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1 Introduction
A large psychology and experimental literature documents that decision-makers’ forecasts of

their future circumstances appear overly influenced by the surprises embedded in their current

circumstances. In economics, this critical feature of belief formation has been captured by

the diagnostic expectations (DE) paradigm, formulated recently by Bordalo et al. (2018) and

based on the representativeness heuristic of probabilistic judgments introduced by Kahneman

and Tversky (1972). For example, according to this view, a high current level of financial

resources that is ‘unusual’ when compared to her reference belief, i.e what she expected to

see currently based on past information, triggers more vivid memories of good times for the

agent. This selective memory recall then leads her to overly inflate the likelihood of her

future resources being high with respect to the true distribution of future outcomes.

While promising in the breadth of its potential implications, so far the DE paradigm has

been typically studied in environments where the extent to which a circumstance is ‘surprising’

is characterized by two properties: (i) those circumstances are determined exogenously and

(ii) the surprise is perceived with respect to a reference belief based on the last period (or

immediate past) information set. However, these two characteristics appear overly restrictive

in applications because (i) in a large set of situations, decisions involve a feedback between

agents’ beliefs and endogenously determined economic states, and (ii) the type of selective

memory recall that best accounts for the empirical evidence may be based on more distant

information sets than just the last period.1

Motivated by these observations, our paper has three main contributions. First, we develop

micro-foundations that allow us to jointly address the theoretical challenges associated with

modeling (i) the feedback between optimal actions and agents’ DE beliefs over both exogenous

and endogenous variables, and (ii) the time-inconsistencies in those optimal actions that arise

when selective memory recall is based on a more distant past, rather than just the immediate

past. Second, we build on these foundations to propose a portable solution method to study

DE in linear recursive macroeconomic models, which can thus accommodate large-scale

dynamic stochastic general equilibrium models. Third, we leverage the tractability of our

proposed method to incorporate DE into a quantitative New Keynesian model of the type

widely used for policy analysis. We estimate a critical and novel role played by endogenous

states and distant memory recall that through DE allow the model to replicate the empirically

documented boom-bust cycle in response to a monetary policy shock.

1For example, Bordalo et al. (2020b) find that a reference belief based on the four quarters ago information
set seems to account well for the empirical over-reaction observed in the surveys of professional forecasters,
while Bordalo et al. (2019b) argue that the sluggishness in expected returns is best explained by a reference
information set eleven quarters in the past.
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In deriving a behavioral model of DE we build on the recent formulation of Gennaioli

and Shleifer (2010) and Bordalo et al. (2018). In particular, under the tractable assumption

of normality of the data generating process, DE distort current forecasts made under the

true density (which we refer to as rational expectations, or RE) with a term that depends

on the difference between current RE (the representative, or diagnostic group) and lagged

RE (the reference, or comparison group). Thus, the size of the distortion is proportional to

the revision in RE (or the representative information). In Bordalo et al. (2018), this idea is

formalized in terms of two parameters. A parameter θ controls the severity of the distortion,

while a parameter J controls the lag of those reference beliefs.

Applied theory contribution. In the first part of the paper we use two simple

consumption-savings models to analyze the properties characterizing the feedback between

DE beliefs and optimal actions in the presence of endogenous states. We start with a

two-period consumption-savings problem where the agent only needs to forecast total future

resources. These are given by the sum of accumulated savings (Kt) entering next period, and

future stochastic income (Yt+1). Critically, the DE beliefs and the agent’s optimal response

of the random variable Kt to the current income realization Yt are to be determined jointly.

A first important property, that we label endogenous predictability, arises because a given

non-zero response of Kt to the exogenous Yt is a source of conditional predictability from the

Yt realization to the random variable that the agent is interested in forecasting (i.e. total

future resources). By assuming that Yt+1 is iid, we make this point stark, as there is no

further predictability coming from the exogenous stochastic component of future resources.2

In particular, following a current unusually high (low) income shock, and for a given

positive response of savings Kt to this innovation, the agent correctly realizes that her future

resources are more likely to be higher (lower) than usual. Due to her imperfect memory, an

agent subject to the representativeness heuristic recalls more vividly state realizations that

are representative in light of the new information contained in this unusual state of high (low)

expected resources, and becomes overly influenced by her perception of this new information.

Thus, following a current positive income surprise, the agent becomes more optimistic about

future available resources, and importantly, more than under the true distribution, leading

her ro make saving decisions under an “as if” optimistic view of future resources.

Under quadratic utility and iid income shocks, both DE and RE agents take optimal

2Thus, if the DE distortion would apply in isolation only to the exogenous income component of the
random variable to be forecasted, the revision in conditional expectations under the true density would be
zero and there would be no effects arising from DE. In addition, we note that, consistent with the analysis of
Bordalo et al. (2018), for memory recall to be even activated and for DE to matter, a necessary condition is
that the variance of the future income shocks is non-zero, i.e. that there is some ’residual uncertainty’ (in the
general language of Gennaioli and Shleifer (2010)) in forecasting future resources, given the new information.
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actions to keep a flat expected consumption profile. Under RE beliefs, this amounts to saving

half of her income in the first period. Under DE beliefs, given her over-reaction to the

diagnostic information, she decides to consume more and save less today than the RE agent,

with a marginal propensity to save that decreases with the representativeness parameter θ.

Thus, when the income innovation in the first period is unusually high (low), the agent seems

to save too little (much), compared to the RE agent. While puzzling from the perspective

of an external RE observer, this behavior is optimal under DE. Thus, DE can rationalize

the apparent lack of consumption smoothing documented by a large empirical literature that

finds that in the data the marginal propensity to consume (MPC) is puzzlingly large, even for

agents that are not financially constrained (see Jappelli and Pistaferri (2010) for a survey).

In extending the model to multiple periods, we need to confront a second important

property of DE, namely that when the reference point for the DE distortion is not pinned down

by the immediate past (J > 1), the law of iterated expectations (LOIE) fails. Intuitively, this

occurs because when forming expectations about the future and J is large, the information set

pinning down the DE distortion can be antecedent to the current information set. In a multi-

period model, the failure of the LOIE critically matters because it leads to time-inconsistent

choices, as optimal plans decided in the past become suboptimal upon re-evaluation as a

result of the change in beliefs induced by imperfect memory.

We illustrate these implications by extending the two-period model to include a third

period. To address the issue of time inconsistency, and study the resulting interaction of

endogenous predictability and failure of LOIE under distant memory, we use insights from

the microeconomic theory (e.g. O’Donoghue and Rabin (1999)) and consider two alternative

assumptions regarding agents’ beliefs about future selves’ behavior. Under the first approach,

coined in this literature as näıveté, the agent fails to take into account that her preferences

are time-inconsistent and thinks that in the future she will make choices under perfect

memory recall, or RE. However, when the future arrives, the agent ends up changing behavior

and be again subject to her imperfect memory recall. The second approach to deal with

time-inconsistency consists of assuming sophistication. In this case, when solving her current

problem, the agent understands how imperfect memory recall changes her future preferences.

We use an analytical illustration based on J = 2 and show how under the näıve approach,

DE beliefs lead to savings policy functions in period 1 and 2 characterized by (i) a novel,

non-zero, response to expectations formed two periods ago; and (b) a muted response to

actual available savings chosen one period ago. The critical reason behind these results is

that the saving decision in period 1 is not a sufficient statistic for the comparison group

pinning down the selective memory recall process.3 Instead, the agent looks at expectations

3When J = 1, since savings chosen in the first period also pins down reference expectations in the second

3



formed two periods ago. Given that under näıveté these expectations were formed thinking

that the agent was going to behave rationally, the agent will typically be surprised by the

actual savings at her disposal and she will end up over-reacting to this surprise in terms of

her saving decision in the second period. Thus, higher savings in period 1 will lead the agent

to choose lower savings in period 2 by inducing optimism about future resources.

Under sophistication, the agent takes into account that at time 2, the future self would

undertake a suboptimal choice from the time 1 perspective. Therefore, knowing the future DE

policy, the agent takes into account the impact of the current saving decision on the future

perceived suboptimal choice. This feature presents itself through two different channels. First,

the agent takes into account that her saving choices will affect future resources available to a

future self with distorted beliefs. Second, the agent realizes that she can also affect her own

reference point, given that this depends on her past actions. Because of these channels, the

solution under sophistication involves a significantly higher level of complexity.

The full characterization of the näıve and the sophistication solutions in the three period

model allows us to see clearly the economic mechanisms at play. However, in extending this

theoretical framework to more realistic and quantitatively relevant business cycle models we

propose to focus specifically on the näıveté approach, as a coherent micro-founded model of

beliefs and behavior that can also be easily characterized methodologically. More broadly, the

required hyper-rationality behind sophistication arguably runs counter to the motivation of

accounting for belief heuristics, since this is usually viewed as a cognitive, mental shortcut that

allows agents to make judgments quickly and efficiently (Tversky and Kahneman (1975) and

Kahneman (2011)). As such, the näıve approach is arguably psychologically more coherent

and consistent with the underlying foundation of diagnostic beliefs as a heuristic reflecting a

memory representation affected by imprecise, selective, and less than fully rational recall.

Methodological contribution and quantitative evaluation. In the second part of

the paper we leverage our theoretical insights to first explain how to solve linear general

equilibrium models in the presence of DE, and specifically under the näıveté approach, by

using standard solution methods, such as Sims (2000). Intuitively, solving a model featuring

DE recursively requires at each point in time forming DE beliefs based on state variables

inherited from the DE economy but, by the characteristic of näıveté model of beliefs, having

agents expect that future variables will follow a counterfactual RE law of motion (derived

under perfect memory). Since it can be applied easily to large state space models, we

emphasize that our solution method is portable, tractable and, importanly, also allows for

period, then (i) both the näıve and sophisticated problems lead to the same, time-consistent, optimal savings
policies, and (ii) these DE policies feature the same response to the endogenous economic state as for the RE
policy function, but (iii) as in the two period-model, a muted response to the current income innovation.
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general forms of how memory recall loads on different past information sets.

We apply this solution method to incorporate DE into a New Keynesian model with

nominal and real frictions that are typical of quantitative business cycle models used for policy

analysis (eg. Christiano et al. (2005) and Smets and Wouters (2007)). Given our particular

interest in the role played by distant memory recall, we model the reference distribution

entering the representativeness heuristic in a flexible manner, as a weighted average of lagged

RE expectations. The weights can activate various combinations of information sets over

the last 32 quarters to form the comparison group. We parsimoniously model them using a

two-parameter Beta distribution that we estimate.

We estimate the model using a Bayesian version of the impulse-response-function (IRF)

matching method developed by Christiano et al. (2010), where the empirical IRFs are

recovered using a local Jordà (2005) projection to a monetary policy shock (identified by the

Romer and Romer (2004) approach and extended by Coibion et al. (2017)). The targeted

moments are the empirical IRFs of aggregate consumption, hours, inflation, and the Federal

Funds rate. As ‘untargeted’ moments that serve as external validation, we also compare

the model-implied IRFs to a monetary policy shock of investment, GDP, and SPF inflation

expectations against their empirical counterparts.

We find that the DE model reproduces the empirical IRFs to a monetary policy shock

well, successfully generating, as in the data, a persistent and hump-shaped boom-bust cycle in

consumption and hours. In contrast, a counterfactual RE model, where we set the diagnostic

parameter θ = 0 while holding fixed other estimated parameters, generates transitory and

negligible responses, indicating that DE are a critical economic force in the estimated model.

In turn, a re-estimated RE model also fails in delivering the boom-bust dynamics and the

amplitude of the responses observed in the data. As a result, the marginal likelihood, a

Bayesian measure of fit that penalizes models with more parameters, heavily favors the

estimated DE over the re-estimated RE model. In addition, the DE model is also able to

match remarkably well the other untargeted empirical responses.

The estimated memory weights are centered on expectations formed six quarters ago,

with positive weights assigned to expectations formed between three and eleven quarters ago.

If we counterfactually impose that only very recent memory (J = 1) or only two-period-ago

expectations (J = 2) matter, both the frequency and the amplitude of the boom-bust cycles

are significantly dampened, at odds with the data. We distill the key economic mechanism

through which this otherwise rich DE model fits the IRF dynamics by focusing on the

equilibrium connection between perceived consumption and inflation paths, as implied by

the optimal intertemporal consumption smoothing under DE.

In particular, per standard consumption smoothing logic, the perception of a higher than
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usual future price level compared to the current price leads to an downward adjustment

in the expected real consumption growth compared to steady state. We show that this

perception of changes in nominal prices under DE can be decomposed into two terms: (i) the

one-step-ahead expectation of inflation under DE and (ii) the perceived innovation in the

current price level (a state variable), compared to the reference distribution. We label this

second term the perceived innovation in cumulative inflation, because the surprise in today’s

price level reflects the cumulative inflation between the current period and the time at which

reference expectations were formed. In terms of relative variation of the two components, we

find that the movement in this second term is much more ample and persistent. Intuitively,

since inflation is expected to have low persistence (under RE, per näıveté), applying DE in

isolation only over the first component matters less. In contrast, the large effect of DE comes

through the second component, the accumulated surprises in the price level compared to its

reference distribution, which moves beliefs a lot by shifting the predicted price level path.

The specific boom-bust dynamics of this perceived innovation in cumulative inflation help

rationalize the observed boom-bust cycle in consumption. This perception can be described

by following the realized path of inflation. On impact, because of an increase in utilization,

inflation declines. This determines a negative surprise in the price level and a lower than

usual expected future price level that is consistent for the agent with a perceived acceleration

in consumption. Inflation eventually starts picking up, leading first to a reduction in the

negative surprises for the price level and then eventually to positive surprises. This path

determines a reversal in the perceived innovation in cumulative inflation, which moves into

the positive territory during the bust part of the cycle, when agents find the resulting high

perceptions of future price level consistent with their pessimism about future consumption.

This reversal helps to account for why the economic boom induced by an expansionary

monetary policy shock does not simply slowly subside to converge back to steady state from

above. Instead, as in the data, there is an inflection point (around period 15) where the

boom turns into a bust and a general decline in economic activity.

More broadly, these findings highlight the two critical aspects of DE that we emphasize

throughout this paper. First, the feedback from beliefs to actions, in the presence of

endogenous states creates distortions in beliefs that extend well beyond the lag in reference

expectations. When DE apply to exogenous variables, DE and RE naturally realign themselves

in the IRF after J periods, as the initial shock becomes part of the information set of the

comparison group and no further distortions are activated. However, when DE also apply

to endogenous variables, past decisions affect current expectations, generating new and

time-varying distortions that in turn feed into current decisions, creating waves of optimism

and pessimism that generate boom-bust cycles - a form of Minsky (1977) moments.
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Second, our quantitative analysis also further illustrates the importance of considering

distant memory for a given level of DE distortions. When memory is more immediate, only

shocks occurring in between the time of the reference expectations and today can lead to

significant surprises. Instead, under a more distant memory agents expectations are constantly

revised as the economy is quite far from where they expected it to be when they formed those

reference expectations, leading typically to larger revisions and belief distortions. Consistent

with our counterfactuals based on more immediate past, this explains why distant memory

affects not only the lag at which reversals occurs but also the amplitude of fluctuations.

Our paper is closely related to some recent contributions that study DE in macro models.

Bordalo et al. (2019a) analyzes DE about a TFP process to account for credit cycles, Maxted

(2020) builds a He and Krishnamurthy (2019) style macro-finance model featuring DE, while

d’Arienzo (2020) introduces DE into a term-structure model to study bond market puzzles.

L’Huillier et al. (2021) further shares a similar interest with us in introducing DE into linear,

dynamic general equilibrium models. As anticipated earlier, we contribute to the literature in

two key ways. First, we address the conceptual challenges of modeling the role of endogenous

states and distant memory recall in jointly affecting DE beliefs and optimal actions. A

particular dimension here is that, compared to this existing work, we confront the problem of

time inconsistency that arises in the empirically relevant case of distant memory by providing

a behavioral foundation of näıvete and sophistication.4 Second, in quantitative terms, we

propose and use an easily portable solution method to estimate a New Keynesian model

augmented with our DE structure of beliefs to show that the feedback between actions and

those DE beliefs is critical in replicating the boom-bust cycle we recover from data.

2 A Two-Period Consumption-Savings Model
We start with a simple two-period consumption-savings model as a laboratory to study the

feedback between Diagnostic Expectations (DE) beliefs and optimal actions in the presence

of endogenous states. In particular, an agent born at a generic time 1 inherits beliefs from J

periods ago and capital K0 from last period. Her budget constraints in periods 1 and 2 are

C1 +Kθ
1 = Y1 + (1 + r)K0; C2 = Y2 + (1 + r)Kθ

1 , (1)

where C1 and C2 are her consumption choices, Kθ
1 is her savings choice at time 1 and Y1, Y2

are the realizations of an exogenously given labor income process.

In particular, here we assume that the exogenous income Y has zero persistence: Yt+1 =

4In this context, L’Huillier et al. (2021) study the role of endogenous states in driving DE beliefs, but
their analysis and solution method applies only when memory is based on the immediate past. d’Arienzo
(2020) explores the LOIE failure as a mechanism for a maturity increasing overreactions of expectations to
news. Here we connect this failure to time-inconsistency and study it in models with endogenous states.
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Y + εt+1, where εt+1 are mean zero iid normal shocks with variance σ2 > 0. In this way we

isolate what we label an endogenous predictability mechanism under DE, in which the action

Kθ
1 alone induces persistence in the future resources available for consumption.

The two-period assumption greatly simplifies this problem, as K0 = 0 and her optimal

end-of-life K2 = 0, since past and current agents are assumed not to care about offsprings. In

this simple model, we also assume for simplicity a real interest rate r = 0, a discount factor

β = 1, and a quadratic utility function u(C) = bC − .5C2.5

Under DE the agent maximizes

max
Kθ

1

[
u(C1) + Eθ1u(C2)

]
, (2)

subject to the budget constraints in (1), where Eθ1 is formed under a distorted conditional

density hθ, to be specified below. Under this density, the first-order condition that characterizes

the optimal choice in (2) is given by

u′(C1) = Eθ1 [u′(C2)] . (3)

Since here the marginal utility is linear in consumption, the tradeoff simply involves

C1 = Eθ1 [C2] . (4)

2.1 Diagnostic beliefs given law of motion of endogenous state

The random C2 is known by the time-2 budget constraint to equal Y +ε2 +Kθ
1 . We conjecture

a response of the optimal Kθ
1 to the current state Y1 = Y + ε1, given by

Kθ
1 = αθε1.

Given this conjecture, C2 then follows a conditionally normal distribution

C2 ∼ N(µC2|1, σ
2), where µC2|1 ≡ Y + αθε1, (5)

so that the conditional mean µC2|1 is proportional to the current ε1 realization due to the

(for now given) response αθ of K1. Equation (5) defines the true distribution, which we

denote by h(C̃2|µC2|1 = µ̃C2|1), associated with some realization C̃2, for a given αθ and current

realization of µ̃C2|1.
6 We use ‘tildes’ (when needed for a sharper formalism) to indicate the

specific realization of any given random variables.

DE and the Representativeness Heuristic. In formulating the DE distortion, we

build on the work of Gennaioli and Shleifer (2010) and Bordalo et al. (2018). The fundamental

5More specifically, b > 0 and C < b so that utility is increasing in consumption in that region.
6We choose to present the analysis for now in terms of the conditional mean as a random variable to

showcase the conceptual generality of the argument, even though the specific environment is purposefully kept
simple for cleaner analytics with iid shocks. Note that if the exogenous labor income would be persistent, the
conditional mean µC2|1 would also load, through that exogenous persistence, on the current income realization.
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psychological first-principle basis for this belief model is that due to limited and selective

memory retrieval, an agent’s probability assessment is overweighted by event realizations that

are “representative,” in the sense of the Kahneman and Tversky (1972) representativeness

heuristic of probabilistic judgments. This heuristic has been motivated and documented by a

large psychology and experimental literature (see recently Bordalo et al. (2020a) and more

broadly Bordalo et al. (2018)). The basic intuition behind this heuristic and the associated

DE model is that the judged probability of an otherwise uncertain event partly reflects its

“true,” objective, frequency, as well as a subjective element that reflects the accessibility

of that event in the agent’s working memory. When new information arrives, the agent’s

memory process does not costlessly collect all past available data to form the probability

judgment, conditional on the past and new data, but instead selectively recalls more (less)

past events that are more (less) associated with, or representative of, the current news.

In particular, following this work means, for our context given above, modeling the

distortion in beliefs arising from the representativeness heuristic as the density hθ(C̃2)

hθ(C̃2) = h(C̃2|µC2|1 = µ̃C2|1)

[
h(C̃2|µC2|1 = µ̃C2|1)

h(C̃2|µC2|1 = E1−JµC2|1)

]θ
1

a
, (6)

where a is an integration constant, ensuring that hθ(C̃2) integrates to one.

There are three important elements in this distorted distribution. First, as introduced

above, h(C̃2|µC2|1 = µ̃C2|1) is the true density. Second, E1−Jµ
C
2|1 is the comparison group for the

random variable µC2|1, where E1−J denotes the expectation operator under the true density

conditional on the information set J periods ago from this generic time 1. This comparison

group gives the state prevailing if there is no news, compared to the immediate (J = 1),

or more distant past (J > 1). In our example above, due to the iid assumption of the

income shocks this comparison group takes the simple form E1−Jµ
C
2|1 = Y . Third, here

the parameter θ ≥ 0 measures the severity of the distortion. When θ = 0, the agent’s

memory retrieval is perfect and beliefs collapse to the standard frictionless model. When

θ > 0, memory is limited and the agent’s judgments are shaped by representativeness. As

introduced intuitively above, this formulation captures the notion that the agent has the true

distribution in the back of her mind, but selectively retrieves and overweighs realizations C̃2

that are representative (or diagnostic) of the group consisting of
{
µC2|1 = µ̃C2|1

}
relative to

the comparison group consisting of
{
µC2|1 = E1−Jµ

C
2|1

}
. Because hθ(C̃2) overweighs the most

diagnostic future outcomes, Bordalo et al. (2018) call these expectations diagnostic.

While it is in general difficult to characterize analytically the distorted distribution,

Bordalo et al. (2018) show how the normality assumption over the true density (in our case

appearing in equation (5) from the normality of ε2), leads to a tractable characterization of
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the conditional distribution hθ(.). In particular, it remains normally distributed, with the

same variance σ2, but a distorted mean

Eθ1(C2) = µ̃C2|1 + θ
(
µ̃C2|1 − E1−Jµ

C
2|1
)
, (7)

where the extra term θ(µ̃C2|1 − E1−Jµ
C
2|1) captures the over-reaction of the conditional mean

to the new information.

2.2 Optimal savings choice given DE beliefs

We have thus characterized the DE beliefs, given a response αθ of savings entering next

period. The agent’s problem in equation (2) is to optimally choose this response, given the

resulting DE beliefs, a choice that we now characterize. In particular, under the conjectured

αθ we substitute in the tradeoff of equation (4) the resulting C1 from the time 1 budget

constraint, the distorted conditional expectation Eθ1(C2) of equation (7), and the conditional

mean µC2|1 specific to this environment (see equation (5)), to obtain

ε1(1− αθ) = E1

[
ε2 + αθε1

]
+ θ

[
E1

(
ε2 + αθε1

)
− E1−J

(
ε2 + αθε1

)]
.

Since income innovations are unpredictable, the optimal response αθ solves

ε1(1− αθ) = αθ(1 + θ)ε1, (8)

which obtains the result summarized by Proposition 1 below.

Proposition 1. The optimal marginal propensity αθ to save out of a transitory income shock

ε1 under DE is lower than under the RE (i.e. perfect memory) policy and decreases with θ

αθ =
1

2 + θ
< αRE =

1

2
. (9)

The optimal response under perfect memory (or ‘rational expectations’, RE), obtained in

equation (8) in the limiting case of θ = 0 is immediately equal to αRE = 0.5. Indeed, the RE

agent saves half of the current income shock to achieve a perfectly flat expected consumption

profile under RE (CRE
1 = E1C

RE
2 ) since then CRE

1 = Y + 0.5ε1 and CRE
2 = Y + ε2 + 0.5ε1.

Under DE, when the income innovation εt is unusually high (low), the agent seems to

save too little (much), compared to the RE agent. While puzzling from the perspective of an

outsider that evaluates the future under RE, this behavior is optimal under DE. Indeed, as

in the RE case, the expected consumption profile achieved by Kθ
1 and evaluated under DE, is

perfectly flat, since Cθ
1 = Y1 −Kθ

1 , and thus by Proposition 1

Cθ
1 = Eθ1Cθ

2 = Y +
1 + θ

2 + θ
ε1, (10)

where we use the θ superscript to denote resulting choices under DE. The actual average

consumption tomorrow however, under the true distribution and the chosen Kθ
1 , is E1C

θ
2 =

10



E1

(
Y2 +Kθ

1

)
= Y + (2 + θ)−1 ε1, responding less to the income shock ε1 by a factor of (1 + θ)

than expected under DE in equation (10).

The intuition for this result is at the heart of the endogenous predictability mechanism

that we emphasize in this section. Here Y2 +Kθ
1 = Cθ

2 is the random future financial resources

available, and by the budget constrain also future consumption. In particular, given a current

unusually high (low) income shock ε1 and thus level of assets Kθ
1 , the agent correctly realizes

that her future available resources and consumption are more likely to be high (low) than

usual, where the residual uncertainty about Cθ
2 comes from the stochasticity in Y2. In the

case where Y2 is iid, as analyzed here, this conditional predictability of future resources comes

just from Kθ
1 , which through the response αθ induces that endogenous persistence from ε1 to

the random variable Cθ
2 . An agent subject to the representativeness heuristic is then overly

influenced by her perception of the new information contained in this unusual state of high

(low) expected resources Y + Kθ
1 . Due to her imperfect memory, she recalls more vividly

state realizations that are representative in light of this new information. The over-influence

of this new information contained in ε1 and thus Kθ
1 means that she inflates, compared to

the true distribution, the likelihood of future resources Y2 +Kθ
1 to be high (low), while she

deflates the likelihood of states characterized by low (high) future resources.

High MPC. Therefore, given high (low) assets today, the agent is more optimistic

(pessimistic) than usual about future available resources, and importantly, more than under

the true distribution. Thus, a larger current income than usual leads the agent to make

saving decisions under an “as if” optimistic view of future resources. Given this view,

the agent optimally consumes more and saves less today than the RE agent, resulting in

a high marginal propensity to consume (MPC), i.e. 1 − αθ, and a lack of consumption

smoothing from the point of view of an external observer. Importantly, this apparent puzzling

behavior of a lack of consumption smoothing has been well documented by a large empirical

literature (eg. see Jappelli and Pistaferri (2010) for a survey), which finds that the MPC

out of unexpected temporary income shocks is puzzlingly large, even for agents that are not

financially constrained.7

2.3 Uncertainty and distorted beliefs

Having described the main mechanism behind the joint determination of DE beliefs and

optimal actions in the presence of endogenous states, we now make a couple of general

remarks on our approach, based on the observation that the distorted density hθ formulated

7While liquidity frictions are used to account for the high MPC of rich but liquidity-constrained agents (eg.
Kaplan and Violante (2014)), Kueng (2018), Fagereng et al. (2020) and McDowall (2020) provide evidence
that even agents with high liquid wealth have significantly higher MPCs than implied by standard models.
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in equation (6), has two joint appealing properties, as emphasized by Bordalo et al. (2018):

(1) through its over-weighing of diagnostic information, this density captures the role of

selective memory recall in affecting beliefs, and (2) this formulation is particularly convenient

to employ when the processes over which it applies are conditionally normal.

Deterministic Processes and Residual Uncertainty. First, we reiterate that the

representativeness heuristic and the DE belief is a model of imperfect probability judgments,

or, in statistical terms, one of forecasting an otherwise uncertain event. Gennaioli and Shleifer

(2010) describe this heuristic as one where a decision-maker’s memory influences the likelihood

judgment of possible scenarios (i.e. missing data) in light of some new data, but still with

some residual uncertainty remaining about that otherwise missing data. In this context, it

follows that if the agent is only interested in forecasting (or in statistical terms ‘now-casting’)

at time t a predetermined variable like Kt, conditional on time t information, then that

conditional belief is simply its current observed value.8 In our example, this means

Eθ1(Kθ
1) = E1(Kθ

1) = Kθ
1 . (11)

Intuitively, the representativeness heuristic does not influence behavior in this case, since

memory recall is not activated when the new data completely eliminates uncertainty over the

variable to be forecasted (as it does in this case for Kθ
1).9

However, the sheer presence of income shocks, ε2 even if just iid in our model, activates

the need of memory recall in forecasting the stochastic future consumption C2 so that

Eθ1(Kθ
1 + Y2) 6= E1(Kθ

1) + Eθ1 (Y2) .

This inequality is the behavioral manifestation of DE beliefs over a sum of random variables

of which one is predetermined. While this formal result has appeared already in Bordalo et

al. (2018), our analysis brings it forward as a key implication of imperfect memory recall that

will help us in incorporating DE beliefs in dynamic macroeconomic models, which feature

endogenous and thus predetermined variables, like Kθ
1 .

Primitives and Distorted Beliefs. Second, as illustrated by equation (7), we have

made use of the tractability arising in a model with Gaussian shocks where perceived tradeoffs

are linear, thus maintaining conditional normality. However, in more general cases, the

marginal value inside the operator Eθ1 in equation (3) will not be conditionally normal.

8In the language developed in Bordalo et al. (2018), to compute Eθ1(Kθ
1 ), its observed realization constitutes

its infinitely representative state (see appendix in Bordalo et al. (2018) on Corollary 1).
9The same observation immediately implies that if σ2 = 0 in the conditional distribution of equation (5),

all residual uncertainty about C2 would then be eliminated, as it is known to equal C2 = Y +Kθ
1 . Thus, in

this case, similar to equation (11), Eθ1(C2) = E1(C2) and the resulting optimal αθ = αRE . In contrast to this
result, and general approach of how predetermined variables matter in forecasting, L’Huillier et al. (2021)
assume that DE activates even absent any such residual uncertainty.

12



Indeed, in the class of models we analyze in Section 4, it is the log-linearized Euler equations

that have this property, involving log-linear deviations (from steady state) of variables, such

as future consumption or inflation, which linearly load on Gaussian shocks. We exploit the

convenient formulation of the representativeness heuristic based on the density hθ in equation

(6) by applying it on those relevant Gaussian objects that enter into the log-linearized

perceived tradeoffs, leading to distorted expectations that resemble equation (7).

Finally, note that based on the distorted beliefs underlying these perceived tradeoffs,

the conditional utilities are also immediately evaluated under those densities. For example,

in this model, the conditional belief Eθ1u(C2) in (2) is influenced by the representativeness

heuristic by being evaluated under the distorted conditional density of C2, i.e. hθ(C̃2) defined

in (6). Technically, this evaluation will generally differ from applying the formulation of hθ in

equation (6) to u(C2) itself, since the quadratic utility and normality of C2 imply that u(C2)

follows a χ2−distribution, for which a tractable description similar to that in (7) is not readily

available. Thus, while the representativeness heuristic clearly applies to both the conditional

utilities and marginal tradeoffs, the modeling choice is where to leverage the convenient

functional representation of equation (6). Our primitive approach, in line with what proposed

in Bordalo et al. (2018), consists of emphasizing the role of the representativeness heuristic

in distorting the perceptions of the marginal tradeoffs, and through that building the implied

distribution for other objects of interest, such as Eθ1u(C2). Overall, we thus find the direct

modeling of perceptions of linearized marginal tradeoffs as distorted by the density hθ as

formulated in equation (6) appealing because: (a) in linearized models these perceptions

guide actual (marginally driven) decisions, and (b) in standard Gaussian environments these

tradeoffs can be tractably characterized, a feature that we leverage throughout the paper.

3 Dynamics and Imperfect Memory Recall
The two-period model analyzed above showcases how DE matter when the agent optimally

chooses an action that creates endogenous predictability in the perceived future evolution

of the relevant states. As we discuss in this section, a key challenge in taking the model to

multi-periods is the failure of the Law of Iterated Expectations (LOIE) under distant memory.

The reason that LOIE is important in dynamic models is that its failure generally leads to

time-inconsistency, a property that we confront in this section.

3.1 Failure of the LOIE under Distant Memory

We first present the issue of the LOIE in isolation, for a given path of the forecasted random

variable of interest, which we generically take here as consumption Ct at different dates.

Consider some arbitrary periods t > J, integers m ≥ 1, n ≥ 1, and some comparison group
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t− J , where J ≥ 1. The same formalism that lead to equation (7) can be extended to (as

discussed in Bordalo et al. (2018), Corollary 1)

Eθt
[
Eθt+mCt+m+n

]
= Eθt [Et+mCt+m+n + θ (Et+mCt+m+n − Et+m−JCt+m+n)] .

Applying the DE distortion at time t, the RHS further becomes

Eθt
[
Eθt+mCt+m+n

]
= (1 + θ) [EtCt+m+n + θ (EtCt+m+n − EtEt+m−JCt+m+n)]− θEt−JCt+m+n.

We are then interested in establishing whether the LOIE holds, as implied by

Eθt
[
Eθt+mCt+m+n

]
= Eθt [Ct+m+n] . (12)

Lemma 1. For a given m, the LOIE holds under DE if and only J ≤ m.

To prove this, the key term in Eθt
[
Eθt+mCt+m+n

]
that matters is the perceived surprise

EtCt+m+n − EtEt+m−JCt+m+n. (13)

Consider first the case of J ≤ m. Then the time t information set is a subset of the future

time (t+m− J) information set and we can apply LOIE under the true process, which holds

given that EtEt+m−JCt+m+n = EtCt+m+n for J ≤ m. It follows that the surprise in equation

(13) is zero and the LOIE holds under the DE operator:

Eθt
[
Eθt+mCt+m+n

]
= EtCt+m+n + θ (EtCt+m+n − Et−JCt+m+n) = Eθt [Cl+m+n] . (14)

In contrast, suppose that J > m. In that case, the conditioning time t information set includes

the past time (t+m− J). Therefore, the perceived surprise (13) is not zero and constitutes

an additional source of variation for Eθt
[
Eθt+mCt+m+n

]
in equation (14), which now becomes

(1 + θ) [EtCt+m+n + θ (EtCt+m+n − Et+m−JCt+m+n)]− θEt−JCt+m+n

Thus, for the generic case of EtCt+m+n 6= Et+m−JCt+m+n, the LOIE as stated in equation

(12) does not hold.

Intuitively, when the lag J of the reference distribution exceeds the forecast horizon m,

taking the time t expectation over the t+m DE forecast of Ct+m+n introduces an additional

lagged forecast (here Et+m−JCt+m+n) which would not be otherwise included in the time

t DE forecast of Ct+m+n itself. This case of J > m is not just a theoretical curiosity. For

example Bordalo et al. (2020b) find that values of J = 4 quarters seem to account well for

the empirical over-reaction observed in the surveys of professional forecasters, while Bordalo

et al. (2019b) argue that J = 11 quarters explains well the sluggishness in expected returns.

The analysis above also clarifies the important role of agents’ selective memory process in

building the comparison group. In particular, we note that the LOIE holds under DE only

when J = 1. Indeed, in that case, the term in equation (13) necessarily becomes zero, since

EtEt+m−1Ct+m+n = EtCt+m+n for any m ≥ 1, n ≥ 1. Intuitively, the current DE forecast of
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any future conditional DE belief does not bring in any further lagged information than the

time t− 1 information, rendering it equivalent to the DE belief EθtCt+m+n.

3.2 A Three Period Consumption-Savings Problem

Our analysis so far has emphasized two generic DE properties (endogenous predictability and

the failure of the LOIE under distant memory). We reiterate that the formalism behind these

properties is not novel to our paper. It has been noticed and proposed as characterizing the

DE operator appearing in equation (6) by previous work, such as Bordalo et al. (2018). Our

key contribution here is thus to bring these properties forward as insightful and promising

ways to study: (1) the role of DE beliefs over exogenous and endogenous variables in dynamic

models, and (2) how the role of past memory introduces additional informational state

variables that can alter significantly the model’s dynamics. To do so, we now extend the

consumption-savings model of Section 2 to include a third period, which allows us to capture

the intuition on how endogenous states matter in jointly distorting beliefs and actions, with

a particular emphasis on the role of distant memory.

In this extension, the time 1 problem is now to choose actual savings Kθ
1 (as a function of

K0 and ε1) and a contingent plan Kθ,p
2 (as a function of Kθ

1 and ε2) so to maximize current

utility and the expected discounted sum of future utilities (recall that β = 1)

max
Kθ

1 ,K
θ,p
2

{
u(Cθ

1) + Eθ1
[
u(Cθ,p

2 ) + u(Cθ,p
3 )
]}

, (15)

s.t. Cθ
1 = Y1 +K0 −Kθ

1(K0, ε2)

Cθ,p
2 = Y2 +Kθ

1(K0, ε1)−Kθ,p
2 (Kθ

1 , ε2); Cθ,p
3 = Y3 +Kθ,p

2 (Kθ
1 , ε2)−K3,

where end-of-life savings K3 is optimally set to zero.

The key source of possible time-inconsistency is that at time 2, conditional on Kθ
1 and ε2,

the agent re-optimizes over her initially planned Kθ,p
2 , by looking for a Kθ

2 that solves

max
Kθ

2

[
u(Cθ

2) + Eθ2u(Cθ
3)
]
, (16)

where Cθ
2 = Y2 +Kθ

1 −Kθ
2(Kθ

1 , ε2) and Cθ
3 = Y3 +Kθ

2(Kθ
1 , ε2)−K3.

LOIE and Perceived Tradeoffs. As we have detailed in section 3.1, the LOIE for the

two-step-ahead expectation holds if and only if J = 1. We show below that this property

is intimately linked to time-inconsistency between planned and actual future choices. In

particular, for a given time 1 policy Kθ
1(K0, ε1) we can establish the following Proposition.10

Proposition 2. The conditional time-2 optimal solution Kθ
2(Kθ

1 , ε2) is identical (‘time-

consistent’) to the time-1 optimal contingent plan Kθ,p
2 (Kθ

1 , ε2) if and only if J = 1.

10Proofs for the formal results of the remaining Lemmas and Propositions are in the Appendix.
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While the optimal time-1 plan Kθ,p
2 in equation (15) is set such that Eθ1

[
Cθ,p

2 − C
θ,p
3

]
= 0,

the conditional optimal Kθ
2 solves the time-2 perceived tradeoff Cθ

2 − Eθ2Cθ
3 = 0. Critically,

we show, as part of the proof, that the time-1 perceived consumption smoothing between C2

and C3, under the given Kθ
1(K0, ε1) and that optimal policy Kθ

2(Kθ
1 , ε2), is

Eθ1
[
Cθ

2 − Cθ
3

]
= (1 + θ)θ

[
E1C

θ
3 − E2−JC

θ
3

]
, if J > 1, (17)

and equals to zero only when J = 1. Thus, the conditional optimal Kθ
2 implements exactly

the time-1 desired consumption path under Kθ,p
2 if and only if J = 1. When J > 1, the time-2

decision under DE is based on E2−JC
θ
3 , which similar to the LOIE property of Lemma 1,

introduces a different information set than its time-1 forecast E1C
θ
3 . By equation (17) and

Proposition 2, this difference in information sets leads, when memory is based on more distant

past, to a misalignment of intertemporal perceived tradeoffs and thus to time-inconsistency.

3.3 Time Consistency when Memory is Based on Immediate Past

When memory recall is based on the immediate past, i.e. J = 1, then the savings plan Kθ,p
2

under DE is time-consistent, and thus equal to Kθ
2 , per Proposition 2. We now characterize

the resulting optimal DE saving functions Kθ
1 and Kθ

2 when J = 1.

In particular, we first conjecture that the optimal policy functions under RE are

KRE
1 = αREK0

K0 + αREε1 ε1; KRE
2 = αREK1

KRE
1 + αREε2 ε2. (18)

while the optimal policy functions Kθ
1 and Kθ

2 are given by

Kθ
1 = αθK0

K0 + αθε1ε1; Kθ
2 = αθK1

Kθ
1 + αθε2ε2. (19)

Proposition 3. When J = 1, compared to the RE policy functions KRE
1 and KRE

2 , the

optimal policy functions Kθ
1 and Kθ

2 feature the same optimal response to the endogenous

state but a muted response to the current income innovation, i.e.

αθK0
= αREK0

=
2

3
;αθK1

= αREK1
=

1

2
.

αθε1 =
2

3 + θ
< αREε1 = αREK0

; αθε2 =
1

2 + θ
< αREε2 = αREK1

.

To see the intuition, first consider the time 2 problem in (16), where the optimal Kθ
2

solves the tradeoff Cθ
2 = Eθ2Cθ

3 . When J = 1, for a given state Kθ
1 and exogenous innovation

ε2, by using the time 2 and 3 budget constraint, this tradeoff amounts to

ε2 +Kθ
1 −Kθ

2 = E2(ε3 +Kθ
2) + θ

[
E2(ε3 +Kθ

2)− E1

(
ε3 +Kθ

2

)]
. (20)

Under the conjecture in equation (19), the perceived surprise at time 2, E2C
θ
3 − E1C

θ
3 , just

equals the (endogenous) exposure of Kθ
2 to ε2. The over-reaction of this new information
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affects the DE beliefs by a factor θ. By substituting the conjectured coefficients αθK1
and αθε2

into the tradeoff (20), we obtain their values characterized in Proposition 3.

The key economic observation here is that when J = 1, the economic state Kθ
1 also

serves as the necessary and sufficient conditioning information to form the comparison group

E2−J(ε3 +Kθ
2), i.e. the object that controls the agent’s selective memory according to the

representativeness heuristic. Therefore, the DE beliefs’ over-reaction to the new information,

Kθ
2 − E2−JK

θ
2 , only contains the current innovation ε2 and not the endogenous state Kθ

1 .

This over-sensitivity of beliefs to ε2 leads to a behavior where the response to the state is the

same as for the RE solution (αθK1
= αREK1

), while the response to the exogenous income shock

is muted (αθε2 < αREε2 ). The reason for the latter effect is the same as in the two-period model

(see equation (9) and the discussion around Proposition 1).

We now move back to the time 1 problem in (15), where Kθ
1 solves

C1 = Eθ1

[
Cθ,p

2 +
∂Kθ,p

2

∂Kθ
1

(
Cθ,p

3 − C
θ,p
2

)]
. (21)

Intuitively, the benefit of higher Kθ
1 involves the direct effect of increasing consumption

tomorrow and the indirect effect of affecting consumption smoothing between period 2 and 3

(Cθ,p
3 − C

θ,p
2 , ) through the optimal plan Kθ,p

2 (Kθ
1 , ε2), which recall that here coincides with

the actual choice at time 2, Kθ
2(Kθ

1 , ε2). The tradeoff in equation (21) can be broken in11:

C1 = Eθ1C
θ,p
2 + αθK1

Eθ1
[
Cθ,p

3 − C
θ,p
2

]
.

By the time-consistency established in Proposition 2 when J = 1, the term Eθ1
[
Cθ,p

3 − C
θ,p
2

]
=

0, under both the plan and the anticipation of the future choice Kθ
2 . Thus, the tradeoff in

equation (21) becomes C1 = Eθ1Cθ
2 , where we have already characterized the Kθ

2 policy. We

can apply a similar logic and procedure as for finding Kθ
2 above to show that the response of

Kθ
1 to the state K0 is the same as for the RE solution (αθK0

= αREK0
), while the response to

the exogenous income shock is muted (αθε1 < αREε1 ) and decreasing with θ.

3.4 Beliefs over Future Actions

When J > 1 Proposition 2 shows the time-inconsistency between the planned K2 and what

the agent believes she will actually choose for K2 once time 2 arrives. In looking for the

agent’s current optimal action we then need to model her current beliefs about her future

actions when faced with this inherent time-inconsistency. To build a coherent model of belief

formation, that allows us to study the interaction of endogenous predictability and the failure

11Since C2 and C3 are conditionally normal and both have residual uncertainty as of time 1, due to the
normally distributed income shocks and the conjectured Kθ

1 and Kθ
2 , the DE operator is additive over these

two random variables (see eg. Corollary 1 in Bordalo et al. (2018) for details on DE additivity).
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of the LOIE under distant memory, we use insights from the microeconomic theory (e.g. the

seminal work by Strotz (1955) and Pollak (1968)) that point to two different assumptions

regarding agents’ current belief about future selves’ behavior.

Näıveté. The first approach, coined in this literature as näıveté (in the sense of

O’Donoghue and Rabin (1999) and used for example in Akerlof (1991)), models an agent

who does not forecast her future self’s behavior to be governed by the representativeness

heuristic. Her time 1 problem is now

max
Kθ,n

1

{
u(Cθ

1) + Eθ1
[
u(CRE

2 ) + u(CRE
3 )

]}
(22)

where the agent at time 1 believes her time 2 future self will take the action KRE
2 so to

max
KRE

2

[
u(CRE

2 ) + E2u(CRE
3 )

]
. (23)

The θ-superscript and RE-superscript on a time t variable signify choices that are made

under a DE and RE policy function, respectively, taking as given the state variable entering

that period. From the budget constraints, the (forecasted) consumption choices are therefore

Cθ
1 = Y1 +K0 −Kθ,n

1 (.); CRE
2 = Y2 +Kθ,n

1 (.)−KRE
2 (.);CRE

3 = Y3 +KRE
2 (.)−KRE

3 (.),

where Kθ,n
1 (.) (and KRE

2 (.)) signify the choice resulting from a DE under näıveté (and RE,

respectively) policy function that solve (22) (and (23), respectively) and trivially KRE
3 (.) = 0.12

While these are her beliefs at time 1 looking ahead, entering period 2 with the state

realization Kθ
1 and new information determined at time 2, her problem is actually influenced

by the representativeness heuristic, so her conditionally optimal action is

max
Kθ,n

2

[
u(Cθ

2) + Eθ2u(CRE
3 )

]
. (24)

where Cθ
2 = Y2 +Kθ

1 −K
θ,n
2 (.) and CRE

3 = Y3 +Kθ,n
2 (.)−KRE

3 (.).

The behavioral interpretation of equations (22), (23) and (24) is that, at time 1, the agent

maximizes assuming that after time 2 she will not be subject to any heuristics driving her

memory recall (i.e. she will act ‘fully rationally’), even though at time 2 she ends up changing

behavior and be in fact subject to her otherwise imperfect memory recall.

Sophistication. The second typical approach in modeling agent’s beliefs over future

behavior is to consider sophistication (eg. Laibson (1997)). Entering period 2, her problem is

max
Kθ,s

2

[
u(Cθ

2) + Eθ2u(Cθ
3)
]

(25)

12There is no material distinction between KRE
3 (.) and Kθ

3 (.) since they both equal zero. We refer to them
separately to highlight their conceptual difference as being taken under different beliefs.
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where now

Cθ
2 = Y2 +Kθ,s

1 −K
θ,s
2 (.);Cθ

3 = Y3 +Kθ,s
2 (.)−Kθ

3(.). (26)

Sophistication means that at time 1 the agent understands that her future action is dictated

by equation (25) (as well as Kθ
3(.) = 0). Thus, the sophisticated agent solves

max
Kθ,s

1

{
u(Cθ

1) + Eθ1
[
u(Cθ

2) + u(Cθ
3)
]}
, (27)

where current Cθ
1 = Y1 +K0 −Kθ,s

1 (.), while Cθ
2 and Cθ

3 are determined as in (26).

Comparison Groups for Memory Retrieval. In forming the DE beliefs of the näıve

and sophisticated agents we also have to formulate the comparison groups that enter those

DE beliefs. Consider first a näıve agent and take for example period 2, when the agent forms

the forecast over time 3 consumption, as Eθ2(Y3 + Kθ,n
2 ). At any past date before time 2,

the defining characteristic of the näıve agents is that they expect their future selves to act

under the RE savings policy function. To be consistent with these beliefs, we assume that

their counterpart näıveté comparison group for a variable like Kθ,n
2 at time 2 is E2−JK

RE
2 ,

i.e. the conditional expectation made by the former self of the näıve agent as of J periods

ago of the RE savings choice at time 2, under the true density. Consider now a sophisticated

agent that forms the forecast Eθ2(Y3 +Kθ,s
2 ). In contrast to the näıvete case and to continue

to maintain belief consistency across selves, we assume that the sophisticated comparison

group for Kθ,s
2 is E2−JK

θ,s
2 , i.e. the conditional expectation of the DE savings choice at time

2 made J periods ago by the former sophisticated self, under the true density.

Euler Equations. Per the objective functions in (24) and (25), conditional on arriving in

period 2 with the corresponding inherited savings from time 1 and observing new information

ε2, the optimal savings Kθ,n
2 and Kθ,s

2 solve the respective consumption smoothing problems

ε2 +Kθ,n
1 −Kθ,n

2 = Eθ2[ε3 +Kθ,n
2 ]; ε2 +Kθ,s

1 −K
θ,s
2 = Eθ2[ε3 +Kθ,s

2 ], (28)

where the respective comparison groups for the Eθ2 belief are discussed above.

In turn, the optimal solution for Kθ,n
1 under näıveté solves the intertemporal tradeoff

Cθ
1 = Eθ1

[
CRE

2 +
∂KRE

2

∂Kθ,n
1

(
CRE

3 − CRE
2

)]
, (29)

while under sophistication

Cθ
1 = Eθ1

[
Cθ

2 +
∂Kθ,s

2

∂Kθ,s
1

(
Cθ

3 − Cθ
2

)]
. (30)

We can characterize the indirect effect of internalizing that the current choice affects the

future problem and decision. First, consider the näıve agent.
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Lemma 2. Given K0 and ε1, the perceived näıve consumption smoothing between C2 and C3,

under Kθ,n
1 (K0, ε1) and policy KRE

2 , is Eθ1
[
CRE

2 − CRE
3

]
= 0 for J ≥ 1. The optimal näıve

choice Kθ,n
1 in equation (29) thus solves the one-step tradeoff Cθ

1 = Eθ1CRE
2 for J ≥ 1.

Under näıveté the time 1 perceived behavior of the future self at time 2 is to optimally

select KRE
2 , which conditional on the states entering that period achieves E2C

RE
3 −CRE

2 = 0.

Thus, the consumption profile C3 − C2 as perceived at time 1 in equation (29), equals

just the income innovation ε3, unpredictable under Eθ1. This induced unpredictability as

of time 1 means that the marginal effect of the choice Kθ
1 as a relevant state for future

conditional optimal choices can be ignored, conditional on the agent believing that the future

self implements the KRE
2 policy. Critically, by anticipating future actions taken under perfect

memory recall, this result holds for any J ≥ 1. The second, indirect, effect in equation (29)

thus disappears, leading to the Euler equation Cθ
1 = Eθ1CRE

2 in Lemma (2).

In contrast, the intertemporal tradeoff under more distant memory is more complicated

for the current sophisticated agent, as follows.

Lemma 3. The tradeoff in equation (30) solved by the time-1 sophistication optimal solution

Kθ,s
1 (K0, ε1) simplifies to the one-step ahead tradeoff, Cθ

1 = Eθ1Cθ
2 , if and only if J = 1.

Intuitively, when J > 1 the agent understands that she will act under a future policy

function Kθ,s
2 (Kθ,s

1 , ε2) leading to a future consumption path that is not perceived as optimal

as of time 1. Therefore her current optimal choice Kθ,s
1 tries to remedy this imbalance by

affecting the state of her future action. This is the extra term in (30) that affects the current

choice of the sophisticated agent when J > 1 and otherwise disappears when J = 1.

J = 1 Case Revisited. Having introduced the conceptual distinction between näıveté

and sophistication, we now show that when J = 1 they both recover the same, time-consistent

policy functions (in turn described by Proposition 3).

Proposition 4. When J = 1, the näıveté Kθ,n
1 and Kθ,n

2 and sophistication policy functions

Kθ,s
1 and Kθ,s

2 are the same and recover the DE optimal choices based on time-consistency.

First, note that when J = 1, as shown in Proposition 3, Kθ
1 and Kθ

2 respond to the state

variables in the same way as the RE policy functions KRE
1 and KRE

2 , respectively. In that

sense, both types of policy functions are time-consistent with respect to the endogenous

state.13 Based on this property it follows that E0K
RE
1 = E0K

θ
1 and E1K

RE
2 = E1K

θ
2 so the

comparisons groups of the näıve problem and the time-consistent problem are identical. Thus,

given the same belief formation and optimality condition, the näıve solution for Kθ,n
2 in

13The DE and RE policies differ in their response to the innovation ε2, but since that is mean zero it does
not systematically affect the current expectation of future tradeoffs and actions.
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equation (28) must recover the time-consistent policy at time 2 from equation (20). This

identical response to the endogenous variables also means that the tradeoff Cθ
1 = Eθ1CRE

2

implied by the näıve solution Kθ,n
1 (see Lemma 2) recovers the same solution Kθ

1 as that of

Proposition 3, where the agent was planning in a time-consistent way to follow the policy Kθ
2 .

Second, when J = 1, by Proposition 2 the time-1 tradeoff under sophistication in equation

(30) is identical to the time-consistent one Cθ
1 = Eθ1Cθ

2 . It follows immediately that Kθ,s
1 and

Kθ,s
2 are equal to the time-consistent and näıveté counterparts, by further noting that the

comparison groups are identical across these models of belief formation when J = 1.

3.5 Dynamics with Memory Recall of More Distant Past

Our discussion indicates that there are two fundamental ways in which the representativeness

heuristic affects current choices differently when memory recall is based on more distant

rather than the immediate past: (1) the role of that distant past in the construction of the

comparison groups, and (2) the role of anticipating future actions. Our näıve and sophisticated

approaches have offered two model-coherent ways to analyze these issues. We study them

below in the three period model when the comparison group is based on J = 2.

3.5.1 Role of Informational States for Comparison Groups

We first study the period 2 problem, which shows transparently the role of comparison groups,

since there is no meaningful continuation utility to compute there. In the next subsection,

we move backwards to period 1 and study the role of anticipating future actions.

Proposition 5. When J = 2 the time-2 näıveté and sophisticated policy functions are

Kθ,n
2 = αθE0K1

E0K
RE
1 + αθK1

Kθ,n
1 + αθε2ε2.

Kθ,s
2 = αθE0K1

E0K
θ,s
1 + αθK1

Kθ,s
1 + αθε2ε2.

Compared to the J = 1 case, the optimal coefficients are characterized by (i) a positive loading

on the past informational state, (ii) a muted response to the current economic state K1, and

(iii) an identical (while still muted), response to the current innovation, as follows:

αθE0K1
=

θ

2(2 + θ)
; αθK1

=
1

2 + θ
; αθε2 =

1

2 + θ
.

Let us detail some of the formalism and intuition behind this important result. We focus

on the näıveté case and then argue that the sophistication case is identical in nature. Thus,

given inherited Kθ,n
1 , consider Kθ,n

2 that solves the time 2 problem in equation (31) as

ε2 +Kθ,n
1 −Kθ,n

2 = Kθ,n
2 + θ

(
Kθ,n

2 − E2−JK
RE
2

)
. (31)

The key difference between J = 1 and J = 2 is how the comparison group, E2−JK
RE
2 ,

affects conditional beliefs. We have characterized in Proposition 3 the RE laws of motion,
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KRE
2 = αREK1

KRE
1 + αREε2 ε2. Thus, the comparison group for the current näıve self is

E0K
RE
2 = αREK1

E0K
RE
1 . (32)

where KRE
1 = αREK0

K0 + αREε1 ε1 describes the counterfactual evolution of K1 expected as of

time 0 by the näıve self. Therefore, under the conjectured policy function Kθ,n
2 in Proposition

5, the DE beliefs over-react by a factor of θ to the new information comprised of

Kθ,n
2 − E0K

RE
2 = αθK1

Kθ,n
1 + αθε2ε2 +

(
αθE0K1

− αREK1

)
E0K

RE
1 .

By substituting this over-reaction in equation (31), we recover the optimal Kθ,n
2 coefficients.14

The critical reason behind these novel state dynamics is that the economic state Kθ,n
1 is not

a sufficient statistic anymore (as it was when J = 1) for the comparison group. With J = 2,

the conditional expectation E0K
RE
1 forms a separate informational state that affects time 2

choices. Indeed, the higher the E0K
RE
1 , the higher is the comparison group for Kθ,n

2 (since

αREK1
> 0 in equation (32)) and thus the more the DE agent is typically ‘disappointed’ by the

perceived innovation in the conditional mean of future consumption, given by Kθ,n
2 −E0K

RE
2 .

Over-reacting to this negative innovation, the agent perceives less future resources (a higher

future marginal utility at time 3), and hence invests more in period 2, explaining why the

loading αθE0K1
on the informational state E0K

RE
1 is positive for θ > 0 in Proposition 5. Of

course, this over-reaction caused by imperfect memory recall is absent in the RE case, where

E0K
RE
1 does not matter for the choice KRE

2 .

The other manifestation of the separate role of Kθ,n
1 as an economic state (savings entering

this period) and an information state (affecting memory formation for building E2−JK
RE
2 ), is

that now the response αθK1
is muted compared to the J = 1 and RE cases (recall Proposition

3). This separate role can also be seen by rewriting the solution for Kθ,n
2 in Proposition 5 as

Kθ,n
2 =

(
αθK1

+ αθE0K1

)
Kθ,n

1 − αθE0K1

(
Kθ,n

1 − E0K
RE
1

)
+ αθε2ε2. (33)

The first part captures the role of Kθ,n
1 as an economic state, which influences the Kθ,n

2

decision in the same as it does for the RE policy function, so that αθK1
+ αθE0K1

= αREK1
= 1/2.

The information role is captured by the second term
(
Kθ,n

1 − E0K
RE
1

)
. Consider, for

example, an increase in Kθ,n
1 caused by a positive innovation in ε1 (a conjecture verified in

Section 3.5.2). A higher Kθ,n
1 than expected at time 0 under the relevant comparison group,

leads to a perceived positive innovation in Kθ,n
2 − E0K

RE
2 . Since agents are over-influenced

by this surprise, they become over-optimistic about future resources and invest less. This

14The high MPC out of transitory income shocks, given by 1− αθε2 , is the same as in Proposition 1. This
näıveté case also shows that the mechanism is different from two recent related approaches. Lian (2020)
shows that (partial) sophistication is key for an agent to decide to save less today out of anticipations of
future mistakes. In Ilut and Valchev (2020) agents are similarly näıvé as here, but have uncertainty over
their optimal consumption functions, which endogenously leads to stable beliefs characterized by high MPC.
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explains why the innovation
(
Kθ,n

1 − E0K
RE
1

)
enters with a negative sign in equation (33).

The total effect of how Kθ,n
2 responds to Kθ,n

1 is then given by αREK1
− αθE0K1

= αθK1
and

explains why when J = 2 there is a muted response of time 2 savings to Kθ,n
1 compared to

the RE and DE policy function based on the immediate past (i.e. αθK1
< αREK1

).15

The solution for the sophisticated choice Kθ,s
2 follows the same logic as for Kθ,n

2 , leading

to the result in Proposition 5 that the optimal coefficients are the same. The subtle difference

here is the comparison group formation. The näıveté solution can leverage the law of motion

for KRE
1 , so that E0K

RE
1 can be immediately plugged in the determination of Kθ,n

2 as αREK0
K0.

In contrast, the corresponding E0K
θ,s
1 is more difficult to transparently assess because it

requires computing a feedback effect between the (yet to be determined) Kθ,s
1 chosen by the

time 1 sophisticated DE agent, which in turn is a function of expectations about Kθ,s
2 .

Overall, our analysis brought forward the novel role of past endogenous states as informa-

tional variables that affect how memory forms ‘benchmark’ (or comparison) views of what is

currently perceived as unusually high or low expected future resources. An agent acting the

representativeness heuristic over-reacts to these perceptions. Thus, savings choices made in

the more distant past (like K0) have an independent and novel effect for decisions today.

3.5.2 Anticipating Future Actions when Distant Past Matters

In formulating the optimal current action at t = 1 the agent has to form beliefs over future

actions.16 Consider first the näıveté case. By Lemma 2 her anticipated future policy KRE
2

implements a perceived consumption path between time 2 and 3 that is on average flat, as

expected of time 1 under DE, which is precisely what her time-1 optimal plan would dictate.

Thus, the optimal Kθ,n
1 only involves setting Cθ

1 = Eθ1CRE
2 , even when J > 1. This tradeoff

looks like the one solved by Kθ,n
2 at time 2, i.e. Cθ

2 = Eθ2CRE
3 , but lagged one period, so

the resulting qualitative properties of the optimal Kθ,n
1 = αθ,nE−1K0

E−1K0 + αθ,nK0
K0 + αθ,nε1 ε1

resemble those of Kθ,n
2 in Proposition 5, as we detail in Proposition 6 in the Appendix.

In contrast, the sophistication case is significantly more complicated because the agent

at time 1 would choose a different plan for K2 than what she anticipates is her optimal

conditional action at time 2. Therefore, by equation (30), her optimal action Kθ,s
1 aims to fix

this misalignment by affecting the state of her anticipated policy function Kθ,s
2 , and solve

Cθ
1 = Eθ1Cθ

2 + αθK1
Eθ1
(
Cθ

3 − Cθ
2

)
, (34)

15Note that when J = 1, this innovation does not enter as an additional relevant state for Kθ,n
2 (see equation

(19)) because at time 2 the comparison group E1K
RE
2 includes Kθ,n

1 in the information set. In that case, the

sole role of Kθ,n
1 is as an economic state, re-affirming the intuition why here αθK1

+ αθE0K1
= αREK1

.
16To capture the novel informational state due to distant memory (J = 2), we allow here the exogenous

E−1K0 to enter the solution, given that this expectation could be different from the realized K0. In a full
infinite horizon model, like the one in section 4, this lagged expectation is part of the model solution.
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where αθK1
= ∂Kθ,s

2 /∂Kθ,s
1 is given in Proposition 5.

As with the näıveté case we conjecture and verify that the optimal solution takes the form

Kθ,s
1 = αθ,sE−1K0

E−1K0 + αθ,sK0
K0 + αθ,sε1 ε1. There are three conceptual forces that affect these

coefficients compared to their näıveté case, which we detail in Proposition 7 in the Appendix.

First, the agent now anticipates that she will over-consume (relative to her näıve beliefs) at

time 2 out of K1, as the forecasted response of future savings out of capital entering period 2

is smaller than under näıveté, i.e. αθK1
< αREK1

. This force alone, coming from the Eθ1Cθ
2 term

in (34), leads the agent to consume more today out of ε1 to achieve consumption smoothing

between period 1 and 2. Second, the misalignment of her perceived tradeoffs means that

following a positive innovation ε1, from the viewpoint of current self, the time 2 self will

under-consume in period t = 3 relative to t = 2. This constitutes an indirect effect, i.e.

the second term in (34), that leads to more savings. The race between these two forces is

dominated here by the former, direct effect, as αθK1
< 0.5, and thus the agent ends up saving

less out of ε1 than under näıveté, i.e. αθ,sε1 < αθ,nε1 .17 Third, there is the conceptual difference

of the comparison groups. With sophistication, the informational state E0K
θ,s
1 (a) matters for

the Kθ,s
2 solution in Proposition 5 but also (b) needs to be itself based on Kθ,s

1 , a choice that

in turn is affected by Eθ1K
θ,s
2 in equation (34). The effect of this fixed point consideration is

less transparent, as it turns out to amplify or dampen, through a non-monotonic relationship

with θ, the optimal responses of Kθ,s
1 to K0 and E−1K0 compared to the Kθ,n

1 case.

3.6 Näıveté and DE in Business Cycle Models

We have developed, in the context of a three-period consumption savings model, a theoretical

framework to study the joint determination of actions and DE beliefs. In this process, we also

emphasize the novel role played by imperfect memory retrieval based on more distant past

and have introduced two formal representations of how the current self deals with the future

selves’ behavior. In this model we have fully characterized the näıve and the sophistication

solutions in order to fully see the conceptual and economic mechanisms at play.

However, in extending this theoretical framework to more realistic and quantitatively

relevant business cycle models, featuring a large state space, multiple decisions taken over

an infinite horizon, and memory retrieval based on more distant past, we propose to focus

specifically on the näıveté approach for the following conceptual and methodological reasons.

First, as noted by a large theory literature it is a coherent micro-founded model of beliefs

and behavior. In our case, it also implies that the same approach recovers the time-consistent

solution when memory recall is based on the immediate past. Second, our three-period model

17We also note that αθ,sε1 < αREε1 for any αθK1
> 0. This result also provides an illustration of the general

analysis in Lian (2020), which shows how sophistication lowers the marginal propensity to save out of
temporary income shocks compared to the current rational action due to the anticipation of future mistakes.
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analysis highlights that the näıveté approach can be easily characterized methodologically, a

property that we will exploit heavily as we build a portable solution method based on linearity

in the next section. Third, the approach captures intuitive and rich dynamics implied by the

formation of comparison groups in the representativeness heuristic: (i) different responses to

the same endogenous and exogenous economics states that would matter in a fully rational

model; as well as (ii) a novel response to additional states, which would not matter in the

fully rational model, but do so here due to their informational role in memory formation.

In comparison, the sophistication approach may require an incredible amount of rationality

and computational resources in such models. For example, in an infinite horizon version of the

consumption-savings model the agent cannot solve for the optimal actions through backward

iteration, but instead looks for a recursive policy function, where the continuation utilities

are described recursively by an appropriate value function. The typical Euler equation for the

current optimal savings choice would resemble equation (34), in that the lack of an envelope

theorem-like argument means that the agents would take into account the impact of their

current actions on their future perceived suboptimal choices. In general models, this entails

computing the marginal life-time value of having extra savings both in terms of it being (a)

an economic state and (b) an informational state. The latter effect means that the agent

would have to internalize and evaluate the effect of the current savings in the formation of

the comparison groups that will matter in the future selective memory recall of the past.

The computational complexities of the sophisticated solution therefore become very de-

manding, especially as informational states proliferate, both for the modelers, but presumably

also for the economic agents. In this sense, the solution is not only difficult to characterize

by the outside observers, but importantly this required hyper-rationality runs counter to

the motivation of modeling agents’ beliefs about their future circumstances as influenced by

a heuristic, since this is usually viewed as a cognitive, mental shortcut that allows agents

to make judgments quickly and efficiently (Tversky and Kahneman (1975) and Kahneman

(2011)). As such, the näıve approach is arguably psychologically more coherent and consis-

tent with the underlying foundation of diagnostic beliefs as a heuristic reflecting a memory

representation affected by imprecise, selective, and less than fully rational recall.

Overall, our theoretical framework thus lays the conceptual ground for the näıve approach,

compared to the sophisticated one, as being arguably a more realistic and computationally

more efficient model of belief formation that captures the informational role of endogenous

state variables under the representativeness heuristic. At the same time, we do not exclude

that the sophisticated model may be more useful for some particular applications. Instead, by

proof of concept, as we analyze in detail in the next section, we present the näıve approach

as a ‘portable extension of existing models’ (as advocated by Rabin (2013)) that tractably
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incorporates the psychology foundation of the representativeness heuristic and the role of

imperfect memory recall in standard business cycle models.

4 A Quantitative New Keynesian Model
In this section, we leverage the previous qualitative insights to incorporate DE into a

quantitative New Keynesian model of the type widely used for policy analysis. We emphasize

the critical role played by distant memory recall in this new class of models. Methodologically,

we formally rely on the näıve approach to model beliefs, as argued earlier. This allows us to

develop a solution method that tractably and recursively characterize equilibrium laws of

motion when agents act under DE beliefs. We estimate our model and show that it replicates

the empirical boom-bust cycle in response to a monetary policy shock.

4.1 The Model

The novelty of our analysis is to allow for DE in an otherwise standard economic environment:

(i) the model features monopolistic competition in the labor and goods market, subject to (ii)

adjustment costs in setting nominal prices, with (iii) consumption-investment decisions being

influenced by real rigidities, in the form of habit formation and investment adjustment costs,

and (iv) monetary policy follows a Taylor rule.

Household. A household j chooses capital Kθ
t , investment Iθt , capital utilization rate uθt ,

bonds Bθ
t , consumption Cθ

t , labor N θ
j,t and nominal wage W θ

j,t to solve

max
Kθ
t ,I

θ
t ,u

θ
t ,B

θ
t ,C

θ
t ,N

θ
j,t,W

θ
j,t

[
ln(Cθ

t − bC
θ

t−1)−
(N θ

j,t)
1+η

1 + η
+ βEθtV(Sθt+1)

]
(35)

subject to the budget constraint

P θ
t C

θ
t + P θ

t I
θ
t + PB,θ

t Bθ
t + (ϕw/2)

(
W θ
j,t/W

θ
j,t−1 − γΠ

)2
W θ
t

= Bθ
t−1 + P θ

t R
k,θ
t uθtK

θ
t−1 +W θ

j,tN
θ
j,t +

∫ 1

0

Dθ
i,tdi− P θ

t a(uθt )K
θ
t−1.

where P θ
t is the price level, Rk,θ

t is the capital rental rate, and
∫ 1

0
Dθ
i,tdi is the combined

current nominal profits from intermediate firms, given below in the firms’ profit maximization

problem. PB,θ
t is the price of bond that pays 1 unit of consumption at t+ 1 so PB,θ

t = 1/Rθ
t ,

where Rθ
t is the gross nominal interest rate. Notice that we also allow for a capital utilization

rate uθt choice, subject to a resource cost specified as a(uθt ) = Rk(1 + τ)−1
(
(uθt )

1+τ − 1
)
.

Each household is monopolistically competitive in its labor supply. A perfectly competitive

labor packer combines household labor and sells the composite labor N θ
t to intermediate

firms, described below, using the CES technology N θ
t =

[∫ 1

0
(N θ

j,t)
1
λn dj

]λn
, where λn controls

the steady-state wage markup. The packer’s cost minimization leads to a standard demand
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curve taken by the household as an additional constraint in solving equation (35), namely

N θ
j,t = N θ

t

[
W θ
j,t/W

θ
t

]−λn/(λn−1)
, where W θ

t is the aggregate wage level.

As we detail below, our approach handles large state space models, which allows us to

incorporate DE into a NK model with nominal and real frictions that are typical of such

quantitative business cycle models (see eg. Christiano et al. (2005) and Smets and Wouters

(2007)). In particular, the budget constraint describes how nominal wages are subject to an

adjustment cost (as in Kim (2000)), governed by the parameter ϕw, where further γ is the

rate of deterministic technological progress and Π is the steady-state inflation rate. On the

preference side, note that in equation (35) we allow for habit formation where C
θ

t−1 is the

average previous consumption and b is the external habit parameter.

Finally, the problem in equation (35) is further subject to the physical capital law of

motion, which features a standard quadratic investment adjustment cost

Kθ
t = (1− δ)Kθ

t−1 +
{

1− (κ/2)
(
(Iθt /I

θ
t−1)− γ

)2
}
Iθt ,

where δ is the depreciation rate and κ is the adjustment cost parameter.

As explained in section 3.4, in this näıve approach, in evaluating the continuation value

V(.) in equation (35), the household assumes that her and other agents’ future conditional

preferences and resulting conditionally optimal actions will be taken under perfect memory

(or RE), given values of the states entering next period, collected in the vector Sθt+1. To

construct that continuation value we thus set up a ’shadow’ economy (indexed by RE) where

the household problem is solved under perfect memory, conditional on inherited states:

V(Sθt ) = max
KRE
t ,IREt ,uREt ,BREt ,CREt ,NRE

j,t ,W
RE
j,t

[
ln(CRE

t − bCθ

t−1)−
(NRE

j,t )1+η

1 + η
+ βEtV(SREt+1)

]
,

subject to the budget constraint

PRE
t CRE

t + PRE
t IREt + PB,RE

t BRE
t +

ϕw
2

(
WRE
j,t

W θ
j,t−1

− γΠ

)2

WRE
t

= Bθ
t−1 + PRE

t uREt Rk,RE
t Kθ

t−1 +WRE
j,t N

RE
j,t +

∫ 1

0

DRE
i,t di− PRE

t a(uREt )Kθ
t−1.

The law of motion for capital is given by

KRE
t = (1− δ)Kθ

t−1 +
{

1− (κ/2)
(
IREt /Iθt−1 − γ

)2
}
IREt ,

while the labor demand curve is simply NRE
j,t = NRE

t

[
WRE
j,t /W

RE
t

]−λn/(λn−1)
.

Firms. The final output is produced by a perfectly competitive representative firm who

combines a continuum of intermediate goods Y θ
i,t using the CES technology:

Y θ
t =

[∫ 1

0

(Y θ
i,t)

1
λf di

]λf
,
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where λf controls the steady-state markup. Intermediate goods firms’ production function is

Y θ
i,t = (uθi,tK

θ
i,t)

α(γtN θ
i,t)

1−α,

where Kθ
i,t and N θ

i,t are the capital and labor employed by firm i. From the cost minimization

problem, the real marginal cost is given by

MCθ
t =

(Rk,θ
t )α(W θ

t /P
θ
t )1−α

αα(1− α)1−αuθi,t(γ
t)1−α .

As with households, intermediate firms also face an adjustment cost (a-la Rotemberg

(1982)) in changing their nominal price. Their problem is to choose P θ
i,t to maximize

(Cθ
t −bCθ

t−1)−1
(
P θ
i,tY

θ
i,t − P θ

tMCθ
t Y

θ
i,t −

ϕp
2

(
P θ
i,t/P

θ
i,t−1 − Π

)2
P θ
t Y

θ
t

)
/P θ

t +βEθtVf (P θ
i,t), (36)

where ϕp is the price adjustment cost parameter. The continuation value Vf (P θ
i,t−1) solves

max
PREi,t

[
(CRE

t − bCθ
t−1)−1DRE

i,t /P
θ
t + βEtVf (PRE

i,t )
]
,

where DRE
i,t =

(
PRE
i,t Y

RE
i,t − PRE

t MCRE
t Y RE

i,t − .5ϕp
(
PRE
i,t /P

θ
i,t−1 − Π

)2
PRE
t Y RE

t

)
. Thus, in

equation (36), firms’ instantaneous payoff is given by current real profits and the continuation

value is given by the discounted sum of real profits Vf(P
θ
i,t). Under naivete, in computing

continuation value, agents assume that firms inherit the chosen price P θ
i,t (which is relevant

for the adjustment cost) but future prices are set according to RE.

Market Clearing and Monetary Policy. The resource constraint is given by

Cθ
t + Iθt +

ϕp
2

(
Πθ
t − Π

)2
Y θ
t +

ϕw
2

(
Πθ
w,t − γΠ

)2 W θ
t

P θ
t

+ a(uθt )K
θ
t−1 = Y θ

t ,

where Πθ
w,t ≡ W θ

t /W
θ
t−1 is the nominal wage inflation.

To close the model, we assume that the central bank follows a standard Taylor rule:

Rθ
t

R
=

(
Rθ
t−1

R

)ρR
(

Π̃θ
t

Π

)φπ (
Y G,θ
t

γY G,θ
t−1

)φY


1−ρR

εt, εt ∼ N(0, σ2
R),

where Π̃θ
t is the annual inflation rate Π̃θ

t ≡ 0.25
∑3

s=0 Πθ
t−s and εt is the iid monetary policy

shock.18 Finally, we provide the equilibrium conditions in Appendix B.

4.2 Solution Method

Our solution method exploits the fact that under DE, agents expect future actions to be

taken under the RE policy function. Below we outline our solution method. We provide

additional details and formulas in the online appendix C.

18We define GDP as Y G,θt ≡ Y θt − 0.5ϕp
(
Πθ
t −Π

)2
Y θt − 0.5ϕw

(
Πθ
w,t − γΠ

)2
W θ
t /P

θ
t − a(uθt )K

θ
t−1.
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1. The first step of the solution algorithm consists of obtaining the shadow RE law of

motion used by agents to form DE. We start from a linear RE system

Γ0x
RE
t = Γ1x

RE
t−1 + Ψεt + ΠηREt , (37)

where xREt , εt and ηREt are vectors of endogenous variables, shocks, and expectation

errors, respectively. This RE system is simply the RE version of the economy, with

linear equilibrium conditions where DE (Eθt ) is replaced with RE (Et).

A recursive law of motion can be obtained, using for example Sims (2000),

xREt = TRExREt−1 + RREεt.

2. Consider a linear DE system

Γθ
0x

θ
t = Γθ

2EθtyREt+1 + Γθ
1x

θ
t−1 + Ψθεt, (38)

where we provide expressions for Γθ
0, Γθ

2, Γθ
1 and Ψθ in the Appendix. Relative to the

RE system (37), which implicitly defines expectations in xREt by using expectation

errors ηREt , the DE system (38) explicitly accommodates DE (EθtyREt+1).

We can substitute the EθtyREt+1 in the DE system (38) as

EθtyREt+1 = EtyREt+1 + θ(EtyREt+1 − ErtyREt+1), (39)

where ErtyREt+1 denotes the comparison group, or the reference distribution, characterizing

the representativeness heuristic.

Our method allows for a general form of memory recall and thus of this comparison

group. In particular, as we further explain below, we model this reference distribution

in a flexible, yet parsimonious manner, as a weighted average of lagged RE expectations:

ErtyREt+1 =
J∑
j=1

αjEt−jyREt+1, (40)

where {αj}Jj=1 are weight parameters on lagged expectations (and thus
∑J

j=1 αj = 1).

Let yREt = MxREt , where M is a selection matrix that selects variables from a vector

xREt . Given the DE beliefs characterized by (39) and (40), the system (38) then becomes

Γθ
0x

θ
t = Γθ

2

[
(1 + θ) MTRExθt −

J∑
j=1

θαjM
(
TRE

)j+1
xθt−j

]
+ Γθ

1x
θ
t−1 + Ψθεt, (41)

which also makes clear that agents form DE based on state variables inherited from the

DE economy, but under the assumption that in the future the economy will follow the

RE law of motion.
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3. Inverting matrices and rewriting (41) more compactly gives the DE law of motion:

zθt = Tθzθt−1 + Rθεt, (42)

where we provide expressions for Tθ and Rθ in Appendix C and note that zθt is a vector

that includes not only xθt but its lags xθt−1, . . . ,x
θ
t−J+1.

The key advantages of our solution method are thus its portability and tractability : a

researcher can transform a standard linear dynamic equilibrium model (37) and compute the

DE law of motion (42) with a few additional lines of code.

4.3 Estimation

Our aim is to demonstrate that DE matter in practical and policy-relevant settings. Thus

we choose the estimation method that aligns with this goal. The starting point of our

estimation is a local projection estimation of empirical impulse responses to a monetary policy

shock using U.S. quarterly macroeconomic data over the sample period 1969Q1–2006Q4.19

Specifically, we estimate the following regressions:

xt+h = ch + τht+
L∑
l=1

αhl xt−l +
I∑
i=0

βhi et−i + εt+h, h = 0, . . . , H (43)

where xt is the variable of interest and et is the Romer and Romer (2004) monetary policy

shock, extended by Coibion et al. (2017). Our variables of interest are log real per capita

GDP, log per capita hours worked, log real per capita consumption, log real per capita

investment, log GDP deflator inflation and log Federal funds rate. The coefficients of interest

are {βh0 }Hh=0. We set L = I = 4 and compute the impulse response for H = 32 horizons.

We estimate the model parameters using the Bayesian version of the impulse-response-

matching method, developed by Christiano et al. (2010). In this method, the likelihood

depends on how closely the model matches the empirical response to a shock. The likelihood

is then combined with priors on the model parameters. In our empirical analysis below,

we match the impulse responses of four variables: consumption, hours, inflation, and the

Federal Funds rate. We then also use the implied responses of three other variables, namely

investment, GDP, and SPF inflation expectations, as ‘untargeted’ moments that serve as

external validation.20

19We do not include the period after 2007Q1 to avoid complications arising from the zero lower bound.
20To obtain real per capita GDP we divide real GDP by total population. Real per capita consumption is

measured by the sum of personal consumption expenditure on nondurables and services divided by total
population. Real per capita investment is the sum of gross private domestic investment and personal
consumption expenditure on durables divided by total population. Per capita hours worked is the total hours
in nonfarm business sector divided by total population.
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We fix several parameters before the estimation. The deterministic growth rate γ and the

steady-state inflation rate Π are set to 1.004 and 1.01, respectively, which imply a steady-state

annual output growth rate of 1.6% and the annualized inflation rate of 4%. The capital share

α, the discount factor β and the depreciation rate δ are set to 0.3, 0.99 and 0.025, respectively.

We set λf and λn to 1.1, which imply steady-state price and wage markups of 10%. For

parameters that are common in the New Keynesian literature, we center our priors around

conventional values. For the diagnostic parameter θ, we center our prior around 1, in line with

the estimates found in Bordalo et al. (2018) and Bordalo et al. (2019b). As explained above

(see equation (40)), we allow for flexible reference expectations in memory recall and thus

the comparison group is a weighted average of lagged expectations. To estimate the weights

{αj}Jj=1 on past memory, we consider a parsimonious parameterization. We set J = 32 and

estimate the mean µ and the standard deviation σ of a Beta distribution. We then rescale

and discretize the implied Beta(µ, σ2) distribution to span the discrete interval [0,32] and

obtain the weights α̃j . We then apply the transformation αj = α̃j/(
∑J

j=1 α̃j) so that {αj}Jj=1

sum to one. We report the priors and all estimated parameters in Table 1 in the Online

Appendix, while below we focus on the key parameters that control the effects of DE.

4.4 Results

Figure 1 presents the local projection impulse responses (black solid lines) to a one-standard-

deviation expansionary monetary policy shock along with the 95% confidence bands. In

response to a reduction in the Fed rate, real variables such as hours and consumption all

increase in a hump-shaped manner, peaking around 10 quarters after the initial shock. These

variables then undershoot below the steady states and reach their trough around 5 to 6 years

after the shock, followed by a gradual recovery.21 Inflation builds up slower and tends to

peak at the end of the boom, followed by a slow return to the steady state.

The New Keynesian model with DE (blue lines with circles) reproduces the empirical

impulse response functions (IRF) well, successfully generating, as in the data, the boom-bust

cycle following the monetary policy shock. The counterfactual RE model, where we set

the diagnostic parameter θ = 0 while holding fixed other estimated parameters, generates

transitory and negligible response. The difference between the DE IRF and the counterfactual

RE IRF indicate that much of our success is due to the DE mechanism. This is confirmed by

the results obtained when re-estimating the model under RE. The re-estimated RE model

fails in delivering the boom-bust dynamics and the amplitude of the responses observed in

the data. As a result, the marginal likelihood, a Bayesian measure of fit that penalizes models

21McKay and Wieland (2021) find a similar boom-bust pattern in their estimated responses to a monetary
policy shock.
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Figure 1: Impulse responses to a monetary policy shock: Fit for targeted responses
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Notes: The black lines are the mean responses from the local projection and the shaded areas are the 95%

confidence bands. The blue circled lines are IRFs from the baseline model with DE. The red dashed lines are

IRFs from the counterfactual RE model where we set θ = 0 while holding fixed other estimated parameters.

The magenta dashed lines are IRFs from the re-estimated RE model. The consumption and hours responses

are in percentage deviations from steady states while inflation and Fed rate are in annual percentage points.

with more parameters, is (−464− (−504) =) 40 log points higher in the DE model.

The model is also able to match remarkably well the IRF that were not targeted in the

estimation. The first two panels of Figure 2 report the responses of GDP and investment to

the monetary policy shock. The model delivers a good fit. The right panel of Figure 2 reports

the impulse response of expected inflation.22 The model generates inflation expectations

that are very much in line with what observed in the data, even if we did not target

inflation expectations in our estimation exercise. Figure 2 also shows that the re-estimated

RE counterpart of the model does a worse job in accounting for this untargeted moments.

Formally, we find that the root-mean-square error (RMSE) for the DE model is 0.54, while

22We measure inflation expectations using the median of the SPF survey responses of one-quarter-ahead
inflation expectations. We assume that the model implied inflation expectations coincide with what an agent
that knows the model would predict (Etπ̂θt+1).

32



Figure 2: Impulse responses to a monetary policy shock: Fit for untargeted responses
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Notes: The interpretation of the plotted lines follow their description for Figure 1. The responses of GDP

and investment are in percentage deviations from the steady states while the inflation expectation is in

annual percentage points.

for the RE re-estimated model is 0.75.23

We estimate θ = 1.91 for the parameter controlling the severity of the DE distortion. The

mean and standard deviation of the Beta distribution that controls the weights α′js attached

to each of the J = 32 lagged expectations entering the comparison group are 0.19 and 0.04,

respectively. As shown in the left panel of Figure 3, these estimates imply that the weights

are centered on the expectations formed six quarters ago, with positive weights assigned to

expectations formed between three and eleven quarters ago. The right panel of Figure 3

shows how the impulse response for consumption changes as we vary the lag for the reference

distribution. We consider the case in which only recent memory matters (J = 1) or when

only two-period-ago expectations matter (J = 2). Reducing the lag impacts the frequency

and the amplitude of the boom-bust cycles. As we will discuss below, when J increases the

effects of past misperceptions accumulate, leading to larger fluctuations.

4.5 Mechanism: Perceived Consumption and Inflation Paths

As mentioned in Section 4.1 and detailed in the online appendix, due to its nominal and

real frictions, the model features several intertemporal decisions (i.e. on optimal nominal

wages, nominal prices, investment, capital and risk-free bonds), all of which are evaluated

under DE. We can nevertheless distill the key mechanism through which this otherwise rich

DE model fits the IRF dynamics by focusing on the DE Euler equation for bonds, which

naturally connects the equilibrium perceived consumption and inflation paths.

23We compute RMSE =
√∑3

i=1

∑T
t=1(IRF idata,t − IRF imodel,t)2/T , where IRF idata,t and IRF imodel,t

indicate the local projection IRF and model IRF, respectively, for GDP, investment and expected inflation.
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Figure 3: Estimated selective memory
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(b) Empirical role of distant memory
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Notes: The left panel reports the estimated memory weights αj . The right panel reports the consumption

IRF in the estimated DE model (blue circled line) and the counterfactual model where only recent memory

matters (orange dotted line) and when only two-period-ago memory matters (green line with plus signs).

Momentarily ignoring consumption habits, the Euler equation for bonds is(
Cθ
t

)−1 1

P θ
t

= βRθ
tEθt

[(
CRE
t+1

)−1

PRE
t+1

]
=

Π

R
Rθ
tEθt

[(
CRE
t+1

)−1

PRE
t+1

]
In deviations from the steady state, we have:

−ĉθt = r̂θt + pθt + π − Eθt
[
ĉREt+1 + pREt+1

]
where hats denote log-deviations from the steady state, lowercase variables denote logs, and

π denotes steady state net inflation. Here we can easily appeal to the additivity property

under DE to separate terms inside expectations,24 leading to

Eθt ĉREt+1 − ĉθt = r̂θt −
[
EθtpREt+1 − pθt − π

]
.

The perception of the future price level pREt+1 plays a critical role for the optimal intertem-

poral consumption smoothing decision. This price can be decomposed as the one-step ahead

inflation (a jump variable) plus the current price level (a state variable entering next period):

pREt+1 = πREt+1 + pθt = π̂REt+1 + π + pθt

24This is possible as long as we maintain conditional normality of those individual random variables, a
feature that our equilibrium objects satisfy.
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Substituting this decomposition and applying the DE operator, we obtain:

EθtpREt+1 − pθt − π = Eθt π̂REt+1 + θ
[
pθt − Ert

(
pREt

)]︸ ︷︷ ︸ .
Surprise in price level

DE act through two channels. The first term of the right hand side captures DE over future

inflation, where future inflation is perceived as determined at t + 1 under RE, given the

value of the current nominal price pθt entering as an endogenous state next period. The

second component captures the role of memory recall in the perceived surprise in that same

endogenous state variable with respect to the reference group, as emphasized in statistical

and economic terms in the earlier sections.

As in equation (40) the reference group for pθt is a weighted average of lagged expectations:

Ert
(
pREt

)
=
∑J

j=1αjEt−j
(
pREt

)
,

which leads to a surprise in the current price level expressed as

pθt − Ert
(
pREt

)
=
∑J

j=1αj
(
π̂θt−j+1,t − Et−jπ̂REt−j+1,t

)︸ ︷︷ ︸
perceived innovation in cumulative inflation

≡ π∗J,t,

where each term π̂t−J+1,t = π̂t−J + π̂t−J+1 + ...π̂t = pt − pt−J − π denotes the cumulative

inflation between t − J and t. For further reference, we denote that surprise, or perceived

innovation in cumulative inflation, as the equilibrium object π∗J,t.
25

Putting everything together, the DE Euler equation becomes:

Eθt ĉREt+1 − ĉθt = r̂θt − Eθt π̂REt+1 − θπ∗J,t. (44)

Intuitively, holding constant Eθt ĉREt+1 and
(
r̂θt − Eθt π̂REt+1

)
, a higher innovation π∗J,t makes the

perceived expected future price relatively high, thus lowering the incentives to postpone

consumption. As we discuss below, the equilibrium variation in this innovation turns out to

be key in rationalizing the boom-bust dynamics.

The left panel of Figure 4 shows that the perceived innovation in cumulative inflation π∗J,t
also exhibits a boom-bust pattern. Importantly, through the lenses of the DE Euler equation

in (44), this response appears to be the mirror image of the DE expected consumption growth,

further implying that the one period ahead component r̂θt −Eθt π̂REt+1 is very stable compared to

θπ∗J,t. The key observation in understanding why θπ∗J,t matters much more in determining the

perceived consumption smoothing tradeoffs than the one period component is that DE are

computed with respect to the one-step-ahead price level, not with respect to one-step-ahead

25In the special case of J = 1, per our earlier analytical results, equilibrium variables under the RE
law of motion respond to endogenous states in the same way as they do under the DE law of economy,
making the equilibrium perceived innovation in cumulative inflation take the simpler but equivalent form
π∗1,t = π̂θt −Et−1π̂θt . This form recovers the nominal price surprise object that distorts consumption smoothing
in the NK model of L’Huillier et al. (2021) who focus their analysis entirely on the J = 1 case.
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Figure 4: Perceived innovation in cumulative inflation and consumption paths
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Notes: The left panel shows the perceived innovation in cumulative inflation (multiplied by θ) and DE

expected consumption growth. The right panel plots DE expected consumption (Eθt ĉREt+1), realized

equilibrium consumption (ĉθt ), RE expected consumption (EtĉREt+1) and reference expectation (Ert ĉREt+1).

inflation. Thus even if inflation has relatively low persistence, the model still delivers large

and persistent effects of DE from surprises in the price level, i.e. in cumulative inflation with

respect to the reference expectation. In the estimated model, inflation under RE (which

is what matters for DE beliefs, per the näıveté approach) has relatively low persistence,

so applying DE in isolation only over it matters little in shaping the optimal consumption

smoothing. However, surprises in the price level have large effects because they determine a

shift in the whole perceived path of the price level.26

The left panel also plots the DE expected consumption growth in equation (44), given by

Eθt ĉREt+1 − ĉθt = EtĉREt+1 + θ
(
EtĉREt+1 − Ert ĉREt+1

)
− ĉθt

where Ert ĉREt+1 =
∑J

j=1αjEt−j ĉREt+1. The right panel of Figure 4 shows that, to accommodate

this DE expected consumption growth, the realized equilibrium consumption ĉθt follows a

boom-bust movement, occurring with a corresponding dynamic of Eθt ĉREt+1 that is even more

pronounced. Per standard intuition, a surprise interest rate cut increases consumption ĉθt .

Because of the relatively high estimated habit (b = 0.8), consumption moves sluggishly. Hence,

the equilibrium conditional expectation under RE, EtĉREt+1, also rises by a similar amount.

This increase causes DE agents’ perception of future consumption to be overly influenced by

the high consumption state and hence raises significantly the DE agents’ perception Eθt ĉREt+1

of future consumption. This over-reaction slowly subsides as the reference expectation Ert ĉREt+1

26In fact, even if inflation had no persistence in the shadow RE economy, surprises in inflation would still
determine a change in the predicted value of the price level, activating DE.
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starts to slowly rise, which catches up with the RE conditional expectation EtĉREt+1 around

period 15. The reference expectation rises slowly because the estimated memory recall is

fairly distant; recent events take time to sink into agent’s mind.

We can then jointly rationalize the perceived consumption path and the perceived in-

novation in the cumulative inflation together, as required by the equilibrium condition in

equation (44), as follows. On impact, because of an increase in utilization, inflation declines.

This determines a negative surprise in the price level and a lower than usual expected future

price level, which in equilibrium is consistent from the agent’s perspective with a perceived

acceleration in consumption.27 Importantly, as shown in Figure 1 equilibrium inflation π̂θt

starts to rise above steady state during the economic boom (significantly so after period 8, as

in the data). This rise first leads to a reduction in the negative surprises for the price level

and then eventually to positive surprises, as indicated by the left panel of Figure 4. This path

determines a reversal in the perceived innovation in cumulative inflation, which moves into

the positive territory during the bust part of the cycle, when agents find the resulting high

perceptions of future price levels consistent with their pessimism about future consumption.

The specific novel property of the model dynamics under DE is that this economic boom

induced by an expansionary monetary policy shock does not simply slowly subside to converge

back to the steady state from above. Instead, we observe that, as in the data, there is an

inflection point (around period 15) where the boom turns into a bust and a general decline in

economic activity. Moreover, the boom-bust cycle keeps generating misperceptions about the

future as agents are surprised that the economy is away from their reference distributions.

The feedback from beliefs to actions create further belief distortions that extend well beyond

the lag in reference expectations. When DE apply to exogenous variables, DE and RE

naturally realign themselves after J periods. Instead, when DE apply to endogenous variables,

past decisions affect current expectations, generating new distortions that feed into current

decisions, creating waves of optimism and pessimism - a form of Minsky (1977) moments.

The results presented above also illustrate the importance of considering distant memory

for a given level of DE distortions. Distant memory creates larger revisions in expectations,

leading to larger surprises, and larger belief distortions. This explains why the parameter J

does not only affect the frequency of the boom-bust cycle but also the amplitude. When J

is small, only shocks occurring in between the time of the reference expectations and today

can lead to significant surprises. Instead, under distant memory agents expectations are

constantly revised as the economy is quite far from where they expected it to be when they

27The online appendix shows that the perceived increase in consumption more than compensates for the
habit stock. In other words, not only agents expect consumption to be higher in the future, but they also
expect it to grow with respect to the habit stock, lowering the marginal utility.
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formed the reference expectations.

Having explained in detail the consumption dynamics, we finally point out that in this

economy there is positive co-movement between the key real aggregate variables (consumption,

investment, hours). The economic channel is typical to the NK models. Intuitively, following

the expansionary monetary policy shock, the demand for goods (consumption and investment)

is stimulated. In this demand-driven economy, equilibrium is largely restored through a higher

capacity utilization, which not only directly increases the supply of goods, but also leads to

a larger labor productivity and thus stimulates firms’ labor demand. While the intuition

behind the co-movement between the key macroeconomic variables resembles qualitatively

the standard NK mechanism, our DE model is remarkably more successful than its RE

counterpart in delivering an ample, persistent, and hump-shaped boom-bust cycle. This is

true for both the targeted and untargeted empirical IRFs.

5 Conclusion
In this paper, we build on the representativeness heuristic and DE paradigm proposed

by Bordalo et al. (2018) to analyze the qualitative and quantitative implications of the

joint determination of DE beliefs and optimal actions in the presence of (i) endogenous

states and (ii) distant memory recall. These two characteristics are important because they

fundamentally affect the extent to which the agent perceives a circumstance as ‘surprising,’ a

notion central to the over-reacting distortion caused by the representativeness heuristic.

Accounting for these features in typical dynamic models require us to jointly confront

two types of conceptual challenges. First, the presence of endogenous states means that in

developing the agent’s decision problem a form of endogenous predictability arises in forming

DE, since the conditional predictability of future outcomes depends on the endogenous actions

taken by agents. Second, when current DE are affected by memories formed in the distant

past, the law of iterated expectations (LOIE) generally fails. This failure is intimately linked

to time inconsistency in dynamic models because optimal plans decided in the past become

suboptimal as a result of the change in beliefs induced by imperfect memory.

We use two simple consumption-savings models as a laboratory to provide behavioral

micro-foundations that address these challenges in a psychologically and model-coherent

way. In a two-period version, we isolate the role played by endogenous predictability for

the feedback between DE beliefs and optimal savings choice. In a three-period extension,

we tackle the issue of time-inconsistency by proposing and studying two models of belief

formation about future behavior: näıveté or sophistication. We characterize how optimal

actions respond differently to the same given set of variables that would matter in a fully

rational model, but also to additional states, which would not matter in the fully rational
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model, but do so under DE due to their role in memory formation.

By leveraging our proposed theoretical foundations, we then provide a tractable solution

method and develop a portable toolbox that can be used to enrich standard general equilibrium

models with DE. In particular, we incorporate DE into a quantitative New Keynesian model

of the type widely used for policy analysis. We uncover a critical and novel role played by

endogenous states and distant memory recall, which allows the DE model to replicate the

empirical boom-bust cycle dynamics in response to a monetary policy shock.
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Appendices

A Omitted Proofs

A.1 Proof of Proposition 2

Compute Eθ1 [C2 − C3] and replace C2 = Eθ2C3 to obtain

Eθ1 [C2 − C3] = Eθ1
[
Eθ2C3 − C3

]
The DE belief Eθ2C3 is

Eθ2C3 = E2C3 + θ (E2C3 − E2−JC3)

therefore

Eθ1 [C2 − C3] = Eθ1 [E2C3 + θ (E2C3 − E2−JC3)− C3]

By applying the DE at time 1 this equals

(1 + θ)E1 [E2C3 + θ (E2C3 − E2−JC3)− C3]− θE1−J [E2C3 + θ (E2C3 − E2−JC3)− C3]

The second term equals

E1−J [E2C3 + θ (E2C3 − E2−JC3)− C3] = 0

while the first term

E1 [E2C3 + θ (E2C3 − E2−JC3)− C3] = θ (E1C3 − E1E2−JC3)

If J = 1, this terms also equals zero and therefore

Eθ1 [C2 − C3] = 0 = C2 − Eθ2C3

while if J > 1

Eθ1 [C2 − C3] = (1 + θ)θ (E1C3 − E2−JC3)

= (1 + θ)θ
[
E1K

θ
2(Kθ

1 , ε2)− E2−JK
θ
2(Kθ

1 , ε2)
]
.

Thus the conditionally optimal time-2 solution Kθ
2 implements exactly time-1 plan Kθ,p

2 if

and only if J = 1.

A.2 Proof of Proposition 3

Time 2 policy. The general procedure is to work backwards from time 2. Let us immediately

find the RE solution, which conditional on some K1 entering period 2 solves

ε2 +K1 −KRE
2 = E2(ε3 +KRE

2 ), (45)

which give us the RE coefficients for KRE
2 in Proposition 3.
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For the DE agent, conditional on reaching period 2, the optimal Kθ
2 solves the trade-off

Cθ
2 = Eθ2Cθ

3 ,

as implied by the problem in (16). When J = 1, for a given state K1 and exogenous innovation

ε2, by using the time 2 and 3 budget constraint, this trade-off amounts to

ε2 +K1 −Kθ
2 = E2(ε3 +Kθ

2) + θ
[
E2(ε3 +Kθ

2)− E1

(
ε3 +Kθ

2

)]
(46)

By substituting the conjectured coefficients αθK1
and αθε2 into the trade-off (46), we obtain

their values characterized in Proposition 3.

Time 1 policy. Moving backward, let us characterize the time 1 problem. By Corollary

2 the time-1 planned Kθ,p
2 equals the policy function Kθ

2 , chosen at time 2. In that case, the

optimal solution for Kθ
1 , solves the condition

Cθ
1 = Eθ1

[
Cθ

2 + αθK1

(
Cθ

3 − Cθ
2

)]
, (47)

where the path for Cθ
2 and Cθ

3 are implied by the budget constraints. Technically, the DE

operator over a sum of random variables satisfies the additivity property (see the proof of

Corollary 1 in Bordalo et al. (2018) for details), so we can break the RHS of (47) into

Eθ1(Cθ
2) + αθK1

Eθ1
(
Cθ

3 − Cθ
2

)
(48)

which by Corollary 2 means

Cθ
1 = Eθ1Cθ

2 (49)

since Eθ1
(
Cθ

3 − Cθ
2

)
. The RHS reflects the DE belief over Cθ

2 , given the comparison group

based on time 0 information, and as such equals

Eθ1Cθ
2 = (1 + θ)E1

[
Y + ε2(1− αθε2) +Kθ

1(1− αθK1
)
]
− θE0

[
Y + ε2(1− αθε2) +Kθ

1(1− αθK1
)
]

where we have substituted in Cθ
2 = Y2 +Kθ

1 −Kθ
2 the conjectured policy Kθ

2 = αθK1
K1 +αθε2ε2.

Therefore, by using the unpredictability of income shocks, we have

Eθ1Cθ
2 = Y + (1− αθK1

)
[
Kθ

1 + θ
(
Kθ

1 − E0K
θ
1

)]
.

Here (1 − αθK1
) gives the conjectured exposure of Cθ

2 to Kθ
1 , which is its only source of

endogenous persistence, and
(
Kθ

1 − E0K
θ
1

)
is the new information about the conditional mean

of Cθ
2 . Under the conjectured solution for Kθ

1 = αθK0
K0 + αθε1ε1, this new information just

equals αθε1ε1. Thus, the optimal Kθ
1 solves

ε1 +K0 −Kθ
1 = (1− αθK1

)
[
Kθ

1 + θαθε1ε1

]
,

where we have αθK1
= 0.5. This immediately recovers the optimal coefficients in Proposition

3. In the case of θ = 0, this also solves for the corresponding RE coefficients.
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A.3 Proof of Proposition 4

Policies under näıveté. Conjecture

Kθ,n
1 = αθ,nK0

K0 + αθ,nε1 ε1; Kθ,n
2 = αθ,nK1

K1 + αθ,nε2 ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2CRE

3

The RHS equals

Eθ2CRE
3 = (1 + θ)E2

[
Y3 +Kθ,n

2

]
− θE1

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ,n

2 − θE1K
RE
2

= Y + (1 + θ)Kθ,n
2 − 1

2
θK1,

where we substituted in αREK1
= 1/2 in the third line. Connecting this with the LHS, we have

ε2 +K1 −Kθ,n
2 = (1 + θ)Kθ,n

2 − 1

2
θK1.

Plugging in the conjectured solution Kθ,n
2 = αθ,nK1

K1 + αθ,nε2 ε2 and equating coefficients give us

αθ,nK1
= 1/2 = αθK1

and αθ,nε2 = 1/(2 + θ) = αθε2 .

By Lemma 2 the time 1 trade-off is given by

Cθ
1 = Eθ1CRE

2 .

The RHS equals

Eθ1CRE
2 = (1 + θ)E1

[
Y2 +Kθ,n

1 −KRE
2

]
− θE0

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ,n

1 (1− αREK1
)
]
− θE0

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ,n

1 − θE0K
RE
1

]
= Y +

1

2

[
(1 + θ)Kθ,n

1 − 2

3
θK0

]
where we have substituted in the RE policy KRE

2 = αREK1
K1 + αREε2 ε2 in the second line and

substituted in αREK1
= 1/2 and αREK0

= 2/3 in the fourth line. Connecting this with the LHS,

we have

ε1 +K0 −Kθ,n
1 =

1

2

[
(1 + θ)Kθ,n

1 − 2

3
θK0

]
.

Plugging in the conjectured solution Kθ,n
1 = αθ,nK0

K0 + αθ,nε1 ε1 and equating coefficients give us

αθ,nK0
= 2/3 = αθK0

and αθ,nε1 = 2/(3 + θ) = αθε1 .

Policies under sophistication. Conjecture

Kθ,s
1 = αθ,sK0

K0 + αθ,sε1 ε1; Kθ,s
2 = αθ,sK1

K1 + αθ,sε2 ε2.
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The time 2 trade-off is given by

Cθ
2 = Eθ2Cθ

3

The RHS equals

Eθ2Cθ
3 = (1 + θ)E2

[
Y3 +Kθ,s

2

]
− θE1

[
Y3 +Kθ,s

2

]
= Y + (1 + θ)Kθ,s

2 − θE1K
θ,s
2

= Y + (1 + θ)Kθ,s
2 − θα

θ,s
K1
K1.

Connecting this with the LHS, we have

ε2 +K1 −Kθ,s
2 = (1 + θ)Kθ,s

2 − θα
θ,s
K1
K1.

Plugging in the conjectured solution Kθ,s
2 = αθ,sK1

K1 + αθ,sε2 ε2 and equating coefficients give us

αθ,sK1
= 1/2 = αθK1

and αθ,sε2 = 1/(2 + θ) = αθε2 .

By Corollary 3, the time 1 trade-off is given by

Cθ
1 = Eθ1Cθ

2 .

The RHS equals

Eθ1Cθ
2 = (1 + θ)E1

[
Y2 +Kθ,s

1 −K
θ,s
2

]
− θE0

[
Y2 +Kθ,s

1 −K
θ,s
2

]
= (1 + θ)E1

[
Y + ε2(1− αθ,sε2 ) +Kθ,s

1 (1− αθ,sK1
)
]
− θE0

[
Y + ε2(1− αθ,sε2 ) +Kθ,s

1 (1− αθ,sK1
)
]

= Y + (1− αθ,sK1
)
[
(1 + θ)Kθ,s

1 − θE0K
θ,s
1

]
= Y +

1

2

[
(1 + θ)Kθ,n

1 − αθ,sK0
θK0

]
where we have substituted in the DE policy Kθ,s

2 = αθ,sK1
K1 + αθ,sε2 ε2 in the second line and

substituted in αθ,sK1
= 1/2 in the fourth line. Connecting this with the LHS, we have

ε1 +K0 −Kθ,s
1 =

1

2

[
(1 + θ)Kθ,s

1 − α
θ,s
K0
θK0

]
.

Plugging in the conjectured solution Kθ,s
1 = αθ,sK0

K0 + αθ,sε1 ε1 and equating coefficients give us

αθ,sK0
= 2/3 = αθK0

and αθ,sε1 = 2/(3 + θ) = αθε1 .

A.4 Proof of Proposition 5

Time 2 policy under näıveté. Consider the conjecture

Kθ,n
2 = αθE0K1

E0K
RE
1 + αθK1

Kθ,n
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2CRE

3
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The RHS equals

Eθ2CRE
3 = (1 + θ)E2

[
Y3 +Kθ,n

2

]
− θE0

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ,n

2 − θE0K
RE
2

= Y + (1 + θ)
(
αθ,nK0

K0 + αθ,nK1
K1 + αθ,nε2 ε2

)
− θαREK1

E0K
RE
1

where we substituted in αREK0
= 2/3. Connecting this with the LHS, we have

ε2 +K1 −Kθ,n
2 = (1 + θ)

(
αθ,nK0

K0 + αθ,nK1
K1 + αθ,nε2 ε2

)
− 2

3
θE0K

RE
1 .

Plugging in the conjectured solution Kθ,n
2 = αθE0K1

E0K
RE
1 + αθK1

Kθ,n
1 + αθε2ε2 and equating

coefficients give us αθE0K1
= θ/[2(2 + θ)], αθ,nK1

= 1/(2 + θ) and αθ,nε2 = 1/(2 + θ).

Time 2 policy under sophistication. Consider the conjecture

Kθ,s
2 = αθE0K1

E0K
θ,s
1 + αθK1

Kθ,s
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2Cθ

3

The RHS equals

Eθ2Cθ
3 = (1 + θ)E2

[
Y3 +Kθ,s

2

]
− θE0

[
Y3 +Kθ,s

2

]
= Y +Kθ,s

2 + θ
[
Kθ,s

2 − E0K
θ,s
2

]
= Y + αθE0K1

E0K
θ,s
1 + αθK1

Kθ,s
1 + αθε2ε2 + θ

[
αθε2ε2 + αθK1

(Kθ,s
1 − E0K

θ,s
1 )
]
.

Connecting this with the LHS, we have

ε2 +Kθ,s
1 −K

θ,s
2 = αθE0K1

E0K
θ,s
1 + αθK1

Kθ,s
1 + αθε2ε2 + θ

[
αθε2ε2 + αθK1

(Kθ,s
1 − E0K

θ,s
1 )
]
.

Plugging in the conjectured solution Kθ,s
2 = αθE0K1

E0K
θ,s
1 + αθK1

Kθ,s
1 + αθε2ε2 and equating

coefficients give us αθE0K1
= 1/[2(2 + θ)], αθK1

= 1/(2 + θ) and αθε2 = 1/(2 + θ).

A.5 Proof of Proposition 6

The Proposition below considers the time 1 savings policy under näıveté, referenced in section

3.5.2.

Proposition 6. Compared to the J = 1 case, when J = 2 the näıveté policy function

Kθ,n
1 = αθ,nE−1K0

E−1K0 + αθ,nK0
K0 + αθ,nε1 ε1

is characterized by (i) a positive loading on the past informational state E−1K0, (ii) a muted

response to the current economic state K0, and (iii) an identical, muted, response to the
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current innovation, as follows:

αθ,nE−1K0
=

2θ

3(3 + θ)
; αθ,nK0

=
2

3 + θ
; αθ,nε1 =

2

3 + θ
.

To obtain the policy function, we start from the conjecture

Kθ,n
1 = αθ,nE−1K0

E−1K0 + αθ,nK0
K0 + αθ,nε1 ε1.

Proof. By Lemma 2 the time 1 tradeoff is given by

Cθ
1 = Eθ1CRE

2 .

The RHS equals

Eθ1CRE
2 = (1 + θ)E1

[
Y2 +Kθ,n

1 −KRE
2

]
− θE−1

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ,n

1 (1− αREK1
)
]
− θE−1

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ,n

1 − θE−1K
RE
1

]
= Y +

1

2

[
(1 + θ)Kθ,n

1 − 2

3
θE−1K0

]
where we have substituted in the RE policy KRE

2 = αREK1
K1 + αREε2 ε2 in the second line and

substituted in αREK1
= 1/2 and αREK0

= 2/3 in the fourth line. Connecting this with the LHS,

we have

ε1 +K0 −Kθ,n
1 =

1

2

[
(1 + θ)Kθ,n

1 − 2

3
θE−1K0

]
.

Plugging in the conjectured solution Kθ,n
1 = αθ,nE−1K0

E−1K0 + αθ,nK0
K0 + αθ,nε1 ε1 and equating

coefficients give us αθ,nE−1K0
= 2θ/[3(3 + θ)], αθ,nK0

= 2/(3 + θ) and αθ,nε1 = 2/(3 + θ).

A.6 Proof of Proposition 7

The Proposition below considers the time 1 savings policy under sophistication, referenced in

section 3.5.2.

Proposition 7. When J = 2 we conjecture and verify the sophistication policy function

Kθ,s
1 = αθ,sE−1K0

E−1K0 + αθ,sK0
K0 + αθ,sε1 ε1.

which compared to the näıveté policy function in Proposition 6 is characterized by the following

properties (1) αθ,sε1 < αθ,nε1 ; (2) αθ,sK0
< αθ,nK0

if θ < 1, and αθ,sK0
> αθ,nK0

if θ > 1; (3), αθ,sE−1K0
>

αθ,nE−1K0
if θ < 1, and αθ,sE−1K0

< αθ,nE−1K0
if θ > 1.

Proof. Conjecture

Kθ,s
1 = αθ,sE−1K0

E−1K0 + αθ,sK0
K0 + αθ,sε1 ε1.
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The time 1 tradeoff is given by

Cθ
1 = Eθ1

[
Cθ

2 + αθK1
(E2C

θ
3 − Cθ

2)
]
.

The RHS equals

Eθ1
[
Cθ

2 + αθK1
(E2C

θ
3 − Cθ

2)
]

= (1− αθK1
)Eθ1Cθ

2 + αθK1
Eθ1Cθ

3

= (1− αθK1
)
{

(1 + θ)E1

[
Y2 +Kθ,s

1 −K
θ,s
2

]
− θE−1

[
Y2 +Kθ,s

1 −K
θ,s
2

]}
+ αθK1

{
(1 + θ)E1

[
Y3 +Kθ,s

2

]
− θE−1

[
Y3 +Kθ,s

2

]}
After some algebra, we find that this equals

= Y + (1− αθK1
)(1 + θ)

[(
1− αθ,sE−1K0

− αθK1

)(
αθ,sE−1K0

E−1K0 + αθ,sK0
K0

)
+ (1− αθK1

)αθ,sε1 ε1

]
− (1− αθK1

)θ
(

1− αθ,sE−1K0
− αθK1

)(
αθ,sE−1K0

+ αθ,sK0

)
E−1K0

+ αθK1
(1 + θ)

[
αθ,sE−1K0

(
αθ,sE−1K0

E−1K0 + αθ,sK0
K0

)
+ αθK1

(
αθ,sE−1K0

E−1K0 + αθ,sK0
K0 + αθ,sε1 ε1

)]
− αθK1

θ
(
αθ,sE−1K0

+ αθK1

)(
αθ,sE−1K0

+ αθ,sK0

)
E−1K0

The LHS is given by

Cθ
1 = Y + ε1 +K0 −Kθ,s

1 .

We then connect the LHS to the RHS and equate coefficients after substituting in the

conjectured solution for Kθ,s
1 . Equating coefficients, we have

αθ,sε1 =
1

1 + (1 + θ)
[
(1− αθK1

)2 + (αθK1
)2
] =

(2 + θ)2

(2 + θ)2 + (1 + θ) [(1 + θ)2 + 1]

αθ,sK0
=

1

1 + (1 + θ)
[
(1− αθK1

)(1− αθE0K1
− αθK1

) + αθK1
(αθE0K1

+ αθK1
)
]

=
2(2 + θ)2

2(2 + θ)2 + (1 + θ) [(1 + θ)(1 + 2θ) + 3]

αθ,sE−1K0
=
θ
[
(1− αθK1

)(1− αθE0K1
− αθK1

) + αθK1
(αθE0K1

+ αθK1
)
]

1 + (1− αθK1
)(1− αθE0K1

− αθK1
) + αθK1

(αθE0K1
+ αθK1

)
αθ,sK0

=
θ [(1 + 2θ)(1 + θ) + 3]

2(2 + θ)2 + (1 + 2θ)(1 + θ) + 3
αθ,sK0

which give the specific coefficients in Proposition 7. When we compare this sophistication

solution to the näıveté one, we find the patterns stated in Proposition 7.

B Equilibrium Conditions of the New Keynesian Model

� Capital Euler equation:

µθt = βEθt
[
(CRE

t+1 − bCθ
t )−1(Rk,RE

t+1 uREt+1 − a(uREt+1)) + µREt+1(1− δ)
]
,
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where µθt is the Lagrangian multiplier on the capital accumulation equation.

� Utilization choice:

Rk,θ
t = Rk(uθt )

τ

� Investment first-order condition:

(Cθ
t − bCθ

t−1)−1 = µθt

{
1− κ

2

(
∆Iθt − γ

)2 − κ
(
∆Iθt − γ

)
∆Iθt

}
+ βEθt

[
µREt+1κ

(
∆IREt+1 − γ

) (
∆IREt+1

)2
]

� Investment growth:

∆Iθt = Iθt /I
θ
t−1

� Consumption Euler equation:

Qθ
t =

βRθ
t

Π
Eθt
[
QRE
t+1

]
� Definition of Qθ

t :

Qθ
t

Qθ
t−1

=
Π

Πθ
t

(
Cθ
t − bCθ

t−1

Cθ
t−1 − bCθ

t−2

)−1

� Capital accumulation:

Kθ
t = (1− δ)Kθ

t−1 +

{
1− κ

2

(
Iθt
Iθt−1

− γ
)2
}
Iθt

� Real wage:

W̃ θ
t = MCθ

t (1− α)
Y θ
t

N θ
t

where W̃ θ
t ≡ W θ

t /P
θ
t is the real wage.

� Capital rental rate:

Rk,θ
t = MCθ

t α
Y θ
t

Kθ
t−1

� Production function:

Y θ
t = (uθtK

θ
t−1)α(γtN θ

t )1−α

� Optimal price setting:

Qθ
t

{
− 1

λf − 1
Y θ
t +

λf
λf − 1

MCθ
t Y

θ
t − ϕp

(
Πθ
t − Π

)
Πθ
tY

θ
t

}
+
βϕp
Π

Eθt
[
QRE
t+1

(
ΠRE
t+1 − Π

)
(ΠRE

t+1)2Y RE
t+1

]
= 0
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� Optimal wage setting:

Qθ
t

[(
− 1

λn − 1

)
N θ
t + (Cθ

t − bCθ
t−1)

(
λn

λn − 1

)(
N θ
t

)1+η 1

W̃ θ
t

− ϕw
(
Πθ
w,t − γΠ

)
Πθ
w,t

]
+
βϕw
Π

Eθt
[
QRE
t+1

(
ΠRE
w,t+1 − γΠ

)
(ΠRE

w,t+1)2
]

= 0

� Nominal wage inflation:

Πθ
w,t = Πθ

t

W̃ θ
t

W̃ θ
t−1

� Resource constraint:

Cθ
t + Iθt +

ϕp
2

(
Πθ
t − Π

)2
Y θ
t +

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t + a(uθt )K

θ
t−1 = Y θ

t

� GDP:

Y G,θ
t = Y θ

t −
ϕp
2

(
Πθ
t − Π

)2
Y θ
t −

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t − a(uθt )K

θ
t−1

� Taylor rule:

Rθ
t

R
=

(
Rθ
t−1

R

)ρR
(

Π̃θ
t

Π

)φπ (
Y G,θ
t

γY G,θ
t−1

)φY


1−ρR

εt

C Solution Algorithm

We start from a linear RE system

Γ0
n×n

xREt
n×1

= Γ1
n×n

xREt−1
n×1

+ Ψ
n×ns

εt
ns×1

+ Π
n×ne

ηREt
ne×1

where xREt , εt and ηREt are vectors of endogenous variables, shocks, and expectation errors,

respectively. A recursive law of motion can be obtained, using for example Sims (2000), as:

xREt = TRExREt−1 + RREεt.

Note that the solution can be divided based on the non-expectation
(
x̃REt

)
and expectation

terms
(
EtyREt+1

)
: x̃REt

(n−ne)×1

EtyREt+1
ne×1

 =

 TRE
11

(n−ne)×(n−ne)
TRE

12
(n−ne)×ne

TRE
21

ne×(n−ne)
TRE

22
ne×ne


 x̃REt−1

(n−ne)×1

Et−1y
RE
t

ne×1

+

 RRE
1

(n−ne)×ns

RRE
2

ne×ns

 εt
where yREt+1 is a subset of x̃REt+1.
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Define:

xθt =

 x̃θt
(n−ne)×1(
EtyREt+1

)θ
ne×1


Note that

(
EtyREt+1

)θ
denotes the realized value for rational expectations, so it is different

from EθtyREt+1. We have:

EtyREt+1 = MTRExθt =
(
EtyREt+1

)θ
where M is a matrix that extract the relevant elements from TRExθt . Note that the equation

needs to be included to the system of equations for the DE model because it provides the law

of motion for the realized expectations. To see this,

(EtyREt+1)θ = [M1 : 0]︸ ︷︷ ︸
M

[
TRE

11 TRE
12

TRE
21 TRE

22

][
x̃θt

(EtyREt+1)θ

]

= M1T
RE
11 x̃θt + M1T

RE
12 (EtyREt+1)θ

so

−M1T
RE
11 x̃θt + (I−M1T

RE
12 )(EtyREt+1)θ = 0.

It is useful to divide variables xREt in the original gensys system into non-expectation

terms and expectation terms: Γ0,11
(n−ne)×(n−ne)

Γ0,12
(n−ne)×ne

Γ0,21
ne×(n−ne)

Γ0,22
ne×ne


 x̃REt

(n−ne)×1

EtyREt+1
ne×1

 =

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

Γ1,21
ne×(n−ne)

Γ1,22
ne×ne


 x̃t−1

(n−ne)×1

Et−1y
RE
t

ne×1


+

 Ψ1
(n−ne)×ns

Ψ2
ne×ns

 εt
ns×1

+

 Π1
(n−ne)×ne

Π2
ne×ne

 ηREt
ne×1

Then, the model under DE can be expressed using matrix notation as:

Γθ
0x

θ
t = Γθ

2EθtyREt+1 + Γθ
1x

θ
t−1 + Ψθεt (50)

where Γθ
0 includes the RE restrictions: Γ0,11

(n−ne)×(n−ne)
0

(n−ne)×ne

−M1T
RE
11

ne×(n−ne)
I−M1T

RE
12

ne×ne


 x̃θt

(n−ne)×1(
EtyREt+1

)θ
ne×1

 =

 −Γ0,12
(n−ne)×ne

0
ne×ne

EθtyREt+1

+

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

0
ne×(n−ne)

0
ne×ne


 x̃θt−1

(n−ne)×1(
Et−1y

RE
t

)θ
ne×1

+

 Ψ1
(n−ne)×ns

0
ne×ns

 εt
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Then:

Γθ
0x

θ
t = Γθ

2E
θ
t y

RE
t+1 + Γθ

1x
θ
t−1 + Ψθεt

Γθ
0x

θ
t = Γθ

2

[
(1 + θ)EtyREt+1 −

J∑
j=1

θαjEt−jyREt+1

]
+ Γθ

1x
θ
t−1 + Ψθεt

Suppose that we do not need all elements in xθt to form expectations about the future.28 In

particular, we have

yREt = MxREt

xREt = TRExREt−1 + RREεt

but can be reduced to

yREt = M̃x̃REt

x̃REt = T̃REx̃REt−1 + R̃REεt

Then (50) becomes

Γθ
0x

θ
t = Γθ

2

[
(1 + θ) MTRExθt −

J∑
j=1

θαjM̃
(
T̃RE

)j+1

x̃θt−j

]
+ Γθ

1x
θ
t−1 + Ψθεt. (51)

This becomes: [
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
xθt =

[
Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− Γθ
2θα2M̃

(
T̃RE

)3

x̃θt−2

. . .

− Γθ
2θαJM̃

(
T̃RE

)J+1

x̃θt−J

+ Ψθεt.

28The method can easily allow for the case where we need full elements in xθt to form expectations. The
advantage of the current method is that its state space is smaller and hence is useful for a DSGE estimation,
among other things.
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The solution can be obtained inverting the LHS matrix:

xθt =(Aθ
0)−1

[
Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− (Aθ
0)−1Γθ

2θα2M̃
(
T̃RE

)3

x̃θt−2

. . .

− (Aθ
0)−1Γθ

2θαJM̃
(
T̃RE

)J+1

x̃θt−J

+ (Aθ
0)−1Ψθεt,

where Aθ
0 ≡

[
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
.

Writing in a more compact form, we obtain
xθt

x̃θt−1
...

x̃θt−J+1


︸ ︷︷ ︸

zθt

=


(
Aθ

0

)−1 [
Γθ

1 − Γθ
2θα1M(TRE)2

]
−
(
Aθ

0

)−1
Γθ

2θα2M̃
(
T̃RE

)3

. . . −
(
Aθ

0

)−1
Γθ

2θαJM̃
(
T̃RE

)J+1

S 0 . . . 0

I

0 . . . 0


︸ ︷︷ ︸

Tθ
xθt−1

x̃θt−2
...

x̃θt−J


︸ ︷︷ ︸

zθt−1

+


(
Aθ

0

)−1
Ψθ

0
...

0


︸ ︷︷ ︸

Rθ

εt,

where S is a selection matrix that relates xθt to x̃θt :

x̃θt = Sxθt .

Finally, we check that all variables over which we take DE present residual uncertainty.

To do this, we define a vector wRE
t = QxREt that extracts all relevant linear combinations

from the vector xREt . This vector contains all and only the variables over which we compute

DE. Then, for each element wREj,t of this vector we verify that the one-step-ahead conditional

variance is positive:

V art
(
wREj,t+1

)
= (QRREΣ(QRRE)′)j,j > 0,

53



Figure 5: Impulse response of marginal utility
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Notes: The Figure shows the DE marginal utility (Eθt λ̂REt+1), realized equilibrium marginal utility (λ̂θt ), RE

marginal utility (Etλ̂REt+1) and reference expectation of marginal utility (Ert λ̂REt+1).

where Σ ≡ Et[εt+1ε
′
t+1] and (·)j,j indicates the j-th diagonal element of the matrix.

D Additional Results

In this appendix we report some additional results for the estimated DSGE model.

Table 1 reports the priors and the posterior mode for the model parameters of the DE

model and RE re-estimated model. Standard deviations are reported in parentheses. The

priors are symmetric across the two models and diffuse.

Figure 5 reports the impulse response of the marginal utility to an expensionary monetary

policy shock, given that the estimated Euler Equation features habits:

−Eθt
(
λ̂REt+1

)
+ λ̂θt = r̂θt − Eθt π̂REt+1 − θπ∗J,t (52)

where

λ̂θt = −
ĉθt − bγ−1ĉθt−1

1− bγ−1
. (53)

Marginal utility follows a symmetric pattern with respect to consumption, once controlling

for habits. The initial increase in consumption is associated with low expected marginal utility

that induces expectations of even lower marginal utility. Thus, agents expect consumption

to increase even when controlling for the stock of habits. As the economy progresses in its

response to the shock, consumption starts declining and marginal utility to increase. However,

reference expectations for marginal utility also start increasing. This is because reference

expectations were formed at a time of high consumption. Under RE, agents expect a fairly

quick return to the steady state from above, implying consumption lower than the stock
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Table 1: Estimated parameters

Prior Posterior mode
Type Mean Std DE RE

η Inverse Frisch elasticity G 2 0.3 2.44 1.74
(0.30) (0.30)

b Consumption habit B 0.5 0.2 0.80 0.93
(0.01) (0.01)

τ Utilization cost IG 1 1 0.22 0.26
(0.01) (0.01)

κ Investment adjustment cost G 2 0.2 3.30 5.24
(0.20) (0.32)

ϕp Price adjustment cost G 100 20 232.3 252.0
(21.6)) (29.7)

ϕw Wage adjustment cost G 100 20 90.5 61.5
(21.2) (16.7)

ρR Taylor rule smoothing B 0.5 0.2 0.005 0.82
(0.004) (0.014)

φπ Taylor rule inflation N 1.5 0.4 1.001 1.000
(0.007) (0.031)

φY Taylor rule output N 0.1 0.05 0.67 0.20
(0.02) (0.05)

100σR Monetary policy shock IG 1 1 0.17 0.16
(0.01) (0.01)

θ Diagnostic parameter G 1 0.1 1.91 –
(0.10)

µ Memory distribution mean B 0.5 0.2 0.19 –
(0.01)

σ Memory distribution stdev G 0.2 0.05 0.04 –
(0.004)

Log marginal likelihood -464 -504

Notes: ‘DE’ corresponds to the model with diagnostic expectations and ‘RE’ corresponds to the rational

expectations version. B refers to the Beta distribution, N to the Normal distribution, G to the Gamma

distribution, IG to the Inverse-gamma distribution. Posterior standard deviations are in parentheses and are

obtained from draws using the random-walk Metropolis-Hasting algorithm. The marginal likelihood is

calculated using Geweke’s modified harmonic mean estimator.
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of habits, leading to a positive RE marginal utility. However, under DE, the return to the

steady state is slower than expected as agents remain overly optimistic for a while. Agents

are still surprised by the high consumption, leading to a negative surprise in marginal utility,

amplified by DE. Thus, past decisions feed into current beliefs, affecting the duration and

amplitude of the cycle. It is only around 15 quarters that reference expectations catch up

with the current marginal utility. As consumption moves below trend, agents start expecting

a return to the steady from below, generating a negative reference expectation for marginal

utility as consumption is expected to be higher than the stock of habits. In the bust phase,

agents are surprised by the fact that consumption is still well below trend, leading to a

positive surprise in marginal utility, that induces magnified DE of high marginal utility in

the future.

How can we rationalize this behavior from the perspective of the Euler equation under

DE in (44)? As mentioned in the paper, a key role is played by the surprise in cumulative

inflation π∗J,t with respect to the reference expectations formed in the past. On impact,

because of an increase in utilization, inflation declines. This determines a negative surprise

in the price level that induces a misperception in the model relevant real interest rate that

starts increasing. This perceived high real interest is, in the eyes of the agent, justified

in light of a perceived acceleration in consumption that more than compensates for the

habit stock. In other words, not only agents expect consumption to be higher in the

future, but they also expect the marginal utility to be lower: −Eθt
(
λ̂REt+1

)
+ λ̂θt > 0 implies

Eθt
(
ĉREt+1 − bγ−1ĉREt

)
−
(
ĉθt − bγ−1ĉθt−1

)
> 0. Eventually, inflation starts picking up, leading

first to a reduction in the negative surprises for the price level and then eventually to positive

surprises. This determines a reversal in the model relevant real interest rate that moves into

the negative territory during the bust part of the cycle, when agents find the perceived low

real interest rate justified in light of their excessive pessimism. Now not only they expect

consumption to decline, but also to do so in a way to increase the marginal utility.
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