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1 Introduction

Economists have long recognized that optimal management of both non-renewable (Hotelling

(1931)) and renewable (Gordon (1954)) natural resources is a dynamic problem. Long-run

policies are required to address the over-exploitation of resources including fish (Costello

et al. (2010)), trees (Balboni et al. (2023)), the global climate (Nordhaus (2019)), and water

(Carleton, Crews, and Nath (2025)). However, an agent’s responses to policies may differ in

the short vs. long run, especially if their choice set includes actions with high upfront costs

and lasting payoffs. This complicates environmental policy analysis, since understanding

the effectiveness and broader consequences of persistent policies requires estimates of agents’

long-run responses.

Groundwater is a textbook common-pool resource that necessitates persistent manage-

ment policies (Ostrom (1990); Provencher and Burt (1993)). Agricultural production con-

sumes 70% of global groundwater withdrawals (UNESCO (2022)), such that absent policy

to stem overextraction, groundwater aquifers are being rapidly depleted in farming regions

across the globe (Jasechko et al. (2024)), threatening high-value crop production. Many

high-value water-intensive crops are perennials that produce multiple years of harvest from

a single upfront planting investment (French and Matthews (1971); Sant’Anna (2024); Hsiao

(Forthcoming)). When these investment dynamics are present, the efficacy of groundwater

management policies hinges on farmers’ long-run responses.

We study California, where farmers produce 18% of total U.S. crop value, most of

which comes from perennials that rely heavily on groundwater for irrigation (Bruno (2017);

Liu et al. (2022)). Despite rapidly declining aquifer levels and a series of severe droughts,

most California farmers currently face no meaningful restrictions on groundwater extraction.

The state is in the process of implementing the Sustainable Groundwater Management Act

(SGMA)—its first comprehensive groundwater regulations, which are designed to achieve

aquifer sustainability by 2042. Given the sweeping nature of SGMA, it has the potential to

significantly alter California’s agricultural sector.

We ask three main research questions. First, what is the elasticity of demand for agri-

cultural groundwater over the short and long run? Second, to what extent do farmers switch

crops in response to higher groundwater costs? Third, how stringent would groundwater
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taxes need to be to achieve California’s SGMA policy goals? Answers to these questions

are essential for understanding the effectiveness of groundwater management policy, but

have proven elusive because (i) groundwater pumping is rarely priced or measured, (ii) there

is a dearth of plausibly exogenous variation in groundwater costs, and (iii) modeling how

forward-looking farmers respond to cost shocks is a complex dynamic problem.

We are the first to answer these questions, overcoming the empirical challenges using

a new measurement strategy, quasi-experimental variation in groundwater costs, and a dy-

namic discrete choice model. First, we leverage the fact that electricity is the main variable

input to groundwater pumping. We assemble data on electricity prices and quantities for

all agricultural consumers served by Pacific Gas & Electric (PG&E). Combining these data

with newly constructed pump-specific production functions enables us to recover groundwa-

ter costs and quantities for farmers across the majority of California’s Central Valley. Second,

we use exogenous variation in PG&E’s regulated electricity tariffs, which change farmers’

groundwater costs differentially across space and over time. Third, to understand farmers’

long-run responses to changing groundwater costs, we use this exogenous variation in elec-

tricity prices to identify a dynamic discrete choice model of farmers’ cropping decisions. We

use the conditional choice probability (CCP) approach (Scott (2013); Kalouptsidi, Scott, and

Souza-Rodrigues (2021b)) in order to estimate model parameters without requiring strong

assumptions on farmer beliefs beyond rational expectations and stationarity.

A static model of short-run farm profits would mischaracterize the decisions of farmers

in California, where 60% of crop revenues come from perennials such as almonds and grapes

(CDFA (2020)). Since these crops have high upfront planting costs and produce multiple

years of harvests, accurately characterizing crop choices in this setting requires modeling

state dependence and forward-looking farmers. We embed these features into a dynamic

discrete choice model of crop choice, in which farmers can reduce water use both by switching

crops and by using less water conditional on crop choice (behavior documented in Boser

et al. (2024)). We identify model parameters using exogenous variation in groundwater

costs driven by changes in regulated electricity prices. This structural approach uses short-

run variation to quantify long-run responses while also facilitating counterfactual policy

simulations.
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We begin by outlining a simple illustrative model to build intuition for how crop choice

and water use respond to a temporary vs. permanent groundwater cost shock. For a tem-

porary cost shock, farmers do not incur the fixed costs of switching to a less water-intensive

crop; instead, they may respond by applying (close to) no water to their existing crops,

sacrificing the current cropping cycle to avoid negative profits. For a permanent cost shock,

farmers incur the fixed crop switching costs, shifting to a new equilibrium of less water

consumption but lower revenue. This shows how it can be both feasible and economically

rational for farmers to exhibit a larger elasticity of groundwater demand in response to a

temporary cost shock than to a permanent cost shock.

We then provide reduced-form evidence that farmers respond to pumping costs. Lever-

aging exogenous year-over-year variation in electricity tariffs in an instrumental variables

approach, we find that farmers reduce groundwater consumption in response to pumping

cost shocks.1 This effect is driven by changing water use conditional on crop choice, rather

than by crop switching—as evidenced by (i) null reduced-form estimates of land use change

and (ii) a quantitatively similar estimate of groundwater response after conditioning on crop

choice. We use this conditional reduced-form estimate to calibrate the short-run intensive-

margin response in our dynamic model. To calibrate its long-run analog, we estimate the

intensive-margin response for farmers who have made the same crop choice in at least six

consecutive periods, thereby isolating responses that are likely to persist over the long run.

Next, we use our dynamic model to measure the effects of short-run pumping cost

shocks on land use changes. To do so, we solve for farmers’ value functions via a fixed-point

algorithm, simulating the model forward until it reaches a steady state, and then inject

an (unanticipated) one-year cost increase into the model. We find that such a short-run

shock would lead to essentially no change in crop choice, with semi-elasticities of −0.0001 for

annuals, −0.0004 for fruit/nut perennials, −0.0007 for hay perennials, and 0.001 for non-crop

(fallowing). Combining these negligible land use changes with the short-run intensive-margin

elasticity yields an overall short-run groundwater elasticity of −0.79.

1. Mieno and Brozovic (2017) point out that prior studies using energy data to estimate groundwater
demand often recover biased estimates, due to significant measurement error or a lack of identifying variation.
Our detailed microdata and quasi-experimental variation help us overcome these challenges, in the tradition
of utility demand estimates that use regulated tariffs for identification (e.g., Olmstead (2009); Ito (2014)).
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We then use our model to compute long-run semi-elasticities of land use change. In

contrast to a short-run price shock, we find that farmers do switch crops in response to

permanent groundwater cost changes, with semi-elasticities of 0.071 for annuals, −0.129 for

fruit/nut perennials, −0.007 for hay perennials, and 0.065 for non-crop. These results reveal

that forward-looking farmers operating state-dependent fields will react very differently to

a short-run cost shock vs. a permanent one. In particular, permanent price changes induce

farmers to switch into less-water-intensive crops, while short-run shocks do not.

Combining these land-use changes with farmers’ intensive-margin adjustments, we find a

long-run groundwater demand elasticity of −0.46. Consistent with our illustrative model, this

long-run elasticity is meaningfully smaller than our short-run elasticity. These results align

with prior evidence that in dynamic settings, long-run elasticities need not be larger than

short-run elasticities (e.g., Hall (1991); Hendel and Nevo (2006); Gowrisankaran and Rysman

(2012); Castillo (2021); Lemoine (2024)). Our results further show how short- and long-

run responses to environmental policy may diverge substantially, as different mechanisms—

yielding different elasticities—are privately optimal over different time horizons.

Finally, we use our structural model to simulate farmers’ long-run responses to counter-

factual groundwater taxes, which can address the open-access externalities associated with

groundwater pumping (Provencher and Burt (1993)) by incentivizing sustainable levels of

groundwater extraction. According to the state’s Groundwater Sustainability Plans (GSPs),

achieving “sustainable yield” under SGMA in overdrafted regions of our sample will require

groundwater pumping reductions of 16.7% on average, with substantial variation across loca-

tions. Our simulations suggest that, on average, a 52.0% tax on groundwater pumping would

be required to achieve this sustainability target. The taxes required to achieve these goals—

which vary meaningfully over space—would reduce fruit/nut perennial acres by 10.0%, not

change hay perennials, increase annual acres by 4.2%, and increase fallowing by 20.7%, com-

pared to their respective acreage in our no-tax scenario. These results imply that non-trivial

groundwater taxes can achieve SGMA’s sustainability goals, and that doing so will induce

meaningful changes to California’s 20 million acres of cropland.

This paper makes three main contributions. First, and most importantly, we use dy-

namic discrete choice methods to generate short- and long-run demand elasticity estimates
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for agricultural groundwater. We find that these elasticities differ markedly in both their

magnitudes and their underlying mechanisms. Our preferred approach captures key dynam-

ics in agricultural land use, in contrast to previous static estimates of groundwater demand

(e.g., Hendricks and Peterson (2012); Bruno and Jessoe (2021a); Pfeiffer and Lin (2014);

Smith et al. (2017)).2 Bruno, Jessoe, and Hanemann (2024) use a reduced-form approach

to study land use and groundwater dynamics over five years, in response to voluntary water

pricing in a single water district in California’s Pajaro Valley. Our results build on this work:

we capture both short- and long-run land use and groundwater responses to groundwater

cost shocks across the majority of California’s farming areas, using a fully dynamic modeling

approach to simulate counterfactual responses to short- and long-run groundwater policy.

Our findings highlight the value of long-run environmental policy analysis. We demon-

strate that if a policymaker assumed the short-run elasticity were persistent, she would

anticipate a long-run response that is 70% too large. Moreover, she would erroneously con-

clude that farmers would achieve groundwater pumping reductions without changing crop-

ping patterns, whereas in reality, a permanent groundwater tax would induce substantial

crop switching. The dynamics of perennial cropping, which are driven by high upfront costs

followed by a multi-year payoff, mirror a wide range of investments, including vehicles (Dahl

(2014)), household appliances (Dubin and McFadden (1984)), pollution control technolo-

gies (Blundell, Gowrisankaran, and Langer (2020)), and cattle herds (Scott et al. (2026)).

While our results come from one key context—scarce water resources in California, which

economists have studied for over a century (Coman (1911))—the lesson that agents may re-

spond differently to short- vs. long-run policies is applicable wherever resource management

requires a long time horizon.

Second, we estimate the short- and long-run impacts of water costs on land use. While

agricultural economists have long studied the effect of output prices on cropping patterns

(e.g., Nerlove (1956); Roberts and Schlenker (2013); Scott (2013)), fewer studies have doc-

2. Scheierling, Loomis, and Young (2006) conduct a meta-analysis of 24 earlier papers estimating agri-
cultural water demand. Most of these studies rely on agronomic models or field crops experiments with
restrictive assumptions on farmers’ response to changing water costs. In contrast, more recent estimates
of agricultural water demand rely on observed farmer responses (e.g., Bruno and Jessoe (2021b)). We also
estimate the long-run elasticity of electricity demand in the agricultural sector, which consumes nearly 8%
of the state’s electricity. This builds on recent work using quasi-experimental variation to estimate long-run
residential electricity demand (Deryugina, MacKay, and Reif (2020); Feehan (2018); Buchsbaum (2023)).
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umented how groundwater costs impact crop choice, which has important implications for

agricultural output markets.3 We build on Hornbeck and Keskin (2014) by demonstrating

that farmers change crops in response to groundwater costs in the long run, but not in the

short run.4 Our work complements recent studies of surface water irrigation (Rafey (2023);

Hagerty (2022); Hagerty (2025)), where regulatory and market institutions are far more

mature. We extend recent studies of localized groundwater regulations (Ayres, Meng, and

Plantinga (2021); Bruno, Jessoe, and Hanemann (2024)) by providing estimates of land use

change under groundwater policy—for the majority of California’s farmland—in both the

short and long run.

Third, we extend the literature on groundwater management by using our structural

model to simulate farmer responses to (counterfactual) groundwater policy, in the context

of California’s landmark SGMA regulation. Natural scientists have uncovered substantial

groundwater depletion in key agricultural regions across the globe (Fan, Li, and Miguez-

Macho (2013); Rodell et al. (2018)). However, large-scale groundwater regulation remains

rare (Carleton, Crews, and Nath (2025)), as the few existing policies are mostly local in

scope.5 In this context, SGMA stands to be one of the world’s most consequential ground-

water regulations. Early work on SGMA has focused on the political economy of (Bruno,

Hagerty, and Wardle (2022)) and anticipatory responses to (Bruno and Hagerty (2025)) the

regulation. We contribute novel estimates of the impact of groundwater pricing, demon-

strating that stringent policies will be required to achieve SGMA’s sustainability goals. This

underscores how SGMA is poised to alter the landscape of some of the most valuable cropland

on earth.

This paper proceeds as follows. Section 2 provides background on groundwater pumping

and energy use in California agriculture. Section 3 outlines our illustrative model. Section 4

describes our data. Section 5 presents our identifying variation and reduced-form estimates.

3. Blakeslee, Fishman, and Srinivasan (2020) and Ryan and Sudarshan (2022) show that groundwater
depletion hurts long-run farm profits in India, but there is far less evidence from high-income countries.

4. Dinar (1994) uses a dynamic theory model to show that rising energy costs are likely to impact crop
choice. Caswell and Zilberman (1986) analyze the theoretical relationship between energy demand and
irrigation technology choice, a separate determinant of irrigation costs.

5. For example, groundwater regulations exist in parts of Kansas (Drysdale and Hendricks (2018)), parts
of Colorado (Smith et al. (2017)), and small regions of California (Bruno, Jessoe, and Hanemann (2024);
Ayres, Meng, and Plantinga (2021)).
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Section 6 outlines our structural model and presents our dynamic estimates and counterfac-

tual simulations. Section 7 concludes.

2 Background and key institutional details

2.1 Agriculture and irrigation in California

California is a major player in global agricultural production. The state produced $32

billion in crop value in 2019, representing 18% of the U.S. total—including 75% of the

total value of U.S. fruits and nuts, and 57% of the total value of U.S. vegetables (USDA

(2021)). California’s 77,000 farms produce over 400 commodities, and they are the exclusive

domestic producers of almonds, artichokes, olives, walnuts, and numerous other high-value

crops (California Department of Food and Agriculture (2011)).

Irrigation is essential for farming in California due to scant summer precipitation. 95%

of the state’s 8.3 million harvested acres are irrigated (Johnson and Cody (2015)), and the

agricultural sector is responsible for 80% of the state’s total water consumption. Many

of California’s crops use large amounts of water. For example, hay, almonds, grapes, and

rice—four of California’s top crops by acreage—all require at least 3 acre-feet per acre per

year, with rice using 5 acre-feet per acre per year (Bruno (2019)). To water these thirsty

crops, farmers rely on two water sources with vastly different governance structures (Sawyers

(2007)): in an average year, 61% of irrigation comes from surface water, while 39% comes

from groundwater (California Department of Water Resources (2015)).

Surface water Surface water in California is strictly regulated. Almost all farms with

access to surface water obtain it via water districts. Most water districts function as cooper-

atives that divert water from rivers and canals for distribution to farmers in their geographic

territory.6 Individual farmers typically receive water allocations proportional to their acreage

within the district (Schlenker, Hanemann, and Fisher (2007)); these allocations fluctuate

yearly depending on scarcity (e.g., the amount of snowpack). Importantly, farmers pay a

6. Districts were established between 1860 and 1950, and their boundaries have remained essentially fixed.
Though some farms have individual water entitlements, the vast majority of surface water allocations come
from districts. Hagerty (2022) provides a detailed description of surface water rights in California.
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lower marginal cost for district water allocations than for self-pumped groundwater (Hagerty

(2022)). Most farmers are therefore unlikely to incur groundwater pumping costs without

also exhausting their annual allocation of cheaper district water; consistent with this, when

surface water availability declines, farmers turn to groundwater (Ferguson (2025)).

Farmers also have a limited ability to purchase surface water on the open market.

However, such transactions constitute only a very small share of total water deliveries, at

prices much higher than marginal groundwater pumping costs (Hagerty (2025)).7 Purchased

water is therefore unlikely to be a viable substitute for agricultural groundwater.

Groundwater Groundwater supplies 30–40% of all water end uses in California in a nor-

mal year, and close to 60% in drought years when surface water is scarce (California Depart-

ment of Water Resources (2014)). Unlike surface water, agricultural groundwater rights in

California tend to be far more vague. The typical groundwater right is “overlying,” meaning

that a landowner whose property sits above an aquifer has the right to extract the underlying

groundwater. Overlying rightsholders face few restrictions to drilling new groundwater wells,

which cost $75,000 on average and typically reach 300–500 feet (Hadachek et al. (2026)).8

Historically, the vast majority of groundwater use has been unmetered, with users facing no

variable prices beyond the costs of pump operation (Bruno and Jessoe (2021a)). This has

enabled farmers to extract vast amounts of groundwater to irrigate their overlying cropland.

Nearly all groundwater pumps in California run on electricity, the sole variable input to

groundwater production.9 This makes groundwater pumping the dominant electricity end

use in the agricultural sector, which accounts for nearly 8% of the state’s electricity consump-

tion (California Energy Commission (2005)). Our empirical strategy leverages exogenous

variation in electricity prices to instrument for groundwater pumping costs. While previous

studies have used variation in energy costs to estimate the price elasticity of groundwater

7. In our sample, the 99th percentile of marginal groundwater pumping costs is $137 per acre-foot. By
contrast, Hagerty (2025) reports an average transaction price of $221 per acre-foot on the open market.

8. New wells must be reported to the Department of Water Resources, and construction usually lasts less
than one week (Central Valley Flood Protection Board (2020)). In some cases, users who do not own land
above an aquifer hold “appropriative” groundwater rights based on the prior appropriation doctrine (i.e.,
“first in time, first in right”, by seniority of historic extraction). Appropriative groundwater rights are legally
subordinate to overlying groundwater rights, and users may only exercise them in the event of a surplus.

9. Per the 2018 Census of Agriculture’s Irrigation and Water Management Survey, California farms operate
94,698 pumps. 84,856 are powered by electricity, and only 8,043 are powered by diesel (USDA (2018)).
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Figure 1: Groundwater depletion and perennial crops

Notes: Panel A plots California’s groundwater sub-basins, shading based on the average annualized change in depth during our
2008–2019 sample period. A 10% change in depth corresponds to a 10% increase in groundwater pumping costs, holding all else
constant. This map averages depth measurements across each sub-basin from April–June of each year, to remove seasonality.
Panel B plots the extent of fruit and nut perennial cropping from 2019, shading parcels for which “fruit/nut perennial” was the
modal crop category. We also plot PG&E’s service territory in gray, which encompasses most of this perennial acreage.

demand (e.g., Badiani and Jessoe (2019)), our instrumental variables approach overcomes

several inherent challenges highlighted by Mieno and Brozovic (2017)—including measure-

ment error and lack of micro-level identifying variation.

2.2 Groundwater depletion and management policy

Due to California’s longstanding open-access groundwater regime, many of the state’s ground-

water basins are “overdrafted”—meaning that withdrawals exceed the pace of replenishment,

often by millions of acre-feet each year. The Central Valley has seen substantial groundwater

losses, where the “critically overdrafted” Tulare and San Joaquin basins lost a combined 120

million acre-feet of groundwater from 1925–2008 (Konikow (2013)). California’s groundwa-

ter depletion has been accelerating: while the average depletion rate from 1961–2021 was

approximately 1.5 million acre-feet per year, a series of severe droughts increased this rate

to 7 million acre-feet per year from 2019–2021 (Liu et al. (2022)). Panel A of Figure 1

9



shows that much of the Central Valley faced 10% average annual increases in groundwater

depths (i.e., reductions in aquifer levels) during our 2008–19 study period, with greater losses

in the southern half of the Valley. Panel B illustrates that these same areas are home to

concentrated production of (high-value, water-intensive) fruit and nut perennial crops.

A severe drought beginning in 2011 raised serious concerns about the future sustainabil-

ity of California’s groundwater resources. In September 2014, state lawmakers responded by

passing the Sustainable Groundwater Management Act (SGMA). This sweeping legislation

represented the first statewide effort to regulate groundwater extraction across all agricul-

tural areas in the state, which are responsible for 90% of groundwater pumping (Bruno,

Hagerty, and Wardle (2022)). SGMA comprises three separate bills. AB 1739 empow-

ers California’s Department of Water Resources (DWR) or local groundwater sustainability

agencies (GSAs) to charge fees for groundwater extraction, and it requires GSAs to prepare

groundwater sustainability plans (GSPs). SB 1319 authorizes GSAs to implement these

GSPs. SB 1168 mandates that groundwater end uses be both reasonable and beneficial, and

it enables GSAs and the DWR to require groundwater monitoring.

SGMA represents the future of groundwater management in California, with the goal of

long-run sustainability—with each basin operating within its sustainable yield and avoiding

“undesirable results.”10 Critically overdrafted (other medium- and high-priority) basins were

required to submit GSPs by 2020 (2022) and are required to achieve sustainability by 2040

(2042). Importantly, all SGMA implementation has occurred after our 2008–2019 analysis

period. Bruno and Hagerty (2025) argue that there has not been anticipatory action to

reduce groundwater use in response to SGMA’s passage.

Using data from the universe of GSPs, we calculate an average required reduction in

pumping of 16.7% among regions in our sample currently experiencing overdraft. GSAs

have a variety of tools at their disposal for reducing groundwater pumping, including price

instruments (such as taxes or fees), quantity instruments (including both tradable and non-

tradable allocations), ad-hoc pumping restrictions, and other conservation incentives (Bruno,

10. Undesirable results include “chronic lowering of groundwater levels,” “significant and unreasonable re-
duction of groundwater storage,” “significant and unreasonable seawater intrusion,” significant and unreason-
able degraded water quality,” “significant and unreasonable land subsidence,” or “depletions of interconnected
surface water” (California Department of Water Resources (2017)).
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Hagerty, and Wardle (2022)). Researchers predict these policy instruments will induce a

variety of behavioral changes, including reducing irrigation intensity, shifting towards less

water-intensive crops, and/or land fallowing (Bruno (2019)).

3 Illustrative model

This section outlines a simple illustrative model to build intuition for how farmers respond

to a temporary (i.e., short-run) or permanent (i.e., long-run) shock to the marginal cost of

groundwater. We assume that a farmer maximizes profit by choosing which crop to produce

and deciding how much water to apply to that chosen crop. Farmers incur three types of

costs: a linear marginal cost of water, fixed costs of switching crops, and other input costs

that are crop specific (e.g., labor for harvest). Revenues are crop-specific, increasing, and

concave with respect to water, consistent with a large literature in agricultural economics

(e.g., Caswell and Zilberman (1986)). For simplicity, we assume two crop types: Crop 1 has

high value and high water needs (e.g., almonds), while Crop 2 has low value and low water

needs (e.g., corn). Panel A of Figure 2 depicts revenues as a function of water input, with

Crop 1 in dark blue and Crop 2 in light blue. R1 represents the revenue threshold below

which it is not profitable to produce Crop 1 because of substantial non-water input costs.11

Panel B of Figure 2 plots the corresponding marginal revenue curves and marginal

revenue threshold MR1. Conditional on crop choice, a farmer will apply the quantity of

water that equates marginal cost and marginal revenue, as long as the resulting profit is

not negative. If equating marginal cost and marginal revenue would yield negative profit

(i.e., producing above MR1 when growing Crop 1), the farmer will instead cease production,

thereby avoiding water costs and other input costs. (In reality, the origin might not imply

literally zero water input, as farmers maintain their land for the next growing season.) We

assume two types of farmers: Farmer L faces a low marginal cost of waterMCL, while Farmer

H faces a high marginal cost of water MCH . In the status quo, it is profit-maximizing for

both farmers to choose the high-value, water-intensive Crop 1, but at different levels of

11. To parameterize this figure, we draw on real input cost and revenue information for almonds and corn
in California’s Northern San Joaquin Valley (Davis Cost Studies (2014–24)). Almonds have large costs of
non-water inputs, implying a high R1. We do not plot a similar revenue threshold for Crop 2 for legibility.
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Figure 2: Illustrative model of crop choice and water use

Notes: This figure presents our illustrative model of crop choice and water use. Panel A plots crop revenue against water use.
Panel B plots marginal revenue against water use. Both plots depict two crops: the high-revenue, high-water-intensity Crop 1
(dark blue; parameterized to approximate the production function for almonds), and the low-revenue, low-water-intensity Crop
2 (light blue; parameterized to approximate the production function for corn). R1 denotes the revenue threshold below which
it becomes unprofitable to grow Crop 1 due to high non-water input costs; MR1 and W 1 denote the corresponding marginal
revenue threshold and water use level, respectively. In the status quo, Farmers L and H produce Crop 1 at points A and B,
respectively. A temporary (or permanent) shock to the marginal cost of water induces farmers to shift their production as
described in the text.

production and water use: Farmer L chooses to produce at point A, while Farmer H chooses

to produce at point B.

We now consider a temporary increase to the marginal cost of water, where MCL and

MCH rise to MC ′
L and MC ′

H for the current growing season only (which is known to the

farmer ex ante). For Farmer L, it is still profit-maximizing to produce Crop 1, but with a

lower level of output at point A′. However, Farmer H can no longer profitably produce Crop

1, because MC ′
H > MR1, and producing at point B̃′ would yield negative profit. Farmer H

has two options: remain in Crop 1 and cease production, earning zero profit at point B′; or
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incur the fixed costs of switching to Crop 2 and produce at point C ′, necessitating additional

fixed costs of switching back to Crop 1 in the future. For sufficiently large switching costs,

switching to Crop 2 is not long-run profit-maximizing when marginal water cost reverts

back to MCH in the next growing season. Hence, Farmer H responds to this temporary

cost shock by remaining in Crop 1 and earning zero profit at point B′ for one year.12 This

pattern produces a sizable reduction in water use from point B to point B′, generating a

large short-run elasticity of water demand.

Next, we consider a permanent marginal cost increase of the same magnitude. As

above, Farmer L remains in Crop 1 and produces at point A′. Farmer H also faces the

same two options: cease production of Crop 1 or switch to Crop 2. In this case, however,

Farmer H chooses to switch to Crop 2, now the profit-maximizing crop choice in current and

future years. After incurring switching costs only once, Farmer H will realize the benefit of

switching crops—the profit from producing Crop 2 at point C ′—in all future years. Hence,

Farmer H responds to this permanent cost shock by switching to Crop 2 and producing at

point C ′. This pattern generates a smaller reduction in water use from point B to point C ′,

amounting to a smaller long-run elasticity of water demand.

This simple model illustrates two key points. First, it is feasible and economically

rational for farmers to have a larger elasticity of water demand in response to a temporary

cost shock than to a permanent cost shock: the average short-run elasticity includes A to

A′ and B to B′, while the average long-run elasticity includes A to A′ and B to C ′. Second,

conditional on remaining in a given crop, farmers’ average elasticity of water demand is

smaller in the long run than in the short run: whereas the average short-run within-crop

response includes both A to A′ and B to B′, the average long-run within-crop response only

includes A to A′ (because Farmer H has switched crops).

4 Data

This section provides an overview of our data. For additional details, see Appendix C.

12. Shifts from A to A′ and from B to B′ would effectively concentrate irrigation and production of Crop
1 onto the most profitable land, aligning with Manning, Goemans, and Maas (2017). Marcheva (2025)
documents that ceasing production (“idling”, “crop abandonment”) is common in this setting.
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4.1 Electricity quantities and prices

We use confidential customer-level microdata from all of PG&E’s agricultural service points

(i.e., electricity meter locations). For each service point, we observe monthly billing data from

2008–2019. These data report each service point’s latitude and longitude, electricity tariff,

monthly bill amount (in dollars), and monthly electricity consumption Qelec (in kilowatt-

hours, or kWh).13

PG&E publishes its agricultural tariff schedules, which are the outcome of statewide

regulatory proceedings. The California Public Utilities Commission sets rates based on the

expected variable cost of electricity and the recovery of reasonable non-marginal costs (e.g.,

transmission investments). Tariffs are fixed 1–3 years in advance of their implementation,

and do not respond to contemporaneous conditions (e.g., drought). Tariffs are geographically

uniform, and individual farmers cannot plausibly influence how they are determined. Each

tariff comprises a combination of fixed charges ($ per bill and $ per kW of maximum energy

draw) and volumetric charges ($ per kWh). These volumetric charges are linear, meaning

that a farmer’s marginal price is not endogenous to her own electricity consumption—unlike

the nonlinear increasing block rates studied by Olmstead (2009) and Ito (2014). By matching

historic tariff schedules to our monthly billing data, we construct our main electricity price

variable, P elec, as the average marginal (i.e., volumetric) electricity price faced by each

customer over all hours in each billing period.

Importantly, PG&E restricts a farmer’s tariff eligibility based on two dimensions of

physical capital: (i) pump size (smaller vs. larger than 35 horsepower), and (ii) electricity

meter type (conventional analog vs. digital smart meters). This creates four mutually exclu-

sive tariff categories: small-conventional, large-conventional, small-smart, and large-smart.

Farmers cannot select across categories absent a major capital equipment change or interven-

tion from PG&E. Small-conventional and large-conventional pumps are eligible for one tariff

each. Small-smart and large-smart pumps are eligible for eight and twelve tariffs, respec-

tively, each with different time-varying volumetric prices. A farmer can select a tariff only

from her category-specific menu. To account for this within-menu selection, we define the

13. We drop the 9% of PG&E agricultural customers that ever have solar panels from our analysis, since
their billed electricity use is net of (unobserved) solar production (i.e., we do not observe their actual
electricity consumption).
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instrumental variable P elecDefault as the average default marginal (i.e., volumetric) electricity

price in each customer’s tariff category in each billing period.14 This instrument exploits the

tariff category restrictions for identification, as we discuss in Section 5.1 below.

4.2 Groundwater quantities and costs

To construct groundwater quantities and marginal pumping costs, we leverage a unique

PG&E dataset of agricultural groundwater pump audits conducted as part of an ongoing

energy efficiency program.15 We observe operating pump efficiencies from over 30,000 pump

tests from 2011–2019, along with other detailed measurements and technical specifications.

We match pump tests to service points in our billing data using electricity meter identifiers,

isolating a subset of 10,146 service points with confirmed agricultural groundwater pumps.16

Physics governs the kWh of electricity input required to produce 1 acre-foot (AF) of

groundwater (Hurr and Litke (1989)):

kWh
AF

=
[Lift (feet)]× 1.0241

Operating pump efficiency (%)
(1)

PG&E’s audit data report the operating efficiency of each pump. To parameterize lift—the

vertical distance from the groundwater source to the surface—we combine PG&E’s measure-

ments with publicly available data on groundwater depths from California’s Department of

Water Resources. These depth measurements vary across space and time, allowing us to con-

struct pump-by-month specific kWh
AF that accounts for contemporaneous groundwater depths

at each pump’s location.17 Then, we define groundwater consumption Qwater = Qelec ÷ kWh
AF

14. For the small-conventional and large-conventional categories, P elecDefault = P elec. For the small-smart
and large-smart categories, we assign P elecDefault as P elec of the least-time-varying tariff in each category.
Using each category’s modal tariff yields similar results (see Appendix Table B8). We omit a fifth category
reserved for the 1.7% of farmers transitioning from internal combustion to electric power, since they are likely
not comparable to the rest of our sample, and we do not observe them before they consumed electricity.

15. PG&E heavily subsidizes these pump audits, such that farmers bear (close to) zero cost. Contractors
are incentivized to test as many pumps as possible, yielding a non-random subset of audited pumps.

16. PG&E typically installs a dedicated meter for each groundwater pump. Nearly all pump tests match to
an agricultural service point. Focusing our analysis on this matched subset of confirmed pumps ensures that
we are measuring energy used for pumping, avoiding other agricultural electricity end uses (e.g., refrigeration,
barn lighting, or heating greenhouses). We drop service points for which a matched pump test reports a
non-well water source (e.g., canal), ensuring that our sample comprises confirmed groundwater pumps.

17. We rasterize thousands of depth measurements for each sample month. Calculating lift also requires
pump-specific measures of drawdown (i.e., how much a pump’s extraction impacts its own depth), which
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(in AF) and marginal groundwater pumping costs Pwater = P elec × kWh
AF (in $/AF) for each

pump in each month.

Constructing Qwater and Pwater introduces multiple sources of measurement error: infre-

quent pump tests, spatial and temporal interpolation of depth measurements, and imprecise

modeling of how pumps impact their own depth. Our instrumental variable P elecDefault ad-

dresses this measurement error because electricity tariffs are uncorrelated with the parame-

terization of Equation (1). Section 5.1 describes our instrumental variables approach.

We restrict our analysis to confirmed pumps (i.e., electricity service points with matched

groundwater pump tests) for two reasons. First, we require pump audit data to convert from

electricity to groundwater. Second, this prevents us from mistakenly incorporating other

agricultural electricity uses not directly related to groundwater.18

4.3 Land use data

We use county assessor tax parcels as farm boundaries, as in Bruno, Jessoe, and Hanemann

(2024). We spatially merge PG&E service points to parcel polygons, linking each ground-

water pump to the fields that it most likely irrigates. We aggregate by summing quantities

(Qwater, Qelec) and averaging prices (Pwater, P elec, P elecDefault) across all pumps in each parcel

and all months of each year, defining our unit of analysis as the parcel (i.e., farm) by year.

We also match parcel polygons to the USDA’s Cropland Data Layer (CDL), which

reports annual satellite-derived crop coverage for each 30m2 pixel in California. We classify

CDL-reported land types into five mutually-exclusive and exhaustive categories: annuals,

fruit/nut perennials, hay perennials, non-crop (i.e., fallow cropland), and not croppable.19

We also link parcels to groundwater sub-basins (to enable controls for common shocks to

groundwater depth) and to water districts (to enable controls for surface water allocations).

depends on rate of flow and subsurface characteristics. We parameterize drawdown using the value reported
in each pump test. Appendix C.3 provides further details on how we apply and parameterize Equation (1).

18. This sample restriction is conservative, since it removes any groundwater pumps that did not receive
PG&E pump audits. However, we recover similar reduced-form estimates if we expand the sample to include
all PG&E agricultural customers (see Table 2, Columns (2)–(3)). We can also rule out cone-of-depression
spillover effects from unobserved pumps that we omit from our sample (see Appendix Table B7).

19. Our analysis removes all not-croppable acreage (e.g., development, forests), adjusting the denominator
of each parcel to include only cropland. Due to measurement error in the CDL (as discussed in Hagerty
(2022)) and to ease computational burden, we use crop categories rather than individual crop classifications.
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Table 1: Summary statistics

Confirmed pumps Other agricultural users

A. Service point-level statistics

Unique service points (SPs) 10,146 83,721

Months observed (2008–2019) 102.7 101.9
(42.0) (43.2)

Average electricity use (kWh/month) 10,133 4,519
(13,789) (27,204)

Average marginal electricity price ($/kWh) 0.13 0.16
(0.03) (0.04)

Average electricity bill ($/month) 1,825.78 781.12
(2,006.48) (3,181.37)

Average groundwater use (AF/month) 33.26
(42.52)

Average marginal groundwater cost ($/AF) 47.69
(25.91)

B. Parcel-level statistics (acreage-weighted)

Unique parcels 7,127 41,732

Count of SPs per parcel 1.92 2.00
(1.71) (1.56)

“Croppable” area of parcel (acres) 129.96 72.11
(161.82) (123.80)

Average share of annual crops 0.218 0.235
(0.272) (0.313)

Average share of fruit/nut perennial crops 0.449 0.304
(0.397) (0.375)

Average share of hay perennial crops 0.245 0.366
(0.275) (0.376)

Average share of non-crop (fallow) 0.089 0.095
(0.139) (0.163)

Average groundwater use (AF/acre per year) 4.201
(5.127)

Parcel within surface water district (1/0) 0.600 0.609
(0.490) (0.488)

Notes: We report means and standard deviations (in parentheses) across unit-specific averages. Panel A uses monthly billing
data for all PG&E agricultural electricity service points (i.e. the physical locations of electricity meters). The vast majority of
our analysis focuses on the SPs in the left column, for which we observe PG&E pump audits, thereby (i) confirming that the SP
operates a vertical groundwater pump, and (ii) letting us populate Equation (1) to convert from kWh to AF. The right column
includes all remaining agricultural SPs, for which we cannot calculate AF/month or $/AF: we cannot distinguish groundwater
pumps from other agricultural electricity end uses (e.g. refrigeration), let alone parameterize pump-specific production functions.
Panel B aggregates up to the parcel level, our main unit of analysis. The left column includes our core sample for reduced-form
and structural estimation: agricultural parcels that contain SPs in the left column of Panel A. The right column includes the
additional parcels that contain SPs in the right column of Panel A (but not in the left column). For consistency with our
reduced-form and structural analyses, Panel B: weights parcels by (time-invariant) croppable acreage; uses croppable (rather
than total) acreage to denominate crop shares; omits parcels with less than 1 or greater than 5,000 croppable acres; and omits
parcels with annual electricity bills exceeding $3,000 per croppable acre.
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4.4 Summary statistics

Panel A of Table 1 compares our preferred sample, including only confirmed pumps, to

all other PG&E agricultural service points. While these two groups face similar marginal

electricity prices ($0.13/kWh vs. $0.16/kWh), confirmed pumps have much greater energy

consumption (10,133 vs. 4,519 kWh/month). This is unsurprising, as groundwater pumping

is far more energy-intensive than other farm end-uses. To the extent that our matching pro-

cess filters out (unconfirmed) groundwater pumps that never received PG&E pump tests, our

preferred sample is skewed towards larger pumps that are most important for groundwater

management policy. The average confirmed pump produces 33.26 AF of groundwater per

month at a marginal cost of $47.69/AF.

Panel B aggregates from the service point-month to the parcel-year, our unit of analysis.

This yields a preferred sample (left column) of 7,127 parcels containing confirmed pumps.

The average in-sample parcel has 331 croppable acres, with 22%, 45%, 25%, and 9% of acres

in annuals, fruit/nut perennials, hay perennials, and non-crop, respectively. Compared to

parcels in the right column containing other agricultural users (i.e., parcels where electricity

is not necessarily used for irrigation), our sample is selected towards larger parcels with more

fruit/nut perennials and less hay perennials. Across all four categories, in-sample parcels use

an average of 4.2 AF of groundwater per acre per year. This average aligns with irrigation

budgets in agronomic studies.20

5 Reduced-form estimation and results

In this section, we use a panel fixed effects approach to measure farmer responses to ground-

water pumping costs on an annual time scale. We present two sets of reduced-form results:

the effects of year-over-year cost shocks on groundwater and electricity consumption, and

the impacts of these same cost shocks on crop choice.

This section serves four purposes. First, we introduce our variation in default elec-

tricity price—which also underpins our dynamic discrete choice model—and argue that it

20. For example, almond orchards in California’s San Joaquin Valley are estimated to require 3–5 AF
per acre per year (https://coststudies.ucdavis.edu/current/commodities/almonds). We cannot calculate a
comparable statistic for parcels containing (unconfirmed) pump(s) that PG&E did not test.
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is plausibly exogenous. Second, we show a proof-of-concept that farmers indeed respond to

changes in groundwater costs by altering their pumping behavior. Third, we demonstrate

that year-over-year groundwater cost shocks do not induce crop switching, suggesting that

quantifying cropping responses to persistent cost shocks requires a dynamic model. Fourth,

we generate two key inputs into our structural model: the short- and long-run “intensive-

margin” elasticities of groundwater demand with respect to groundwater cost conditional on

crop choice.

5.1 Groundwater responses to cost shocks

We estimate the effect of cost shocks on groundwater use via the following two-stage least

squares specification:

log (Qwater
it ) = γ ̂log (Pwater

it ) + ψi + δt + ϵit (2)

log (Pwater
it ) = θ log (P elecDefault

it ) + ψi + δt + νit (3)

The outcome variable is the natural logarithm of groundwater extracted at parcel i in year t

(Qwater
it ). The explanatory variable is the natural logarithm of the marginal cost of ground-

water (Pwater
it ). ψi and δt are a set of cross-sectional and time fixed effects, which we describe

below. ϵit and νit are idiosyncratic errors, which we two-way cluster by parcel and county-

by-year. We weight these regressions by each parcel’s croppable acreage (excluding forests,

development, etc.), making our estimates representative per acre of cropland.21

We instrument for groundwater costs using default marginal electricity prices (P elecDefault
it ).

This leverages plausibly exogenous variation in PG&E’s tariff schedules, which are predeter-

mined, are geographically uniform, and assign farms to restrictive tariff categories based on

pump size and meter type (as we discuss in Section 4.1). This instrument eliminates multiple

sources of potential bias in γ̂. First, it eliminates selection bias driven by farmers’ within-

category tariff choices (e.g., choosing the most advantageous tariff within a given category).

Second, by predicting Pwater
it using only electricity price variation, it removes simultaneity

bias that arises when a pump’s own extraction (Qwater
it ) locally displaces groundwater, thereby

21. Appendix Table B9 shows that our estimates attenuate slightly (though retain statistical significance)
when we omit these weights, suggesting that larger parcels tend to be more groundwater-cost-responsive.
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Figure 3: Marginal electricity prices for four default tariffs
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Notes: This figure plots time series of annual average marginal electricity prices ($/kWh) for PG&E’s four default agricultural
tariffs. Panel A plots raw average marginal prices for each year in our estimation sample, taking unweighted averages across all
hours (marginal prices are higher in summer months and on weekdays). Panel B plots residuals of these four time series after
partialing out tariff and year fixed effects (aligning with the fixed effects we use when estimating Equations (2)–(3)). The four
tariff categories are defined by customers’ physical capital: small (< 35 hp) vs. large (≥ 35 hp) pumps, and conventional vs.
smart meters. Our identifying variation comes from differential price changes across default tariffs, as well as PG&E’s smart
meter rollout—which exogenously shifted many customers from conventional to smart categories, lowering their marginal price.

increasing Pwater
it local to parcel i. Third, it purges other potential endogenous variation in

Pwater
it (e.g., drought, which increases both groundwater depths and irrigation demand; dif-

ferences in groundwater depth that may covary with productivity). Fourth, it eliminates

attenuation bias in γ̂ from measurement error in kWh
AF it

, which we use to construct Pwater
it .

Finally, it eliminates the mechanical correlation between Qwater
it and Pwater

it , which are both

constructed using kWh
AF it

: since P elecDefault
it is uncorrelated with kWh

AF it
(conditional on fixed

effects), using the fitted values in Equation (2) isolates kWh
AF it

on the left-hand-side.

We identify γ off of differential changes in default electricity prices across tariff cate-

gories over time. Panel A of Figure 3 plots raw time series of P elecDefault
it during our sample

period. Panel B plots these same time series partialing out tariff and year fixed effects

(yielding the same residual variation in P elecDefault
it as the fixed effects in Equations (2)–(3)),

illustrating the identifying variation used in both our reduced-form and structural estimation.

We include a series of fixed effects to address remaining potential confounders. Given

our instrument, the main selection concern stems from farmers choosing a tariff category.

Since PG&E controls farmers’ electricity meter type, the only way farmers can influence their

category is through their choice of pumping capital. We use parcel fixed effects to eliminate

bias from such tariff category selection (e.g., parcel A has a larger pump than parcel B, and
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thus uses more electricity at a lower marginal price), and to control for other time-invariant

differences across parcels. Reassuringly, we observe no bunching at PG&E’s 35-horsepower

cutoff, suggesting that farmers do not strategically size their pumps around PG&E’s small

vs. large tariff categories.22

A related concern is tariff category switches caused by changes in pump size. While only

4% of service points switch between PG&E’s small- vs. large-pump tariff categories during

our sample, such switches could be endogenous: increasing pump capacity from below to

above 35 horsepower both lowers P elecDefault
it (see Panel A of Figure 3) and raises Qwater

it

(since larger pumps produce more groundwater). To address this, we interact parcel fixed

effects with a (potentially time-varying) indicator for having a large pump.

In addition, year fixed effects absorb time-varying conditions that are common across

all parcels (e.g., crop prices). We also include groundwater-basin-by-year and water-district-

by-year fixed effects, which absorb shocks common to relatively small geographic areas,

including surface water availability, basin-wide groundwater depths, and productivity.

Table 2 presents our results from estimating Equations (2)–(3). A 1% increase in

groundwater costs leads farmers to reduce groundwater use by 0.938% (Column (1); p <

0.01), demonstrating that farmers do change pumping behavior in response to groundwater

cost shocks. We also estimate the analogous model for electricity (replacing Qwater
it and Pwater

it

with Qelec
it and P elec

it ), which yields a nearly identical 0.899% reduction in electricity usage

due to a 1% electricity cost shock (Column (2); p < 0.01). When we include all parcels

with agricultural users (i.e., both columns of Panel B of Table 1, rather than just the left

column), we find a similar 0.734% reduction due to a 1% electricity cost shock (Column

(3); p < 0.01). Even though our sample of confirmed pumps differs from other agricultural

users, comparing Columns (2) vs. (3) reveals that this selection does not create a meaningful

difference in how farmers respond to cost shocks.

While our instrument and fixed effects eliminate major threats to identification, we also

address a series of remaining possible concerns.
22. See Appendix Figure C2. Appendix Table B4 shows that our results are similar if we interact month-

of-sample fixed effects with deciles of horsepower.
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Table 2: Groundwater use responds to annual variation in pumping costs

(1) (2) (3)
log(Qwater) log(Qelec) log(Qelec)

log (Pwater ($/AF)) −0.938∗∗∗

(0.220)

log (P elec ($/kWh)) −0.899∗∗∗ −0.734∗∗∗

(0.224) (0.092)

Include all parcels with agricultural SPs Yes

Parcel units 7,104 7,104 46,563
County-years 367 367 506
Parcel-year observations 60,490 60,490 391,707

First-stage estimates

log (P elecDefault ($/kWh)) 1.418∗∗∗ 1.284∗∗∗ 1.180∗∗∗

(0.043) (0.024) (0.013)

Kleibergen-Paap F -statistic 1094 1494 8575

OLS estimates

log (Pwater ($/AF)) −0.819∗∗∗

(0.094)

log (P elec ($/kWh)) −0.735∗∗∗ −0.831∗∗∗

(0.133) (0.079)

Notes: Column (1) estimates Equations (2)–(3) at the parcel-year level using two-stage least squares. The outcome variable
is the natural logarithm of groundwater consumption; we instrument for pumping costs with default electricity prices. This
recovers an estimate of the cost elasticity of groundwater demand. Column (2) uses the quantity and price of electricity (which
we observe directly), rather than the quantity and price of groundwater (which we construct). Columns (1)–(2) use the sample
of parcels containing confirmed pumps (i.e., Table 1, Panel B, left column). Column (3) is analogous to Column (2), expanding
the sample to include all parcels containing PG&E agricultural customers (i.e., Table 1, Panel B, both columns). Regressions
include the following fixed effects: parcel, parcel × 1[large pump] (to capture tariff category switches), year, groundwater basin
× year (to capture trends in depth), and water district × year (to capture changes in surface water availability). Regressions
are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are
two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Unobserved pump upgrades Higher groundwater costs could induce farmers to invest

in pump efficiency improvements. Since we do not observe groundwater use directly (in-

stead inferring it from electricity consumption), we could mistake these efficiency upgrades

for groundwater pumping reductions (rather than reductions in the amount of electricity

needed to pump an acre-foot of water). Appendix Table B1 addresses this concern by re-

stricting the sample to parcel-years proximate to an observed pump test, thereby minimizing

the possibility of bias from unobserved efficiency improvements. If anything, this slightly

increases the magnitudes of our estimates, suggesting that the pump efficiency channel is

not driving our results by biasing our construction of Qwater
it .
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kWh-to-AF conversions As we discuss in Section 4.2, converting from electricity to

groundwater introduces multiple sources of measurement error. Our instrument, P elecDefault
it ,

eliminates these sources of measurement error, since electricity tariffs are not correlated with

the timing and specifics of pump audits or groundwater depth readings. Still, Appendix

Tables B2 and B3 show that our estimates are robust to: alternative parameterizations of

lift in Equation (1), omitting pumps with questionable audit data, and omitting pumps far

from contemporaneous groundwater readings.

Smart meter rollout During our sample period, PG&E gradually replaced remaining

conventional (analog) meters with smart (digital) meters. As part of this broad smart meter

rollout, 21% of the service points in our sample were switched from conventional- to smart-

meter categories. Since the rollout’s timing reflected institutional factors outside of farmers’

control, meter-induced category switches provide additional plausibly exogenous variation in

P elecDefault
it .23 To assuage any concerns about endogenous meter upgrades, Appendix Tables

B4 and B5 show that our estimates are robust to controlling for differential time trends in

covariates that could have predicted the smart meter rollout.

Weather realizations PG&E’s tariff schedule should be uncorrelated with climatic con-

ditions, especially after controlling for parcel, year, basin-by-year, and water-district-by-year

fixed effects. Appendix Table B6 confirms that our estimates are robust to controlling for

local weather realizations and drought severity, assuaging any concerns that correlations

between weather and electricity prices could be generating omitted variables bias.

Cone of depression spillovers Cones of depression form when extraction from a well

temporarily removes groundwater from the surrounding areas of the aquifer (Alley, Reilly,

and Franke (1999)). These between-well spillovers could potentially violate our exclusion re-

striction: if parcel i experiences the same shock to default electricity prices as its neighboring

parcel j, and if j responds by altering their pumping behavior, the resulting change in parcel

j’s cone of depression could impact parcel i’s groundwater depth—in turn impacting parcel

23. The rollout affected both agricultural and non-agricultural customers. Previous research has established
that PG&E did not design their smart meter rollout to target customers with particular usage patterns (Blonz
(2022)). Since farmers could not influence the timing of their meter upgrades, it is highly unlikely that these
upgrades are systematically correlated with unobserved changes in pumping behavior.
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i’s pumping behavior. Appendix Table B7 explicitly models such spillovers, by controlling

for average default electricity prices of parcel i’s neighbors. This does not meaningfully alter

our results, assuaging concerns of bias due to localized spillovers.

5.2 Groundwater responses and crop choice

Having shown that farmers respond to groundwater cost shocks, we next estimate the extent

to which they respond on the intensive margin—that is, holding constant their existing crop

category (i.e., annuals, fruit/nut perennials, hay perennials, or non-crop). This intensive-

margin elasticity is a key input to our dynamic structural model of crop choice, since counter-

factual groundwater costs will alter both farmers’ crop choices and their irrigation behavior

conditional on crop choices.

To estimate the short-run intensive-margin elasticity, we restrict our sample to parcels

that chose the same crop category as the preceding year, while also adding a separate parcel

fixed effect for each continuous “cropping streak” (i.e., consecutive years when the parcel

chose the same crop category) to control for irrigation needs specific to that particular

cropping period. We report these results in Columns (1)–(2) of Table 3. Our conditional

point estimates of −0.944 for groundwater and −0.906 for electricity (both p < 0.01) are

nearly identical to our estimates of the unconditional responses shown in Table 2. This

indicates that farmers’ responses to year-on-year cost shocks are driven by the intensive

margin, rather than the crop switching margin.24

Columns (3)–(6) of Table 3 provide direct reduced-form tests of this crop switching

margin, by replacing the dependent variable in Equation (2) with the share of parcel i’s

(croppable) acres allocated to a specific crop category in year t. These regressions corroborate

our intensive-margin results: for all four crop types, we recover precise null estimates of the

effect of year-on-year groundwater costs shocks on crop switching. Together, they suggest

that farmers are unlikely to switch crops in response to short-run cost shocks.

These short-run estimates reflect how farmers respond to the year-on-year variation in

pumping costs that we observe. We also seek to quantify how farmers would respond to a

24. Appendix Table B10 estimates heterogeneous intensive-margin elasticities for the four crop categories.
We cannot statistically reject that these crop-specific elasticities are identical.
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Table 3: Short-run responses do not reflect crop switching

(1) (2) (3) (4) (5) (6)

log(Qwater) log(Qelec)
Share

annuals
Share

perennials
Share
hay

Share
non-crop

log (Pwater ($/AF)) −0.944∗∗∗ 0.002 −0.003 −0.004 0.005
(0.270) (0.017) (0.020) (0.019) (0.017)

log (P elec ($/kWh)) −0.906∗∗∗

(0.264)

Intensive margin Yes Yes

Parcel units 6,997 6,997 7,131 7,131 7,131 7,131
County-years 334 334 367 367 367 367
Parcel-year observations 46,202 46,202 61,910 61,910 61,910 61,910

First-stage estimates

log (P elecDefault ($/kWh)) 1.274∗∗∗ 1.289∗∗∗ 1.425∗∗∗ 1.425∗∗∗ 1.425∗∗∗ 1.425∗∗∗

(0.056) (0.044) (0.043) (0.043) (0.043) (0.043)

Kleibergen-Paap F -statistic 523 847 1092 1092 1092 1092

OLS estimates

log (Pwater ($/AF)) −0.779∗∗∗ −0.009 −0.008 0.001 0.016∗∗

(0.121) (0.010) (0.012) (0.010) (0.008)

log (P elec ($/kWh)) −0.652∗∗∗

(0.155)

Notes: Columns (1)–(2) are identical to Columns (1)–(2) of Table 2, except that they capture the intensive-margin response
within “cropping streaks”. We define a parcel’s cropping streaks based on the consecutive years that the parcel chose a specific
crop category (annuals, fruit/nut perennials, hay perennials, non-crop). For example, if a parcel’s modal category was fruit/nut
perennials in 2008–13 and annuals in 2014–19, this parcel had two cropping streaks. Columns (1)–(2) restrict the sample to
parcel-years in at least the second year of a cropping streak, and also include a separate parcel fixed effect for each cropping
streak. This isolates the within-crop intensive margin, shutting down the crop-switching channel that we structurally estimate
below. Columns (3)–(6) are identical to Column (1) of Table 2, except that the outcome variables are the share of acres in a crop
category for each parcel-year. All regressions include the following fixed effects: parcel, parcel × 1[large pump] (to capture tariff
category switches), year, groundwater basin × year (to capture trends in depth), and water district × year (to capture varying
surface water availability). Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.).
Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.

permanent cost shock, such as California’s SGMA policy. Since we lack permanent quasi-

random variation, we turn to a structural model. Our dynamic discrete choice model uses

short-run cost variation to recover long-run responses and lets us simulate counterfactual

policies to achieve SGMA targets.

A key input to our dynamic model is a long-run intensive-margin elasticity analogous

to the short-run elasticity in Column (1) of Table 3. To calibrate this long-run parameter,

we estimate a series of intensive-margin regressions that incrementally restrict the sample
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Table 4: Intensive-margin response degrades after 5 years in the same crop category

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.944∗∗∗ −0.934∗∗∗ −0.946∗∗∗ −0.591 −0.380 −0.267
(0.270) (0.301) (0.351) (0.379) (0.370) (0.552)

Year of cropping streak ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7

Parcel units 6,997 6,628 6,035 5,356 4,703 4,084
County-years 334 302 271 240 209 178
Parcel-year observations 46,202 36,492 29,548 23,881 19,024 15,004

First-stage estimates

log (P elecDefault ($/kWh)) 1.274∗∗∗ 1.214∗∗∗ 1.185∗∗∗ 1.178∗∗∗ 1.176∗∗∗ 1.172∗∗∗

(0.056) (0.059) (0.066) (0.073) (0.089) (0.095)

Kleibergen-Paap F -statistic 523 424 321 259 174 152

Notes: These regressions estimate the persistence of intensive-margin groundwater response within “cropping streaks”. We define
a parcel’s cropping streaks based on the consecutive years that the parcel chose a specific crop category (annuals, fruit/nut
perennials, hay perennials, non-crop). For example, if a parcel’s modal category was fruit/nut perennials in 2008–13 and annuals
in 2014–19, this parcel had two cropping streaks. Column (1) is identical to Column (1) of Table 3, restricting the sample to
parcel-years in at least the second year of a cropping streak, and also including a separate parcel fixed effect for each cropping
streak. This isolates the within-crop intensive margin, shutting down the crop-switching channel that we structurally estimate
below. Columns (2)–(6) are identical, except that they incrementally tighten this sample restriction to parcel-years in least the
third-to-seventh year of a cropping streak—thereby isolating the intensive-margin response that persists multiple years after
the parcel’s most recent crop switch. All regressions also include the following fixed effects: parcel, parcel × 1[large pump] (to
capture tariff category switches), year, groundwater basin × year (to capture trends in depth), and water district × year (to
capture varying surface water availability). Regressions are weighted by each parcel’s “croppable” acreage (excluding forests,
development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.

to parcel-years in at least the nth year of a consecutive cropping streak. This identifies

the within-crop response that remains available to farmers even after they have grown a

particular crop for at least n years. Referring back to the illustrative model in Figure 2,

these regressions isolate the persistent within-crop shifts from A to A′, excluding the short-

run shifts from B to B′.

Table 4 reports these estimates, revealing that the short-run intensive-margin elasticity

of −0.944 falls to −0.591 at five years, −0.380 at six years, and −0.267 at seven years

in the same crop category. This indicates that the long-run intensive-margin elasticity is

meaningfully smaller than its short-run analog—likely because short-run strategies (e.g.,

ceasing production mid-season, as shown in Figure 2) are not sustainable over multiple years.

These estimates lose statistical power due to decreasing sample size, especially in Column

(6) where removing two-thirds of observations to isolate “≥ 7” streaks nearly doubles the
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standard error. Thus, our preferred long-run intensive-margin elasticity is the “≥ 6” estimate

of −0.380 from Column (5), which is approximately 40% the size of the short-run intensive-

margin elasticity.

6 Structural estimation and results

We specify a dynamic discrete choice model of farmers’ cropping decisions that captures two

key features of our setting. First, since many California farmers make long-run investments

in perennial crops, we incorporate state dependence in annual cropping decisions. Second,

because SGMA introduces permanent changes to groundwater policy, we let farmers’ annual

decisions reflect rational forward-looking expectations.

We use a conditional choice probability approach (following Scott (2013); Kalouptsidi,

Scott, and Souza-Rodrigues (2021b)) to estimate model parameters without the need to

specify the evolution of individual market-level states. Three notable differences are that we

identify the model using a plausibly exogenous groundwater cost shifter (changes in regulated

electricity prices) as an instrument, we quantify the impact of groundwater costs rather than

expected revenues, and we estimate the model without first-differencing.25

We then use our estimated dynamic model to simulate responses to both temporary and

permanent counterfactual groundwater taxes. These simulations generate short- and long-

run (semi-)elasticities of crop choice, groundwater use, and electricity use with respect to

the marginal cost of groundwater. Finally, we simulate a policy counterfactual that achieves

the groundwater reduction targets required by California’s SGMA legislation.

6.1 Model of crop choice

We model annual profits on a given field as a function of crop choice with crop-specific

groundwater pumping costs.26 Each year, a farmer chooses a crop c ∈ C = {annuals,

fruit/nut perennials, hay perennials, non-crop} to maximize expected discounted profits

25. We use groundwater costs, rather than expected returns (as in Scott (2013)), as the driver of profits in
our model because (i) we have exogenous variation in groundwater costs and (ii) California’s rich landscape
of specialty crops makes it difficult to form accurate predictions of returns in our setting. Our instrumental
variables strategy obviates the need to first-difference for identification.

26. Our structural model abstracts away from the entry/exit decision of drilling or abandoning wells. This
assumption is consistent with the institutional setting. Between 2007–2008 and 2017–2018, total irrigated
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over an infinite time horizon.27 Profits from crop choice c depend on two state variables: the

field state and the market state. The field state k ∈ K represents field-level characteristics

at the start of a growing season, which depend on past cropping decisions. The market state

ω ∈ Ω is the set of market-level variables that affect the expected profitability of each crop,

such as input prices, output demand, government policies, and widespread weather events

(e.g. drought, which affects surface water allocations). The market state is known to all

farmers but is not fully observed by the econometrician.

Assumption 1: Profit function Annual profits on a given field in year t depend on crop

choice ct, field state kt, market state ωt, and a vector of idiosyncratic shocks εt. We define

the profit function as:

π(ct, kt, ωt, εt) = αGG(ct, ωt) + α(ct, kt) + ξ(ct, kt, ωt) + εct (4)

G(ct, ωt) is the total variable cost of groundwater pumping, which depends on the water

requirements of crop ct and the market state ωt; we estimate the parameter αG.28 Because

farmers know the market state, we assume they know this cost of groundwater pumping

for each crop type when making their crop choice. α(ct, kt) represents the time-invariant

component of average net returns to growing crop ct, excluding groundwater costs and net

of the costs of transitioning from field state kt to crop ct; we estimate these parameters.

acreage remained largely constant in California, falling by just 2.3%, while the number of farms with irrigation
wells rose by just 1.4% (USDA NASS (2019)). Our model also holds pumping capital fixed at observed levels.

27. We aggregate crops into these four broad categories both for model tractability and to avoid concerns
about measurement error in the CDL. Fruit/nut crops and hay crops are both perennials, but have different
cost structures: whereas hay requires low upfront costs and can be harvested soon after planting, orchards
and vineyards require high upfront costs and take longer to reach maturity. We use “fruit/nut” to refer to
perennial fruit and nut crops, and “hay” to refer to perennial hay crops (e.g., alfalfa).

28. We use total variable costs, rather than total costs, because fixed fees on electricity bills are crop-
choice invariant. Assuming Qwater responds only on the extensive (crop choice) margin, a percent change in
marginal cost (measured in $/AF) is equivalent to the same percent change in total variable cost (measured
in $), meaning (semi-)elasticities with respect to both cost measures are identical. If Qwater also responds
on the intensive margin, a percent change in marginal cost yields a smaller percent change in total variable
cost. Our simulations below consider both margins, necessitating this marginal vs. variable cost distinction.
Note that surface water availability is a component of the market state, ωt. Equation (4) does not include
a surface water cost term, consistent with surface water being largely inframarginal in this setting (see
Appendix Table B11; Ferguson (2025)). Instead, surface water costs are captured as part of α(ct, kt) and
ξ(ct, kt, ωt). If surface water is indeed inframarginal and therefore does not differ by crop choice, then
these components are differenced out in our Euler equation (Equation (7)). If surface water use does differ
with crop choice, such differences are contained in the composite error term; in that case, our groundwater
cost-shift instrument, which is uncorrelated with surface water use, yields unbiased estimates of αG.
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ξ(ct, kt, ωt) represents the time-varying component of average net returns to crop ct in field

state kt, which depends on the market state ωt. Finally, εct is an idiosyncratic shock to

profits for crop ct in year t, which we assume is independent and identically distributed

Type-I extreme value; we denote the joint distribution of the vector εt as F ε(εt).

Assumption 2: State dependence and renewal actions Crop choice dynamics enter

through the transition cost component of α(ct, kt).29 Accounting for state dependence is

essential given California’s abundance of perennial crops, which are harvested across multiple

years from a single planting. Growing a perennial crop in consecutive years incurs much lower

costs than switching into the same perennial crop because the latter comes with an upfront

investment cost.

We assume the field state depends on crop choice over the preceding two years. For

annuals, hay perennials, or non-crop, one year in that crop type is sufficient to establish the

field state. Fruit/nut perennials (FNP ), however, typically need multiple years to mature

and produce output. Hence, we distinguish between a young fruit/nut perennial crop that

was first planted in the prior year and a mature fruit/nut perennial crop that was planted

two or more years prior.30 Formally, we define the field state in year t as:

kt(ct−1, ct−2) =


ct−1 if ct−1 ̸= FNP

FNPyoung if ct−1 = FNP and ct−2 ̸= FNP

FNPmature if ct−1 = ct−2 = FNP

Any crop choice other than fruit/nut perennials is a “renewal action,” meaning that choice

ct ∈ {annuals, hay perennials, non-crop} will yield a particular field state in the following year

kt+1 regardless of states in prior years (Kalouptsidi, Scott, and Souza-Rodrigues (2021b)).31

29. As Scott (2013) discusses, it is common for dynamic incentives to enter only through an intercept term.
30. While abstracting from the growth profiles of specific perennial crops (e.g., almonds typically reach

maturity faster than grapes), this assumption is sufficient to generate distinct responses to temporary vs.
permanent cost shocks. Assuming even a single year of field state dependence introduces switching costs
that make it unprofitable for farmers to (unrealistically) tear out their almond orchards in response to a
one-year cost shock and then replant almonds the following year. Distinguishing between young and mature
fruit/nut perennials allows annual returns to vary while the crop is being established, further strengthening
the disincentive to switch in or out of almonds in response to temporary shocks.

31. For estimation, we rely on fallowing being a renewal action: choosing ct = non-crop effectively resets
the transition costs in the following year, regardless of the cropping history.
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Assumption 3: Small fields We assume that the market state ωt evolves following a

Markov process that is independent of the crop choice on any single field. That is, the dis-

tribution of the market state, F ω(ωt), satisfies F ω(ωt+1 | ct, ωt) = F ω(ωt+1 | ωt) for all ct on

each field. This assumption implies that fields are small relative to the size of their market,

causing farmers to treat ωt as exogenous. Following from this assumption, we treat each field

as independent. This abstracts from any potential externalities due to the common-pool na-

ture of the groundwater resource—which improves model tractability and aligns with our

finding that between-well spillovers do not alter contemporaneous groundwater pumping in

this setting (see Appendix Table B7). It also implies that if a landowner operates multiple

fields, maximizing profits jointly across fields is equivalent to maximizing profits for each

field independently (following Scott (2013) in abstracting from any production complemen-

tarities).

Value function and conditional choice probabilities Under Equation (4), the ex-

pected discounted stream of future profits from a given field is given by the value function:

V (kt, ωt, εt) = max
ct∈C

{π(ct, kt, ωt, εt) + βE [V (kt+1, ωt+1, εt+1) | ct, ωt]} (5)

We assume the common discount factor β = 0.9 following the literature (e.g., Scott (2013);

Hsiao (Forthcoming)). The resulting conditional choice probabilities (CCPs), or the proba-

bility that the farmer chooses crop ct conditional on being in field state kt, are:

p(ct, kt, ωt) =
exp [v(ct, kt, ωt)]∑
c′t∈C

exp [v(c′t, kt, ωt)]
(6)

where v(ct, kt, ωt) gives the conditional value of selecting crop choice ct in field state kt, which

follows from the value function in Equation (5).32 This expression emphasizes that CCPs

contain information about the relative value of making different crop choices.

Euler equation To generate an estimating equation, we consider the comparison between

two crop choices in year t: ct and c′t. Then, suppose crop choice in year t + 1 is a renewal

action (i.e., any choice other than fruit/nut perennials, by Assumption 2), which we denote

32. See Appendix A.1 for mathematical definitions of the ex ante and conditional value functions.
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rt+1. It follows that the field state in year t+2 depends only on rt+1—not on ct. This means

that after choosing rt+1 in year t + 1, continuation values in year t + 2 will be the same

regardless of whether a farmer chooses ct or c′t in year t. This comparison produces an Euler

equation that can be written as:33

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
+ β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
= αG [G(ct, ωt)−G(c′t, ωt)]︸ ︷︷ ︸

∆Gct

+ α(ct, kt)− α(c′t, kt) + β [α(rt+1, ct)− α(rt+1, c
′
t)]︸ ︷︷ ︸

∆̃αck

+ ξ(ct, kt, ωt)− ξ(c′t, kt, ωt) + β [ξ(rt+1, ct, ωt+1)− ξ(rt+1, c
′
t, ωt+1)]︸ ︷︷ ︸

∆̃ξckt

+ β
[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]︸ ︷︷ ︸
∆eVct

(7)

Each side of Equation (7) is equivalent to the difference in values between choosing ct or

c′t in year t, taking renewal action rt+1, and then choosing optimally in all following years.

As shown in underbraces, the right-hand side of this equation can be summarized by four

terms, each representing one component of this difference in values.34

6.2 Estimation

To empirically estimate Equation (7), we require CCPs and total variable groundwater costs

for each crop in the choice set, as well as an instrument for (potential) groundwater cost

endogeneity. We construct these variables using data from all fields in a “market” in which

farmers face a similar choice environment—including similar transition costs, crop-specific

groundwater costs, and market states. We define markets using three criteria: electricity

tariff, surface water availability, and geography.35 We construct CCPs by aggregating crop

33. The term eV (ct, ωt, ωt+1) is the expectational error given by the difference between expected and realized
ex ante value functions in year t + 1. See Appendix A.1 for a mathematical definition of the expectational
error term and a derivation of this Euler equation.

34. We use ∆ to denote a contemporaneous difference between ct and c′t, and ∆̃ to denote this contem-
poraneous difference plus a discounted difference in year t + 1. Equation (A3) in Appendix A.1 provides
definitions for each of these terms.

35. We first split by PG&E’s small- and large-pump tariff categories. For surface water availability and
geography, we then group fields by water district or (if not in a water district) by county. For water districts
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choices within each market, and we use observed groundwater costs in the market to construct

crop-specific pumping costs.

6.2.1 Variable construction

Conditional choice probabilities We observe land use at a 30-meter resolution in the

CDL. We calculate CCPs from the observed pixel-level sequence of crop choices in parcels

in our sample. We aggregate pixel-level conditional choices within each market:

pm(ct, kt, ωmt) =
nmckt∑

c′∈C nmc′kt

where nmckt is the count of pixels in market m with crop c after starting in field state k in

year t. The denominator is the count of all pixels in market m in field state k in year t. As

in Scott (2013), we smooth CCPs over space to ensure no CCP has a value of zero or one.

Groundwater cost, groundwater use, and electricity use For every parcel-year, we

observe the realized total variable cost of groundwater pumping for the chosen crop. To

estimate the model, however, we also need projections of what these costs would have been

for each alternative crop category.36 We use the following OLS specification to estimate how

parcel-level pumping costs correlate with within-parcel variation in cropping:

Git =
∑
c ̸=0

(ζcmF
c
it + κcmF

c
it · t) + ηi + ϕmt + ιit (8)

where Git is the per-acre total variable groundwater cost for parcel i in year t (i.e., Qwater
it ×

Pwater
it ). F c

it is the fraction of parcel i planted with crop c in year t, omitting non-crop (c = 0)

to avoid collinearity. ηi are parcel fixed effects, ϕmt are market-year fixed effects, and ιit is an

idiosyncratic error term. ζcm+κcmt recovers the average per-acre groundwater cost for crop c

in market m and year t (relative to choosing non-crop), which is identified from within-parcel

crop switches. These market-specific coefficients accommodate geographic variation in both

where we observe fewer than 30 parcels, we instead group by counties to ensure sufficient observations within
a market. Appendix A.2 provides more details on market construction.

36. This is a measurement exercise to populate groundwater costs for each market-crop-year. It does not
leverage variation in marginal pumping costs and is distinct from our reduced-form regressions in Section 5.
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groundwater needs (e.g., due to surface water allocations) and irrigation needs within each

crop category c (e.g., grape- vs. almond-growing regions).

This fitted regression model yields projected per-acre pumping costs for each parcel-year

under each crop category. We aggregate these projections by taking an acreage-weighted

median of all parcels within each market-crop-year.37 This yields per-acre total variable

groundwater costs Gmct = Gm(ct, ωmt) at the market-crop-year level, which is a key input to

Equation (7). We follow the same procedure to project comparable measures of groundwater

quantities (Q̂water
mct ) and electricity quantities (Q̂elec

mct), each at the market-crop-year level and

measured per-acre. We also construct a time-invariant measure of crop-specific average

electricity quantity in each market (Q̂elec
mc ), which is a component of our instrument that we

describe below.38

6.2.2 Identification

Equation (7) holds for any choice of crops ct and c′t in year t followed by any renewal action

rt+1 in year t+1. To generate an estimable regression equation, we set both the comparison

crop c′t and the renewal action rt+1 to be the non-crop category (i.e., c′t = rt+1 = 0), leaving ct

to denote any of the three other crop choices. We estimate the resulting regression equation

at the market level, using the data described above and weighting markets by acreage.

The outcome variable of this regression, which we construct from our calculated CCPs,

is the difference in values between a cropping sequence in which crop c is chosen in year t vs.

one in which non-crop is chosen in year t. The right-hand side of the regression represents

four components that comprise this difference. ∆Gmct is the difference in pumping costs

between crop choice c and non-crop in year t. ∆̃αmck is a set of intercept terms capturing

the difference in the present value of average net returns between the two cropping sequences.

∆̃ξmckt is an unobserved term that reflects the difference in time-varying net returns, and

∆eVmct is the unobserved difference in expectational errors; their sum is the regression’s

37. Using acreage-weighted means, rather than medians, yields similar results (see Appendix Figure A1).
38. We use Q̂ to differentiate these per-acre quantity projections from the observed quantities Qwater and

Qelec used in our reduced-form analysis. Time-invariant Q̂elec
mc takes the weighted median over all parcel-

years for market m and crop c. We use analogous time-invariant measures of groundwater quantities and
groundwater costs as steady-state values in our counterfactual simulations. We also aggregate separately by
drought vs. non-drought years to incorporate drought expectations in our counterfactual simulations.
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composite error term. Our main objects of interest are the groundwater cost parameter αG

and the intercepts ∆̃αmck, which we use to recover the profit intercept parameters αm(ct, kt).

We cluster our standard errors at the market-by-year level to allow for correlation across

contemporaneous crop choices and field states within each market.

Instrumenting for groundwater cost In order to recover consistent estimates of αG, we

require E[∆̃ξmckt+∆eVmct | ∆Gmct] = 0. Under rational expectations, the expectational error

∆eVmct is uncorrelated with ∆Gmct by construction, but unobserved net returns ∆̃ξmckt may

be correlated with ∆Gmct. For example, weather could affect groundwater pumping costs

for crop c (relative to non-crop) by altering water requirements, and weather could also

affect (relative) net returns by influencing output prices. As a result, we must instrument

for ∆Gmct, the groundwater pumping costs for crop c (relative to non-crop) in market m in

year t.

We construct an instrument for ∆Gmct that uses plausibly exogenous variation in

PG&E’s electricity tariff schedules, akin to our reduced-form approach in Section 5. Here, we

require an instrument for total variable pumping cost, which we generate by combining two

factors that are exogenous to annual variation in unobserved net returns: (i) time-varying

but crop-invariant electricity prices and (ii) time-invariant but crop-varying electricity quan-

tity needs. The price component is the average default electricity price in market m in year

t, P elecDefault
mt , which is plausibly excludable because exogenous electricity tariffs are only cor-

related with groundwater demand through pumping costs (as shown in Section 5.1).39 The

quantity component is the average amount of electricity needed for groundwater pumping for

crop c (relative to non-crop) in market m, ∆Q̂elec
mc , which is plausibly excludable because this

time-invariant cross-sectional measure is uncorrelated with annual variation in the market

state. In an approach similar to a shift-share, we instrument with the product of these two

components: P elecDefault
mt ×∆Q̂elec

mc . This instrument is strongly correlated with ∆Gmct, since

changes to default electricity prices impact the variable costs of groundwater pumping. It

also satisfies the exclusion restriction, since each component is plausibly excludable.
39. Our markets partition small vs. large pump categories. P elecDefault

mt collapses from four to two tariff
categories, averaging over the composition of conventional and smart meters within each market-year. We
assign each parcel’s modal pump size before defining markets, such that P elecDefault

mt eliminates variation from
any potentially endogenous switches between small- and large-pump tariff categories.
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Recovering profit intercept parameters We require estimates of 20 profit intercepts for

each market—one αm(ct, kt) for each crop choice-field state pair. However, Equation (7) only

includes 15 ∆̃αmck intercept terms for each market, since we use the non-crop category as the

comparison. Recovering all 20 intercepts therefore requires additional assumptions. First,

we normalize αm(0, 0) = 0, where both field state and crop choice are non-crop. Second, we

assume that switching from crop c to non-crop costs half as much as switching from non-crop

to crop c. Third, we assume there is no transition cost to remain in the same crop.40

6.3 Counterfactual simulations

We use the estimated model to simulate counterfactuals under short- and long-run groundwa-

ter tax scenarios. For short-run scenarios, we simulate a long-run steady state using baseline

groundwater costs and then add a one-year marginal cost shock (i.e., a temporary tax).

For long-run scenarios, we simulate the long-run steady state under a persistent marginal

cost change (i.e., a permanent tax) that affects every year. In each scenario, we proceed as

follows. First, we use Equation (4) to calculate expected annual profit—a function of that

scenario’s groundwater tax—for each crop choice in each state in every market. Second,

we combine these profits with a fixed point algorithm to solve for the continuation values,

which follow from Equation (5), for each crop choice at each state in each market. Third, we

use these continuation values to calculate CCPs in each market, per Equation (6). Finally,

starting from an initial distribution of field states in each market, we iteratively apply these

CCPs to solve for crop choices and, therefore, groundwater and electricity use over a 20-year

period.41 To simulate these counterfactuals, we require two additional assumptions.

Assumption CF1: Drought state Drought, which is included in the market state ωmt,

can increase annual groundwater pumping costs both by increasing both irrigation needs

(higher Qwater) and groundwater scarcity (higher Pwater). To incorporate drought conditions

40. As described by Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021b), dynamic discrete
choice models are typically not fully identified (Magnac and Thesmar (2002)). See Appendix A.2 for a
mathematical statement of these assumptions. These normalizations do not affect the identification of our
counterfactuals (Kalouptsidi, Scott, and Souza-Rodrigues (2021a)). Note that αm(ct, kt) incorporates both
net returns to crop ct and any additional transition costs due to field state kt. When remaining in the same
crop, we assume that all costs are recurring (e.g., the yearly cost of replanting an annual crop) and are
therefore captured by the net returns component.

41. We initialize the field states using each market’s average distribution of field states for 2008–2019.
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in our simulations, we project groundwater costs separately for drought vs. non-drought

years and calculate profits under each market state. The resulting continuation values and

CCPs become functions of both current drought and future expectations of drought. We

assume farmers’ expectation of drought in any future year is i.i.d. with probability equal to

the frequency of drought in our sample.42

Assumption CF2: Intensive-margin elasticity Our reduced-form analysis shows that

farmers respond to groundwater cost shocks on the intensive margin (i.e., adjust their water

use conditional on crop choice). When estimating Equation (7), our construction of G =

Qwater × Pwater accounts for factual intensive-margin response, since observed Qwater has

been optimized to factual Pwater. However, simulating counterfactual Pwater necessitates

assumptions on out-of-sample within-crop reoptimization. In our temporary tax scenarios,

we set this intensive-margin elasticity equal to the intensive-margin response we estimate in

our reduced-form analysis: −0.944 (Column (1) of Table 3). In our permanent tax scenarios,

we set this intensive-margin elasticity equal to the intensive-margin response in cropping

streaks of at least six years: −0.380 (Column (5) of Table 4). This estimate—40% the

magnitude of the short-run value—isolates the response that persists when remaining in the

same cropping category for many years.43

We assume farmers know the magnitude of this intensive-margin adjustment, and hence

the resulting groundwater pumping costs for each crop type, when making their crop choices.

Because this intensive-margin response reduces groundwater and electricity consumption

for a particular crop, the crop’s total variable groundwater cost increases by less than the

tax rate.44 This additional margin of response alters expected profits for each crop under

42. California declared severe droughts in 7 of our 12 sample years (2008–2009 and 2012–2016). We also
simulate alternate simulations with higher/lower probabilities of drought (see Appendix Figure A1). In simu-
lating a drought (non-drought) year, we model all components of the market state (e.g., weather realizations,
surface water allocations) as equal to the average drought (non-drought) year in our sample.

43. We find that crop-specific intensive-margin responses are not statistically different from one another
(see Appendix Table B10), so our preferred scenarios apply a common intensive-margin elasticity to all crop
categories. In an alternate specification, we instead use crop-specific intensive-margin elasticities and find
similar results (see Appendix Figure A1). To generate crop-specific long-run elasticities, we scale the point
estimates in Appendix Table B10 by 40%, the long-run to short-run intensive margin ratio from Table 4.

44. Suppose the marginal cost of pumping increases by 20% due to a tax. With an intensive-margin
elasticity of −0.380, farmers reduce crop-specific groundwater use by 6.7%. As a result, the total variable
cost of pumping increases by only 12%, not the full 20%.
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counterfactual groundwater taxes, which subsequently alters continuation values, CCPs, and

therefore counterfactual crop choices.

Counterfactual groundwater tax scenarios Our baseline scenario sets total variable

groundwater costs equal to the time-invariant projection for that market and crop. For our

temporary tax counterfactuals, we increase the marginal cost of pumping only in a single

year of the 20-year simulation; we assume farmers do not anticipate this shock but know

that it will persist for only one year. For our permanent tax counterfactuals, we increase

pumping costs in all years and assume farmers know this tax will persist permanently. Since

we use crop-specific groundwater costs, a given tax increases total variable costs relatively

more for more water-intensive crops, which can induce crop switching. Further, because

our dynamic model captures forward-looking behavior, temporary and permanent taxes can

induce different magnitudes and patterns of crop switching.

(Semi-)elasticities Following Scott (2013), we calculate long-run (semi-)elasticities by

comparing the final year of each tax scenario to the final year of the baseline scenario. For

short-run (semi-)elasticities, we instead compare the tax and baseline scenarios in the year

when the short-run tax occurs. The semi-elasticity of crop c with respect to the marginal

cost of pumping groundwater is: ∑
m∈M (A′

mc − Amc)∑
m∈M

∑
c∈C Amc

/
τ

where Amc is the acreage in market m planted to crop c in the baseline scenario, A′
mc is the

comparable acreage in the tax scenario, and τ is the percentage tax on marginal groundwater

costs. The corresponding pumping cost elasticities of groundwater and electricity are:45

∑
m∈M

∑
c∈C

(
A′

mcQ̂
′
mc − AmcQ̂mc

)
∑

m∈M
∑

c∈C AmcQ̂mc

/
τ

45. Because a τ% change in electricity price translates to the same τ% change in marginal groundwater
pumping costs (see Equation (1)), this expression recovers the elasticity of groundwater use with respect to
marginal groundwater cost, and the elasticity of electricity use with respect to marginal electricity price.

37



where Q̂mc is the time-invariant projection Q̂water
mc or Q̂elec

mc , and Q̂′
mc is the analogous quan-

tity after any tax-induced intensive-margin adjustments. We conduct inference on these

(semi-)elasticities by taking 1,000 draws from the sampling distribution of our estimated

groundwater cost parameter αG. For each draw, we first recover the corresponding αm(ct, kt)

parameters, and we then proceed to simulate both the baseline and tax scenarios using the

same parameter draw. This sampling yields 1,000 sets of (semi-)elasticities for each tax sce-

nario. Our reported (semi-)elasticities are the means of these distributions, and our reported

95% confidence intervals span the 2.5th and 97.5th percentiles of the distributions.

6.4 Model results

Figure 4 presents our main discrete choice results. Panel A plots semi-elasticities of land use,

while Panel B presents demand elasticities for groundwater and electricity, in response to

both a temporary and a permanent 20% tax on the marginal cost of groundwater pumping.46

Panels C and D plot the corresponding time profiles of these land-use, groundwater, and

electricity responses.

Short-run (semi-)elasticities From the temporary tax scenario, we recover short-run

semi-elasticities with respect to marginal groundwater costs of −0.0001 (s.e. 0.0001) for an-

nuals, −0.0004 (s.e. 0.0002) for fruit/nut perennials, −0.0007 (s.e. 0.0003) for hay perennials,

and 0.001 (s.e. 0.001) for non-crop (i.e., fallowing). Farmers instead respond to the one-year

tax by reducing water use on existing crops, yielding short-run elasticities of −0.792 (s.e.

0.001) for groundwater and −0.763 (s.e. 0.001) for electricity.47

These results imply that a short-run pumping cost shock induces only minimal crop

switching, which occurs only in the year of the shock (Panel C). Instead, farmers achieve

groundwater reductions by applying less water to the crops they are already growing—

46. Appendix Table A2 presents these results in tabular form. Appendix Table A1 presents the parameter
estimates resulting from estimating Equation (7). Appendix Figure A1 presents robustness to parcel sample
selection and aggregation to the market level.

47. These short-run groundwater and electricity elasticities are nearly identical to those calculated by
applying a 20% non-marginal cost increase to Equation (2) with a marginal elasticity of γ = −0.944 or −0.906
(our estimates in Table 3). Our short-run crop semi-elasticities align with the reduced-form magnitudes in
Table 3, where we find precise null cropping responses to year-on-year changes in marginal pumping costs.
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Figure 4: Short- and long-run elasticities with respect to groundwater pumping cost
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Notes: This figure plots short- and long-run (semi-)elasticities of land use (panel A) and groundwater and electricity use (panel
B) with respect to marginal groundwater cost, as well as the time path of these responses (panels C and D). To recover short-run
(semi-)elasticities, we simulate the model with baseline costs until it reaches a steady state, and then increase groundwater costs
by 20% for one year. Farmers do not anticipate the shock, but they know it will only last for one year. To recover long-run
(semi-)elasticities, we increase groundwater pumping costs by 20% and simulate the model forward. Farmers know that this
price change is permanent. In both the short- and long-run, farmers can respond to groundwater cost changes on both the
crop-switching margin and by reducing water use conditional on crop choice (the “intensive margin”). In the short-run, farmers’
intensive-margin elasticity is −0.944 (Table 3, Column (1)). In the long-run, farmers have 40% of this intensive-margin response
available to them, per our “≥ 6” cropping streak estimate of −0.380 (Table 4, Column (5)). Panel A shows semi-elasticities
for annual crops (circles), hay perennials (squares), fruit/nut perennials (triangles), and non-crop (diamonds). Panel B shows
elasticities of demand for electricity (diamonds) and groundwater (circles). In Panels A and B, we report the means over 1,000
draws for each model; 95% confidence intervals (vertical lines) plot the 2.5th and 97.5th percentiles over draws. In Panels C
and D, dashed lines plot the time profile of responses for the same short-run scenario, for a one-year 20% cost shock in period 0.
Solid lines plot the time profile of response for the same long-run scenario, for a permanent 20% cost shock starting in period
0. In each scenario, we compare outcomes to a baseline with no price change.

and these sharp reductions occur only in the year of the shock, which farmers know to be

temporary (Panel D).

Long-run (semi-)elasticities When the groundwater cost change is permanent, and

farmers have a smaller intensive-margin response, we find greater crop switching. On net,

these effects yield smaller groundwater and electricity elasticities in the long run than in
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the short run. In our central case (which includes an intensive-margin elasticity of −0.380),

we recover cropping semi-elasticities that are orders of magnitude larger than their short-

run counterparts: 0.071 (s.e. 0.029) for annuals, −0.129 (s.e. 0.052) for fruit/nut perennials,

−0.007 (s.e. 0.009) for hay perennials, and 0.065 (s.e. 0.029) for non-crop. We find overall

elasticities of −0.461 (s.e. 0.058) for groundwater and −0.456 (s.e. 0.060) for electricity—

showing that substitution between the intensive and extensive margins is incomplete.48

Unlike for a temporary cost shock, farmers’ responses to a permanent cost shock persist

over the long run. Panel C of Figure 4 shows large switches away from fruit/nut perennials

and into annuals and fallowing in the first year of the simulation. These switching patterns

continue over subsequent years, and eventually the simulation converges to a new long-run

steady state with a substantially different crop mix than without the price change. Panel

D of Figure 4 reveals that while the initial groundwater/electricity response is more muted

than for a temporary cost shock (due to a smaller intensive-margin elasticity), this initial

response persists (and even increases over time), giving the new long-run steady state.

Discussion We find that farmers switch crops only minimally in response to temporary

groundwater cost shocks. Instead, their primary response to a temporary cost shock is to

apply less water to existing crops, which occurs only in the year of the shock. In stark

contrast, we find substantial and persistent crop switching in response to permanent cost

changes, which translates into meaningful long-run reductions in groundwater and electricity

use. However, due to a smaller intensive-margin elasticity over the long run, our overall

long-run elasticities of groundwater and electricity demand are smaller than their short-run

counterparts. These findings are consistent with our illustrative model in Section 3.

Our results build on prior work measuring agricultural groundwater demand (e.g., Pfeif-

fer and Lin (2014); Bruno, Jessoe, and Hanemann (2024)) by (i) estimating both short- and

long-run elasticities in the same policy-relevant setting, (ii) showing that they are meaning-

48. Appendix Table A2 presents additional long-run (semi-)elasticities. Our “No IM” scenario assumes zero
long-run intensive-margin elasticity, meaning that farmers only respond to changes in marginal groundwater
costs on the crop-switching margin; our “Low IM” and “High IM” scenarios assume long-run intensive-
margin elasticities of −0.267 and −0.591, respectively, per alternate cropping streak regressions (Columns
(4) and (6) of Table 4). Under No IM, we find larger crop semi-elasticities, as farmers can only respond to
the groundwater price increase by switching crops, but smaller groundwater and electricity elasticities, as
farmers lose a margin of response. Under Low IM (High IM), crop semi-elasticities are larger (smaller) than
in our Preferred IM scenario, while groundwater and electricity elasticities are smaller (larger).
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fully different, and (iii) illustrating how this difference reflects mechanisms that vary by time

horizon. Our results also connect to Hagerty (2022), who estimates that California farm-

ers have a smaller response to surface water scarcity in the long run than in the short run

(albeit a narrower long-/short-run gap than we find for groundwater). While we find crop

switching only in the long run—driven by the large fixed costs of changing crops—Hagerty

(2022) finds that short-run surface water shocks increase fallowing. These results are con-

sistent with surface-water-dependent farmers being less flexible in the short run (i.e., forced

to fallow) than farmers with groundwater access, but having greater flexibility to respond to

long-run surface water shortages by drilling new groundwater wells (Hadachek et al. (2026)).

Thus, the mechanisms underlying farmer responses to both groundwater cost increases and

surface water shortages appear to differ across time horizons.

Moreover, our results illustrate how incorporating dynamics can undo the classic eco-

nomic intuition that longer time horizons lead to larger elasticities (e.g., Castillo (2021);

Lemoine (2024)). As with previous models showing the potential for smaller long-run elas-

ticities than short-run elasticities (e.g., Gowrisankaran and Rysman (2012) for durable goods;

Hall (1991) for labor supply), this pattern stems from differing mechanisms underlying farm-

ers’ groundwater demand response.49 Whereas intensive-margin reductions in irrigation are

not sustainable over longer time horizons, the crop-switching mechanism requires longer time

horizons to justify incurring the fixed costs of uprooting or planting crops.

6.5 Impacts of counterfactual groundwater policy

Finally, we use our dynamic model to quantify the potential effectiveness of California’s land-

mark groundwater policy, SGMA.50 While SGMA’s stringency varies substantially across

Groundwater Sustainability Agencies, the overdrafted areas of our sample will require a

49. For durable goods in Gowrisankaran and Rysman (2012), the short-run mechanism is waiting for an
advantageous price shock, whereas in the long run, households must decide whether or not to make a purchase
at all. For labor supply in Hall (1991), short-run mechanisms involve intertemporal substitution to work
more in high-wage periods, whereas long-run mechanisms relate to secular trends in labor supply.

50. In order to stem rapid aquifer drawdown, the majority of SGMA groundwater sustainability plans are
proposing price-based instruments (Bruno, Hagerty, and Wardle (2022)). Our results speak directly to these
plans, while providing a heuristic for stringencies of and possible responses to non-price instruments.
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Figure 5: SGMA – Required groundwater taxes and farmer responses
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Notes: Panel A plots market-specific SGMA groundwater reduction targets (on the horizontal axis), and our estimates of the
long-run groundwater tax stringency that would be required to meet these targets (on the vertical axis). The size of each dot
indicates each market’s total groundwater extraction in our no-tax baseline, scaled by the share of the market belonging to
a SGMA-regulated area; the solid navy line is a Lowess fit, similarly weighted. Panel B plots the aggregate effect of these
market-specific taxes on land use, groundwater use, and electricity use. Each bar shows the percent change in land or resource
use under a SGMA counterfactual compared to baseline with no taxes. Bars report means over 1,000 draws that are common
to all markets; 95% confidence intervals (vertical lines) plot the 2.5th and 97.5th percentiles over these draws.

16.7% reduction in groundwater use on average.51 We use our model to recover the ground-

water tax that would be required to achieve SGMA’s spatially heterogeneous targets, and

to simulate the resulting impacts on crop choice and groundwater use. To do so, for each

of our 82 markets, we calculate the area of the market within overdrafted GSAs and the

average reduction in groundwater pumping required by those GSAs. Then, we take our esti-

mated dynamic model (with its market-specific crop switching costs) and, for each market,

loop over groundwater tax stringencies until converging on a tax that achieves the reduction

target of the market’s overdrafted areas.

Panel A of Figure 5 plots these market-specific taxes against the reduction requirements

in each market, for markets with groundwater pumping reduction requirements. Achiev-

ing long-run sustainability in these markets (i.e., 16.7% for the average market) will re-

quire a 52.0% groundwater tax on average. However, there is meaningful variation across

markets: the 25th and 75th percentile reductions are 10.4% and 20.6%, and the 25th and

51. Note that PG&E’s boundary excludes the southern parts of the Central Valley which are severely
overdrafted. SGMA required all GSAs in medium- and high-priority basins to submit GSPs. However, 57
of the 120 GSPs in our data report no required groundwater pumping reductions. We only report statistics
for locations with binding SGMA requirements (i.e., those that require reductions to achieve sustainability).
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75th percentile required taxes are 20.4% and 76.9%.52 Our simulated taxes rise more-than-

proportionally with reduction requirements, consistent with increasing marginal costs of

groundwater conservation.

Panel B shows how these taxes would impact aggregate crop choice, groundwater use,

and electricity use. Our model predicts that achieving SGMA targets would lead to a 10.0%

decline in fruit/nut perennials, a 1.0% increase in hay perennials (not statistically different

from zero), a 4.2% increase in annuals, and a 20.7% increase in fallowing, each compared

to its respective acreage in our no-tax scenario.53 These correspond to 16.4% and 16.0%

reductions in groundwater and electricity, respectively. These results illustrate that SGMA’s

sustainability targets are likely attainable through groundwater taxes, which in turn will

lead to substantial changes in land use.

7 Conclusion
This paper estimates how agents—California farmers—respond to environmental policy—

groundwater pricing—in both the short and long run. We leverage quasi-random variation

in groundwater costs to estimate the elasticity of demand for groundwater over different

time horizons. We provide reduced-form evidence that farmers respond to year-on-year

groundwater pumping cost shocks by reducing water consumption. Since long-lived perennial

tree crops are common in this setting, we build and estimate a dynamic discrete choice model

in which farmers are forward-looking and fields are state-dependent. Using this model, we

first recover a short-run elasticity of groundwater demand of −0.79, finding that farmers do

not switch crops in response to temporary cost shocks but instead reduce irrigation holding

crop fixed. We then recover a long-run elasticity of groundwater demand of −0.46, finding

that permanent cost increases cause farmers to switch out of thirsty fruit/nut perennials and

into annual crops and fallowing.

52. For all statistics in our SGMA policy counterfactual, we weight markets by their quantity of ground-
water pumping in our no-tax baseline scenario. Appendix A.5 shows that 85% of this heterogeneity in tax
stringencies is explained by policy variation in SGMA targets across markets.

53. These estimates imply that SGMA will cause 2.5% of total acres to switch into fallowing. This effect is
the same order of magnitude as the land use response to water pricing estimated by by Bruno, Jessoe, and
Hanemann (2024), and considerably smaller than an engineering estimate from Escriva-Bou et al. (2023)
(which only allows farmers to respond by fallowing). Note that our counterfactuals only model fallowing, as
opposed to exit from agriculture. We cannot model exit in a way that is identified, as it is rare in sample.
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We use our dynamic model to simulate California’s flagship groundwater management

policy. For the average area where the policy will bind, we find that the equivalent of a

52.0% tax on groundwater pumping costs will be required to achieve the state’s sustainability

goals—with meaningful heterogeneity in the necessary tax stringency across locations. These

results imply that California’s Sustainable Groundwater Management Act will alter the

landscape of crop production across California by incentivizing large shifts away from fruit

and nut perennials and towards exit from agriculture. An important topic for future research

will be to quantify the regulation’s general equilibrium impacts: to what extent will these

land use changes impact crop prices earned by farmers and food prices faced by consumers?

Given that California dominates the U.S. market for fruits, nuts, and vegetables, any such

price effects could have major welfare consequences.

Our work broadly underscores the importance of using dynamic models to analyze

environmental and resource management policies. Our results further highlight that agents’

long-run responses need not be larger than their short-run counterparts. These lessons likely

apply across a broad range of settings. For example, distinguishing between short- and long-

run response margins is crucial in the context of climate policy, where short-run adaptation

options may not be feasible (or optimal) in the long run, and vice versa.
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A Details on dynamic discrete choice estimation

A.1 Model of crop choice

Our model of crop choice and derivation of an estimating equation follow closely from and
build upon Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021). First, from
Assumptions 1–3 in the main text, the value function for a given field is:

V (kt, ωt, εt) = max
ct∈C

{π(ct, kt, ωt, εt) + βE [V (kt+1, ωt+1, εt+1) | ct, ωt]}

as shown in Equation (5) in the main text. This value function gives rise to the ex ante
value function:

V̄ (kt, ωt) ≡
∫
V (kt, ωt, εt)dF

ε(εt)

and the conditional value function:

v(ct, kt, ωt) ≡ π̄(ct, kt, ωt) + βE
[
V̄ (kt+1, ωt+1) | ct, ωt

]
(A1)

where π̄(ct, kt, ωt) ≡ π(ct, kt, ωt, 0) represents an expected profit function with the idiosyn-
cratic shock equal to zero. As shown in Equation (6) in the main text, conditional choice
probabilities depend on these conditional value functions:

p(ct, kt, ωt) =
exp [v(ct, kt, ωt)]∑
c′t∈C

exp [v(c′t, kt, ωt)]

We next invoke the Arcidiacono-Miller Lemma (Arcidiacono and Miller (2011)), which
follows from the Hotz-Miller inversion (Hotz and Miller (1993)) and yields a new expression
for the ex ante value function written as a function of the conditional value and conditional
choice probability:

V̄ (kt, ωt) = v(ct, kt, ωt)− ln p(ct, kt, ωt) + γ (A2)

where γ is the Euler constant. In words, the ex ante value equals the conditional value after
making any crop choice ct plus a correction term to account for the relative value of crop
ct compared to the rest of the choice set. This expression further shows that CCPs contain
information about the values of making different crop choices.

We continue to follow Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021)
to derive an Euler equation that will yield an estimating equation for this dynamic discrete
choice model. We consider two sequences of crop choices in years t and t + 1. In the first
sequence, the farmer chooses crop ct in year t followed by a renewal action that we denote
rt+1 in year t + 1. In the second sequence, the farmer instead chooses crop c′t in year t
followed by the same rt+1 in year t + 1. In each case, the farmer then chooses optimally in
years t + 2 and beyond. To generate an Euler equation, we compare the value of these two
cropping sequences.
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We first combine Equations (A1) and (A2) to generate an expression for expected profit
of any crop choice in year t:

π̄(ct, kt, ωt) = V̄ (kt, ωt)− βE
[
V̄ (kt+1, ωt+1) | ct, ωt

]
+ ln p(ct, kt, ωt)− γ

We then decompose the continuation value into its realization and its expectational error,
with expectational error defined as the difference between expectation and realization:

eV (ct, ωt, ωt+1) ≡ E
[
V̄ (kt+1, ω

′
t+1) | ct, ωt

]
− V̄ (ct, ωt+1)

This decomposition yields:

π̄(ct, kt, ωt) + βeV (ct, ωt, ωt+1) = V̄ (kt, ωt)− βV̄ (ct, ωt+1) + ln p(ct, kt, ωt)− γ

with only realized values (rather than expected values) on the right-hand side.
Next, we eliminate the realized continuation values from this expression, first by differ-

encing the equation across the two different crop choices in year t, ct and c′t:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β

[
V̄ (ct, ωt+1)− V̄ (c′t, ωt+1)

]
In words, the CCP term on the left-hand side equals the difference in values from choosing
crop c versus crop c′ in year t and then choosing crops optimally in all future years.

We then use Equation (A2) to substitute for the continuation values in year t + 1.
That equality holds for all crop choices, including choice rt+1 from the cropping sequences
described above:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β [v(rt+1, ct, ωt+1)− v(rt+1, c

′
t, ωt+1)]− β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
Because crop choice rt+1 is a renewal action, the field state in year t + 2 will depend

only on the choice of rt+1 in year t + 1 and not on the crop choice in year t. In that case,
the continuation values in year t + 2 will be the same regardless of whether crop ct or crop
c′t is chosen in year t, so the difference in conditional values reduces to:

v(rt+1, ct, ωt+1)− v(rt+1, c
′
t, ωt+1) = π̄(rt+1, ct, ωt+1)− π̄(rt+1, c

′
t, ωt+1)
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Then the above expression simplifies to:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β [π̄(rt+1, ct, ωt+1)− π̄(rt+1, c

′
t, ωt+1)]− β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
We next expand the profit terms, as in Equation (4) in the main text, which yields an

Euler equation. We rearrange the expression to get Equation (7) in the main text:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
+ β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
= αG [G(ct, ωt)−G(c′t, ωt)]

+ α(ct, kt)− α(c′t, kt) + β [α(rt+1, ct)− α(rt+1, c
′
t)]

+ ξ(ct, kt, ωt)− ξ(c′t, kt, ωt) + β [ξ(rt+1, ct, ωt+1)− ξ(rt+1, c
′
t, ωt+1)]

+ β
[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
Each side of this expression is equivalent to the difference in values between the two sequences
of crop choices that we describe above: choosing ct or c′t in year t, followed by renewal action
rt+1, and then choosing optimally in all following years.

This equality holds for any crop choices ct and c′t and for any renewal action rt+1. To
generate our estimating equation, we set both c′t and rt+1 equal to the non-crop category—
which we denote with 0—while ct represents one of the other three crop choices. Then our
estimating equation is a simple linear regression:

Yckt = αG∆Gct + ∆̃αck + ∆̃ξckt +∆eVct (A3)

where

Yckt = ln

[
p(ct, kt, ωt)

p(0, kt, ωt)

]
+ β ln

[
p(0, ct, ωt+1)

p(0, 0, ωt+1)

]
∆Gct = G(ct, ωt)−G(0, ωt)

∆̃αck = α(ct, kt)− α(0, kt) + β [α(0, ct)− α(0, 0)]

∆̃ξckt = ξ(ct, kt, ωt)− ξ(0, kt, ωt) + β [ξ(0, ct, ωt+1)− ξ(0, 0, ωt+1)]

∆eVct = β
[
eV (ct, ωt, ωt+1)− eV (0, ωt, ωt+1)

]
A.2 Estimation

Market construction We estimate the above regression at the market level, grouping
farmers who face a similar choice environment. We define a market according to three
criteria: electricity price, surface water availability, and geographic proximity. Because small
pumps and large pumps face different marginal electricity prices, we first partition parcels
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based on whether their groundwater pump is on a small- or large-pump tariff.1 To account
for the final two criteria, we further split parcels by water districts—thereby grouping farms
with comparable surface water allocations within contained geographic areas.2 For parcels
located outside of any water district (a.k.a., in “white areas”), we define county-level pseudo-
water districts; these units retain the small vs. large tariff split, while also grouping farms
with comparable surface water access (i.e., allocations of zero) in contained geographic areas.

Calculating conditional choice probabilities In order to ensure no conditional choice
probability (CCP) has a value of zero or one, we smooth a market’s CCPs using other markets
with similar surface water availability (i.e., in vs. out of a water district) and electricity tariff
(i.e., small- vs. large-pump tariffs). Smoothing weights are inversely proportional to the
square of the distance between the market centroids. Formally, the smoothed CCPs are:

p̂m(ct, kt, ωmt) =

∑
m′∈Mwmm′pm′(ct, kt, ωm′t)∑

m′∈Mwmm′

where weight wmm′ = (1 + dmm′)−2 if markets m and m′ have similar electricity tariffs and
surface water availability, and 0 otherwise. dmm′ is the distance between centroids of m and
m′ in kilometers.

Recovering profit intercept parameters Estimating Equation (A3) returns 12 ∆̃αmck

regression intercept terms for each market, which we use to recover the 16 profit intercepts
for each market, αm(ct, kt). To do this, we must make additional assumptions. First, we
normalize αm(0, 0) = 0, where both field state and crop choice are non-crop. Second, we
decompose αm(ct, kt) = Rm(ct)−Tm(ct, kt), where Rm(ct) is time-invariant net returns to crop
ct (excluding groundwater costs), and Tm(ct, kt) is the time-invariant cost of transitioning
from field state kt to crop ct. We assume Tm(0, ct−1) = 0.5 × Tm(ct, 0), such that switching
from crop c to fallow costs half as much as switching from fallow to crop c.3 Third, we
assume there is no transition cost to remain in the same crop: Tm(ct, ct−1) = 0.4

1. For parcels containing both small and large pumps (multiple pumps and/or pumps that change capac-
ity), we assign the modal category based on observed groundwater use.

2. Appendix C.5 provides more information on our use of water districts. For some smaller water districts,
we observe too few fields to be confident in the construction of our market-level variables (especially after
having already split by small vs. large tariff categories). We consider a water district-tariff group to be too
small if it contains fewer than 30 (in-sample) parcels. In this case, we create a composite water district-tariff
group comprising all water districts in the county (still retaining the small vs. large tariff split).

3. Different coefficients relating Tm(0, ct−1) to Tm(ct, 0) yield nearly identical αm(ct, kt) parameters.
4. Any recurring costs, such as the cost of replanting an annual crop every year, are captured by Rm(ct).

Then, Tm(ct, c
′
t−1) for ct ̸= c′t−1 reflects the additional costs incurred when switching crops.
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A.3 Model results

Table A1: Dynamic discrete choice parameter estimates

A. Groundwater cost parameter: αG

−0.015∗∗

(0.006)

B. Profit intercept parameters: α(c, k)

Field state (k)

Annual Young
fruit/nut

Mature
fruit/nut Hay Non-crop

Crop choice (c)
Annual 1.63 −1.45 −1.87 −0.07 −0.20

[1.06, 2.17] [−2.03, −0.91] [−2.45, −1.33] [−0.64, 0.48] [−0.77, 0.34]

Fruit/nut −1.59 −0.11 2.45 −0.64 −0.87
[−2.49, −0.74] [−1.00, 0.74] [1.55, 3.30] [−1.54, 0.21] [−1.77, −0.03]

Hay 0.04 −0.77 −0.83 2.08 −0.37
[−0.93, 0.95] [−1.74, 0.15] [−1.80, 0.09] [1.11, 3.00] [−1.34, 0.55]

Non-crop† −0.91 −1.66 −1.66 −1.23 0.00

Notes: Panel A displays our estimated groundwater cost parameter, αG, which we obtain from estimating Equation (7). The
standard error (in parentheses) is clustered at the market-year level. Panel B displays our average profit intercept parameters.
The parameters are recovered at the market level, and we average over all markets to generate this table. 95% confidence
intervals (in brackets) are constructed from the 2.5th and 97.5th percentile of the αG sampling distribution across 1,000 draws.
Because of our normalizations, comparing the profit intercept parameters to a null hypothesis of zero is not appropriate, so we
do not report significance on these estimates. Significance of αG: *** p < 0.01, ** p < 0.05, * p < 0.10.
† Because of our normalizations to recover all 20 α(c, k) terms, the intercept terms for the non-crop choice have no variation
across draws from the sampling distribution.

Parameter estimates Table A1 reports the results of our dynamic model estimation. The
groundwater cost parameter αG is common to all markets. As expected, the estimated value
is negative, indicating that greater groundwater costs reduce profits. The profit intercept
parameters α(c, k) are market-specific, and we report the average values over all markets. We
normalize this parameter to equal zero when both field state and crop choice are non-crop:
α(0, 0) = 0. Thus, the other α(c, k) parameters are relative to remaining in non-crop for
consecutive years. For annual and hay crops, remaining in the same crop type for consecutive
years (c = k) yields positive returns as expected (e.g., see the upper left entry of Panel B for
annual returns when remaining in an annual crop). For fruit/nut perennials, remaining in a
young crop yields approximately zero returns, as the young crop has not begun producing
yet. Once a fruit/nut crop reaches the mature field state, remaining in that crop yields the
largest positive returns. When switching crops (c ̸= k), our parameter estimates imply that
current-year returns are either the same as or worse than remaining in non-crop, indicating
that switching costs typically offset or dominate current-year returns from the new crop.
These results are expected in our setting, where switching crop type requires large upfront
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investments—such as planting or removing an entire orchard of trees—that pay out over a
longer time horizon.

(Semi-)elasticities Table A2 reports the land-use semi-elasticities and the groundwater
and electricity elasticities that result from our counterfactual simulations. Figure 4 in the
main text depicts the short-run results (Column (1)) and the long-run, Preferred IM results
(Column (4)). This table reports three additional long-run scenarios: No IM (in which
farmers cannot respond on the intensive margin and can only change crops), Low IM, and
High IM. These alternate long-run intensive-margin elasticities come from selecting cropping
streaks of seven or more years (Low IM) or five or more years (High IM)—rather than
our preferred choice of cropping streaks with six or more years in a particular crop—when
calibrating the response. As expected, allowing for a greater intensive-margin effect mutes
the crop-switching response while intensifying the groundwater/electricity response.

Table A2: Short- and long-run elasticities with respect to groundwater pumping cost

Short run
Long run

No IM Low IM Preferred IM High IM
(1) (2) (3) (4) (5)

Modeled IM elasticity −0.944 0.000 −0.267 −0.380 −0.591

Crop semi-elasticities

Annual −0.000 0.112∗∗ 0.082∗∗ 0.071∗∗ 0.042∗∗

[−0.000, 0.000] [0.023, 0.181] [0.019, 0.135] [0.014, 0.118] [0.007, 0.075]

Fruit/nut −0.000∗∗ −0.210∗∗ −0.150∗∗ −0.129∗∗ −0.075∗∗

[−0.001, −0.000] [−0.314, −0.034] [−0.232, −0.028] [−0.199, −0.021] [−0.124, −0.011]

Hay −0.001∗∗ −0.013 −0.008 −0.007 −0.004∗∗

[−0.001, −0.000] [−0.059, 0.002] [−0.039, 0.001] [−0.034, 0.000] [−0.020, −0.000]

Non-crop 0.001∗∗ 0.111∗∗ 0.076∗∗ 0.065∗∗ 0.036∗∗

[0.000, 0.002] [0.015, 0.192] [0.012, 0.137] [0.008, 0.116] [0.005, 0.068]

Elasticities

Groundwater −0.792∗∗∗ −0.225∗∗ −0.387∗∗∗ −0.461∗∗∗ −0.592∗∗∗

[−0.793, −0.791] [−0.379, −0.040] [−0.502, −0.266] [−0.557, −0.354] [−0.655, −0.533]

Electricity −0.763∗∗∗ −0.240∗∗ −0.388∗∗∗ −0.456∗∗∗ −0.578∗∗∗

[−0.764, −0.762] [−0.408, −0.055] [−0.513, −0.269] [−0.562, −0.351] [−0.645, −0.519]

Notes: This table reports the short- and long-run (semi-)elasticities of land use and groundwater and electricity use with respect
to the marginal cost of groundwater, estimated using our dynamic discrete choice model. To recover short-run (semi-)elasticities
(Column (1)), we simulate the model with baseline costs until it reaches a steady state and then increase the marginal cost of
groundwater by 20% for one year. While the shock is unanticipated by farmers, once it arrives, they are aware that it only lasts
for one year. For this short-run scenario, we assume farmers’ within-crop intensive-margin elasticity is −0.944 (from Column (1)
of Table 3). To recover long-run (semi-)elasticities (Columns (2)–(5)), we permanently increase the marginal cost of groundwater
by 20% and simulate the model forward. Farmers are aware that this price change is permanent. In “No IM”, farmers can only
respond to groundwater cost changes by changing crops. In “Low IM”, “Preferred IM”, and “High IM”, farmers also respond
on the intensive-margin by reducing water use conditional on crop choice; we assume these responses have cost elasticities of
estimates of −0.267, −0.380, and −0.591, respectively (from Columns (4)–(6) of Table 4). The reported semi-elasticities and
elasticities are the means over 1,000 draws for each model. The 95% confidence intervals (in brackets) are constructed from
the 2.5th and 97.5th percentile over draws. We report Columns (1) and (4) graphically in Figure 4. Significance: *** 99% of
simulation draws have the same sign; ** 95% of draws, * 90% of draws.
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A.4 Robustness

Figure A1 plots robustness test for our long-run (semi-)elasticities, reporting results for seven
alternate model specifications: heterogeneous intensive-margin elasticities (“Crop-specific
IM”), parcel sample selection (“Drop high cost” and “All size”), market-level variable construc-
tion (“Weighted mean”), estimation weighting (“Weight by m-k”), and drought assumptions
(“Low drought pr.” and “High drought pr.”). Our structural estimates are broadly robust to
each of these alternate specifications, which the notes under Figure A1 describe in detail.
The only notable departure from our main results is the sensitivity “High drought pr.”, where
we increase farmers’ subjective probability of experiencing a drought from 58% to 75%. This
increased risk of drought intensifies the crop switching effect from fruit/nut perennials into
annuals, which increases the magnitudes of the long-run elasticities for groundwater and
electricity.

Figure A1: Robustness of long-run (semi-)elasticities

Main

Crop−specific IM

Drop high cost

All sizes

Weighted mean

Weight by m−k

Low drought pr.

High drought pr.

−.6 −.4 −.2 0 .2 .4

Semi−elasticity

Fruit/nut Annual

Hay Non−crop

 

 

 

 

 

 

 

 

0−.2−.4−.6−.8

Elasticity

Groundwater

Electricity

Notes: This figure plots robustness checks on our long-run (semi-)elasticities of land use (left plot) and groundwater and
electricity use (right plot) with respect to groundwater cost. The top row reproduces the results of our preferred model:
Preferred IM from Column (4) of Table A2. In “Crop-specific IM,” we apply crop-specific heterogeneous intensive-margin
responses (scaling the point estimates in Table B10 by 40%, rather than our preferred homogeneous intensive-margin response).
In “Drop high cost,” we drop parcels with groundwater costs > $5, 000 per acre (rather than our preferred threshold of > $3, 000
per acre). In “All sizes,” we include parcels of all sizes (rather than our preferred exclusion of parcels smaller than 1 acre and
greater than 5,000 acres). In “Weighted mean,” we aggregate data to the market level using the weighted means (rather than our
preferred weighted medians) of parcel data. In “Weight by m-k,” we weight observations by croppable acres of the market-field
state (rather than by our preferred weights by croppable acres of the market). In “Low drought pr.” and “High drought pr.,”
we assume the probability of a drought is 0.4 and 0.75, respectively (rather than our preferred probability of 0.58). The left
plot shows semi-elasticities for annual crops (circles), hay perennials (squares), fruit/nut perennials (triangles), and non-crop
(diamonds). The right plot shows the electricity of demand for groundwater (circles) and electricity (diamonds), for the same
six sensitivities. The reported semi-elasticities and elasticities are the means over 1,000 draws for each model. The plotted 95%
confidence intervals (horizontal lines) show the 2.5th and 97.5th percentile over draws.
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A.5 Heterogeneity in necessary tax stringencies

Our policy simulations imply substantial heterogeneity across markets in the tax stringency
that would be required to achieve SGMA’s groundwater reduction targets (see Panel A of
Figure 5). This heterogeneity has two possible sources, which are not mutually exclusive:
(i) policy-driven heterogeneity in the stringency of SGMA targets across GSAs, with stricter
targets necessitating larger taxes; and (ii) spatial heterogeneity in factors that influence
farmers’ responsiveness to groundwater costs, with less cost-responsive markets necessitating
larger taxes to achieve a given target. Here, we explore both drivers of heterogeneity by
estimating descriptive cross-sectional regressions at the market (m) level.

Since the SGMA targets are endogenously related to local groundwater irrigation prac-
tices, we first regress SGMA targets on a set of market-level covariates.5 These covariates
include groundwater depth, average pump efficiency, crop shares by category (i.e., annual,
fruit/nut perennial, and hay), and groundwater use—each averaged across all parcels in each
market (weighted by parcel i’s croppable acreage multiplied by the number of years it ap-
pears in the sample). We report these regression results in Column (1) of Table A3. We find
that 10-foot deeper groundwater levels are associated with a 1.2 pp greater SGMA target,
consistent with the policy’s goals. Greater shares of all three crop categories (compared to
non-crop, the omitted category) are also strongly associated with greater SGMA targets,
which is consistent with agriculture being a major source of the aquifer drawdown that mo-
tivated SGMA. Interestingly, we find that surface water districts tend to have smaller SGMA
targets in percentage terms, holding other factors constant. Together, these ten covariates
predict 49% of the variation in SGMA targets.

Column (2) of Table A3 estimates the relationship between our estimates of the required
groundwater tax stringency and SGMA’s pumping reduction target (Panel A of Figure 5).
We regress the market-specific required tax stringencies, which we estimated through our
policy counterfactual simulations, on a quadratic in SGMA targets. Heterogeneity in the
targets alone explains 85% of the variation in tax stringencies across markets. Column (3)
replaces the quadratic in SGMA targets with the ten covariates from Column (1). While
seven of these covariates are strong predictors of the market-specific tax stringencies, together
they explain only 44% of the variation in our policy simulations.

Columns (2)–(3) are not straightforward to interpret, since the SGMA targets in Col-
umn (2) are endogenous to the covariates in Column (3). Because of this, the 0.44 R2 in
Column (3) could indicate either that the covariates proxy imperfectly for the SGMA tar-
gets or that the covariates directly explain 44% of the variation in tax stringencies. This
motivates Column (4) of Table A3, which includes both the SGMA targets and the other
covariates. This reveals that the statistical correlations in Column (3) appear to be proxy
effects—we cannot reject zero correlation for any of the ten covariates after directly control-
ling for the target. The R2 of 0.87 is only slightly higher than in Column (2), indicating that

5. We extract these SGMA targets from GSPs, as we discuss in Appendix C.6.
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between-market heterogeneity in tax stringencies in our policy simulations is driven almost
exclusively by policy variation in the SGMA targets.

Table A3: SGMA targets explain most of the variation in market-specific taxes

(1) (2) (3) (4)
SGMA target (%) Market-specific tax (%)

SGMA target (%) 1.36∗∗ 1.62∗∗

(0.58) (0.67)

SGMA target (%) squared 0.08∗∗∗ 0.07∗∗∗

(0.01) (0.02)

Average groundwater depth (feet) 0.12∗∗ 0.63∗∗ −0.04
(0.06) (0.31) (0.14)

Average pump efficiency (%) −0.08 −0.98 0.04
(0.30) (1.40) (0.56)

Average farm size (croppable acres) 0.00 −0.08 −0.05
(0.02) (0.08) (0.05)

Average share of annual crops 47.38∗∗ 260.55∗∗ 23.51
(21.67) (101.97) (41.31)

Average share of fruit/nut perennial crops 40.90∗∗ 194.46∗∗ −3.69
(16.05) (80.26) (35.73)

Average share of hay perennial crops 40.41∗∗∗ 189.50∗∗∗ −1.38
(14.60) (70.24) (31.41)

Average groundwater use (AF/acre-year) 0.12 −1.35 −1.14
(0.78) (3.27) (1.52)

1[in surface water district] −8.42∗∗∗ −45.36∗∗∗ −4.11
(3.18) (16.40) (7.92)

1[in San Joaquin Valley basin] −8.60∗ −51.54∗∗ −7.53
(4.76) (22.46) (10.35)

1[in Sacramento Valley basin] −13.52∗∗∗ −51.62∗∗∗ −16.17
(4.52) (18.84) (15.07)

Market-level observations 82 82 82 82
R2 0.49 0.85 0.44 0.87

Notes: These cross-sectional OLS regressions describe the variation in SGMA targets and market-level taxes depicted in the
Panel A of Figure 5. Column (1) regresses the market-level SGMA targets (i.e., the horizontal axis of Figure 5, Panel A) on
market-level covariates. Columns (2)–(4) regress the required market-level groundwater taxes (i.e., the vertical axis of Figure 5,
Panel A) on these targets and market-level covariates. We construct these market-level covariates by averaging across parcels
in each market, weighting by the product of each parcel’s croppable acreage and its count of years in that market. Regressions
are weighted by the sum of these weights across their constituent parcels. Removing these regression weights and/or dropping
markets with non-binding SGMA targets yields similar results. Heteroskedasticity-robust standard errors are in parentheses.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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B Reduced-form sensitivity analysis

Tables B1–B9 present a series of robustness checks for our reduced-form estimate of ground-
water cost response in Column (1) of Table 2 (odd columns), and for our intensive-margin
groundwater demand estimate in Column (1) of Table 3 (even columns).

B.1 Addressing measurement error

Unobserved pump upgrades If higher electricity costs incentivized farmers to invest
in (unobserved) pump efficiency improvements, we could mistakenly interpret these energy
efficiency improvements as reductions in groundwater use (rather than reductions in the
electricity needed to produce the same quantity of groundwater). Such unobserved “drift” in
our kWh-to-AF conversion factors would bias our groundwater estimates away from zero. In
Table B1, we minimize the potential for unobserved drift in AF/kWh ratios by restricting our
sample to parcel-years for which every constituent SP has an observed pump test within m
months of each month in that calendar year (i.e., observations with more contemporaneous
parameterizations of operating pump efficiency and lift in Equation (1)). If anything, this
increases the magnitudes of our point estimates, suggesting that unobserved pump efficiency
improvements are not biasing our estimates away from zero.

Table B1: Reduced-form sensitivity – months to nearest pump test

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.793∗∗∗ −0.820∗∗∗ −1.021∗∗∗ −1.212∗∗∗ −1.240∗∗∗ −1.505∗∗∗

(0.242) (0.301) (0.208) (0.306) (0.240) (0.355)

Pump tests within 48 months 24 months 12 months
Intensive margin Yes Yes Yes
Parcel units 7,008 6,893 6,921 6,725 6,823 6,478
County-years 356 329 316 313 283 279
Parcel-year observations 47,495 37,861 33,895 27,816 24,562 20,118

First-stage estimates

log (P elecDefault ($/kWh)) 1.446∗∗∗ 1.314∗∗∗ 1.314∗∗∗ 1.380∗∗∗ 1.596∗∗∗ 1.568∗∗∗

(0.055) (0.067) (0.075) (0.096) (0.101) (0.139)

Kleibergen-Paap F -stat 692 322 398 192 248 120

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, restricting the sample
to parcel-years for which all constituent SP-months occur within m months of an observed pump test. Progressively restricting
the sample in this way does not systematically attenuate our point estimates. This assuages concerns that unobserved pump
efficiency upgrades (incentivized by higher costs) are biasing our electricity-to-groundwater conversions away from zero. Odd
(even) columns are otherwise identical to Column (1) of Table 2 (Column (1) of Table 3). Regressions include the following
fixed effects: parcel, parcel × 1[large pump], year, groundwater basin × year, water district × year, and (for even columns)
parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.).
Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.

10



kWh-to-AF conversions Table B2 reports sensitivity analyses on our parameterization
of lift in Equation (1). Columns (1)–(2) use pump-specific drawdown predictions for months
without an observed pump test, rather than our preferred approach of fixing drawdown at
measured levels that don’t vary with depth. Columns (3)–(4) remove pumps with missing
or questionable drawdown measurements, rather than our preferred approach of populating
drawdown for these pumps using between-pump predictions. Columns (5)–(6) parameterize
groundwater depth using the average of measurements across the full groundwater basin for
each sample month, rather than our preferred approach of using month-specific rasters to
estimate localized depths (which could be prone to between-pump spillovers from “cones of
depression”). All three sensitivities yield similar point estimates, which is unsurprising given
that our electricity price instrument is unlikely to be correlated with drawdown or depth.

Table B3 tests three sample restrictions related to our kWh-to-AF conversions. We
find similar point estimates for parcels containing SPs with either exactly one vs. multiple
observed pump tests (Columns (1)–(2) vs. (3)–(4)). We also find similar estimates for parcel-
years with below-median distance to their nearest groundwater measurement in both summer
and winter months (Columns (5)–(6)). As with Table B2, these results are unsurprising given
that our instrument should be uncorrelated with the number of pump tests, between-test
extrapolation/interpolation, or the accuracy of our groundwater depth rasters.

Table B2: Reduced-form sensitivity – parameterization of kWh-to-AF conversion

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.936∗∗∗ −0.945∗∗∗ −0.868∗∗∗ −0.746∗∗ −0.941∗∗∗ −0.946∗∗∗

(0.221) (0.268) (0.256) (0.295) (0.221) (0.274)

Sensitivity Predicted drawdown
(instead of fixed)

Drop suspect
drawdown measurements

Basin-month avg depth
(instead of rasterized)

Intensive margin Yes Yes Yes
Parcel units 7,104 6,997 6,302 6,187 7,104 6,997
County-years 367 334 367 334 367 334
Parcel-year observations 60,490 46,202 51,391 39,828 60,490 46,202

First-stage estimates

log (P elecDefault ($/kWh)) 1.417∗∗∗ 1.322∗∗∗ 1.322∗∗∗ 1.291∗∗∗ 1.410∗∗∗ 1.290∗∗∗

(0.043) (0.050) (0.042) (0.046) (0.042) (0.049)

Kleibergen-Paap F -stat 1068 562 1115 632 1148 565

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, focusing on components of the
kWh-to-AF conversion. Columns (1)–(2) use time-varying predictions of pump-specific drawdown (i.e., the translation from depth to lift),
rather than our preferred parameterization that fixes drawdown at the level reported in each pump test. Columns (3)–(4) remove pump tests
where the reported drawdown measurement is questionable (e.g., extreme values, internal inconsistencies). Columns (5)–(6) use monthly
average groundwater depths across each basin, rather than our preferred parameterization that rasterizes depth at each SP location. Odd
(even) columns are otherwise identical to Column (1) of Table 2 (Column (1) of Table 3). Regressions include the following fixed effects:
parcel, parcel × 1[large pump], year, groundwater basin × year, water district × year, and (for even columns) parcel × cropping streak.
Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are
two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B3: Reduced-form sensitivity – kWh-to-AF-related sample restrictions

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.861∗∗∗ −0.600∗ −1.038∗∗∗ −1.393∗∗∗ −0.837∗∗ −1.000∗∗∗

(0.304) (0.311) (0.241) (0.465) (0.371) (0.346)

Sample restriction SPs with exactly
one pump test

SPs with multiple
pump tests

GW measurements
w/in 10 miles (in season)

Intensive margin Yes Yes Yes
Parcel units 4,403 4,306 2,862 2,829 4,160 3,946
County-years 355 325 342 310 265 241
Parcel-year observations 35,837 27,949 24,653 18,253 23,882 19,045

First-stage estimates

log (P elecDefault ($/kWh)) 1.359∗∗∗ 1.268∗∗∗ 1.268∗∗∗ 1.333∗∗∗ 1.532∗∗∗ 1.440∗∗∗

(0.046) (0.052) (0.076) (0.091) (0.066) (0.078)

Kleibergen-Paap F -stat 874 456 376 171 537 299

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, for sample restrictions related to our
kWh-to-AF conversions. Columns (1)–(2) include only parcels containing SPs with exactly one observed pump test. Columns (3)–(4) include
only parcels containing SPs with multiple observed pump tests. Columns (5)–(6) include parcel-years for which the nearest groundwater
measurement averaged less than 10 miles (the median) in both summer and winter of year t. Odd (even) columns are otherwise identical
to Column (1) of Table 2 (Column (1) of Table 3). Regressions include the following fixed effects: parcel, parcel × 1[large pump], year,
groundwater basin × year, water district × year, and (for even columns) parcel × cropping streak. Regressions are weighted by each parcel’s
“croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

B.2 Identification checks

Time-varying confounders Table B4 interacts year fixed effects with baseline pump
characteristics (horsepower and operating pump efficiency) and county, showing that our
estimates are robust to time-varying confounders correlated with these cross-sectional factors.

Table B5 tests for time-varying confounders related to the timing of PG&E’s smart
meter rollout. It seems plausible that PG&E might have prioritized replacing smart meters
based on: the age of customers’ accounts (proxied by the earliest SP start date in Columns
(1)–(2)), customers’ expected load on the grid (proxied by 2008 maximum monthly kWh
of a constituent SP in Columns (3)–(4)), or air conditioning demand among nearby house-
holds (proxied by climate zone in Columns (5)–(6)). Our reduced-form estimates are largely
unchanged when we interact these proxies with year fixed effects, which assuages concerns
about selection in the timing of smart meter switches.

Table B6 shows that our results are robust to controlling for weather (separately for
each month of the current and preceding years), drought severity (by county-year, for five
separate severities: “abnormal”, “moderate”, “severe”, “extreme”, and “exceptional”), localized
groundwater depth, and the distance from parcel i to the nearest contemporaneous ground-
water measurement (averaged across constituent SPs and over all months of the year).

12



Table B4: Demand sensitivity – time-varying confounders

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.880∗∗∗ −0.878∗∗∗ −0.935∗∗∗ −0.931∗∗∗ −0.914∗∗∗ −0.949∗∗∗

(0.200) (0.263) (0.221) (0.269) (0.220) (0.274)

Interact year FEs with Initial HP Initial OPE County
Intensive margin Yes Yes Yes
Parcel units 7,104 6,997 7,104 6,997 7,104 6,997
County-years 367 334 367 334 367 334
Parcel-year observations 60,490 46,202 60,490 46,202 60,490 46,202

First-stage estimates

log (P elecDefault ($/kWh)) 1.434∗∗∗ 1.325∗∗∗ 1.325∗∗∗ 1.299∗∗∗ 1.408∗∗∗ 1.296∗∗∗

(0.043) (0.050) (0.042) (0.049) (0.043) (0.051)

Kleibergen-Paap F -stat 1127 547 1131 557 1081 505

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, interacting year fixed effects with
the following cross-sectional fixed effects: earliest observed nameplate horsepower of pump (Columns (1)–(2)); earliest observed operating
pump efficiency (Columns (3)–(4)); and county (Columns (5)–(6)). Odd (even) columns are otherwise identical to Column (1) of Table 2
(Column (1) of Table 3). Regressions also include the following fixed effects: parcel, parcel × 1[large pump], year, groundwater basin ×
year, water district × year, and (for even columns) parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage
(excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.

Table B5: Reduced-form sensitivity – smart meter rollout

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.928∗∗∗ −0.937∗∗∗ −0.757∗∗∗ −0.888∗∗∗ −0.985∗∗∗ −0.943∗∗∗

(0.220) (0.270) (0.205) (0.247) (0.198) (0.269)

Interact year FEs with Earliest SP start
date in PG&E data

Max monthly kWh
for SP in 2008 Climate zone

Intensive margin Yes Yes Yes
Parcel units 7,078 6,974 5,511 5,457 7,104 6,997
County-years 367 334 360 328 367 334
Parcel-year observations 60,458 46,175 52,164 39,393 60,490 46,202

First-stage estimates

log (P elecDefault ($/kWh)) 1.426∗∗∗ 1.313∗∗∗ 1.313∗∗∗ 1.330∗∗∗ 1.421∗∗∗ 1.316∗∗∗

(0.043) (0.051) (0.045) (0.052) (0.043) (0.050)

Kleibergen-Paap F -stat 1085 522 998 514 1102 548

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, focusing on factors that might have
been correlated with PG&E’s smart meter rollout. We interact year fixed effects with following cross-sectional continuous variables: the
earliest account open date at an SP within the parcel (Columns (1)–(2)); the log of maximum monthly kWh consumed in 2008, the first year
of our sample period (Columns (3)–(4)); and climate zone (Columns (5)–(6)). Odd (even) columns are otherwise identical to Column (1) of
Table 2 (Column (1) of Table 3). Regressions include the following fixed effects: parcel, parcel × 1[large pump], year, groundwater basin ×
year, water district × year, and (for even columns) parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage
(excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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Table B6: Reduced-form sensitivity – adding time-varying controls

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −1.053∗∗∗ −0.911∗∗∗ −0.921∗∗∗ −0.924∗∗∗ −0.937∗∗∗ −0.949∗∗∗

(0.213) (0.270) (0.219) (0.270) (0.220) (0.271)

Control variables Monthly precipitation
and temperature

Drought severity
by county-year

Depth, and distance to
depth measurement

Intensive margin Yes Yes Yes
Parcel units 6,996 6,896 7,104 6,997 7,096 6,988
County-years 336 334 367 334 367 334
Parcel-year observations 53,868 44,557 60,490 46,202 60,231 46,034

First-stage estimates

log (P elecDefault ($/kWh)) 1.398∗∗∗ 1.284∗∗∗ 1.284∗∗∗ 1.308∗∗∗ 1.417∗∗∗ 1.306∗∗∗

(0.046) (0.053) (0.043) (0.050) (0.043) (0.051)

Kleibergen-Paap F -stat 917 520 1102 526 1091 522

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, adding time-varying controls.
Columns (1)–(2) control for month-specific precipitation and temperature (e.g. 12 variables for precipitation in each month of year t, and
for each month of year t− 1). Columns (3)–(4) control for the share of each county-year classified as a drought, separately for five severities
(“abnormal”, “moderate”, “severe”, “extreme”, and “exceptional”). Columns (5)–(6) control for depth at the location of parcel i and parcel i’s
average distance to the nearest groundwater depth measurement in year t. Odd (even) columns are otherwise identical to Column (1) of
Table 2 (Column (1) of Table 3). Regressions include the following fixed effects: parcel, parcel × 1[large pump], year, groundwater basin ×
year, water district × year, and (for even columns) parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage
(excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.

Neighbor spillovers Table B7 addresses a potential violation of our IV exclusion restric-
tion: if a decrease in P elecDefault

it is simultaneously experienced by parcel i’s neighbors, these
neighbors may increase their groundwater consumption, which can generate contemporane-
ous between-pump interference (i.e., cones of depression) because multiple farmers share the
same aquifer, which in turn lowers the groundwater level at parcel i, increasing i’s marginal
pumping costs. To address this possible spillover channel, we control for the average default
electricity price of parcel i’s neighbors within a certain geographic radius—including sepa-
rate controls for the average price of neighboring in-sample parcels (i.e., confirmed pumpers
most likely to impact parcel i’s costs) and for the average price of neighboring agricultural
service points (i.e., all other agricultural users—including any unconfirmed pumpers—that
are not included in our estimation sample). We also interact these two average-price-of-
neighbors controls with the count of neighbors (of each type) to model the intensity of
potential spillovers, as more neighbors should lead to more between-well interference. Ap-
pendix Table B7 demonstrates that including these controls does not meaningfully alter our
reduced-form estimates, defining neighbors using radii of 1, 2, or 10 miles.6 This provides
strong evidence that between-well interference is not driving an exclusion violation in this
setting, and is therefore unlikely to bias our IV estimates.

6. These radii are informed by the cone of depression analysis in Alley, Reilly, and Franke (1999).
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Table B7: Reduced-form sensitivity – controlling for spillovers via neighbors’ electricity prices

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −1.013∗∗∗ −1.000∗∗∗ −1.060∗∗∗ −1.027∗∗∗ −0.934∗∗∗ −0.932∗∗∗

(0.199) (0.263) (0.202) (0.259) (0.217) (0.266)

Control for neighbors’ prices within 1-mile radius within 2-mile radius within 10-mile radius
Intensive margin Yes Yes Yes
Parcel units 6,331 6,233 6,921 6,814 7,097 6,990
County-years 360 325 360 326 360 327
Parcel-year observations 52,070 39,784 58,366 44,560 60,407 46,133

First-stage estimates

log (P elecDefault ($/kWh)) 1.391∗∗∗ 1.308∗∗∗ 1.308∗∗∗ 1.299∗∗∗ 1.421∗∗∗ 1.316∗∗∗

(0.044) (0.054) (0.044) (0.052) (0.043) (0.051)

Kleibergen-Paap F -stat 982 457 1036 503 1097 534

Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, controlling for potential spillovers
through neighbors’ electricity prices (which could influence neighbors’ pumping behavior, thereby indirectly impacting farmer i’s groundwater
depth). Each regression includes four time-varying controls: the average P elecDefault

it of neighboring in-sample parcels (i.e., confirmed
pumpers), the average P elecDefault

it of neighboring agricultural service points (i.e., including all latent pumpers), and the interaction of each
of these averages with the number of neighbors of the respective type (to control for the intensity of this potential spillover channel). We
define neighbors using three distance radii: 1 mile, 2 miles, and 10 miles. Odd (even) columns are otherwise identical to Column (1) of
Table 2 (Column (1) of Table 3). Regressions include the following fixed effects: parcel, parcel × 1[large pump], year, groundwater basin ×
year, water district × year, and (for even columns) parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage
(excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.

B.3 Additional robustness checks

Table B8 conducts sensitivity analysis on our IV specification. Columns (1)–(2) show that
our results are similar if we instrument using the modal tariff in each category (rather than
the default tariff). Columns (3)–(4) present the uninstrumented OLS, which is biased slightly
towards zero likely due to measurement error in our kWh-to-AF conversions. Columns (5)–
(6) present the reduced-form OLS, for comparison.

Table B9 conducts sensitivity analysis on our parcel-year sample. Columns (1)–(2) in-
clude the following outliers omitted from both our reduced-form and structural analyses:
parcels with (i) < 1 croppable acre (reported acreage is prone to measurement error); (ii)
> 5, 000 croppable acres (unlikely to be irrigated by our observed pumps); and (iii) monthly
electricity bills > $3, 000 per croppable acre (either highly abnormal groundwater use or mea-
surement error in the denominator). Including these outliers yields similar results. Columns
(3)–(4) remove croppable-acreage weights, yielding attenuated elasticity estimates; this sug-
gests that larger parcels are more groundwater-cost-responsive than smaller parcels. Column
(5) uses a service-point-by-year panel, which produces an estimate similar to Column (3).7

This suggests that aggregating from SPs to parcels does not meaningfully alter our results.

7. The appropriate comparison here is between Column (5) and Column (3)—since SPs do not have
croppable acreage per se, and do not easily map to a definition of the intensive margin.
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Table B8: Reduced-form sensitivity – IV specification

log(Qwater)

(1) (2) (3) (4) (5) (6)
2SLS 2SLS OLS OLS OLS OLS

log (Pwater ($/AF)) −0.865∗∗∗ −0.853∗∗∗ −0.819∗∗∗ −0.779∗∗∗

(0.233) (0.270) (0.094) (0.121)
log (P elecDefault ($/kWh)) −1.330∗∗∗ −1.202∗∗∗

(0.320) (0.349)

Intensive margin Yes Yes Yes
Parcel units 7,104 6,997 7,104 6,997 7,104 6,997
County-years 367 334 367 334 367 334
Parcel-year observations 60,490 46,202 60,490 46,202 60,490 46,202

First-stage estimates

log (Modal P elec ($/kWh)) 0.626∗∗∗ 0.594∗∗∗

(0.017) (0.020)

Kleibergen-Paap F -stat 1386 691
Notes: This table conducts sensitivity analysis on Column (1) of Table 2 and on Column (1) of Table 3, focusing on our instrumental
variables specification. Columns (1)–(2) use an alternate instrument: the modal tariff in each category, rather than the default tariff.
Columns (3)–(4) present the uninstrumented OLS estimates. Columns (5)–(6) present the reduced form of our preferred specification. Odd
(even) columns are otherwise identical to Column (1) of Table 2 (Column (1) of Table 3). Regressions include the following fixed effects:
parcel, parcel × 1[large pump], year, groundwater basin × year, water district × year, and (for even columns) parcel × cropping streak.
Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are
two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table B9: Reduced-form sensitivity – parcels and acreage weights

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.942∗∗∗ −0.945∗∗∗ −0.667∗∗∗ −0.593∗∗∗ −0.531∗∗∗

(0.220) (0.269) (0.159) (0.224) (0.133)

Sensitivity Include outlier parcels Remove acreage weights SP-year panel
Intensive margin Yes Yes
Parcel units (or SP in Col (5)) 7,742 7,619 6,786 6,366 9,575
County-years 367 334 367 330 367
Observations 66,031 49,825 59,736 42,426 83,675

First-stage estimates

log (P elecDefault ($/kWh)) 1.418∗∗∗ 1.273∗∗∗ 1.273∗∗∗ 1.196∗∗∗ 1.332∗∗∗

(0.043) (0.056) (0.030) (0.039) (0.029)

Kleibergen-Paap F -stat 1104 525 1856 940 2044

Notes: Columns (1)–(2) include parcels with bills over $3,000 per croppable acre and with croppable areas /∈ [1, 5000] acres, all of which
we drop from our preferred parcel-year specifications. Columns (3)–(4) remove the regression weights by each parcel’s “croppable” acreage.
Columns (1) and (3) are otherwise identical to Column (1) of Table 2. Columns (2) and (4) are otherwise identical to Column (1) of Table
3. Column (5) is analogous to Column (3) but estimates the groundwater elasticity at the SP-level, rather than the (more aggregated)
parcel level. All regressions include the following fixed effects: unit, unit × 1[large pump], year, groundwater basin × year, water district
× year, and (for even columns) parcel × cropping streak. Standard errors (in parentheses) are two-way clustered by unit and county-year.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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B.4 Heterogeneous intensive-margin responses

Heterogeneity by crop type Table B10 reproduces Columns (1)–(2) of Table 3 inter-
acting price (and the instrument) with indicators for the four crop categories. This reveals
economically similar estimates for the three crop categories. We fail to reject the null hypoth-
esis that all of these elasticities are identical. Hence, we assume that the intensive-margin
elasticity is homogeneous across crops in our counterfactual simulations.

Table B10: Intensive-margin response is not statistically different across crop categories

(1) (2)
log(Qwater) log(Qelec)

log (Pwater ($/AF)) × 1[Annual] −0.962∗∗∗

(0.357)

log (Pwater ($/AF)) × 1[Fruit/nut] −0.869∗∗∗

(0.292)

log (Pwater ($/AF)) × 1[Hay] −1.146∗∗∗

(0.373)

log (Pwater ($/AF)) × 1[Non-crop] −0.715
(0.588)

log (P elec ($/kWh)) × 1[Annual] −0.928∗

(0.482)

log (P elec ($/kWh)) × 1[Fruit/nut] −0.767∗∗

(0.310)

log (P elec ($/kWh)) × 1[Hay] −1.282∗∗∗

(0.455)

log (P elec ($/kWh)) × 1[Non-crop] −0.676
(0.766)

p-value on joint F -test: γA = γF = γH 0.618 0.492
p-value on joint F -test: γA = γF = γH = γN 0.788 0.694

Parcel units 6,997 6,997
County-years 334 334
Parcel-year observations 46,202 46,202
Kleibergen-Paap F -statistic 130 204

Notes: These regressions are identical to Columns (1)–(2) of Table 3, except that we interact both the endogenous price variable
and the instrument with indicators for the four crop categories. Since these indicators are defined by the modal category of
each parcel-year, they are exhaustive and there is no omitted category. We report the p-values for two joint F -tests: that
the intensive-margin elasticity estimates are identical for annuals, fruit/nut perennials, and hay perennials; and for all four
categories. All regressions isolate the intensive margin by restricting the sample to parcel-years in at least the second year of a
cropping streak. Regressions include the following fixed effects: parcel, parcel × 1[large pump], year, groundwater basin × year,
water district × year, and parcel × cropping streak. Regressions are weighted by each parcel’s “croppable” acreage (excluding
forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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Heterogeneity by water district Table B11 reproduces Columns (1)–(2) of Table 3
interacting price (and the instrument) with indicators for being in vs. not in a water district.
If farmers systematically responded to groundwater cost shocks by substituting towards their
surface water allocations, we would expect to find a smaller elasticity for parcels in water
districts. However, we find similar intensive-margin elasticity estimates for both groups,
and we fail to reject the null hypothesis that they are identical. This further indicates that
surface water is unlikely to confound our groundwater elasticity estimates.

Table B11: Intensive-margin response is not statistically different in vs. not in water district

(1) (2)
log(Qwater) log(Qelec)

log (Pwater ($/AF)) × 1[In water district] −0.974∗∗∗

(0.332)

log (Pwater ($/AF)) × 1[Not in water district] −0.887∗∗

(0.432)

log (P elec ($/kWh)) × 1[In water district] −0.942∗∗∗

(0.316)

log (P elec ($/kWh)) × 1[Not in water district] −0.831∗

(0.451)

p-value on test of equality: γWD = γNWD 0.870 0.837

Parcel units 6,997 6,997
County-years 334 334
Parcel-year observations 46,202 46,202
Kleibergen-Paap F -statistic 74 93

Notes: These regressions are identical to Columns (1)–(2) of Table 3, except that we interact both the endogenous price variable
and the instrument with indicators for whether the parcel is vs. is not in a water district. We report the p-values for the t-test
of equality across both groups. All regressions isolate the intensive margin by restricting the sample to parcel-years in at least
the second year of a cropping streak. Regressions include the following fixed effects: parcel, parcel × 1[large pump], year,
groundwater basin × year, water district × year, and parcel × cropping streak. Regressions are weighted by each parcel’s
“croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel
and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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C Data

C.1 PG&E data

PG&E monthly billing data We use confidential customer-level electricity data, which
PG&E’s data management team prepared for us under a non-disclosure agreement. These
data comprise the universe of agricultural electricity consumers in PG&E’s service territory,
and we observe each customer’s monthly bills at the service account level for 2008–2019. We
aggregate service accounts up to 112,032 unique service points (i.e. the physical location of
an electricity meter) and construct a “monthified” panel of electricity consumption (in kWh)
at the service point (SP) level.8 We observe several key covariates for each service point: its
latitude and longitude, its climate zone, its electricity tariff, and indicators for accounts with
solar panels on net-energy metering (which we drop from our estimation sample). Our data
also include meter identifiers to link service point locations to physical electricity meters.
Figure C1 maps all agricultural service points in our dataset.

PG&E’s Advanced Pumping Efficiency Program PG&E also provided rich audit
data on agricultural groundwater pumps, collected as part of the utility’s Advanced Pumping
Efficiency Program (APEP), which subsidized pump tests for agricultural consumers across
PG&E service territory. We observe the universe of APEP-subsidized pump tests from
2011–2019: 33,747 unique tests at 24,642 unique pump locations. For each test, the data
report detailed measurements including: operating pump efficiency, horsepower, standing
water level, drawdown, lift (a.k.a. total dynamic head), flow (in gallons per minute), and
kWh/AF.9 We also observe pump make/model, water source (e.g., well, canal, reservoir, etc.),
water use (i.e., irrigation vs. commercial or residential), and the electricity meter identifier.
The latter lets us match pump tests to electricity service points, thereby isolating a sample of
12,419 service points for which agricultural groundwater pumping is the confirmed end-use.10

We restrict our empirical analysis to this 11% subset of agricultural service points (plotted
in dark blue in Figure C1), in order to avoid incorporating other agricultural electricity
end uses.11 We further drop any APEP-matched service points where the pump test data

8. PG&E’s monthly bill cycles are customer-specific, and most billing periods do not line up with calendar
months. We “monthify” billed kWh for each SP by splitting/weight-averaging multiple bills in a single
calendar month, in order to create a SP by month panel. This is standard practice in the economics
literature on electricity demand (e.g. Ito (2014)). Most service points have a single service account at each
point in time, but service accounts frequently turn over within a given service point.

9. Measured kWh/AF serves as an important cross-check for computing groundwater quantities. Whereas
the pump test data report kWh/AF at the time of each test, our electricity-to-water conversions account for
variation in groundwater depth over time.

10. Pumping is almost certainly the only end use at APEP-matched service points, as PG&E typically
installs a dedicated meter for each groundwater pump.

11. This limits our sample by dropping agricultural groundwater pumps that did not receive APEP pump
tests (Table 1, Panel A, right column). Absent a pump test, we cannot precisely identify which of these
service points are in fact groundwater pumps. However, Column (3) of Table 2 show that expanding our
sample to include both columns of Table 1 yields a similar short-run elasticity estimate.
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indicate a non-well pump (e.g., horizontal booster pumps reporting water source = “canal”)
or list a non-agricultural end use (e.g., “municipal”) from our estimation sample.12

Figure C1: PG&E agricultural customers

Notes: This figure maps the locations of all agricultural service points served by PG&E, from 2008–2019. Dark blue dots
indicate the 12,419 service points that are confirmed pumps (i.e. matched to an APEP test for a groundwater pump). Light
blue dots indicate all other agricultural service points. The light grey outline indicates PG&E’s service territory.

PG&E agricultural tariffs PG&E offered 23 distinct agricultural tariffs during our sam-
ple period. Our billing data report the specific tariff associated with each monthly bill.
Prices on each tariff are updated multiple times per year, and historic prices are publicly
available, along with information on tariff-specific eligibility criteria.13 We use these data to
construct a 2008–2019 panel of hourly volumetric (i.e., marginal) electricity prices, which we
collapse to the monthly level by taking an unweighted average across hours.14

22 of PG&E’s 23 agricultural tariffs are divided into four mutually exclusive categories,
based on pump size (“small” pumps < 35 horsepower, and “large” pumps ≥ 35 horsepower)
and electricity meter type (conventional analog meters, and digital smart meters).15 The
small-conventional and large-conventional categories comprise a single tariff. The small-
smart and large-smart categories comprise 8 and 12 tariffs respectively; we define the least
time-varying tariff as the default in each of these categories, which serves as our instrument.

The remaining (23rd) tariff comprises a fifth category: farmers who have recently transi-
tioned from internal combustion engines to electricity. We omit this 1.7% subset of confirmed

12. We relax the latter restriction when aggregating from SPs to parcels, since our parcel-level analyses
weight parcels by croppable acreage. These weights effectively remove non-agricultural water uses with far
fewer false positives than the (often miscoded) “water end-use” variable provided by the APEP database.

13. See here: https://www.pge.com/tariffs/en/rate-information.html
14. Importantly, unlike PG&E’s residential electricity prices, its agricultural tariffs are not tiered: a farm’s

marginal price does not depend on its consumption.
15. The 35 horsepower cutoff applies to pumps with a single motor. The few pumps with multiple motors are

defined as “large” if all motors sum to at least 15 horsepower of load. Conventional meters record electricity
consumption using an analog dial, while smart meters digitally store the full time profile of consumption.
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Figure C2: Histogram of pump horsepower
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Notes: This is a histogram of measured horsepower from APEP pump tests, averaged for each PG&E service point in our
estimation sample. This reveals no evidence of bunching at the 35 hp cutoff that defines PG&E’s small- vs. large-pump tariff
categories. Bunching would be consistent with farmers’ optimizing against tariff categories when making pump investments.

pumps from our analysis entirely, for two reasons: (i) they likely represent an idiosyncratic
group of pumps that is less likely to be comparable to pumps in the other four categories,
and (ii) we do not observe groundwater consumption prior to switching to electricity, and
we worry about selection in the timing of these switches. Our results are not sensitive to
this decision to exclude this fifth category.

For our reduced-form analysis, we take unweighted averages over all sample months to
construct the annual average marginal (i.e., volumetric) electricity price ($/kWh) for each
tariff. For our structural analysis, we construct average total variable costs for each tariff by
subtracting off fixed charges from each tariff (i.e., non-trivial charges assessed per day, per
billing period, or per kW, all of which are independent of farmers’ level of consumption).

C.2 Groundwater data

We use publicly available groundwater data from California’s Department of Water Re-
sources (DWR) collected under the California Statewide Groundwater Elevation Monitoring
Program.16 These data report depth below the surface at 16,852 unique monitoring stations
during our 2008–2019 sample period, with an average of 33 measurements at each location
at different points in time. We rasterize all measurements from each sample month, using
inverse distance weighting to interpolate a gridded two-dimensional surface of average depth
at each point in space.17 Using these monthly rasters and service point geocoordinates, we
construct a service point-month panel of groundwater depths. We also store the distance
from each service point to its nearest measurement site in each month; this facilitates a
robustness check where we remove observations with a high degree of spatial interpolation
in groundwater depths (see Columns (5)–(6) of Appendix Table B3).

We assign each service point to a groundwater basin and sub-basin, using publicly
available shapefiles from the DWR.18 (Sub-)basins are defined by stratigraphic barriers that

16. https://water.ca.gov/Programs/Groundwater-Management/Groundwater-Elevation-Monitoring--CASGEM
17. Before rasterizing, we drop depth measurements that are flagged as having questionable accuracy.
18. See here: https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118
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limit the horizontal movement of groundwater. California has 425 basins and 517 sub-basins
(only 6% of basins contain more than one sub-basin); our main sample includes farms located
within 54 basins and 104 sub-basins. Our reduced-form analysis controls for changes in depth
that impact all farms within the same basin (via basin-by-year fixed effects).

C.3 Constructing groundwater quantities and prices

Energy is the sole variable input to groundwater production, and the vast majority of agri-
cultural groundwater pumps in California are powered by electricity (United States Depart-
ment of Agriculture (2018)). Holding pump characteristics and groundwater depths fixed,
the relationship between the quantity of groundwater extracted (in acre-feet, or AF) and the
quantity of electricity (in kWh) consumed is governed by physics (Hurr and Litke (1989)):

kWh
AF

= kW ÷ AF
hour

=
[Lift (feet)]× [Flow (gallon/minute)]

[Operating pump efficiency (%)]× 5310
÷ AF

hour
(C1)

The power (kW) needed to pump 1 acre-foot is directly proportional to the vertical distance
the water must travel to the surface (i.e., lift) and the speed at which the water travels (i.e.,
flow). It is inversely proportional to the rate at which the pump converts electric energy into
the movement of water (i.e., operating pump efficiency, or OPE). We can simplify Equation
(C1) by converting from gallons to acre-feet, arriving at Equation (1) in the main text.

We parameterize Equation (1) for confirmed pumps at the service point-month level,
such that we capture the within-year time profile of kWh-per-AF conversion rates before
aggregating up to the parcel-year.19 We use OPE as reported in the PG&E pump test data.
We extrapolate each service point’s first pump test backwards, extrapolate its last pump test
forwards, and interpolate between multiple pump tests using a triangular kernel in time.

We parameterize lift by combining DWR groundwater depths and PG&E pump test
measurements. Lift is the sum of three components: (i) standing water level (i.e., base-
line groundwater depth in the absence of pumping), (ii) drawdown (i.e., how much pump
i impacts its own depth), and (iii) minor pump-specific correction factors (i.e., discharge
pressure, gauge corrections, pump height above the surface).20 We populate the standing
water level (the largest component of lift) using the monthly groundwater rasters described
above. We parameterize drawdown using the values reported in the pump test data.21 Fi-
nally, we apply discharge pressure, gauge corrections, and other pump-specific adjustments
as reported in the APEP database.22

19. Parameterizing Equation (1) annually would lead to systematically inaccurate Qwater conversions, since
months with shallower groundwater depths (i.e., more AF per kWh) tend to have greater groundwater use.

20. Drawdown depends on rate of extraction (i.e. flow) and the physical properties of the substrata. Greater
flow means greater drawdown, as water levels fall with faster extraction. More transmissive (or porous) rock
formations have lower drawdown, because water levels are able to horizontally reequilibrate more quickly.

21. Where reported drawdown is missing or internally inconsistent, we populate drawdown by modeling it
as a function of the standing water level and location fixed effects (to account for properties of the substrata).

22. We extrapolate beyond the first/last pump tests and interpolate between tests for these characteristics.
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Appendix Table B2 presents sensitivity analysis on how we construct lift. Columns
(1)–(2) replace reported drawdown with our drawdown predictions. Columns (3)–(4) drop
pumps where reported drawdown is missing/suspect and thus populated using our predic-
tions (as described above). Columns (5)–(6) parameterize lift using basin-wide average
monthly groundwater depths, rather than depths extracted from monthly rasters—thereby
removing any potential for localized feedback effects of pumping on depth (e.g., “cones of de-
pression”). Our results are similar in all cases, which is unsurprising given that our electricity
price instrument is not correlated with the components of Equation (1).

C.4 Constructing crop choice at the parcel level

Our data on cropped acreage come from the U.S. Department of Agriculture’s (USDA)
Cropland Data Layer (CDL).23 This product provides annual crop coverage at every 30-by-
30 meter pixel in the United States from 1997 to 2019. California was added to the CDL in
2007. The CDL is generated using satellite imagery in conjunction with a machine learning
algorithm, and its land classifications are ground-truthed against the USDA’s Farm Service
Agency’s farm surveys. The CDL reports 97 distinct crops that were grown in California
during our sample period. We classify these 97 crops into three broad categories: annual
crops, fruit and nut perennial crops, and hay perennial crops. The major annual crops in our
sample are winter wheat, cotton, tomatoes, corn, and rice. The major fruit and nut perennial
crops are almonds, grapes, walnuts, pistachios, and oranges. The hay perennials category
is dominated by alfalfa. Two additional categories are non-crop (which the CDL reports as
“fallow/idle cropland”), and not croppable (i.e., forest, shrubland, and development).

Using parcel shapefiles obtained from California county tax assessors’ offices, we cookie-
cutter each annual CDL image to construct parcel polygons. This yields a parcel-year panel
of the shares of land cover by category (e.g., the fraction of acres in parcel f that were crop
category c in year t). For parcels that are spatially merged to our sample of confirmed-pump
service points, these fractions serve as outcome variables in our reduced-form analysis (i.e.,
Columns (3)–(6) of Table 3). They also enter our structural analysis as F c

ft in Equation (8).
However, for our intensive-margin regressions (Columns (1)–(2) of Table 3), we restrict the
sample such that the parcel’s modal crop choice is the same in adjacent years. Finally, we
use year-on-year transitions at the pixel level to calculate conditional choice probabilities.24

In all cases, we remove “not croppable” acreage from the denominator of each parcel-year.

C.5 Defining markets using surface water districts

Following Hagerty (2022), we spatially merge parcels to water districts. Shapefiles for Califor-
nia’s water districts come from the California DWR, the California Atlas, and the California

23. See here: https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
24. We use all pixels contained within parcels in market m that merge to confirmed-pump service points,

dropping not croppable pixels. Calculating CCPs at the pixel level (as opposed to using parcel-specific
modes) helps to increase coverage across all possible switches within a market.
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Environmental Health Tracking Program.25 Water districts are administrative entities that
govern farmers’ annual allocations of surface water.26 Individual water districts typically
offer their constituent farmers a common per-acre allocation at substantially lower marginal
price than farmers’ marginal cost of groundwater pumping.

Figure C3: Water districts and counties used to construct markets

Notes: This figure maps the number of parcels with confirmed-pump service points by water district and (for parcels not in a
water district) by county. We use water districts (plotted with thick grey borders) and counties-less-water-districts to construct
markets in our dynamic discrete choice analysis. Note that our market definitions further subdivide these polygons by small- vs.
large-pump tariffs, and then aggregate water districts with fewer than 30 parcels up to the county level (preserving the small-
vs. large-pump split). We drop markets with fewer than 15 parcels after this within-county, within-pump-size aggregation.

Since groundwater and surface water are obvious substitutes, this cost advantage for
surface water is key: we can assume that farmers exhaust their (inframarginal) surface
water allocations before pumping groundwater, rendering any positive observed groundwa-
ter pumping the marginal source of irrigation.27 In our reduced-form analysis, we non-
parametrically control for annual shocks to surface water allocations at the water district
level. This helps to isolate changes in pumping behavior driven by variation in pumping cost
shocks, rather than by variation in the availability of groundwater substitutes.

For our structural analysis, we use water districts to define “markets.” This grouping
combines farmers who are geographically proximate and likely to have similar conditional
value functions for a given field state and crop choice. It also absorbs heterogeneous surface
water allocations and annual shocks to these allocations, which occur at the water district
level. For the 40% of confirmed-pump parcels that are not in a water district (i.e., not

25. We thank Nick Hagerty for providing these shapefiles, and for his help in understanding and processing
these surface water data.

26. As Hagerty (2022) describes, the term “water district” refers to multiple types of organizations that
provide/sell water to irrigators within a defined area, including: irrigation districts, county water agencies,
water conservation and flood control districts, reclamation districts, and mutual water companies.

27. A third source of water for irrigation is the open market. However, Hagerty (2025) suggests that
purchased water is almost always more expensive than the groundwater costs for farmers in our dataset.
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receiving surface water allocations), we use counties to define “markets.” Figure C3 maps
water districts (with thick grey borders) and counties, where shading indicates the number of
parcels with confirmed-pump service points in each polygon. These polygons do not directly
correspond to the markets used in our structural analysis, since (i) we further subdivide
parcels by small vs. large pump categories, and (ii) we then aggregate water-district-by-
pump-size units with fewer than 30 in-sample parcels up to the county level. We drop
markets with fewer than 15 in-sample parcels after this within-county, within-pump-size
aggregation—since small samples in these markets generate extremely unstable projections
of groundwater use, electricity use, and cost.28

C.6 SGMA data

To quantify the reductions in groundwater pumping that will be required under SGMA, we
collect data from the Groundwater Sustainability Plans (GSPs) that Groundwater Sustain-
ability Agencies (GSAs) submitted to the California Department of Water Resources. All
GSAs in the 90 high- and medium-priority basins were required to submit GSPs by January
31, 2022 (California Department of Water Resources (2024)). As of the time of writing, there
were 120 available GSPs.29 We downloaded all available GSPs and extracted two pieces of
information from each: (i) annual average groundwater pumping; and (ii) “sustainable yield,”
or “the maximum amount of water calculated over a base period representative of long-term
conditions in the basin and including any temporary surplus that can be withdrawn annually
from a groundwater supply without causing an undesirable result” (California Department
of Water Resources (2017)).30 We were able to populate these two numbers for 111 out of
the 120 available GSPs.31

Our measure of interest is the percent reduction in groundwater pumping that will be
needed to meet each GSP’s SGMA target, which we define as:

current pumping − sustainable yield
current pumping

× 100

Figure C4 plots this statistic for all (available) GSAs. 63 GSPs report overdraft conditions,
or sustainable yield that is below current pumping levels; 57 GSPs report current pumping

28. Appendix A.2 provides further details on how we construct markets.
29. GSPs are available from the Department of Water Resources: https://sgma.water.ca.gov/portal/gsp/all
30. GSPs are detailed documents, frequently over 1,000 pages long. Where possible, we draw these numbers

from the executive summary. Otherwise, we extract these numbers from the GSP’s water budget section.
31. Of the 90 basins where GSPs were required, 71 basins’ GSPs were fully approved as of January 2024.

13 basins’ GSPs were deemed incomplete, and 6 basins’ GSPs were deemed inadequate. We include all
available GSPs—whether approved or not—in our GSP data, as these are the best available representation
of groundwater pumping reductions required under SGMA. We expect that, if anything, the final approved
GSPs will be more stringent than the proposals, making our summary statistics underestimates of the
ultimate regulatory stringency.
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Figure C4: GSP sustainability targets under SGMA

Notes: This figure maps the Groundwater Sustainability Agencies (GSAs) within California’s medium- and high-priority basins,
which were required to submit Groundwater Sustainability Plans (GSPs) to the Department of Water Resources. The shading
reflects the percentage reduction in groundwater pumping that will be required to reach sustainability according to each GSP.
See surrounding text for details.

levels at or below sustainable yield, thereby already achieving sustainability.32 Bringing the
average overdrafted GSP into sustainability under this definition will require reductions in
pumping of 17.4% (weighting GSPs by historical groundwater pumping levels). Looking at
only the overdrafted GSPs within PG&E’s territory, this weighted average falls to 16.9%. We
convert to the market level using the average required reductions in overdrafted GSPs that
overlap with our market boundaries, weighting by the fraction of the market’s croppable
acreage in each GSP.33 This yields a weighted average reduction target of 16.7% in our
sample.

C.7 Weather data

We obtained daily temperature and precipitation rasters from the PRISM climate group,
a standard source in the agriculture economics literature (see, e.g., Schlenker and Roberts

32. It is possible that the GSPs understate the true magnitude of overdraft. Bruno, Jessoe, and Hanemann
(2024) compares reported overdraft to the results from running the C2VSim hydrology model, and finds they
are broadly similar (average reported overdraft: 0.085 AF/acre; average modeled overdraft: 0.094 AF/acre).
To the extent that the GSPs are underestimates, our policy estimates will be conservative.

33. This conversion effectively drops cropland that falls either outside of any GSA or inside a non-
overdrafted GSA, since neither faces any SGMA compliance obligation. 11 of our 82 markets contain no
overdrafted SGMA-regulated areas. Thus, our policy counterfactual applies only to SGMA-regulated areas of
the remaining 71 markets. These adjustments are necessary since our market footprints (which importantly
align with water district borders to eliminate any confounding effects of changing surface water allocations)
do not cleanly map to GSA boundaries.
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(2009)).34 Using gridded data with a 4km-by-4km resolution, we extract daily maximum
temperature, minimum temperature, and precipitation at each SP location.

C.8 Drought data

We use historic drought data from the National Oceanic and Atmospheric Administration
(NOAA), which publishes weekly maps of drought intensity across the U.S. NOAA uses
six drought categories of increasing severity: “No Drought”, “Abnormally Dry”, “Moderate”,
“Severe”, “Extreme”, and “Exceptional”.35 We aggregate these data to the county-year, quan-
tifying the average share of each county’s area that falls into each category in each year.
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