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ABSTRACT

Regulators often rely on regulated entities to self-monitor compliance, potentially creating 
strategic incentives for endogenous monitoring. This paper builds a framework to detect whether 
local governments skip air pollution monitoring when they expect air quality to deteriorate. The 
core of our method tests whether the timing of monitor shutdowns coincides with the counties’ air 
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“Bridgegate” traffic jam, we find a 33%reduction of this monitor’s sampling rate on pollution-
alert days. Building on large-scale inference tools, we then apply the method to test more than 
1,300 monitors across the U.S., finding 14 metro areas with clusters of monitors showing similar 
strategic behavior. We assess geometric imputation and remote-sensing technologies as potential 
solutions to deter future strategic monitoring.
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1. Introduction 
When regulators face substantial monitoring requirements, they commonly ask regulated entities 

to monitor their own compliance. Police officers are charged with turning on/off body cameras that verify 

their maintenance of ethical behavior; hospital staff transcribe operation events to catalog surgeons’ 

regulatory compliance; countries self-monitor greenhouse gas emissions to demonstrate adherence to 

climate commitments. This system of self-monitoring is particularly common within environmental 

regulation, where local entities – such as state governments and individual firms – assume the roles of both 

the subject of regulation and the recorder of pollution data that demonstrate compliance. Can federal 

regulators rely on the regulated to provide complete, representative self-monitoring data? We study this 

question in the context of U.S. air quality regulation, where state and local governments monitor air 

pollution to demonstrate compliance with federally set air quality standards. We show that state agencies’ 

leeway to decide when (not) to monitor, combined with the ability to anticipate pollution events in the near 

future, results in strategic timing in monitoring activities at some locations. We begin with a motivating 

anecdote, followed by an econometric analysis of the general prevalence of strategic monitoring.  

 On September 9th, 2013, two of three lanes to the George Washington Bridge closed for five days 

at the toll plaza connecting Fort Lee, New Jersey and Manhattan, New York for what was initially said to 

be a traffic study. The event was later found to be a deliberate act of political retribution.1 Coincidentally, 

at the time of the Bridgegate-induced traffic jams, a nearby fine particulate matter (PM2.5) air pollution 

monitor on the rooftop of the Jersey City Firehouse stopped collecting data. The monitor, placed by the 

state government to continuously monitor compliance with federal Clean Air Act mandates, was later found 

to have been inoperative for 13 days (September 6th–18th), the longest inactive period recorded in the decade 

since its installation. While an investigation by the U.S. Environmental Protection Agency (EPA) blamed 

“equipment malfunction,”2 the timing of the incident has raised concerns that the monitor was intentionally 

disabled so that it would not record the spike in air pollution caused by the Bridgegate traffic jam.  

 This incident raises a general question of whether local officials are able to deliberately halt 

pollution monitoring when they anticipate the monitor will record elevated pollution levels. First, state 

governments have the incentive to “game.” While the federal EPA sets the national air quality standards 

(NAAQS), states and local governments self-monitor compliance with these standards. When state 

governments’ own monitoring indicates a lack of compliance, they bear the regulatory penalties including 

                                                           
1  See Wikipedia, The Free Encyclopedia, s.v. “Fort Lee lane closure scandal,” (accessed November 13, 2020), 
https://en.wikipedia.org/wiki/Fort_Lee_lane_closure_scandal  
2 Enck, Judith. Regional Administrator of the U.S. Environmental Protection Agency Region 2. Letter to Jeff Ruch, 
Executive Director of the Public Employees for Environmental Responsibility. February 28, 2014. 
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elevated requirements of expensive emission-reduction investments. Second, state governments have the 

discretion to game. While the federal EPA encourages states to stick to their monitoring schedules as 

strictly as possible, states have significant leeway, with every monitor typically allowed to miss up to 25% 

of its scheduled data during each quarter. Third, state governments have the ability to game. In many states, 

the same agencies that carry out monitoring also run advanced air quality forecasting – providing these 

agencies with the best data and forecasts of air quality in the near future. Despite these concurrent factors, 

the current system is not set up to detect strategic monitoring. Missing days are ignored by the federal 

regulators, implicitly assuming that pollution levels on monitored days are equal to pollution levels on 

unmonitored days. This tolerance for gaps in compliance monitoring data may induce strategic timing in 

state and local agencies’ self-monitoring activity.  

 We propose an econometric framework that assesses whether air pollution monitors strategically 

shut down to avoid sampling on high-pollution days – specifically focused on identifying individual 

monitors whose pattern of shutdowns suggests gaming. Our framework has three components. The first 

component infers the government’s expectation of high-pollution events through locally issued air quality 

alerts. These public advisories calling for citizens to reduce outdoor activities and vehicle use are often 

issued when forecasts predict that air pollution will exceed the Clean Air Act standards. We use an event 

study to assess whether a monitor’s sampling rate falls when pollution alerts are in place. As a motivating 

example, our analysis begins with the sampling patterns from the PM2.5 monitor at the Jersey City Firehouse 

(JCF). Our analysis focuses on the JCF monitor’s data capture rate: the share of scheduled monitoring days 

in which the monitor produces readings. Analyzing 21 alerts sent by Jersey City from 2007 to 2014, we 

show that the data capture rate of the JCF monitor drops significantly during pollution alert weeks (declining 

by 10 percentage points from a mean of 88%) and especially during the alert day itself (declining by 28 

percentage points). Though we do not directly address the reasons for the failure of the JCF air pollution 

monitor during the Bridgegate incident, our analysis indicates that the JCF monitor’s sampling pattern over 

the seven-year period is consistent with strategic shutdowns during times of high pollution.  

 The second component of our framework incorporates simultaneous inference. We repeat the 

Jersey City Firehouse monitoring exercise to analyze 1,359 monitors that are set up to continuously sample 

air quality compliance for six different pollutants (PM2.5, PM10, O3, NO2, SO2, and CO) throughout the 

contiguous United States. These monitors are located in 167 counties with similar pollution alert programs. 

Importantly, our task is not to estimate the response of the average monitor, but instead to pinpoint which 

monitors are gaming the regulatory design by excluding days likely to have high pollution levels. This 

inference problem poses two challenges, which we address with large-scale inference tools (Efron, 2012). 

First, for each individual monitor, the event-study test for strategic shutdowns likely uses a small sample 

due to the limited number of alerts and/or short time series for the monitor. Consequently, traditional 
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inference comparing the test statistic with its theoretical (asymptotic) null distribution is likely invalid. We 

remedy this issue with a randomization inference scheme, which allows us to generate an empirical null 

distribution based upon “placebo” event studies that each use randomly dated pollution alerts (Rosenbaum, 

2002). We then calculate p-values, for each monitor, as the proportion of the empirical null distribution that 

is more extreme than the observed effect. Second, by testing a large number of monitors, there is risk of 

overstating the confidence of rejection for any individual monitor. We address this risk in several ways, 

including an assessment of the p-value histogram (we find an overabundance of tests with small p-values; 

see e.g., Hung, O’Neill, Bauer and Kohne, 1997; Simonsohn, Nelson, and Simmons, 2014), a standard false 

discovery control strategy (Benjamini and Hochberg, 1995), and an “eye-ball” screening of monitors whose 

patterns of strategic missingness are the most visually apparent. Following these steps, we generate a list 

of “interesting” monitors whose distinctive monitoring patterns warrant further regulatory attention. We 

post detailed estimation results for all monitors on a publicly available website. Together, these first two 

steps of detection and inference offer researchers and policymakers the ability to narrow in on a potentially 

small subset of gamers within a much larger population of monitors/agencies. 

 The third component of our framework is economic characterization. We document key 

characteristics of these interesting monitors, and we shed light on underlying mechanisms for the patterns 

we see. We discover two primary features. First, we map the locations of the interesting monitors, and find 

14 metro areas with clusters of interesting cases. Because the statistical procedure to determine interesting 

monitors does not use geographic proximity as an input, the fact that interesting cases cluster in specific 

regions suggests state- and/or local-government influences. Second, we use regression analysis to 

characterize counties with interesting monitoring patterns, we find that a county’s Clean Air Act compliance 

status plays a major role. For example, our state fixed effects regression suggests that being located in a 

noncompliant (nonattainment) county raises the probability a monitor is “interesting” by 64 percent, 

compared to other counties within the same state. Regressions with additional county-level characteristics, 

such as environmental friendliness, government size, and corruption, show limited explanatory power 

conditional on nonattainment status. Together, these test results support our hypothesis that strategic 

shutdowns arise from state and local governments’ incentives to avoid or alleviate nonattainment penalties. 

 One possible way federal regulators could deter strategic shutdowns would be filling in missing 

monitoring data with values that better approximate the true air quality conditions, rather than omitting the 

missing days from records. We first build a PM2.5 pollution dataset with imputed values based on inverse 

distance weighting (IDW), a spatial-averaging prediction method commonly used in the epidemiology and 

the economics literatures to infer air quality at an unmonitored location using available data from nearby 

monitors (e.g., Shepard, 1968; Schwartz, 2001; Currie and Neidell, 2005). We adapt this idea to our study 

https://www.google.com/maps/d/u/0/edit?mid=1e6vuA_OXa-QfCMrYanwkWV7XiGl50d1q&usp=sharing
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context in which data are temporally incomplete; we impute a monitor’s missing value on a given day by 

using the inverse distance-weighted average of data from a set of nearby “donor” monitors on that day. 

Because donor monitors that are closer to the monitor of interest are more heavily weighted, we use a liberal, 

20-mile search windows for donor monitors. This allows the IDW to provide substantial coverage while 

still preserving local variations in pollution concentration. We find that the IDW is able to explain 81.4% 

of observed PM2.5 variation and provide predictions for 38.6% of the missing values.3 In a complementary 

exercise, we consider an alternative imputation method that uses newly available atmospheric modeling-

based PM2.5 products (Di et al., 2019) thanks to the increasing availability of satellite observations of air 

pollution. This second imputation is methodologically more complex, but is able to provide imputation 

values for all days. We use these imputed datasets to illustrate that among the aforementioned interesting 

monitors, the distribution of pollution on “unobserved” days exhibits a longer right tail – a pattern that 

replicates in both the IDW data and the modeling data. Had the measurements been taken, PM2.5 levels 

would have exceeded the 15 ug/m3 annual standard on 23% of these missing days and would have exceeded 

the 35 ug/m3 daily standard on 2.7% of the unmonitored days. These findings suggest strategic shutdowns 

could have misled federal compliance status designations. We calculate that the forgone health values from 

air quality improvements that the county would otherwise have enjoyed without strategic monitoring 

amount to about $67 million (2020 dollars) per strategic monitor. We hope our method may provide the 

regulator with a tractable route to assessing strategic shutdowns beyond the scope of this study – such as 

monitors located in areas without pollution alert programs. 

 We believe that the strategic self-monitoring problem highlighted in this paper is an 

underappreciated challenge for environmental compliance. We reported our findings to members of the 

federal EPA’s ambient air quality monitoring group.4 Officials with whom we spoke reacted that the 

shutdowns may be explained by local agencies’ benevolent actions to prepare for incoming pollution 

episodes by taking the monitors offline and conducting maintenance.5 In fact, we take away from the 

conversation that federal regulators tend not to worry about strategic responses in ambient air quality 

monitoring programs in which the entity of regulation is the state/local government – at least much less so 

than they would worry about point-source monitoring where the entity of regulation is often a company. 

The officials do agree with the importance of identifying interesting monitors. In their language, while these 

patterns do not necessarily suggest the local agencies are doing something “wrong”, it is worth informing 

the corresponding agencies that their data look “different” from the data generated by others. We hope our 

                                                           
3 The remaining missing observations are too far from non-missing monitors to use IDW with any confidence. 
4 We held a 1-hour meeting with a senior staff scientist and a statistician, both with expertise in ambient air quality 
monitoring and enforcement. Our discussion primarily focused on Figures 1A, 3, 4, and 5 of this paper. 
5 We believe these explanations do not fit the data. Our findings suggest that, if anything, such maintenance actions 
have caused the monitors to miss out the incoming pollution peaks. 
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analysis can raise awareness about monitoring and enforcement challenges associated with the tension 

between the imperative of national environmental protection and individual states’ compliance incentives 

(Giles, 2020). 

The existing literature on environmental federalism emphases the role of decentralization on policy 

decisions such as inter-regional competition of environmental standards (e.g., Oates, 2001; Levinson, 2003; 

Millimet, 2014). Our work contributes to an emerging literature on monitoring and enforcement (e.g., Gray 

and Shimshack, 2011; Shimshack, 2014; Evans and Stafford, 2019) which emphasizes the fact that 

federalism in environmental legislations – and in many other regulatory contexts too as we mentioned at 

the beginning of this paper – often comes with the decentralization of the responsibility of monitoring and 

enforcement as well, creating potential principle-agent type of incentive misalignment in local agencies’ 

self-monitoring activities. We believe this paper is among the first to examine selective monitoring as local 

agencies’ strategy to help achieve environmental compliance. We corroborate an emerging literature that 

reveals strategic actions that contribute to an underrepresentation of high-pollution observations in states’ 

self-monitored air quality data in the U.S. (Fowlie, Rubin, and Walker, 2019; Sullivan and Krupnick, 2019). 

Examples of strategic actions include states’ decisions as of where to locate pollution monitoring sites 

(Grainger, Schreiber, and Chang, 2017), where to locate polluters (Morehouse and Rubin, 2021), and 

strategic timing in pollution suppression (Zou, 2021). 6  Similar phenomenon has been observed in 

developing country settings as well, where local officials’ desire to demonstrate air quality achievements 

has impaired truthfulness in pollution monitoring (Andrews, 2008; Chen, Jin, Kumar, and Shi, 2012; Duflo, 

Greenstone, Pande, and Ryan, 2013; Duflo, Greenstone, Pande, and Ryan, 2018; Ghanem and Zhang, 2014; 

Greenstone, He, Jia, and Liu, 2020; Yang, 2020). 7  Methodologically, we demonstrate that basic 

econometric tools can assist in making individualized conclusions about where strategic behavior occurs, 

hence providing concrete evidence for regulatory responses. On this front, we are related to recent 

development in the application of large-scale inference tools, where the research goal is to credibly detect 

a relatively small group of interesting units among a sea of null (Efron, 2012).8 

                                                           
6 Zou (2021) presents evidence of strategic polluting activities in places where pollution monitoring follows a pre-
scheduled cycle. Our paper presents the converse setting in which monitors that are scheduled to operate continuously 
choose to strategically shut down in response to expected high pollution events.  
7 A related literature analyzes emission test cheating and collusion behavior in the vehicle sector (e.g., Oliva, 2015; 
Reynaert, 2020; Ale-Chilet et al., 2021; Reynaert and Sallee, 2021). 
8 See applications in bioinformatics, such as high-throughput screening for drug discovery (Malo et al., 2006), and 
genomics/proteomics data analysis (Dudoit, Shaffer, and Boldrick, 2003; Bantscheff et al, 2007; Huang, Sherman, 
and Lempicki, 2009). Within economic applications, we are most closely related to the literature on permutation 
inference (e.g., Barrios, Diamond, Imbens, and Kolesár, 2012; Buchmueller, Miller, and Vujicic, 2016; Young, 2016; 
Hagemann, 2019), multiple hypothesis testing (e.g., Anderson, 2008; Heckman et al., 2010; Finkelstein et al., 2012; 
Christensen and Miguel, 2018; Jones, Molitor, and Reif, 2019; List, Shaikh, and Xu, 2019; Kline and Walters, 2021) 
and heterogeneous treatment effects estimation (e.g., Athey and Imbens, 2016; Chernozhukov, Demirer, Duflo, and 
Fernandez-Val, 2018; Davis and Heller, 2020). 
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 Section 2 provides background and a description of the data. Section 3 presents a conceptual model 

of strategic self-monitoring. Section 4 explains our framework and discusses the results. Section 5 describes 

the imputation method. Section 6 concludes. 

 

2. Background and Data 
2.1. Clean Air Act and Ambient Air Quality Monitoring 
 The National Ambient Air Quality Standards (NAAQS). The U.S. Clean Air Act (CAA) 

delegates the U.S. Environmental Protection Agency (EPA) to set up safety standards in the form of 

maximum concentration levels for outdoor air pollution. These are the National Ambient Air Quality 

Standards (NAAQS). Since the 1970s, the EPA has set up NAAQS for “criteria” air pollutants including 

particulate matter (PM2.5 and PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), lead (Pb), 

and carbon monoxide (CO). The CAA charges state governments with monitoring air quality within their 

own jurisdictions. The federal EPA uses states’ submitted data to categorize counties into “attainment” 

(adhering to the standards) and “nonattainment” (violating the standards) groups. Most criteria pollutants 

have two standards: a 24-hour standard and an annual standard; ozone’s standard is based upon an 8-hour 

period. For example, a county falls into PM2.5 nonattainment if its three-year average for PM2.5 exceeds 15 

ug/m3, and/or if the three-year average of annual 98th percentile concentration values exceeds 35 ug/m3. 

The most updated NAAQS for all criteria pollutants are listed in the federal EPA’s NAAQS Table 

(https://www.epa.gov/criteria-air-pollutants/naaqs-table).   

 Nonattainment counties face substantially elevated regulatory costs for both existing and 

prospective entities. The state is required to develop a State Implementation Plan (SIP) that details plant-

specific regulations to bring the county back into compliance. These regulations typically involve the 

adoption of expensive pollution abatement technologies and emission limits on existing factories. Factories 

planning new production capacity in nonattainment jurisdictions must adopt technologies with the “lowest 

achievable emission rate,” irrespective of the cost of doing so.9 Local governments and individual polluters 

occasionally receive direct penalties from the EPA in cases of sustained nonattainment. The NAAQS 

provision functions as the CAA’s ultimate safeguard for outdoor air quality. Its regulatory incentives for 

the state economy – with respect to the compliance costs, firms’ productivity changes, and labor market 

implications – have been widely documented in the literature (e.g., Greenstone, List, and Syverson, 2012; 

                                                           
9 Lowest Achievable Emission Rate, or LAER, refers to technologies that achieve the lowest possible emission rate 
in practice without cost consideration. In contrast, new sources in attainment jurisdictions comply with the Best 
Available Control Technology, which is often much less strict and allows for considerations of energy, environmental, 
and economic impacts and other costs. 

https://www.epa.gov/criteria-air-pollutants/naaqs-table
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Walker, 2013; Blundell, Gowrisankaran, and Langer, 2018; Shapiro and Walker, 2020). A separate strand 

of literature finds evidence that by directing regulatory resources toward sources in high-pollution areas, 

local governments have been able to achieve localized air quality improvements near the violating monitors 

(e.g., Bento, Freedman, and Lang, 2015; Auffhammer, Bento, and Lowe, 2019). 

 EPA Rules for Incomplete Monitoring. To demonstrate compliance with NAAQS, states’ 

monitoring data must satisfy completeness goals. Appendix Figure B.1 tabulates the EPA’s completeness 

goals for each of the criteria pollutants (U.S. EPA, 2013). The typical requirement is for each monitor to 

take at least 75% of required samples per quarter of the year. What happens if monitoring data fall below 

the completeness goals? In principle, incomplete data cannot be used to demonstrate compliance, and the 

areas is thus designated as “unclassifiable.” In practice, an unclassifiable county is treated just as an 

attainment county. However, if statistics computed from incomplete data suggest a potential violation of 

NAAQS, then the EPA can invoke rights to assign “nonattainment” status using limited data available. For 

example, in the case of PM2.5 monitors, only 11 days of observations per quarter are needed for the EPA to 

designate violation – if, for example, the average of the available observations exceeds the annual standard 

of 15 ug/m3. If the monitor collects even fewer than 11 samples per quarter, the CAA gives the EPA the 

right to use alternative data. The federal regulation states that the EPA administrator “may consider factors 

such as monitoring site closures/moves, monitoring diligence, the consistency and levels of the daily values 

that are available, and nearby concentrations” in determining attainment / nonattainment status.10  

 These rules imply that the completeness goal per se is not subject to gaming. A violating area 

cannot bring itself out of nonattainment simply by reducing its data capture rate below 75% per quarter 

because nonattainment can be designated using very limited data (11 observations); for a non-violating area, 

it makes little difference if its quarterly capture rate is above the 75% level (attainment) or below 

(unclassifiable). However, strategic responses can arise when local monitoring agencies skip high-pollution 

days to water down the average (or whatever relevant statistics) of captured pollution, which is the focus 

of this study. 

 How Do Monitors Work and Why Do Monitors Miss Data? Ambient pollution monitoring 

involves measurement acquisition, quality assurance, and data submission. Here we briefly describe each 

step and explain ways in which data missingness may arise in each of these steps. Our primary reference is 

the EPA’s Quality Assurance Handbook for Air pollution Measurement Systems (U.S. EPA, 2013).  

 Measurement Acquisition. The monitoring process begins with in situ ambient pollution sampling 

at states’ monitoring sites. From the outside, a monitoring site looks like a fenced shelter; Panel A of 

                                                           
10 40 C.F.R. Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5. 
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Appendix Figure B.2 provides an example. The structures seen on the rooftop are sampling air inlets. Most 

of the pollution analyzers reside inside the shelter and its HVAC-controlled environment. One exception is 

mass filtration-based particulate pollution monitors, which are less sensitive to ambient temperature 

changes; these monitors are often placed directly on the rooftop. Panels B and C of Appendix Figure B.2 

provide an example shelter design. The actual sampling procedure differs by the type of pollutant being 

monitored. For example, particulate pollution sampling (PM2.5, PM10, and Pb) often requires manual 

collection of pollution filters and subsequent laboratory analysis; trace gas (such as ozone) sampling is done 

with fully automated laser-based methods, and the results can be obtained on site. Monitoring fieldwork is 

done by state personnel or contractors with appropriate training in ambient pollution monitoring.  

 It is worth noting that EPA imposes stringent standards on which monitoring technologies can be 

used towards states’ air quality monitoring. Monitors using technologies certified by the EPA (known as 

Federal Reference Methods or Federal Equivalence Methods) are expected to robustly operate under 

various meteorological and pollution conditions. Pollution monitors are also not expected to “max out” at 

the ranges of air pollution concentrations observed in the U.S. For example, all regulatory PM2.5 monitors 

are capable of measuring 24-hour fine particulates mass concentration of at least 200 ug/m3, while over 99% 

of daily monitor readings in our study sample are below 100 ug/m3. Given these demands for regulatory 

monitors, there is little reason to expect a “spontaneous” relationship between monitor performance and 

meteorological or pollution conditions.  

 The missing-data problem can arise at measurement acquisition stage. Reasons for missingness 

may include instrument malfunction, sample contamination, preventive maintenance, staff shortage, power 

outage, or, as we argue in this paper, strategic non-sampling. This type of data missingness, which often 

lasts for only a short period of time, is likely the primary scenario of interest of this paper.    

 Quality Assurance. The missing-data problem can also occur if a monitor fails periodic quality 

control (QC) processes conducted by the state agency. For example, once every two weeks, a monitor is 

required to go through a one-point QC check in which the monitor is exposed to a gas of known 

concentration. If the test exceeds the EPA’s specified critical criteria for the one-point QC check (e.g., in 

the case of ozone, the critical criterion is that the measured concentration exceeds the true concentration by 

more than 7%), the monitoring agency voids all previous readings from that monitor, indicating that data 

are missing for the period extending back to the date when the monitor passed the previous one-point QC 

check. Similar checks are done for other instrument tasks, such as monthly flow rate audits. 

 It also bears mentioning how extreme values are treated in the QC process. The EPA guideline 

encourages manual inspections of all data to spot unusual values, which can be used to “indicate a gross 
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error in the data collection system.” Importantly for our study, an outlier is considered valid until there is 

an explanation for why the data should be invalidated, for example, if a subsequent one-point QC fails.  

 Because QC failures typically result in the invalidation of large chunks of monitoring data, this 

type of missingness is unlikely to explain the findings in this paper.  

 Data Submission. Finally, the processed and quality-controlled data are submitted by the state to 

the federal EPA’s Air Quality System (AQS) for NAAQS compliance determination. The federal EPA has 

the ultimate authority to decide whether it will use a monitoring agency’s submitted data in determining 

NAAQS compliance. Occasionally, the EPA has invalidated data submitted to the AQS after failures in 

federal audits. For example, in a recent incident, a contract laboratory’s audit failure led data from four 

states to be suspended from NAAQS comparison (https://www.epa.gov/air-trends/pm25-data-omitted-air-

trends-assessment). As with QC-based missingness, these cases also tend to invalidate large swaths of data. 

Consequently, these cases are also unlikely to the explain strategic, short-term missingness in monitoring 

data that we test in this paper.  

  

2.2. Pollution Alerts 
 Pollution alerts are based on air quality forecasts made by state and local agencies using chemistry 

transport models, such as the Community Multiscale Air Quality Modeling System (CMAQ).11 An alert is 

issued when unfavorable local weather events (thermal inversions, light winds, high pressure zones, etc.) 

and emission events (traffic congestion, wildfires, etc.) are expected to push air pollution to unhealthy levels 

as defined by the NAAQS nonattainment standards.12 Appendix Figure B.3 shows the distribution of the 

predicted Air Quality Index associated with the alerts. The distribution exhibits substantial pileup at the 

AQI cutoff of 100 (at which point the AQI code moves from “Moderate” to “Unhealthy for Sensitive 

Groups”) and the cutoff of 150 (at which point the AQI code becomes “Unhealthy”).  

 We are unaware of any institutional reasons for a mechanical link between alerts and missing 

monitoring data. To the extent that a forecasting algorithm uses monitoring data as predictors for future 

pollution, lower data capture on higher pollution days, if anything, would decrease the odds of pollution 

alerts, generating a positive correlation between capture rate and alerts. Alerts are associated with changes 

in general atmospheric conditions, such as temperature and precipitation, which could influence monitors’ 

data capture due to equipment and/or staff performance. However, such mechanical association would 

                                                           
11 https://www.epa.gov/cmaq/cmaq-models-0  
12 Pollution alerts are often salient. Previous research has shown that alerts suppress outdoor activities and influence 
transportation choices (Neidell, 2009; Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009). 

https://www.epa.gov/air-trends/pm25-data-omitted-air-trends-assessment
https://www.epa.gov/air-trends/pm25-data-omitted-air-trends-assessment
https://www.epa.gov/cmaq/cmaq-models-0
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affect all monitors, and it should not be specific to “interesting” monitor groups. We provide further details 

in Section 4.1 where we discuss the empirical strategy.     

 

2.3. Data 
 Pollution Monitoring. Pollution monitoring data come from the EPA’s Air Quality System (AQS) 

database. We use AQS Daily Summary Data which contain information from every monitor for each day 

from 2004 to 2015. A daily summary record is the aggregate of all sub-daily measurements, typically 24 

hourly samples taken by the monitor. Our primary variable of interest is a monitor-by-day level indicator 

for missing data, i.e., none of the sub-daily measurements being available.  

 Pollution Alerts. We obtain air pollution alerts data through the EPA AirNow (airnow.gov) Action 

Day Program. Action Day provides a tracker of all air quality alert programs implemented by state and 

local agencies.13 The database we use contains a total of 33,357 pollution alerts issued by 342 jurisdictions 

between 2004 and 2015. An advisory is often issued one day ahead of the actual alert day. We use the alert 

day itself to define the timing of pollution alert events.   

 

3. A Model of Strategic Self-Monitoring 

 In this section, we present a stylized model of self-monitoring that illustrates a regulator’s difficulty 

in eliciting complete and/or unbiased monitoring results from a regulated entity. For the sake of discussion, 

we describe the model in the context of pollution regulation, although the setup may be readily applied to 

many other contexts in which a self-monitoring agent faces the trade-off between satisfying a regulator’s 

data-reporting requirement and the risk of revealing violations. For instance, a police officer may face this 

trade-off when deciding whether to turn on the body camera (particularly when anticipating a non-

negligible probability of misconduct). Readers not interested in theoretical predictions can jump to the 

empirical analysis in Section 4.  

 We consider a setting in which a federal regulator sets a standard for pollution, and a regulated 

entity generates monitoring data to document its level of compliance with the standard. The regulated entity 

– the monitor henceforth – has private information about its compliance (e.g., the local level of pollution). 

                                                           
13 For example, this includes the “Spare the Air” program in the Bay Area of California (https://www.sparetheair.org/), 
and the “High Pollution Advisory” program managed by the state of Arizona (https://ein.az.gov/keywords/high-
pollution-advisory). A full list of programs contained in the database is here: https://www.airnow.gov/aqi/action-days/. 

https://www.sparetheair.org/
https://ein.az.gov/keywords/high-pollution-advisory
https://ein.az.gov/keywords/high-pollution-advisory
https://www.airnow.gov/aqi/action-days/
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Suppose there are N days in a sample period of which nv ∈ (0, N) days violate the regulator’s standard. 

The remaining nc = N − nv days comply with the standard.  

 For simplicity, we assume the monitor has full information about all N realizations – i.e., whether 

each day violates or complies with the standard – and it chooses which observations to reveal to the 

regulator. In reality, depending on the context, the monitor may act upon its expectations, for instance, 

through pollution forecasting. The monitor reports {rv, rc} to the regulator, where rv ≤ nv and rc ≤ nc are 

the reported number of violating and compliant observations, respectively. Let each reported observation 

cost the monitor c to generate, so that the total cost of monitoring is c ⋅ (rv + rc). 

 Based on the reports {rv, rc}, the regulator imposes two kinds of penalties on the monitor. First, the 

regulator charges the monitor a fine of pv(rv) for the violating days. Second, there is a penalty for missing 

observations pm(N − rv − rc). The monitor’s reporting problem is thus choosing {rv, rc} that minimizes 

the total loss 

min 
rv,rc

 pv(rv) + pm(N − rv − rc) + c ⋅ (rv + rc) 

s.t. 0 ≤ rv ≤ nv and 0 ≤ rn ≤ nn 

We assume that c > 0 and that both penalty functions are increasing (pv
′ > 0 and pm

′ > 0) and convex in 

shape (pv
′′ > 0 and pm

′′ > 0). The convexity assumption approximates the reality where often some degree 

of violations or missingness are tolerated, while large number of violations and missing data are heavily 

penalized. We now characterize monitor’s reporting behavior depending on the properties of pv(⋅), pm(⋅) 

and c.  

 Proposition 1. The monitor reports  rv
∗ = 0 and nc > rc

∗ > 0 when it is feasible to strike a balance 

between the marginal penalty for missing data and the cost of monitoring, i.e.,  p′
m

(N − rc
∗) = c.  

 Note that the behavior characterized in Proposition 1 will become infeasible when violating days 

are numerous, so that reporting only compliant days will incur large penalty for missing data.14 In these 

cases, one would expect to observe reporting behavior characterized by the following proposition: 

 Proposition 2. The monitor reports nv > rv
∗ > 0  and nc = rc

∗  when the penalty for missing 

observations is sufficiently large relative to monitoring cost, i.e., p′
m

(nv − rv
∗) ≥ c, where rv

∗ is determined 

by p′
m

(nv − rv
∗) = pv

′ (rv
∗) + c. 

 Together, Propositions 1 and 2 suggest that, because compliant observations carry a lower penalty 

than violations, the monitor will report some (and perhaps all) compliant days. Only when the penalty for 

                                                           
14 This scenario also depends upon the convexity of pm, e.g., if  pm

′ (nv) > c, then the monitor will report violations. 
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missing data is sufficiently large does the monitor report violations (due to many violating days or a highly 

convex penalty for missed observations pm). In this case, the monitor reports all compliant days and reports 

violation up to the point where the marginal penalty for missing data equals the marginal cost of monitoring 

plus the marginal fine of an additional reported violation. Importantly, in our stylized model, monitor will 

not choose any solution such that  nv > rv
∗ > 0 and nc > rc

∗ > 0 – that is, the monitor will not report 

violating observations before they “use up” all their compliant observations – as long as the marginal 

damage of reporting violation is positive pv
′ (rv

∗) > 0.  

 Finally, we show that even if a monitor is at a point where it has to reveal violating days, it will not 

report all of its violating days unless the penalty for missing data is overwhelmingly large:  

 Proposition 3. Monitor will not report rv
∗ = nv and rc

∗ = nc unless p′
m

(0) ≥ c + pv
′ (nv).  

 The condition of Proposition 3 says that complete reporting only occurs when the marginal cost of 

missing any observations must overwhelm marginal operating costs and the marginal regulatory fines when 

all violations are reported. Unless the true data have very few violations (nv ≈ 0), the assumed convexity 

of pv and pm functions likely rules out this possibility. In Appendix B, we provide the full proof of the 

propositions and discuss all other boundary possibilities.  

 We now discuss two corollaries that follow from the theoretical Propositions 1 through 3, which 

we will take to the empirical analysis.  

A first corollary is that the federal regulator in our stylized model cannot expect complete and/or 

unbiased reporting. It is almost always the case that violating days are undersampled relative to compliant 

days: rv/nv < rc/nc. In other words, the reported monitoring data are biased toward compliance. Our 

empirical analysis tests this prediction by studying whether some monitors shut down more frequently 

during pollution alerts (Sections 4.1 and 4.2) and by comparing distributions of monitored versus 

unmonitored pollution values using imputation and remote-sensing data (Sections 5.1 and 5.2).  

 The second corollary is that, for a monitor that has very few violating days to begin with (nv ≈ 0), 

the marginal fine for reporting violating days is sufficiently small that the reporting problem becomes less 

strategic in nature and instead reduces to a simple tradeoff between non-reporting costs and the operating 

cost. Our empirical analysis in Section 4.3 tests this prediction and examines strategic monitoring in areas 

with high versus low potential of violating the regulatory standards.   
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4. Framework and Evidence  
 This section describes the three components of our framework and presents our findings. We begin 

in Section 4.1 with the Jersey City Firehouse (JCF) PM2.5 monitor and explain how we test for strategic 

shutdowns for a single monitor. Section 4.2 describes the simultaneous testing problem where we scale up 

the exercise in Section 4.1 to all 1,359 monitors. Section 4.3 presents an econometric analysis of the 

characteristics of monitors that are deemed “interesting” by the testing process. 

 

4.1. Test of Individual Monitor: The Jersey City Firehouse Monitor as an Example 
 Using an event study framework, we model the JCF monitor’s “capture rate” of PM2.5 data – an 

indicator variable equaling “1” when scheduled monitoring occurs – around the timing of pollution alerts 

(the “events”). There are a total of 37 pollution alert days in Jersey City during our study period. Alerts are 

sometimes issued for several consecutive days, in which case we keep the first day of the episode to focus 

on the alert issuance effect. This leaves us with 21 pollution alert events. For each alert event, we pull the 

JCF monitor’s operational status 30 days before and 30 days after the alert day, forming an event study 

dataset with 1,281 observations (21 alert events multiplied by the 61-day event study window for each alert). 

The estimation equation is: 

Capture Ratet = 1 − 𝕀(Missing PM2.5 Data)t = ∑ βτ ⋅ 𝕀(t = τ)τ∈[−30,30] + εt    (1) 

where 𝕀(⋅) represents the indicator function. Note that the β̂τ estimates are simply the capture rate τ-day 

relative to the pollution alert day, averaged across all 21 events.   

  Our goal is to assess whether the β̂τ’s have lower values around τ = 0, i.e., a lower capture rate 

(more missing values) near the time when a pollution alert is issued. We specify a donut difference-in-

means estimator as our test statistic: 

                                   T =
1

7
∑ β̂ττ∈[−3,3] −

1

40
∑ β̂ττ∈[−30,−11]

∪[11,30]

                               (2) 

which is the average capture rate within a seven-day event window around the pollution alert day, subtracted 

by the average capture rate outside that window, with a seven-day buffer on each side of the event window. 

In Appendix Figure B.4, we show that our findings are insensitive to alternative choices of the buffer 

window.15 Our identification premise is the standard zero-trend assumption: under the null hypothesis that 

                                                           
15 Another potential issue with the simple difference-in-means test statistic is that it may falsely categorize monitors 
as strategic when a long-term shutdown occurs near the pollution alert day. For example, imagine an always-active 
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the pollution alert has no impact on the capture rate, we should have T = 0, and, alternatively, if alerts do 

affect the capture rate, we expect T ≠ 0. One departure from the standard event study framework is that 

our treatment (pollution alert) reflects the monitoring agency’s belief about future pollution, and thus the 

shutdown of monitors may well occur before the issuance of pollution alerts. Such anticipation underlies 

our choice to allow the test statistic to capture potential change in shutdown rates several days before the 

actual alert day.   

 Figure 1, panel A plots the β̂τ coefficients for the JCF monitor. The graph features a clear drop of 

the monitor’s capture rate around the pollution alert day. The corresponding T estimate is -0.101, meaning 

the capture rate within the seven-day window around a pollution alert is 10.1 percentage points lower than 

the outside-window average of 88 percent (an 11.5% reduction). Note that the largest change in the 

monitor’s capture rate occurs on the alert day and the day before, with a 28.6 percentage points reduction 

(a 32.5% reduction). 

 An important feature of Figure 1, panel A is that the decline in the data capture rate began days 

before the actual pollution alert day. This is a pattern that we repeatedly observe among “interesting” 

monitors. Note that pollution not only increases on the actual alert day, but that it tends to rise leading up 

to the alert-day peak. Thus, the capture rate pattern is likely a consequence of forward-looking agencies 

changing monitoring effort in anticipation of a future high-pollution episode (Malani and Reif, 2015). This 

pattern also suggests data absences are not mechanically linked with alert issuances (Section 2.2), in which 

case one would expect to see a change in capture on the alert day only.  

 We are now ready to conduct inference on whether T is statistically different from zero. In a large-

sample setting, we could implement a t-test of T = 0  via an OLS regression of Capture Ratet  on an 

indicator for the seven-day window around the alert day. This approach has several limitations in our setting. 

First, it relies on the distributional assumption that the t-statistic of T under the null hypothesis will be 

normally distributed N(0,1), which may not be true in our finite-sample setting. Second, with a small sample, 

the magnitude and precision of T could be sensitive to specification choices. Therefore, rather than relying 

on distributional and specification assumptions, we build on the idea that, under the (sharp) null hypothesis 

that pollution alerts have no effects whatsoever on the monitor’s capture rate, variable T does not depend 

                                                           
monitor that shuts down at τ = 0 and remains inactive for a month. From equation (1), this event is associated with a 
test statistic of -7.1 percentage points. In practice, we will find that such possibility is only relevant with carbon 
monoxide (CO) monitors that often experience seasonal shutdowns (Section 4.2). We will show that a slightly 
sharpened version of the test statistic 

T = max (
1

7
∑ β̂ττ∈[−3,3] −

1

20
∑ β̂ττ∈[−30,11]  ,

1

7
∑ β̂ττ∈[−3,3] −

1

20
∑ β̂ττ∈[11,30] )  

can successfully detect strategic monitors in the presence of seasonal shutdowns, as the null hypothesis is rejected 
when the capture rate around the alert day is lower than that of both the pre-alert period and the post-alert period. 
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on whether a pollution alert occurs; therefore, we can generate the null distribution of T from the data by 

randomly shuffling the timing of pollution alerts. In practice, we assign 21 dates as the “placebo” alert days. 

We restrict the randomization so that the placebo day does not occur within one month of the true alert day. 

In Appendix Figure B.4, we report that our results are robust to using alternative randomization buffers 

such as 15 days or 7 days. We repeat the process 5,000 times, each iteration generating a placebo test 

statistic. We then compute a two-tail p-value of the observed T as the proportion of the null distribution 

that is more extreme (in absolute value) than T. Note that we employ two-tail testing, allowing T to be 

significant for the “wrong” sign. In Section 4.2, we will show this “wrong” tail provides us with an 

opportunity for sanity checks.   

 Figure 1, panel B reports the inference exercise. The histogram plots the empirical null distribution 

of T across 5,000 randomization of pollution alerts. The vertical solid line marks the true estimate which 

lies outside of the 95 percent range of the null distribution, with a two-tail p-value of 0.014. Evidence thus 

points to a statistically significant reduction of the JCF monitor’s capture rate around pollution alerts. 

 Causal Interpretation and “Strategic” Shutdowns. Before proceeding, we discuss the causal 

interpretation of the T estimate. Taken at face value, patterns of Figure 1 suggest evidence of selective 

shutdowns. That is, more missing data are occurring around pollution alerts with significant deterioration 

of air quality. Note that selective shutdown per se is an undesirable feature of monitoring data that is worth 

documenting: if missing rate is differentially higher around high-pollution alerts, the resulting monitoring 

data will understate the true pollution concentration. Improving continuity of monitoring near these 

pollution events will thus increase accuracy of the monitoring data regardless of why such selective 

shutdowns were occurring. 

 But to interpret such selective shutdowns as strategic behavior – a term that implies intentionality 

– we need the assumption to hold that a local government’s expectation of bad air quality causes the 

reduction in monitor’s capture rate. In other words, the strategic interpretation relies on the identification 

assumption that there will be no changes in the monitor’s capture rate in the absence of pollution expectation. 

Here we discuss two concerns for potential violation of this identification assumption. 

 A first concern is selection. Equation (1) may be mis-specified if monitors’ capture rates and 

pollution alerts are both correlated with some unobserved factors. We note that the permutation inference 

should purge the influence of unobserved factors except for those that are systematically correlated with 

the timing of alert issuance. Moreover, if systemic omitted variable bias exists, it likely applies broadly to 

many monitors. In contrast, we report in Section 4.3 that strategic shutdowns tend to occur in regions with 

higher risk of violating the clean air standards. Section 4.3 also shows that interesting monitors are also 

more likely to miss monitoring during bad pollution years in general, not just around pollution alerts.   
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We also note that we have little prior reasons to expect any “spontaneous” relationship between 

monitors’ sampling rate and socioeconomic/atmospheric conditions. As we mentioned in Section 2.1, 

monitoring techniques certified by the EPA have stringent technological standards and can robustly operate 

under various meteorological and pollution conditions. The periodic quality control procedures we 

described in Section 2.1 are also precisely designed to make sure monitors are functioning properly. 

Nevertheless, in order to assess this point more directly, we consider an exercise that tries to predict daily 

monitoring missingness using weather conditions. Weather is a candidate for confounding that could affect 

both when a monitor misses observations and when local agencies issue air alerts (e.g., if bad weather 

events influence the functioning of monitoring devices and, at the same time, affect polluting activities such 

as road traffic). For this confounding to occur, some function of weather must predict missing monitoring 

data. We train several flexible machine-learning (ML) models that use contemporaneous and lagged 

weather data to predict whether monitors missed planned observations.16 None of the weather-based ML 

models successfully improve upon a “null model” that predicts a region’s majority class (“not missing”). 

In fact, the models functionally ignore the weather inputs and replicate the null model – always predicting 

“not missing.” This fact remains true even when we oversample missing days to control for missingness 

days’ relative infrequency. 

 A deeper concern is reverse causality. Because pollution forecasts such as the CMAQ use 

contemporaneous monitoring data as input, one might be concerned that the natural (non-strategic) absence 

of monitors’ data may interact with the issuance of pollution alerts in ways that could generate a reversely 

causal relationship between monitor shutdowns and alerts. This is unlikely the case. Note that if missing 

data occur randomly, then the distribution of missing pollution data should mirror that of the observed data. 

Thus, natural missingness should not affect forecasts or alert issuances. On the other hand, if the data 

capture rate does fall on high pollution days (but for reasons unrelated to pollution alerts), then one would 

expect a decrease in the odds of pollution alerts because fewer high-pollution days are being captured, and 

thus a positive, rather than negative relationship between capture rate and alerts.  

 

                                                           
16 Specifically, we use three different ML algorithms: (i) lasso-penalized OLS regression, (ii) lasso-penalized logistic 
regression, and (iii) random forest. The outcome for each model is a binary indicator for whether the monitor-day's 
observation is missing. The predictors include contemporaneous and lagged weather features—temperature (mean, 
minimum, and maximum), precipitation, dew point, pressure, visibility, wind speed, wind gust, and indicators for 
extreme weather events. We tune the models’ hyperparameters using 5-fold cross validation and ultimately assess 
performance on final, held out test set. The daily weather data come from NOAA's Global Summary of the Day 
(GSOD) 2005-2014. We use inverse-distance weighting to estimate each monitor-day’s weather based upon the 
monitor’s distance to each of the 4,579 NOAA weather stations in the GSOD data. 
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4.2. Simultaneous Test of All Monitors 
 We now repeat the exercise in Figure 1 with all other monitors. We make the following sample 

restrictions: First, we restrict to monitors located in counties that have issued at least two pollution alerts 

during our study period. Second, we restrict to monitors that are designated to sample air quality every day. 

For PM2.5 and PM10 monitors, this means restricting to monitors sampling on a “1-in-1-day” basis.17 For O3, 

NO2, SO2, and CO monitors, seasonal monitoring is often practiced (e.g., ozone is often deemed a problem 

only during the summer months), and we restrict to monitor-months for which at least one day of monitoring 

data was available.18 Our final pool of tests includes 1,359 pollution monitors (including the Jersey City 

Firehouse monitor) for PM2.5, PM10, O3, NO2, SO2, and CO located in 167 counties operating between 2004 

and 2015. We begin with a collection of null hypotheses that we test at once: 

{Hi: Monitor i′s operation schedule is not affected by pollution alerts}i=1
N  

and the corresponding mean-difference test statistics {Ti}i=1
N  analogously defined as in equation (1). For 

each monitor, we use randomization inference to obtain its two-tail p-value pi measuring the degree to 

which the observed Ti contradicts Hi. 

 We next turn to the simultaneous testing problem. At any given chosen rejection threshold α, the 

test will falsely reject the null approximately 100α% of the time. With a large number of hypotheses, a 

substantial number of monitors will be falsely considered to be “gaming.” We introduce several measures 

to approach this issue. First, we present the p-value histogram. By construction, the p-value histogram 

should feature a uniform distribution U(0,1) if the null hypothesis holds true (i.e., alerts have no effect on 

data availability) for every monitor i.19 In practice, the histogram of {pi}i=1
N  is potentially a mixture of cases 

where the null hypothesis is true and cases where the null is false. If enough monitors are gaming, one 

would expect a deviation from U(0,1); more specifically, the p-value histogram would exhibit an 

overabundance of small p-values (<0.05). Figure 2, panel A presents the p-value histogram. We see a clear 

spike in small p-values in the p<0.05 range. When test statistics are further partitioned into Ti ≤ 0 

                                                           
17 Particulate pollution monitoring is often done intermittently (once every three or six days) for sites that still adopt 
manual sampling technologies. Intermittent monitoring is typically allowed by the Environmental Protection Agency 
in jurisdictions that are not in immediate danger of violating the NAAQS. We identify 1-in-1-day monitors using the 
Air Quality System database’s “required day count” field. We do not test lead (Pb) particulate monitors because 
virtually all lead monitors follow an intermittent monitoring schedule.   
18 Gaseous pollutant monitoring uses chemiluminescent technologies, and are by default conducted continuously. Our 
sample selection primarily reflects the fact that monitoring seasons may differ across monitors.  
19 To see this, suppose the cumulative distribution function of the test statistic T is F(t) = Pr(T < t). Consider a 
continuous and invertible F and a two-sided test p-value = 2 min{Pr(T > t) , Pr(T < t)}. Then for any p ∈ [0,1],  
Pr (p-value < p) = Pr(2 min{F(T), 1 − F(T)} < p) = Pr(min{F(T), 1 − F(T)} < p/2) = Pr(F(T) < p/2) +
Pr(1 − F(T) < p/2) = p/2 + p/2 = p. 
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(“correct”-signed test statistic) and Ti > 0 (“wrong”-signed test statistic) groups, we find that the spike in 

small p-values are driven by tests with the “correct” signs, i.e., those with drops in the capture rate, rather 

than increases around pollution alerts (Figure 2, panel B). Figure 2 also shows that significant cases tend to 

emerge at the smallest p-values. This pattern may be consistent with (a) strategic behavior being 

concentrated with extreme cases rather than a large number of monitors being “slightly” strategic, and (b) 

the distribution of p-values under the alternative hypothesis is steeply right-skewed with high statistical 

power (Hung, O’Neill, Bauer and Kohne, 1997).   

 Second, we employ the Benjamini-Hochberg procedure to control for false discovery rates 

(Benjamini and Hochberg, 1995). This method is closely related to the p-value histogram. Large p-values 

on the p-value histogram mostly represent observations from the null hypothesis, and thus can be used to 

estimate the proportion of small p-values that also come from the null hypothesis. More formally, we order 

{pi}i=1
N  in an increasing order p(1) ≤ ⋯ ≤ p(N), and for a choice of target false discovery rate α = 0.05, 

we find the largest value of k such that p(k) ≤ αk/N, and reject the null for i = 1, … , k. For each Ti, we 

also compute a q-value equals to the minimum false discovery rate that can be attained when Ti  is 

considered significant (Storey, 2003; Anderson 2008). We follow the literature and give q-value a Bayesian 

posterior significance level interpretation (i.e., false discovery adjusted significance level). 

 Finally, recent applied econometrics has demoted sole reliance on p- or q-values and promoted 

weights on the degree to which the data patterns are visually compelling. In our case, because monitoring 

agencies have no incentive to pull capture rates way down (Section 2.1), one would expect that interesting 

monitors would exhibit a T-shaped response where otherwise stable monitoring operation shows a sharp 

drop just around the days of high pollution episodes. To operationalize this test, we aggregate the β̂τ’s 

estimates and compute average event study patterns separately for two groups: interesting monitors and 

other monitors. Figure 3 displays the findings. First, except for the case of PM10, the overabundance of 

small p-values is apparent for each type of monitor. Second, non-interesting monitors show a flat and stable 

operation pattern around pollution alerts; this suggests the average monitor is not strategically shutting 

down around pollution alerts. Third, except for the case of CO, visual evidence is strong for interesting 

monitors, with a sharp but transient drop in capture rates around pollution alert days. As we noted, the L-

shaped response for the CO monitors is likely driven by seasonal monitor shutdowns that are picked up by 

the simple difference-in-means test statistic of equation (2). In Appendix Figure B.5, we present results 

using a “sharpened” version of the test statistic with which the null hypothesis is rejected when the capture 

rate during the -3 to 3 day event window is lower than that of both the pre- and post-alert periods (Section 

4.1). We find that this approach successfully identifies the T-shaped pattern for CO monitors, while the 
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event-time patterns for other pollutants remain almost the same. For the rest of the paper, we choose to stick 

with the simpler test statistic as specified in equation (2).   

 Going one step further, we manually screen the event study patterns among all interesting monitors, 

and pinpoint those with “very interesting”, T-shaped pattern. Figure 4 presents one example for each type 

of pollution monitor. Of course, this visual screening process is subjective and hence we do not use the 

“very interesting” status in any of the subsequent statistical analyses. We do note, however, that visual 

screening is likely the most directly accessible approach to regulators and practitioners in our context. We 

have made our estimation results for all monitors publicly available on a website. Appendix Figure B.6 

provides an illustration. The interactive map presents all tested areas, interesting monitors, very interesting 

monitors, and other tested monitors. For each monitor, we report the test statistic, the p- and q-values, and 

a link to the event study graph.  

 

4.3. Some Features of “Interesting” Monitors 
 The statistical procedure in the previous two sections generates a list of monitors whose patterns of 

missing data are consistent with strategic shutdowns. In this subsection, we present two exercises that 

document characteristics of these interesting monitors that speaks to underlying mechanisms. 

 Location. Appendix Table B.1 tabulates total number of pollution alerts, tested monitors, 

interesting monitors, and very interesting monitors by all 54 Core Based Statistical Areas (CBSAs) in our 

data. We find that interesting monitors tend to cluster in certain regions of the country. For example, among 

the 86 pollution monitors that we test in the Phoenix-Mesa-Scottsdale metro area in Arizona, 23 show up 

as interesting. Figure 5 maps the locations of monitors in the 14 CBSAs that in total house 60% of all these 

interesting monitors. The clustering pattern is not an artifact of some CBSAs simply having 

disproportionately more monitors. Several large metro areas we examined – such as Chicago-Naperville-

Elgin (IL-IN-WI), Sacramento-Roseville-Arden-Arcade (CA), and Philadelphia-Camden-Wilmington 

(PA-NJ-DE-MD) – have many monitors but very few interesting cases. Because the statistical procedure 

we use to determine interesting monitors does not use geographic proximity as an input, the fact that 

interesting cases cluster in certain places is informative, and suggests regional government influences. 

 The clustering pattern also implies that the decision to strategically monitor is spatially correlated, 

and some of the local variation in monitors’ interesting/non-interesting status is due to the use of a sharp 

statistical decision criterion (i.e., monitor is interesting if its p-value is less than 0.05). For example, among 

all non-interesting PM2.5 monitors within 20 miles of interesting PM2.5 monitors, over 18% have 

permutation p-values between 0.05 and 0.15. This fraction is 7% and 3% for non-interesting monitors 

https://www.google.com/maps/d/u/0/edit?mid=1e6vuA_OXa-QfCMrYanwkWV7XiGl50d1q&usp=sharing
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within 20-50 mile and 50-100 mile distance, respectively. Put differently, some non-interesting monitors in 

fact do exhibit strategic monitoring patterns like their interesting neighbors, and they would have been 

considered as interesting if we were to use a less conservative decision rule in hypothesis testing. 

 County Characteristics. A key premise of our analysis is that state and local governments avoid 

sampling high-pollution days in an effort to either avoid nonattainment status of the federal air quality 

standards (NAAQS) or, in the case of counties already in violation, to move out of nonattainment. We now 

use cross-sectional regressions to test whether being located in counties currently in or with a history of 

NAAQS nonattainment in fact increased a monitor’s likelihood to operate strategically. Table 1, column 1 

reports a simple linear regression of an indicator variable for being labeled interesting (p-value ≤ 0.05) on 

an indicator for the NAAQS nonattainment status of the county in which the monitor is located. This is a 

cross-sectional regression with 1,359 underlying monitors, 11.7% of which are interesting cases. Our 

estimate suggests a county’s nonattainment is associated with a 6.6 percentage point increase (or a 

6.6/11.7=56 percent increase) in the odds of the monitor being interesting.  In column 2, we repeat the 

“correct-vs-wrong sign” breakdown, finding that the nonattainment correlation is driven by cases with the 

“correct” sign (i.e., the capture rate decreases around pollution alerts). In column 3, we further control for 

several state-level regulatory/political characteristics including party affiliation, 20  an index for 

environmental friendliness,21 government size,22 and a proxy for corruption.23  We find that nonattainment 

is still a predominant predictor for monitor’s “interesting” status. In column 4, we include state fixed effects, 

comparing monitors within the same state but locating in attainment versus nonattainment counties, thus 

purging of the influence of any observable or unobservable characteristics that might differ across states. 

The results again indicate a robust role of nonattainment status. In columns 5-8, we repeat the same set of 

regressions now using the FDR-adjusted significance, i.e., an indicator variable for q-value ≤ 0.05, as the 

dependent variable. We obtain similar results from these alternative specifications. 

 Figure 6 provides further corroborative evidence on the role of nonattainment risk, using PM2.5 

monitors as an example. The chart documents the relationship between a monitor’s quarterly capture rate 

(number of days with creditable sample as a fraction of required days of sampling) and 1-unit bins of annual 

PM2.5 concentration (the “design value”) where an exceedance of 15 ug/m3 corresponds to a higher risk of 

                                                           
20 Share of Democratic Party affiliation according to 2006 Gallup Pool. 
21 League of Conservation Voters score, which is based on state representatives’ voting records on environmental 
issues. A higher score indicates to a stronger environmental preference (Dietz et al., 2015). 
22 Government-sector (two-digit NAICS: 92) employment as a share of total employment. Data are sourced from the 
Bureau of Economic Analysis. 
23 Per capita number of federal convictions among state and local public officials. Data are sourced from the Report 
to Congress on the Activities and Operations of the Public Integrity Section (Glaeser and Saks, 2006; Leeson and 
Sobel, 2008; Grooms, 2015). 
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violation. The underlying regression controls for monitor fixed effects and year fixed effects, so that the 

underlying variation comes from year-of-year changes in recorded pollution levels within the same monitor. 

Panel A reports that for these interesting monitors, years with particularly high levels of pollution 

correspond to particularly low data capture rates. Panel B shows that for the other, non-interesting monitors, 

the capture rate is largely orthogonal to the design value. Our detection framework’s focus on monitors’ 

sampling patterns within a narrow window around pollution alerts identifies strategic shutdowns; however, 

Figure 6 suggests that strategic sampling may occur at other times, beyond those that involve pollution 

alerts. We discuss this issue in further detail in Section 5. 

 

5. Regulatory Consequences  
 We now discuss potential consequences of the “interesting” (strategic) pollution monitors. We 

begin by estimating what the distribution of pollution readings would have been had monitoring been done 

on the missing days. In section 5.1, we discuss two imputation methods to achieve this goal – one uses 

simple geometric interpolation, and the other leverages remote sensing data and atmospheric modeling to 

provide pollution predictions. With the imputed data, we present evidence that the interesting monitors have 

the potential to distort air quality regulation, and such distortion may carry important health costs (Section 

5.2). We offer some brief thoughts on the role of imputation tools in deterring strategic shutdowns in future 

regulation (Section 5.3).  

 

5.1. Imputation Methods 
 The first imputation method we use is a simple and transparent prediction procedure known as the 

inverse distance weighting (IDW). The IDW builds on the idea that atmospheric conditions such as air 

pollution are often spatially correlated. The approach predicts the pollution in a given location as the 

average of readings from nearby “donor” monitors; each donor reading is weighted by the inverse of the 

donor monitor’s distance to the location of interest. Formally, at any given point in time, the IDW pollution 

imputation for a monitor x given a set of nearby donor monitors {xi}i=1
N  is 

x =
∑ [d(x, xi)]−1xi

N
i=1

∑ [d(x, xi)]−1N
i=1

 

where d(x, xi) is the distance between the monitor of interest and the donor monitor i. Because donor values 

that are closer to the monitor of interest are more heavily weighted, we use a liberal, 20-mile search window 

for donor monitors, which allows the IDW to provide substantial coverage while still preserving local 
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variations in pollution concentration. Note that IDW “imputation” can be done even if x is not missing, 

given us an opportunity to conduct in-sample validation. The IDW is commonly used in epidemiology and 

environmental economics studies to improve spatial coverage of data as ground monitoring of weather and 

pollution is often sparse (e.g., Schwartz, 2001; Currie and Neidell, 2005). Here we adapt the same idea to 

the context where data are temporally incomplete.  

 A disadvantage of IDW is that it only works when at least one donor monitor exists within 20-mile 

radius to the monitor of interest. In our data, IDW provides imputation values for 38.6% of missing data. 

Further, because strategic monitoring behavior exhibits spatial clustering (Figure 5), one might worry the 

availability of donor monitors’ imputation data per se is endogenous. We therefore also consider a second 

imputation method that relies upon machine-learned predictions of PM2.5 from Di et al. (2019) who provide 

predictions of daily PM2.5 concentrations for the contiguous United States on a grid of approximately 1km 

by 1km resolution. These predictions result from an ensemble of three machine-learning algorithms: a 

neural network, a random forest, and a boosted-tree model, each algorithm trained on more than 100 

variables that should be predictive of ground-level PM2.5, including satellite-measurements of aerosol 

optical depth, simulation outputs from two chemical-transport models, meteorological data, physical 

variables like elevation, and land-use data (e.g., road density and industry). The algorithms’ predictions 

were then aggregated in an ensemble based upon a generalized additive model.24 A pro of this second 

method is that it provides imputation values for all missing observations as the atmospheric modeling 

covers all place and time; a con is that the data result from complex modeling, thus being relatively less 

transparent than simple IDW. Below we present findings using these two approaches side by side.  

  

5.2. Regulatory and Health Implications 
 Figure 7 presents results from the imputation exercise. Figure 7A presents data from the IDW 

method, while Figure 7B repeats the exact same exercises using the atmospheric modeling method.  

  There are four panels. Each panel displays three distributions: observed PM2.5 (of course, for when 

monitoring is not missing), predicted PM2.5 when monitoring is not missing, and predicted PM2.5 when 

monitoring is missing. Hence, the two dashed lines tell us how closely the predicted PM2.5 tracks observed 

PM2.5 levels, and the solid line indicates what the distribution of PM2.5 would have looked like had 

monitoring been done on the missing days.  

                                                           
24 Di et al (2019) note that the ensemble step is productive because different models dominate in different parts of the 
country. The final cross-validated R2 for the daily PM2.5 ensemble is 0.860 with an RMSE of 2.786. 
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 Take Figure 7A, left panel that summarizes data for interesting monitors using the IDW method. 

First, we find that IDW does a reasonable job predicting actual PM2.5 when pollution monitoring is not 

missing. A simple linear regression of observed PM2.5 on predicted PM2.5 yields an R-squared of 0.814. 

Second, our prediction exercise suggests that, compared to observed PM2.5, the distribution of “missed” 

PM2.5 (solid line) features a longer right-tail. About 23.1% of the missing days would have shown PM2.5 

exceeding 15 ug/m3 had the measurements been taken, and about 2.7% of the missing days would have 

exceeded 35 ug/m3. These fractions convert to about 6.6 days per year of annual standard exceedance and 

0.8 days per year of 24-hour standard exceedance. Figure 7A, right panel shows no such discrepancy 

between observed and missed PM2.5 exists for non-interesting monitors. More broadly, we hope the IDW 

provides the regulator with a tractable tool to assess strategic shutdowns beyond the scope of this study. 

Evidence of Figure 7A reveals the difference in interesting monitors’ PM2.5 distributions on observed days 

and missed days. The fact that we find the same group of monitors that respond to pollution alerts also 

exhibit a distribution-wide, selective pattern in the timing of absent data, suggesting that strategic 

monitoring goes beyond just the context of pollution alerts.  

 Figure 7B shows that the same patterns replicate almost exactly using the modeling data method.  

 Another important feature of Figure 7 is that the distributional deviation of “missed” PM2.5 

manifests only for the interesting monitors and not for other monitors (which include non-interesting 

monitors and untested monitors in counties that do not have alert programs). In other words, although our 

quasi-experimental framework detects strategic monitors using a specific indicator – low levels of data 

capture rate around pollution alerts – these monitors turn out to the ones, and likely the only ones, that are 

generally strategic in sampling air quality. 

 Finally, we use the imputation data to provide an estimate on the health costs of strategic shutdowns. 

For example, how might the EPA assess the health risk imposed by an uncaptured 0.8 days per year of 24-

hour PM2.5 standard exceedance? We follow the idea of Sullivan and Krupnick (2018) and Fowlie, Rubin, 

and Walker (2019) to calculate the foregone health values due to regulation-induced air quality 

improvements that the county would otherwise have enjoyed without strategic monitoring. Our calculation 

is based on the following parameters: First, linking counts of exceedance days and county-level 

nonattainment history, we calculate that each additional day of 24-hour PM2.5 standard exceedance is 

correlated with a 13% increase in the odds of a county receiving a nonattainment designation in the 

following three years; this translates to a 9.6 percentage point increase in nonattainment probability.25 

                                                           
25 Specifically, we regress a dummy variable for whether the monitor’s county receives a nonattainment status with 
respect to the 24-hour PM2.5 standard in the following three years (including this year) on the monitor’s number of 
standard-exceeding days this year. Note that a one-day observation of 24-hour standard exceedance (over 35 ug/m3 
on any given day) does not immediately trigger a county’s nonattainment, a status that is determined by three-year 
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Second, to translate nonattainment status to air quality improvement, we use a published estimate that shows 

nonattainment causes on average 1.6 ug/m3 reduction in PM2.5 levels in the county per year for the 10 years 

following the designation (Sanders, Barreca, and Neidell, 2020). Third, to associate air quality improvement 

to mortality consequence, we use an epidemiology study that commonly cited by the EPA that each 10 

ug/m3 reduction in PM2.5 is associated with 6% reduction in all-cause adult mortality rates (Krewski et al., 

2009). Finally, to convert rate changes to level changes, we use data from the Centers for Disease Control 

and Prevention (CDC) to calculate that the average county’s baseline mortality rate in our sample is 671 

per 100,000 people, and the average county’s population count during the study period is 1.55 million. 

When multiplied together, these numbers indicate about 7.6 avoidable deaths per interesting monitor per 

year. Assuming a $8.9 million Value of Statistical Life (2020 USD) commonly used by the EPA in 

regulatory impact analyses, these avoidable deaths amount to an annual foregone health value of $67.4 

million per interesting monitor. 

 

5.3. Potential Deterrence 
 One implementable solution to the strategic shutdown problem is for federal regulators to change 

their practices regarding missing data. Rather than effectively ignoring the absence of data, regulators could 

use estimates to approximate conditions that prevailed during down times. Similar approaches have 

successfully been used in other pollution regulations. For example, one can learn from the successful 

enforcement experience of the EPA’s Acid Rain Program (ARP), a cap-and-trade program based on a 

monetary system of tradeable emission allowances. All emission sources in the ARP – mostly in the power-

generating sector – are required to monitor emissions in real time through a continuous emission monitoring 

systems (CEMS). To incentivize monitoring compliance, the ARP specifies stringent data substitution 

procedures when approved CEMS technology is not used. For example, when the hourly capture rate of 

SO2 emissions falls below 90%, the substitute data value will be the maximum value observed by looking 

back through the last 720 hours. The ultra-conservative approach to substitute for missing data is believed 

to underly the ARP’s near-perfect compliance record (Schakenbach, Vollaro, and Forte, 2006).26 The 

ARP’s zero-tolerance approach is obviously very conservative; but it does highlight the importance of 

substituting for missing data – rather than ignoring missing data – in maintaining monitoring compliance. 

                                                           
moving averages of annual 98th percentile values. Our calculation yields very similar conclusion when considering 
the forgone health value of 6.6 days per year of annual standard exceedance. 
26 See also statistics from here <https://www.epa.gov/airmarkets/monitoring-insights>. Recent data from 2015-2019 
suggests CEMS capture rate is about 99.4%. We are thankful to Dr. Jeremy Schreifels at the U.S. EPA for pointing us 
to these data. 

https://www.epa.gov/airmarkets/monitoring-insights


26 
 

We conjecture that the type of data imputation methods we described, though imperfect, may act as a trigger 

for regulatory investigation, and may thus serve as reasonable deterrence to strategic shutdowns. 

 

6. Conclusion 
 We investigate the operating patterns of air quality monitors in the U.S. using a framework that we 

create to test for evidence of shutdowns that are strategically timed to avoid periods when forecasts predict 

high levels of pollution. We identify clusters of monitors in at least 14 metropolitan areas whose patterns 

of operation show strong evidence of the use of such strategic timing and, thus, warrant further regulatory 

attention. (We make the list of these monitors available at a public website.) Our findings show that the 

monitors that display such operating patterns are predominantly located in federal nonattainment areas that 

face the likelihood of costly penalties for violations of US Clean Air Act standards.  

Our work suggests that current regulatory practices that ignore gaps in compliance-monitoring data 

collection may incentivize strategic changes in local agencies’ monitoring diligence. We propose two key 

ways to deter such behavior: detection and incentives. The statistical framework we have devised could 

detect monitors that show a pattern of skipping high-pollution days. We also suggest ways to disincentivize 

the use of strategic shutdowns. Regulators could consider revising the current practice of ignoring missing 

data when they determine compliance. For example, inverse distance weighting, a method used successfully 

by the research community, is one possible solution to provide imputed values. Imputation methods are 

imperfect, but their output may act as a trigger for regulatory investigation, and may thus serve as reasonable 

deterrence to strategic shutdowns.  

 We believe that concrete evidence can help level the playing field for environmental regulations, 

improve accuracy of air quality data, and motivate better design of monitoring and enforcement schemes 

in the future to better achieve the wider aims of improved public health from having less-polluted air. More 

broadly, we hope that the new possibilities made possible by large-scale inference tools can extend to other 

research contexts where the detection of a small group of units that evidence distinct patterns (among a sea 

of nulls) is important.  
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Figure 1. Monitor’s Sampling Behavior near Pollution Alerts: Jersey City Firehouse PM2.5 Monitor
Panel A. Event study of monitor’s capture rate
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Notes: Panel A plots JCF monitor’s average capture rate (i.e., one minus a dummy for missing data) as a function of days since pollution
alerts issued by the Jersey City. Number of alerts = 21. Dashed line represents three-day moving average of point estimates. Panel
B plots the distribution of the test statistics derived from 5,000 randomly assigned pollution alerts. Test statistic equals the difference
between mean capture rates across event days [-3,3] and mean capture rates across event days [-30,-10]∪[10,30]. Solid vertical line is the
observed (i.e., true) test statistic. Dashed vertical lines show 95% range of the randomized test statistics.
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Figure 2. Distribution of p-values, All Monitors
Panel A. Overall
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Notes: Panel A shows the distribution of p-values for all monitors. Test statistic equals the difference between mean capture rates across
event days [-3,3] and mean capture rates across event days [-30,-10]∪[10,30]. Panel B shows the breakdown by the sign of the estimated
effect. Hollow bars show p-values for negative estimates (i.e., monitoring capture decreases around pollution alerts), and shaded bars
show p-values for positive estimates (i.e., monitoring capture increases around pollution alerts). Horizontal dashed lines show the uniform
distribution.
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Figure 3. Capture Rate for “Interesting” Monitors (△) and Other Monitors (◯)
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Notes: This graph shows mean monitoring capture rate for “interesting” monitors (those with p−value<0.05) and other monitors. Data
are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving averages of point estimates.
Each panel corresponds to one pollutant. Histograms show the distributions of p−values for the corresponding pollutant monitors.
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Figure 4. Examples of “Very Interesting” Monitors
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Notes: This graph shows monitor’s capture rate for some example “very interesting” monitors (those with p−value<0.05 and compelling
visual pattern). Data are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving
averages of point estimates. Each panel corresponds to one pollutant. “#alerts” is total number of city’s pollution alerts used in the
event study. “q-value” is the False Discovery Rate adjusted significance level (Anderson, 2008).
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Figure 5. Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Left panel: Bakersfield, CA; Fresno, CA; Hanford-Corcoran, CA; Los
Angeles-Long Beach-Anaheim, CA. Right panel: Phoenix-Mesa-Scottsdale, AZ; El Paso, TX.
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Figure 5 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Beaumont-Port Arthur, TX; Houston-The Woodlands-Sugar Land, TX.
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Figure 5 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Left panel: Salt Lake City, UT; Denver-Aurora-Lakewood, CO. Right panel:
Louisville/Jefferson County, KY-IN; Memphis, TN-MS-AR.
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Figure 5 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Left panel: Pittsburgh, PA. Right panel: New York-Newark-Jersey City, NY-NJ-PA.
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Figure 6. Quarterly Capture Rate vs. Annual PM2.5 Design Value

A. “Interesting” monitors
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Notes: This figure reports regression of a monitor’s quarterly capture rate (valid sampling days divided by required sampling days in a
quarter) on 1-ug/m3 bins of annual mean PM2.5 concentration (i.e., design values for the PM2.5 annual standard). The “< 8 ug/m3”
bin is the omitted category. The regression controls for monitor fixed effects and year fixed effects. The regression is run separately for
“interesting” monitors (panel A, number of observations = 300) and other monitors (panel B, number of observations = 7,688).

39



Figure 7. Distributions of Observed and Imputed PM2.5 Concentration

A. Imputation method: inverse distance weighting (IDW)

B. Imputation method: atmospheric modeling (Di et al., 2019)

Notes: Underlying data are monitor-daily level average PM2.5 concentration. “Observed value” is concentration recorded on the monitor-
day. In panel A, “Predicted value” is inverse distance-weighted concentration from all other operative PM2.5 monitors within a 20-mile
radius. In panel B, “Predicted value” is from 1 km × 1 km grid-daily prediction of PM2.5 from atmospheric ensemble-based modeling
(Di et al., 2019) which incorporates satellite observations. “Long-term standard” marks the 15 ug/m3 annual NAAQS standard. “Short-
term standard” marks the 35 ug/m3 24-hr NAAQS standard.
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Table 1. Correlates of “Interesting” Monitors
(1) (2) (3) (4) (5) (6) (7) (8)

Dep. var.: 1(p-value ≤ 0.05) 1(q-value ≤ 0.05)

Non-attainment 0.066** 0.039*
(0.030) (0.021)

Non-attainment × 1(“wrong” sign) -0.014 0.011 -0.001 -0.002 0.012 0.022
(0.033) (0.034) (0.041) (0.024) (0.024) (0.030)

Non-attainment × 1(“correct” sign) 0.203*** 0.220*** 0.223*** 0.111*** 0.124*** 0.129***
(0.055) (0.055) (0.061) (0.039) (0.039) (0.044)

Above median Democrats -0.022 -0.014
(0.027) (0.019)

Above median LCV score -0.023 -0.021
(0.027) (0.019)

Above median government size 0.007 -0.001
(0.017) (0.012)

Above median corruption 0.035* 0.008
(0.018) (0.013)

State fixed effects ✓ ✓

Mean dep. var. 0.117 0.117 0.117 0.117 0.052 0.052 0.052 0.052
Observations 1,359 1,359 1,359 1,359 1,359 1,359 1,359 1,359

Notes: Each column is a separate regression. Underlying data is a cross-section of monitors matched to parenting county’s characteristics.
Dependent variable is an indicator for whether the monitor’s p−value is less than 0.05 (columns 1-4), or an indicator for whether the
monitor’s FDR-adjusted significance q−value is less than 0.05 (columns 5-8) where the family of tests is all 1,359 monitors. “Non-
attainment” is an indicator for whether the county has ever been in NAAQS non-attainment throughout the study period. “1(“correct”
sign)” indicates a negative effect sign, i.e., capture rate drops near pollution alerts. “Above median”’s indicate the county has an
above-median level of share of Democrats affiliation (2006 Gallup Poll), League of Conservation Voters score, share of government-sector
employees (Bureau of Economic Analysis, NAICS=92), and per-capita number of federal convictions among state and local public officials
(Glaeser and Saks, 2006). *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Appendix A. Proof of Propositions

Setup

We consider a setting in which a regulator sets a standard for a regulated entity, and the regulated entity

generates data to document its level of compliance with the regulator’s standard. The regulated entity—the

monitor henceforth—has private information (the local record of compliance) that the regulator desires

(i.e., wants the local monitor to report truthfully). The regulator then penalizes the regulated entity based

upon its lack of compliance to the standard—and potentially for missing observations. Finally, we allow

for the possibility that the monitor incurs a cost for each observation it produces. Consider the following

timeline:

1. Regulator sets standard: The regulator sets a standard for the regulated activity.

2. Monitor observes state: The monitor observes the state of the world. The regulator and the monitor

know that there are N observations in the period. Let nv ∈ (0, N) denote observations that violate

the standard. There are thus nc = N−nv observations that comply with the standard.

3. Monitor generates and reports data: The monitor chooses which observations to record and

reports them to the regulator. The monitor generates data for rv (≤ nv) violating observations

and rc (≤ nc) compliant observations. The monitor reports {rv, rc} to the regulator. Reported

records each cost the monitor c, i.e., in the absence of penalties, the monitor incurs a total cost of

c× (rv + rc).

4. Regulator penalizes monitor: The regulator imposes penalties. The penalty for rv reported viola-

tions is pv(rv). The penalty for N− rv− rc missing observations is pm(N− rv− rc). In many cases,

pv and pm are both likely convex for non-negative rv and rc (i.e., p′′v > 0 and p′′m > 0): some degree

of violations or missingness are tolerated (i.e., p′v(0) and p′m(0) are relatively small), but as the

violations or missingness increase, so does the marginal penalty. Here we assume the two penalties

are additively separable.

Minimizing costs

Backsolving, the monitor chooses rv and rc (assumed continuous) that minimize the sum of its penalties

pv(rv)+ pm(N− rv− rc) and costs c× (rv + rc). Thus, the monitor’s problem is

min
rv,rc

C = pv(rv)+ pm(N− rv− rc)+ c× (rv + rc) s.t. 0≤ rv ≤ nv and 0≤ rc ≤ nc (A)

Flipping equation A to a constrained maximization problem,

max
rv,rc

L =−pv(rv)− pm(N− rv− rc)− c× (rv + rc)+λ1(nv− rv)+λ2(nc− rc)+λ3rv +λ4rc (B)
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First-order conditions

The Karesh-Kuhn-Tucker (KKT) conditions for equation B imply ten first-order conditions:

∂L

∂ rv
=−p′v + p′m− c+λ1 +λ3 = 0 (L1)

∂L

∂ rc
= p′m− c+λ2 +λ4 = 0 (L2)

∂L

∂λ1
= nv− rv ≥ 0 (L3)

∂L

∂λ2
= nc− rc ≥ 0 (L4)

∂L

∂λ3
= rv ≥ 0 (L5)

∂L

∂λ4
= rc ≥ 0 (L6)

∂L

∂λ1
λ1 = (nv− rv)λ1 = 0 (L7)

∂L

∂λ2
λ2 = (nc− rc)λ2 = 0 (L8)

∂L

∂λ3
λ3 = (rv)λ3 = 0 (L9)

∂L

∂λ4
λ4 = (rc)λ4 = 0 (L10)

To consider the the feasible equilibria implied by this model, we examine four general cases:

1. No reporting: rv = 0 and rc = 0

2. No reporting of violations: rc > rv = 0

3. No reporting of compliance: rv > rc = 0

4. Non-zero reporting of violations and compliance: rv > 0 and rc > 0

Note that complete, honest reporting is a special subcase of case 4.

Case 1: No reporting (rv = 0 and rc = 0)

In this scenario, KKT first-order conditions L3–L6, L9, and L10 are automatically satisfied. Because

L3 and L4 are satisfied with inequalities, satisfying L7 and L8 requires λ1 = 0 and λ2 = 0 (respectively).

Thus, L1 becomes

−p′v(0)+ p′m(N)− c+λ3 = 0

=⇒ λ3 = p′v(0)− p′m(N)+ c≥ 0

=⇒ p′v(0)+ c≥ p′m(N)
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Similarly, L2 becomes

pm(N)′− c+λ4 = 0

=⇒ λ4 =−p′m(N)+ c≥ 0

=⇒ c≥ p′m(N)

Therefore, in order for λ4 ≥ 0 and for this case to be feasible, it must be true that c ≥ p′m(N). In

other words, when the marginal costs of monitoring/reporting are greater than the marginal penalty for

missingness when all observations are missing, then the monitor will not report any observations—neither

compliance, nor violations. (The costs or reporting exceed the fines of not reporting—even at extreme

non-reporting.) This case is really only feasible when monitoring costs are very large or when regulators

impose essentially no penalties for missing observations.

Case 2: No reporting of violations (rc > rv = 0)

Here, rv = 0 satisfies L3 with inequality, so λ1 = 0 to satisfy L7. rv = 0 satisfies L5 with equality, so

L9 is also satisfied. rc > rv = 0 satisfies L6 with inequality, so λ4 = 0 to satisfy L10. We now break this

case into two subcases: rc = nc or rc < nc.

Subcase 2a: rc = nc and rv = 0 In this subcase, rc = nc satisfies L4 with equality which also satisfies

L8. Thus, L1 becomes

−p′v(0)+ p′m(nv)− c+λ3 = 0

=⇒ λ3 = p′v(0)− p′m(nv)+ c≥ 0

=⇒ p′v(0)+ c≥ p′m(nv)

Similarly, L2 becomes

pm(nv)
′− c−λ2 = 0

=⇒ λ2 = p′m(nv)− c≥ 0

=⇒ p′m(nv)≥ c

The two inequalities implied by KKT conditions L3 and L4 may apply in some cases but are also

likely to be violated in other situations. The requirement that follows from KKT condition L3—namely

p′v(0)− p′m(nv)+ c ≥ 0—requires that the marginal penalty for violations moving from zero violations

plus the marginal cost of monitoring is greater than the marginal penalty for missingness at nv. Because

many settings involve fairly light penalties for small numbers of violations, p′v(0) may often be quite

small (possibly near zero).

If p′v(0) is indeed negligible, then these two inequalities nearly rule each other out: if the marginal

cost of monitor exceeds the marginal penalty for missingness (at nv), then L1 is satisfied but L2 is
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violated (and vice versa). When p′m(nv) > c (sufficiently steep penalization for missingness near nv—

either aggressive penalties or many violations) and when p′v(0) (sufficiently steep penalization for the

first violations) that this subcase is feasible.

We note that, in the case of AQS monitors, p′v(0) and c are both quite small; p′m(nv) is likely suffi-

ciently large to make this case infeasible.

Subcase 2b: nc > rc > 0 and rv = 0 In this subcase, rc < nc satisfies L4 with inequality, so λ2 = 0 to

satisfy L8. Thus, L2 implies

p′m(N− rc) = c

Therefore, L1 becomes

−p′v(0)+ p′m(N− rc)− c+λ3 = 0

=⇒ λ3 = p′v(0)≥ 0

This subcase—no reporting of violations and imperfect reporting of compliance—is feasible for many

settings.

Subcase 3: No reporting of compliance (rv > rc = 0)

It is straightforward that this subcase would be infeasible: there are more penalties for reporting violations

than compliance. rc = 0 satisfies L4 with inequality, implying λ2 = 0 to satisfy L8. rc = 0 satisfies L6

and L10 with equality. rv > 0 satisfies L5 with inequality, implying λ3 = 0 to satisfy L9. As before, let

us break this case into two subcases: rv = nv and rv < nv.

Case 3a: rv = nv and rc = 0 Here, rv = nv satisfies L3 and L7 with equality. Therefore, L1 becomes

−p′v(nv)+ p′m(nc)− c−λ1 = 0

=⇒ λ1 = p′v(nv)− p′m(nc)+ c≥ 0

=⇒ p′v(nv)+ c≥ p′m(nc)

And L2 becomes

p′m(nc)− c+λ4 = 0

=⇒ λ4 = c− p′m(nc)≥ 0

=⇒ c≥ p′m(nc)

This second requirement, i.e., c ≥ p′m(nc), is likely infeasible in most settings, where compliance

is at least as common as violations. In such settings, one might expect that when half of the planned
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observations are missing, the marginal penalty levied for another missing observation would exceed the

marginal cost of monitoring.

The first inequality (p′v(nv)+ c≥ p′m(nc)) is satisfied when the second is. Further, this case is infeasi-

ble as it is dominated by reporting compliance. Consider the scenario where the monitor would report r∗

violations and 0 compliant observations. Now switch to r∗ compliant violations and 0 violations.(Or as

many compliant observations as possible before nc binds and then fill in with reports of violations.) Both

scenarios generate the same costs and the same penalties for missingness. However, the r∗ violations gen-

erate a violations-based penalty of pv(r∗), while the scenarios with r∗ compliant observations generates

zero penalty. Thus, reporting r∗ compliant observations dominates reporting r∗ violation observations. In

other words: This subcase is infeasible.

Subcase 3b: nv > rv > 0 and rc = 0 Here, rv < nv satisfies L3 with inequality, requiring λ1 = 0 to

satisfy L7. Consequently, L1 becomes

−p′v(rv)+ p′m(N− rv)− c = 0

And, L2 becomes

p′m(N− rv)− c+λ4 = 0

Jointly, these two conditions imply λ4 = −p′v(rv), which is infeasible, as it implies λ4 < 0. Recall

that we assume p′v > 0 (i.e., strictly increasing penalties for violations). This subcase is infeasible.

Case 4: Non-zero reporting of violations and compliance (rv > 0 and rc > 0)

In this case, rv > 0 satisfies L5 with inequality, implying λ3 = 0 to satisfy L9. rc > 0 satisfies L6 with

inequality, implying λ4 = 0 to satisfy L10. We now break this case into four subcases based upon whether

rv < nv or rv = nv and whether rc < nc or rc = nc.

Subcase 4a: rv = nv(> 0) rc = nc(> 0) Here, rv = nv satisfies L3 and L7 with equality. rc = nc satisfies

L4 and L8 with equality. L1 becomes

−p′v(nv)+ p′m(0)− c−λ1 = 0

=⇒ λ1 =−p′v(nv)+ p′m(0)− c≥ 0

=⇒ p′m(0)≥ c+ p′v(nv)
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L2 becomes

p′m(0)− c−λ2 = 0

=⇒ λ2 = p′m(0)− c≥ 0

=⇒ p′m(0)≥ c

The inequality implied by L1, i.e., p′m(0) ≥ c+ p′v(nv), requires that the marginal penalty for miss-

ingness at zero missing observations is larger than the sum of marginal monitoring costs and the marginal

penalty for violations at nv. Thus, for complete, honest reporting to be feasible, the marginal cost of miss-

ing any observations must overwhelm marginal operating costs and penalties from additional violations

when all violations have been reported. Unless nv ≈ 0, the assumed convexity of pm and pv likely rules

out this possibility.

Subcase 4b: nv > rv > 0 and rc = nc > 0 Here, nv > rv > 0 satisfies L3 with inequality, requiring

λ1 = 0 to satisfy L7. rc = nc satisfies L4 and L8 with equality. L1 becomes

−p′v(rv)+ p′m(nv− rv)− c = 0

=⇒ p′m(nv− rv) = p′v(rv)+ c

L2 becomes

p′m(nv− rv)− c−λ2 = 0

=⇒ λ2 = p′m(nv− rv)− c≥ 0

=⇒ p′m(nv− rv)≥ c

These conditions are feasible for most settings.

Subcase 4c: rv = nv > 0 and nc > rc > 0 Here, rv = nv satisfies L3 and L7 with equality. rc < nc

satisfies L4 with inequality, which requires λ2 = 0 to satisfy L8. L1 becomes

−p′v(nv)+ p′m(nc− rc)− c−λ1 = 0

L2 becomes

p′m(nc− rc)− c = 0

Jointly, these two conditions imply λ1 =−p′v(nv)< 0, which is infeasible.

Subcase 4d: nv > rv > 0 and nc > rc > 0 Finally, rv < nv satisfies L3 with inequality, requiring λ1 = 0

to satisfy L7. rc < nc satisfies L4 with inequality, requiring λ2 = 0 to satisfy L8. rv > 0 satisfies L5
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with inequality, requiring λ3 = 0 to satisfy L9. rc > 0 satisfies L6 with inequality, requiring λ4 = 0 to

satisfy L10. L1 becomes

−p′v(rv)+ p′m(N− rv− rc)− c = 0

L2 becomes

p′m(N− rv− rc)− c = 0

Jointly, L1 and L2 imply p′v(rv) = 0, which is not feasible (By assumption: p′′v > 0.)

To summarize, Table A.1 tabulates our conclusions for all the cases above.

Table A.1: Summary of Possible Scenarios

Pct. of observations reported

Case Reporting Violations Compliance Feasibility Constraint(s)

1 rv = rc = 0 0% 0% Unlikely c≥ p′m(N)

2a rv = 0 and rc = nc 0% 100% Feasible
p′v(0)+ c≥ p′m(nv)

p′m(nv)≥ c

2b rv = 0 and nc > rc > 0 0% ∈ (0%, 100%) Feasible p′m(N− rc) = c

3a rv = nv and rc = 0 100% 0% Infeasible c≥ p′m(nc)

3b nv > rv > 0 and rc = 0 ∈ (0%, 100%) 0% Infeasible λ4 =−p′v(rv)< 0

4a rv = nv and rc = nc 100% 100% Unlikely p′m(0)≥ c+ p′v(nv)

4b nv > rv > 0 and rc = nc ∈ (0%, 100%) 100% Feasible p′m(nv− rv)≥ c

4c rv = nv and nc > rc > 0 100% ∈ (0%, 100%) Infeasible λ1 =−p′v(nv)< 0

4d nv > rv > 0 and nc > rc > 0 ∈ (0%, 100%) ∈ (0%, 100%) Infeasible p′v(rv) = 0

48



a

Appendix B. Additional Figures and Tables
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Figure B.1. Monitoring Data Completeness Goals

Notes: Sourced from U.S. EPA. Quality Assurance Handbook for Air Pollution Measurement Systems Volume II Ambient Air Quality
Monitoring Program. Vol. 2. EPA-454/B-13-003 (2013). From Section 6.0, page 66: “The data cells highlighted in Table 6-4 refer
to the standards that apply to the specific pollutant. Even though a highlighted cell lists the completeness requirement, CFR provides
additional detail, in some cases, on how a design value might be calculated with less data than the stated requirement. Therefore, the
information provided in Table 6-4 should be considered the initial completeness goal.”
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Figure B.2. Air Pollution Monitoring Site Example

A. Monitoring site

B. Shelter Design

C. Look Inside a Shelter

Sources: U.S. EPA (panel A), California Resources Board (panel B), and Glenn Gehring (panel C).
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Figure B.3. Distribution of Forecasted AQI on Action Days
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Notes: Distribution of forecasted AQI on days with Action Day advisory.

52



Figure B.4. Distribution of p-values: Robustness
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Figure B.5. Robustness: “Interesting” Monitors (△) and Other Monitors (◯) Separation
with the Sharpened Test Statistic
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Notes: This graph shows mean monitoring capture rate for “interesting” monitors (those with p−value<0.05) and other monitors. The
sharpened test rejects the null if the capture rate around time zero is lower than both the pre-period and the post-period. See Section
4.1 for more details. Data are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving
averages of point estimates. Each panel corresponds to one pollutant. Histograms show the distributions of p−values for the corresponding
pollutant monitors.
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Figure B.6. Study Website: Estimation Results for All Monitors

Notes: We store full estimation results at this website. Shaded areas highlight study regions. Click on each monitor to view estimation
details.
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Figure B.7. Distributions of Daily Observed and Nearby-Monitor-Predicted Concentration, Non-PM2.5 Monitors
A. PM10 monitors, “interesting” (left) and “non-interesting” (right)
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B. O3 monitors, “interesting” (left) and “non-interesting” (right)
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C. NO2 monitors, “interesting” (left) and “non-interesting” (right)
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D. SO2 monitors, “interesting” (left) and “non-interesting” (right)
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E. CO monitors, “interesting” (left) and “non-interesting” (right)
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Notes: Repetition of Figure 7 with other pollutant monitors.
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Table B.1. List of CBSAs, Ranked by Cases of “Interesting” Monitors (△)
CBSA #alerts ◯ △ ☆

Phoenix-Mesa-Scottsdale, AZ 51 86 23 4
Houston-The Woodlands-Sugar Land, TX 199 49 12 0
Denver-Aurora-Lakewood, CO 30 21 6 1
Fresno, CA 83 32 6 4
Salt Lake City, UT 66 21 5 1
Hanford-Corcoran, CA 66 9 5 1
New York-Newark-Jersey City, NY-NJ-PA 30 33 5 1
Memphis, TN-MS-AR 18 13 4 0
El Paso, TX 44 30 4 1
Los Angeles-Long Beach-Anaheim, CA 22 72 4 0
Beaumont-Port Arthur, TX 45 19 4 1
Pittsburgh, PA 64 29 4 1
Louisville/Jefferson County, KY-IN 27 18 4 0
Bakersfield, CA 71 29 4 1
San Luis Obispo-Paso Robles-Arroyo Grande, CA 17 16 3 1
San Jose-Sunnyvale-Santa Clara, CA 18 11 3 1
San Francisco-Oakland-Hayward, CA 32 57 3 0
Cleveland-Elyria, OH 50 15 3 0
Boston-Cambridge-Newton, MA-NH 19 27 3 1
Bridgeport-Stamford-Norwalk, CT 40 10 3 1
Knoxville, TN 50 7 2 0
Dallas-Fort Worth-Arlington, TX 78 11 2 0
Modesto, CA 82 10 2 0
Grand Rapids-Wyoming, MI 10 5 2 0
Madera, CA 45 9 2 1
Visalia-Porterville, CA 91 7 2 0
Detroit-Warren-Dearborn, MI 15 31 2 0
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 24 51 2 0
Riverside-San Bernardino-Ontario, CA 21 77 2 0
New Haven-Milford, CT 35 9 2 2
Austin-Round Rock, TX 28 6 2 0
Raleigh, NC 22 7 2 0
Manchester-Nashua, NH 11 9 2 0
Vernal, UT 14 9 2 0
Sacramento–Roseville–Arden-Arcade, CA 22 50 2 1
Columbus, OH 28 8 2 1
Atlanta-Sandy Springs-Roswell, GA 60 8 2 0
Kingsport-Bristol-Bristol, TN-VA 35 4 1 0
Chicago-Naperville-Elgin, IL-IN-WI 25 29 1 0
Lawton, OK 3 1 1 0
Buffalo-Cheektowaga-Niagara Falls, NY 25 10 1 0
Dayton, OH 37 3 1 0
Birmingham-Hoover, AL 63 14 1 0
San Antonio-New Braunfels, TX 13 13 1 0
Washington-Arlington-Alexandria, DC-VA-MD-WV 3 19 1 0
Springfield, MA 36 7 1 1
Jamestown-Dunkirk-Fredonia, NY 33 2 1 1
Providence-Warwick, RI-MA 9 13 1 0
Dover, DE 14 1 1 0
Yuba City, CA 4 3 1 0
Gulfport-Biloxi-Pascagoula, MS 4 5 1 0
Vallejo-Fairfield, CA 51 11 1 1
Provo-Orem, UT 101 9 1 1
Youngstown-Warren-Boardman, OH-PA 6 4 1 0

Notes: ◯ = number of tested monitors; △ = number of “interesting” monitors; ☆ = number of “very interesting” monitors.
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