents. Competition between various

platforms (Lee and Wang (2018)) or between multiple exchanges (Cespa and Vives (2018))

can also increase welfare.

We also show that centralized trading need not increase investor welfare. However, the

mechanism in our analysis is through the security that is issued. Access to a centralized

market increases the relative market power of financial intermediaries, enabling them to

issue riskier securities than they otherwise would. This mechanism is in sharp contrast to

previous work where the security traded is taken as given.

The rest of the paper proceeds as follows. Section 2 extends the set-up in Babus and

Hachem (2020) to include an exchange, with the equilibrium defined and characterized in

Section 3. Sections 4 and 5 then present the policy implications, namely the effect of in-

troducing an exchange to improve market access on the overall welfare of investors and the

need for coordinated policies to mitigate welfare losses stemming from endogenous changes

in security design. The quality of underlying assets is held fixed in the analysis of Section
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4, with changes in origination quality explored in Section 5. Section 6 concludes. All proofs

are collected in Online Appendix A.

2 The Model Set-Up

We consider an economy with three dates, t = 0, 1, 2, populated by financial intermediaries

and investors. There is a mass M of financial intermediaries indexed by m ∈ M, where

M = [0,M ] is the set of intermediaries. Each intermediary m has access to a risky asset Zm.

Each unit of Zm yields a payoff zm (s) ≥ 0 if the idiosyncratic state s ∈ [0, S] is realized at

date t = 2. We assume z′m (·) > 0. The cumulative distribution function for states is Fm (s),

with Fm (·) continuous and differentiable. The probability density function is fm (s). The

realization of the assets Zm is assumed to be independent across intermediaries.

A local market m is associated with each intermediary m. In each market m, the in-

termediary can issue a security Wm that pays wm (s) if state s is realized at t = 2. We

fix the quantity Am of the security issued by intermediary m and allow him to choose how

many units Km of the asset Zm to acquire subject to a cost u (Km) = δK2
m

2
, where δ > 0. In

this sense, Wm is an asset-backed security with an underlying asset Zm that can be a loan

originated by the intermediary or purchased from another originator. As in the literature on

the spanning role of securities (Duffi e and Rahi (1995)), the security payoff is subject to the

feasibility constraint

Amwm (s) ≤ Kmzm (s) ,∀s ∈ [0, S] . (1)

There is a finite number of investors nm > 2 in each market m. The set of investors

in market m is Nm. Overall, there is a mass N of investors in the economy. Investors are

indexed by i ∈ N , where N = [0, N ] is the set of investors. As in Babus and Hachem (2020),

investor i is subject to a preference shock θi that shifts her marginal utility of consumption.

The shock θi is independently distributed across investors according to a distribution G (·)

with mean µθ and standard deviation σθ. The realization of the shock θ
i is also independent

7



of the realization of the state s.

Investors do not have access to the assets Zm. However, an investor in market m can

obtain an exposure to Zm by trading the security Wm that intermediary m designs. Inter-

mediaries design securities before preference shocks are realized, so whether or not a security

in our model is standardized is squarely a question about whether or not it is suffi ciently

liquid.

We add to this environment a centralized market (or exchange) e where all securitiesWm

are traded. The introduction of an exchange will allow us to study the effect of regulations

that push towards trade centralization in Sections 4 and 5. Let E i denote the set of securities

traded by investor i in the centralized market, with ei = |E i| denoting the number of these

securities. We assume Wm /∈ E i for any i ∈ Nm. That is, investor i in market m only trades

the security Wm in her local market, using the centralized market to acquire exposure to

other underlying assets Z 6̀=m.2

Each security Wm that is traded in the centralized market also attracts a competitive

fringe with mass ηm. Agents in the competitive fringe will be referred to as traders to

distinguish them from the investors that participate in local markets. For simplicity, each

fringe trader k only trades one security on the exchange. The competitive fringe across all

securities has mass
∫
ηmdm = H. The overall mass that trades the security Wm in the

centralized market is ηm, including (a finite set of) investors.

To summarize, the timing of events is as follows. At date t = 0, the intermediary in

market m designs the security Wm. The intermediary is assumed to supply a quantity am

of the security Wm in his local market m and a quantity aem in the centralized market e,

where am + aem ≡ Am. At date t = 1, each investor i and trader k learns their preference

shock, θi and θk, respectively. After this, all markets open and trade occurs. At date t = 2,

2Suppose instead Wm ∈ E i. Then, since the centralized market is perfectly competitive, investors can
arbitrage away any price differences between the local market and the exchange, driving the price in the local
market to the competitive price in the centralized market. We thus consider Wm /∈ E i to allow for strategic
trading in local markets and develop a richer understanding of how the exchange affects security design and
investor welfare.
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the states s are realized. Investors and the competitive fringe receive payoffs according their

final holdings of the security. Each intermediary m pays Amwm (s) and receives Kmzm(s).

Consumption takes place.

We model investors’ trading strategies as quantity-price schedules, as in Kyle (1989)

and Vives (2011). In particular, the strategy of an investor i in market m with preference

shock θi is a map from her information set to the space of demand functions, as follows.

When trading in the local market, the demand function of investor i is a continuous function

Qi
m : Rei+1 → R which maps the price pm at which the security Wm trades in her local

market m, as well as the vector of prices pEi =
(
pe`j

)
j=1,...,ei

at which securities W`j ∈ E i

trade in the centralized market e, into a quantity qim she wishes to trade

Qi
m

(
pm,pEi ; θ

i
)

= qim.

To avoid confusion, we use pm to denote the price of the security Wm in the local market m

and pem to denote the price of the same security in the centralized market e.

Similarly, when trading securityW`j ∈ E i in the centralized market, the demand function

of investor i is a continuous function X i
`j

: Rei+1 → R which maps the vector of prices

pEi =
(
pe`j

)
j=1,...,ei

at which securities W`j ∈ E i trade in the centralized market e, as well as

the price pm at which the security Wm trades in her local market m, into a quantity xi`j she

wishes to trade

X i
`j

(
pm,pEi ; θ

i
)

= xi`j .

An investor i who trades qim units of security Wm in market m and xi`j units of security

W`j in the centralized market e at date t = 1 consumes Ci
m at date t = 2, with

Ci
m = qimWm + [WEi ]

T xEi , (2)

whereWEi =
(
W`j

)
j=1,...,ei

is the vector of securities W`j ∈ E i and xEi =
(
xi`j

)
j=1,...,ei

is the
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vector of quantities of securities traded in the centralized market.

We model investors as having mean-variance preferences. Therefore, the expected payoff

of an investor i with preference shock θi who trades security Wm in her local market m and

a set of securities E i in the centralized market e is

V i
m = θiE1

(
Ci
m

)
− γ

2
V1
(
Ci
m

)
−

 pm

pEi


T  qim

xEi

 , (3)

where V (·) is the variance operator. We use E1 (·) and V1 (·) to indicate that expectations

are being taken after the realization of preference shocks but before the realization of states.

Traders in the competitive fringe have the same preferences as investors. That is, the

demand for security W` by a fringe trader k ∈ η` with preference shock θ
k is given by a

function Xk
`

(
pe`; θ

k
)
and the trader’s expected payoff takes the form of Eq. (3) with the

difference that he trades only the security W` in the centralized market.

The price pm in Eq. (3) is the price at which local market m clears, given that interme-

diary m supplies am units of the security Wm. That is, pm is such that

∑
i∈m

Qi
m

(
pm,pEi ; θ

i
)

= am. (4)

When a security W` is traded in the centralized market by investors and the competitive

fringe η`, the price p
e
` at which all trades clear given that intermediary ` supplies a

e
` units of

W` in market e is

∫
k∈η`

Xk
`

(
pe`; θ

k
)
dk = ae`. (5)

Note that there are finite investors that trade W` in the centralized market, so it is the

competitive fringe that ultimately determines the market clearing price pe`.

Substituting Eq. (2) into Eq. (3), we obtain the objective function at date t = 1 for an

10



investor i with trading strategy represented by the demand functions {Qi
m,XEi}:

V i
m =

θiE1

 Wm

WEi


−

 pm

pEi



T  Qi

m

XEi

− γ

2

 Qi
m

XEi


T

Σi

 Qi
m

XEi

 , (6)

where XEi =
(
X i
`j

)
j=1,...,ei

is the vector of demands for securitiesW`j and Σi is the variance-

covariance matrix of all securities that are traded by investor i. For any security m,

E1 (Wm) ≡
∫ S
0
wm (s) dFm (s) and V1 (Wm) ≡

∫ S
0

[wm (s)− E1 (Wm)]2 dFm (s). Since the

assets Zm are independent across financial intermediaries, the payoff realizations of two se-

curities Wm and W` are also independent. This implies that the matrix Σi is diagonal.

An intermediarym that designs securityWm receives the price pm per unit of the security

issued in the local marketm and the price pem per unit of the security issued in the centralized

market e. This is consistent with the interpretation that each intermediary m places the

securityWm with investors in the local market m as well as with investors and fringe traders

in the centralized market e by running a share auction as described by Wilson (1979). Thus,

even though the intermediary is not directly involved in the trade between investors at date

t = 1, an intermediary m’s expected payoff at date t = 1 is

Vm = pmam + pema
e
m + βE1 [KmZm − (am + aem)Wm]− u (Km) ,

for any amount am issued in the local market and aem issued in the centralized market, where

β ∈ [0, 1] is a discount factor that captures the impatience of intermediaries relative to

investors.

3 Equilibrium

In this section, we define and characterize the equilibrium. We start by solving for the

trading equilibrium in each local market m and in the centralized market e at date t = 1,
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given the securities Wm that intermediaries design at date t = 0. We then characterize the

security that each intermediary designs in equilibrium at date t = 0.

Definition 1 A subgame perfect equilibrium is a set of securities {Wm}m∈M, an amount

Km of the asset Zm that each financial intermediary m acquires, a set of demand functions

{Qi
m,XEi}i∈N for each investor i that trades security Wm in the local market m and the set

of securities E i in the centralized market e, and a demand function Xk
` for each trader k in

the competitive fringe η` that trades security W` in the centralized market e, such that:

1. {Qi
m,XEi} solve each investor i’s problem at date t = 1

max
{Qim,XEi}


θiE1


 Wm

WEi


−

 pm

pEi



T  Qi

m

XEi

− γ

2

 Qi
m

XEi


T

Σi

 Qi
m

XEi


 ;

(7)

2. Xk
` solves each trader k’s problem at date t = 1

max
Xk
`

{{
θkE1 (W`)− pe`

}
Xk
` −

γ

2
V1 (W`)

(
Xk
`

)2}

3. Wm and Km solve each intermediary m’s problem at date t = 0

max
Wm,Km

{pmam + pema
e
m + βE1 [KmZm − (am + aem)Wm]} − u (Km) , (8)

subject to the feasibility constraint

Amwm (s) ≤ Kmzm (s) ,∀s ∈ [0, S] .

3.1 The Trading Equilibrium

At date t = 1, after each investor i learns her preference shock θi, markets open and trade

takes place. Each investor chooses her trading strategy in order to maximize her expected
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payoff, understanding that she may have an impact on security price, depending on which

security she is trading. The optimization problem (7), which is defined over a function space,

is simplified to finding the functions Qi
m

(
pm,pEi ; θ

i
)
for security Wm and X i

`j

(
pm,pEi ; θ

i
)

for each security W`j ∈ E i pointwise.

The first order condition from investor i’s optimization problem is

θiE1

 Wm

WEi


−

 pm

pEi


− (Λi + γΣi

) qim

xEi

 =

 0

0

 , (9)

where Λi represents the price impact matrix of investor i for the securities she trades. Specif-

ically, Λi is an ei × ei matrix of the inverse residual demand of investor i, as implied by the

the market clearing conditions (4) and (5) given the schedules submitted by other investors

and traders in the competitive fringe. Entry (k, `) in the matrix represents the price change

of security ` that results from a marginal increase in the demanded quantity of security k.

The following proposition characterizes the trading equilibrium.

Proposition 1 Given a set of securities {W`}`∈M, there exists a unique symmetric linear

equilibrium that characterizes trading strategies for each security, as follows.

1. (Centralized market) The equilibrium demand function of an investor i for security

W` ∈ E i is

X i
`

(
pe`; θ

i
)

=
1

γV1 (W`)

(
θiE (W`)− pe`

)
, (10)

which is also the demand of a trader in the competitive fringe η`. The equilibrium price

at which security W` trades in the centralized market is

pe` = µθE (W`)− γV1 (W`)
ae`
η`
. (11)
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2. (Local market) The equilibrium demand function of an investor i for security Wm is

Qi
m

(
pm; θi

)
=

1

(1 + λm) γV1 (Wm)

[
θiE1 (Wm)− pm

]
, (12)

where λ−1m ≡ (nm − 2) is an index of the depth of the local market m. The equilibrium

price in market m is

pm =

(
1

nm

∑
i∈m

θi

)
E1 (Wm)− γV1 (Wm) (1 + λm)

am
nm

. (13)

Proposition 1 shows that in equilibrium the demand function of an investor for a security

depends only on the price of that security either in the local market or in the centralized

market. In other words, the investor’s equilibrium demand for one security is not contingent

on the prices of the other securities. When trading in the centralized market, the investor

faces a competitive fringe, hence her price impact is 0 for any securityW` ∈ E i. For the same

reason, the price of a security W` in the centralized market is not affected as an investor

i ∈ Nm changes her trade in either her local market security Wm or in another security W`′

traded in the centralized market. When trading in the local market, an investor i ∈ Nm

has a price impact, ∂pm,−i/∂qim = λmγV1 (Wm), that decreases with the depth of the local

market, λ−1m . Trading other securities in the centralized market does not affect the price pm

of the security Wm, despite the fact that the investor has a price impact in the local market,

because the securities have independent payoffs.

We also see from Proposition 1 that investor i ∈ Nm buys (sells) securityWm in the local

market if her valuation θiE1 (Wm) of the security’s expected payoff is above (below) the price

pm at which she can trade. Similarly, she buys (sells) security W` ∈ E i in the centralized

market if her valuation θiE1 (W`) is above (below) the price pe`. In the centralized market,

the price of a security W` is simply the expected value of the security, adjusted by the mean

valuation of the competitive fringe trading the security, minus a risk premium. The risk

premium exists because traders are risk averse and, in expectation, have to hold aem/ηm
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units of a risky security. Similarly, in the local market, the price of the security Wm is the

expected value of the security, adjusted by the mean valuation of the investors trading the

security, minus a risk premium. However, the risk premium in the local market depends not

only on the amount of the security issued per capita, am/nm, but also on the depth of the

local market, λ−1m .

Given a realization of preference shocks, the price at which the securityWm trades either

in the local market or the centralized market in Proposition 1 decreases with the variance of

the security. However, the price in the local market decreases less with the variance of the

security as the market becomes deeper. Moreover, the variance of the security is endogenous

since the security is a choice of the intermediary, as we describe next.

3.2 The Equilibrium Security

At the end of date t = 0, each intermediary m designs a security Wm taking into account

both investors’ demand in the local market and the demands in the centralized market.

In particular, an intermediary m chooses the payoff wm (s) of the security for each state

s to maximize his expected profit in (8), subject to the feasibility constraint (1). At the

same time, the intermediary also chooses the amount Km of the underlying asset Zm to

acquire at the cost u (Km) = δK2
m

2
. The amount Km determines how many units of the

underlying asset are used to back the issuance of Am units of the security Wm. Essentially,

the intermediary uses the amount Km as another margin when deciding how much of the

payoff of the underlying asset Zm he transfers to the investors and how much he keeps for

himself.

In solving for the equilibrium security, many of the forces identified in Babus and Hachem

(2020) are at work. Substituting into (8) the expected price E0 (pm) at which investors trade

the security Wm in the local market m (see Eq. (13)) and the price pem at which the same

security is traded in the centralized market (see Eq. (11)), we obtain that intermediary m
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designs the security Wm to maximize the following objective function:

Vm = (µθ − β)E1 (Wm)Am− γV1 (Wm)

(
(1 + λm)

am
nm

am +
aem
ηm

aem

)
+βKmE1 (Z)−u (Km) ,

(14)

where Am = am + aem.

The intermediary faces a trade-off between the mean and the variance of the security he

designs. The intermediary benefits from offering a security that pays well in expectation, as

the expected price at which trade occurs in either market (local or centralized) is increasing

in E1 (Wm). However, the feasibility constraint (1) implies that the intermediary cannot

increase the mean of the security without increasing its variance V1 (Wm). A security Wm

has a higher variance when it has more variable payoffs. Alternatively, the variance of the

security increases when a greater amount Km of the asset Zm backs the security, as the

feasibility constraint (1) becomes laxer holding fixed the amount Am of the security issued.

However, a security with a higher variance decreases the expected payoff of the intermediary

in a way that depends both on the market power of the investors in the local market as well

as on the market power of the intermediary, as defined next.

In the local market, investors’market power is captured through their price impact.

We recall that a higher price impact ∂pm,−i/∂qim is associated with a higher value of λm

for a given security Wm. All else constant, the intermediary’s expected payoff in Eq. (14)

decreases more with the variance ofWm when λm is high, therefore the security design of the

intermediary will be more responsive to investors’demand in a thinner local market. Hence,

we interpret λm as a measure of investor market power in the local market.

We also see from Eq. (14) the effect of the exchange on the security design problem.

Holding fixed the total supply Am of the security designed by intermediary m, an increase in

the quantity aem supplied to the exchange dilutes (or down-weights) the negative effect of the

variance on the intermediary’s expected payoff. This is because the intermediary is shifting

the sale of his security away from the local market, where investors have market power via
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their price impact, towards the centralized market where there is no price impact. As trade

shifts to the centralized market, investors cede market power to the intermediary. Therefore,

we define

χm ≡
aem
ηm
aem

am
nm
am

to capture the market power of the intermediary relative to investors in the local market,

for given market sizes nm and ηm. Intuitively, an increase in χm implies an increase in a
e
m

relative to am ≡ Am− aem and thus higher expected profit for the intermediary on any given

security Wm.

The following proposition characterizes the optimal security in this environment.

Proposition 2 Suppose µθ > β so that intermediaries find it profitable to design securities

for investors. An intermediary m designs a security Wm with payoffs

wm (s) =


Km
Am
zm (s) if s < sm

Km
Am
zm (sm) if s ≥ sm

(15)

where the threshold state sm ∈ [0, S] is defined by

sm =


z−1m

[
Am
Km

E1 (Wm) + 1
Km

µθ−β
2γ

(√ηmχm+
√
nm)

2

1+λm+χm

]
, ∀nm < nm

S, ∀nm ≥ nm

(16)

with nm finite if and only if the equation

δ

2γ

(√
ηmχm +

√
nm
)2

nm−1
nm−2 + χm

=
µθ

µθ − β
E1 (Zm) [zm (S)− E1 (Zm)]− V1 (Zm) (17)

has a solution nm ≥ 3.

To rule out corner solutions in security design, we assume for the remainder of the paper

that Eq. (17) has a solution nm ≥ 3, and we focus on nm ∈ [3, nm].
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Proposition 2 shows that intermediary m finds it optimal to design an asset-backed

security that pays the lesser of a flat payoff zm (sm) and the full value of the underlying

asset zm (s), scaled by the ratio Km/Am of the quantity of the underlying asset originated

to the quantity of the asset-backed security issued, in every state s. Debt securities have the

least variance among all limited-liability securities with the same expected value, so, for the

preferences we consider, the optimal security is naturally a debt contract. The key insight

from Proposition 2 is that the face value of the debt depends in equilibrium on both the

local market power of investors λm and the market power of the intermediary relative to the

investors χm. The following corollary characterizes the relationship between each of these

objects and the debt contract that the intermediary designs.

Corollary 1 The security Wm that the intermediary designs in market m has the following

properties:

1. The threshold state s̄m defined by (16) is decreasing in λm. Further,
∂E1(Wm)
∂λm

< 0 and

∂V1(Wm)
∂λm

< 0, while ∂
∂λm

(
E1(Wm)√
V1(Wm)

)
> 0.

2. The threshold state s̄m defined by (16) is increasing in χm for any χm ≤
ηm
nm
. Further,

∂E1(Wm)
∂χm

> 0 and ∂V1(Wm)
∂χm

> 0, while ∂
∂χm

(
E1(Wm)√
V1(Wm)

)
< 0.

The first part of Corollary 1 shows that the intermediary designs a less variable security

when investors’ local market power λm increases, as in the model of Babus and Hachem

(2020) with only local markets. Specifically, the intermediary decreases the lowest state s̄m

in which the security Wm pays the flat payoff. This decreases the variance of the security

by more than it decreases the mean, raising the expected payoff of the security per unit of

standard deviation. In contrast, the second part of Corollary 1 shows the effect of an increase

in the market power χm that the addition of an exchange affords the intermediary. As the

intermediary gains more market power, the lowest state s̄m in which the security Wm pays

the flat payoff increases, up to a certain point. This results in an equilibrium security with
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higher mean but also higher variance. Overall, the security has a lower expected payoff per

unit of standard deviation.

Of course, the amount Km of the asset Zm that backs the optimal securityWm in Propo-

sition 2 is endogenous. The next proposition summarizes the equilibrium origination decision

Km, which is taken into account when deriving the properties of Wm in Corollary 1.

Proposition 3 The equilibrium amount Km of asset Zm that is acquired by intermediary m

satisfies

δKm − (µθ − β)

∫ sm
0

zm (s) [zm (sm)− zm (s)] dF (s)∫ sm
0

[zm (sm)− zm (s)] dF (s)
= βE1 (Zm) ,

where δ is the cost function parameter.

Allowing the intermediary to choose the quantity Km of the asset Zm that he acquires

affects the design of the security Wm. In particular, increasing Km relaxes the feasibility

constraint (1), which is to say the intermediary has more returns, in any given state, from

which to design the payoff of the asset-backed security. This allows him to create a security

with higher average payoff, without increasing the variability of those payoffs across states.

4 Centralized Trading as Regulation

One of the central pieces of regulation introduced after the 2007-09 financial crisis concerns

the creation of exchange facilities to trade contracts that have traditionally been traded in

over-the-counter markets. Swaps have been the prime target of this regulation because of

the outsized role they played in amplifying the crisis, but at the highest level, the goal of the

regulation is simply to ensure impartial access to markets and hence reduce other frictions

such as low liquidity arising from fragmentation (e.g., Giancarlo (2015)). Through the lens

of our model, we can explore how introducing an exchange to improve market access affects

the security design of intermediaries and the overall welfare of investors.
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4.1 Effect on Security Design

Our results on security design in Section 3.2 were derived allowing each intermediary m to

issue his security Wm in both a local market m and a centralized market e. To evaluate the

effect of a regulation that mandates the introduction of an exchange, we need to start from

the equilibrium security that prevails in the absence of a centralized market.

The model without an exchange corresponds to ηm = 0 and is studied in Babus and

Hachem (2020). Let W 0
m denote the security that intermediary m designs in this case for

his local market. The optimal W 0
m is a debt security and the lowest state s

0
m in which the

investor receives the flat payoff is mathematically equivalent to Eq. (16) with χm = 0.3

The introduction of an exchange then corresponds to a movement from ηm = 0 to ηm > 0,

for an arbitrary ηm > 0. To simplify the exposition, we fix the amount of the security issued

by each intermediary m when there exists an exchange at one unit per capita in both his

local market and the centralized market, i.e., am = nm and aem = ηm. Naturally, this implies

that the intermediary issues a quantity Am = nm + ηm of the security in his local market

when there is no exchange.

The following proposition contrasts the properties of the equilibrium security with and

without the exchange:

Proposition 4 Let Wm be the optimal security described in Proposition 2 and W 0
m be the

equilibrium security designed in the absence of an exchange. Then, s0m < sm, E (W 0
m) <

E (Wm), V1 (W 0
m) < V1 (Wm), and

E(W 0
m)√

V(W 0
m)
> E(Wm)√

V(Wm)
.

In words, Proposition 4 states that the optimal security in the absence of an exchange

(ηm = 0) has a lower mean, but also a lower variance, resulting in a higher expected payoff

per unit of standard deviation as compared to the optimal security when there is an exchange

of any size (ηm > 0). The proof of Proposition 4 also establishes K0
m < Km. That is, the

3We refer the reader to Babus and Hachem (2020) for a formal proof. The intermediary’s market power
χm is not well-defined in the absence of the exchange, so ηm cannot simply be set to 0 in Eq. (16).
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intermediary acquires a larger quantity of the underlying asset Zm after the introduction of

the exchange, but not large enough to achieve sm = s0m.

4.2 Welfare without Investor Participation in the Exchange

To fix ideas, we first consider an intermediate version of market access where investors trade

in local markets and only the competitive fringe trades in the exchange. This allows us to

isolate two forces that affect aggregate welfare: market participation and security design.

The expected payoff of investor i ∈ Nm in this case is

E0
(
V i
m,local

)
=

1 + 2λm
2

(
σ2θ
γ

nm − 1

nm

1

(1 + λm)2
(E1 (Wm))2

V1 (Wm)
+ γV1 (Wm)

)
(18)

for each local market m, where we have used the simplification that intermediary m issues

am = nm units of the security Wm in his local market. The next corollary formalizes the

welfare effect of the changes in security design in Proposition 4 for investors.

Corollary 2 Investors are made worse off by the introduction of an exchange in which they

do not trade.

The corollary highlights the security design cost of introducing the exchange. Specifically,

moving from ηm = 0 to ηm > 0 changes the equilibrium security fromW 0
m to the riskier Wm,

lowering the expected payoff of investors trading in local markets, E0
(
V i
m,local

)
.

Turning next to the competitive fringe, the expected payoff of a trader k ∈ ηm is

E0
(
V k
m

)
=

1

2

(
σ2θ
γ

(E1 (Wm))2

V1 (Wm)
+ γV1 (Wm)

)
(19)

Fringe traders are trivially better off in the presence of the exchange as their welfare increases

from 0 to E0
(
V k
m

)
> 0 regardless of the security traded. This is the market access benefit of

introducing the exchange.
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The overall welfare of market participants sums across investors and the competitive

fringe. The effect of the exchange on welfare is therefore ambiguous; the welfare gain from

broadening market access to the competitive fringe is at least partly offset by the welfare

loss to investors in local markets who now have to trade a riskier equilibrium security.

4.3 Welfare with Investor Participation in the Exchange

Are investors still worse off if they can access the exchange alongside the competitive fringe?

The expected payoff of an investor i ∈ Nm is now the sum of the component due to trading

in the local market and a component due to trading in the centralized market:

E0
(
V i
m

)
= E0

(
V i
m,local

)
+

1

2

∑
W`j
∈Ei

(
σ2θ
γ

(
E
(
W`j

))2
V1
(
W`j

) + γV1
(
W`j

))
︸ ︷︷ ︸

Centralized market component

, (20)

where we have used am = nm and aem = ηm for each intermediary m. The introduction of

the exchange worsens the local component of the investor’s value function for the reasons

discussed above. However, the total effect on the investor’s welfare, as defined by the sum

of payoffs across markets in Eq. (20), is ambiguous. Since the investor can trade other

securities on the exchange, her overall payoffmay be higher or lower depending on the mean

and variance of the securities she trades on the exchange.

Consider the symmetric case in which each security Wm is traded by nm = n investors

in the local market m and by a competitive fringe of mass ηm = η in the centralized market

e. Each intermediary m then acquires a quantity Km = K of the underlying asset (Zm = Z

with Fm = F ) and each security Wm in equilibrium delivers a flat payoff in any state above

sm = s. All intermediaries offer a debt security with the same face value, hence the state-

by-state payoffs of a security traded by investor i in the centralized market are the same as

the state-by-state payoffs of the security she trades in her local market m, i.e., W`j = Wm

for all W`j ∈ E i in Eq. (20). The securities still have independently realized payoffs, even
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in the symmetric case where wm (s) = w (s) for all s, as the idiosyncratic states s are drawn

independently from the cumulative distribution F . The centralized market component in

Eq. (20) is thus equivalent to ei × E0
(
V k
m

)
.

We set ei = 1 for illustration. That is, each investor trades only one security in the

centralized market in addition to the security she trades in her local market. Overall welfare

is then

nM × E0
(
V i
m,local

)
+ (η + n)M × E0

(
V k
m

)
with E0

(
V i
m,local

)
and E0

(
V k
m

)
as defined in Eqs. (18) and (19). Once again, the competitive

fringe is trivially better off in the presence of the exchange. In contrast, investors are better

off if and only if E0
(
V i
m,local

)
+ E0

(
V k
m

)
evaluated at the security Wm exceeds E0

(
V i
m,local

)
evaluated at the security W 0

m.

We illustrate this comparison in Figure 1, as a function of the threshold state s0 prior

to the introduction of the exchange and the market power of the intermediariesχ after the

exchange is introduced. Note that when the intermediary issues a per capita amount of the

security in both the local and the centralized market, his market power becomes χ = η/n.

Varying his market power is then a statement about varying relative market size (i.e. what

mass trades in the centralized market for each investor that trades in the local market).

Figure 1 considers small local markets, with n = 3 investors in each, so that investors’local

market power is high. We further consider a uniform distribution of states on the interval

[0, 1]. The formal derivations for Figure 1 are presented in Online Appendix B.

Figure 1 demonstrates that the introduction of an exchange does not always benefit

investors, even if it affords them market access. In the light gray region, introducing an

exchange makes the investor unambiguously better off. However, in the dark gray region,

investors can be worse off (i.e., there are values of σ2θ such that they are worse off).

If intermediary market power is not too large, as is the case in the light gray region,

introducing an exchange makes the investor better off because she is now able to trade a

reasonably similar, albeit somewhat riskier, security in a larger, more liquid market. If the
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security that investors would trade in the absence of an exchange is not too risky, i.e., if s0 is

low, then the introduction of even a relatively large exchange benefits investors despite the

emergence of intermediary market power. However, if the security that investors would trade

in the absence of an exchange is risky, i.e., if s0 is high, then investors can only tolerate the

introduction of a small exchange before they become worse off. This is illustrated in Figure

1 by the shrinking height of the light gray region. As the market power of intermediaries

increases, they design riskier securities relative to the security that investors would trade in

the absence of an exchange. The increase in the riskiness of the security can overcome any

benefits that the investors obtain from trading in a liquid exchange, and it does so even for

the introduction of a small exchange if the security that investors would otherwise trade is

already risky.

Empirically, the introduction of an exchange (as represented by all-to-all electronic trad-

ing platforms) for securities that have traditionally traded over-the-counter has been asso-

ciated with low volumes (see O’Hara and Zhou (2020) and Collin-Dufresne et al (2020)).

Although we do not model an investor’s choice of a trading venue here, it is clear from Eq.

(20) that investors would always want to participate in the exchange, conditional on the ex-

change having been introduced. This is true regardless of the size of the exchange. However,

if investors could choose, they would want to be in the light gray region in Figure 1, where

intermediaries do not have too much relative market power and the exchange makes investors

better off compared to the case of no exchange. In this way, our model is consistent with

the empirical observations: if investors could choose, they would prefer a smaller exchange

(i.e. low volume).

4.4 Coordinated Policy

Even when the exchange makes investors worse off, a regulator could restore investors’welfare

by shaping the incentives of intermediaries. The following proposition formalizes this result.
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Proposition 5 For any parameters such that the introduction of the exchange makes in-

vestors worse off (by altering security design in the local market), there exists a cost function

u (Km) = δK2
m

2
that neutralizes the effect.

We interpret δ as a tax that the regulator could lower, or an expense that he could

subsidize. A change in δ affects the equilibrium security through the intermediary’s choice

of the quantity Km of the underlying asset Zm. Intuitively, decreasing δ increases Km,

which relaxes the feasibility constraint in security design. As discussed after Proposition 3,

a larger pool of underlying assets Zm gives the intermediary more returns to work with when

designing the asset-backed security Wm. Accordingly, he can increase the expected payoff

per unit of standard deviation of the security that he designs.

Lowering δ to neutralize the effect of the exchange on security design is clearly not a

budget neutral solution for the regulator. An alternative would be to impose a constraint

Km ≥ Kreg
m on each intermediary m. In words, the regulator would dictate the minimum

size of the underlying pool of assets Zm for any asset-backed security issuance Wm of size

(nm + ηm). We show in the proof of Proposition 5 that the regulator would need to set

Kreg
m =

µθ − β
2γ

nm (nm − 2)

nm − 1

(1 + χm)2

1 + nm−2
nm−1χm

1∫ s0m
0

[zm (s0m)− zm (s)] dF (s)

to deliver Wm = W 0
m when an exchange that gives the intermediary market power χm is

introduced.

We conclude that endogenous security design presents a challenge for introducing a cen-

tralized market. Our results motivate a coordinated policy, i.e., the introduction of the

exchange together with actions that mitigate the negative effect on security design, to pro-

mote investor welfare. While a simple constraint Km ≥ Kreg
m on the quantity of underlying

assets originated (or purchased) by the intermediary would be budget neutral for the reg-

ulator, it could lead to attempts to circumvent the constraint should a shadow banking

technology become available. Compliance would then have to be carefully supervised, which
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is itself potentially costly. This speaks to implementation challenges of a coordinated policy.

Note that limiting investor participation by splitting the one centralized market into

multiple perfectly competitive platforms does not alter our conclusion about the effect of

mandating trade centralization on security design. To see this, consider two exchanges

each of size ηm
2
, with the intermediary supplying aem

2
units of Wm to each exchange. The

intermediary’s problem still aggregates to Eq. (8) and hence the effects on security design

are unchanged.

5 Effect of Trade Centralization on Origination Quality

The analysis so far has assumed a fixed payoff profile for the underlying asset Zm. In

reality, intermediaries can choose between underlying assets of different quality. For the

purposes of our analysis, we are interested in how the introduction of an exchange affects

an intermediary’s incentive to originate higher quality assets. This is important to consider

because the dilution of investors’local market power when an exchange is introduced was

found above to lead to a deterioration in the quality of the asset-backed securities sold by

intermediaries to investors. If the introduction of an exchange leads to the origination of

better underlying assets, perhaps the securities backed by these assets will also be of better

quality, even without the disciplining effect of investor market power in local markets on

security design.

To gain insight into this question, we fix the quantity of the asset Zm originated by

intermediary m at Km. The intermediary instead chooses the payoffs wm (·) of the security

he designs based on Zm as well as the underlying payoffs zm (·). Specifically, we consider

that

zm (s) = r2m + rms

where rm is chosen by the intermediary at a cost u (rm) with standard properties, i.e.,

increasing and convex. To fix ideas, consider u (rm) = τr2m
2
with τ > 0. The underlying asset
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originated by the intermediary then has an expected payoff per unit of standard deviation

E1 (Zm)√
V1 (Zm)

=
rm + E1 (s)√
V1 (s)

which is to say the quality of the asset Zm is increasing in rm. The intermediary chooses

wm (·) and rm to maximize his expected profit at t = 0 subject to the feasibility constraint

on security design Amwm (·) ≤ Kmzm (·).

Consider what happens now when the exchange is introduced. We are interested specifi-

cally in the effect on (i) the asset Zm and the asset-backed securityWm and (ii) the investor’s

value function as we move from no exchange (ηm = 0) to a government-mandated exchange

(ηm > 0). The difference relative to Section 4 is that both E1(Zm)√
V1(Zm)

and E1(Wm)√
V1(Wm)

are now

endogenous, not just E1(Wm)√
V1(Wm)

.

Proposition 6 Consider τ >> 2µθKm. Introducing the exchange leads to the origination of

better underlying assets, as captured by higher E1(Zm)√
V1(Zm)

, but the creation of worse securities

backed by those assets, as captured by lower E1(Wm)√
V1(Wm)

.

The intuition for higher rm, which is the driving force behind higher
E1(Zm)√
V1(Zm)

after the

introduction of the exchange, is as follows. The marginal benefit of increasing rm is to

relax the feasibility constraint Amwm (s) ≤ Kmzm (s) in the intermediary’s security design

problem. The marginal cost comes from τ > 0. The introduction of the exchange does not

affect the marginal cost, so, for the exchange to lead to an increase in rm, it must be that

introducing the exchange increases the marginal benefit. As in Section 4, the exchange leads

to an increase in sm. The intuition for higher sm, which is the main driving force behind

lower E1(Wm)√
V1(Wm)

after the introduction of the exchange, is similar to before. By increasing sm,

the intermediary increases E1 (Wm), which will fetch him a higher price, and he will not be

as penalized for the associated increase in V1 (Wm) because investors have less market power

after the introduction of the exchange. The feasibility constraint therefore binds in more

states for the security designed after the introduction of the exchange, hence the marginal
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benefit to increasing rm and relaxing the constraint is indeed higher.

The key insight from this section is that introducing the exchange can increase E1(Zm)√
V1(Zm)

but decrease E1(Wm)√
V1(Wm)

. As before, the decrease in E1(Wm)√
V1(Wm)

, which we interpret as a deteri-

oration in the quality of asset-backed securities sold by intermediaries to investors, reflects

the relative loss of market power by investors in the local market. What we learn here is

(i) the exchange leads to better quality origination and (ii) the market power of investors is

a powerful disciplining device on the intermediary’s security design, so much so that even

with better quality underlying assets, the asset-backed security can still be worse.

Next, consider the effect of introducing the exchange on the investor’s value function.

As before, the local market component of the investor’s value function will be negatively

affected by the reduction in E1(Wm)√
V1(Wm)

. This is not a statement that the investor is worse off,

but rather that she could be worse off, in which case the following policy option is available:

Proposition 7 For any parameters such that the introduction of the exchange makes in-

vestors worse off (by altering security design in the local market), the regulator can decrease

τ (e.g., via subsidy) to mitigate the effect.

Intuitively, lower τ increases rm, which increases the payoff zm (·) in each state and

therefore relaxes the feasibility constraint. This leads to a better asset-backed security,

all else constant, which helps to offset the deterioration in the quality of the asset-backed

security that results from the dilution of investor market power after the introduction of the

exchange. In summary, introducing the exchange increases zm (·) but dilutes the investor’s

market power. The effect of the latter on security design is stronger than the effect of the

former, at least in the example constructed here. A decrease in τ serves to further increase

zm (·) without affecting the investor’s market power, which helps offset the negative effect of

the exchange on Wm.4

4In principle, an alternative would be to impose a constraint rm ≥ rregm on each intermediary m. We omit
the proof for brevity and because the choice of rm may be harder for the regulator to verify than the choice
of Km.
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6 Conclusion

The vast majority of regulatory debates about the benefits of centralized trading assume that

the set of securities designed by financial intermediaries is immune to the market structure

in which trade occurs. Will all securities trading in decentralized markets migrate to a

centralized platform rather than ceasing to be issued? How can a regulator ensure that they

do migrate? This paper has presented a framework to study these questions.

In particular, we considered a regulator who redesigns the market structure for certain

financial contracts by introducing an exchange to increase liquidity, understanding that se-

curity design is endogenous. For a given market structure, investors would like to trade a

less risky security and, for a given security, they would like to trade in a larger market. We

find that intermediaries design lower quality securities for investors, in the sense of a lower

expected payoff per unit of standard deviation, after the introduction of the exchange. This

reflects the relative dilution of investor market power, as investors have zero price impact on

the exchange and hence less influence on intermediary security design. In an extension of

the model where intermediaries can choose the quality of the assets that back the securities

issued to investors, we find that introducing the exchange leads to the origination of better

underlying assets but the creation of worse securities backed by those assets.

With a large enough exchange, the decline in the quality of the securities designed by

intermediaries is so severe that investors can be worse off as a result of the introduction of

the exchange, even though the exchange broadens their access to asset-backed securities and

allows them to trade in a more liquid market. In this case, the regulator can offer origination

subsidies to intermediaries to influence the pool of underlying assets. More origination

of a given quality or the origination of higher quality underlying assets means that the

intermediary has more returns, in any given state, from which to design the payoff of the

asset-backed security. This allows him to create a security with higher average payoff, without

increasing the variability of those payoffs across states. The regulator could therefore use

origination subsidies to counter the negative effects of introducing the exchange on security
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design and investor welfare. Alternatively, the regulator could impose explicit floors on

intermediaries’origination decisions (or asset purchases) and supervise to ensure compliance.

Either way, without such additional action, mandating centralized trade will result in a higher

market share for issuers of riskier securities.

Our exposition of these issues has considered that the underlying assets, and consequently

the securities that intermediaries design, have independent payoffs. When there is correla-

tion between assets, traders’demands are not generally separable across assets and there are

cross-asset price impact effects (e.g., Malamud and Rostek (2017)). In this case, each inter-

mediary in our model would need to take into account the securities of other intermediaries

when designing his own. This introduces an additional layer of strategic thinking for the

intermediary and could be an interesting direction for future work.
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Figure 1: Effect of Trade Centralization on Investors

Notes: The figure is drawn for n = 3 and µθ/β = 1.25. The horizontal axis

varies the security offered by the intermediary in the absence of an exchange

(e.g., higher s0 arises for lower γ). The vertical axis varies the size of the

exchange introduced by the regulator relative to the local market size.
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Appendix A —Proofs

Proof of Proposition 1

Rearrange the first order condition of investor i in Eq. (9) to isolate:

 qim

xEi

 =
(
Λi + γΣi

)−1θiE1

 Wm

WEi


−

 pm

pEi


 (A.1)

for any i ∈ Nm.

Since assets Zm are independent, any securities backed by Zm are also independent.

Hence, the matrix Σi is diagonal. We then conjecture and verify that Λi has entry ∂pm,−i
∂qim

first row, first column, and 0 elsewhere. This implies that

qim =
θiE1 (Wm)− pm
∂pm,−i
∂qim

+ γV1 (Wm)
, (A.2)

and

xi`j =
θiE1

(
W`j

)
− p`j

γV1
(
W`j

) . (A.3)

Given that investor i trades security W`j in a perfectly competitive centralized market,

it is straightforward that (A.3) gives the equilibrium demand (10). Substituting Eq. (10)

into the market clearing condition (5) then delivers the equilibrium price pe`j in Eq. (11).

Since this holds in every market, we use the corresponding expression for (A.2) to sub-

stitute out Qj
m (·) in Eq. (4) for all investors j 6= i in market m:

qim +
∑

j∈m,j 6=i

θjE1 (Wm)− pm
∂pm,−j
∂qjm

+ γV1 (Wm)
= am (A.4)

We focus on symmetric linear equilibria in which the price impact ∂pm,−j
∂qjm

does not vary across

2



investors within the same market. This permits rearranging Eq. (A.4) to isolate:

pm =

∑
j∈m,j 6=i

θj

nm − 1
E1 (Wm)− am − qim

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)

which then implies:
∂pm,−i
∂qim

=
1

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)
Invoking symmetry (∂pm,−i

∂qim
=

∂pm,−j
∂qjm

), we obtain:

∂pm,−i
∂qim

= λmγV1 (Wm) (A.5)

where λm ≡ 1
nm−2 .

Substituting Eq. (A.5) into Eq. (A.1) delivers the equilibrium demand functionQi
m

(
pm; θi

)
in Eq. (12). Substituting Eq. (12) into the market clearing condition (4) then delivers the

equilibrium price pm in Eq. (13).

Note that the equilibrium demands (12) and (10) verify our conjecture about Λi. �

Proof of Propositions 2 and 3

Intermediary m’s expected payoff is:

Vm (Wm, Km|nm, ηm, Am, aem, Zm)

= E1 (pm) (Am − aem) + pema
e
m + β [KmE1 (Zm)− AmE1 (Wm)]− u (Km)

where we obtain pem from Eq. (11) and E1 (pm) from taking expectations of Eq. (13), i.e.,

pem = µθE1 (Wm)− γV1 (Wm)
aem
ηm

(A.6)

E1 (pm) = µθE1 (Wm)− γV1 (Wm) (1 + λm)
Am − aem

nm
(A.7)

3



Therefore,

Vm (Wm, Km|nm, ηm, Am, aem, Zm)

= (µθ − β)E1 (Wm)Am − γV1 (Wm)

(
(1 + λm)

(Am − aem)2

nm
+

(aem)2

ηm

)
+ βKmE1 (Zm)− u (Km)

The intermediary chooses wm (·) and Km to maximize Vm (·) subject to the feasibility con-

straint (1). Letting ψm (s) ≥ 0 denote the Lagrange multiplier on the feasibility constraint

in state s, the Lagrangian for intermediary m’s problem is

Lk = (µθ − β)Am

∫ S

0

wm (s) dF (s)

−γ
(

(1 + λm)
(Am − aem)2

nm
+

(aem)2

ηm

)[∫ S

0

(wm (s))2 dF (s)−
(∫ S

0

wm (s) dF (s)

)2]

+βKmE1 (Zm)− u (Km) +

∫ S

0

ψm (s) [Kmzm (s)− Amwm (s)] dF (s)

The first order condition with respect to wm (s) is

ψm (s) = µθ − β −
2γ

Am

(
(1 + λm)

(Am − aem)2

nm
+

(aem)2

ηm

)
[wm (s)− E1 (Wm)]

or equivalently

ψm (s) = µθ − β − 2γAm
1 + λm + χm(√
ηmχm +

√
nm
)2 [wm (s)− E1 (Wm)] (A.8)

after using the definition of χm to substitute out all occurrences of a
e
m.

If ψm (s) > 0, then wm (s) = Km
Am
zm (s) by complementary slackness, so, to confirm

ψm (s) > 0, we would need

zm (s) <
Am
Km

E1 (Wm) +
µθ − β
2γKm

(√
ηmχm +

√
nm
)2

1 + λm + χm
≡ zm (sm) (A.9)

4



where we have defined the right-hand side assuming an interior solution sm ∈ (0, S). If

instead ψm (s) = 0, then Eq. (A.8) pins down wm (s) = Km
Am
zm (sm). The optimal security is

therefore characterized by Eq. (15) with sm as defined in Eq. (A.9). Note that we can also

write ∫ sm

0

[zm (sm)− zm (s)] dF (s) ≡ µθ − β
2γKm

(√
ηmχm +

√
nm
)2

1 + λm + χm
(A.10)

after using Eq. (15) to replace E1 (Wm) in the definition of sm in Eq. (A.9).

The first order condition with respect to Km is

u′ (Km) = βE1 (Zm) +

∫ S

0

ψm (s) zm (s) dF (s)

so we need to use Eq. (A.8) to sub out ψm (s), which is positive if and only if s < sm. Doing

so gives

u′ (Km) = βE1 (Zm)+

∫ sm

0

(
µθ − β − 2γAm

1 + λm + χm(√
ηmχm +

√
nm
)2 [Km

Am
zm (s)− E1 (Wm)

])
zm (s) dF (s)

or equivalently

u′ (Km) = βE1 (Zm)+2γKm
1 + λm + χm(√
ηmχm +

√
nm
)2 ∫ sm

0

zm (s) [zm (sm)− zm (s)] dF (s) (A.11)

Combining Eq. (A.11) with u′ (Km) = δKm and Eq. (A.10) then delivers the expression in

the statement of Proposition 3.

We now return to whether sm is in fact interior. Use Eq. (A.10) to substitute Km out of

the expression in the statement of Proposition 3. The result is:

∫ sm

0

zm (s) [zm (sm)− zm (s)] dF (s) +
βE1 (Zm)

µθ − β

∫ sm

0

[zm (sm)− zm (s)] dF (s)

=
δ

2γ

(√
ηmχm +

√
nm
)2

1 + λm + χm
(A.12)
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The left-hand side of Eq. (A.12) is increasing in sm and thus takes on a maximum value

∫ S

0

zm (s) [zm (S)− zm (s)] dF (s) +
βE1 (Zm)

µθ − β

∫ S

0

[zm (S)− zm (s)] dF (s)

or equivalently
µθ

µθ − β
E1 (Zm) [zm (S)− E1 (Zm)]− V1 (Zm)

With 1 + λm = nm−1
nm−2 , the right-hand side of Eq. (A.12) is increasing in nm. Therefore sm is

interior for nm < nm, where nm solves Eq. (17). �

Proof of Corollary 1

Use Eq. (A.12). As above, the left-hand side of Eq. (A.12) is increasing in sm. For the

right-hand side,

∂

∂χm

((√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

)
=

√
nm +

√
ηmχm

(1 + λm + χm)2

√
nm
χm

(√
ηm
nm

(1 + λm)−√χm
)

∂

∂nm

((√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

)
=

√
nm +

√
ηmχm

1 + λm + χm

(
1
√
nm

+

√
nm +

√
ηmχm

1 + λm + χm

1

(nm − 2)2

)
> 0

where we have used 1 +λm = nm−1
nm−2 . It then follows immediately that (i)

∂sm
∂χm

> 0 if and only

if χm < ηm
nm

(1 + λm)2 and (ii) ∂sm
∂nm

> 0. Note that ∂sm
∂nm

> 0 can also be expressed as ∂sm
∂λm

< 0.

From the intermediary’s security design problem,

E1 (Wm) =
Km

Am

(
zm (sm)−

∫ sm

0

[zm (sm)− zm (s)] dF (s)

)

V1 (Wm) =

(
Km

Am

)2 [∫ sm

0

[zm (sm)− zm (s)]2 dF (s)−
(∫ sm

0

[zm (sm)− zm (s)] dF (s)

)2]

6



Therefore,

E1 (Wm)√
V1 (Wm)

=
zm (sm)−

∫ sm
0

[zm (sm)− zm (s)] dF (s)√∫ sm
0

[zm (sm)− zm (s)]2 dF (s)−
(∫ sm

0
[zm (sm)− zm (s)] dF (s)

)2
where

∂

∂sm

(
E1 (Wm)√
V1 (Wm)

)
= −

z′m (sm) [1− F (sm)]
∫ sm
0

zm (s) [zm (sm)− zm (s)] dF (s)(∫ sm
0

[zm (sm)− zm (s)]2 dF (s)−
(∫ sm

0
[zm (sm)− zm (s)] dF (s)

)2) 3
2

< 0

i.e., any increase in sm implies a decrease in
E1(Wm)√
V1(Wm)

.

Next, use Proposition 3 to subKm out of the expression for E1 (Wm). This gives E1 (Wm)

as a function of only sm, namely,

E1 (Wm) =
1

δAm

(
(µθ − β)

∫ sm
0

zm (s) [zm (sm)− zm (s)] dF (s)∫ sm
0

[zm (sm)− zm (s)] dF (s)
+ βE1 (Zm)

)

×
(
zm (sm)−

∫ sm

0

[zm (sm)− zm (s)] dF (s)

)

where

∂

∂sm

(∫ sm
0

zm (s) [zm (sm)− zm (s)] dF (s)∫ sm
0

[zm (sm)− zm (s)] dF (s)

)

= z′m (sm)

1
F (sm)

∫ sm
0

(zm (s))2 dF (s)−
(

1
F (sm)

∫ sm
0

zm (s) dF (s)
)2

(
zm (sm)− 1

F (sm)

∫ sm
0

zm (s) dF (s)
)2 > 0

and
∂

∂sm

(
zm (sm)−

∫ sm

0

[zm (sm)− zm (s)] dF (s)

)
= z′m (sm) [1− F (sm)]

Thus, ∂E1(Wm)
∂sm

> 0. We then deduce ∂V1(Wm)
∂sm

> 0 from ∂E1(Wm)
∂sm

> 0 and E1(Wm)√
V1(Wm)

< 0. �
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Proof of Proposition 4

Use Eq. (A.12). With the exchange, sm is given by Eq. (A.12) evaluated at χm = ηm
nm
, i.e.,

∫ sm

0

zm (s) [zm (sm)− zm (s)] dF (s) +
βE1 (Zm)

µθ − β

∫ sm

0

[zm (sm)− zm (s)] dF (s)

=
δ

2γ

nm (nm − 2)

nm − 1

(1 + χm)2

1 + nm−2
nm−1χm

(A.13)

Without the exchange, s0m is given by Eq. (A.12) evaluated at χm = 0, i.e.,

∫ s0m

0

zm (s)
[
zm
(
s0m
)
− zm (s)

]
dF (s) +

βE1 (Zm)

µθ − β

∫ s0m

0

[
zm
(
s0m
)
− zm (s)

]
dF (s)

=
δ

2γ

nm (nm − 2)

nm − 1
(A.14)

where we have used 1 + λm = nm−1
nm−2 . The left-hand side of Eq. (A.12) is increasing in sm,

hence s0m < sm for any χm > 0. The rest follows from the derivatives in the proof of Corollary

1.

In both cases (i.e., with or without the exchange), the equilibrium amount Km of the

asset Zm acquired by the intermediary is governed by the expression in Proposition 3. The

term that depends on sm in this expression is increasing in sm (see the proof of Corollary

1). Thus, K0
m < Km follows from s0m < sm. �

Proof of Corollary 2

The expected payoff of an investor i ∈ Nm who only trades the security Wm in her local

market m is:

E0
(
V i
m,local

)
= E0

((
θiE1 (Wm)− pm

)
Qi
m −

γ

2
V1 (Wm)

(
Qi
m

)2)
=

1

2

1

γV1 (Wm)

1 + 2λm

(1 + λm)2
E0

([
θiE1 (Wm)− pm

]2)
=

1 + 2λm
2

(
σ2θ
γ

nm − 1

nm

1

(1 + λm)2
(E1 (Wm))2

V1 (Wm)
+ γV1 (Wm)

(
am
nm

)2)

8



where the second line substitutes in the equilibrium demand function from Eq. (12) and the

third line substitutes in the equilibrium price from Eq. (13). Evaluating at am = nm delivers

the expression for E0
(
V i
m,local

)
in the main text, although we do not need that simplification

here.

With λ−1m ≡ (nm − 2),

E0
(
V i
m,local

)
=

1

2

(
σ2θ
γ

(E1 (Wm))2

V1 (Wm)

nm − 2

nm − 1
+ γV1 (Wm)

nm
nm − 2

(
am
nm

)2)

where

∂

∂s̄m

(
σ2θ
γ

(E1 (Wm))2

V1 (Wm)

nm − 2

nm − 1
+ γV1 (Wm)

nm
nm − 2

(
am
nm

)2)

=
σ2θ
γ

(
2
dE1 (Wm)

dsm
− E1 (Wm)

V1 (Wm)

dV1 (Wm)

dsm

)
E1 (Wm)

V1 (Wm)

nm − 2

nm − 1
+

γnm
nm − 2

(
am
nm

)2
dV1 (Wm)

dsm

=

2γz′m (sm)

(
µθ−β
2γ

Am

(nm−1)a2m
nm(nm−2)+

(aem)2

ηm

)2
∫ sm
0

[zm (sm)− zm (s)] dF (s)

×


(
σθ
γ

)2
(nm−1)a2m
nm(nm−2)+

(aem)
2

ηm
µθ−β
2γ

Am

(
1− zm(sm)F (sm)∫ sm

0 [zm(sm)−zm(s)]dF (s)

)
−E1(Wm)
V1(Wm)

(
∫ sm
0 [zm(sm)−zm(s)]dF (s))

2−F (sm)
∫ sm
0 [zm(sm)−zm(s)]2dF (s)

(
∫ sm
0 [zm(sm)−zm(s)]dF (s))

2

 E1(Wm)
V1(Wm)

nm−2
nm−1

+ nm
nm−2

(
am
nm

)2 (
∫ sm
0 [zm(sm)−zm(s)]dF (s))

2−F (sm)
∫ sm
0 [zm(sm)−zm(s)]2dF (s)

(
∫ sm
0 [zm(sm)−zm(s)]dF (s))

2



=

2γz′m (sm)

(
µθ−β
2γ

nm

(nm−1)a2m
nm(nm−2)+

(aem)2

ηm

)2
∫ sm
0

[zm (sm)− zm (s)] dF (s)

 −
(σθγ )

2
a2m
nm

+nm−2nm−1
(aem)

2

ηm
µθ−β
2γ Am

E1(Wm)
V1(Wm)

[1−F (sm)]
∫ sm
0 zm(s)[zm(sm)−zm(s)]dF (s)∫ sm

0 [zm(sm)−zm(s)]2dF (s)−(
∫ sm
0 [zm(sm)−zm(s)]dF (s))

2

−
nm
nm−2(

am
nm

)
2V1(Zm|s≤sm)

( 1
F (sm)

∫ sm
0 [zm(sm)−zm(s)]dF (s))

2


< 0

where V1 (Zm|s ≤ sm) ≡ 1
F (sm)

∫ sm
0

(zm (s))2 dF (s) −
(

1
F (sm)

∫ sm
0

zm (s) dF (s)
)2
. A riskier

security Wm, as captured by higher sm, therefore decreases E0
(
V i
m,local

)
. The statement of

the corollary then follows immediately from Proposition 4. �
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Proof of Proposition 5

Let δ0 denote the origination cost parameter before the introduction of the exchange and

δ′ the origination cost parameter implemented by the regulator (e.g., via a change in taxes)

alongside the introduction of the exchange. Then Eq. (A.13) is evaluated at δ′, Eq. (A.14)

is evaluated at δ0, and

δ′ =
1 + nm−2

nm−1χm

(1 + χm)2
δ0 < δ0

induces sm = s0m from Eqs. (A.13) and (A.14).

To highlight the direction of the policy that implements sm = s0m after the introduction

of the exchange, fix δ and consider instead a regulatory floor Kreg
m on asset purchases, i.e.,

the regulator mandates Km ≥ Kreg
m . The Lagrangian for intermediary m’s problem is then

L̃k = Lk + φm (Km −Kreg
m )

where Lk is the Lagrangian from the proof of Proposition 2 and φm ≥ 0 is the Lagrange

multiplier on the new constraint Km ≥ Kreg
m .

The first order condition with respect to wm (s) is the same as in the proof of Proposition

2, leading to sm as defined in Eq. (A.10). The first order condition with respect to Km is

δKm = βE1 (Zm) + (µθ − β)

∫ sm
0

zm (s) [zm (sm)− zm (s)] dF (s)∫ sm
0

[zm (sm)− zm (s)] dF (s)
+ φm

which is similar to the expression in Proposition 3 but with an extra term φm that captures

the shadow cost of the regulatory floor.

If φm > 0, then Km = Kreg
m so, with χm = ηm

nm
and 1 + λm = nm−1

nm−2 , Eq. (A.10) becomes

∫ sm

0

[zm (sm)− zm (s)] dF (s) =
µθ − β
2γKreg

m

nm (nm − 2)

nm − 1

(1 + χm)2

1 + nm−2
nm−1χm

10



Thus, given nm and χm, the regulator should set

Kreg
m =

µθ − β
2γ

nm (nm − 2)

nm − 1

(1 + χm)2

1 + nm−2
nm−1χm

1∫ s0m
0

[zm (s0m)− zm (s)] dF (s)

to neutralize the effect of the exchange on security design, where s0m solves Eq. (A.14). It is

straightforward to confirm φm > 0 at this Kreg
m . �

Proof of Proposition 6

Intermediary m’s expected payoff is:

Vm
(
Wm, rm|nm, ηm, Am, aem, Km

)
= E1 (pm) (Am − aem) + pema

e
m + β

[
KmE1 (Zm)− AmE1 (Wm)

]
− u (rm)

where pem and E1 (pm) are as in Eqs. (A.6) and (A.7). Letting ψm (s) ≥ 0 denote the

Lagrange multiplier on the feasibility constraint Amwm (s) ≤ Kmzm (s), the Lagrangian for

intermediary m’s problem is

Lk = (µθ − β)Am

∫ S

0

wm (s) dF (s)

−γ
(
nm − 1

nm − 2

(Am − aem)2

nm
+

(aem)2

ηm

)[∫ S

0

(wm (s))2 dF (s)−
(∫ S

0

wm (s) dF (s)

)2]

+βKmE1 (Zm)− u (rm) +

∫ S

0

ψm (s)
[
Kmzm (s)− Amwm (s)

]
dF (s)

where we have used 1 + λm = nm−1
nm−2 to sub λm out of Eq. (A.7).

The first order conditions with respect to wm (s) and rm are respectively

0 =
∂Lk

∂wm (s)
=

[
(µθ − β − ψm (s))Am − 2γ

(
nm − 1

nm − 2

(Am − aem)2

nm
+

(aem)2

ηm

)
(wm (s)− E1 (Wm))

]
f (s)

(A.15)

0 =
∂Lk
∂rm

= βKm
∂E (Zm)

∂rm
− u′ (rm) +

∫ S

0

ψm (s)Km
∂zm (s)

∂rm
dF (s)

11



where, using zm (s) = r2m + rms and u (rm) = τ
2
r2m, the latter becomes

0 =
∂Lk
∂rm

= βKm (2rm + E1 (s))− τrm +

∫ S

0

ψm (s)Km (2rm + s) dF (s) (A.16)

Rewrite Eq. (A.15) as

ψm (s) = µθ − β − 2γAm

nm−1
nm−2 + χm(√
nm +

√
ηmχm

)2 (wm (s)−
∫ S

0

wm (s) dF (s)

)

If ψm (s) > 0, then wm (s) = Km

Am
zm (s) by complementary slackness, so, to confirm ψm (s) >

0, we would need

zm (s) <
Am

Km

∫ S

0

wm (s) dF (s) +
µθ − β
2γKm

(√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

≡ zm (sm)

where we have defined the right-hand side assuming an interior solution sm ∈ (0, S). If

instead ψm (s) = 0, then wm (s) = Km

Am
zm (sm). Therefore

wm (s) =


Km

Am
zm (s) if s < sm

Km

Am
zm (sm) if s ≥ sm

and ∫ S

0

wm (s) dF (s) =
Km

Am

(∫ sm

0

zm (s) dF (s) + zm (sm) [1− F (sm)]

)
so the definition of sm simplifies to

∫ sm

0

[zm (sm)− zm (s)] dF (s) =
µθ − β
2γKm

(√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

and thus

rm

∫ sm

0

(sm − s) dF (s) =
µθ − β
2γKm

(√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

(A.17)

after subbing out for zm (·) in terms of rm.
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Now return to Eq. (A.16) and sub out the multiplier ψm (·), which is positive if and only

if s < sm, to get

βKm (2rm + E1 (s))−τrm+2γK
2

m

nm−1
nm−2 + χm(√
nm +

√
ηmχm

)2 ∫ sm

0

[zm (sm)− zm (s)] (2rm + s) dF (s) = 0

and thus

βKm (2rm + E1 (s))− τrm + 2γK
2

m

nm−1
nm−2 + χm(√
nm +

√
ηmχm

)2 rm ∫ sm

0

(sm − s) (2rm + s) dF (s) = 0

(A.18)

after again subbing out for zm (·) in terms of rm.

Use Eq. (A.17) to isolate rm and rewrite Eq. (A.18) as

βKm (2rm + E1 (s))−τrm+Km (µθ − β)
1∫ sm

0
(sm − s) dF (s)

∫ sm

0

(sm − s) (2rm + s) dF (s) = 0

which then simplifies to

rm =
Km

τ − 2µθKm

(
βE1 (s) + (µθ − β)

∫ sm
0

s (sm − s) dF (s)∫ sm
0

(sm − s) dF (s)

)
(A.19)

Finally, equate rm from Eqs. (A.17) and (A.19) to get

∫ sm

0

s (sm − s) dF (s) +
βE1 (s)

µθ − β

∫ sm

0

(sm − s) dF (s) =
τ − 2µθKm

2γK
2

m

(√
nm +

√
ηmχm

)2
nm−1
nm−2 + χm

(A.20)

The intermediary’s first order conditions are thus characterized by Eqs. (A.19) and (A.20).

Assume τ > 2µθKm for a well-defined solution (i.e., if τ is too low, then global max is for

intermediary to choose rm arbitrarily large).
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Note

∂

∂sm

(∫ sm
0

s (sm − s) dF (s)∫ sm
0

(sm − s) dF (s)

)
sign
=

1

F (sm)

∫ sm

0

s2dF (s)−
(

1

F (sm)

∫ sm

0

sdF (s)

)2
> 0

(A.21)

and therefore ∂
∂sm

(
E1(Zm)√
V1(Zm)

)
> 0 after using Eq. (A.19) to sub out rm from the expression

for E1(Zm)√
V1(Zm)

in the main text.

For the asset-backed security sold to investors by the intermediary,

E1 (Wm)√
V1 (Wm)

=
rm + sm −

∫ sm
0

(sm − s) dF (s)√∫ sm
0

(sm − s)2 dF (s)−
(∫ sm

0
(sm − s) dF (s)

)2
where, after using Eq. (A.19) to sub out rm, we can show

∂

∂sm

(
E1 (Wm)√
V1 (Wm)

)
sign
=

− [1− F (sm)]

∫ sm

0

s (sm − s) dF (s)

+
(µθ − β)Km

τ − 2µθKm


(
F (sm)

∫ sm
0

s2dF (s)−
(∫ sm

0
sdF (s)

)2)( ∫ sm
0 (sm−s)2dF (s)

(
∫ sm
0 (sm−s)dF (s))

2 − 1

)
− [1− F (sm)]

[∫ sm
0

s (sm − s) dF (s) + βE1(s)
µθ−β

∫ sm
0

(sm − s) dF (s)
]


Therefore, ∂
∂sm

(
E1(Wm)√
V1(Wm)

)
< 0 if τ >> 2µθKm.

With the exchange, sm is given by Eq. (A.20) evaluated at χm = ηm
nm
, i.e.,

∫ sm

0

s (sm − s) dF (s) +
βE1 (s)

µθ − β

∫ sm

0

(sm − s) dF (s) =
τ − 2µθKm

2γK
2

m

nm
1 + λm

(1 + χm)2

1 + χm
1+λm

Without the exchange, s0m is given by Eq. (A.20) evaluated at χm = 0, i.e.,

∫ s0m

0

s
(
s0m − s

)
dF (s) +

βE1 (s)

µθ − β

∫ s0m

0

(
s0m − s

)
dF (s) =

τ − 2µθKm

2γK
2

m

nm
1 + λm

The left-hand side of Eq. (A.20) is increasing in sm, so clearly sm > s0m.
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With or without the exchange, rm is governed by Eq. (A.19) evaluated at the appropriate

value of sm. From sm > s0m and Eq. (A.19) with (A.21), we conclude that introducing the

exchange increases rm, i.e., rm > r0m. Accordingly, introduction of the exchange increases

E1(Zm)√
V1(Zm)

. However, from τ >> 2µθKm and sm > s0m, it also decreases
E1(Wm)√
V1(Wm)

. �

Proof of Proposition 7

Follows immediately from Eq. (A.20). On the margin, lowering τ lowers sm, which helps

combat sm > s0m. �
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Appendix B —Construction of Figure 1

Suppose all securities are identical and the investor can trade one security on the exchange

(in addition to the security in her local market).

Investor’s value function before the introduction of the exchange:

E
(
Ṽ h
m

)
=

1

2

(
σ2θ
γ

(E (W 0
m))

2

V (W 0
m)

nm − 2

nm − 1
+ γV

(
W 0
m

) nm
nm − 2

(
Am
nm

)2)

Investor’s value function after the introduction of the exchange:

E
(
V h
m

)
=

1

2

(
σ2θ
γ

(E (Wm))2

V (Wm)

(
nm − 2

nm − 1
+ 1

)
+ γV (Wm)

(
nm

nm − 2

(
Am − aem

nm

)2
+

(
aem
ηm

)2))

=
1

2

σ2θ
γ

(E (Wm))2

V (Wm)

(
nm − 2

nm − 1
+ 1

)
+ γV (Wm)

(
1

nm − 2

1

χm
+

1

ηm

)
1

ηm

(Am)2(
1 +

√
nm
ηm

1
χm

)2


Fix per capita supplies Am−a
e
m

nm
= aem

ηm
= 1 in the post-exchange world. Then Am = nm+ηm

and χm = ηm
nm
, with a per capita supply of Am

nm
= 1 + ηm

nm
> 1 when only the local market is

available to the investor (i.e., the pre-exchange world). The per capita assumption means

we are considering the introduction of an exchange with a market power χm = ηm
nm
for the

intermediary; we cannot consider independent variations in χm since an assumption about

aem has already been made.

With Am = nm + ηm and χm = ηm
nm
:

E
(
Ṽ h
m

)
=

1

2

(
σ2θ
γ

(E (W 0
m))

2

V (W 0
m)

nm − 2

nm − 1
+ γV

(
W 0
m

) nm
nm − 2

(1 + χm)2
)

E
(
V h
m

)
=

1

2

(
σ2θ
γ

(E (Wm))2

V (Wm)

(
nm − 2

nm − 1
+ 1

)
+ γV (Wm)

(
nm

nm − 2
+ 1

))

where we recall that E
(
Ṽ h
m

)
is the investor’s utility before introduction of exchange, but

evaluated at the Am consistent with per capita supply in each market after introduction of
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the exchange, hence the appearance of χm.

Thus, the investor is worse off with the introduction of this exchange, i.e., E
(
V h
m

)
<

E
(
Ṽ h
m

)
, if and only if

(
σθ
γ

)2 ( E (W 0
m)√

V (W 0
m)

)2
−
(

E (Wm)√
V (Wm)

)2(
1 +

nm − 1

nm − 2

) (B.1)

>

[
V (Wm)

(
1 +

nm − 2

nm

)
− V

(
W 0
m

)
(1 + χm)2

]
nm (nm − 1)

(nm − 2)2

To fix ideas, suppose state s ∈ [0, 1] is uniformly distributed with S = 1 and zm (s) = s.

Then the equilibrium security in Proposition 2 is

wm (s) =


Km
Am
s if s < sm

Km
Am
sm if s ≥ sm

with

E (Wm) =

∫ S

0

wm (s) dF (s) =⇒ E (Wm) =
Km

Am
sm

(
1− sm

2

)

V (Wm) =

∫ S

0

(wm (s))2 dF (s)−
(∫ S

0

wm (s) dF (s)

)2
=⇒ V (Wm) =

(
Km

Am

)2
s3m

(
1

3
− sm

4

)
and

Km =
µθ − β
γs2m

(√
ηmχm +

√
nm
)2

1 + λm + χm

from Eq. (A.10).

The pre-exchange security W 0
m has

K0
m =

µθ − β
γ (s0m)

2

nm
1 + λm

and the post-exchange security Wm has

Km =
µθ − β
γs2m

nm
1 + λm

(1 + χm)2

1 + χm
1+λm
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where 1 + λm = nm−1
nm−2 . Therefore, condition (B.1) becomes

(2− s0m)
2

s0m
(
4
3
− s0m

) − (2− sm)2

sm
(
4
3
− sm

) (1 +
nm − 1

nm − 2

)

>

(
µθ − β
σθ

)2 2

(
1 + χm

1 + nm−2
nm−1χm

)2(
1

3sm
− 1

4

)
−
(

1

3s0m
− 1

4

)
nm

nm − 1


where, using Eq. (A.12),

s0m +
3

2
(
µθ
β
− 1
)
(s0m)2 =

3δ

γ

nm (nm − 2)

nm − 1

sm +
3

2
(
µθ
β
− 1
)
 s2m =

3δ

γ

nm (nm − 2)

nm − 1

(1 + χm)2

1 + nm−2
nm−1χm

The condition fails (i.e., introducing the exchange makes the investor better off) for every

σθ if and only if both of the following are true

(2− s0m)
2

s0m
(
4
3
− s0m

) < (2− sm)2

sm
(
4
3
− sm

) (1 +
nm − 1

nm − 2

)

2

(
1 + χm

1 + nm−2
nm−1χm

)2(
1

3sm
− 1

4

)
>

(
1

3s0m
− 1

4

)
nm

nm − 1

Otherwise, there exist values of σθ such that the investor is worse off with the introduction

of the exchange.
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