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Abstract

We study a model of social learning and communication using hard anecdotal evidence. There are
two Bayesian agents (a sender and a receiver) who wish to communicate. The receiver must take an
action whose payoff depends on their personal preferences and an unknown state of the world. The
sender has access to a collection of n samples correlated with the state of the world, which we think of
as specific anecdotes or pieces of evidence, and can send exactly one of these samples to the receiver in
order to influence her choice of action. Importantly, the sender’s personal preferences may differ from
the receiver’s, which affects the seller’s strategic choice of which anecdote to send.

We show that if the sender’s communication scheme is observable to the receiver (that is, the choice
of which anecdote to send given the set they receive), then they will choose an unbiased and maximally
informative communication scheme, no matter the difference in preferences. Without observability, how-
ever, even a small difference in preferences can lead to a significant bias in the choice of anecdote, which
the receiver must then account for. This can significantly reduce the informativeness of the signal, lead-
ing to substantial utility loss for both sides. One implication is informational homophily: a receiver can
rationally prefer to obtain information from a poorly-informed sender with aligned preferences, rather
than a knowledgeable expert whose preferences may differ from her own.

1 Introduction

Economists usually assume that people learn about the world by updating the parameters of some underlying
model as new evidence arrives. Such models can be efficiently communicated to others: for example, abstracts
of academic papers might summarize main results in the form of model parameters such as the “elasticity
of demand” in a certain industry or an overall toxicity score of a new radiation treatment. This type of
communication is very natural for modeling learning amongst experts who have already agreed on a common
set of models that provides a “language” for their field of study.

However, communication between experts can be incomprehensible to non-experts who have no under-
standing of such models. Such agents instead often rely on anecdotal evidence. Consider, for example, a
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consumer/investor who is trying to decide how much money to invest in a given mutual fund. An optimal
investment decision depends on the state of the future economy. If the economy is growing quickly, the
investor would like to invest a lot of money; if it is growing slowly or shrinking, she may want to invest less.
A typical investor lacks expertise in economic analysis and so relies on information from other actors, such
as politicians, newspapers or financial analysts. This information is often provided in the form of anecdotes,
say the percent increase in the number of jobs in a given sector this quarter. In fact, newspaper articles
often simply report a selection of related facts on a topic.

Some sources of information are transparent about how they select the anecdotes they communicate. For
example, a newspaper might credibly announce to report in an unbiased way because readers might cancel
their subscriptions if they find out the newspaper does not stick to that strategy. On the other hand, a
politician who seeks re-election might claim to be unbiased but then systematically only report anecdotes
that support the view that the economy is booming.

We model these situations as a communication game between a sender and a receiver. Both players have
to take an action and care about the state of the world (for example, the true state of the economy) and
their moral stance which we think of their “ideal” action. The optimal actions of sender and receiver with
different moral stances will generally differ even if they have access to the same information. In our model,
only the sender observes informative signals about the state of the world which we refer to as anecdotes. She
can select one these signals to send to the receiver. Importantly, we assume throughout that anecdotes are
always truthful : the sender cannot make up “fake news”, for example.

The sender in our model cares about the action of the receiver: she would like him to take an action
close to hers. This creates a persuasion temptation for the sender: for example, if the politician would like
to persuade the sender that the economy is booming so that he invests his money in the stock market, the
politician might select a more positive anecdote. We assume that both sender and the receiver in our model
are Bayesian. Hence, a Bayesian receiver will anticipate this bias and properly account for it. This might
lead to unraveling where the politician chooses successively more biased anecdotes which the receiver adjusts
for more and more. We show that even for small differences in moral stances between sender and receiver
the anecdotes that are communicated can be highly biased when the sender communication strategy is not
observable to the receiver.

In equilibrium, the politician will not be able change the mean posterior beliefs of her voters and the
receiver will always learn something because anecdotes are always truthful. However, this does not imply
that the sender’s attempts to persuade the receiver are without costs. We show that when anecdotes follow
a single-peaked distribution such as the normal or Laplace distribution then the most informative anecdotes
are those close to the peak (which the sender approximates through her posterior mean). The intuition is
that anecdotes are dense around the peak and are therefore very informative to the receiver. Senders whose
communication strategy is transparent or who have the same moral stance as the receiver will select such
anecdotes.

On the other hand, when moral stances differ and the sender cannot commit to an observable communi-
cation scheme then the sender will tend to choose anecdotes from the tail of the anecdote distribution. While
this does not succeed in persuading the receiver to take a biased action it does destroy precision: anecdotes
in the tail are more thinly distributed and hence reveal information about the true state of the world to the
receiver with more noise.

This gives to “informational homophily” where receivers prefer to communicate with senders with similar
moral stances because this eliminates the persuasion temptation of the sender. In fact, we show that a receiver
might sometimes prefer to talk to a sender with access to just a few signals (or even just one) compared to
a well-informed expert who has access to a vast number of anecdotes but has a different moral stance from
the receiver. This will be the case for fat-tailed distributions (such as the Laplace distribution) because the
sender can more likely access extreme anecdotes which are less informative to the receiver. This insight can
explain why receivers might not seek experts with different background.

There is a rich literature in economics on sender-receiver games where the sender can send costless
signals to the receiver. On a high-level, we can distinguish two themes in the literature, namely framing
versus selection. Papers on framing give the sender a rich message space and the sender generally suppresses
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some of the accuracy of her own signals when transmitting messages to the receiver if there is a conflict
of interest between sender and receiver. In contrast, papers on selection restrict the message space of the
sender to a subset of the set of signals that she received (which might include revealing everything or staying
silent). Our paper belongs to the selection literature. However, our model also exhibits the tradeoff between
persuasion and message accuracy that comes out of the framing literature - however, in our model this
tradeoff arises not because the sender “fudges” a signal (as in the framing literature) but because the sender
is tempted to select more extreme (and hence less informative) anecdotes.

Our paper is organized as follows. Section 2 discusses related work. Section 3 introduces our commu-
nication game and some basic analysis of our model that we will rely on later. Section 4 analyzes the case
where the communication strategy of the sender is transparent to the receiver. Section 5 analyzes the case
where the sender’s strategy is not observable to the receiver and will only be guesses correctly in equilibrium.
Section 6 concludes.

2 Related Work

We model is related to two strands of literature, namely papers on framing and papers on selection. The
framing literature allows the sender to send any type of signal: the Bayesian persuasion literature assumes
that the sender can commit to particular signaling scheme while the “cheap-talk” literature assumes no such
commitment. Kamenica and Gentzkow (2011) introduce the Bayesian persuasion model where the sender
commits to sending a signal that is consistent with her information in a Bayesian sense. In that model, as
in ours, there is a state of the world distributed according to a common prior. The sender commits to a
signaling scheme, mapping observations about the state of the world to an arbitrary signal. She then observes
the state and transmits the corresponding signal to the receiver. The receiver then picks an action. The
sender’s payoff is a function of the receiver’s action, and so the sender wishes to “persuade” the receiver to
take particular actions. Kamenica and Gentzkow (2011) provide a characterization of the optimal signaling
scheme. Our work approaches a similar question for a constrained signaling problem, where the sender’s
signaling scheme is restricted to take the form of sending one of a collection of anecdotes in a translation-
invariant manner. This constraint imposes friction that limits the sender’s ability to persuade, and indeed we
find that the optimal choice of the sender under these restrictions will be to communicate as informatively as
possible about the state of the world. Crawford and Sobel (1982) introduced the “cheap-talk” model where
the sender has no commitment power. The sender can again choose an arbitrary signaling scheme, but is
not able to commit to the signaling strategy in advance. Crawford and Sobel (1982) show that despite the
lack of commitment, a non-trivial amount of information can be communicated at equilibrium, and moreover
such equilibria take the form of sending a coarsening of the signal available to the sender.

Given our restriction that the sender must choose from a subset of available anecdotes, our work fits
into the literature on selection. The literature on voluntary disclosure was introduced by Grossman and
Hart (1980), Grossman (1981), and Milgrom (1981). These papers consider the setting of a seller who can
choose whether to disclose information about a product to a buyer, and can make this choice based on the
information itself. Similar to our model of communication via anecdotes, the seller in these papers cannot
arbitrarily distort information about the product, but rather simply choose whether or not to reveal it.
Importantly, the seller cannot necessarily commit to their revelation strategy in advance. The main result
is that in every sequential equilibrium, the seller fully discloses her information. This so-called unraveling is
driven by the fact that the seller can not commit to a signaling scheme.

Milgrom (1981) further analyze a setting where the seller is constrained in the amount of information
she can reveal. Namely, she has access to a set of data points about her product (akin to our anecdotes)
and can only reveal a fixed number of them (e.g., just one as in our setting). He then shows that the seller
always reveals the most favorable information. We see a similar unraveling in our setting with an unobserved
signaling scheme – the sender ends up sending an extreme signal, but not necessarily the most extreme signal
(due to the structure of payoffs which differs from that of Milgrom (1981)). This contrasts to the setting of
an observed signaling scheme, which can be interpreted as having no unraveling (the sender sends the most
informative signal).
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Figure 1: Timing of sender-receiver game

Stage 1

Sender chooses
communication
scheme π(~x) ∈ ~x.

Stage 2

Sender observes n
anecdotes x1, .., xn.

Stage 3

Sender takes action
aS .

Stage 4

Sender sends anec-
dote π(~x) to re-
ceiver.

Stage 5

Receiver
takes action
aR.

There are other settings with partial unraveling. Dye (1985) and Jung and Kwon (1988) show unraveling
breaks down when the receiver is uncertain whether the sender is informed. Martini (2018) shows unraveling
breaks down when information is multi-dimensional. Ali et al. (2020) describe a disclosure game in which
senders (buyers in their setting) gain by coarsening their information. Fishman and Hagerty (1990) consider
a setting, similar to ours, in which the sender is restricted in the number of signals she can disclose and
study the optimal amount discretion a designer should permit the sender.

In our paper, as in much of the literature, the unraveling, or partial unraveling, is driven by a lack of
the power to commit on the part of the sender prior to observing the signals. A recent work also studies the
power of the receiver to commit to a mapping from received information to sender payoff as in mechanism
design (the difference being that the sender is restricted to voluntary disclosure strategies). Hart et al. (2017)
define a disclosure game in which the equilibrium outcome without commitment coincides with the optimal
outcome with commitment.

3 Model

Let us start with an overview of our model and agent interactions. We consider two agents, a sender and
a receiver who play a communication game. Sender and receiver share a common prior µ about the state
of the world θ. Both the sender and the receiver take actions aS ∈ R and aR ∈ R during this game that
are determined both by their respective moral stances, mS ,mR, and a state of the world θ that is unknown
to both of them. The sender observes n i.i.d anecdotes (or signals) x1, .., xn that are informative about
the state of the world before taking her action aS . Throughout, we denote ~x = {x1, . . . , xn} to be the
set of anecdotes observed by the sender. The sender sends one of her signals to the receiver according to
communication scheme π : Rn → R such that π(~x) ∈ ~x. The receiver then forms her own belief about
the state of the world based on this anecdote π(~x) and her moral stance mR and selects action aR. When
choosing a communication scheme the sender receives higher utility when the receiver’s actions aR is closer
to the sender’s action aS . While the sender is restricted to sending an observed anecdote π(~x) ∈ ~x, the
choice of π can influence the receiver towards taking actions that have more utility to the sender.

For example, this model can capture communication between a politician (sender) who wants the economy
(the state of the world) to do well to get re-elected. She communicates to a voter (receiver) whose moral
stance might be neutral (mR = 0) so that she is neither inclined to take very optimistic or pessimistic actions.
The politician would like the voter to take actions that would suggest that the economy is doing better than
it actually does and therefore might be tempted to reveal a very positive anecdote about the economy in her
speeches that address the voter.

We next describe in detail the information sets and preferences of both agents in this model. For this
purpose, we summarize the precise timing of the our game in Figure 1. In stage 1, the sender chooses the
communication scheme π that determines what type of information the sender will reveal to the receiver.
In stage 2, the sender observes n anecdotes ~x. The sender then takes an action aS in stage 3 that is not
observed by the receiver. In stage 4 the sender selects one of her anecdotes according to her communication
scheme and sends this anecdote π(~x) to the receiver. The receiver uses that anecdote to inform her own
action aR in stage 5.
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Stage 1. The sender selects a communication scheme π : Rk → R such that π(~x) ∈ ~x. This describes what
anecdote the sender will communicate to the receiver for any vector of anecdotes ~x = (x1, .., xn). Our main
results focus on a natural class of communication schemes that we call translation invariant schemes.

Definition 1. For a common prior µ over θ, we call a communication scheme πµ translation invariant if
for all ~x ∈ Rk and finite d ∈ R we have πµ⊕d(~x + d) = πµ(~x) + d, where ~x + d := {x1 + d, . . . , xn + d} and
µ ⊕ d is the translation of prior µ by d, i.e., (µ ⊕ d)(θ + d) = µ(θ). Note that when µ is a diffuse prior,
µ⊕ d = µ and we drop subscript of µ for brevity.

In other words, translation-invariance implies that the choice of anecdote is independent of where where
0 is on the real line. Examples of translation invariant communication schemes include, sending the anecdote
closest to the posterior mean of µ given ~x. Similarly, always sending the minimum or maximum signal are
translation invariant schemes. On the other hand, sending the minimum signal when all anecdote realizations
are negative and the maximum signal otherwise is not a translation invariant scheme.

The sender cares about the receiver’s action in the sense that she wants aR to be as close as possible to
her own action. Formally, she chooses her communication scheme to minimize the following disagreement
loss function:

E
~x
(aS(~x)− aR(π(~x), πR))2 (1)

Note, that the sender takes the expectation over all possible realizations of anecdotes. Her own action aS
will depend on all the anecdotes she observes. In contrast, the receiver’s action aR depends on the anecdote
π(~x) that the sender decides to transmit as well as πR, which is the communication scheme that the receiver
expects the sender to use.

We consider two different environments. In the observable regime the receiver observes the sender’s
communication scheme and we simply have πR = π. In contrast, in the non-observable regime the receiver
does not observe π – instead we consider the choices of πR and π in equilibrium.

Stage 2. Sender and receiver share a common diffuse prior about the state of the world θ ∼ N(0,∞). The
sender observes a vector of conditionally i.i.d. anecdotes ~x = (x1, . . . , xn) where each anecdote x is generated
by adding noise ε drawn from some finite-variance distribution F to the true state of the world θ such that
x = θ + ε.

Three examples of anecdote distributions F we will refer to later in the paper are the uniform distribution
over [−1, 1] (a distribution with finite domain), the normal distribution N(0, 1) (a distribution with infinite
domain and “thin tails”) and the Laplace distribution with density f(ε) = 1

2 exp(−|x|) (a distribution with
infinite domain and “fatter tails”).

Stage 3. The sender cares both about the state of the world θ as well as her moral stance mS ∈ R when
choosing an action. Formally, she will perform the following quadratic loss minimization:

aS ∈ argmina E
θ|~x

[
α(a− θ)2 + (1− α)(a−mS)2

]
(2)

Here, α ∈ (0, 1) captures how the sender trades off the importance of the state of the world and her moral
stance. Note that we assume that the sender chooses her action without taking into account how it affects
the disagreement loss from stage 1. We make this assumption to simplify our analysis but it can be justified,
for example, by assuming that the sender’s total utility is a weighted average of her instrumental utility
(captured by the loss function in equation 2) and the disagreement loss and then placing most of the weight
on the instrumental utility part.

We note that the solution to the minimization problem in Equation 2 has a closed form. In particular,
let DS(~x) denote the sender’s posterior belief about the state of the world θ based on her observed set of
anecdotes ~x. Let the sender’s posterior mean of this distribution be θS(~x). The sender’s optimal action can
then be derived as:

aS(~x) = αθS(~x) + (1− α)mS (3)
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Stage 4. The sender now sends anecdote π(~x) to the receiver.

Stage 5. The receiver forms a posterior belief after observing the signal x = π(~x) received from the sender.
While the signal x is observed by the sender, the communication scheme π may or may not be directly
observable. We say that the receiver believes that the sender uses communication scheme πR – if the sender’s
scheme is observable then πR = π; otherwise this equality pins down the equilibrium communication scheme
of the sender. We denote the receiver’s posterior belief with DR(x, πR). The receiver forms this posterior
by Bayesian updating, given the diffuse prior over θ and the distribution over πR(~x) given that ~x is drawn
according to conditionally i.i.d. draws from F . We use θR(x, πR) to describe the posterior mean of the
receiver.

The receiver has her own moral stance mR which can differ from the receiver’s moral stance. She faces
the same type of loss function as the sender when choosing an action and therefore her optimal action will
be:

aR(x, πR) = αθR(x, πR) + (1− α)mR (4)

3.1 Preliminary Analysis

We now derive a few insights for our model that hold for both the observable and non-observable regimes.
First of all, we define the bias δ(π) of a communication scheme π to be the mean difference between the

posterior mean θS(~x) and the reported anecdote :

δ(π) = E
~x∼Fn

[π(~x)− θS(~x)] ,

where Fn =
∏n
i=1 F is the product distribution.

Our first observation is that the posterior mean of the receiver, given an observed signal x and receiver’s
presumed communication scheme πR, is simply a debiasing shift of signal x.

Lemma 1. For any translation invariant communication scheme πR and signal x in the range of πR,
θR(x, πR) = x− δ(πR).

Proof: Fix translation invariant scheme π, and write y for the random variable π(~x) − θ, the difference
between the anecdote returned by π and the state θ. Since π is translation invariant, the distribution
of y is independent of θ. Write fπ for its density function. Then by construction we have δ(π) =∫
y
yfπ(y)dy.

Now fix anecdote x and suppose π(~x) = x. Given this realization of x, the conditional distribution
over the state of the world θ = x− y has density

fπ(y)g(x− y)∫
y
fπ(y)g(x− y)dy

where g is the unconditional density of θ. As θ is drawn from a diffuse prior, we can treat g as a constant
function. The conditional distribution over θ = x− y therefore has density fπ(y). The expected state
of the world is therefore x−

∫
y
yfπ(y)dy which is simply x− δ(π).

This helps us to decompose the sender’s disagreement loss in stage 1 when choosing the optimal commu-
nication scheme πS :

E
~x
(aS(~x)− aR(π(~x), πR))2 = E

~x
[(αθS(~x) + (1− α)mS)− (αθR(π(x), πR) + (1− α)mR)]

2

= α2
E
~x
(θS(~x)− θR(π(~x), πR))2 +

+ 2α(1− α)E
~x
(θS(~x)− θR(π(~x), πR))(mS −mR) +

+ (1− α)2(mS −mR)2 (5)
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We know from lemma 1 that θR(π(~x), πR) = π(~x)− δ(πR). Hence we have:

E
~x
(θS(~x)− θR(π(~x), πR)) = E

~x
(θS(~x)− π(~x) + δ(πR))

= δ(πR)− δ(π)

We denote the difference between the sender’s and receiver’s moral stance with ∆ = mS −mR which allows
us to simplify expression 5:

E
~x
(aS(~x)− aR(π(~x), πR))2 = α2

E
~x
(θS(~x)− θR(π(~x), πR))2 + 2α(1− α) (δ(πR)− δ(π)) ∆ + (1− α)2∆2

= α2
E
~x
(θS(~x)− π(~x) + δ(πR))2 + 2α(1− α) (δ(πR)− δ(π)) ∆ + (1− α)2∆2

= α2
E
~x
(θS(~x)− π(~x) + δ(π))2︸ ︷︷ ︸

signaling loss

+

+ α2 (δ(πR)− δ(π))
2

+ 2α(1− α) (δ(πR)− δ(π)) ∆︸ ︷︷ ︸
persuasion temptation

+

+ (1− α)2∆2︸ ︷︷ ︸
Fundamental loss

(6)

We can now see that the disagreement loss has 3 components. The last component is the fundamental loss
that arises because the sender’s and receiver’s moral stances differ: it is constant and cannot be affected by
the sender. We can therefore ignore this term in our analysis.

The second component is the persuasion temptation. It is always equal to 0 in the observable regime
because δ(πR) = δ(π). However, in the non-observable regime the sender can always reduce her disagreement
loss slightly off-equilibrium by either increasing the bias δ(π) of her communication scheme (when ∆ > 0)
or decreasing the bias (when ∆ < 0): effectively this will move the receiver’s action closer to hers.1

The first term is the signaling loss that arises from the fact that the sender can only transmit a single
coarse anecdote but not her posterior mean: this expression is the square distance between the sender’s
posterior mean and the bias-corrected posterior of a receiver who uses the correct communication scheme π.
While we know that the expected distance E[θS(~x−π(~x)−δ(π))] is 0 in expectation the variance is generally
bounded away from 0.

Proposition 1. In the observable regime the sender’s optimal communication scheme minimizes her signal-
ing loss. Therefore, her optimal communication scheme does not depend on the moral stances of the sender
or receiver.

In the unobservable regime, on the other hand, the receiver trades off her persuasion temptation against
increases in the signaling loss: the sender is tempted to always slightly increase the bias of her communication
scheme in order to move the receiver’s action close to hers. This results in the sender selecting a tail signal
which has higher variance for distributions such as the normal or Laplace distribution: intuitively, signals in
the tail are more thinly distributed and therefore the signaling “error” tends to be larger. This increases the
sender’s signaling loss. This unraveling will stop when the marginal increase in the signaling loss exceeds
the marginal temptation benefit.

Proposition 2. In the unobservable regime the sender’s optimal communication scheme is equal to the
optimal scheme in the observable regime when sender and receiver have the same moral stances. Otherwise,
the sender’s signaling loss is weakly worse off in the non-observable regime compared to the observable regime.

When sender and receiver share the same moral stance the temptation to persuade disappears and the
sender simply minimizes the signaling loss just as in the observable regime. Otherwise, in equilibrium the

1To see this, assume that δ(πR) = δ(π) and then either increase or decrease the bias δ(π). The first term of the persuasion
temptation is quadratic and hence second-order while the second term is linear in the bias and hence first-order.
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temptation loss is 0 and the sender’s utility is solely determined by the signaling loss. However, the signaling
loss is minimized in the observable regime and therefore the sender cannot be better off in the non-observable
regime.

3.2 Characterization of Optimal Communication Scheme

We now characterize the optimal communication scheme precisely. To that end, we introduce the notion of
the center of a communication scheme π(~x).

Definition 2. The center r(δ) of a communication scheme π(~x) with bias δ is defined as the offset from the
posterior mean θS(~x) such that when one selects the anecdote that is closest to θS(~x) + r(δ) the mean value
is θS(~x) + δ.

One might naively expect that the center is exactly δ: however, this is generally not true. For example
consider a scheme with a negative bias δ < 0 and symmetric and single-peaked signal distribution F . In that
case, the density of the anecdotes is increasing at δ and therefore the expected value of the closest anecdote
will be greater than δ. In this case, we will generally observe r(δ) < δ for δ < 0. One important exception
is the case of symmetric, single-peaked distributions with zero bias δ = 0. In that case, it is easy to see that
r(δ) = 0.

We can now characterize the optimal translation-invariant communication scheme.

Theorem 1. The optimal translation invariant communication scheme π with bias δ selects the closest signal
to θS(~x) + r(δ).

Proof: We decompose the signaling loss from equation 5:

α2
E
~x
(θS(~x)− π(~x) + δ(π))2 = α2

E
~x
(θS(~x)− π(~x) + δ(π) + r(δ)− r(δ))2

= α2[E
~x
(θS(~x)− π(~x) + r(δ))2 + (δ(π)− r(δ))2 +

+ 2E
~x

(θS(~x)− π(~x) + r(δ))︸ ︷︷ ︸
=r(δ)−δ(π)

(δ(π)− r(δ))]

= α2

[
E
~x
(θS(~x)− π(~x) + r(δ))2 − (δ(π)− r(δ))2

]
(7)

Let’s fix the bias δ and find the optimal communication scheme that minimizes the sender’s objective
Equation 5. It is easy to see that this scheme has to minimize E~x(θS(~x)− π(~x) + r(δ))2 which occurs
when we choose whatever anecdote is closest to the center r(δ). This scheme has exactly the right bias
δ by construction. This shows that it is the optimal scheme with bias δ.

Note, that not all biases δ can also be implemented. For example, when F is symmetric and senders
have only access to a single anecdote (n = 1) the only implementable scheme is the unbiased scheme.
More generally, it is easy to see that the largest implementable negative bias is the minimum scheme (or
the maximum scheme for positive biases) where the sender always selects the smallest anecdote (largest
anecdote). We denote the bias of the minimum and maximum schemes with δmin and δmax, respectively.

Lemma 2. The range of implementable biases is R = [δmin, δmax]. Any bias δ ∈ (δmin, δmax) can be
implemented by a communication scheme with some center r(δ). For r → −∞ (r → ∞) the bias of
the communication scheme converges to δmin (δmax). For n ≥ 2 the minimum (maximum) bias can be
implemented by a center-based scheme if and only if the distribution F is bounded on the left (bounded on
the right).

The proof is immediate: if the distribution is bounded on the left by some number a, for example, then
any r ≤ a implements the minimum scheme. On the other hand, if F is unbounded on the left and there are
at least two anecdotes then there are always realizations where the center-based scheme selects the larger of
the two signals.
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3.3 Receiver’s Loss

There is a close relationship between the signaling loss of the sender and the loss of the receiver. To see this
consider the definition of the receiver’s loss for taking an action a:

receiver’s loss = E
θ|πR(~x),πR

[
α(a− θ)2 + (1− α)(a−mR)2

]
Fix some communication scheme π of the sender, and for notational convenience write θR for the random
variable θR(π(~x), π) where the randomness is over the realization of ~x. We can then plug in the receiver’s
optimal choice of action a = αθR+(1−α)mR and take expectations with respect to the sender’s information
set at stage 1 before she observes the anecdotes. This expectation is over the realization of θ and the observed
anecdotes ~x.

receiver’s loss = E

[
α (αθR + (1− α)mR − θ)2

+ (1− α) (αθR + (1− α)mR −mR)
2
]

= E

[
α (αθR + (1− α)(mR − θ + θ)− θ)2

+ (1− α)α2(mR − θR)2
]

= E

[
α ((1− α)(mR − θ) + α(θR − θ))2

+ (1− α)α2(mR − θR)2
]

= α(1− α)2
E
[
(mR − θ)2

]
+ α3

E
[
(θR − θ)2

]
+ 2α2(1− α)Eθ

(mR − θ) E
~x|θ

(θR − θ)︸ ︷︷ ︸
=0

+

+ (1− α)α2
E
[
(mR − θR)2

]
= α(1− α)2

E
[
(mR − θ)2

]
+ α3

E
[
(θR − θ)2

]
+ (1− α)α2

E
[
(mR − θ + θ − θR)2

]
= α(1− α)2

E
[
(mR − θ)2

]
+ α3

E
[
(θR − θ)2

]
+ (1− α)α2

E
[
(mR − θ)2

]
+ (1− α)α2

E
[
(θ − θR)2

]
+ 2(1− α)α2

E
θ
[(mR − θ) E

~x|θ
(θ − θR)︸ ︷︷ ︸

=0

]

= α(1− α)E
[
(mR − θ)2

]
+ α2

E
[
(θ − θR)2

]
= α(1− α)E

[
(mR − θ)2

]
+ α2

E
[
(θ − θS(~x) + θS(~x)− θR)2

]
= α(1− α)E

[
(mR − θ)2

]
+ α2

E(θ − θS(~x))2 + α2
E

( θS(~x)− θR︸ ︷︷ ︸
=θS(~x)−π(~x)+δS

)2

+

+ 2α2E~x[(θS(~x)− θR) E
θ|~x

(θ − θS(~x))︸ ︷︷ ︸
=0

]

= α(1− α)E
[
(mR − θ)2

]︸ ︷︷ ︸
fundamental loss

+α2
E
[
(θ − θS(~x))2

]︸ ︷︷ ︸
sender uncertainty

+ α2
E
[
(θS(~x)− π(~x) + δR)2

]︸ ︷︷ ︸
sender’s signaling loss (δR = δS)

(8)

The expected receiver’s loss (evaluated at stage 1) has three components. The fundamental loss is the
unavoidable loss because the receiver trades off her moral stance against the desire to take an action close to
the state of the world (and she can satisfy neither perfectly). The sender uncertainty captures the loss from
the sender not knowing the true state but only the posterior mean θS(~x). Neither the fundamental loss nor
the sender uncertainty are influenced by the sender’s communication scheme.

The third term is the loss that arises because the receiver only learns about the sender’s posterior mean
θS(~x) from a single anecdote and is exactly equal to the sender’s signaling loss. We have therefore established
the following relation between the receiver’s expected loss and the sender’s signaling loss.

Lemma 3. The receiver’s expected loss is equal to the sender’s signaling loss plus a constant.
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In other words, any communication scheme that increases the sender’s loss in equilibrium is also worse
for the receiver.

3.4 Discussion of Modeling Assumptions

We now discuss some of the assumptions we made in this Section.

Communication. Unlike in standard models of communication and learning our agents can only commu-
nicate a raw signal but not a posterior belief. We believe that this type of communication is common among
“non-experts” or in short format social media. There are two interrelated reasons for this. One is that the
communication medium may lack the depth or breadth of communication needed to synthesize pieces of
observations into a coherent new view that can then be shared with others. For example, a recent academic
paper on COVID-19 vaccines synthesized prior studies and facts into one package that includes summary
statistics, such as “More than 3% of recipients of Moderna COVID-19 vaccine develop severe temporary side
effects including fatigue (9.7%) , myalgia (8.9%), arthralgia (5.2%), headache (4.5%), pain (4.1%).” Hussey
(2020). In contrast, a tweet is often retelling a personal or familiar anecdote such as “Got my 1st Moderna
shot: I felt slightly flu-y last night. A little achy, slight headache, and tired.” Another reason for this is that
the sender and receiver may not have access to a common model (or “language” in the form of posterior
beliefs) that would allow them to update some parameters and then efficiently communicate the mean and
standard deviations of those parameters. For example, newspapers typically inform their readers about a new
event mainly by reporting a selection of “stories”, e.g., with headlines such as “A bribery scheme involving
Politician X is discovered” rather than summary statistics that gives full account of the all politicians, their
financial ties, and whether occurrence of corruption within politicians has increased in the past decade. In
this case, even expert journalists are advised to use “examples” (or anecdotes) when communicating with
non-expert reader who might otherwise be overwhelmed by expert jargon.

This restriction to communicating anecdotes drives our main results through a particular mechanic: more
extreme anecdotes are noisier. While we consider the model of anecdotes to be a contribution of this paper,
we note that any communication scheme which retains this noise structure would result in conceptually
similar results. For example, one might argue that facts can be strategically manipulated up to a point,
perhaps through the use of framing. In such a world, the sender can communicate signals that are within a
fixed interval of an anecdote. This preserves the mechanic that more extreme anecdotes are noisier, and so
individuals with more aligned utilities will have more accurate communication.

Timing. In our model, the sender chooses a communication scheme when she only knows her own moral
stance and the moral stance of the receiver but has not yet seen any anecdotes. We believe that this
assumption is most natural in an environment where senders adopt a number of “communication postures”
when dealing with different types of receivers and then stick to this postures without trying to adapt their
communication to specific signal realizations. For example, a sender might adopt the posture “always
tell people who know me and people who agree with me the anecdote closest to the mean anecdote”.
Alternatively, she might adopt the posture “tell people who don’t know me and are left of me the most
right-wing anecdote I know”. The former posture might be applied to friends while the latter posture might
be adopted by a politician who is sampling from biased anecdotes when communicating in an attempt to
gather more support.

Translation invariance. This assumption captures the idea that agents should not favor any arbitrary
ranges of signals given that they have a diffuse prior and essentially know nothing about the true state.
Translation invariance greatly simplifies our analysis because it allows the receiver to correct for any bias
in the sender’s signaling scheme by adding a single number to the received anecdote. However, translation
invariance is not without loss of generality: there are pathological examples were the optimal signaling
scheme is non-translation invariant (see Appendix B.3).
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Utility function. Our work focuses on a particular functional form of utilities. We propose that both the
sender and receiver are choosing actions based on squared loss functions, and that the sender further selects
a communication scheme to minimize squared loss between her action and that of the receiver. The former
of these assumptions is simply a microfounding of our model. More generally, the sender and receiver can
each choose any point (fixed relative to the state of the world), and the alignment of the pair becomes the
difference between these ideal points. The receiver chooses an action minimizing distance to her posterior
about the location of her ideal point, and the sender chooses a communication scheme trying to minimize
the squared loss between the receiver’s action and her own ideal point. Seemingling more restrictive is the
latter choice – that the sender cares about the squared distance of the receiver’s action to her ideal point. We
believe our general intuitions and results follow in any model where the sender’s loss is a convex (equivalently,
utility is concave) function of the receiver’s action, with the minimum (equivalently, maxmimum) obtained
at the sender’s ideal point (e.g., her action in our model). With both these generalizations, it will still be
the case that more aligned individuals have more accurate communication.

Memory. We present our model as a communication game with a sender and receiver. However, there
is an alternative interpretation in the case where the sender is “communicating” with her future self by
deciding what anecdote to store in memory for retrieval by the future self. In this setting, it makes sense to
assume that there is no difference in the moral stances of the current and future self. Therefore, the current
self will store the anecdote that minimizes her signaling loss (e.g. the observable regime).

4 Communication under Observability

In this section we analyze the case where the sender’s communication is observable, meaning that the sender
can commit to a communication scheme. We have already shown in Proposition 1 that the sender’s optimal
communication scheme will minimize signaling loss, and in particular it does not depend on any differences
in moral stances. In other words, observability guarantees that the sender will seek to minimize the receiver’s
loss subject to the constraint that she can only send a single signal.

What communication scheme minimizes signaling loss? Intuitively, for symmetric single-peaked signal
distributions it should be approximately optimal to select an signal close to the sender’s posterior mean.
After all, this is where we expect the signals to be most densely distributed, so communicating such an signal
should minimize noise and give the receiver the best possible information about the sender’s posterior belief.

It turns out that this intuition can be derived most crisply for the case of many signals, which we analyze
next. Later in Section 4.3 we discuss some special considerations that arise when analyzing the case of few
signals.

4.1 Observability: Asymptotic Analysis

For this part, we focus on the following class of well-behaved signal distributions.

Definition 3. We say that the signal distribution F is well-behaved if the following holds. (1) The distri-
bution is single-peaked and symmetric with variance 1. (2) The Fisher information cI is not zero.2 (3) Let

g(x) = f ′(x)/f(x). That is, g(x) = d log f(x)
dx . We assume that |g′(x)| ≤ c1 for all x, and some constant

c1 > 0. That is, |g(x)| ≤ c1|x|+ c2
3 (4) F has exponential tail. That is, there is a constant Q > 0, such that

for x > Q, we have 1−F (x) ≤ c3 exp (−|x|) for a constant c3 > 0, and x < −Q we have F (x) ≤ c3 exp (−|x|).

For example, the normal distribution F ∼ N(0, 1) and the Laplace distribution with density f(ε) =
1
2 exp(−|x|) are well-behaved. Recall that f(ε) is the density of the signal distribution at θ + ε, an offset of
ε from the true state of the world.

We can now state our main result which asymptotically calculates the signaling loss of the unbiased
communication scheme for well-behaved distributions.

2Note that Fisher information is 0 if and only when f is (piece-wise) constant.
3Note that, for x < 1 we bound |g(x)| ≤ c2 and otherwise we can bound |g(x)| ≤ c1.
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Figure 2: Intuition for proof of theorem 2
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that is contained in C then a rearrangement of signals in L or R will keep the posterior mean within C with high likelihood
and the probability of signals drawn from the interval C goes to 0. For example, a = 4
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and b = 12

11
satisfy these conditions.

Theorem 2. Suppose that the signal distribution is well behaved. Then the unbiased communication scheme
with δ = r(δ) = 0 which selects the closest signal to the sender’s posterior mean θS(~x) has loss:

α2

2n2f(0)2
+ o

(
1

n2

)
(9)

We can derive a similar theorem for biased communication schemes with δ 6= 0.

Proposition 3. Suppose that the signal distribution is well behaved. Then the biased communication scheme
with bias δ has signaling loss:

α2

2n2f(δ(π))2
+ o

(
1

n2

)
(10)

These two results together imply that the unbiased communication scheme is asymptotically optimal,
and the optimal communication scheme is asymptotically unbiased.

Corollary 1. For any well-behaved signal distribution, the unbiased communication scheme strictly domi-
nates any biased signaling scheme for sufficiently large n and is optimal among all unbiased signaling schemes
up to o(1/n2).

This result confirms our intuition that the optimal communication scheme sends the signal closest to
the posterior mean. Intuitively, the sender would like to send precisely the posterior mean to the receiver.
However, since she can only send a signal she has to do with the second-best which is to send the signal
closest to the posterior mean. When we interpret our model as a model of memory where the current self
communicates with her future self by storing a single anecdote in memory we can think of the anecdote
closest to the posterior mean as the “most representative anecdote”.

4.2 Overview of Theorem 2 and Proposition 3

In this section we see an overview of the proofs of Theorem 2 and Proposition 3. The full proofs are relegated
to Appendix A.
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We begin by relating the sender’s loss to the expected squared distance between the signal sent and the
sender’s posterior mean. For any communication π that is unbiased (meaning that δ(π) = 0) the signaling

loss is given by α2
E~x∼F [(θS(~x− π(x))

2
]. Let π0 denote the unbiased communication scheme that simply

returns the signal closest to θS(~x), the sender’s posterior mean. Let X0 = min |θS(~x) − xi| be the distance
between the this closest signal and the posterior mean. Then the signaling loss of π0 is precisely equal to
α2

E~x∼F [X2
0 ] (and moreover π0 is the optimal unbiased communication scheme).

We can similarly describe the signaling loss of biased communication schemes. For any δ ≥ 0, let πδ denote
the communication scheme that returns the signal closest to θS(~x)+ δ. That is, πδ(~x) = argminxi∈~x |θS(~x)+
δ−xi|. Similar to the unbiased case, we can let Xδ = min |θS(~x)−xi + δ| be the distance between θS(~x) + δ
and πδ(~x) the signal closest to θS(~x) + δ.

We note that, for δ 6= 0, the communication scheme πδ may not have bias δ. That is, it might be that
δ(πδ) 6= δ. This is because signals may not be symmetrically distributed around the point θS(~x)+δ. However,
the distance (E[X2

δ ]) between πδ(~x) and θS(~x) + δ, is at most the distance between π(~x) and θS(~x) + δ for
any communication scheme π. Moreover, when π has bias δ(π) = δ this is precisely 1/α2 times the signaling
loss of π. Thus, the signaling loss of any communication scheme π with bias δ 6= 0 is at most α2

E[X2
δ ].

We can summarize the discussion above about biased and unbiased signaling loss as follows.

Observation 1. To prove Theorem 2 it is enough to show that E[X2
0 ] ≤ 1

2n2f(0)2 + o( 1
n2 ).

Observation 2. To prove Proposition 3 it is enough to show that E[X2
δ ] ≥ 1

2n2f(δ)2 + o( 1
n2 ).

Given these observations, it remains to bound E[X2
0 ] from below and E[X2

δ ] from above for δ > 0. To
gain some intuition, imagine first what would happen if the sender had foresight and knew the value of θ in
advance, so that θS(~x) = θ. In this case, Xδ is simply the minimum distance between θ + δ and any of n
independent random draws from the signal distribution. One can then derive an expression for the expected
minimum distance as a function of f(δ), the density of the signal distribution at θ + δ, and indeed one can
check that these bounds would satisfy the requirements for Observations 1 and 2.

When the sender does not have foresight, the posterior mean θS(~x) depends on the realized signals ~x, and
this introduces correlation between the signal realizations and the value of θS(~x) + δ. We therefore cannot
model Xδ using independent draws from the signal distribution. Indeed, as we will see in Section 4.3, these
correlations can significantly impact E[X2

δ ] when the number of signals is small.
Our approach is to argue that as n grows large, the impact of these correlations grows small. Small

enough, in fact, that the correlation between θS(~x) + δ and the signal closest to that point becomes small
enough that it is dominated by the statistical noise that would anyway be present if signals were drawn
independently of θS(~x). We argue this in three steps.

Step 1: We argue that it suffices to focus on cases where θS(~x) falls within a narrow interval. Let I =

[−n− 1
2 +ε, n−

1
2 +ε] for some ε > 0. Using the law of large numbers, we argue that θS(~x) ∈ I with all

but exponentially small probability (in n). The contribution to E[X2
δ ] from events where θS(~x) 6∈ I is

therefore negligible and can be safely ignored. This allows us to assume that θS(~x) ∈ I.

Step 2: To reduce the impact of correlation we won’t focus on the exact value of θS(~x), but rather an interval
in which it falls. To this end we partition I into subintervals of width n−b, where b is chosen so that
any given interval is unlikely to contain a signal. One such subinterval contains the posterior mean
θS(~x); call that subinterval C. We then consider longer subintervals L and R to the left and right of
C, respectively, of width n−a chosen large enough that we expect many signals to appear in each. See
Figure 2.

We bound the impact of correlation by showing that if we condition on the number of signals that
appear in L and R, then the actual arrangement of signals within those subintervals (keeping all other
signals fixed) has only negligible effect on the posterior mean. Specifically, given any arrangement of
the signals within L and R, the probability that the posterior mean falls within C remains large. (See
Corollary 8 for more details.)
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This implies that there is negligible correlation between the joint density function of a fixed number of
k signals in L ∪R and the event that θS(~x) ∈ C. For a general δ, we consider the interval Cδ = C + δ
containing θS(~x) + δ and the intervals Lδ and Rδ to the left and right of Cδ. We similarly, bound the
correlation between the joint density function of a fixed number of k signals in Lδ ∪Rδ and the event
that θS(~x) + δ ∈ Cδ. We formally show this in Lemmas 19 and 20 4.

Step 3: The analysis in Step 2 conditioned on the number of signals that fall in L ∪ R. We now consider
the distribution of this number of signals. We show a concentration result: with high probability, the
number of signals that lie in L ∪ R is close to what would be expected if the signals were distributed
independently and not correlated with θS(~x) (through the identity of interval C). See Appendix A for
the proof, and Lemma 15 for the proof that it suffices to consider only this high-probability event.

Given this concentration result, we can focus on bounding the expected value of X2
δ given the numbers

of signals in L and R. From the analysis in Step 2, we can view these signals as (approximately) inde-
pendently distributed within L and R. We can therefore bound the expected squared distance between
interval C and the closest signal to interval C by performing an explicit calculation for independent
signals. We still do not know the value of θS(~x) within interval C (and we have not bounded the impact
of correlation on that value), but C is sufficiently narrow that this uncertainty has limited impact on
E[X2

δ ]. We conclude that the impact of correlation on E[X2
δ ] is absorbed in lower-order terms, which

yields the bounds required by Observations 1 and 2. This gives us the required results of Theorem 2
and Proposition 3.

4.3 Observability: Few Signals

Corollary 1 shows that for well-behaved distribution, biased communication schemes are asymptotically
suboptimal. One might wonder whether this result extends to all finite sample cases. It turns out that this
is not true. In this section we present examples showing that the optimal communication scheme can include
a significant amount of bias when n is small.

4.3.1 Two Signals

We begin by considering the case n = 2, where there are just two samples and assume the signal distribution
F is symmetric around 0. In this case, the strictly optimal communication scheme π is the one that always
returns the minimum signal (or, by symmetry, always returns the maximum signal).

Proposition 4. When n = 2 and signals are drawn from a distribution symmetric around the state of
the world θ, the communication scheme that always sends the min signal (or always sends the max signal)
minimizes the cost of the sender amongst all translation invariant schemes under observability.

The reasoning behind Proposition 4 is that, after receiving two signals ~x = (x1, x2), the sender’s posterior
mean θS(~x) will always equal the empirical mean x = 1

2 (x1 + x2). In particular, this means that each signal
has the same distance to the posterior mean. Upon receiving a signal, the receiver has two sources of
uncertainty: the distance of the signal to the sender’s posterior mean, and whether the posterior mean is
larger or smaller than the received signal. The former quantity is the same for all possible communication
schemes, so the only lever by which to reduce variance is to reduce uncertainty about the latter. But this
uncertainty is minimized by removing it entirely, which is done by always returning the smaller signal (or,
symmetrically, by always returning the larger signal).

4.3.2 Three Signals

The result for two signals is very crisp, but somewhat unsatisfying. It relies crucially on the mechanical fact
that when there are n = 2 signals, every communication scheme has the same distribution over distance

4For these lemmas we assume that the density function θS is sufficiently “nice” in C. Refer to Section A.2.2 for details about
this assumption, and why we can make this assumption without loss of generality.
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between signal and sender posterior mean. We next show that this observation is not specific to the case of
two signals. When there are n = 3 signals, the optimal signaling scheme may still be biased.

Proposition 5. When n = 3 and signals are drawn from a uniform distribution around θ, the optimal
translation-invariant signaling scheme under observability has non-zero bias.

The idea behind Proposition 5 is that, conditional on the value of the sender’s posterior mean, the
conditional density over signal realizations is not necessarily single-peaked. For the setting of Proposition 5,
the optimal unbiased scheme is precisely the one that always returns the middle signal. However, for uniform
distributions, the correlation between the posterior mean and the minimum and maximum signals is stronger
than the correlation between the posterior mean and the middle signal. One can therefore communicate more
information about the posterior mean through a biased communication scheme that sometimes returns the
minimum signal (or, by symmetry, sometimes returns the maximum signal).

Discussion Why does bias help? Recall that there is intrinsic error in the sender’s posterior mean. This
variance is unavoidable. But it can introduce correlation with particular samples. This correlation can be
used to help minimize variance between the posterior mean and the signal passed to the receiver. This
is why, for the uniform case, it is helpful to bias toward more extreme signals: even though they are not
more informative than the moderate signals when it comes to the true state of the world, they are more
informative with respect to the sender’s posterior mean. The interplay between these two sources of errors
therefore introduces incentive for the sender to systematically bias their communication.

4.3.3 Relaxing Translation Invariance

The next thing we note is that the restriction to translation invariance is necessary: there are examples
with n = 2 signals and where the distribution F is symmetric around 0, but yet the optimal (possibly not
translation invariant) communication scheme for the sender is not translation invariant.

Proposition 6. When n = 2 and signals are drawn from a distribution symmetric around θ, the optimal
signaling scheme under observability for the sender may not be translation-invariant.

We know from Proposition 4 that the communication scheme that always returns the minimum signal is
optimal among translation invariant communication schemes. So to prove Proposition 6 it suffices to find any
communication scheme that improves upon this minimal-signal scheme. The idea behind the construction
is to set up distribution F to be bimodal, so that each pair of signals (x1, x2) will either come from the
same mode (and have small difference) or from different modes (and have large difference). This splits signal
realizations into two cases, but a translation-invariant scheme cannot distinguish these two cases for the
receiver. However, one can construct a non-translation-invariant scheme that correlates the choice of signal
with which case has occurred. If the two modes have sufficiently low variance, the extra value of providing a
hint about same-mode versus different-mode dominates the loss due to being ambiguous about whether the
posterior mean is higher or lower than the provided signal.

5 Communication under Non-observability

In this Section we analyze the case where the sender’s communication scheme is unobservable. We already
know from Proposition 2 that non-observability matters when the moral stances of sender and receiver differ
and non-observability increases the sender’s loss (as well as the receiver’s). We start by first characterizing
the equilibrium communication scheme under non-observability and then properties of these equilibria. In
particular, we show that due to unraveling even small differences in the moral stances can cause large bias
in the sender’s communication scheme.
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5.1 Characterizing the Sender’s Optimal Communication Scheme

We start by recalling the decomposition of the sender’s disagreement loss from equation 5 into signaling
loss, persuasion temptation and fundamental loss. Since the latter is constant only the first two components
matter for the sender’s optimization problem. Hence the sender is minimizing the following expression:

α2

[
E
~x
(θS(~x)− π(~x) + r(δ))2 − (δ(π)− r(δ))2

]
︸ ︷︷ ︸

signaling loss

+

+α2 (δ(πR)− δ(π))
2

+ 2α(1− α) (δ(πR)− δ(π)) ∆︸ ︷︷ ︸
persuasion temptation

(11)

In contrast to the observable environment we analyzed in the previous section, we can no longer ignore
persuasion temptation. This term is equal to zero in equilibrium as the recipient will correctly anticipate
the sender’s bias such that δR = δ. However, the sender takes the receiver’s anticipated bias as fixed when
choosing her communication scheme and hence the persuasion term will matter for off-equilibrium deviations.
In particular, we note that the sender can always lower her loss by moving her communication scheme to
the left when ∆ < 0 (or moving to the right in the opposite case).5 Intuitively, the sender is tempted to
increase her bias in order to move the receiver’s action in her preferred direction.

Next, we note that Theorem 1 characterizes the optimal anecdote π(~x) as the closest anecdote to θS(~x)+
r(δ). One difficulty here is that the posterior mean θS(~x) is often difficult to calculate for signal distributions
other than the normal distribution. Moreover, it is a function of the entire anecdote vector ~x and therefore
the conditional distribution of the closest anecdote to θS(~x) + r(δ) depends on θS(~x). This was a major
technical difficulty we had to deal with in Section 4.1.

In this Section, we will circumvent this technical problem by assuming that the sender has foresight
and knows the precise state of the world θ already in Stage 1. She therefore does not have to estimate the
state of the world and θS(~x) = θ. We expect that the difference between the optimal communication with
and without foresight is small especially for large n because we know that the posterior mean converges to
the true state at rate

√
n. Using the foresight assumption we can derive (a) a precise condition for finding

the center r(δ) of a communication scheme with bias δ and (b) solve the sender’s first-order condition in
Equation 11.

Let’s start with finding a condition that pins down the center r(δ). Denote by y the distance between
the center r and the closest anecdote (out of n total anecdotes) where y is positive if the closest anecdote is
to the right and negative if the closest anecdote is to the left. We can derive the density of y as follows:

g(y) = nf(r + y) [1− (F (r + |y|)− F (r − |y|))]n−1
. (12)

To see this, note that there are n anecdotes that can take the value r + y. At the same time all the other
n− 1 anecdotes cannot fall into the interval [r− |y|, r+ |y|]. We define H(r, y) = 1− (F (r + y))−F (r − y))
which allows us to write the density as:

g(y) = nf(r + y)H(r, |y|)n−1. (13)

We can now calculate the expected bias of communication scheme with center r(δ), which has to be δ:

δ = r +

∫ ∞
−∞

ynf(r + y)H(r, |y|)n−1dy (14)

5The off-equilibrium temptation incentive is apparent when starting from an equilibrium where δR = δ. By slightly lowering
δ (for ∆ < 0) the change in the quadratic term is second-order but the linear term is first-order.
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This equation implicitly defines r(δ). We can simplify it further:

δ = r +

∫ ∞
0

ynf(r + y)H(r, |y|)n−1dy +

∫ 0

−∞
ynf(r + y)H(r, |y|)n−1dy

= r +

∫ ∞
0

ynf(r + y)H(r, y)n−1dy−
∫ 0

∞
(−y)nf(r − y)H(r, y)n−1dy

= r +

∫ ∞
0

yn [f(r + y)− f(r − y)]H(r, y)n−1dy

= r −
∫ ∞

0

yn
∂H(r, y)

∂r
H(r, y)n−1dy (15)

This proves the next lemma.

Lemma 4. Assume the sender has foresight. Then the center r(δ) of her optimal communication scheme
with bias δ satisfies:

r(δ) = δ +

∫ ∞
0

yn
∂H(r(δ), y)

∂r
H(r(δ), y)n−1dy (16)

We turn next to the sender’s loss minimization problem (11). Note that when n = 1 the sender’s problem
is trivial (as there is only one signal to send), so suppose n ≥ 2. Recalling that random variable y corresponds
to θS(~x)− π(~x) + r(δ), we can rewrite (11) using the density g(y) as follows:

α2

[∫ ∞
−∞

y2nf(r(δ) + y)H(r, |y|)n−1dy − (δ(π)− r(δ))2

]
︸ ︷︷ ︸

signaling loss

+

+ α2 (δ(πR)− δ(π))
2

+ 2α(1− α) (δ(πR)− δ(π)) ∆︸ ︷︷ ︸
persuasion temptation

= α2

[∫ ∞
0

y2n (f(r(δ) + y) + f(r(δ)− y))H(r, y)n−1dy − (δ(π)− r(δ))2

]
+ α2 (δ(πR)− δ(π))

2
+ 2α(1− α) (δ(πR)− δ(π)) ∆

= α2

[
−
∫ ∞

0

y2n
∂H(r(δ), y)

∂y
H(r, y)n−1dy − (δ(π)− r(δ))2

]
+

+ α2 (δ(πR)− δ(π))
2

+ 2α(1− α) (δ(πR)− δ(π)) ∆

= α2

[∫ ∞
0

2yH(r(δ), y)ndy − (δ(π)− r(δ))2

]
+ α2 (δ(πR)− δ(π))

2
+ 2α(1− α) (δ(πR)− δ(π)) ∆

+ α2y2H(r(δ), y)n|∞y=0 (17)

Consider the final term α2y2H(r(δ), y)n|∞y=0. This expression is equal to 0 when evaluated at y = 0. We
also claim that limy→∞ α2y2H(r(δ), y)n → 0. To see why, write µ for the mean of the noise distribution F
and σ2 for its (finite) variance. For any y > 2|µ− r(δ)|, observe that if |x−µ| ≤ y/2 then |x− r(δ)| ≤ y. By
Chebyshev inequality we have

H(r(δ), y) ≤ Pr
x∼F

[|x− µ| ≥ y/2] ≤ 4σ2/y2

and hence for n ≥ 2 we have limy→∞ y2H(r(δ), y)n = 0. We therefore conclude α2y2H(r(δ), y)n|∞y=0 = 0.
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The sender minimizes (17) with respect to δ(π). Hence we can write her first-order condition as

α2


∫ ∞

0

2ynr′(δ)
∂H(r(δ), y)

∂r
H(r(δ), y)n−1dy︸ ︷︷ ︸

=2r′(δ)(r−δ) by Lemma 4

−2(δ(π)− r(δ))(1− r′(δ))


+2α2(δ(π)− δ(πR))− 2α(1− α)∆ = 0

Which implies that

−2α2(δ(πR)− r(δ))− 2α(1− α)∆ = 0. (18)

We summarize our finding in the following lemma.

Lemma 5. Fixing the belief πR of the receiver, a sender with foresight under non-observability will best-
respond by choosing a communication scheme with bias δ and center r(δ) that satisfies

δ(πR)− r(δ) = −1− α
α

∆. (19)

At equilibrium, we must have δ(πR) = δ(π). Lemma 5 therefore directly implies the following condition
on the sender’s equilibrium strategy.

Lemma 6. At equilibrium, a sender with foresight under non-observability chooses a communication scheme
with bias δ and center r(δ) that satisfies

δ − r(δ) = −1− α
α

∆. (20)

We combine Lemmas 4 and 6 and characterize the sender’s equilibrium communication scheme.

Proposition 7. Assume the sender has foresight. At equilibrium under non-observability, the sender’s
communication scheme has center r∗ which satisfies:∫ ∞

0

yn
∂H(r∗, y)

∂r
H(r∗, y)n−1dy =

1− α
α

∆ (21)

Moreover, this scheme has bias δ = r∗ − 1−α
α ∆.

5.2 Receiver’s Loss

We now calculate the loss of a receiver when the sender uses her optimal communication scheme at equilib-
rium. This allows us to analyze whether a receiver prefers listening to a more informed expert whose moral
stance differs from hers versus listening to a less informed sender whose moral stance is closer to hers.

From Lemma 3 we know that the expected receiver loss is equal to the sender’s signaling loss plus a
constant. Therefore we can deduce from equation 17:

receiver’s loss = constant + α2

[∫ ∞
0

2yH(r(∆), y)ndy − (δ(∆)− r(∆))2

]
= constant + α2

[∫ ∞
0

2yH(r(∆), y)ndy − (1− α)2

α2
∆2

]
(22)
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Note, that we write the equilibrium bias δ and center r as a function of the difference in the moral stance ∆
(we obtain these functions from Proposition 7). We can derive both sides with respect to ∆:

d(receiver’s loss)

d∆
= α2


∫ ∞

0

2yn
dr(∆)

d∆

∂H(r(∆), y)

∂r
H(r(∆), y)n−1dy︸ ︷︷ ︸

=2
dr(∆)
d∆

1−α
α ∆ by Proposition 7

−2
(1− α)2

α2
∆


= 2α(1− α)∆

[
dr(∆)

d∆
− 1− α

α

]
︸ ︷︷ ︸

=
dδ(∆)
d∆ by Lemma 6

= 2α(1− α)∆
dδ(∆)

d∆
(23)

Lemma 7. The receiver’s loss function LR(∆) satisfies:

dLR(∆)

d∆
= 2α(1− α)∆

dδ(∆)

d∆
(24)

This finally allows us to compare the receiver’s utility when listening to senders with different moral
stances.

Corollary 2. Assume that the anecdote distribution F is single-peaked and symmetric. Then the receiver’s
loss is minimized when he talks to like-minded senders (∆ = 0) and increases on both sides otherwise.

Moreover, dδ(∆)
d∆ > 0, thus sgn

(
dLR(∆)
d∆

)
= sgn(∆).

Proof: Assume that δ(∆) is not always increasing over [−∞, 0]. We know that for single-peaked and

symmetric F we have δ = 0 at ∆ = 0 and for ∆ < 0 we have δ < 0 because ∂H(r,y)
∂r < 0 and r < δ < 0

by Proposition 7. Then there has to be some ∆ < ∆′ < 0 such that δ = δ′. But this implies that
r = r′. Therefore δ − r = δ′ − r′. However, this is not possible by Proposition 7.

The above proposition tells us that the equilibrium bias of the sender’s optimal scheme increases with
∆. We can in fact show that for single-peaked symmetric distributions we converge to the minimum or
maximum schemes.

Corollary 3. Assume that the anecdote distribution F is single-peaked and symmetric. Then the sender’s
optimal communication scheme under non-observability converges to the minimum scheme as ∆→ −∞ (in
the sense that r(δ)→ −∞) and converges to the maximum scheme as ∆→∞ (in the sense that r(δ)→∞).

Proof: Consider ∆ < 0 (the proof for positive ∆ is analogous). For single-peaked symmetric distributions
we have r < δ < 0 and δ − r = − 1−α

α ∆. This implies r < 1−α
α ∆. Hence, r(∆)→ −∞ as ∆→ −∞.

This result shows convergence to the minimum (maximum) scheme when fixing n and ∆→ −∞. The reverse
holds as well.

Corollary 4. Assume that the anecdote distribution F is single-peaked and symmetric. Consider a sender
and receiver with fixed moral stance difference ∆. Then the sender’s optimal communication scheme under
non-observability converges to the minimum scheme as n → ∞ if ∆ < 0 and converges to the maximum
scheme as n→∞ if ∆ > 0.

Proof: Denote the center of the optimal communication scheme with n signals with r(n). Assume that
∆ < 0 and that the optimal communication scheme does not converge to the minimum scheme. Then
there is some r̃ such that for any N there is some n > N such that r(n) > r̃. However, as we increase
n the density of anecdotes in any ε interval around r̃ increases and therefore it has to be case that for
some sufficiently large n we have δ(n)− r(n) < ε. By choosing ε small enough we can eventually find
an n where δ(n)− r(n) < − 1−α

α ∆ which contradicts Proposition 7.
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5.3 Informational Homophily

We can build on Corollary 3 and characterize the receiver’s loss in the limit as ∆→ −∞ and ∆→∞.

Corollary 5. Assume that the anecdote distribution F is single-peaked and symmetric. Then the receiver’s
loss L(∆) can be written as L(∆) = C+α2l(∆) where C is a positive constant and the function l(∆) satisfies
the following properties:

l(0) = 0

l′(∆) < 0 for ∆ < 0

l′(∆) > 0 for ∆ > 0

lim
∆→−∞

l(∆) = α2Vmin

lim
∆→∞

l(∆) = α2Vmax (25)

where Vmin and Vmax are the variance of the minimum and maximum anecdote, respectively.

We can now answer the following question: will a receiver prefer to a well-informed but biased expert
rather than a less-informed sender whose moral stance is closer to the receiver’s. It turns out that the answer
depends on the distribution.

Theorem 3. Consider a receiver who can choose between two senders: (a) well-informed expert with access
to n signals and difference in moral stance (compared to receiver) equal to ∆ 6= 0; (b) a sender with access
to a single signal who shares the same moral stance as the receiver. If the expert’s anecdotes are drawn from
a normal distribution the receiver will always prefer to talk to the biased expert. In contrast, if the expert’s
anecdotes are drawn from a Laplace distribution then the receiver might prefer the sender with a single signal
to the expert.

Proof: According to the Fisher-Tippett-Gnedenko theorem the variance of the extremal anecdotes converge
to 0 with n for the normal distribution but are bounded away from 0 for the Laplace distribution
Fisher and Tippett (1928); Gnedenko (1943). Hence, by corollary 4 the result follows.

6 Conclusion

We analyze communication between a sender a receiver where the sender sends one of her signals to the
receiver. Signals are always correct (no “fake news”) but they are not necessarily representative of the
information set of the sender. In particular, when the sender has a motive to persuade the sender she will
tend to send signals from the tail of her distribution. The receiver will undo this bias but there is a cost:
tail signals are less informative than more representative signals. Hence, the sender’s attempts to persuade
the receiver lowers the precision of the transmitted information.

We show that receivers do not necessarily want to talk to the best informed senders. If the signal
distribution has “fat tails” the receiver might prefer to talk to a less informed sender whose preferences
are more aligned with her own. Such experts have access to more anecdotes from the tail which limits the
ability of the receiver to learn even if the expert is very well informed. In contrast, if signals are distributed
according to a “thin-tail” distribution such as the normal distribution receivers will generally prefer talking to
the biased expert. This gives rise to a type of informational homophily where receivers seek out like-minded
senders because these senders tell more representative anecdotes from which they can learn more efficiently.
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A Proofs from Section 4.1

A.1 More Detailed Overview of Theorem 2 and Proposition 3

We begin by revisiting the three-step overview of Theorem 2 and Proposition 3 from Section 4.2, but described
in more formal detail.

We note that, when |δ| > 2(log n)2, E[X2
δ ] ≥

(
2(log n)2 − (log n)2

)2
(1−ne−(logn)2

) ≥ O((log n)4). Since,

for a well-behaved distribution, the probability of there exists a signal > (log n)2 is at most ne−(logn)2

. Hence
we will focus only on |δ| ≤ 2(log n)2.

Step 1: We note the the posterior distribution of θ converges to a normal distribution with expectation
θ∗ = 0 and variance I−1(θ)/n, where I(θ∗) is the Fisher information of θ∗Hartigan (1983). Let

I = [−n− 1
2 +ε, n−

1
2 +ε] for some ε > 0. Therefore, the probability that θS /∈ I is at most exp(−n2εA)

for some A > 0.

Note that, for any δ we have, E[X2
δ ] ≥ Pr[θS ∈ I] · E[X2

δ |1{θS ∈ I}]. Further, in Section A.2.2, we
bound the contribution to the cost when θS /∈ I to be O(exp(−n2εA)).

E[X2
0 ] = E[X2

0 · 1{θS ∈ I}] + E[X2
0 · 1{θS 6∈ I}]

≤ E[X2
0 · 1{θS ∈ I}] +O((exp(−n2εA))

Therefore, we will focus on θS ∈ I.

Step 2: We partition I into intervals of length 1/nb, where b = 12/11(> 1). Let P denote this partition of
I. Let C be one such interval in P. Our goal is to bound the distance of the closest signal to θS + δ
conditioned on θS ∈ C (and equivalently θS + δ ∈ C + δ).

We consider the intervals Lδ and Rδ of length 1/2na, where a = 4/5(< 1), to the left and right interval
C + δ respectively 6. For δ = 0 we usually drop the subscripts and denote the intervals as L and R.
Our choice of a allows Lδ (and Rδ) to be wide enough to contain many signals, while small enough
that they cover only a fraction of I + δ and hence contain at most O(n1−a). Figure 2 shows one such
interval.

A key lemma here shows that, given a well-behaved distribution, any re-arrangement of signals within
Lδ ∪ Rδ has only a negligible effect on the posterior mean. In other words, given θS ∈ C, no matter
how we arrange k = O(f(δ)n1−a) many signals in Lδ ∪Rδ the posterior mean remains in C almost all
the time (see Corollary 8).

This implies that there is negligible correlation between the joint density function of k signals in
~x[k] ∈ Lδ ∪ Rδ and the event θS ∈ C, informally stated in Lemma 8. We formally show this in
Lemmas 19 and 20 7.

Lemma 8 (Informal). Let ~x[k] be a subset of k (at most n1−a) signals in Lδ ∪ Rδ, and K(k) be the

event that there are exactly k anecdotes Lδ ∪Rδ. Then f(~x[k]|θS ∈ C ∧K(k)) = f(~x[k])(1 +O(n−1/2).

Moreover, the density function f of a signal within I + δ is reasonably “flat” and is approximately
close to f(δ) (see Claims 1 and 4). Hence, even conditioned on θS ∈ C, the density of the anecdotes in
Lδ ∪Rδ is essentially uniformly distributed.

Step 3: Let K be the event that there are at least k = (1 − ε)f(0)n1−a in L ∪ R (recall that L and R are
the correspoding intervals around C). We show that with high probability the number of signals in
L ∪ R ,of length n−a, is at least (1 − ε)f(0)n1−a, see Appendix A for the proof. In Lemma 15 (in
Appendix A.2.2), we show that the contribution of the low probability event K, is bounded by o(1/n2).

6We set b and a to these values to ensure that intervals have desirable properties. Refer to Appendix A for more details
7For these Lemmas we assume that the density function θS is sufficiently “nice” in all C ∈ P. Refer to Section A.2.2 for

details about this assumption, and why we can make this assumption wlog.
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E[X2
01(θS ∈ I)] ≤

∑
C∈P

E[X2
01(θS ∈ C ∧K)] +

∑
C∈P

E[X2
01(θS ∈ C ∧K)]

≤
∑
C∈P

E[X2
01(θS ∈ C ∧K)] + o(1/n2)

Hence for each C ∈ P we just focus on bounding E[X2
0 · 1(K)|θS ∈ C], towards this we prove the

following Lemma.

Lemma 9. The distribution of the random variable X0 · 1(K) conditioned on θS ∈ C is stochastically
dominated by the exponential distribution with λ = 2nf(0). That is, Pr[X(0) · 1(K) > d|θS ∈ C] <

exp[−λd](1−O(n−1/2)).

Similarly for any |δ| ≤ 2(log n)2, we define Kδ to be the event that there are at most (1 + ε1)f(δ)n1−a

in Lδ ∪Rδ (where Lδ and Rδ are the corresponding intervals around C + δ). We show that with high
probability the number of signals in Lδ ∪ Rδ) ,of length n−a, is in (1 ± ε1)f(δ)n1−a, see Corollary 7
in Appendix A for the proof. Analogous to Lemma 9, we get the following lemma lower bounding the
CDF of X2

δ · 1(Kδ).

Lemma 10. The distribution of the random variable Xδ · 1(Kδ) conditioned on θS ∈ C stochastically
dominates the exponential distribution with λ = 2nf(δ)(1 + O(n−1/10)). That is, for d < n−9/10,
Pr[X(δ) · 1(K) > d|θS ∈ C] ≥ exp[−λd](1− o(1)).

Let Z(λ) be the random variable with exponential distribution. We note that, E[Z(λ)2] = 2
λ2 . There-

fore, by Lemmas 9 and 10 we get that E[X2
0 ] ≤ 1

2n2f(0)2 + o( 1
n2 ) and E[X2

δ ] ≥ 1
2n2f(δ)2 − o( 1

n2 ). This

gives us the required results of Theorem 2 and Proposition 3.

A.2 Proof of Theorem 2

In this section we prove Theorem 2, that E[X2
0 ] ≤ 1

2n2f(0) + o(1/n2). In Section A.2.1, we consider the high

probability event with the following desirable properties:

� θS ∈ C, where C ∈ P, that is, θS ∈ I.

� θS ∈ C, where C is not weak (see Definition 4).

� θS ∈ C, where there are sufficiently many signals in N(C) = L ∪R.

In Lemma 12 we bound the loss contributed by this high probability event. Further, in Section A.2.2 we
bound the loss from the “rare events” that some desirable property does not hold. We bound the loss from
the event when θS /∈ I (in Lemma 13), when C is a weak interval (in Lemma 14), and when there are very
few signals in N(C) (in Lemma 15).

With this we prove the theorem,

Proof of Theorem 2. Recall that the signaling loss of the unbiased scheme π0 is L(π0, 0) = α2
E[X2

0 ]. Given
θS ∈ C, let K0 be the event that there are sufficiently many signals in N(C). We see that,
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E[X2
0 ] = E[X2

0 · 1{θS /∈ I}] +
∑
C∈WI

E[X2
0 · 1{θS ∈ C}] +

∑
C∈P\WI

E[X2
0 · 1{θS ∈ C}]

= E[X2
0 · 1{θS /∈ I}] +

∑
C∈WI

E[X2
0 · 1{θS ∈ C}] +

∑
C∈P\WI

E[X2
0 · 1{θS ∈ C,K0}]︸ ︷︷ ︸

rare events

(26)

+
∑

C∈P\WI

E[X2
0 · 1{θS ∈ C,K0}] (27)

≤ 1

2n2f(0)2
+ o(1/n2)

This is because by Lemma 12 the term in Eq. (27) is
∑
C∈P\WI

E[X2
0 ·1{θS ∈ C,K0}] ≤ 1

2n2f(0)2 +o(1/n2),

and from Lemmas 13, 14, and 15 we see that all terms in Eq. (26) contribute at most o(1/n2).

A.2.1 Contribution of High Probability Event

In this section we explain what the desirable properties are and why they are useful. We start by defining
what is a weak interval.

Definition 4. Let τ(·) be the pdf of the posterior mean θS(~x). We say that an interval C ∈ P is weak if

τ(θ) ≤ c2n1+1/22e−n
1/22α

for all θ ∈ C. Let WI ⊂ CI be the set of all such intervals C.

By Claim 7 we see that θS ∈ C for some C ∈WI isO(n−4logn+1). Observe that, if τ(θ) ≥ c′n1/22n−4 logn+1

then we can get τ(θ)(1 +O(n−
1
22 )), by Claim 6.

Next we show that there are sufficiently many signals in L and R. We start by proving the following
claim that f(x) = f(0)(1 +O(1/

√
n)) for all x ∈ I = [−n− 1

2 +ε, n−
1
2 +ε].

Claim 1. Given any well-behaved distribution with pdf f , for all x ∈ I, we have f(x) = f(0)(1 +O(1/
√
n)).

Proof. Without loss of generality we assume that x > 0, since f(−x) = f(x). By mean value theorem we
see that f(x) = f(0) + xf ′(x̃) for some x̃ ∈ [0, x]. By our assumption on g′ we get |g(x)| ≤ cxm for some
constants c > 0 and m ≥ 0. This implies |f ′(x)| ≤ cxmf(x) for all x > 0. Since f is non-increasing in
(0,∞) we see that f(x) ≤ f(x̃) ≤ f(0). Moreover, f ′(x̃) ≤ 0, so we have f ′(x̃) ≥ −cxmf(x). By mean value
theorem we have,

f(x) = f(0) + xf ′(x̃)

≥ f(0)− xcx̃mf(x̃) (Since f ′(x̃)/f(x̃) ≥ −cx̃m)

≥ f(0)(1− xcx̃m) (Since f(0) ≥ f(x̃))

≥ f(0)(1− cxm+1) (Since x̃ ≤ x)

Therefore for all x ∈ I we have f(x) ≥ f(0)(1 − c(n(− 1
2 +ε)(m+1))). Note that m ≥ 0, hence we get

f(x) = f(0)(1−O(n−1/2+ε)).

Using the above claim that f(x) is approximately f(0) for x ∈ I, we bound the number of signals in a
subset A ⊂ I.

Claim 2. Given any interval A ⊂ I of length `, the expected number signals in A is n`f(0)(1 − O(n−1)).
Let Y (A) be the number of signals in A. For any 0 < ε < 1, we have

Pr[Y (A) ≤ (1− ε)E[Y (A)]] ≤ exp

(
−ε

2f(0)n`

2

)
.
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Proof. Let Yi = 1 if xi ∈ A and 0 otherwise. So we have,
∑n
i=1 Yi = Y (A). By Claim 1 we have f(x) =

f(0)(1 + O(1/
√
n)) for all x ∈ I. Therefore we have Pr[xi ∈ A] =

∫
A
f(x)dx = f(0)(1 + O(1/

√
n))
∫
A
dx =

f(0)(1 − O(1/
√
n))`. Note that, Yi are i.i.d. random variables, and E[Y (A)] = f(0)(1 − O(1/

√
n))n`. By

using Chernoff bound we get

Pr[Y (A) ≤ (1− ε)E[Y (A)]] ≤ exp

(
−ε

2f(0)n`(1−O(n−1/2))

2

)
.

We partition the interval I into intervals J of length n−a/M for M = n1/22. Let J denote the partition.
Note that, the size of J is n−1/2+ε+aM .

Lemma 11. Let km = f(0)n1−a/M For each J ∈ J . Let Y (J) be the number signals in interval J (of

length n−a/M). Pr[|Y (J)− km| ≥ ε1km] ≤ exp
(
− ε

2
1f(0)n1−a

3M

)
.

Moreover, the probability that there is a J ∈ J with |Y (J)− km| ≥ n−1/20km is at most O(exp−n
1/22

)

Proof. By directly invoking Claim 2 on J of length n−a/M we get Pr[|Y (J)−km| ≥ ε1km] ≤ exp
(
− ε

2
1f(0)n1−a

3M

)
.

Note that, the size of J is n−1/2+ε+aM . Therefore by union bound, we get Pr[∃J ∈ J : |Y (J) − km| ≥
ε1km] ≤ (n−1/2+ε+aM) · exp

(
− ε

2
1f(0)n1−a

3M

)
which is at most O(exp−n

1/20

), for ε1 = O(n−1/22) and M =

n1/100.

We will now only focus on the case where all J ∈ J has sufficiently many signals, which immediately
implies the following Corollary 6. In Lemma 15 we bound the loss of the rare event that it is not the case.

Corollary 6. Let k0 = (1 − ε)f(0)n1−a(1 − 2/M). For all C ∈ P, let N(C) = L ∪ R (of size n−a). Let
Y (C) be the number signals in interval N(C). If all J ∈ J have at least km signals, then Y (C) is at least
k0.

That is, Pr[Y (C) ≤ k0] ≤ O(exp−n
1/20

).

Proof. Note that any N(C) ⊂ I of length n−a contains at least M −2 many intervals J ∈ J . By Lemma 11,
we have that all J ∈ J has at least (1 − ε)f(0)n1−a many signals with high probability. Therefore N(C)

contain at least k0 many signals with probability 1− O(exp−n
1/20

). Note this is regardless of which C ∈ P
we are considering.

We will now only consider the event where all the desirable properties hold. For each C ∈ P \WI , let
K0 denote the event that there are at least k0 signals in N(C).

Lemma 9. Fix any C ∈ P \WI . The distribution of the random variable X0 · 1(K0) conditioned on θS ∈ C
is stochastically dominated by the exponential distribution with λ = 2nf(0). That is, Pr[X(0) ·1(K0) > d|θS ∈
C] < exp[−λd].

Proof. Let k0 = (1− ε)f(0)n1−a(1− 2/M). For all d > n−a + n−b we have Pr[X(0) · 1(K0) > d|θS ∈ C] = 0.

For all d < n−a/2 + n−b, let Ed denote the event that there is no signal in Bd, where Bd is the interval of
length 2d centered around θS . For all k0 ≤ k ≤ n, let K0(k) denote the event that there are exactly k signals
in N(C).
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Pr[X(0) · 1(K0) > d|θS ∈ C]

= Pr[∀xi /∈ Bd,∃x1, x2, . . . , xk0
∈ N(C) and K0|θS ∈ C]

≤ Pr[∃x1, x2, . . . , xk0
∈ N(C) \Bd and K0|θS ∈ C]

= Pr[K0|θS ∈ C] · Pr[∃x1, x2, . . . , xk0
∈ N(C) \Bd |K0, θS ∈ C]

= Pr[K0|θS ∈ C]

∫
~x[k0]∈N(C)\Bd

f(~x[k0] |K0, θS ∈ C)

∫
x̃∈A(~x[k0])

f(x̃ |~x[k0], θS ∈ C,K0)d~x

= Pr[K0|θS ∈ C]

∫
~x[k0]∈N(C)\Bd

f(~x[k0] |K0, θS ∈ C)d~x[k0]

= Pr[K0|θS ∈ C]

∫
~x[k0]∈N(C)\Bd

(
f(~x[k0]|K0) ·

Pr[θS ∈ C |~x[k0],K0]

Pr[θS ∈ C |K0(k)]

)
d~x[k] (Bayes rule)

We will use Lemma 19 and the fact that τ(θ) is approximately constant in C ± n−2a+ε.

≤ Pr[K0|θS ∈ C] · Pr[θS ∈ C ± k0n
−1−a |K0]

Pr[θS ∈ C|K0]

∫
~x[k0]∈L\Bd

f(~x[k0]|K0)d~x[k0] (By Lemma 19)

=
Pr[θS ∈ C ± k0n

−1−a and K0]

Pr[θS ∈ C]
Pr[~x[k0] ∈ N(C) \Bd|K0]

=
Pr[θS ∈ C ± k0n

−1−a |K0]

Pr[θS ∈ C]
Pr[~x[k0] ∈ N(C) \Bd] (Bayes rule)

≤ Pr[θS ∈ C ± k0n
−1−a |K0]

Pr[θS ∈ C]
·
(

1− 2d

n−a
(1−O(1/n1/4))

)k0

(By Claim 1)

=
Pr[θS ∈ C ± k0n

−1−a]

Pr[θS ∈ C]
· Pr[K0|θS ∈ C ± k0n

−1−a]

Pr[K0]
·
(

1− 2d

n−a
(1−O(1/n1/4))

)k0

≤
(

1 +O(n−1/2)
)
· Pr[K0|θS ∈ C ± k0n

−1−a]

Pr[K0]
·
(

1− 2d

n−a
(1−O(1/n1/4))

)k0

(Since C /∈WI)

≤
(

1 +O(n−1/2)
)
· 1

(1−O(exp(−n1/20))
·
(

1− 2d

n−a
(1−O(1/n1/4))

)k0

(By Corollary 6)

≤
(

1 +O(n−1/2)
)
· (1 +O(exp(−n1/20)) ·

(
1− 2d

n−a
(1−O(1/n1/4))

)k0

Recall that k0 = (1 − ε)f(0)n1−a(1 − 2/M). Let ε = O(n−1/22) and M = n1/22. Since we can bound
1− x ≤ e−x we get,

Pr[X(0) · 1(K0) > d|θS ∈ C] ≤
(

1 +O(n−1/2)
)
· exp{−2nf(0)(1− ε)(1− 2/M)(1−O(n−1/4)) · d}

≤
(

1 +O(n−1/2)
)
· exp{−2nf(0)(1−O(n−1/22))(1−O(n−1/4)) · d}

We finally bound the cost of the event with all the desirable properties.

Lemma 12. Fix any C ∈ P \WI . Then we have, E[X2
0 · 1(K0)|θS ∈ C] ≤ 1

2n2f(0)2 + o(1/n2).

Proof. Let Z(λ) be the random variable with exponential distribution. We observe that E[X2
0 · 1(K0)|θS ∈

C] ≤ E[Z(λ)2] for λ = 2nf(0)(1 − O(n−1/22))(1 − O(n−1/4)), because of the stochastic dominance proved
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above in Lemma 9. Moreover, E[Z(λ)2] = 2
λ2 . Hence we get E[X2

0 · 1(K0)|θS ∈ C] ≤ 1
2n2f(0)2 (1 −

O(n−1/22))(1−O(n−1/4)) ≤ 1
2n2f(0)2 + o(1/n2).

In Section A.2.2 we bound the loss due to the rare events of θS /∈ I, C ∈WI , and K0, that is, the number
of signals in N(C) at most (1− ε1)n1−af(0)(M − 2)/M . We show that these contribute up to o(1/n2) loss.
With this we complete the proofs of Theorem 2.

A.2.2 Contribution of Rare Events

In this section we bound the loss from the rare events from Eq. (26).

Lemma 13. E[X2
0 · 1{θS /∈ I}] ≤ O

(
exp(−n

2εA
2 )

)
for some constant A > 0.

Proof. Recall that θS(~x) is the MMSE estimator and θS − θ∗ →d N (0, CI/n). Hence the probability that
θS /∈ I is at most exp(−n2εA) for some A > 0. Let P = exp(−n2εA). To bound E[X2

0 · 1{θS 6∈ I}] we see
that,

E[X2
0 · 1{θS 6∈ I}] =

∫ ∞
0

Pr[X2
0 > y ∧ θS 6∈ I]dy

=

∫ 1/P 1/2

0

Pr[θS 6∈ I] Pr[X2
0 > y|θS 6∈ I]dy +

∫ ∞
1/P 1/2

Pr[X2
0 > y ∧ θS 6∈ I]dy

≤ P 1/2 + 2

∫ ∞
1/P 1/2

Pr[Xi > θS +
√
y ∧ θS > 0]dy (For any arbitrary choice of i)

≤ P 1/2 + 2

∫ ∞
1/P 1/2

Pr[Xi >
√
y]dy

≤ P 1/2 + 2

∫ ∞
1/P 1/2

(e−
√
y)dy (Since

∫ ∞
x

f(z)dz < e−x for all x > Q)

≤ P 1/2 + 4(1/P 1/4 + 1) exp
(
−1/P 1/4

)
= O

(
exp(−n

2εA

2
)

)
Recall that, P = exp(−n2εA. So we have P 1/2 = O

(
exp(−n

2εA
2 )

)
. Since xe−x is O(e−x) for x sufficiently

large, the term 4(1/P 1/4 + 1) exp
(
−1/P 1/4

)
= O

(
exp

(
− exp(n

2εA
4 )

))
.

For a well-behaved distribution we have 1− F (x) ≤ c3e−x for all x > Q.

Claim 3. Let TQ be the event that all |xi| > Q. Then E[X2
01(TQ ∧ θS ∈ I)] ≤ o(1/n2).

Proof. Since θS ∈ I = [−n−1/2+ε, n−1/2+ε], and all signals |xi| > Q are outside I, we have that X0 =
mini |xi − θS | ≤ |xi|+ n−1/2+ε for all xi. Let t(x) = (|x|+ n−1/2+ε)2. Hence we have,
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E[X2
01(TQ ∧ θS ∈ I)] ≤ E[(|x1|+ n−1/2+ε)2

1(TQ ∧ θS ∈ I)] (For an arbitrary choice of i = 1)

= E[t(x1)1(TQ)|θS ∈ I]

=

∫
x1:|x1|>Q

· · ·
∫
~x−1

t(x1)f(x1)
∏
i 6=1

f(xi)1(|xi| > Q) · 1(θS(~x) ∈ I)d~x

≤
∫
x1:|x1|>Q

· · ·
∫
~x−1

t(x1)f(x1)
∏
i 6=1

f(xi)1(|xi| > Q)d~x

≤
∫
x1:|x1|>Q

t(x1)f(x1)dx1 (2 exp(−Q))
n−1

( By tail bound Assumption of f)

≤ exp

(
−Q(n− 1)

2

)
2

∫ ∞
Q

(x+ n−1/2+ε)2f(x)dx

≤ exp

(
−Q(n− 1)

2

)
·Q ·O(1) ( By tail bound Assumption of f)

Recall that WI ⊂ P is the set of all intervals C such that τ(θ) < c′n1/22n−4 logn+1 for all θ ∈ C.

Lemma 14. Then
∑
C∈WI

E[X2
01{θS ∈ C}] ≤ O

(
Q2n−4 logn+1

)
+ o(1/n2).

Proof. Let TQ be the event that there is some |xi| ≤ Q. Since θS ∈ I and there is some |xi| ≤ Q, we have

that X0 ≤ Q+ n−
1
2 +ε. Thus,∑

C∈WI

E[X2
01{θS ∈ C} · 1{TQ}] ≤ (Q+ n−

1
2 +ε)2 Pr[θS ∈WI ] ≤ (Q+ n−

1
2 +ε)2O

(
n−4 logn+1

)
where the last inequality follows from Claim 7(proved in section A.4 )that Pr[θS ∈WI ] ≤ O

(
n−4 logn+1

)
.

Moreover, by Claim 3 proved above, we have
∑
C∈WI

E[X2
01{θS ∈ C} · 1{TQ}] ≤ E[X2

01(TQ ∧ θS ∈ I)] ≤
o(1/n2). Thus proving the lemma.

Lemma 15. Let k0 = (1 − O(n−1/22))f(0)n1−a. Let K0 be the event such that Y (C) ≤ k0. Then,∑
C∈P\WI

E[X2
0 · 1{K0 and θS ∈ C}] ≤ (Q+ n−1/2)2O

(
exp

(
−n1/20f(0)

))
+O(exp−Qn) ≤ o(1/n2).

Proof. Consider the case where N(C) doesn’t have k0 signals. Let A0 denote that event. By Claim 3, when
all |xi| > Q and θS ∈ I, we bound the expected X2

0 by O(exp−Qn). If there is even a single |xi| ≤ Q (denoted
by the event TQ), then we can bound X2

0 by (Q + n−1/2+ε)2 because θS ∈ I = [−n−1/2+ε, n−1/2+ε]. By

corollary 6, we get that Pr[A0 ∩ TQ ∩ θS ∈ C] ≤ Pr[A0] ≤ exp
(
−n

−1/11f(0)n1−a

3M

)
.

E[X2
0 · 1{K0 and θS ∈ C}] ≤ E[X2

0 · 1{A0 and θS ∈ C} · 1{TQ}] + E[X2
0 · 1{A0 and θS ∈ C} · 1{TQ}]

≤ O(exp−Qn) + (Q+ n−1/2+ε)2 exp

(
−n
−1/11f(0)n1−a

3M

)
≤ o(1/n2)
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A.3 Proof of Proposition 3

In this section we prove Proposition 3 that, for all sufficiently large n and all δ, E[X2
δ ] ≥ 1

2n2f(δ)2 − o(1/n2).

We focus only on |δ| ≤ 2(log n)2 and δ such that f(δ) ≥ n−1/100 8. Similar to the proof of Theorem 2 we
consider the high probability event where all the following desirable properties hold:

� θS ∈ C, where C ∈ P, that is, θS ∈ I.

� θS ∈ C, where C is not weak (see Definition 4).

� θS ∈ C, where there are sufficiently few signals in N(Cδ) = Lδ ∪ Rδ, an interval of length n−a, and
there are no signals in Cδ.

Since these hold with high probability we prove Proposition 3 as follows.

Proof Proposition 3. Recall that the signaling loss of a biased scheme π with δ(π) = δ is L(π, δ(π)) ≥
L(πδ, δ) = α2

E[X2
δ ]. Given θS ∈ C, let Kδ be the event that there are sufficiently few signals in N(Cδ) and

there are no signals in Cδ. We see that,

E[X2
δ ] ≥

∑
C∈P\WI

E[X2
δ · 1{θS ∈ C,Kδ}]

≥
∑

C∈P\WI

Pr[{θS ∈ C,Kδ}] · E[X2
δ |θS ∈ C,Kδ]︸ ︷︷ ︸

conditional expectation

(28)

≥ 1

2n2f(δ)2
− o(1/n2)

This is because by Lemma 17 the conditional expectation term in Eq. (28) is E[X2
δ |θS ∈ C,K] ≥

1
2n2f(δ)2 (1 − o(1)). We note that {~x : ∀Jδ ∈ Jδ with suffiencetly few signals} ⊂ Kδ for all C ∈ P, and by

Lemma 16 we see that Pr[Kδ] ≤ Pr[∃Jδ ∈ Jδ with too many signals] ≤ O(exp{f(δ)n1/20}). By Lemma 14
we bound the probability of C is weak. Thus we have,∑

C∈P\WI

Pr[{θS ∈ C,Kδ}] ≥ Pr[∀Jδ ∈ Jδ with sufficiently few signals, and θS /∈WI ]

≥ 1−O(exp{f(δ)n1/20})−O(exp{f(δ)n1/55})O(n4 logn−1).

We start by showing a more general version of Claim 1.

Claim 4. Given any well-behaved distribution with pdf f , for all x ∈ I+δ, we have f(x) = f(δ)(1+O(1/n)).

Proof. By mean value theorem we see that f(x) = f(δ)+(x−δ)f ′(x̃) for some x̃ ∈ [δ, x]. By our assumption
on g′ we get |g(x)| ≤ cxm for some constant c > 0. This implies |f ′(x)| ≤ c|x|mf(x) for all x. Since
|δ| < 2(log n)2 and x ∈ I + δ, we have |x| ≤ 2(log n)2 + n−1/2+ε. By mean value theorem we have,

|f(x)− f(δ)| = |(x− δ)f ′(x̃)|
≤ |x− δ|c|x̃|mf(x̃) (Since |f ′(x̃)| ≤ c|x̃|mf(x̃))

≤ c(n−1/2+ε)(2(log n)2 + n−1/2+ε)mf(x̃)

≤ c′(n−1/2+ε)n1/4f(x̃) ( Since (logn)2m = o(n1/4))

≤ f(δ) + c′n−1/4+εf(x̃)

8When f(δ) ≤ n−1/100 we see that E[X2
δ ] ≥ Ω(n

100

n2 ) >> E[X2
0 ].
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Without loss of generality we assume that x, δ > 0, since f is symmetric. Thus we get f(x̃i) is between
f(x) and f(δ), because f is single-peaked.

Suppose f(x) ≥ f(x̃) ≥ f(δ), then f(x) ≤ f(δ) + c′n−1/4+εf(x̃) ≤ f(δ) + c′n−1/4+εf(x). So we get
f(x)(1− c′n−1/4+ε) ≤ f(δ). Thus, f(x) ≤ f(δ) 1

1−c′n−1/4+ε ≤ f(δ)(1 + c′′n−1/4+ε) for some constant c′′ > 0.

Similarly if f(x) ≤ f(x̃) ≤ f(δ), then f(x) ≥ f(δ)− c′n−1/4+εf(x̃) ≥ f(δ)− c′n−1/4+εf(δ). Thus we get,
f(x) ≥ f(δ)(1−O(n−1/4+ε)).

Therefore for δ < 2(log n)2 and all x ∈ I + δ we have f(x) = f(δ)(1−O(n−
1
4 +ε)).

Claim 5. Given any interval A ⊂ I+δ of length `, the expected number signals in A is n`f(δ)(1−O(n−1/4)).
Let Y (A) be the number of signals in A. For any 0 < ε1 < 1, we have

Pr[|Y (A)− E[Y (A)]| ≥ ε1)E[Y (A)]] ≤ exp

(
−ε

2
1f(δ)n`

3

)
.

Proof. Let Yi = 1 if xi ∈ A and 0 otherwise. So we have,
∑n
i=1 Yi = Y (A). By Claim 4 we have

f(x) = f(δ)(1 + O(n−1/4+ε)) for all x ∈ I + δ. Therefore we have Pr[xi ∈ A] =
∫
A
f(x)dx = f(δ)(1 +

O(n−1/4+ε))
∫
A
dx = f(δ)(1 + O(n−1/4+ε))`. Note that, Yi are i.i.d. random variables, and E[Y (A)] =

f(δ)(1 +O(n−1/4+ε))n`. By using Chernoff bound we get

Pr[Y (A) ≥ (1 + ε)E[Y (A)]] ≤ exp

(
−ε

2
1f(δ)n`(1 +O(n−1/4+ε))

3

)
.

We again partition I + δ into intervals Jδ of size n−a/M . Exactly following Lemma 11 we see that all
Jδ ⊂ I + δ have (1± ε)f(δ)n1−a(1 +O(n−1/4+ε) many signals in Lδ and Rδ.

Lemma 16. Let km = f(δ)n1−a/M . The probability that there is a Jδ ∈ Jδ with more than (1 + ε)km
signals (or less than (1− ε)km is O(exp{ε2f(δ)n1−a/3M}).

Corollary 7. Let kδ = f(δ)n1−a, let k∗ = (1 + ε1)kδ, and k′ = (1 − ε1)kδ(1 − 2/M). Let Y (Nδ) be the

number signals in interval N(Cδ) (of length n−a). Pr[(Y (Nδ) /∈ [k′, k∗]] ≤ exp
(
− ε

2
1f(δ)n1−a

3M

)
.

Let Kδ denote the event that there are at most (1 + ε1)kδ and at least (1− ε1)kδ(1− 2/M) many signals
in N(Cδ), and there are no signals in Cδ.

Lemma 10. The distribution of the random variable Xδ conditioned on Kδ, θS ∈ C stochastically dominates
(up to a factor of (1 − o(1))) the exponential distribution with λ = 2nf(δ)(1 + O(n−1/10)). That is, for

d < n−9/10, Pr[X(δ) > d |Kδ, θS ∈ C] ≥ exp[−λd]Pr[θS∈C\E and Kδ]
Pr[θS∈C] .

Proof. Let k∗ = (1 + ε1)kδ, and k′ = (1 − ε1)kδ(1 − 2/M). For all k′ ≤ k ≤ k∗, define Kδ(k) to be event
where #xi ∈ N(Cδ) = k, and there are no signals in Cδ .

For all d < n−a + n−b, let Ed denote the event that ∀x ∈ L, x /∈ Bd, where B(d) is the interval of length
2d centered around θS + δ.

30



Pr[X(δ) · 1(Kδ) > d|θS ∈ C]

= Pr[∀xi /∈ Bd,∃x1, x2, . . . , xk′ ∈ L and Kδ|θS ∈ C]

=

k∗∑
k=k′

Pr[∀xi /∈ Bd,∃x1, x2, . . . , xk ∈ L and Kδ(k)|θS ∈ C]

=

k∗∑
k=k′

Pr[∃x1, x2, . . . , xk ∈ L \Bd and Kδ(k)|θS ∈ C]

=

k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C] · Pr[∃x1, x2, . . . , xk ∈ L \Bd |Kδ(k), θS ∈ C]

=

k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

f(~x[k] |Kδ(k), θS ∈ C)

∫
x̃∈A(~x[k])\(L∪C)

f(x̃ |~x[k], θS ∈ C,Kδ(k))d~x

=
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

f(~x[k] |Kδ(k), θS ∈ C)d~x[k]

=

k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C]

∫
~x[k]∈L\Bd

(
f(~x[k]|Kδ(k)) ·

Pr[θS ∈ C |~x[k],Kδ(k)]

Pr[θS ∈ C |Kδ(k)]

)
d~x[k] ( Bayes rule)

We will use Lemma 20 and the fact that τ(θ) is approximately constant in C /∈WI .

≥
k∗∑
k=k′

Pr[Kδ(k)|θS ∈ C] · Pr[θS ∈ C \ E |Kδ(k)]

Pr[θS ∈ C|Kδ(k)]

∫
~x[k]∈L\Bd

f(~x[k]|Kδ(k))d~x[k] (By Lemma 20)

=

k∗∑
k=k′

Pr[θS ∈ C \ E and Kδ(k)]

Pr[θS ∈ C]
Pr[~x[k] ∈ L \Bd|Kδ(k)]

≥
k∗∑
k=k′

Pr[θS ∈ C \ E and Kδ(k)]

Pr[θS ∈ C]
·
(

1− 2d

n−a
(1 +O(1/n1/4))

)k
(By Claim 4)

≥
(

1− 2d

n−a
(1 +O(1/n1/4))

)k∗
Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]

We bound
(
1− 2d

n−a

)f(δ)(1+ε1)n1−a

by observing that (1 − x) ≥ e−x−x
2

for x < 1/2. We will choose of

ε1 = O(n−1/20) and consider d ≤ n−a−1/20 = n−17/20, this gives us ε3 = O(n−1/20).

Pr[X(δ) · 1(Kδ) > d|θS ∈ C] ≥
(

1− 2d

n−a
(1 +O(1/n1/4))

)k∗
Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]

≥ Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]
exp(−2dn(1 + ε2)f(δ)) exp(−(2d)2n1+af(δ)(1 + ε2))

≥ Pr[θS ∈ C \ E and Kδ]

Pr[θS ∈ C]
exp(−2dn(1 + ε3)f(δ)) (For 2d < n−aε3)

Finally, for each C ∈ P \WI , we bound the loss E[X2
δ · 1{Kδ, θS ∈ C}].

Lemma 17. Let Kδ be the event such that (1 − ε1)(1 − 2/M)kδ ≤ Y (Lδ) ≤ (1 + ε1)kδ, and no signals in
Cδ. Then for all C ∈ P \WI ,
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1. for f(δ) > n−1/100, we have E[X2
δ · 1{Kδ, θS ∈ C}] ≥ 1

2n2f(δ)2 (1− o(1))Pr[θS ∈ C \ E and Kδ],

2. for f(δ) ≤ n−1/100, we have E[X2
δ ] ≥ c5 n

100

n2 .

Proof. Let Z(λ) be the random variable with exponential distribution. We observe that E[X2
δ · 1(Kδ)|θS ∈

C] ≥ E[Z(λ)2 · 1{d < (n−9/10)2}] · Pr[θS∈C\E and Kδ]
Pr[θS∈C] for λ = 2nf(δ)(1 + ε3), because of the stochastic domi-

nance proved above in Lemma 10. Moreover, E[Z(λ)2·1{d < (n−17/20)2}] = 2
λ2 (1−O(λn−17/20 exp−λn

−17/20

)).

Hence we get E[X2
δ ·1(Kδ)|θS ∈ C] ≥ 1

2n2f(δ)2 (1−o(1))Pr[θS∈C\E and Kδ]
Pr[θS∈C] , for f(δ) ≥ c4n−1/100 for a constant

c4 > 0.

We finish by noting that, for sufficiently large n, when f(δ) = O( 1
n1/100 ), we get E[X2

δ ] ≥ c5(n
1/100

n2 ) >>
1

2n2f(0)2 ≥ E[X2
0 ] for a constant c5 > 0.

Proof of Proposition 3. By lemma 17, for a sufficiently large n and any δ < 2(log n)2 and f(δ) > n−1/100,
we have E[X2

δ ] ≥
∑
C∈P\WI

Pr[θS ∈ C]E[X2
δ |θS ∈ C] ≥

∑
C∈P\WI

1
2n2f(δ)2 (1− o(1))Pr[θS ∈ C \ E and Kδ] .

Given E ⊂ C as the union of first and last kn−1−a+ε length interval, we define 2E ⊂ C to be the union
of the first and last 2kn−1−a+ε intervals. Since Kδ is the event that there are (1 ± ε)kδ many signals in
N(Cδ) and there are no signals in Cδ, that Pr[θS ∈ C \ E] ≥ Pr[θS ∈ C \ 2E|Y (N(Cδ) ∪ Cδ) ∈ (1 ± ε)kδ],
this is because if θS ∈ C \ 2E and ~x[k] ∈ N(Cδ)∪Cδ then rearranging the signals ~x[k] by moving the signals
in Cδ into N(Cδ) changes θS by at most kn−1−af(δ). Moreover, we have Pr[Kδ] = Pr[Y (N(Cδ) ∪ Cδ) ∈
(1 ± ε)kδ] · Pr[Y (Cδ) = 0 |Y (N(Cδ) ∪ Cδ) ∈ (1 ± ε)kδ]. The probability that there are no signals in Cδ (of
length n−12/11) is at least (1−O(n−1/11)). Thus we get,

E[X2
δ ] ≥

∑
C∈P\WI

1

2n2f(δ)2
(1− o(1))Pr[θS ∈ C \ 2E and Y (N(Cδ) ∪ Cδ) ∈ (1± ε)kδ](1−O(n−1/11))

Let Gδ denote the event that all Jδ ∈ Jδ has (1± ε)kδ/M signals. Thus we get,

E[X2
δ ] ≥

∑
C∈P\WI

1

2n2f(δ)2
(1− o(1))Pr[θS ∈ C \ 2E and Gδ](1−O(n−1/11))

= (1−O(n−1/11)) Pr[Gδ and ∃C ∈ P \WI s.t. θS ∈ C \ 2E]

≥ (1−O(n−1/11))
(

1− Pr[Gδ]− Pr[∃C ∈ P \WI s.t. θS ∈ C \ 2E]
)

≥ (1−O(n−1/11))
(
−Pr[Gδ] + Pr[∃C ∈ P \WI s.t. θS ∈ C \ 2E]

)
Recall that, Pr[θS ∈ I] ≥ (1 − exp(−n2εA), and by Claim 7 (proved in section A.4) we have Pr[θS ∈

WI ] ≤ O(n−4logn+1). By Lemma 16 we have Pr[Gδ] ≤ O(exp{ε2f(δ)n1−a/3M}). Hence we get E[X2
δ ] ≥

1
2n2f(δ)2 (1− o(1)).

A.4 Proofs of Common Lemmas

In this section we will prove all the lemmas that are common to both Theorem 2 and Proposition 3.
In Lemma 18, we characterize the effect of a single signal x on the posterior mean θS(~x). This lemma

directly implies Corollary 8, where we show that if for any signals ~x rearranging at most k signals in L (and
R) to get ~y guarantees that the new posterior mean is θS(~y) ∈ θS(~x)±O(kn−1−a).

Lemma 18. For any signals ~x observed by the sender we have,∣∣∣∂θS(~x)

∂xi

∣∣∣ ≤ c1V arθ∼DS(~x)[θ] + 2θS(~x)2,

where V arθ∼DS(~x[θ] is the variance of the senders posterior distribution.
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Proof. Let hS(θ|~x) denote the pdf of the sender’s posterior distribution, h(θ) be the (constant) pdf of the

diffuse prior. Note that the pdf of a signal x given that the state of the world is θ (denoted by f̂(x|θ)) equals
f(x− θ), where f is the pdf of D(0). Recall that when the sender observes ~x they update their posterior in
a Bayesian way. Hence we have,

hS(θ|~x) =

∏
i f̂(xi|θ)h(θ)∫

θ̂

∏
i f̂(xi|θ̂)h(θ̂)dθ̂

=

∏
i f(xi − θ)∫

θ̂

∏
i f(xi − θ̂)dθ̂

and the sender’s posterior mean is

θS(~x) =

∫
θ
θ
∏
i f(xi − θ)dθ∫

θ

∏
i f(xi − θ)dθ

(29)

We want to understand ∂θS(~x)
∂xi

which is the effect of a single signal xi on the posterior mean.
We can deduce

∂θS(~x)

∂xi
=

∫
θf ′(xi − θ)

∏
j 6=i f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏
j f(xj − θ)dθ

∫
f ′(xi − θ)

∏
j 6=i f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

=

∫
θg(xi − θ)

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏
j f(xj − θ)dθ

∫
g(xi − θ)

∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2 (30)

where g(y) = f ′(y)
f(y) .

Using the mean value theorem we can write g(xi − θ) = g(xi) − g′(x̃i)θ for x̃i ∈ [xi − θ, xi]. We then
obtain:

∂θS(~x)

∂xi
=

∫
θ (g(xi)− g′(x̃i)θ)

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

−
∫
θ
∏
j f(xj − θ)dθ

∫
(g(xi)− g′(x̃i)θ)

∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

= −
∫
θg′(x̃i)θ

∏
j f(xj − θ)dθ

∫ ∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2

+

∫
θ
∏
j f(xj − θ)dθ

∫
g′(x̃i)θ

∏
j f(xj − θ)dθ(∫ ∏

j f(xj − θ)dθ
)2 (31)

Next, we note that for a well behaved distribution, |g′(x̃| ≤ c1. Hence we can bound,
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We can then simplify:∣∣∣∂θS(x)

∂xi

∣∣∣ ≤ [c1]

∫θ θ2
∏
j f(xj − θ)dθ∫

θ

∏
j f(xj − θ)dθ

+

(∫
θ
θ
∏
j f(xj − θ)dθ∫

θ

∏
j f(xj − θ)dθ

)2
 (32)

= [c1]
(
Eθ∼DS(~x)(θ

2|x) + Eθ∼DS(~x)(θ|x)2
)

= c1
(
V arθ∼DS(~x)[θ] + 2Eθ∼DS(~x)(θ|x)2

)
(33)

Next we bound the shift in θS when rearranging k signals in L (or R) using Lemma 18. We note that
V arθ∼DS(~x)[θ] = O(1/n) and θS ∈ I.

Corollary 8. Assume that the posterior mean θS(~x) lies within interval C ⊂ I. Consider a subset of k
signals in a subset A of length `. Any rearrangement of these signals within A changes the posterior mean
by O(k`n−1+2ε).

Proof. We prove this by using mean value theorem on the function θS : Rn → R. Given ~x, consider a subset
of signals ~x[k] ∈ A. Let ~y be any vector such that yi ∈ A for all i ∈ [k] and yi = xi for the rest. By mean
value theorem we get for some ~z such that:

θS(~y) = θS(~x) +∇θS(~z) · (~y − ~x)

Note that |yi−xi| ≤ ` for all i ∈ [k] and yi−xi = 0 otherwise. That is, at most k terms with |yi−xi| 6= 0.
Hence we get,

|θS(~y)− θS(~x)| = |∇θS(~z) · (~y − ~x)|

≤
k∑
i=1

c1
(
V arθ∼DS(~x)[θ] + 2θS(~x)2

)
|yi − xi| (By Lemma 18)

= c1O(n−1+2ε)

k∑
i=1

`

Since xi, yi ∈ A we bound |xi − yi| ≤ `. Further, by bounding V arθ∼DS(~x)[θ] by O(1/n), and θS(~x) by

n−1/2+ε, we get θS(~y) = θS(~x)± k`O(n−1+2ε) when rearranging at most k signals in each A.

Next we show that the density of the posterior mean is nice in the interval C.

Claim 6. Assume that the density function f has exponential (or thinner) tails. Let τ(·) be the density

function of the posterior mean. Then for all θ ∈ C we have τ(θ + ε′) = τ(θ)
(
1 +O(n−1/22)

)
+O(e−n

1/22α

)
for all 0 < ε′ ≤ 1/nb.

Proof. Fix a posterior mean θ ∈ [−n− 1
2 +ε, n−

1
2 +ε] and consider all the signal draws X(θ) =

{
~x|θ(~x) = θ

}
that generate this posterior mean. We know that τ(θ) =

∫
~x∈X(θ)

∏
xi∈~x f(xi)dx. Now consider θ + ε′. We

can couple all the signal realizations in X(θ+ε′) and X(θ) by considering uniform shifts of the corresponding
~x by ε′. This follows from the assumption of a diffuse prior (if we shift all signals by ε′ we also shift the
posterior mean by ε′. That is, τ(θ + ε′) =

∫
~x∈X(θ)

∏
xi∈~x f(xi + ε′)dx.

Next, consider the probability of observing x versus the coupled signal realizations x+ ε′.

∏
xi∈~x

f(xi + ε′) =
∏
xi∈~x

[f(xi) + f ′(x̃i)ε
′] (34)

Recall that, by our assumption on g′ we have |f ′(x)| ≤ c|x|mf(x).
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� Note that, for all |xi| < 4(log n)2, we have

|f(xi + ε′)− f(xi)| = |ε′f ′(x̃i)|
≤ |ε′c(|x̃|m)|f(x̃)

≤ |ε′c(|4 log n|2m)|f(x̃)

≤ |c′(n−b+1/22)|f(x̃) (|ε′| ≤ n−12/11 and (log n)2m = o(n1/22)

Note that, wlog we can assume that sign(xi + ε) = sign(xi) because f is symmetric. Thus we get
f(x̃i) is between f(xi) and f(xi + ε′), because f is single-peaked. If f(xi) ≤ f(x̃i) ≤ f(xi + ε′) we
get 0 ≤ f(xi + ε′) − f(xi) ≤ c′(n−b+1/22)|f(x̃i) ≤ c′(n−b+ε)|f(xi + ε′). Thus, f(xi) ≤ f(xi + ε) ≤
f(xi)

(
1

1−c′(n−b+ε

)
≤ f(xi)(1 + c′′n−b+ε).

Similarly if f(xi) ≥ f(x̃i) ≥ f(xi + ε), then we get f(xi) ≥ f(xi + ε) ≥ f(xi)
(

1
1+c′(n−b+ε

)
≥ f(xi)(1−

c′n−b+ε).

� Further, by our assumption that f has exponential tails we have Pr~x[∃xi s.t. |xi| > 4(log n)2] ≤
ne−4(logn)2

= (n−4 logn+1).

If xi ∈ [−4(log n)2, 4(log n)2] for all i, then we bound
∏
xi∈~x f(xi + ε′) =

∏
i f(xi)(1 + O(n−b+

1
22 )) =

(
∏
i f(xi)) (1 +O(n−b+

1
22 ))n = (

∏
i f(xi)) (1 +O(n1−b+ 1

22 )) = (
∏
i f(xi)) (1 +O(n−

1
22 )) for b = 12/11 .

Hence we get

τ(θ + ε′) =

∫ n1/22α

−n1/22α

(∏
f(xi)

)
(1 +O(n−

1
22 ))1{~x ∈ X(θ̂)}d~x +O(n−4 logn+1)

Therefore, τ(θ + ε′) = τ(θ)(1 +O(n−
1
22 )) +O(n−4 logn+1) for all 0 < ε′ < 1/nb and θ ∈ C.

Recall that WI ⊂ P is the set of all intervals C such that τ(θ) < c′n1/22n−4 logn+1 for all θ ∈ C and some
constant c′ > 0. We show that the total probability mass of these intervals is O(n−4 logn+1).

Claim 7. Pr[θS ∈WI ] ≤ O(n−4 logn+1).

Proof. This is simply because there are at most 2nb−
1
2 +ε many intervals in C (since each interval is of size

n−b). Therefore,

Pr[θS ∈WI ] ≤
∑
C∈WI

∫
C

τ(θ)dθ ≤ 2nb−
1
2 +ε

(
n−b · c′n1+1/22−4 logn

)
≤ O(n−4 logn+6/11+ε).

Using Corollary 8 we bound the correlation between the events θS ∈ C and any realization of k anecdotes
in Lδ (and Rδ). Observe that, if τ(θ) ≥ c′n1/22n−4 logn+1 then we can get τ(θ)(1 +O(n−

1
22 )).

Lemma 19. Fix any C ∈ P \WI . Let Kδ(k) denote the event that there are (at most) k signals in each Lδ
(and Rδ). Let ~xL be a subset of k (at most c′n1−a) signals in Lδ. Then Pr[θS ∈ C |Kδ(k), xL] ≤ Pr[θS ∈
C ± kn−1−a|Kδ(k)].

Proof. Let A(xL) = {x̃ : θ(xL ∪ x̃) ∈ C} for any subset of k signals xL ∈ Lδ. By Corollary 8 we know that
by changing xL to any yL ( in Lδ) for each x̃ ∈ A(xL) we get ỹ = x̃ such that θS(~y) = θS(~x) +O(kn−1−a+ε).
If θS(~x) ∈ C then θS(~y) ∈ C ± kn−1−a+ε.

Pr[θS ∈ C|xL,Kδ(k)] ≤ Pr[θS ∈ C ± kn−1−a+ε|yL,Kδ(k)] For all yL of size k
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So if for some c we have,

Pr[θS ∈ C ± kn−1−a+ε|yL,Kδ(k)] ≥ c
Pr[θS ∈ C ± kn−1−a+ε,Kδ(k) and yL] ≥ cPr[Kδ(k), yL]∫

yL

Pr[θS ∈ C ± kn−1−a+ε,Kδ(k) and yL]d~y[k] ≥ Pr[Kδ(k),∃y1, . . . , yk ∈ L]

Pr[θS ∈ C ± kn−1−a+ε and Kδ(k)] ≥ cPr[Kδ(k)]

Pr[θS ∈ C ± kn−1−a+ε|Kδ(k)] ≥ c

Therefore, Pr[θS ∈ C ± kn−1−a+ε|Kδ(k)] ≥ Pr[θS ∈ C|xL].

Similarly, we have a lower bound on Pr[θS ∈ C|Kδ(k), xL].

Lemma 20. Fix any C ∈ P \WI . Let Kδ(k) denote the event that there are k signals in each Lδ (and Rδ),
and no signals in Cδ. Let ~xL be a subset of k (at most c′n1−a) signals in Lδ. Then Pr[θS ∈ C|Kδ(k), xL] ≥
Pr[θS ∈ C \ E|Kδ(k)].

Proof. Let A(xL) = {x̃ : θ(xL ∪ x̃) ∈ C} for any subset of k signals xL ∈ Lδ. By Corollary 8 we know
that by changing xL to any yL ( in Lδ) for each x̃ ∈ A(xL) \ (Lδ ∪ Cδ) we get ỹ = x̃ such that θS(~y) =
θS(~x) +O(kn−1−a+ε). Define E ⊂ C as the union of the first and last kn−1−a+ε length sub-interval of C. If
θS(~y) ∈ C \ E then θS(~x) ∈ C.

Pr[θS ∈ C|Kδ(k), xL] ≥ Pr[θS ∈ C \ E|Kδ(k), yL] For all yL of size k

So if for some c we have,

Pr[θS ∈ C \ E|Kδ(k), yL] ≤ c
Pr[θS ∈ C \ E,Kδ(k) and yL] ≤ cPr[Kδ(k), yL]

Pr[θS ∈ C \ E,Kδ(k)] ≤ cPr[Kδ(k)]

Pr[θS ∈ C \ E|Kδ(k)] ≤ c

Therefore we have, Pr[θS ∈ C \ E|Kδ(k)] ≤ Pr[θS ∈ C|Kδ(k), xL].

B Proofs from Section 4.3

B.1 Two Signals

In this section we prove Proposition 4, that the optimal translation-invariant signaling scheme may be biased,
even when there are two signals drawn from a symmetric distribution and when the moral stances of the
sender and receiver coincide.

We first note that the sender’s posterior mean will always be equal to the average of the two signals
received.

Lemma 21. For any symmetric distribution F and n = 2, we have θS(x1, x2) = x1+x2

2 .

36



Proof. Fix some realization of the observed signals x1 and x2, and view θ and ε1, ε2 ∼ F as random variables.
Choose any θ′ ∈ R, and set ε′1 = x1−θ′ and ε′2 = x2−θ′. Then realization (θ∗, ε1, ε2) = (θ′, ε′1, ε

′
2) is consistent

with the observed signals x1 and x2.
Now define θ′′ = x1 +x2−θ′, ε′′1 = −ε′2, and ε′′2 = −ε′1. Note then that realization (θ∗, ε1, ε2) = (θ′′, ε′′1 , ε

′′
2)

is also consistent with the observed signals. Also, since F has mean 0 and is symmetric about its mean, and
since θ∗ is drawn from a diffuse prior, these two realizations have equal probability density, which is to say
that DS(x1, x2) assigns equal probability density to θ′ and θ′′.

We conclude that given x1 and x2, the posterior distribution DS(x1, x2) places equal likelihood on θ′ and
x1 + x2 − θ′, for all θ′ ∈ R. As the average of each such pair is (x1 + x2)/2, we conclude that this must be
the mean of the posterior as claimed.

Fix any arbitrary signaling scheme π. Define random variable d by d = x′ − π(~x) where x′ denotes
whichever of the two signals is not sent by π. Then |d| = |x1 − x2| which is independent of π; the signaling
scheme π determines only the distribution over the sign of d. Since θS(~x) = x1+x2

2 we have that θS(~x) =
π(~x) + d/2. Moreover, the bias of π is precisely δ(π) = −E[d/2], and hence we have that θR(π(~x), π) =
π(~x) + E[d/2]. Let h(·) denote the pdf of the random variable d. Note that h(·) doesn’t depend on the state
of the world.

Lemma 22. The sender’s optimal signaling scheme π maximizes E
[
d2
]
− E [d]

2
.

Proof. Since moral stances are assumed to be aligned, (5) implies that the sender’s loss is proportional to

E
~x
(θS(~x)− θR(π(~x), π))2 = E

~x
(‖π(~x) + d/2− π(~x)− E(d/2)‖2)

= E
~x
(d/2− E(d/2))2

= E(d2)/4− E(E(d)2)/4

which is proportional to E(d2)− E(E(d)2) as required.

Note that the first term E(d2) is only depends on the distribution on the signals and is independent of
the signaling scheme. Hence we want to find a scheme π such that E(d)2 is maximized.

As π is translation invariant, the probability with which it returns the minimum signal is a function of
|d|. So write p(|d|) for the probability that π(~x) returns the lesser of the two signals when |d| = |x1 − x2|.
We can describe π as sending the minimum signal if some event A happens, otherwise send the maximum
signal, where event A only depends on |d| and randomness. For example, the always send min signaling has
p(|d|) = 1 for all distances d. For the send a random signal scheme, p(|d|) = 1/2 for all d.

We can write h(d) = h(d ∧A) + h(d ∧ Ā). Note that when d < 0, we have h(d ∧ Ā) = 0. Similarly when
d > 0, we have h(d ∧A) = 0, since d > 0 if and only if the lesser signal was sent.

Recall that the sender wants to maximize E~x(E(d|π(~x))2) by lemma 22. Fix any arbitrary translation
invariant signaling scheme π. Let A = A(π) be the event that describe when to send the min signal in π.
Let d > 0. We have h(d) = h(d ∧A), since h(d ∧ Ā) = 0 for d > 0.

h(d ∧A) = 2

∫ ∞
ε=−∞

f ((ε1 = ε, ε2 = ε+ d) ∧A) dε

= 2

∫ ∞
ε=−∞

f (A|ε1 = ε, ε2 = ε+ d) f(ε1 = ε, ε2 = ε+ d)dε

= 2

∫ ∞
ε=−∞

p(d)f(ε)f(ε+ d)dε

= p(|d|) 1√
π

exp

[
−d2

4

]
Similarly for d < 0, we have h(d) = h(d ∧ Ā), and we get h(d ∧ Ā) = (1− p(|d|)

√
π exp

[
−d2

4

]
.
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E[d] =

∫ ∞
d=−∞

d · h(d)dd

=

∫ ∞
d=0

d · h(d ∧A)dd+

∫ 0

d=−∞
d · h(d ∧ Ā)dd

=

∫ ∞
d=0

d · p(|d|) 1√
π

exp

[
−d2

4

]
dd+

∫ ∞
d=0

(−d) · (1− p(|d|)) 1√
π

exp

[
−d2

4

]
dd

= 2

∫ ∞
d=0

d · p(|d|) 1√
π

exp

[
−d2

4

]
dd− 2√

π

Recall that we want to maximize |E[d]|, which amounts to maximizing (or minimizing) 2
∫∞
d=0

d·p(|d|) 1√
π

exp
[
−d2

4

]
dd,

which happens when p(|d|) = 1 for all d (or p(|d|) = 0 for all d). This exactly corresponds to the always send
min signaling scheme (or always send max respectively).

B.2 Three Signals

In this section we prove Proposition 5, which is that the optimal signaling scheme may be biased even for
n = 3 signals drawn from a uniform distribution.

Suppose that F is the uniform distribution on [−1/2, 1/2]. For notational convenience, we will additively
shift all values so that samples are drawn from [0, 1], which is to say that we equivalently shift values such
that θ = 1/2.

Given 3 signals x1 ≤ x2 ≤ x3, the sender’s posterior is a uniform distribution on [x3 − 1/2, x1 + 1/2].
The posterior mean is therefore θS(~x) = x1+x3

2 .

Optimal Unbiased Scheme Consider the optimal unbiased scheme, call it π0. As noted in Section 4.2,
this scheme sends the closest signal to θS(~x). Since θS is the midpoint of the interval [x1, x3], and since x2

falls in that interval, the optimal unbiased scheme always sends signal x2.
Let’s calculate the mean squared error of signal x2 relative to θ. The CDF of x2 is given by

F (y) = Pr[x2 < y] = y3 + 3y2(1− y)

for y ∈ [0, 1], since the first term is the probability all three samples are less than y, and the second term is
the probability that two of the three samples are less than y. Now write d = |θ − x2| = |1/2− x2|. Then 1
minus the CDF of d is given by

G(z) = Pr[d > z] = Pr[y < (1/2− z)] + Pr[y > (1/2 + z)] = 2 Pr[y < (1/2− z)] = 2F (1/2− z)

for z < 1/2, and G(z) = 0 for z ≥ 1/2. Here we used that Pr[y > (1/2+z)] = Pr[y < (1/2−z)] by symmetry.
The total loss of signaling scheme π0 is therefore

E[d2] =

∫ ∞
0

Pr[d2 > z]dz∫ ∞
0

Pr[d >
√
z]dz∫ ∞

0

2F (1/2−
√
z)dz

= 1/20

where the final equality is via numerical calculation.
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A Better Biased Scheme We’ll now build a scheme with strictly less loss than π0. Write πδ for the
scheme that returns whichever of the three points is closest to θS(~x) + δ, for some δ ≥ 0. We will eventually
choose δ = 1/5, but for now we’ll proceed with general δ.

Which point does πδ return? Write x∗ for the random variable representing the point that πδ returns.
Recall that θS(~x) = (x1 + x3)/2, so θS(~x) + δ is always closer to x3 than x1. The distance to point x3 is
|θS(~x) + δ − x3| = (x3 − x1)/2 + δ, and the distance to point x2 is |θS(~x) + δ − x2| = (x3 + x1)/2 + δ − x2.
So the point x2 will be closest precisely if x2 > x1 + 2δ. To summarize: x∗ = x2 if x2 > x1 + 2δ, otherwise
x∗ = x3.

As before, let’s work out the CDF for x∗. What is the probability that x∗ < y? If all three points are
less than y (which happens with probability y3) then x∗ certainly is. On the other hand, if x2 > y, then
certainly x∗ > y as well. If x2 < y and x3 > y (which happens with probability 3y2(1 − y)), then x∗ < y
only if x∗ = x2, which occurs if and only if x2 > x1 + 2δ. The conditional probability of that last event
is equivalent to the probability that two random variables, each drawn uniformly from [0, y], are at least
distance 2δ apart from each other. So we can write the CDF as

F [y] = Pr[x∗ < y]

= y3 + 3y2(1− y) Pr[|x1 − x2| > 2δ | x2 < y]

= y3 + 3y2(1− y) · 2 ·
∫ y−2δ

0

1

y
· y − (x+ 2δ)

y
dx.

To justify the last equality, consider drawing one point uniformly from [0, y], so with uniform density 1
y .

What is the probability that a second drawn point is at least 2δ larger? If the first point (call it x) is greater

than y − 2δ the probability is 0. Otherwise it is y−(x+2δ)
y . Integrating over x gives the probability of this

event. We then double that probability to account for the possibility that the first point drawn is the larger
one.

Now write d = |x∗ − δ − θ| = |x∗ − (1/2 + δ)|. This will be the distance between the receiver’s action
and θ, if the receiver shifts the received signal x∗ by δ. Note that this may not be the optimal action of the
receiver, but the optimal action performs at least as well as E[d2].

Now 1 minus the CDF of d is given by

G(z) = Pr[d > z] =


F (1/2 + δ − z) + 1− F (1/2 + δ + z) if 0 < z < 1

2 − δ,
F (1/2 + δ − z) if 1

2 − δ < z < 1
2 + δ,

0 if z > 1
2 + δ.

Note that unlike the case of π0, the fact that δ > 0 breaks symmetry in the calculation of G. But the
reasoning is the same: d > z precisely if either x∗ is greater than 1/2 + δ + z or x∗ is less than 1/2 + δ − z.

Finally, as before, the total loss of the scheme πδ is

E[d2] =

∫ ∞
0

Pr[d2 > z]dz∫ ∞
0

Pr[d >
√
z]dz∫ ∞

0

G(
√
z)dz

For δ = 1/5, this integral evaluates to approximately 0.036, which is less than 1/20.

Intuition and Discussion. Why is πδ better than π0? In this case, θS(~x) = (x1 + x3)/2, so θS(~x) is
highly correlated with x1 and x3 and much less correlated with x2. This is very specific to the uniform
distribution. By selecting the point closest to θS(~x)+1/5, we are trading off probability of returning x2 with
probability of returning x3. Because of the improved correlation with x3, the location of x3 is more highly
concentrated, given θS(~x), than the location of x2. So by targeting an “expected” location of x3 relative to
θS(~x) (in this case, θS(~x) + 1/5), we can reduce the variance of the distance to the closest point.
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B.3 Importance of Translation Invariance

In this section we prove Proposition 6, that the optimal signaling scheme may not be translation invariance,
even when there are two signals drawn from a symmetric distribution and when the moral stances of the
sender and receiver coincide.

Suppose that n = 2 and F is the uniform distribution over {−11,−10, 10, 11}. Fix a signaling scheme
π and write define random variables x̂ and x′ such that x̂ = π(x1, x2) and x′ is the other signal. Write
d = x̂− x′. Then as argued in Appendix B.1, the sender’s goal is to maximize Ex̂[E[d|x̂]2]. We had actually
argued further in Appendix B.1 that for translation invariant signals this expression is equal to E[d]2, but
since we now consider non-translation-invariant signaling schemes we will maintain the more general form
of this expression.

By Proposition 4, the optimal translation-invariant signaling scheme is to send the minimum signal.
Under this scheme the value d is always non-negative, and the distribution of d is independent of x̂. By
enumerating the possibilities for ε1 ∼ F and ε2 ∼ F (recalling that xi = θ+ εi), we have that d is distributed
as follows:

d =



0 w.p. 4/16

1 w.p. 4/16

20 w.p. 2/16

21 w.p. 4/16

22 w.p. 2/16.

We therefore have that Ex̂[E[d|x̂]2] = E[d]2 = (10.75)2 = 115.5625, for the scheme that always sends the
minimum signal.

We now construct a non-translation-invariant signaling scheme that achieves a higher value of Ex̂[E[d|x̂]2].
Our signaling scheme will behave precisely as the one that sends the minimum signal, except that when
|x1 − x2| = 1 it returns whichever of x1 or x2 has an odd integer part. Note that this always uniquely
specifies either x1 or x2. Moreover, conditional on the event that |x1 − x2| = 1 (but not on the exact values
of x1 and x2), it is equally likely for the signal returned by this scheme to be the larger or smaller of the two.

Conditional on x̂ having an odd integer part, the value of d is distributed as follows:

d =



−1 w.p. 4/20

0 w.p. 4/20

1 w.p. 4/20

20 w.p. 2/20

21 w.p. 4/20

22 w.p. 2/20.

Thus, for any such x̂, we have Ex̂[d|x̂]2 = (8.4)2 = 70.56. Conditional on x̂ having an even integer part, the
value of d is distributed as follows:

d =


0 w.p. 4/12

20 w.p. 2/12

21 w.p. 4/12

22 w.p. 2/12.

Thus, for any such x̂, we have Ex1,x2
[d|x̂]2 = (14)2 = 196. As each case is equally likely, we conclude that

Ex̂[Ex1,x2
[d|x̂]2] = (70.56 + 196)/2 = 133.28. This is larger than 115.5625, as required.
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