
NBER WORKING PAPER SERIES

PANDEMICS, INCENTIVES, AND ECONOMIC POLICY:
A DYNAMIC MODEL

Roberto Chang
Humberto Martínez

Andrés Velasco

Working Paper 28636
http://www.nber.org/papers/w28636

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2021

We thank Drew Harris and seminar participants at Rutgers University for useful comments. Any 
additional suggestions will be greatly appreciated. This project started while Chang was serving 
as BP Centennial Professor at LSE, whose hospitality he acknowledges with thanks. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Roberto Chang, Humberto Martínez, and Andrés Velasco. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Pandemics, Incentives, and Economic Policy: A Dynamic Model
Roberto Chang, Humberto Martínez, and Andrés Velasco
NBER Working Paper No. 28636
April 2021
JEL No. E6,F4,H3,I3

ABSTRACT

The advent of a pandemic is an exogenous shock, but the dynamics of contagion are very much 
endogenous --and depend on choices that individuals make in response to incentives. In such an 
episode, economic policy can make a difference not just by alleviating economic losses but also 
via incentives that affect the trajectory of the pandemic itself. We develop this idea in a dynamic 
equilibrium model of an economy subject to a pandemic. Just as in conventional SIR models, 
infection rates depend on how much time people spend at home versus working outside the home. 
But in our model, whether to go out to work is a decision made by individuals who trade off 
higher pay from working outside the home today versus a higher risk of infection and expected 
future economic and health-related losses. As a result, pandemic dynamics depend on factors that 
have no relevance in conventional models. In particular, expectations and forward-looking 
behavior are crucial and can result in multiplicity of equilibria with different levels of economic 
activity, infection, and deaths. The analysis yields novel policy lessons. For example, incentives 
embedded in a fiscal package resembling the U.S. CARES Act can result in two waves of 
infection.

Roberto Chang
Rutgers University
Department of Economics
75 Hamilton Street
New Brunswick, NJ  08901
and NBER
chang@econ.rutgers.edu

Humberto Martínez
Rutgers University
Department of Economics
75 Hamilton Street
New Brunswick, NJ 08901
hm409@economics.rutgers.edu

Andrés Velasco
School of Public Policy 
London School of Economics 
and Political Science 
Houghton Street 
London WC2A 2AE 
United Kingdom
and CEPR
A.Velasco1@lse.ac.uk

Computer codes are available at https://github.com/totuma87/Chang_Martinez_Velasco_2021



1 Introduction

The Covid-19 pandemic has stimulated an avalanche of research from economists. Almost all

this research treats the pandemic as an exogenous shock and then analyzes policy proposals

to alleviate its consequences. But while the initial appearance of the virus may have been

exogenous, its speed of propagation is not. The dynamics of the pandemic are the result of

human decisions, and hence depend on economic policies.

Think of health policy directives such as lockdowns, stay-at-home guidelines, and social

distancing rules. Their effi cacy depends on the decisions of individuals who weigh the perceived

costs against the benefits of compliance. A person who cannot work from home may be foregoing

income by complying with a lockdown. But by staying home and reducing the chances of

contagion that person also makes it more likely that she will be healthy and in a position to go

to work when the economy opens up again. In turn these choices depend on a host of economic

variables, including the size of foregone wages, the extent of government aid for those who stay

at home, or expectations of the speed of the post-lockdown economic recovery.

In this paper we develop a dynamic model of the interaction between individual decisions

and the speed of virus transmission, emphasizing the key role of economic incentives and the

implications for policy. We extend the model of Chang and Velasco (2020), which assumed two

periods, to an infinite time horizon. Aside from the obvious gain in realism, this change also

makes the model easily comparable to the conventional Susceptible-Infected-Recovered (SIR)

model of pandemics.

Just in SIR models, infection rates depend on human behavior. But here, unlike SIR

models, behavior reflects the rational responses of individuals to incentives they face. Those

incentives are given not only by the "technology" of infection but also by several financial

costs associated with the pandemic. The interactions among virus transmission, incentives,

and behavior have multiple and important implications. Incentives built into economic policy

can affect the dynamics of virus infection. And while SIR models are purely backward-looking,

expectations and forward-looking behavior are crucial in our model.
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Our model features a population that normally works outside the home. Normality is

interrupted by the appearance of a contagious virus. Infected individuals can become sick,

in whose case they must stay in a “hospital”where lucky ones recover and unlucky ones die.

People not showing symptoms of the virus choose whether to go to work or stay at home. The

probability of infection is greater at work than at home, but staying at home is costly in terms

of lost income. Hence agents decide between outside work and staying home on the basis of

a “double relative”: the current payoff from outside work relative to home income, compared

against the expected future value of remaining asymptomatic relative to the cost of becoming

ill with the virus.

In evaluating the double relative, individuals take into account the evolving probabilities

of infection at home and at work. In turn, infection probabilities depend on the numbers of

agents in each location. So there is a mutual interaction between location decisions and the

evolution of the pandemic. In equilibrium, work-stay-home decisions and infection probabilities

are simultaneously determined.

We are able to derive several analytical results. The model is highly nonlinear and time-

dependent, however, so that resulting dynamics are generally complex and depend on paramet-

ers. To derive additional insights we simulate equilibrium paths numerically with parameters

calibrated to match U.S. data.

For our benchmark calibrations, the model yields a pattern of infection with the hump shape

characteristic of a pandemic. But because our model takes into account individual decisions

and the corresponding incentives, equilibrium dynamics depend on fundamentals that would

have no bearing in other models. For instance, increased risk aversion induces agents to spend

more time at home during the pandemic, reducing infection rates and the prevalence illness and

deaths. In the same vein, changes in the technology of infection affect equilibrium outcomes not

only directly but also via the induced changes in individual behavior. For example, higher values

for the parameter that determines contagion directly raise the speed of transmission. But, to

avoid contagion individuals are more inclined to stay at home, which acts as an offsetting force.
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More importantly for our discussion, changes in economic variables, which would not have

an impact in SIR models, matter for the decisions of individuals and for the dynamics of virus

transmission of our model. For instance, the relative rewards of staying at home versus outside

work turn out to be key for dynamics. And those rewards, of course, can be affected by economic

policies.

To emphasize this point, we examine the implications of a fiscal policy package similar to

the U.S. 2020 CARES Act. We feed into the model an increase in unemployment benefits

which virtually eliminates the difference between market income and home income, but only

for a limited time period. In our model, such a policy causes the pandemic to come in two

waves, consistent with the observed evolution of Covid-19 in the US.

The intuition is clear. While they last, unemployment benefits enacted by a policy such as

the CARES Act reduce the relative payoffof working outside the home. These incentives prompt

a change in behavior which helps limit contagion, contributing to a reduction in infections after

an initial peak. However, the expiration of the CARES Act means that the payoff of outside

work relative to staying home jumps back to its usual level. In response to the changed incentives

individuals return to working outside the home, helping start a second wave of the pandemic.

Our model predicts that in the absence of the CARES Act the U.S. would have experienced a

single peaked pandemic. That would also be the outcome if individual locations were exogenous,

as in the SIR type of models. Furthermore, our analysis underscores that the parts of the

CARES Act that matter for the evolution of the pandemic were those that affect individual

incentives and decision-making. In contrast, provisions in the Act that do not change incentives

have no impact on dynamics. This is the case, for example, of cash transfers to households

regardless of whether they stay home or not, which in our model have no impact on relative

payoffs and hence no effect on equilibria.

Our model is built on first principles, so that the analysis of several policies and their

incentive effects is straightforward. As an illustration, “social distancing”can be thought of as a

policy that reduces the number of contacts people have when they go to work. In our model, this
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policy has an ambiguous impact on behavior and contagion. Conditional on people’s choices,

fewer contacts outside the home reduce current and future infection probabilities. These changes

have two opposite effects on individual incentives. A lower infection risk directly increases the

relative payoff of working outside the home. But if future infection risks are lower as well, the

opportunity cost of getting infected today and missing out on a brighter future can also go up,

shifting incentives in favor of staying at home. So what is crucial for individual maximization

is not the absolute value of infection rates but the “double relative” we explained earlier.

In our calibrations, social distancing policies do have an ambiguous impact: depending on

parameter values, the requirement that people stay socially distanced can increase the share of

the population going to work for one set of parameter values, and reduce it for another.

The model incorporates an externality: individuals base their choices of location on their

own probabilities of contagion, but fail to take into account the impact of those choices on the

economy-wide dynamics of contagion. We contrast the decentralized outcome to the solution

of the social planning problem in our model, one in which the social objective is the discounted

expected welfare of the different groups, each weighted by their population size.

With the benchmark calibration, the planning solution at first restricts time outside the

home drastically, and then allows agents to return to outside work gradually. The solution

resembles a “lockdown”and stands in contrast to the decentralized equilibrium, in which people

are fully working outside the home. The social-planning policy reduces infection but does not

eliminate it completely.

Beyond comparing optimal versus decentralized outcomes, we ask: what is an individual’s

best response if the implements the optimal lockdown? For an individual who believes that

others will comply with the lockdown, implying lower infection risk and weaker incentives to

stay at home, the best response is to return to work full time. This suggests the optimal policy

is politically very diffi cult to implement. Without compulsory enforcement or an economic

policy that reduces the financial advantage of working outside the home, lockdown compliance
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will be, at best, short-lived.1

Finally, we analyze the possibility of multiple equilibria. Animal spirits can be crucial in

a pandemic. For some parametrizations, a SIR-type equilibrium, with agents fully working

outside the home and high rates of infection and death, coexists with another equilibrium in

which precautionary behavior leads to less time outside the home, lower infection rates, and

fewer deaths. In the precautionary equilibrium individual decision makers reduce their time

working outside the home not because they face high infection rates if they go to work today,

but because they expect the pandemic to subside enough over time so that the future value

of not being infected is high. Multiple equilibria reflect the importance of forward-looking

behavior, in sharp contrast to SIR models, which are only backwards-looking.

The existence of multiple equilibria implies that policy can be highly effective if government

credibly acts as a coordinating device. If a SIR-type equilibrium coexists with a precautionary

equilibrium, an appropriately tailored directive to limit non-essential time outside the home

not only eliminates the bad equilibrium, but also is politically costless: in the surviving pre-

cautionary equilibrium, decision-makers find it individually optimal to follow the directive. In

the same way, economic incentive policies can in principle act as coordinating mechanisms.

This paper is a contribution to the literature, motivated by the Covid-19 pandemic, that

has attempted to blend models from economics and from epidemiology. The dominant epidemi-

ological models of virus transmission are variants of the SIR model developed about a century

ago (the earliest published version seems to be Kermack and McKendrick 1927). The paper by

Weiss (2013) is an excellent presentation of the basic technical details of the model. Weiss also

discusses how the SIR model provides the theoretical underpinning for stay-at-home directives,

social distancing, and other public health policy responses to a pandemic. In the SIR model,

such policies are the only game in town, because individuals act mechanically, with incentives

playing no role. By contrast, our analysis highlights how policies, including economic policies,

1These results are consistent with Levy-Yeyati et al (2020) who empirically show that lockdown compliance
declines with time, and is lower in countries with stricter quarantines, lower incomes and higher levels of labor
precariousness
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can shape incentives and individual behavior in a pandemic, which in turn affects the dynamics

of virus transmission.

Much like the epidemiological literature, the recent economics literature related to Covid 19

has largely ignored the role of economic behavior and incentives in determining the trajectory

of the pandemic.2 There are exceptions, however, to which our paper is related. A number

of studies, including Garibaldi, Moen, and Pissarides (2020), Rachel (2020), and Toxvaerd

(2021), develop extensions of the SIR model in which each individual chooses a degree of social

distancing, or something similar, which indirectly determines exposure to the virus. In turn,

aggregate choices affect the SIR equations and the dynamics of infection. Because individual

choices depend on perceived infection probabilities, these models also feature the kind of mutual

interaction between individual decision-making and virus dynamics emphasized in our paper.

In these models and ours, externalities drive a wedge between the decentralized equilibrium

and the social planning outcome. In existing contributions, the focus has been to characterize

differences between these two potential outcomes, and to derive suggestions for lockdowns

and other public health measures. By contrast, we emphasize the impact of economic policy

incentives and of policy interventions such as the CARES Act.

In addition, we build the model from fundamental assumptions about technology, contacts,

and infection technology, in a way that allows for a consistent analysis of policy questions and

makes extensions easy to accommodate. Consider an example: several models in this group

assume that infected individuals interact freely and knowingly with susceptible people. But if

infection is observable, wouldn’t susceptible agents simply avoid interacting with sick agents?.

In our model, by contrast, we assume that people who become sick are sent to a hospital for

treatment, so that contagion arises only from asymptomatic people who do not know they have

been infected.

Eichenbaum, Rebelo, and Trabandt (2020) and Jones, Phillipon, and Venkateswaran (2020)

develop dynamic models that postulate SIR-type equations, which depend on economic activit-

2Brodeur, Gray, Islam, and Jabeen Bhuiyan (2020) survey the economic literature as of June 2020. Since
then, however, there have been many significant contributions.
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ies such as consumption and hours worked. As in our paper, individual agents understand that

their consumption and labor supply choices have implications for their exposure to contagion,

so market incentives such as wages matter for the dynamics of infection. But our paper differs

from Eichenbaum et al. and Jones et al. in several respects, some of which are significant for

policy analysis. For example, both Eichenbaum et al. and Jones et al. assume that contagion

increases with the levels of aggregate consumption. An implication is that raising consumption

taxes during a pandemic would reduce infections, which would amount to an argument in favor

of such a policy. In contrast, consumption taxes, because they wash out in the double relat-

ive, have no impact on individual choices in our model, and therefore no effects on contagion

dynamics.

Whether these differences are important hinges on the specific objectives of the distinct

papers. The main focus of Eichenbaum et al. and Jones et al. is on describing and quantifying

dynamic implications. Given such a focus, there is no big loss in treating the link between

consumption and infection rates as a reduced form. For policy analysis, on the other hand, the

details of such a link are crucial, which is one of the reasons why we have placed special care

in deriving SIR-type equations from first principles.

Our analysis of how fiscal policy affects the dynamics of a pandemic via incentives, and how

fiscal policy can be a factor underlying multiple waves of infection, is new in the literature.

Moreover, and to the best of our knowledge, we know of no model of a pandemic in which the

interaction between economic incentives and forward-looking behavior can result in multiple

equilibria. In turn, those different equilibria have very different implications for contagion

dynamics and the associated policy implications.3

The rest of the paper proceeds as follows. Section 2 describes the economic environment

in normal times. Section 3 describes the impact of a virus, emphasizing the interplay between

individual decisions and infection rates, and defining equilibrium. Section 4 proposes a numer-

ical calibration of the model and investigates model dynamics. We discuss the implications

3Multiple equilibria may emerge in SIR-type models of equilibrium social distancing. See Chen (2012).
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of a fiscal package similar to the CARES Act in section 5. Social distancing is the focus of

section 6 and the social planning problem is focus of the section 7, where we also compare this

outcome with the decentralized equilibrium of the model. Multiple equilibria and the role of

forward-looking behavior are discussed in section 8, while section 9 closes with conclusions and

suggestions for further research.

2 A Basic Economy

Time is discrete and indexed by t = 0, 1, 2....The economy is populated by a continuum of

agents. The size of the population is normalized to one.

People in this economy transit between three locations which we shall call home, outside,

and hospital. As in Chang and Velasco (2020), transitions between locations depend partly on

individual decisions, reflecting agents’perceptions of costs and benefits, including the possibility

of infection.

There is only one final good. Each agent outside her home in period t receives an amount

wt. We can think of wt as a wage or the amount of output that the agent produces working

outside, and more generally a reward from market participation. Likewise, agents at home

or in the hospital receive an amount of goods et. This can be thought of output from home

production, or a subsidy from the government.4 For now, we simply assume that wt and et ,

t = 0, 1, 2... are exogenously given, known sequences, with wt > et ≥ 0.

Agents consume their incomes in every period. In particular, we rule out borrowing or lend-

ing. This is in spirit of simplicity, but allowing for borrowing and lending may be a substantial

extension.

In this economy, normal life is quite easy. Since wt > et, agents spend every day working

outside, and receive utility:

4We can allow the subsidy to differ between home and hospital, but here we assume there is no difference,
for simplicity.
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vzt =

∞∑
j=0

βju(wt+j) (1)

where 0 < β < 1 is their subjective discount factor, and u displays constant relative risk

aversion σ > 0 :

u(c) =
c1−σ

1− σ if σ 6= 1,

= log(c) if σ = 1

3 Pandemic

Things change, however, when, at the beginning of t = 0, a fraction 1 − h0 of the population

gets infected with a virus. As we describe below, infected people show no symptoms until the

end of the period. Hence, at the start of t = 0, people do not know if they are infected or not:

they remain vulnerable. The number of vulnerable individuals at the start of any period t will

be denoted by st. Hence s0 = 1.

3.1 Vulnerables and Decision Makers

To describe the model dynamics, consider any period t, with st vulnerable individuals, of which

a fraction (1− ht) carry the virus. In other words, at the start of period t there are (1− ht)st

asymptomatic individuals, and htst healthy ones.

For a benchmark case we select some simple assumptions, similar to those in Chang and

Velasco (2020). An exogenous random fraction q > 0 of the vulnerables is selected and must

go to work outside. One can think of this fraction as "essential" workers.

Each of the remaining (1−q)st vulnerables decides what fraction of the period to stay home

or outside. In the parlance of Chang and Velasco (2020), this is a group of decision-makers. We

examine their decision problem shortly, but observe for now that a crucial consideration in that

problem is that, in equilibrium, probabilities of infection are different in different locations.
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We denote by φmt (respectively φ
n
t ) the probability that a healthy vulnerable gets infected if

she spends a period working outside (resp. at home). Hence a healthy vulnerable that spends

a fraction pt of her day outside gets infected with probability

φ̄t = φ̄t(pt) ≡ ptφ
m
t + (1− pt)φnt

In our model, the infection probabilities φt = (φmt , φ
n
t ) are endogenous, but are taken as given

by individual agents.

Vulnerables do not know if they are healthy or infected at the beginning of the period

(so each of them assumes that she is healthy with probability ht). At the end of the period,

however, some infected vulnerables become symptomatic. Let κ the fraction of infected that

show symptoms. We assume that κ is exogenous and less than one.

Infected individuals that exhibit symptoms exit the vulnerable population to enter the

hospital. We denote x(1)
t+1 the number of vulnerables that are interned in the hospital at the end

of period t:

x
(1)
t+1 = κ{(1− ht) + ht[qφ

m
t + (1− q)φ̄t(pt)]}st (2)

In the preceding, the term in brackets is the fraction of vulnerables that are infected at the

end of period t. That fraction is given by asymptomatic but infected vulnerables, (1−ht), plus

the number of healthy vulnerables that get infected during the period.

Correspondingly, the number of vulnerables next period is

st+1 = st − x(1)
t+1 (3)

and the number of healthy vulnerables in t+ 1 is:

ht+1st+1 = htst
{

1− [qφmt + (1− q)φ̄t(pt)])
}

(4)
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3.2 Hospitalization and Recovery

Infected people that show symptoms recover only after spending some period of isolation or

medical care in a hospital. Under our assumptions, people do not recover till they spend time

in the hospital, hence they must show symptoms first. One interesting variation might be to

allow asymptomatic people to recover without going to the hospital.

An individual in the hospital stays H ≥ 1 periods there, after which she recovers with

probability (1 − µ) or dies with probability µ. A recovered person is virus free for ever, and

able to earn the present value of outside wages, defined above as vz. On the other hand, we

assume that death involves a utility cost D ≥ 0.

Hence the value of a hospitalized individual in her first day at the hospital is:

vht =
H∑
j=1

βj−1u(et+j−1) + βH [(1− µ)vz,t+H − µD] (5)

Let x(i)
t denote the number of patients in their ith day in the hospital, and xt = (x

(1)
t , ...x

(H)
t ).

Also, let zt denote the number of recovered people up to and including period t. Then z0 = 0

and

zt+1 = zt + (1− µ)x
(H)
t (6)

The law of motion of x(1)
t was given in (2). In turn, by definition,

x
(i)
t+1 = x

(i−1)
t , i = 2, 3, ....H (7)

Finally, ωt will denote the number of accumulated deaths. Then ω0 = 0 and

ωt+1 = ωt + µx
(H)
t

Conditional on {pt} and {φt}, the equations defined so far determine the evolution of
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st, ht, xt, ωt and zt. In fact, as the reader may recognize, the equations are similar to those

of the SIR model of virus transmission. But here {pt} and {φt} are not fixed parameters but

equilibrium objects, determined by the decisions of agents in the model. We turn to this aspect

of the model.

3.3 Individual Decisions

As mentioned, at the beginning of each period t, a fraction q of the vulnerables are exogenously

sent outside. These agents do not have any decision to make. The value of their lifetime utility

from then on, that is, their value function vqt, is easily seen to be:

vqt = u(wt) + β[κ{(1− ht) + htφ
m
t }vht+1 (8)

+(1− κ{(1− ht) + htφ
m
t })vst+1]

where vht is the value function at the hospital, and vst is the value function for a vulnerable at

time t, to be defined below.

The right hand side is the utility of the outside wage plus the discounted expected value

of their utility from next period on. For the latter, observe that the probability of being sick

at the end of the period equals the probability of being sick at the beginning of the period,

(1− ht), plus the probability of starting healthy but infected outside during the period, htφmt .

Also, a fraction κ of the sick population at the end of period becomes symptomatic and must

exit to the hospital. Otherwise, the agent remains in the vulnerable population.

The remaining (1 − q)st vulnerables face the more delicate choice of how to distribute

her time in or out of their homes. Crucially, this choice determines not only their current

income but also their infection probabilities. Each agent in this group knows that, if she is

healthy and spends a fraction pt of the period outside, she will get infected with probability

φ̄t = ptφ
m
t + (1− pt)φnt .

12



Hence the problem of such decision makers can be written as:

vdt = Max0≤pt≤1 u(ct) + β{κ[(1− ht) + htφ̄t]vh,t+1 (9)

+[1− κ((1− ht) + htφ̄t)]vs,t+1}

where ct = ptwt + (1− pt)et

and φ̄t = ptφ
m
t + (1− pt)φnt

The maximand in the RHS reflects that, if the individual spends a fraction pt of the period

outside her home, her current income and consumption is ct = ptwt + (1 − pt)et. In addition,

she will be infected at the end of the period with probability (1 − ht) + htφ̄t, in whose case

she will become symptomatic with probability κ and enter the hospital next period, receiving

vh,t+1. Otherwise, she will remain in the vulnerable group, receiving vs,t+1.

It is instructive to examine the derivative of the maximand with respect to the choice pt,

which is

u′(ct)(wt − et)− βκht(φmt − φnt )(vst+1 − vht+1) (10)

This is an illuminating expression. The first term is the current gain of a marginal increase

in pt. Such an increase raises current income by the utility value of outside income relative

to home income, wt − et. That gain is compared against the marginal cost associated with

infection risk. What is that risk? By working outside rather than staying home, a vulnerable

individual raises the chance that she is healthy but gets an infection. That increase is captured

by ht(φ
m
t − φnt ). With probability κ the individual will then show symptoms and have to enter

a hospital next period, with cost β(vst+1 − vht+1).

Hence decisions to work outside or stay at home depend on a "double relative": the current

payoff to outside work relative to staying home is compared with the expected discounted value

of future payoff of remaining vulnerable versus going to hospital. The choice problem has an

intratemporal and an intertemporal dimension. Crucially, expectations play a crucial role.
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Finally, our assumptions imply that

vst = qvqt + (1− q)vdt (11)

And, of course, the decision problem depends on the probabilities of contagion, φmt and φ
n
t .

This will depend on the "technology" of virus transmission.

3.4 Contagion

We impose SIR-type assumptions, deriving contagion probabilities from basic assumptions

about frequency of meetings and rates of transmission in different locations. In this way,

one can think about a variety of policies, such as "social distancing", in a useful way.

Each agent outside her home has ρm close meetings with other agents during a period. A

healthy agent contracts the virus with probability γ if she meets an infected person. In turn,

the probability of meeting an infected individual in a given match is equal to the proportion of

healthy agents outside, given by:

hwt =
[q + (1− q)pt]htst + zt
[q + (1− q)pt]st + zt

(12)

taking into account that zt recovered agents have returned to outside work and are healthy.

It follows that the probability that a healthy vulnerable agent working outside is not infected

in a given meeting is hwt + (1− γ)(1− hwt ) and hence5

φmt = 1− [hwt + (1− γ)(1− hwt )]ρ
m

(13)

The expression is intuitive. An increase in the proportion of infected people in the market

raises φmt . Given h
w
t , an increase in the number of meetings, ρ

m, leads to an increase in φmt .

"Social distancing" policies are, presumably, those that attempt to reduce ρm. Finally, policies

5Note that CV’s assumption is ρ = γ = 1.
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such as mandating the use of face masks may affect the probability of transmission γ.

Analogous reasoning implies that

φnt = 1− [ht + (1− γ)(1− ht)]ρ
n

(14)

where ρn indicates the number of close meetings at home. It is natural to assume that ρn < ρm.

This completes the description of the model. Importantly for our purposes, contagion prob-

abilities depend not only on the extent of infection but also on individual decisions, here given by

how vulnerable agents allocate their time between outside work and home. But those decisions,

as we have seen, depend on those same agents’perceptions of contagion probabilities.

3.5 Equilibrium

Equilibrium can be defined in a natural way. The definition includes the dynamics of infection,

in addition to individual decisions.

A (perfect foresight) equilibrium involves sequences of population fractions {ht, st, xt, zt},

value functions vst, vqt, vdt, vht, and vzt, time allocation decisions pt, and contagion probabilities

φt = (φmt , φ
n
t ) such that:

• Given {φt, pt}, s0 = 1, z0 = 0, and x
(1)
0 = ... = x

(H)
0 = 0, and a given h0 ∈ (0, 1),

{ht, st, xt, zt}∞t=1 satisfy 4, 3, 7, 2, and 6

• The value functions satisfy 8, 9,11, and 1, 5, given {φt, ht}

• pt attains the max in the RHS of the Bellman equation 9

• φmt and φnt are given by 13 and 14

As we have emphasized, our model is similar to existing SIR models, except (crucially) that

pt is endogenous. This similarity allows us to immediately derive some qualitative features of

equilibria, adapting arguments of e.g. Weiss (2013).
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Assume that wt and et are eventually constant. Also, consider a sequence {pt} such that

pt = 1 for all t suffi ciently large (this will be an equilibrium feature). Then 3 and 2 imply that

{st} is a decreasing sequence bounded below by zero, so it must converge to some limit that

we denote by s∞ ∈ [0, 1]. Likewise, {zt} and {ωt} are increasing bounded sequences, so it must

converge to some z∞, ω∞ ∈ [0, 1]. It also follows that {xt} converges to the zero vector, and

that z∞ + ω∞ = 1− s∞.

Hence, in the long run, the pandemic subsides. But does everybody get infected? Indeed,

this can be the case under some parameter values that imply that z∞+ω∞ = 1. In such a case,

everyone in the population gets infected, eventually goes to the hospital, and recovers or dies.

But it is also possible that z∞ + ω∞ < 1 and s∞ > 0. To see how, note that if ht and hwt

converge to one, the probabilities of infection φmt and φnt fall to zero. If this convergence is

suffi ciently fast, infections fizzle out while there is still a positive mass of vulnerables. This is

a case of "herd immunity".

More detailed dynamics can be inferred by focusing on the number of new infections in each

period, given by:

Nt = stht {[q + (1− q)pt]φmt + (1− q)(1− pt)φnt }

that is, the number of initially healthy vulnerables at the start of the period, stht, times the

probability that each of them is infected during the period. The number of healthy vulnerables

is decreasing, but the probability of infection can increase or decrease. Consequently, Nt can

increase or decrease, although eventually it must converge to zero. In typical SIR models, if

N1 < N0, the convergence is monotonic, while if N1 > N0 there must be at least one "peak" in

infections. This depends on the particular parameters of the model.

At this point, we cannot extract more implications of the model analytically. This is due to

the high nonlinearity and nonstationarity of the model. But we can learn much more from the

model by numerical study of specific parametrizations. We turn to these.
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4 A Benchmark Case

4.1 Calibration

We assume that each time period of the model represents a day. Consistent with an annual

interest rate of one percent, we set β equal to (1/1.01)1/365.

We calibrate the model to the U.S. According to offi cial numbers, by the end of the first

week of March, there were about 338 active cases identified in the country.6 However, it is well

known that due to limited testing, the true number of active cases by that time could have been

10 to 25 times larger. Taking this into account, we set the initial fraction of healthy vulnerable

population (s0h0) equal to 1− 10−5.

Parameters (γ, ρm, ρn ) determine the rate of transmission of the virus outside and at

home. Mossong et al. (2008) conducted a population-based prospective survey of mixing

patterns in eight European countries using a common paper-diary methodology. They find

that, on average, a person in a household of two to three people has between 10.65 and 12.87

daily contacts, of which 23% occur inside the household. Thus, we set the total average number

of daily contacts to 11.7, which is consistent with the average household size in the US,7 that

implies a distribution of contacts between outside and home equal to ρm = 9 and ρn = 2.7. We

set the probability of transmission per contact (γ) at 5% that lies in between 4.1% and 6.2%,

which are the probability of transmission per contact with a asymptomatic and a symptomatic,

respectively, estimated by He et al. (2020).

Recall that κ represents the fraction of infected that show symptoms at the end of each

period. This parameter could also be interpret as the probability of showing symptoms. A

joint mission by the World Health Organization and the Chinese government established that,

on average, infected people developed signs and symptoms between 5 and 6 days after infection.8

Consistently with this finding, we set κ = 1
5.5
.

6The CDC - Centers for Disease Control and Protection - see here
7According to the US Census, the average household size is 2.53 people
8See Page 11, Final Report of the mission here
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Related to the virus, there are two additional parameters that need to chosen. The first is

the number of days that a person spends at the hospital (H). Similar to existing literature on

this matter,9 we assume H is equal to 18, implying that after 18 days at the hospital, a person

recovers or dies. We set the probability of dying (µ) to be 1% which is consistent with Verity

et al. (2020) who estimated that the infection fatality rate in China, with a 95% of confidence,

is between 0.39% -1.33%.

For the benchmark scenario, we set the economic parameters of the model as follows. We

normalize w equal to one and choose et = e = 0.38. Thus, in the baseline scenario, the benefit

of staying at home is 38% of the reward from working outside This number was chosen to

reflect that in the pre-pandemic U.S., average national unemployment weekly payment was

$370 compared to the $970 average national weekly salary of potential unemployment benefits

recipients.10 Parameter q is the probability that in each period, a vulnerable is selected to work

outside. Following Alvarez et al. (2020), 30% of US GDP is generated by essential sectors,

hence, we set q = 0.3 to capture that this fraction of the economy needs to operate in every

period.

Finally, a key parameter for the calibration is D that corresponds to the utility loss upon

death. How to calibrate this parameter is controversial. In the model, an obvious cost of death

is the loss of wages. But it is easy to argue that it should include not only foregone earnings but

also physical pain and suffering, and perhaps other considerations. Hence, for a benchmark,

we take a pragmatic approach as follows. Kniesner and Viscusi (2019) indicate estimates of

the value of a statistical life (VSL) for the U.S. are close to $10 million ($2017). We take this

number to represent the expected present value of all costs associated with death, including

not only wages, but also the additional costs just mentioned. We express those costs as a daily

quantity, express that quantity as a constant times the daily average wage, and then compute

D as the discounted value of the utility of the resulting constant. In the benchmark calibration,

9See Acemoglu et al. (2020), Eichembaum, Rebello, et al. (2020), Alvarez et al. (2020), and Verity et al.
(2020) for example
10See Five Thirty Eight
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we assume that agents have log utility preferences.

4.2 Equilibrium, Incentives, and the SIR Model

Figure 1 displays the predictions of the model during the first 150 days of the pandemic,

assuming logarithmic utility.11 The upper left hand panel shows that all agents spend all of

their time outside their homes, in spite of the fact that the probability of contagion is lower at

home. As a consequence, in this case the model behaves just as if we had assumed that agents

had no choice between working outside and staying home. In other words, the model effectively

becomes a standard SIR model.

Like in the SIR model, the pandemic results in a peak in infections at about eighty days

from the initial seed. As vulnerables get infected, they transit to the hospital, where they either

recover or die. Eventually the pandemic subsides. This reflects that the number of healthy

vulnerables, susceptible to contagion, falls as more people acquire the virus. Also, hospitalized

agents that recover return to work outside, increasing the relative number of healthy people

there. In the long run, about one percent of the population dies.

Figure 1 confirms that our model delivers dynamics not unlike the SIR model. At the same

time, however, it may give the misleading impression that, as in the SIR model, incentives are

irrelevant. That this is not the case is illustrated by Figure 2, which compares the SIR model

against ours in the case of a CRRA σ equal to ten.

The case σ = 10 is displayed by the red dashed line. As in the SIR model, the rate of

infection starts accelerating about thirty days after the initial seed. Unlike in the SIR model,

and in the case with log utility, the upper left panel of Figure 2 shows that decision making

vulnerables start reducing their time outside, and more so as the infection rate goes up. About

two months into the pandemic, the infection rate peaks, and the fraction of time outside bottoms

at around one half. These two variables interact: since people stay home, the infection rate

peaks at a lower level than in the SIR model. As a consequence, the number of active cases
11Figures are collected at the end of the paper. Computer code is available at ht-

tps://github.com/totuma87/Chang_Martinez_Velasco_2021
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falls, and the total number of deaths is lower, at eight tenths of one percent of the population,

than in the SIR case (and also the log utility case).

Of course, the difference between Figures 1 and 2 amounts to an assumption about individual

behavior. The SIR model features no decision making, while our model places it at center

stage. The log utility case shows, however, that allowing for individual decision making is not

suffi cient by itself to depart from the SIR paradigm. People’s responses to incentives must be

strong enough, as in the case σ = 10.

Figure 3 illustrates the role of incentives. The upper left hand panel displays the marginal

value of fully working outside given by the derivative of the objective function in the Bellman

equation, (10), evaluated at pt = 1. As shown, the derivative falls below zero after about thirty

five days, expressing that fully working outside is suboptimal, so that decision makers increase

time spent at home.

The upper right hand panel of Figure 3 shows the evolution of the term βκht(φ
m
t −φnt )(vst+1−

vht+1) in 10. As discussed before, this term captures the cost to decision makers of increasing

outside working time pt, due to the impact on infection risk. As the panel shows, it is the evol-

ution of this term which explains the changes in incentives during the course of the pandemic.

The term, in turn, reflects the differential infection risk outside vis a vis home, ht(φ
m
t − φnt ),

which is displayed in the lower middle panel. But it also reflects the changing relative value of

not being hospitalized, βκ(vst+1 − vht+1), displayed in the lower right panel.

To underscore the crucial role of individual responses to incentives, Figure 4 compares the

original calibration, including log utility, against a case in which the utility cost of death is ten

times larger. In our model, this means that vulnerable decision makers are more prone to stay

home, rather than work outside, in order to reduce their probability of acquiring the virus and,

ultimately, of death. Of course, the utility cost of death is irrelevant in the SIR model.

The results are intuitive. When people have a bigger fear of death, they choose to stay at

home nearly one hundred percent of their available time as soon as infection rates start going

up. As a consequence, infection rates and the number of active cases are much smaller than in
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the SIR case. The number of deaths falls to six tenths of one percent of the population.

5 Application: The CARES Act

5.1 The CARES Act

In the last days of March of 2020, the U.S. Congress reached an agreement to provide a eco-

nomic relief package worth approximately $2 trillion dollars. This package, denominated The

Coronavirus Aid, Relief, and Economic Security Act (or CARES Act) came as a response to

the economic fallout of the COVID-19 pandemic in the United States.

The CARES Act included the extension of unemployment benefits. The Federal Pandemic

Unemployment Compensation (FPUC) provided an additional $600 dollars per week to people

for those receiving unemployment benefits. Additionally, the Pandemic Emergency Unemploy-

ment Compensation (PEUC) increased by 13 weeks the time window to receive unemployment

benefits while the Pandemic Unemployment Assistance (PUA) expanded the eligibility criteria

to self-employed and gig-workers.

To infer the effects of the CARES Act in our model, we focus on the impact of the Act on

the relative compensation of working in the market versus staying at home. Relative to the

SIR/log utility scenario, all parameters remain the same except for the schedule of the benefits

of staying home, which we modify to capture the impact of the CARES Act on unemployment

benefits.

Given that this policy was active between April and July, we assume that the implementation

period starts 30 days after the onset of the pandemic and it lasts for an additional 120 days.

Moreover, during this time frame, et increases from 0.38 to 0.99 capturing, as argued by Ganong

et al. (2020), that the CARES Act increased the replacement rate for 76% of eligible workers

above 100%. That is, most people would earn more from being unemployed than by working

during this period of time. After day 150, et returns to the pre-pandemic value of 0.38.

Because of the short run nature of the problem at hand, we do not ask how the policy
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under analysis is to be financed. The CARES Act was financed simply via government debt,

the implications of which remain to be ascertained. In our model, we could easily assume that

the government pays for the et increases by issuing debt that is to be repaid in a time frame

beyond the horizon we are interested in.

5.2 Implications

Figure 5 illustrates the implications of the CARES Act for our model. Upon the imposition

of the CARES Act, vulnerable decision makers choose to stay home for an initial period of

about a month, after which they start returning to working outside gradually. This process

is reversed, however, at about day 130, when outside work participation drops for a couple of

weeks. Finally, at about day 150, decision makers return fully outside.

This evolution reflects the interaction between the dynamics of infection, individual de-

cisions, and the financial incentives implicit in the CARES Act. The key aspect of the Act is

that the financial reward to outside work relative to staying at home becomes tiny for a while.

Then, as soon as the Act is implemented, vulnerable decision makers choose to stay at home.

Note that this transition is quite abrupt, which is consistent with the large increase in the

unemployment rate in the US in April 2020 which, as Robert Hall has emphasized, reflected an

increase of layoffs of workers with jobs rather than job destruction. Also, it is notable that the

transition happens even when the rate of infection outside the home is quite small (see upper

middle panel).

The fact that decision makers increase slightly their time outside by day 70 is not driven

by the incentives of the CARES Act but by the fact that the probability of infection has fallen

practically to zero at that moment. Consequently, even though the financial benefit of working

outside is close to zero, the likelihood of getting infected is even lower that staying at home

100% is not optimal.

Interestingly, there is a first small wave of infection, that makes it look like the virus will

subside by day 100, followed by a second, much bigger wave. Recall that, in the benchmark
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calibrated model, all infection occurs outside the home since no one stays at home. With the

CARES Act, vulnerable decision makers stay at home initially where number of close contacts

is smaller, and only essential workers (vulnerables that must work outside) are exposed outside.

Hence the first wave is relatively small.

As that wave subsides, people start returning to work outside, responding to the fall in

the infection rate. These decisions generate a second infection wave. The rise in that wave

induce vulnerable decision makers to again increase their time at home. But then the financial

incentives of the CARES Act expire. The consequence is that vulnerables go back to working

outside full time. This increases the infection rate, which then crests at about day 190. The

number of active cases also increase and peaks at about day 200.

Hence the model generates a case of multiple waves not unlike what has been seen in the

US. To underscore this fact, Figure 6 displays the model predictions against US data on cases

and deaths. Aside from a time shift, which may reflect that the initial seed in the US was

earlier than we are assuming, the dynamics predicted by the model is qualitatively similar to

the observed data. Similarly, Figure 7 compares the model predictions for time spent outside

the home against mobility data, measured by Apple’s driving and walking directions. The data

shows that, after an initial drop in 50 percent in mobility, activities outside the home recovered

gradually and by August, outside activity was higher than at the beginning of the pandemic.

Here also our model implications are at least qualitatively consistent with the evidence.

Figure 8 displays how the incentives embedded in the CARES Act affect the trajectory of

the pandemic. The lower left hand panel displays the evolution of the financial incentive to

work outside, given by u′(wt)(wt− et). The CARES Act reduced this incentive to virtually zero

for four months. As a consequence, the marginal value of outside work fell during that period,

as shown in the upper left panel. When the CARES incentive expire, however, the value of

outside work jumps up, prompting vulnerable decision makers to abruptly leave their homes.

This, in turn, caused an increase in infection rates, and a second, bigger wave of the pandemic.

It bears emphasizing that the part of the CARES Act that matters for the evolution of the
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pandemic is only that which changes the relative rewards from working outside the home versus

staying home, given by the difference wt− et in our model. In contrast, a policy of transfers to

all agents in the population would have essentially no impact on equilibrium dynamics, since it

would leave wt − et unchanged. So again, our analysis underscores that fiscal policy can have

an impact on the dynamics of a virus, but that impact is determined by the incentive effects

embedded in the policy.

6 Application: Social Distancing

Social distancing and mandatory mask wearing are two policies that are used to limit the

transmission of the virus between people. In our model, social distancing might be captured

by assuming a lower number of close contacts outside the home (lower ρm). Mask usage, in

turn, can be modeled by a lower probability of transmission per contact with an asymptomatic

(lower γ).

In epidemiological models, these policies imply a lower and later peak of active cases and

infection rates due to a slower pace of transmission. Moreover, if the these policies are highly

effective, it is possible that the arrival of a infectious virus never turns into an epidemic or

pandemic.

In our model, however, the impact of this type of policies is ambiguous, due to their im-

pact on individual incentives. By reducing the probability of infection associated with outside

activities, social distancing and mask wearing have two opposite effects on behavior. On one

hand, by directly reducing current infection risk outside the home, the policies induce agents

to spend more time outside. On the other hand, the policies also result in an expected future

path with lower probabilities of infection, which increases the future value of being vulnerable

relative to being hospitalized, thus raising the expected marginal cost of getting infected today

and reducing incentives to work outside.

To illustrate, we analyze the effect of social distancing policies in several alternative cases.
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The implications of mandatory masks are qualitatively not different from social distancing.

We start by solving the benchmark calibration (log utility) with the effectiveness of social

distancing, given by the number of close contacts outside the home, is set at three levels: 5

percent, 25 percent, and 50 percent of the benchmark value of ρm. The main outcomes are

displayed in Figure 9. In the benchmark calibration, social distancing is not suffi cient to induce

people to reduce outside time, regardless of effectiveness level. On the other hand, by lowering

ρm, social distancing directly reduces the pace of transmission. The result is a more favorable

virus dynamics, with lower peaks and fewer deaths.

While Figure 9 shows that social distancing does not induce people to reduce their time

outside, it does change the incentives that vulnerable decision makers face. This is illustrated

in Figure 10. The lower center and right panels of this figure show that greater effectiveness

in social distancing implies a lower peak for current net infection risk and, at the same time, a

higher expected marginal cost of infection during the initial phase of the pandemic. These two

effects go in opposite directions, but with the benchmark calibration, the first one dominates

in every case.

Intuitively, therefore, social distancing might induce decision makers to reduce time outside

if the expected marginal cost of infection were greater. To check this conjecture, we modify

the previous exercise by making the utility cost of death D three times larger than in the

benchmark. As discussed before, a greater D increases the incentive to stay home because it

reduces the value of being hospitalized.

Figure 11 shows our findings. In this "3D" scenario, people choose to stay more time at

home if social distancing effectiveness is 25 percent. The result is intuitive. If social distancing

is less effective, the incentives effect is not strong enough to induce people to reduce outside

work time. If social distancing is very effective, infection risk is driven to negligible levels.

Relative incentives are displayed in Figure 12.

This analysis underscores that the decision of going outside or staying at home depends

on the "double relative" rather than on the absolute values of infection probabilities. It is
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worth noticing that, in the 3D scenario, individual decisionmaking ends up complementing

social distancing. That is, social distancing reduces the severity of the pandemic not only by

lowering transmission rates, but by inducing individuals to stay at home. In particular, with a

25 percent effectiveness, accumulated deaths, which add up to 1% of the initial population in

the benchmark scenario, fall to 0.8% in the 3D scenario.

That incentives and individual decisionmaking can complement social distancing depends,

however, on the specific scenario under analysis. In some cases, incentive effects can offset

social distancing. To illustrate this possibility, we examine a case in which the cost of death

is ten times the benchmark. An implication is that, with no social distancing, vulnerables

choose to reduce time working outside. Moreover, we assume that the introduction of the social

distancing policy is unexpected by agents, and occurs at day 40 after the arrival of the virus.

Figure 13 shows the implications for time working outside, active cases and accumulated

deaths. In this case, the implementation of social distancing induces agents to increase time

working outside. Moreover, the more effective the policy, the greater is the increase of outside

activities.

Notably, despite driving agents to spend more time at the market, social distancing policies

still manage to produce less severe epidemiological results. Active cases peaks and accumulated

deaths for the three effi ciency levels of social distancing are below those in the absence of social

distancing. Thus, in this calibration, agents do not increase their outside activities enough to

raise the transmission of the virus over the no policy state.

Finally, it is worth mentioning that a basic SIR model would ignore that, after the imple-

mentation of a social distancing policy, agents reevaluate their behavior. By doing so, SIR-type

models would overestimate the effect of such policy on epidemiological results. This is shown

in Figure 14. Given a social distancing policy, the peak of active cases under SIR-type as-

sumptions (dotted lines) would be lower, no matter how effective the policy. This is, of course,

because in our model the effect of social distancing is partly offset by a change in individual

behavior: people respond to the policy by spending more time outside, which limits the impact
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of the policy on the number of active cases (dashed lines). In fact, if social distancing has only

5 percent effi ciency, the effect of the policy on equilibrium is minimal.

7 A Social Planning Problem

In any equilibrium of our model, vulnerable decision makers choose pt balancing relative costs

and benefits, including those related to the virus and contagion, which individual decision

makers take as given. On the other hand, contagion probabilities depend on the distribution of

people at home and outside, which is determined by pt. As a consequence, there are externality

effects, and the equilibrium outcome may be socially suboptimal.

To investigate this issue, we consider the case in which, at the beginning of time, the sequence

{pt} is chosen to maximize the expected welfare of the typical vulnerable agent (and, therefore,

of nearly all the agents in this economy). The problem can be written in recursive form. Let

Ut denote period t′s social utility, so that:

Ut = st[qu(wt) + (1− q)u(ptwt + (1− pt)et)] + ztu(wt) + [
H∑
i=1

x
(i)
t ]u(et)− JtD

where, for convenience, we have defined Jt = µx
(H)
t−1 as the number of deaths in period t. The

first term in the sum in the right hand side is the utility of the st vulnerables, which depends

on pt. The other terms gather the utility of zt recovered and
H∑
i=1

x
(i)
t hospitalized people, minus

the cost of Jt deaths.

The value function associated with the planning problem can now be written as V (st, ht, zt, Jt, xt) ≡

Vt , and the Bellman can be written as

Vt = MaxΦt,pt∈[0,1]Ut + βVt+1

where we take as the period t choice variables the time allocation decision pt and the probability
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of infection of a healthy vulnerable, denoted by Φt and given by

Φt = (q + (1− q)pt)φmt + (1− q)(1− pt)φnt (15)

together with 12, 13, and 14. Meanwhile, state variables evolve according to rewritten 2, 3, 4,

6, and 7 using 15.

This way of writing the planning problem is helpful to sheds some light on the discrepan-

cies between equilibrium outcomes and social optima. In particular, one finds that the social

marginal value of pt is given by:

st(1− q)[u′(ct)(wt − et)− βκht (vst+1 − vht+1)](φmt − φnt )− Γt

where the term Γt is given by

Γt = λt[(q + (1− q)pt)
∂φmt
∂pt

] + (1− q)
[
stβκht

(
∂Vt+1

∂st+1

− vst+1

)
+ β

∂Vt+1

∂ht+1

∂ht+1

∂Φt

]
(φmt − φnt )

with λt denoting the Lagrange multiplier associated with 15

Comparing the preceding expressions against the corresponding expression for individual

decision makers (equation 10), we see that the term Γt captures the externalities involved in

the choice of pt. Individuals ignore that an increase in the time they spend outside, pt, has a

contemporaneous impact on the probability of infection of healthy vulnerables, Φt. The social

cost of that distortion is given by the first term in the RHS, with the shadow cost of that

increase given by λt. The second term in the definition of Γt expresses the dynamic aspect

of the externality. The current choice of pt has an impact on the evolution of the different

population groups, and in particular it affects the number of healthy vulnerables, st+1ht+1.

The discrepancies between the planning solution and the equilibrium outcome in the bench-

mark case are illustrated in Figure 15.12The planning solution differs from the equilibrium

12For simplicity, we calibrate Ms equal to M
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outcome (which, remember, is also the outcome of the SIR model) in substantial ways. For the

first forty days, the planner allows agents to work fully outside, as in the equilibrium model.

But then the planner sets pt to almost zero for about two weeks. After that period, which

resembles observed lockdowns, the planner gradually allows vulnerables to return outside. Full

return to outside work is not observed until after 260 days since the onset of the pandemic.

Notably, the planning solution reduces outside activities only after 40 days have passed since

the outbreak. In terms of the epidemic, it does so after nearly five percent of the population

has contracted the virus. More than the particular number, this result suggests that it is not

optimal to shutdown outside activity too early.

Likewise, the planning solution underscores that, after an initial strict lockdown phase, a

rapid return to outside activity is not optimal. The reason is that the share of the population

that remains vulnerable is high and, thus, susceptible to another exponential outbreak of the

virus. A smooth return keeps the economy’s infection rate on a desired path.

The epidemiological results of the planning solution imply a peak of about 30% of the

population in active cases, and a number of deaths of about one half of one percent of the

initial population. Hence the planning solution reduces outside activity to control the virus

and improve health results. On the other hand, the planner also accepts some health related

costs and deaths and avoids a full economic shutdown.

In general, the planning outcome will not be a competitive equilibrium. This means that

a government may experience diffi culties if it attempts to implement the planning solution,

for example by imposing lockdowns. In such a case, vulnerable decision makers would find it

individually optimal to deviate from the planning solution. Such tensions seem to be present

in practice. In particular, for a sample of 120 countries, Levy-Yeyati and Sartorio (2020) find

that lockdown compliance decreases over time, with a stronger trend in economies with higher

levels of labor precariousness, that is, economies where most jobs cannot be done from home

nor there is a strong safety net.

Hence, in practice, the individual incentives to deviate from the planning solution will vary
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over time and across countries. This seems to be consistent with our model. For example, the

Levy-Yeyati and Sartorio concept of labor precariousness might correspond, in our model, to a

greater wedge between w and e, and a greater relative gain from outside work over staying at

home. Intuitively, this would make it more diffi cult for the government to enforce a lockdown.

To be able to say more, however, we would need to extend the model to allow for imperfect

lockdown enforcement, which is best left for future research.

8 Pandemics and Animal Spirits

Any equilibrium of our model reflects the decisions of individuals in response to the environment

they face, including the evolution of the pandemic. But such evolution, as we have seen, depends

on whether decision makers stay at home or work in the market. This interaction implies that

forward looking behavior and expectations can play a crucial role, and in fact they can lead

to multiplicity of equilibria. This is striking, especially when our analysis is compared with

that of SIR models, which are purely backward looking. This section discusses how multiple

equilibria can emerge, and presents examples. We also argue how policy intervention can help

eliminating inferior equilibria, acting as a coordination device.

To identify conditions under which multiple equilibria are likely, suppose that, for a given

calibration, there is an equilibrium in which pt = 1 for all t. We will refer to that equilibrium

as being of the SIR-type since, as seen in subsection 4.2, it replicates the outcome of a naive

SIR model.

For the given calibration, we can ask: is there a different equilibrium? If the answer is yes,

it must be that pt < 1 for at least one t. In other words, there must be at least one period in

which vulnerable decision makers reduce their time outside their homes, presumably because

of fear of infection. For concreteness, we will say that this equilibrium is of the precautionary

type.
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Now, since the SIR-type equilibrium is assumed to exist, (10) implies that, for each t,

u′(wt)(wt − et) ≥ βκĥt(φ̂
m

t − φ̂
n

t )(v̂st+1 − v̂ht+1)

where we are using carets to identify endogenous variables in the SIR-type equilibrium (i.e.

p̂t = 1, all t). In words, this expression says that, in every period, the current utility net gain

of spending more time outside home is equal or greater than the expected marginal cost of

infection risk, even if the individual is already fully outside the home.

Conversely, in a precautionary equilibrium, which we identify with tildes, for any t in which

p̃t < 1 it must be true that:

u′(wt)(wt − et) < βκh̃t(φ̃
m

t − φ̃
n

t )(ṽst+1 − ṽht+1)

If a precautionary equilibrium exists alongside the SIR-type equilibrium, let τ denote the

first period t in which p̃t < 1. Since we assuming a fixed calibration, for every period below and

equal to τ the population shares of epidemiological states will be the same in both equilibria.

More formally, {h̃t, s̃t, x̃t, z̃t, ω̃t} is equal to {ĥt, ŝt, x̂t, ẑt, ω̂t} for all t ≤ τ . This result includes

period τ because shares of epidemiological states are determined by decisions in the previous

period. Combine this observation with the two previous inequalities in period t = τ to obtain

(φ̃
m

τ − φ̃
n

τ )(ṽsτ+1 − ṽhτ+1) > (φ̂
m

τ − φ̂
n

τ )(v̂sτ+1 − v̂hτ+1)

To see what this condition implies, recall that, for a calibration with a constant sequence

of home rewards (et = e, all t), vht is a constant vh, independent of which equilibrium obtains.

Also, because ĥτ = h̃τ , φ̂
n

τ = φ̂
n

τ , while φ̂
m

τ ≥ φ̃
m

t , since φ
m
t is increasing in pt. All of these facts

together imply that the preceding inequality can hold only if the value of remaining vulnerable
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is suffi ciently greater in the precautionary equilibrium than in the SIR type equilibrium:

ṽsτ+1 >> v̂sτ+1

This condition underscores that multiple equilibria can emerge, but only in the presence of

strategic complementarities that have a suffi ciently strong impact on expectations. Suppose that

a SIR-type equilibrium coexists with a precautionary equilibrium, and consider the dilemma

faced by a vulnerable decision maker at t = τ . In the precautionary equilibrium, she knows

that p̃t < 1 = p̂t. This actually implies that the risk of infection outside the home is less in the

precautionary equilibrium than in the SIR-type one (since φ̂
m

τ ≥ φ̃
m

t ). That the agent reduces

her time working outside then reveals that, in her assessment, the expected value of remaining

in the vulnerable group in τ + 1 is much larger in the precautionary equilibrium than in the

one of the SIR type.

In turn, how much greater the precautionary equilibrium value of starting τ + 1 in the

vulnerable group relative to the value in the SIR equilibrium depends on how much future

infection probabilities fall when agents spend less time outside their homes from τ on, which

determine the expectation of financial loss and death due to the virus.

In sum, the interaction between the trajectory of infection and forward-looking decision

making results in the possibility of multiple equilibria. Strategic complementarities may exist,

but in our model they must be dynamic ones Expectations can therefore play a key role.

To illustrate, we provide an example of multiple equilibria. We run the benchmark calibra-

tion, except that we increase the utility cost of death (D) fivefold. Recall from subsection xx

that the benchmark calibration has a SIR-type equilibrium, whereas the scenario with 10 times

D has a precautionary-type equilibrium. In both cases, in our numerical work we have been

unable to find other equilibria. In contrast, in the scenario with five times D we have found

two equilibria, one SIR-type and the other precautionary-type.

The different outcomes in the number of equilibria due to changes in D reinforce the ar-
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gument that strategic complementarities occur through expectations. Moreover, it also signals

that multiple equilibria occur when the expected cost of infection risk, captured by vst+1−vht+1,

is neither too big nor too small. If too big, the SIR type equilibrium disappeards because it

is too costly to allot your whole time to market activities. If too small, the precautionary

equilibrium is not feasible because it is not optimal to sacrifice market time.

Figure 16 shows the simulation results for both equilibria. In this case, τ is equal to 44;

also, market participation is full in the precautionary equilibrium after 88 days. Thus, the

precautionary equilibrium deviates from the SIR-type equilibrium for over a month. As a result,

the precautionary equilibrium reaches a steady state with about one third fewer accumulated

deaths than in the SIR-type equilibrium, and with about 20 percent of the population never

being infected.

Notably, the infection rate of the economy (center panel, upper row in Figure 16) is the

same between equilibria up to day τ . However, at this point, by reducing their time at the

market, the infection rate in the precautionary equilibrium stagnates and smoothly falls to zero

by day 120.

The path of the economy’s infection rate underscores that decision makers are forward look-

ing. Up to day τ , there is no difference in the evolution of the pandemic between equilibria. At

that point, however, paths diverge, reflecting differences in expectations. In the precautionary

equilibrium, decision makers expect relatively low infection rates in the future, so they find

optimal to reduce their market activities. In contrast, in the SIR-type equilibrium, expecta-

tions are that people will not reduce their time at the markets, and, thus, infection rates will

relatively high in the future. At this point, it is not optimal for a decision maker to reduce

their market time since the expected marginal cost of infection risk is low relative to the current

market gain. In this sense, emergence of the SIR-type equilibrium is a coordination failure.

Figure 17 examines the incentives of a vulnerable decision maker in both equilibria. The

lower row of the figure displays the three parts of the derivative of the agent’s maximand.

Note that, at day τ (first dotted vertical line), both the net current gain (left panel) and the
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net infection risk (center panel) are practically the same between equilibria. Thus, whether

decision makers decide to reduce their time at the market can be entirely explained by different

expectations (right panel). That difference reflects that the expected path of infection rates is

lower in the precautionary equilibrium than in the SIR-type equilibrium.

The possibility of multiple equilibria underscores how forward looking behavior and different

expectations can potentially have a dramatic impact on the dynamics of a pandemic. This result

is not just a novelty of the model, but it also has important consequences for policy.

To be concrete, suppose that a SIR-type equilibrium coexists with a precautionary equilib-

rium in which time outside the home is denoted by p̃t. Then a lockdown policy of restricting

non-essential work outside the home to be no more than p̃t would eliminate the SIR-type equi-

librium, while leaving the precautionary equilibrium intact (this is clearly the case, since the

restriction would not be binding for vulnerable decision makers in the precautionary equilib-

rium). Notably, such a lockdown policy would not only eliminate the less desirable equilibrium,

but also would not create incentives for individuals to deviate from p̃t. The lockdown would

act as a coordination device, and would not suffer from the same implementation challenges

affecting the optimal planning solution, as mentioned at the end of the previous section.

Notably, the same outcome can be implemented not with a lockdown but with economic

incentives. One such policy would be to require nonessential workers to pay a marginal tax

at rate (wt − et) on earnings from time working outside over and above p̃t. Intuitively, such a

tax would eliminate the incentives for vulnerable decision makers to spend more than p̃t time

outside their homes. Clearly, the SIR-type equilibrium would disappear, and the precautionary

equilibrium would remain — in fact, in the precautionary equilibrium, no one would pay the

tax.

We close this section by noting that, even if policy can eliminate the bad SIR-type equi-

librium, the surviving precautionary would still be inferior to the social planning outcome of

the previous section. In this sense, the ability of a government to use policy as a coordination

device is no substitute for the institutional strength needed to implement the social optimum.
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9 Final Remarks

In this paper we have explored a very simple idea: how fast and widely a virus spreads across

individuals depends on how they behave in response to the health costs of contagion, but also

to economic and financial incentives. This idea is simple but quite powerful. It has implications

for the dynamics of infection, the evolution of economic activity during a pandemic, the role of

forward-looking behavior and expectations and, perhaps most importantly, the scope for public

health directives and economic policy to influence both lives and livelihoods during a pandemic.

The model here can be extended in multiple interesting directions. We comment on the

ones that appear most interesting or important to us.

Today the rollout of vaccines is the best hope to put an end to the pandemic. Indeed,

the quick development of vaccines has been a major triumphs for science. Yet it is plausible

(at least, after having read this paper) that the expectation of vaccine development may have

played a role in extending the duration of the Covid-19 episode.

Imagine a situation in which a vaccine can appear in each period with some given prob-

ability. Once the vaccine appears, a fraction of the vulnerable population in each remaining

period receives a jab and it becomes immune, joining for all practical purposes the recovered

population. In our model, vaccine development and distribution efforts could affect individual

incentives to work outside or stay at home, and may generate effects in opposite directions.

For instance, the imminent arrival of a vaccine could lower contagion probabilities and induce

more risk-taking behavior. But, at the same time, it could prompt expectations of a vigorous

economic recovery, increasing the value of remaining healthy and reducing risk-taking behavior.

We believe that this is a promising question for future research.13

We have followed convention in economics and assumed that agents have perfect foresight.

But that assumption, never innocuous, becomes even more questionable during a pandemic,

when individuals and households are subjected to new shocks and experiences for which there is

13The importance of this issue can be illustrated by the current experience in Chile, whose vaccination drive
has been among the most successful in the world, in spite of which infection rates have accelerated. Observers
agree the explanation is that, reassured by the vaccination success, Chileans returned to outside activities.
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little precedent and limited accumulated knowledge. At the beginning of the Covid-19 episode

there was considerable uncertainty about the basic parameters regarding virus contagion, for

example, and much debate on the effectiveness of masks and other prophylactic devices. One

might then ask how much our analysis might change if one departs from the perfect foresight

assumption and allows for a learning process to take place.

In building the model of this paper we have made every effort to rely on first principles.

One payoff is that the model can be modified in straightforward ways to tackle many important

issues. A possible extension could examine the implications of heterogeneity over the wt − et

wedge. This may capture inequalities in the ability of different people to work from home.

Alternatively, a distribution over wt might capture income inequality. The model might then

provide some lessons on how inequalities in income, wealth, or labor market opportunities affect

the severity of a pandemic. In that way, the model would not only give insights about what

policies are most effective to control a pandemic once it has started, but also could help identify

the socio-economic characteristics and institutions that left countries better or worse prepared

to face the Covid 19 pandemic —and which will be highly relevant when the next threatening

virus comes along.
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Figure 1: Model (log utility) versus SIR

Figure 2: Model (σ = 10) vs SIR
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Figure 3: Incentives for Decision Making (σ = 10)

Figure 4: Bigger Fear of Death
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Figure 5: CARES and Multiple Waves

Figure 6: Cases and Deaths: Model and US data
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Figure 7: CARES and Mobility: Model and US Data

Figure 8: Incentives in the CARES Act
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Figure 9: Social Distancing

Figure 10: Incentives and Social Distancing
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Figure 11: Social Distancing With Cost of Death = 3D

Figure 12: Incentives and Social Distancing (3D case)
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Figure 13: Social Distancing (cost of death = 10D)

Figure 14: Social Distancing vs SIR
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Figure 15: Equilibrium vs Socially Optimal Plan

Figure 16: Multiple Equilbria: Pandemic Dynamics
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Figure 17: Multiple Equilibria: Individual Incentives

47


	Introduction
	A Basic Economy
	Pandemic
	Vulnerables and Decision Makers
	Hospitalization and Recovery
	Individual Decisions
	Contagion
	Equilibrium

	A Benchmark Case
	Calibration
	Equilibrium, Incentives, and the SIR Model

	Application: The CARES Act
	The CARES Act
	Implications

	Application: Social Distancing
	A Social Planning Problem
	Pandemics and Animal Spirits
	Final Remarks



