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1 Introduction

Sustainable finance mandates, whereby asset portfolios are restricted to firms that can meet

net-zero emissions targets, are increasingly embraced by the financial sector. Prominent

mandates include the Glasgow Financial Alliance for Net Zero, which has commitments

from 450 financial firms across 45 countries with $130 trillion of assets (Wall Street Journal

on November 7, 2021), and the Network for Greening the Financial System (NGFS), which

supports net-zero pledges by central banks.

These mandates are meant to address the global-warming externality by influencing the

firms’ costs of capital, thereby incentivizing them to reform. Following Intergovernmental

Panel on Climate Change (IPCC) mitigation pathways (Rogelj et al., 2018), major corpo-

rations have announced audited plans to meet net-zero emissions targets by accumulating

decarbonization capital, including renewables, afforestation and reforestation, soil carbon

sequestration, bioenergy with carbon capture and storage (BECCs), and direct air capture

(DAC).1

While prior work on socially responsible investing indicates that divestment and the cost-

of-capital channel can be a material incentive for firms to reform,2 there remains challenging

questions regarding the welfare consequences of these mandates. First, how close to the first-

best outcomes can these mandates get us when it comes to mitigating global warming? Put

another way, can mandates be a viable tool to address the global-warming externality when

there are imminent risks of a climate tipping point—an absorbing state characterized by

more frequent weather disasters (Lenton et al., 2008; Collins et al., 2019; National Academy

of Sciences, 2016) that significantly increases the social cost of carbon (Cai et al., 2015;

1The European Union and likely the Security Exchange Commission are addressing greenwashing by
requiring investors to disclose the carbon emissions of firms in their portfolios.

2The first model analyzing the impact of green mandates on the required rate of return is cast in a
static CARA setting (Heinkel, Kraus, and Zechner, 2001). Hong and Kacperczyk (2009) show how ethical
investing mandates affect the sin companies’ costs of capital. Recent work, e.g., Pastor, Stambaugh, and
Taylor (2019) and Pedersen, Fitzgibbons, and Pomorski (2020), model how non-pecuniary tastes of green
investors influence cross-sectional asset prices in a CAPM setting or in a setting with financial constraints
(Oehmke and Opp, 2020). While exits or screens are the predominant forms of mandates, mandates need
not only be passive but also active via voting for environmentally friendly policies (Gollier and Pouget, 2014;
Broccardo, Hart, and Zingales, 2020).
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Cai and Lontzek, 2019)? Second, how should the corporate sector optimally decarbonize

given trade-offs between the costs of accumulating decarbonization capital and the benefits

of averting catastrophic consequences of global warming for the society as a whole?

To address these issues, we introduce decarbonization capital into a dynamic stochastic

general-equilibrium model with the standard capital stock, which serves as both the input

for producing a homogeneous good and also the source of carbon emissions (Nordhaus, 2017;

Jensen and Traeger, 2014). Decarbonization capital only offsets carbon emissions, has no

productive role, comes at the expense of forgone corprorate investment or dividend payouts,

and also faces capital adjustment costs. More decarbonization relative to productive capital

delays a climate tipping point, which is modeled as a Poisson jump process from a “Good”

climate state with infrequent weather disasters to an absorbing “Bad” climate state with

frequent weather disasters (Lontzek et al., 2015).

Weather disasters in both “Good” and “Bad” climate states, also modelled as jump pro-

cesses with time-varying arrival rates, destroy both productive and decarbonization capital

stocks and lead to significant welfare losses for households with Epstein-Zin recursive util-

ity (Rietz, 1988; Barro, 2006; Pindyck and Wang, 2013; Martin and Pindyck, 2015).3 To

effectively manage climate tipping-out risk, more decarbonization capital stock, which also

mitigates weather disasters in both climate states, is needed for an economy with a larger

productive capital stock.

Since the decarbonization costs are borne by the firm but its benefits are enjoyed by

society in the form of a lower aggregate risk, there is an externality in the economy that can

be addressed by sustainable finance mandates. A mandate is composed of the fraction of

aggregate wealth that is restricted for sustainable investment and a qualification standard

for each firm choosing to be sustainable. In equilibrium, a sufficiently large fraction of ex

ante identical firms choose to meet the qualification standard so that they are included in

the representative investor’s sustainable-firm portfolio.

3Models with time-varying disaster arrival rates (Gabaix, 2012; Gourio, 2012; Collin-Dufresne, Johannes,
and Lochstoer, 2016; Wachter, 2013) have been shown to be quantitively important to simultaneously explain
business cycles and asset price fluctuations.
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First, the required rate of return for a sustainable firm is lower than that for an unsus-

tainable firm. The wedge between the two types equals the required mitigation spending (to

fund the aggregate decarbonization capital accumulation) for a sustainable firm divided by

its Tobin’s q, i.e., the dividend yield a sustainable firm’s shareholders forgo to address the

global-warming externality or greenium. This required rate of return formula is due to the

equilibrium result that Tobin’s q, for sustainable and unsustainable firms must be the same

so that firms are indifferent between being sustainable or not.4 Additionally, sustainable and

unsustainable firms invest and hence grow at the same rate (path by path) over time. This

is because 1) investment is connected to Tobin’s q via first-order conditions for both types of

firms (Hayashi, 1982) and 2) both types of firms have the same Tobin’s q. Finally, sustain-

able firms must lower their payouts to their shareholders in order to fund their mitigation

spendings in order to enjoy lower costs of capital and keep the growth of all firms the same.

The premium for sustainable stocks (i.e. greenium) in our model arises for a reason

different from the standard mechanism in the literature, e.g., Heinkel, Kraus, and Zechner

(2001), Hong and Kacperczyk (2009), Pastor, Stambaugh and Taylor (2019). In these papers,

a group of investors who are financially unconstrained have to be indifferent between investing

in sustainable firms or not in equilibrium at the margin. Mandates force these unconstrained

investors to take concentrated positions in unsustainable firms. To the extent stocks are

imperfect substitutes, e.g., due to idiosyncratic shocks, unconstrained investors will demand

a higher required rate of return for unsustainable firms. In contrast, in our model, there is

no idiosyncratic risk and portfolio shares are fixed. The reason the mandate has an effect in

our model is that value-maximizing firms have to be indifferent between being sustainable

or not.

Second, we compare households’ welfare in a competitive-markets economy augmented

with welfare-maximizing mandates with that in the first-best economy. Whereas the plan-

ner jointly chooses mitigation and productive investments, firms in the market economy with

4The decarbonization capital, which is unproductive and does not contribute to output, sits in the firm’s
assets but is not priced by markets other than through the mandate qualification mechanism.
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welfare-maximizing mandates choose productive investments taking as given the mitigation

spending required by the welfare-maximizing mandate path. The welfare-maximizing man-

date in general depends on the climate state, the productive capital stock and the ratio of

decarbonization-to-productive capital. Given a sufficiently large fraction of aggregate wealth

that is restricted to mandates, we solve for the optimal required firm mitigation spending

that maximizes welfare in the market economy. There tends to be too much investment and

too little consumption in the welfare-maximizing mandated market economy compared to

the first-best economy.

We prove that incorporating another policy instrument, e.g., an investment tax, into

the market economy with optimal mandates (discussed above) can attain the first-best.

Quantitatively, we show introducing the welfare-maximizing mandate alone into the market

economy well approximates the first-best outcomes. In other words, the optimal mandate

can be a useful tool to address the global warming externality.

Third, our model generates transitions to steady-state decarbonization-to-productive cap-

ital ratios that can be used to evaluate the optimality net-zero targets proposed by policy-

makers. When the adjustment costs of productive and decarbonization capital are close,

the optimal path in the mandated market economy implies a rapid transition to a high

steady-state ratio of decarbonization-to-productive capital stock, much in the way that pol-

icy makers are hoping with 2030 or 2050 net-zero targets in the Paris agreement. As the

mandated market economy decarbonizes, the aggregate risk of economic growth is reduced

and substantial increases in household welfare are realized. Asset prices, including the risk-

free rate, stock-market risk premium, and the aggregate Tobin’s q, also respond favorably to

the lower aggregate risk resulting from the accumulation of decarbonization capital.

But even modestly higher adjustment costs for accumulating decarbonization capital

result in a dramatically slower transition to a much lower steady-state decarbonization-to-

capital ratio, which seems more in line with the limited growth of decarbonization capital

stock over the last decade.

Our paper differs from the two sector model of Eberly and Wang (2009), where investors’
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preferences for portfolio diversification is the key force. Our paper builds on Hong, Wang

and Yang (2022), who model the regional-level mitigation of weather disasters, and the

optimal capital tax to stimulate the first-best level of flow spending for preparedness. Our

paper contributes to the emerging climate-finance literature on the role of the financial

system in addressing global warming (see Hong, Karolyi, and Scheinkman (2020) for an

overview). Bansal, Ochoa, and Kiku (2017) use a long-run risk model to evaluate the impact

of higher temperature on growth stocks. Barnett, Brock, and Hansen (2020) provide an

asset-pricing framework to confront climate model uncertainty. Engle et al. (2020) develop

a method to hedge climate risks through trading of stock portfolios. Piazessi, Papoutsi, and

Schneider (2022) develop a deterministic multisector growth model with climate externalities

and financial frictions to study the environmental impact of unconventional monetary policy.

2 Model

2.1 Climate State

Consider the following climate-transition model. Let St denote the climate state at time

t. The economy starts from the good climate state (G) and stochastically transitions to

the bad state (B) at a stochastic rate of ζt > 0. Moreover, we assume that this climate

transition is permanent in that the B state is absorbing. In both climate states, there are

also weather disaster shocks, e.g., hurricanes and wildfires that destroy capital. But the

good climate state (G) has less frequent weather disasters than the bad state (B). We model

these weather disaster shocks and the climate state transition via jumps to be discussed in

detail later. Next, we introduce the production side of the economy.

2.2 Firm Production and Productive Capital (K) Accumulation

There is a continuum of firms endowed with the same production function and capital accu-

mulation technology. In both climate states (G and B), each firm’s output at time t, Yt, is
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proportional to its contemporaneous productive capital stock, Kt:

Yt = AKt , (1)

where A > 0 is a constant that defines productivity. This is a version of widely-used

AK models in macroeconomics and finance. This simplifying assumption makes our model

tractable and allows us to focus on the impact of the financial investment mandate on

equilibrium asset pricing and resource allocation.5

2.2.1 Investment

Let It denote a firm’s investment. Also in both B and G climate states, the firm’s productive

capital stock, Kt, evolves as:

dKt = Φ(It−, Kt−)dt+ σKt−dWt − (1− Z)Kt−dJt . (2)

As in Lucas and Prescott (1971), Hayashi (1982), and Jermann (1998), we assume that

Φ(I,K), the first term in (2), is homogeneous of degree one in I and K, and thus

Φ(I,K) = ϕ(i)K , (3)

where i = I/K is the investment-capital ratio and ϕ( · ) is increasing and concave. This spec-

ification captures the idea that changing capital stock rapidly is more costly than changing

it slowly. The installed capital earns rents in equilibrium so that Tobin’s q, the ratio between

the value and the replacement cost of capital exceeds one. The second term captures con-

tinuous (Brownian motion) shock to capital {Wt} (common to all firms) and the parameter

σ is the diffusion volatility. Next, we introduce disaster shocks.

2.2.2 Weather Disaster (Jump) Shocks

In both climate states (G and B), the firm’s capital stock K is subject to an aggregate

jump shock due to weather disasters. We capture weather disaster shocks via the third

5To ease exposition, we assume that all firms start with the same initial capital stock level, K0, although
our model can be generalized to allow for heterogeneous levels of initial K0. We could also generalize our
model by introducing idiosyncratic shocks across firms. Our aggregation results would remain valid as long
as firms can also perfectly hedge idiosyncratic shocks at no cost.
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term in (2), where {Jt} is a (pure) jump process driving weather disaster arrivals with a

climate-state-dependent arrival rate {λStt } process.

When a jump arrives (dJt = 1), it permanently destroys a stochastic fraction (1− Z) of

the firm’s capital stock Kt−, as Z ∈ (0, 1) is the recovery fraction. (For example, if a shock

destroyed 15 percent of capital stock, we would have Z = 0.85.) There is no limit to the

number of these weather disaster shocks. If a jump does not arrive in state St, i.e., dJt = 0,

the third term disappears. Let Ξ(Z) and ξ(Z) denote the cumulative distribution function

(cdf) and probability density function (pdf) of the recovery fraction, Z, conditional on a

jump arrival, respectively. We assume that the cdf Ξ(Z) and pdf ξ(Z) are time invariant.

In a given climate state St (B or G) at time t, we model the stochastic damage upon the

arrival of a weather disaster by assuming that the recovery fraction, Z ∈ (0, 1), of capital

stock is governed by the following cdf (Barro and Jin, 2011; Pindyck and Wang, 2013):

Ξ(Z) = Zβ , (4)

where β > 0 is a constant. To ensure that our model is well defined (and economically

relevant moments are finite), we require β > max{γ − 1, 0}. That is, the damage caused by

a weather disaster arrival follows a fat-tailed power-law function (Gabaix, 2009).

2.2.3 Firm Investment, Dividends, and Mitigation Spending (Contribution)

At any time t, the firm uses its output AKt to finance investment It, pay cash flows (div-

idends) CFt to shareholders, and make mitigation spending Xt contributing towards the

aggregate decarbonization capital accumulation to be described in detail soon. Therefore,

Yt = AKt = It + CFt +Xt . (5)

We use boldfaced notations for aggregate variables. Next, we introduce emissions,

emission removals, and the dynamics of the aggregate decarbonization capital stock N.
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2.3 Aggregate Emissions, Emission Removals, and Decarboniza-
tion Capital Stock N

We assume that aggregate emissions Et is proportional to the aggregate productive capital

stock Kt:

Et = eKt , (6)

where e > 0 is a constant. The aggregate capital stock Kt and emissions Et equal the sum

(integral) of each firm’s capital stock Kt and emissions Et: Kt =
∫
Kν
t dν and Et =

∫
Eν
t dν,

respectively.6 That is, aggregate emissions increases linearly with the size of the production

sector of the economy, which is measured by the aggregate capital stock K or equivalently

GDP (AK). Similarly, we assume that the aggregate emission removals Rt is proportional

to the aggregate decarbonization capital stock Nt:

Rt = ϱNt , (7)

where ϱ > 0 is a constant. Both aggregate emissions Et and carbon removals Rt are given

by an “AK”-type of technology, as we can see from (6) and (7).

Let Xt denote the aggregate mitigation spending (investment), which equals the sum of

mitigation spending contributions by all firms: Xt =
∫
Xν
t dν. The aggregate decarbonization

capital stock N evolves as follows:

dNt

Nt−
= ω(Xt−/Nt−)dt+ σdWt − (1− Z)dJt . (8)

The control Xt−/Nt− in (8) for N accumulation at the aggregate level is analogous to the

investment-capital ratio It−/Kt− in (2) for productive capital (K) accumulation at the firm

level. That is, absent jumps, ω(Xt−/Nt−), the drift of dNt/Nt−, is analogous to ϕ(It−/Kt−),

the drift of dKt/Kt−. We assume that ω( · ) is increasing and concave as we do for ϕ( · ).
This specification captures the idea that changing N rapidly is more costly than changing it

6We integrate over a continuum of firms with respect to the measure ν. See Sun (2006) for technical
conditions under which we can construct the associated probability and agent measures that allow invoking
a law of large numbers.
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slowly. As we show later, the adjustment costs for Nt has first-order implications on welfare

implications and the transition path towards the net-zero target.7

Equation (8) implies that the growth rate for the decarbonization capital stock N,

dNt/Nt−, is subject to the same diffusion and jump shocks as the growth rate of the aggre-

gate productive capital stock K, dKt/Kt−. Recall that the productive capital stock at the

aggregate level follows the same process as at the firm level: dKt/Kt− = dKt/Kt− path by

path, e.g., for each realized jump and recovery fraction Z.

Let nt denote the aggregate decarbonization-productive capital ratio:

nt =
Nt

Kt

. (9)

Using Ito’s lemma, we obtain the following dynamics for nt:

dnt
nt−

= [ω(xt−/nt−)− ϕ(it−)] dt . (10)

Note that there is no uncertainty for the dynamics of nt in our model. This is because

productive and decarbonization capital stocks are subject to the same jump-diffusion growth

shocks.8 We next introduce the climate tipping-point and weather disaster arrival rates.

2.4 Tipping-point Arrival and Weather Disaster Arrival Rates

Let J̃t denote the climate tipping-point arrival process. Conditional on being in good climate

state at time t, St = G, global warming increases the arrival rate of the climate tipping point.

As state B is assumed to be absorbing, there are no further climate-state transitions once

the economy is in state B. (For notional convenience, we will sometimes denote the arrival

rate of the climate tipping point by ζStt with the understanding that ζGt > 0 and ζBt = 0.)

First, we assume that the tipping-point arrival rate ζGt is increasing in the aggregate

emissions Et and decreasing in the aggregate emissions removals Rt. Similarly, we assume

7In our model, whether firms do mitigation spending on their own (e.g., planting trees by themselves) or
contribute resources to the planner who plants trees on behalf of all firms, the solution is the same. This is
because a firm’s mitigation spending yields only public benefits and no firm-specific benefit. We choose to
specify an aggregate decarbonization capital accumulation process throughout our paper.

8Note that nt is continuous even when the climate state transitions from G to B.
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that the weather disaster arrival rates in both climate states, λGt , and λ
B
t , are also increasing

in the aggregate emissions Et and decreasing in the aggregate emissions removals Rt. As

Et = eKt and Rt = ϱNt (see equations (6) and (7)), we may write the three transition rates,

(ζGt , λ
G
t , and λ

B
t ), as functions that are increasing in Kt and decreasing in Nt.

We assume that the effects of Kt and Nt on the three transition rates (ζGt , λ
G
t , and λ

B
t )

can be summarized via nt. That is, ζ
G
t , λ

G
t , and λ

B
t are all homogeneous of degree zero in Kt

and Nt. We thus write these rates as functions of the scaled aggregate decarbonization stock

nt = Nt/Kt: ζ
G
t = ζ(nt;G), λGt = λ(nt;G), and λBt = λ(nt;B).9 Recall ζBt = ζ(nt;B) = 0.

As decarbonization probabilistically delays the tipping point and reduces the weather-

disaster arrival rates, we assume ζ ′(nt;G) < 0, λ′(nt;G) < 0, and λ′(nt;B) < 0. Additionally,

we assume that the marginal benefits (e.g., decreasing the climate tipping-point arrival rate

and reducing the frequencies of weather disaster shocks) of accumulating decarbonization

capital stock decreases as nt increases: ζ
′′(nt;G) > 0, λ′′(nt;G) > 0, and λ′′(nt;B) > 0. That

is, the absolute value for the derivative of the climate tipping-point arrival rate, |ζ ′(nt)|,
decreases with nt. Similarly, the marginal effect (magnitude wise) of N on the change of λSt

decreases as N increases in that λ′′(nt;St) > 0.

Finally, to capture the idea that weather disasters are more frequent in the B state than

in the G state conditional on nt, we assume λt(nt;G) < λt(nt;B) for all nt. We specify the

functional forms for λt(nt;G), λt(nt;B), and ζ(nt;G) in Section 6.

As climate transition and weather disaster shocks are aggregate, how much each individ-

ual firm spends on mitigation has no impact on its own payoff. Therefore, absent mandates or

other incentive programs, firms have no incentives to mitigate on their own in a competitive

market economy.

2.5 Sustainable Investment Mandate

The sustainable investment mandate requires the representative agent to invest a constant

fraction (α > 0) of the entire portfolio (aggregate wealth) in sustainable firms, referred to as

9To make the dependence of ζSt
t and λSt

t on nt and St explicit, we write ζSt
t = ζ(nt;St) and λSt

t =
λ(nt;St). This homogeneity assumption is consistent with sustainable long-term balanced growth.
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type-S firms, at all time t when allocating assets.

On the supply side, a portfolio of S firms and a portfolio of U firms will arise endogenously

in equilibrium, which we refer to as the S portfolio and U portfolio, respectively. For a firm

to qualify to be type-S, it has to spend at least Mt = mtKt at all time t. That is, a firm at

least spendsmt for each unit of its productive capital Kt on mitigation by contributing to the

accumulation of the aggregate decarbonization capital stock, which delays the tipping-point

arrival and reduces the weather disaster shock arrival rates. A firm is then qualified to be

included in the S-portfolio, if and only if its mitigation spending Xt satisfies:

Xt ≥Mt . (11)

Otherwise, it is a type-U unsustainable firm.

The S and U portfolios include all the S and U firms, respectively. LetQS
t andQU

t denote

the aggregate market value of the S portfolio and of the U portfolio at t, respectively. The

total market capitalization of the economy, Qt, is given by Qt = QS
t +QU

t . In equilibrium,

the investment mandate requires that the total capital investment in the S portfolio, QS
t ,

has to be at least an α fraction of the total stock market capitalization Qt:

QS
t ≥ αQt . (12)

Next we turn to the demand side of the economy.

2.6 Dynamic Consumption and Asset Allocation

The representative agent makes consumption, asset allocation, and risk management deci-

sions. We use individual and aggregate variables for the agent interchangeably as we have a

continuum of identical agents (with unit measure). For example, the aggregate wealth, Wt,

is equal to the representative agent’s wealth, Wt, in equilibrium. Similarly, the aggregate

consumption, Ct, is equal to the representative agent’s consumption, Ct.

The representative agent has the following investment opportunities: (a) the S portfolio

which includes all the sustainable firms; (b) the U portfolio which includes all other firms
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that are unsustainable; (c) the risk-free asset that pays interest at a risk-free interest rate rf

process determined in equilibrium.10

Preferences. We use the Duffie and Epstein (1992) continuous-time version of the homo-

thetic recursive preferences developed by Epstein and Zin (1989) and Weil (1990), so that

we may express the agent’s value-function process, {Vt; t ≥ 0}, as follows:

Vt = Et
[∫ ∞

t

f(Cs, Vs)ds

]
, (13)

where f(C, V ) is known as the normalized aggregator given by

f(C, V ) =
ρ

1− ψ−1

C1−ψ−1 − ((1− γ)V )χ

((1− γ)V )χ−1 . (14)

Here ρ is the rate of time preference, ψ the elasticity of intertemporal substitution (EIS), γ

the coefficient of relative risk aversion, and we let χ = (1 − ψ−1)/(1 − γ). Unlike expected

utility, recursive preferences as defined by (13) and (14) disentangle the coefficient of relative

risk aversion from the EIS. An important feature of these preferences is that the marginal

benefit of consumption is fC = ρC−ψ−1
/[(1 − γ)V ]χ−1, which depends not only on current

consumption but also (through the value function V ) on the trajectory of future consumption.

This more flexible utility specification is widely used in asset pricing and macroeconomics

for at least two important reasons: 1) conceptually, risk aversion is very distinct from the EIS,

which this preference is able to capture; 2) quantitative and empirical fit with various asset

pricing facts are infeasible with standard CRRA utility but attainable with this recursive

utility, as shown by Bansal and Yaron (2004) and the follow-up long-run risk literature.11

10To be precise, as markets are dynamically spanned, the economy also has actuarially fair insurance
claims for each weather disaster arrival (with every possible recovery fraction Z) and the insurance contracts
contingent on climate transition as well as diffusion shocks. But we suppress these zero-net-supply claims
since they do not change the allocations in the economy as shown in Pindyck and Wang (2013) and Hong,
Wang, and Yang (2022).

11If γ = ψ−1 so that χ = 1, the recursive utility (13) turns into the standard constant-relative-risk-aversion
(CRRA) expected utility, represented by the additively separable (normalized) aggregator:

f(C, V ) =
ρC1−γ

1− γ
− ρ V.
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2.7 Competitive Equilibrium with Mandates

LetYt, Ct, It, andXt denote the aggregate output, consumption, investment, and mitigation

spending, respectively. Using an individual firm’s resource constraint (5) and adding across

all type-S and type-U firms, we obtain the aggregate resource constraint in the economy:

Yt = Ct + It +Xt . (15)

We define the competitive equilibrium subject to the investment mandate defined earlier

as follows: (i.) the representative agent dynamically chooses consumption and asset alloca-

tion among the S portfolio, the U portfolio, and the risk-free asset subject to the investment

mandate; (ii.) each firm chooses its status (S or U) via mitigation spending and investment

I to maximize its market value; (iii.) all firms that choose sustainable investment policies

are included in the S portfolio and all remaining (unsustainable) firms are included in the

U portfolio; and (iv.) all markets clear.

The market-clearing conditions at each time t include (i.) the representative agent’s

demand for the S portfolio equals the total supply by firms choosing to be sustainable;

(ii.) the representative agent’s demand for the U portfolio equals the total supply by firms

choosing to be unsustainable; (iii.) the net supply of the risk-free asset is zero; and (iv.) the

goods market clears, i.e., the aggregate resource constraint given in (15) holds.

2.8 Comments on Model Assumptions

We highlight three key sets of assumptions that are made to gain tractability.

2.8.1 Firm Decarbonization Technology

Following the carbon-externality literature, we assume that it does not matter which firm

does the clean-up (Salanie, 2000). In principle, we can allow firms to have different emission

intensities. Any firm could be sustainable and spend on the clean-up. For decarbonization

technologies such as direct air capture (DAC), this seems a good assumption since these

DAC plants could be built by many firms in many industries (e.g., DAC investments made
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by Microsoft). But there are other technologies where it might be more efficient for firms in

certain industries (e.g., dirty industries) to execute. In this instance, the investment mandate

would naturally also depend on the types of industries that firms are in and other factors.

2.8.2 Carbon Cycle and Damage Function

We have made simplifying assumptions regarding the carbon cycle and damage functions in

our model. Below we discuss these simplifications and some potential generalizations. First,

in reality, emissions increase the stock of carbon which affects temperature with a delay. In

our model the stock of carbon is assumed to immediately influence the climate tipping-point

and weather disaster arrivals. We can generalize our model by allowing for a lag between

the time at which an investment in the decarbonization capital N is made and the time at

which this decarbonization investment has a risk-mitigating effect. Introducing this time lag

will introduce additional technical complications into our analysis. This is because we need

to keep track of both the decarbonization capital that is mitigating the aggregate risk as

well as other accumulated decarbonization stock N that will mitigate in the future.

Second, the climate tipping-point arrival rate ζt depends on cumulative emissions in the

atmosphere. We assume that this cumulative emissions is well approximated using n = N/K

in our model. An alternative specification is that the arrival rate ζt depends on (Kt −Nt).

There is no guidance in climate science on which approximation is more sensible per se. How

important the functional form assumption is also depends on the underlying decarbonization

technologies. But the latter level-based specification is not tractable in our growth stationary

economy where economic damages of disasters increase with K.

2.8.3 Exposures of Productive and Decarbonization Capital to Disaster Shocks

Weather disaster shocks in our model are assumed to affect the stochastic growth of produc-

tive and decarbonization capital equally. This is a simplification since it makes the dynamics

of nt deterministic. This property allows us to conveniently analyze the transition dynamics

towards net-zero target over time. If we were to allow the stochastic growth of productive

and decarbonization capital stocks to respond differently to jump and diffusion shocks, nt
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would be stochastic, but we still have the homogeneity property and hence will not lose much

tractability.

3 Equilibrium Solution with Optimal Mandates

In this section, we obtain and analyze the equilibrium solution with the sustainable finance

mandate. A firm has to spend the minimal requiredmt fraction of its productive capital stock

Kt to qualify as a sustainable firm at time t. While spending on aggregate risk mitigation

yields no monetary payoff for the firm, doing so allows it to be included in the S-portfolio.

We work within the set of mt specifications where we can write mt as a function of nt and

climate state St: mt = m(nt;St). We assume that a firm’s mitigation is observable and

contractible. We first solve for the equilibrium in Subsections 3.1-3.3 for a given mt process

and then solve for the welfare-maximizing mt in Subsection 3.4. Finally, we comment on our

model assumptions and equilibrium in Subsection 3.5.

3.1 Firm Optimization

A value-maximizing firm chooses whether to be sustainable or unsustainable taking the

sustainable investment mandate into account. First, we pin down mitigation spending by

both types of firms: XU
t and XS

t . As mitigation spending has no direct benefit for the firm,

if the firm chooses to be U , it will set XU
t = 0 for all t. Moreover, even if a firm chooses to

be an S firm, it has no incentive to spend more than Mt, i.e., (11) always binds for a type-S

firm. That is, it is optimal for a sustainable firm to set xSt as:

xSt =
XS
t

KS
t

= m(nt;St) , (16)

where mt = m(nt;St) is the minimal threshold level of a firm’s Mt/Kt above which it is

qualified to be sustainable. By meeting this mandate, the firm lowers its required rate of

return.

Firms are indifferent between the two options in equilibrium. To solve for the equilibrium,
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first, we solve the following problem for a type-j firm:

max
Ij ,Xj

E
(∫ ∞

0

e−
∫ t
0 r

j(nv ;Sv)dvCF j(nt;St)dt
)
. (17)

In equation (17), rj(nt;St) is the expected cum-dividend return for a type-j firm in equilib-

rium12 and CF j(nt;St) is type-j firm’s cash flow at t given by

CF S(nt;St) = AKS
t − ISt (nt;St)−XS

t (nt;St) and CFU(nt;St) = AKU
t − IUt (nt;St) . (18)

Since the fraction of total wealth allocated to meet the sustainability investment mandate

is α ∈ (0, 1], the scaled aggregate mitigation spending, xt, is given by

xt =
Xt

Kt

=
αXS

t

KS
t

= αxSt = αm(nt;St) . (19)

Exploiting our model’s homogeneity property, we conjecture and verify that the equilib-

rium value of a type-j firm, Qj
t , at time t must satisfy:

Qj
t = qj(nt;St)Kj

t , (20)

where qj(nt;St) is Tobin’s q for a type j-firm as a function of nt and climate state St.
Next, we consider the firm’s investment problem when it takes the sustainability mandate

{mt = m(nt;St) : t ≥ 0} as given. The following Hamilton-Jacobi-Bellman (HJB) equation

characterizes the firm’s value function in climate state S:13

rj(n;S)Qj(Kj,n;S) = max
Ij

CF j(n;S) + Φ(Ij, Kj)Qj
K(K

j,n;S) + 1

2
(σKj)2Qj

KK(K
j,n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))]nQj
n(K

j,n;S)

+ λ(n;S)E
[
Qj(ZKj,n;S)−Qj(Kj,n;S)

]
+ ζ(n;S)(Qj(Kj,n;S ′)−Qj(Kj,n;S)) , (21)

12Additionally, we impose the standard transversality condition for (17).
13A type-j firm’s objective (17) implies that

∫ u
0
e−

∫ t
0
rj(nv ;Sv)dvCF j(nt;St)dt + e−

∫ u
0
rj(nv ;Sv)dvQju is a

martingale under the physical measure, where rj(n;S) is the required rate of return that the firm takes
as given. The firm also takes the scaled aggregate decarbonization capital stock n, aggregate mitigation
spending x(n;S), and aggregate investment i(n;S) as given.
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where S = {G,B} and S ′ denotes the other state. For example, if S = G, then S ′ = B.14

The left side of (21) is the (cum-dividend) expected return rj(n;S) times the market value of

type-j firm. The first term on the right side is the dividend (cash flow) payment. The second

and third terms are the capital accumulation and diffusion volatility effects on the expected

capital gains. The last two terms capture the effects of weather disaster arrivals and the

climate tipping point arrival on the expected capital gains. The conditional expectation E [ · ]
in (21) operates with respect to the distribution of recovery fraction Z and CF j(n;S) is the
cash flow for a type-j firm in climate state S given by (18). Let cf j(n;S) = CF j(n;S)/Kj

denote the scaled cash flow for a type-j firm.

By using our model’s homogeneity property, Qj
t = qj(nt;St)Kj

t for S = {G,B}, we obtain
the following ODE for qj(n;S), the Tobin’s q in the climate state S:

rj(n;S)qj(n;S) =max
ij

cf j(n;S) + (ϕ(ij)− λ(n;S)(1− E(Z)))qj(n;S) (22)

+ [ω(x(n;S)/n)− ϕ(i(n;S))]nqjn(n;S) + ζ(n;S)(qj(n;S ′)− qj(n;S)) .

The investment FOCs for both S and U firms implied by (22) in both G and B states are

the following well known conditions in the q-theory literature:

qj(n;S) = 1

ϕ′(ij(n;S)) . (23)

A type-j firm’s marginal benefit of investing equals its marginal q, qj(n;S), multiplied by

ϕ′(ij(n;S)). The investment FOC (23) states that this marginal benefit, qj(n;S)ϕ′(ij(n;S)),
equals one, the marginal cost of investing. The homogeneity property implies that a firm’s

marginal q is equal to its average q (Hayashi, 1982).

Let gj(n;S) denote a type-j firm’s expected growth rate including the effect of jumps.

In state S, the expected growth rate is

gj(n;S) = ϕ(ij(n;S))− λ(n;S)(1− E(Z))− ζ(n;S)q
j(n;S)− qj(n;S ′)

qj(n;S) . (24)

The first term captures the investment effect, the second term describes the weather disaster

effect, and the last term gives the effect of the climate tipping-point arrival on growth.

14Recall that ζ(n;B) = 0.
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As xS(n;S) = m(n;S) and xU(n;S) = 0, we have cfS(n;S) = A − iS(n;S) −m(n;S)
for a type-S firm and cfU(n;S) = A− iU(n;S) for a type-U firm.

3.2 Representative Agent’s Optimization

To solve the portfolio-allocation problem, we first introduce the investment opportunities.

3.2.1 Return Dynamics of S and U Portfolios

Let Qj
t denote the market value of the type-j portfolio, which includes all type-j firms, where

j = {S, U}. Let Dj
t and DU

t denote the dividends of the type-j portfolio. We later show

that the equilibrium cum-dividend return for the type-j portfolio in state S is:

dQj
t +Dj

t−dt

Qj
t−

= rj(nt−;S)dt+ σdWt − (1− Z) (dJt − λ(nt−;S)dt)

+
qj(njt−;S ′)− qj(nt−;S)

qj(nt−;S)
(
dJ̃t − ζ(nt−;S)dt

)
. (25)

The diffusion volatility equals σ as in (2). The third term on the right side of (25) captures

the effect of disasters on return dynamics. The fourth (last) term describes the effect of

climate transition from the G state to the absorbing B state.15 Upon the arrival of the

tipping point (dJ̃t = 1), the percentage change of the portfolio value equals the percentage

change of Tobin’s q caused by the climate state transition. This is because unlike the weather

disaster shock dJt, the climate state transition shock J̃t does not change Kj.

In addition to the diffusion volatility term, the two jump terms are also martingales.

This is why the first term on the right side of (25), rj(nt−;S), is the expected cum-dividend

return. Because all firms have the same Tobin’s q, the S and the U portfolios have the same

shock processes and the only difference between the two portfolio is the expected return

term: rj(nt−;S) for the type-j portfolio. We verify these equilibrium results in Appendix A.

3.2.2 Wealth Dynamics

Let Wt denote the representative agent’s wealth. Let HS
t and HU

t denote the dollar amount

invested in the S and U portfolios, respectively. Let Ht denote the agent’s wealth allocated

15Note that the last term in (25) is zero in the B state.
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to sustainable and unsustainable firm equity at time t. That is, Ht = HS
t +HU

t . The dollar

amount invested in the risk-free asset is then given by (Wt −Ht).

In state S, the agent’s wealth evolves as:

dWt =
[
rf (nt−;S) (Wt− −Ht−)− Ct−

]
dt+

(
rS(nt−;S)HS

t− + rU(nt−;S)HU
t−
)
dt+ σHt−dWt

−
[
(1− Z) (dJt − λ(nt−;S)dt)−

q(nt−;S ′)− q(nt−;S)
q(nt−;S)

(
dJ̃t − ζ(nt−;S)dt

)]
Ht− .

(26)

The first term in (26) is the interest income from savings in the risk-free asset minus con-

sumption. The second term is the expected capital gains from investing in the S and U

portfolios. Note that the expected returns are different: rS(n;S) and rU(n;S) for the S and

U portfolios, respectively. The third and fourth terms contain the diffusion and two jump

martingales for the stock market portfolio. This is because the stochastic components of the

returns (diffusion and jumps) for the S and U portfolios are identical path by path.16

In equilibrium, the dollar allocation to the S portfolio (HS
t ), as a fraction of the agent’s

total dollar allocations to the risky assets (Ht = HS
t + HU

t ), π
S
t = HS

t /Ht = HS
t /Wt,

equals the fraction of aggregate wealth mandated for investment in the S portfolio: πS = α.

The remaining 1 − πS fraction of Ht is allocated to the U portfolio. That is, we have

HS
t = αWt = QS

t = αQt, H
U
t = (1− α)Wt = QU

t = (1− α)Qt, and Wt = Qt = QS
t +QU

t .

Let Vt = V (Wt,nt;St) denote the agent’s value function. The HJB equation for the value

function in state S, V (W,n;S), satisfies (see Appendix A.1 for details):

0 =max
C

f(C, V ;S) +
[(
rS(n;S)α + rU(n;S)(1− α)

)
W − C + λ(n;S)(1− E(Z))W

]
VW

+ζ(n;S)
q(n;S)− q(n;S ′)

q(n;S) WVW + [ω(x(n;S)/n)− ϕ(i(n;S))]nVn +
σ2W 2VWW

2

+ λ(n;S)E [V (ZW,n;S)− V (W,n;S)]

+ ζ(n;S)

[
V

(
q(n;S ′)

q(n;S)W,n;S
′
)
− V (W,n;S)

]
. (27)

The FOC for consumption C in both climate states is given by the following FOC:

fC(C, V ;S) = VW (W,n;S) . (28)

16Here, to ease exposition, we use the equilibrium result that all firms have the same average q in equilib-
rium, which we show in Proposition 1 in the Subsection 3.3.
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This is the standard consumption FOC for recursive utility. We can show that the value

function V (W,n;S) is homogeneous with degree 1− γ in W :

V (W,n;S) = 1

1− γ
(u(n;S)W )1−γ , (29)

where u(n;S) is a welfare measure proportional to the representative agent’s equilibrium

certainty equivalent wealth to be determined. Substituting (29) into the FOC (28) yields

the following linear consumption rule with a time-varying MPC that depends on n and S:17

C(W,n;S) = ρψu(n;S)1−ψW . (30)

Substituting (30) and (29) into the HJB equation (27), we obtain the following ODE for

u(n;S) in state S:

0 =
ρψu(n;S)1−ψ − ρ

1− ψ−1
+ αrS(n;S) + (1− α)rU(n;S)− ρψu(n;S)1−ψ + λ(n;S)(1− E(Z))

+ [ω(x(n;S ′)/n)− ϕ(i(n;S ′))]
nu′(n;S)
u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ

− 1

]
. (31)

Note that the last two terms are only present in state G not state B as stochastic transition

only occurs from state G to state B, which is the absorbing.18

3.3 Market Equilibrium

The equilibrium risk-free rate (rft ), the expected returns for the S and U portfolios (rSt and

rUt ), and Tobin’s average q (qt) for all firms are functions of nt given the climate state St. For
brevity, whenever causing no confusion, we suppress the dependence on the climate state S.

Proposition 1 summarizes equilibrium outcomes for S versus U firms.

17Since our model is a representative-agent framework, the aggregate financial wealth, Wt, is equal to
Wt for all t. We thus simply use these two interchangeably. See Pindyck and Wang (2013) for a similar
consumption rule in their model.

18We first solve the ODE for climate state B and then solve the ODE for climate state G using the
equilibrium objects in state B.
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Proposition 1 For a given scaled aggregate decarbonization capital stock n and the climate

state S, all firms have the same Tobin’s average q, which in equilibrium is also Tobin’s

average q for the aggregate economy (q):

qS(n;S) = qU(n;S) = q(n;S) . (32)

The investment-capital ratio for all firms is the same and equal to the aggregate investment-

capital ratio i(n;S):
iS(n;S) = iU(n;S) = i(n;S) . (33)

The investment-q equation also holds at the aggregate: q(n;S) = 1
ϕ′(i(n;S)) . The cash-flows

wedge between a U and an S firm equals the firm’s mandated mitigation spending m(n;S):

cfU(n;S)− cfS(n;S) = m(n;S) , (34)

where cfU(n;S) = A− i(n;S) is the scaled cash flow for a U firm.

As a firm can choose being either sustainable or not, it must be indifferent between the

two options at all time. Hence, all firms have the same Tobin’s average q. Equations (23)

and (32) imply that all firms must also have the same investment-capital ratio.

3.3.1 Cash-flow Wedge and Required Rate of Return Wedge

Importantly, U firms generate more free cash flows and hence pay more dividends to share-

holders. How can the two types of firms have the same market valuation (Tobin’s q) when

one type pays more dividends than the other? This is because U firms that pay more divi-

dends also have to compensate investors with higher expected rates of returns than S firms.

Next, we summarize the required rate of return wedge between S and U firms.

Proposition 2 Given that the sustainable firm spends m(n;S) for each unit of its productive

capital on mitigation, the required rate of return wedge between a U and an S firm is given

by

rU(n;S)− rS(n;S) = m(n;S)
q(n;S) . (35)

That is, by being sustainable, a firm lowers its required rate of return from rU(n;S) to

rS(n;S) by m(n;S)
q(n;S) . This is one of the key predictions of our model.
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3.3.2 Scaled Aggregate Mitigation, Investment, and Consumption

The next proposition summarizes the results for x(n;S), i(n;S), and c(n;S).

Proposition 3 The relation between the firm-level (scaled) mitigation spending m(n;S) and
the aggregate (scaled) mitigation spending x(n;S) = X(n;S)/K is given by:19

m(n;S) = x(n;S)
α

≥ x(n;S) . (36)

The aggregate investment-capital ratio i(n;S) satisfies:

0 =
(A− i(n;S)− x(n;S))ϕ′(i(n;S))− ρ

1− ψ−1
+ ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ [ω(x/n)− ϕ(i(n;S))]

(
ψ

1− ψ

nq′(n;S)
q(n;S) − 1

1− ψ

ni′(n;S) + nx′(n;S)
A− i(n;S)− x(n;S)

)
+
ζ(n;S)
1− γ

[(
(A− i(n;S ′)− x(n;S ′))q(n;S)ψ
(A− i(n;S)− x(n;S))q(n;S ′)ψ

) 1−γ
1−ψ

− 1

]
. (37)

The aggregate (scaled) consumption c(n;S) is equal to the aggregate (scaled) dividend cf(n;S):

c(n;S) = cf(n;S) = A− i(n;S)− x(n;S) . (38)

Since each S firm spends m(nt;St)KS
t units on mitigation and all firms are the same, the

mitigation spending mandate for a firm, m(n;S), is 1/α times the aggregate scaled mitiga-

tion, x(n;S), where α is the fraction of S firms in equilibrium (see equation (36)). The last

term in (37) captures the effect of climate-state transition on the aggregate investment ratio

i(n;S). The aggregate consumption equals the aggregate dividend, which is the residual cash

flows from operations after we subtract the aggregate investment and mitigation spending.

3.3.3 Aggregate Tobin’s Average q, q(n;S), and Asset Pricing Implications

In the next proposition, we summarize the key asset-market predictions in the economy.

Proposition 4 Tobin’s q for the aggregate economy, q, q(n;S), and the aggregate invest-

ment, i(n;S), satisfy the same equation as the investment-q relation at the firm level:

q(n;S) = 1

ϕ′(i(n;S)) . (39)

19This is the case provided that the firm-level mitigation spending is feasible in thatm(n;S) can be funded.
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The aggregate stock-market risk premium in state S, rM(n;S)− rf (n;S), is given by

rM(n;S)− rf (n;S) = γσ2 + λ(n;S)E
[
(1− Z)(Z−γ − 1)

]
+ ζ(n;S)q(n;S)− q(n;S ′)

q(n;S)

[(
q(n;S ′)

q(n;S)

)−γ

− 1

]
. (40)

The equilibrium interest rate in state S, rf (n;S), is given by

rf (n;S) = c(n;S)
q(n;S) + ϕ(i(n;S))− γσ2 + [ω(x(n;S)/n)− ϕ(i(n;S))] nq

′(n;S)
q(n;S)

− λ(n;S)E
[
(1− Z)Z−γ]− ζ(n;S)q(n;S)− q(n;S ′)

q(n;S)

(
q(n;S ′)

q(n;S)

)−γ

. (41)

The Tobin’s q average result for the aggregate economy is the same as the standard FOC

for corporate investment as in the q-theory literature. However, this result in our model is an

outcome of both individual firm’s optimization and market clearing. The equilibrium market

risk premium and interest rate formulas generalize those in Pindyck and Wang (2013) and

Hong, Wang, and Yang (2022) by incorporating the effect of decarbonization capital stock

and the climate transition risk. The first term on the right side of (40) is the standard

diffusion shock contribution to the equity risk premium. The second term is the weather-

disaster-shock contribution to the equity risk premium. The third term, which only exists

in state G, is the risk premium due to the stochastic tipping-point arrival.

Similarly, the last two terms on the right side of (41) for the risk-free rate rf (n;S) capture
the effects of weather-disaster and climate-transition shocks on rf (n;S). The fourth term

in (41) captures the effect of decarbonization capital accumulation and the first three terms

are the standard terms (due to dividends, productive capital accumulation, and diffusion

shocks) on rf (n;S) as in Pindyck and Wang (2013) and Hong, Wang, and Yang (2022).

3.4 Market Economy with a Welfare-Maximizing Mandate

For a given level of α, we endogenize the qualification standard, characterized by the miti-

gation threshold Mt = m(nt;St)Kt, for a firm to be sustainable. To be precise, at time 0,

the planner announces the criterion {Mt; t ≥ 0} and commits to the policy with the goal
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of maximizing the representative agent’s utility given in (13). The representative agent and

firms optimize taking the planner’s mandate as given.20

Consider the agent’s optimization problem. First, the homogeneity property of our model

implies that the agent’s value function is homogeneous of degree 1−γ in wealth W . Second,

in equilibrium the agent’s wealth is all invested in the stock market and therefore W is

proportional to the aggregate capital stock K. Taking these two observations together, we

may write the agent’s value function as follows:

J(K,N;S) = V (W,n;S) = 1

1− γ
(b(n;S)K)1−γ , (42)

where b(n;S) is a welfare measure given by

b(n;S) = u(n;S)× q(n;S) . (43)

For brevity, we suppress S whenever doing so causes no confusion. Equation (43) follows from

the equilibrium result that W = q(n;S)K as all households’ wealth is in the stock market,

which is valued at q(n;S)K. Substituting W = q(n;S)K into the agent’s value function

V (W,n;S) given in (29) for the market economy yields J(K,N;S) given in (42) and (43).

Note that b(n;S) equals the product of u(n;S) appearing in the agent’s objective (29) and

the equilibrium (aggregate) Tobin’s q, q(n;S). That is, b(n;S) captures information from

both the agent’s and the representative firm’s optimization problems. The function b(n;S)
can be naturally interpreted as a welfare measure proportional to certainty equivalent wealth

(scaled by the size of the economy K).

Using the optimal consumption rule (30), the investment FOC (39), and the resource

constraint c(n;S) = A− i(n;S)− x(n;S), we obtain the following equilibrium condition:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

= ϕ′(i(n;S))b(n;S) , (44)

which reflects information from both the firm’s and the agent’s optimization decisions. In

20Broadly speaking, our mandate choice is related to the optimal fiscal and monetary policy literature (e.g.,
Lucas and Stokey, 1983) in macroeconomics. See Ljungqvist and Sargent (2018) for a textbook treatment.
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Appendix A, we show that b(n;S) = u(n;S)× q(n;S) also satisfies the following ODE:

0 =
ρ

1− ψ−1

[(
A− i(n;S)− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S)

+ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ

− 1

]
. (45)

This ODE for b(n;S) summarizes information about both u(n;S) and q(n;S).
Having obtained the agent’s value function and optimal policies, we turn to the planner’s

problem of choosing x to maximize J(K,N;S) (and equivalently b(n;S)), which yields:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

= ω′(x/n)b′(n;S) . (46)

Let nss(S) denote the steady-state value of n in state S, where the drift of n is zero.

Therefore, by setting (10) to zero, we obtain the following relation linking aggregate invest-

ment iss(S) and mitigation spending xss(S):

ω(xss(S)/nss(S))− ϕ(iss(S)) = 0 . (47)

Additionally, substituting the zero-drift condition (47) into (45), we obtain the following

equation at the steady state:

0 =
ρ

1− ψ−1

[(
A− iss(S)− xss(S)

b(nss(S);S)

)1−ψ−1

− 1

]
+ ϕ(iss(S))− γσ2

2

+
λ(nss(S);S)

1− γ

[
E(Z1−γ)− 1

]
+
ζ(nss(S);S)

1− γ

[(
b(nss(S);S ′)

b(nss(S);S)

)1−γ

− 1

]
. (48)

Solution Summary. At the steady state where dnt = 0, the scaled decarbonization capital

stock nss(S), iss(S), xss(S), and the welfare measure b(nss(S);S) jointly solve the four pairs

of equations (for G and B): the FOC (46) for xss(S), the FOC (44) for iss(S), the zero-drift
condition (47) for nss(S), and (48) for b(nss;S).

For the transition dynamics, the scaled mitigation spending xt, the investment-capital

ratio it, and the welfare measure bt are all functions of the scaled decarbonization capital

stock nt and the climate state St. We fully characterize the solution for the transition
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dynamics as follows. The functions x(n;S), i(n;S), and b(n;S) for both G and B states

jointly solve the ODE system of the following three pairs of equations: the FOC (44) for

i = i(n;S), the FOC (46) for x = x(n;S), and the ODE (45) for b(n;S) subject to the

boundary conditions at the steady state summarized above.

3.5 Comments on Competitive Market Economy with Mandates

3.5.1 Relation between α and Firm Qualification Standards m

It is worth highlighting a few key properties of our welfare-maximizing mandate. In our

model, the parameter α is given. Provided that α is large enough so that a firm choosing to

be sustainable can afford spendingm = x/α per unit of its capital stock on mitigation spend-

ing, the equilibrium aggregate mitigation spending x of the market economy with optimal

mandates can be implemented. Note that the welfare-maximizing mandate or equivalently

the qualification standard for firms to be sustainable adjusts — when α is larger, the quali-

fication standards m = x/α for each firm become lower since there are more firms that are

sustainable. This is possible because, given the assumptions about decarbonization tech-

nology, it is irrelevant which firms, or how many, invest in decarbonization. That is, it is

sufficient to have a set of firms doing all of the decarbonization capital investments, as long

as the sum of their contributions allow the economy to reach the aggregate Xt target we

set. Put differently, our market economy with an optimal mandate only pins down xt or

equivalently, the product of α and firm-level mitigation spending m. To pin down α and m

separately would require additional information. For instance, if we knew in the data what

m was, we could maximize welfare by choosing α. In Subsection 6.3, we discuss these issues

in detail and solve for the model using this alternative setup.

3.5.2 Sustainable Finance Tax: Mandated Market Economy with α = 1

What if the investment mandate requires all investors to be sustainable: α = 1? This is in

effect a sustainable finance tax where firms have no choice but to be sustainable. Our welfare-

maximizing economy yields the same outcomes as an economy with capital (or equivalently
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sales) taxation with probability one.

Let τt denote the tax rate at which the government levies on each firm’s capital or

equivalently sales as Y = AK and A is a constant. We define the competitive equilibrium

with sustainable-finance taxation as follows: (1) the representative agent dynamically chooses

consumption and asset allocation among the U portfolio, S portfolio, and the risk-free asset;

(2) each firm chooses its investment policy I to maximize its market value by solving (17)

where the firm’s cash flow at t, CF (nt;S), is given by CF (nt;S) = AKt − It(nt;S)− τtKt;

and (3) all markets clear.

The government sets the tax rate on capital stock as follows:

τt = τ(nt;St) = x(nt;St) . (49)

As a result, this economy attains the same resource allocation as the welfare-maximizing

economy with investment mandate α = 1. The intuition is as follows. Because taxes are

mandatory for all firms, using taxation, the government effectively makes all firms “sustain-

able.” Since the government is benevolent maximizing the representative agent’s welfare, it

simply sets the sustainable-finance tax rate τ(n;S) to the same aggregate mitigation spend-

ing x(n;S) as in the economy with the socially optimal investment mandate.

While taxation typically distorts decisions and hence is inefficient,21 taxation proceeds

in our model allow the government to fund the accumulation of decarbonization capital,

substantially reducing the weather-disaster and climate tipping-point arrival rates so that

the equilibrium resource allocation with taxation is much closer to the first-best solution,

which we later show.

3.5.3 Heterogenous-Agents Model: Sustainable versus Unsustainable Investors

We may also equivalently interpret our representative-agent model (with portfolio restric-

tions) as a model with heterogeneous agents in which some investors have sustainability

investment mandates (e.g., some large asset managers and sovereign wealth funds) and oth-

ers face no sustainability mandates nor preferences for being sustainable.

21See Chamley (1986) and Judd (1986) for seminal contributions.
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Specifically, consider a model with two types of investors: S investors whose wealth

constitutes an α fraction of the economy-wide total wealth and U investors who hold the

remaining wealth in the economy. Importantly, the U investors are not allowed to short sale

stocks issued by S firms.22

Since S investors are mandated to hold S stocks, they hold the entire S portfolio. Even

though S firms pay fewer dividends than U firms under all circumstances, the valuation of the

two types of firms are the same because U investors cannot make arbitrage profits as they are

unable to short S stocks. We can also show that the equilibrium resource allocation and asset

prices in this heterogeneous-agents model are the same as in our (baseline) representative-

agent model.

Despite the difference in the expected return between unsustainable and sustainable firms,

investors in unsustainable firms would not dominate the economy in the long run because

Tobin’s q for unsustainable and sustainable firms are the same. There is no feasible gains

from trade and unsustainable investors cannot make arbitrage profits given the short-sales

constraint. Our no-trade and equilibrium pricing reasoning is similar to that in the equilib-

rium asset-pricing model with agency conflicts (between the controlling and outside minority

shareholders) in Albuquerque and Wang (2008). Note that the homogeneity property (in

our setting with Epstein-Zin utility and geometric processes) is key for the no-trade result.

4 First Best

In this section, we summarize the first-best solution where the planner chooses aggregate

C, I, and X to maximize the representative agent’s utility defined in (13)-(14). Using the

homogeneity property, we work with scaled variables at the aggregate level, it = It/Kt,

xt = Xt/Kt, and ct = Ct/Kt. In Appendix B, we show that x(n;S) and i(n;S) for both

22In our heterogeneous-agents model, we need to impose the short-sale constraints for the S firms’ equity.
Otherwise, there is no equilibrium. This is because investor can pocket the profits by taking a long position
in the U firm and a short position in the S firm. This is a textbook arbitrage example as investors with this
position take no risk at all but make sure profits, as S and U firms are driven by identical shocks path and
path, the prices for the two types of firms are the same, but the dividends of U firms strictly dominate the
dividends of S firms.
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climate states (S = G,B) satisfy the following simplified FOCs:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

+ ϕ′(i(n;S))nb′(n;S) = ϕ′(i(n;S))b(n;S) , (50)

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

= ω′(x(n;S)/n)b′(n;S) . (51)

The welfare measure (proportional to certainty equivalent wealth) in state S, b(n;S), solves
the following ODE:

0 =
ρ

1− ψ−1

[(
A− i(n;S)− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S)

+ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ

− 1

]
. (52)

Because state B is absorbing, we first solve the triple, b(n;B), i(n;B), and x(n;B), for
state B by using (50), (51), and (52). Then, we solve the triple, b(n;G), i(n;G), and x(n;G),
for state G by using (50), (51), (52), and the b(n;B) solution obtained earlier.

At the first-best steady state nFB(S) for both G and B states, we have

ω(xFB(S)/nFB(S))− ϕ(iFB(S)) = 0 . (53)

Moreover, if ω( · ) = ϕ( · ), i.e., the investment efficiency functions for the two types of capital

stocks are the same, the investment-capital ratio forK equals that for decarbonization capital

N at nFB(S). Substituting (53) into (52) yields the following steady-state condition in S:

0 =
ρ

1− ψ−1

[(
A− iFB(S)− xFB(S)

b(nFB(S);S)

)1−ψ−1

− 1

]
+ ϕ(iFB(S))− γσ2

2

+
λ(nFB(S);S)

1− γ

[
E(Z1−γ)− 1

]
+
ζ(nFB(S);S)

1− γ

[(
b(nFB(S);S ′)

b(nFB(S);S)

)1−γ

− 1

]
. (54)

Solution Summary. At the first-best steady state where dnt = 0, the scaled decarboniza-

tion capital stock nFB(S), iFB(S), xFB(S), and the welfare measure b(nFB(S);S) jointly

solve the four pairs of equations (for states G and B): the FOC (51) for xFB(S), the FOC

(50) for iFB(S), the zero-drift condition (53) for nFB(S), and (54) for b(nFB;S).
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For the transition dynamics, the scaled mitigation spending xt, the investment-capital

ratio it, and the welfare measure bt are all functions of the scaled decarbonization capital

stock nt and the climate state St. We fully characterize the solution for the transition

dynamics as follows. The xt = x(n;S), it = i(n;S), and b(n;S) processes jointly solve the

ODE system of the following three pairs of equations: the FOC (50) for i(n;S), the FOC

(51) for x(n;S), and the ODE (52) for b(n;S) for the two states (G and B) subject to the

boundary conditions (for nFB(B) and nFB(G)) at the steady state summarized above.

5 Market Economy with Welfare-Maximizing Mandate

We proceed in two steps in this section. First, we show in Subsection 5.1 why the market

economy with the welfare-maximizing mandate cannot attain the first-best outcome. Then,

we show how the planner can attain the first-best outcome by introducing an investment

tax into the market economy with the welfare-maximizing mandate in Subsection 5.2. The

key insight is that by optimally designing the sustainability investment mandate and setting

taxes on the deviation of corporate investment (from the average level), the planner can

attain the first-best by ensuring that the aggregate decarbonization capital accumulation

stays on the socially efficient path at all time.

5.1 Market Economy with the Welfare-Maximizing Mandate Does
Not Attain First-Best

As no private agent has incentives to spend resources to accumulate the decarbonization

capital stock, our market economy is Pareto inefficient. Although using the optimal invest-

ment mandate as a function of nt, xt = x(nt;S), improves welfare, the planner cannot attain

the first-best by solely relying on the optimal mandate. Why? First recall that in a static

economy with one source of market failure, the planner can attain the first-best by imposing

the optimal Pigouvian tax to fund the first-best mitigation spending (or equivalently decar-

bonization capital stock). This is because the private sectors’ incentives are fully aligned
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with the planner’s once the optimal Pigouvian tax is chosen in a static setting.23

However, this simple one-instrument-for-one-market-failure argument in a static setting

is invalid in our dynamic model. This is because the planner needs to choose the socially

optimal XFB
t at all time t and for all contingencies, which is an infinite dimensional problem.

A priori, there is no reason why the optimal sustainability investment mandate xt =

x(nt;S) in a dynamic setting allows the planner to attain the first-best. Next, we lay out

the specific differences between the mandated market economy and the planner’s first-best

economy.

5.1.1 Comparing Optimally Mandated Market Economy with First Best

By comparing the solution for the mandated market economy given in (44)-(46) with the

solution for the planner’s economy given in (50)-(52), we see that the different resource allo-

cations in the two economies arise from different investment (I) functions. Specifically, the

i(n;S) equation (44) for the mandated market economy is different from the i(n;S) equa-
tion (50) in the first-best economy. Why does this difference exist given optimal investment

mandates in the market economy? We answer this question in two steps.

First consider the planner’s problem. Increasing investment I has two effects at the

aggregate level: (1) a direct effect of reducing the resources for the representative household’s

consumption as I crowds out C = Y − I − X, captured by the first term on the left side

of (50); and (2) an indirect effect of decreasing the scaled aggregate decarbonization capital

stock, n = N/K, in the future as the firm’s future K is higher due to current investment.

The latter effect is captured by the second term on the left side of (50).

In contrast, firms in the mandated market economy do not take the indirect long-term

effect of investment on future n into account. Indeed, this second term on the left side of

(50) is absent in the investment equation (44) in the mandated market economy.

The indirect long-run effect of investment on n in the planner’s economy makes invest-

23Taking the optimal tax as given, the representative agent’s and the firm’s own incentives give rise to
the first-best tradeoff between consumption and investment in the marketplace. This is the main argument
underpinning the calculation for the social cost of carbon in the climate economics literature.
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ment more costly than in the mandated market economy, ceteris paribus. By comparing

(44) and (50), we can conclude that i(nt;St) in the first-best economy is lower than in the

mandated market economy.24

In sum, firms have incentives to spend more on investment in a market economy (even

with optimal mandates) than socially desirable. That is, our mandated economy still features

over-investment compared with the first-best. This is because the planner takes both direct

and indirects costs of investing into account while firms in (mandated) market economies

only take the direct effect of investing on n into account.

With both (direct and indirect) effects of a firm’s investment on equilibrium resource

allocations, we at least need two instruments to attain the first-best outcome. Next, we show

that two optimally chosen instruments are sufficient to attain the first-best: one to collect

proceeds from investors to fund socially desirable first-best aggregate mitigation spending

and the other for the society to eliminate firms’ incentives to over-accumulate capital, which

in turn implies that the society can ensure that the nt process follows the first-best trajectory.

5.2 Restoring First Best

To achieve the first-best in the market economy of our model, it is necessary and sufficient

that at all t and for all nt and St the following two conditions hold: (a.) each firm chooses

the first-best investment policy at all time and (b.) the society as a whole collects resources

to fund the first-best aggregate mitigation spending.

To ease exposition, we first show how to attain the first-best by properly using the

following two state-contingent instruments: (1.) taxing all firms at the rate of τt = xt

introduced in Subsection 3.5 for each unit of capital and (2.) taxing a firm’s investment if

its investment-capital ratio it exceeds the economy-wide it.

Then, we can conclude that the first-best outcome can also be attained by using a com-

bination of a sustainability mandate mt = xt/α and a tax on the wedge between a firm’s

investment and the economy-wide it. This follows from our result on the equivalence be-

24We use the property b′(n;S) > 0, the investment optimality (FOCs), and the concavity of ϕ( · ) (equiv-
alently convex adjustment costs).
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tween taxing a firm’s capital at the rate of aggregate mitigation spending xt and using a

qualification standard mt = xt/α for firms to be sustainable.25

The capital tax instrument is to fund the first-best mitigation spending Xt. The second

instrument eliminates firms’ incentives to over-invest in their own capital stocks so that the

aggregate productive capital accumulation K and decarbonization N follow the first-best

trajectories. To achieve this goal, we tax firm j at the rate of τ̂ j(nt;St)Kj
t , where

τ̂ j(n;S) =
[
ϕ(ij)− ϕ(i(n;S))

]
q(n;S)nb

′(n;S)
b(n;S) . (55)

In (55), i(n;S) and q(n;S) are the equilibrium aggregate investment-capital ratio i and

average q in state S, respectively, and b(n;S) = u(n;S) × q(n;S) is a measure of welfare

(proportional to the household’s certainty equivalent wealth). The only term in (55) that firm

j chooses is ϕ(ij). If its investment ij exceeds the economy-wide average i, firm j pays a tax

τ̂ j(n;S) given in (55) for each unit of its capital. This tax discourages corporate investment,

mitigating over-investment in K and under-investment in N. The multiple q(n;S)nb′(n;S)
b(n;S)

for the wedge [ϕ(ij)− ϕ(i(n;S))] in (55) is necessary to attain the first-best outcome.

Below we further explore our model’s mechanism by highlighting a few key equations in

our proof. First, firm j’s average q, qj(n;S), satisfies the following ODE in state S:

rj(n;S)qj(n;S) =max
ij

cf j(n;S)− τ̂ j(n;S) + (ϕ(ij)− λ(n;S)(1− E(Z)))qj(n;S) (56)

+ [ω(x(n;S)/n)− ϕ(i(n;S))]nqjn(n;S) + ζ(n;S)(qj(n;S ′)− qj(n;S)) ,

where τ̂ j(n;S) is given in (55).

Importantly, using (55) for τ̂ j(n;S), we obtain the following investment FOC for firm j:

1 = ϕ′(ij)

(
qj − q(n;S)nb

′(n;S)
b(n;S)

)
. (57)

Then using the equilibrium results iU = iS = i and qU = qS = q, we obtain the following

equation for the aggregate investment-capital ratio i:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

+ ϕ′(i(n;S))nb′(n;S) = ϕ′(i(n;S))b(n;S) , (58)

25This equilvalence result holds provided that α is large enough so that m = x/α is feasible at the firm
level given its resource constraint (as discussed in Subsection 3.5).
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which is the same as the FOC (50) in the first-best economy. The second term on the

left side of (58) arises from the formula for the tax rate τ̂ j(n;S), which depends on the

investment wedge [ϕ(ij)− ϕ(i(n;S))]. This investment wedge tax allows us to attain the

first-best outcome. For brevity, we relegate some details of the proofs (e.g., verifying the

value functions, policy functions, and the equivalence between the two implementations) to

Appendix C.2.

6 Quantitative Analysis

In this section, we calibrate our model to study how well mandates approximate the first-best.

We focus on the parameter region where the planner chooses to act now to decarbonize—

that is, where the planner makes significant annual mitigation spending contributions and

smoothly ramp up to a high steady-state decarbonization-to-productive capital ratio nss.

6.1 Functional Form Specifications

We begin by specifying various functional forms in our model.

6.1.1 Firm-level Capital K and Aggregate Decarbonization Capital N

As in Pindyck and Wang (2013), we specify a firm’s investment-efficiency function ϕ(i) as

ϕ(i) = i− ηK i
2

2
− δK , (59)

where ηK measures the degree of adjustment costs and δK is a constant that can be viewed

as the depreciation rate.

Similarly, at the aggregate level, we assume that the controlled drift for the aggregate

decarbonization capital stock N takes the same form as that for firm-level capital stock K:

ω(x/n) = (x/n)− ηN (x/n)2

2
− δN , (60)

where ηN is the adjustment cost parameter for the aggregate decarbonization capital N.

Note that x/n = X/N is the aggregate investment X in the decarbonization capital scaled

by N, which is analogous to a firm’s investment level scaled by its capital stock: i = I/K.
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Delaying the tipping point arrival. By accumulating decarbonization capital stock,

the society decreases the tipping-point arrival rate from ζ0 > 0 to

ζ(n;G) = ζ0(1− nζ1) , (61)

where 0 < ζ1 < 1. (Recall that ζ(n;B) = 0.) For a given n, the lower the value of ζ1 the

more efficient the decarbonization capital stock is at curtailing the tipping-point arrival.26

6.1.2 Conditional Damage and Weather-disaster Arrival Rates

In a given climate state S, decarbonization capital N can also ameliorate the damage to

economic growth by reducing the frequencies of weather-disaster (e.g., high-temperature)

events. Specifically, we use the following specification for the weather-disaster arrival rate

λ(n;S) in state S:
λ(n;S) = λS0 (1− nλ1) , (62)

where λS0 > 0 is the arrival rate absent any decarbonization capital stock (n = 0) in climate

state S and λ1 ∈ (0, 1) measures how efficient the aggregate decarbonization capital stock

reduces the weather-disaster arrival rate λ(n;S). For brevity, we assume that λ1 is the same

in the two climates states G and B. Similar to the effect of ζ1 on the tipping-point arrival,

a lower value of λ1 is associated with a more efficient decarbonization technology reducing

the weather disaster arrival rate, ceteris paribus.

The expected aggregate growth rate in state S, g(n;S), is

g(n;S) = ϕ(i(n;S))− λ(n;S)ℓ+ ζ(n;S)q(n;S
′)− q(n;S)
q(n;S) , (63)

where ℓ, the expected fractional capital loss conditional on a jump arrival, is given by

ℓ = E(1− Z) =
1

β + 1
. (64)

Note that a lower value of β is associated with a more damaging and also more fat tailed

disaster. The first term in (63), ϕ(i(n;S)), is the expected growth in state S absent jumps

26This follows from ∂ζ(n;G)/∂ζ1 = −ζ0nζ1 ln(n) > 0 as n < 1.
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and the second term adjusts for the effect of weather-disaster arrivals. The last term in (63)

captures the effect of the climate-state transition from state G to B on the expected growth

rate in state G. Finally, the last term is zero in state B as state B is absorbing: ζ(n;B) = 0.

6.2 Baseline Calibration

Our model has fifteen parameters in total. We next choose parameter values based on

known key macro-finance moments and empirical studies on climate mitigation pathways

involving decarbonization. Our calibration exercise is intended to highlight the extent to

which mandates can approximate the social planner’s solution when the planner wants to

act now to decarbonize the economy. We summarize the values of these parameters for our

baseline analysis in Table 1.

Table 1: Parameter Values

Parameters Symbol Value

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 4.2%
coefficient of relative risk aversion γ 8

productivity for K A 26%
adjustment cost parameter for K ηK 5
adjustment cost parameter for N ηN 5
diffusion volatility for N and K σ 9%
depreciation rates for N and K δK = δN 6%

jump arrival baseline parameter from state G to B ζ0 0.02
jump arrival sensitivity parameter from state G to B ζ1 0.1

power-law exponent β 39

jump arrival baseline parameter with n = 0 in state G λG0 0.05
jump arrival baseline parameter with n = 0 in state B λB0 2
mitigation technology parameter λ1 0.3

All parameter values, whenever applicable, are continuously compounded and annualized.
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6.2.1 Preferences Parameters

We choose a value for the time rate of preferences within the standard range: ρ = 4.2% per

annum. We set the coefficient of relative risk aversion at γ = 8 and the EIS at ψ = 1.5,

both of which are within the standard ranges used in the long-run risk literature (Bansal

and Yaron, 2004).27

6.2.2 Parameters for Productive and Decarbonization Capital

We set the productivity parameter A = 26% per annum and the capital adjustment param-

eter ηK = 5 to target an average q of 2.5 and an average growth rate of 2.2% per annum in

the pre-climate-change sample. The values of A = 26% and ηK = 5 are within the range of

empirical estimates (Stokey and Rebelo, 1995; Eberly, Rebelo, and Vincent, 2012). Decar-

bonization capital has no productivity but faces adjustment costs as physical capital. We

set the decarbonization capital adjustment cost parameter ηN = ηK = 5 for parsimony and

also under the premise that direct air capture and plants are themselves a form of physical

capital. We set the annual diffusion volatility at σ = 9% (Pindyck and Wang, 2013) to target

a historical stock market risk premium of about 6% per annum (Hansen and Singleton, 1982;

Mehra and Prescott, 1985). The annual depreciation rate for productive δK = 6%, is in line

with the literature cited above as well. Again, for parsimony, we set δN = δK .

6.2.3 Parameters for Delaying the Tipping Point of Climate Transition

Recent studies indicate that tipping points in the climate system can occur even at current

levels of warming (Lenton et al., 2019). To generate a sizeable act-now effect, we set the

expected arrival rate of a tipping point to be once every 50 years: ζ0 = 0.02. We then build

on estimates from Gates (2021) who proposes that spending around $5 trillion dollars each

year on carbon capture can forever eliminate the problem of global warming (this estimate

27Estimates of the EIS ψ in the literature vary considerably, ranging from a low value near zero to values as
high as two. Attanasio and Vissing-Jørgensen (2003) estimate the elasticity to be above unity for stockhold-
ers, while Hall (1988), using aggregate consumption data, obtains an estimate near zero. Guvenen (2006)
reconciles the conflicting evidence on the elasticity of intertemporal substitution from a macro perspective.
In the long-run risk literature, it is critical to choose an EIS value larger than one.
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is based on $100 per ton cost of capture and there are 51 billion tons of carbon emissions per

year).28 We consider a more modest scenario similar to de Pee et al. (2018) where spending a

couple of trillion dollars per year on decarbonizing heavy industries can substantially reduce

the tipping point arrival rate from 2% per annum (1/ζ0 = 50) to around 0.5% per annum

(with an implied expected arrival in 200 years). This calibration yields a value of ζ1 = 0.1.29

6.2.4 Parameters for Weather Disasters and Conditional Damage Functions

Since weather disasters, e.g., droughts, are associated with high temperatures, we calibrate

the parameter λG0 describing the arrival rate of weather disasters in state G and the parameter

β measuring the expected damages conditional on arrival, ℓ = (β + 1)−1, using a set of

panel regressions documenting the adverse effects of weather shocks in the form of extreme

temperatures for economic growth (Dell, Jones, and Olken, 2012).30

First, we calibrate β as follows. For the median country in the Dell, Jones, and Olken

(2012) sample, extreme weather disasters in the form of extremely high temperatures lowers

the GDP growth rate by 2.5% per annum. To match this moment, we set β = 39 as the

implied reduction of GDP growth conditional on a disaster arrival is ℓ = 1/(β+1) = 1/40 =

2.5% per annum. Second, using again the Dell, Jones, and Olken (2012) sample, we infer

that the weather disaster arrival rate in state G is low: around λG0 = 0.05 per annum in

the pre-climate-change sample. In other words, such weather disaster events are uncommon,

occurring in five percent of the country-year (annual) observations. Our analysis is most apt

for the median country in their sample. But our model can be recalibrated for any subset of

countries. For state B, we set λB0 = 2, a forty times increase in weather disaster frequencies,

28Reforestation also has the potential to contribute to keeping global temperatures from breaching the
1.5o Celsius barrier. This adjustment process is also expensive like building direct air capture plants (Bastin
et al. (2019) and Griscom et al. (2017)).

29At the steady state in G, ζ(nss;G) = ζ0(1− (nss)ζ1) = 0.02× (1− 6.13%0.1) ≈ 205 years.
30This panel regression approach initially focused on how weather affects crop yields (Schenkler and

Roberts, 2009) by using location and time fixed effects. But it is now applied to many other contexts
including economic growth and productivity. The main idea is that abnormally high annual temperature
fluctuations are plausibly exogenous shocks that causally trace out the impact of higher temperatures on
output. Burke, Hsiang, and Miguel (2015) find that the effects of temperature on growth is nonlinear. But
we stay with the linear specification of Dell, Jones, and Olken (2012).
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following studies of tipping points cited in the Introduction. Third, we set λ1 = 0.3 for the

arrival rate λ(n;S) in both states G and B so that the decarbonization-to-productive capital

ratio n, which lowers temperatures, not only delays the tipping-point arrival also reduces

the frequency of weather disasters, as is often modeled in climate science and integrated

assessment models.

6.3 Comparing Laissez Faire, Markets with Optimal Mandate,
and First-Best Economies

We first provide a quantitative comparison across the steady-state solutions for the three

economies: laissez faire, market economy with welfare-maximizing mandate, and first-best.

Table 2: Comparing across the laissez faire, the mandated market, and the
first-best economies in state G. The steady-state value of n in state G is nss = 0.0613.

laissez faire mandate first-best
scaled mitigation spending xss 0 0.76% 0.78%
scaled decarbonization stock nss 0 6.13% 6.48%
scaled aggregate investment iss 11.83% 12.41% 12.07%
Tobin’s average q qss 2.45 2.64 2.52
scaled aggregate consumption css 14.17% 12.82% 13.15%
expected GDP growth rate gss 2.04% 2.44% 2.30%
(real) risk-free rate rf,ss 1.10% 0.73% 0.91%
stock market risk premium rpss 6.73% 6.58% 6.60%
aggregate welfare measure bss 0.0542 0.0826 0.0830
time from n = 0 to 0.99nss in G 0 10.9 10.0

6.3.1 Comparing Steady-state Solutions

We summarize the steady-state results in state G in the three columns of Table 2. The

column labeled “laissez faire” reports the results for the laissez faire economy (i.e., α = 0).

The column labeled “mandate” reports the solution for the mandated market economy and

the column labeled “first-best” reports the first-best solution.

In the laissez faire economy, as firms have no incentives to provide public goods (aggregate

risk mitigation), there is no mitigation spending (x = 0) and thus nss = 0. In the market
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economy with optimal investment mandates, the aggregate decarbonization capital stock is

nss = 6.13%, which falls only slightly short of the first-best level: nFB = 6.48%. The annual

contribution of mitigation spending is also only slightly under the first-best: xss = 0.76% <

xFB = 0.78%.

Also note that firms facing optimal mandates still over-invest in capital accumulation

compared to the first-best: iss = 12.41% > iFB = 12.07%. In contrast and as expected,

firms under-invest in the laissez faire economy compared to first-best: iss = 11.83% < iFB =

12.07%, as the laissez faire economy is riskier. Because the value of capital, the aggregate q,

moves in lockstep with the investment-capital ratio i, the steady-state Tobin’s q is the highest

in the economy with mandates and lowest in the laissez faire economy. The transition time

to the steady state (conditional on remaining in state G at all time) in the market economy

with the mandate is 10.9 years compared to 10.0 years for the planner’s economy.

Now we quantify the society’s willingness to pay (in units of consumption goods/dollars)

for an optimal mandate. The optimal mandate generates a 52% welfare gain at the steady

state where nss = 0.0613 and bss = 0.0826, which is almost identical to the first-best so-

lution. This follows from a comparison with the laissez faire economy in which there is no

decarbonization capital stock in equilibrium (nss = 0) and the steady-state equilibrium value

of bss = 0.0542. In sum, mitigation spending and macroeconomic variables in the market

economy with mandates closely track the first-best.

6.3.2 Comparing Optimal Policies and Welfare Measure b

In Figure 1, we examine the optimal mitigation x, investment i, consumption c, and a

welfare measure (proportional to the certainty-equivalent wealth) b as functions of n in state

G. All these aggregates are functions of n in a given climate state S. For all four panels, the
blue solid lines depict the market economy solution under welfare-maximizing mandates and

the red dashed lines describe the planner’s first-best solution. We compare how closely the

policy functions in the market economy with welfare-maximizing mandates track the social

planner’s first-best policies.
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Figure 1: This figure plots aggregate mitigation spending x, investment i, consumption c,
and welfare measure b as functions of the scaled decarbonization capital stock n in state G.
The parameter values are reported in Table 1.

Panel A shows that the solution for the market economy with mandates closely tracks

the planner’s first-best all the way up to the steady-state: nss = 6.13% . It also shows that

the first-best solution features a higher steady-state value: nFB = 6.48%, which we discussed

earlier. That is, even in the long run, the welfare-maximizing mandates still fall short of

achieving the first-best.

Panel B shows that investment i is higher in the market economy with mandates than

in the first-best economy in state G. As we discussed earlier, firms in the market economy

even with mandates do not fully take into account the impact of their capital accumulation

decisions on the aggregate variables. At the margin, firms still over-invest relative to the

first-best level. In contrast, the planner fully takes into account that more decarbonization

capital stock N is necessary to effectively protect a larger economy (with a larger K).

41



Since the resource constraint requires that the sum of i, c, and x equals the constant

productivity A, consumption c is lower in the market economy with mandates than the first-

best (panel C). This is because firms over-invest in the mandated market economy relative

to the first-best and mitigation spending in the two economies are very close. Also as both

x and i increase over time, scaled consumption c falls over time.

Panel D shows that the welfare measure b(n;G) (proportional to certainty equivalent

wealth) for the market economy with optimal mandates is almost identical to that in the

first-best economy for all the levels of n up to the steady-state level of nss = 6.13%. This is

good news as mandates are effectively incentivizing firms to contribute to decarbonization.

However, the market economy with mandates still falls short of delivering the planner’s first-

best steady-state level of nFB = 6.48%, which is about 5.4% higher than nss = 6.13%, as we

discussed earlier.

6.3.3 Constrained Mitigation Spending: xt ≤ x

Thus far, we have imposed no constraints on how much budget a firm can set aside for its

mitigation spending. But in reality, often there are limits on how much a firm can contribute.

Without loss of generality, we assume that the aggregate mitigation spending satisfies xt ≤ x

at all t, where x is the parameter measuring how tight this constraint is. This constraint

applies to both the market economy with welfare-maximizing mandates and the planner’s

economy. For our quantitative analysis, we set x = 0.35%. As the steady-state annual

mitigation contribution is xss = 0.76% in the market economy with optimal mandates, this

constraint is reasonably tight as x = 0.35% is about 54% lower than the unconstrained

steady-state annual mitigation spending xss = 0.76% with optimal unconstrained mandates.

In Figure 2, we plot the optimal policy functions and welfare measure b for both the

market economy with welfare-maximizing mandates and the planner’s economy in state G
with the aggregate mitigation spending satisfying the xt ≤ x = 0.35% constraint. Panels A

and D show that the market economy with welfare-maximizing mandates uses almost the

same mitigation policy x and attains almost the same level of welfare as the planner facing
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Figure 2: This figure plots the aggregate mitigation spending x, investment i, consumption
c, and welfare measure b in state G for both the planner’s and mandated market economies
with x = 0.35%. All other parameter values are reported in Table 1.

the same xt ≤ x = 0.35% constraint. However, as for our baseline case without mitigation-

spending constraints, the two economies generate different i and x dynamics. Panels B and

C again confirm our earlier results that firms invest more in the market economy (even with

mandates) than the planner’s economy and hence households consume less in the mandated

market economy than in the planner’s economy.

6.3.4 Required m and Required Rate of Return Wedge for a Given α

In Figure 3, we plot the mandate m(n;G) and the required rate of return wedge rU(n;G)−
rS(n;G) in panels A and B, respectively, for three levels of α: 0.1, 0.2, 0.3.31 The aggregate

31Gadzinski, Schuller and Vaccino (2018) estimate that the market value of global capital stock (including
housing) in 2019 is close to $800 trillion. Assuming Tobin’s average q for global capital stock to be around
2, we infer that the stock of capital K is about $400 trillion. To fund the Net-Zero pledges of $100 trillion,
the implied mandate requires 25% of aggregate wealth to be committed to sustainable firms.
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Figure 3: This figure plots firm-level mitigation spending mandate m(n;G) and the required
rate of return wedge rU(n;G)−rS(n;G) for the α = 0.1, 0.2, 0.3 cases in the market economy
with welfare-maximizing mandates and the aggregate mitigation constraint: xt ≤ x = 0.35%.
All other parameter values are reported in Table 1.

mitigation constraint x ≤ x = 0.35% implies that a firm’s scaled mitigation spending m

must satisfy the constraint: m ≤ 0.35%/α. For the α = 0.1, α = 0.2, and α = 0.3 cases,

the implied individual firm’s constraints are m ≤ 3.5%, m ≤ 1.75%, and m ≤ 1.17%,

respectively.

Panel A of Figure 3 shows that m(n;G) increases with n but is capped for n ≥ 0.02 for

all three cases. This is because x increases with n but is capped at x for n ≥ 0.02. The

higher the level of α, the less each firm has to contribute towards mitigation spending. For

example, as we increase the total capital commitment to sustainable investment by 50% from

α = 0.2 to α = 0.3, each firm’s required contribution m(n;G) decreases by one third. For

example, when the aggregate mitigation constraint x ≤ x = 0.35% binds for n ≥ 0.02, each

firm’s mitigation spending decreases from 1.75% to 1.17% per annum.

Recall that the required rate of return wedge rU(n;G)−rS(n;G) equals a firm’s mitigation

spending m(n;G) divided by its average q, q(n;G). Because average q is much less sensitive

to n than mitigation spending m(n;G), the change of rU(n;G)− rS(n;G) mostly tracks the

change of m(n;G), which can be seen by comparing the two panels of Figure 3.
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6.3.5 Required α and Required Rate of Return Wedge for a Given m

We have characterized the welfare-maximizing mandate by (a) taking the total capital that

can be committed towards sustainable investment (α) as given and (b) choosing the firm-

level mandate m so that the economy can fund the aggregate level of mitigation spending

x. We could also derive the welfare-maximzing policy by (a) taking each firm’s mitigation

spending m as given and (b) solving for the required capital commitments in the aggregate

economy α to fund the aggregate mitigation spending x. Whether we solve for α taking m

as given or we solve for m taking α as given yields the same welfare-maximizing aggregate

mitigation spending x, as long as the x ≤ x constraint is the same.
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Figure 4: This figure plots required capital pledge for sustainable investment α(n;G) and
the required rate of return wedge rU(n;G)− rS(n;G) for the m = 0.01, 0.02, 0.03 cases in the
market economy with welfare-maximizing mandates and the aggregate mitigation constraint:
xt ≤ x = 0.35%. The parameter values are reported in Table 1.

In Figure 4, we report the necessary capital pledge α for various levels of firm-level

(scaled) mitigation spending m. In this figure, we continue to impose the same aggregate

mitigation spending constraint x ≤ x = 0.35% as in Subsubsection 6.3.4. Panel A shows

that if each firm can spend 1% of its capital towards mitigation (m = 0.01), we then need

35% of the aggregate wealth to fund the maximal aggregate mitigation spending x = 0.35%,

i.e., α = 35%. The mitigation spending constraint xt ≤ x = 0.35% binds when n > 0.02.

If each firm can spend more towards mitigation (m = 0.03), the minimal level of required
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capital commitments (α) drops to around 12% at the steady state. Naturally, the required

rate of return difference is lower when m is low (e.g., m = 0.01) since more capital (35% of

total wealth) is committed to sustainable investing. But when m is high (e.g., m = 0.03),

only about 11.7% of firms are committed to being sustainable in equilibrium and therefore

these firms need a lower required rate of return in compensation, as we see in panel B. At

the steady state, the required rate of return wedge is 1.14% per annum if the firm-level

mandated (scaled) mitigation spending m is 1%, but drops significantly to only 0.38% per

annum if the firm-level mandated mitigation spending m increases to 3%.

6.4 Optimal Transition Under a Welfare-Maximizing Mandate

In this subsection, we discuss the optimal transition under a welfare-maximizing mandate

(the model analyzed in Subsection 3.4).

6.4.1 Decarbonization-to-productive Capital Ratio nt

In Figure 5, we plot the transition path of nt over time t conditional on no climate transition

from state G to B before reaching the steady state nss(G) in state G. Due to adjustment

costs, nt gradually rises to the steady-state level nss. We plot the transition paths for three

different values of the adjustment cost parameter: ηN = 5 (red dashed line), ηN = 5.5 (solid

blue line) and ηN = 5.85 (black dotted line). We are interested in comparing the transition

path in the market economy under optimal mandates with the planner’s solution under a

relatively pessimistic tipping point scenario (where the tipping point is expected to arrive in

fifty years absent intervention, i.e., under the business-as-usual policy).

When ηN = 5, the steady state of nt is nss = 6.13% in the mandated market economy

and it takes about 11 years for nt to reach 0.99× nss = 6.07%, the 99% of the steady-state

value. When we increase ηN from 5 to 5.5 the steady state decarbonization capital stock N

decreases to 4.3% of the contemporaneous aggregate capital stock K, i.e.,nss = 4.3% and the

transition time to 99% of the steady-tate value, 0.99 × nss = 4.26, increases to 20 (almost

doubling from 11 years). Finally, when we further increase ηN to 5.85, we see a dramatic
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Figure 5: This figure plots the transition path of nt in the market economy with optimal
mandates conditional on being in state G. The parameter values are reported in Table 1.

change in the transition path. The steady-state value of n drops to less than 1% and the

transition time it takes to reach 0.99×nss is around 50 years. In sum, the optimal transition

path is highly sensitive to the decarbonization capital adjustment cost ηN.

6.4.2 Mitigation, Investment, Consumption, and Welfare bt under Mandates

In Figure 6, we examine the optimal mitigation xt, investment it, consumption ct, and

a welfare measure (proportional to the certainty-equivalent wealth) bt transition dynamics

conditional on being in state G. In Panel A, xt rises over time, reflecting the gradual

buildup of decarbonization capital in the economy.32 The higher is the adjustment cost

of decarbonization capital relative to productive capital, the lower the level of mitigation

spending. For ηN = 5, the aggregate mitigation spending {xt} reaches the steady-state

value of xss = 0.76%. The steady-state annual contributions for the ηN = 5.5 case equals

xss = 0.59%, which is a 22% decrease from xss = 0.76% for the baseline ηN = 5 case. For

the ηN = 5.85 case, xss = 0.14%, which is 82% lower than xss = 0.76% for the baseline

ηN = 5 case! In sum, the decarbonization capital adjustment cost is a critical parameter for

32While xt increases over time, the mitigation spending/decarbonization capital stock ratio xt/nt decreases
over time conditional on being in state G. This is because nt is low in the early transition period.
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Figure 6: This figure plots the aggregate mitigation spending (xt), investment (it), consump-
tion (ct) and welfare measure (bt) dynamics conditional on being in state G. The parameter
values are reported in Table 1.

our model. This suggests that technical progress enhancing the decarbonization technology

efficiency is highly valuable for the society.

In Panel B, it increases over time t as nt increases over t. This is because the climate

transition risk falls, which in turn makes the returns to investment rise. The lower is the ad-

justment cost of decarbonization capital, the higher the level of it since there is accumulation

of decarbonization capital and less risk.

In Panel C, we see that consumption c falls over time as mitigation and investment ramp

up due to the resource constraint as ct = A− it−xt. Additionally, consumption rises as the

adjustment cost increases since there is less spending on mitigation and also less investments.

In Panel D, we plot our measure of social welfare bt, which is proportional to the agent’s

certainty equivalent wealth, over time conditional on being in state G. Naturally, the higher
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is the adjustment cost of decarbonization capital, the lower the value of b. Moreover, the

welfare measure b rises significantly over time as the economy decarbonizes. Focusing on the

ηN = 5 case, we see that bt rises from 0.06 at t = 0 to the steady-state value of 0.083. This

40% welfare gain is obviously very large.

Even at ηN = 5.5, we still obtain large welfare gains. However, for the ηN = 5.85 case,

the welfare gain (again measured via the percentage change of b) is substantially lower as

we transition from our current situation to the steady state. This is consistent with our

earlier calculations in Figure 5 showing that the build-up of decarbonization capital is very

sensitive to the adjustment cost of decarbonization capital relative to productive capital.

6.4.3 Mandated Spending for Qualifying Firms and Required Rate of Return
Wedge
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Figure 7: This figure plots the mitigation spending mandate (mt) and the required rate of
return wedge rUt − rSt dynamics conditional on being in state G. The parameter values are
reported in Table 1.

In Figure 7, we present the optimal mandate mt and the required rate of return wedge

rUt − rSt for the same three cases: ηN = 5, 5.5, 5.85. Panels A and B show that both the

qualifying standard for a firm (mt) and the required rate of return wedge (rUt − rSt ) increase

with time t. Consider the ηN = 5 case (dotted red lines). The mandate for a qualifying

firm mt peaks at the steady-state value of around 3.8% per annum.33 That is, a firm

33This follows from mss = xss/α = 0.76%/20% = 3.8%.
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would need to spend 3.8% of its capital stock per year on decarbonization to qualify for the

sustainable portfolio at the steady state. The sustainable firms are then compensated for

their contributions with a significant required rate of return wedge rUt − rSt = 1.4% at the

steady state in the market economy with mandates.34

Recall that as we increase the adjustment costs of decarbonization capital ηN, both the

steady-state nss and the required aggregate mitigation spending x decrease significantly.

Therefore, the qualification standard for firms to be sustainable naturally falls and so do

the required rate of return wedges. Note that the optimal ramp-up schedules of both m and

required rate of return wedge rU − rS are non-linear.

6.4.4 Tipping-point Arrival (ζt), Weather-disaster Arrival (λt), and Growth (gt)
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Figure 8: This figure plots the transition dynamics of tipping-point arrival rate (ζt), weather
disaster arrival rate (λt), and the expected growth rate (gt) conditional on being in state G.
The parameter values are reported in Table 1.

We next highlight the mechanism for why social welfare is rising over the net-zero tran-

sition period. In panels A and B of Figure 8, we see that the tipping-point arrival rate and

the disaster arrival rate λt falls over time t, as the society builds up the decarbonization

capital. As the economy becomes more resilient, the expected growth rate gt rises over time

(panel C). There are three forces determining gt: the investment channel i, the expected loss

34This follows from rU − rS = xss/(αqss) = 1.4%.
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given a disaster arrival and the expected value destruction due to the expected tipping-point

arrival, which can be seen from (63). Quantitatively, the investment channel ϕ(it) dominates

growth. Note that when the decarbonization capital adjustment costs ηN are high, gains

from aggregate risk mitigation become much lower. This is because it is much more costly

to mitigate risk and thus optimal for the society to reduce risk mitigation.

Even though the accumulation of decarbonization capital is entirely unproductive, eco-

nomic growth can nonetheless rise in the net-zero transition due to the disaster-risk mit-

igation benefits of decarbonization. The logic behind this takeaway differs from the logic

behind the projections from the European Union on the net-zero transition. The most recent

climate briefing by European Union (2022) also sees positive growth projections from the

net-zero transition. But their projection follows from its assumption that renewables will be

highly efficient.

6.4.5 Asset Pricing and Valuation (Tobin’s q)
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Figure 9: This figure plots the transition dynamics of the equilibrium interest rate (rft ),
stock market risk premium (rpt), and Tobin’s average q for the aggregate capital stock (qt)
conditional on being in state G. The parameter values are reported in Table 1.

The benefit of decarbonizing the economy and reducing the damage of climate risks to

physical capital stock is reflected in asset prices. Notably, the risk free rate rf in state G
significantly declines over time t as the economy decarbonizes. Panel A of Figure 9 shows
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that rf decreases significantly from around 1.06% to the steady-state value of about 0.73%.

The market risk premium rp also declines over time as the economy decarbonizes. Tobin’s

q also modestly increases over time. In sum, asset markets (risk-free rate, risk premium and

Tobin’s q) reflect the benefits of decarbonizing the economy and reducing climate disaster

risks. But again, when adjustment costs of decarbonization is relatively higher, the impact

on asset prices, government policies, and welfare are far weaker.

7 Conclusion

Sustainable finance mandates have grown significantly in the last decade in lieu of govern-

ment failures to address climate-disaster externalities. Firms that spend enough resources

on mitigating these climate-disaster externalities qualify for sustainable finance mandates.

These mandates incentivize otherwise ex ante identical unsustainable firms to become sus-

tainable in order to lower their costs of capital. We present and solve a dynamic stochastic

general-equilibrium model featuring the gradual accumulation of nonproductive but protec-

tive decarbonization capital to study the welfare consequences of sustainable finance. Using

our tractable model, we highlight some key takeaways by introducing the welfare-maximizing

mandate into an otherwise laissez faire market economy that are useful for informing policy

making and empirical research.
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Appendices

A Market Economy with Optimal Mandates

In this appendix, we provide additional technical details for the market economy with optimal

Markovian mandates in Section 3.

First, we provide key intermediate steps for the household’s problem.

A.1 Household’s Optimization Problem

Using the household’s wealth dynamics in state S given in (26), we obtain the following HJB

equation for the household’s value function V (W,n;S):

0 = max
C,πS ,H

[
rf (n;S)W − C +

(
rS(n;S)πS + rU (n;S)(1− πS)− rf (n;S)

)
H + λ(n;S)(1− E(Z))H

]
VW

+ f(C, V ;S) + [ω(x/n)− ϕ(i)]nVn +
σ2H2VWW

2
+ ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) HVW

+ λ(n;S)E [V (W − (1− Z)H,n;S)− V (W,n;S)]

+ ζ(n;S)

[
V

(
W − q(n;S)− q(n;S ′)

q(n;S) H,n;S ′
)
− V (W,n;S)

]
. (A.65)

subject to the investment mandate πS ≥ α. In (A.65), we use the equilibrium property that the

S- and the U -portfolio equilibrium returns have the same (diffusion and jump) risk exposures with

probability one. Using (A.65), W = H, and π = α, we obtain (27).35

The FOC for consumption C is the standard condition given by (28). The FOC for the portfolio

allocation to the risky asset, H, is given by

0 =

[
αrS(n;S) + (1− α)rU (n;S)− rf (n;S) + λ(n;S)(1− E(Z)) + ζ(n;S)q(n;S

′)− q(n;S)
q(n;S)

]
VW

+ σ2HVWW − λ(n;S)E [(1− Z)VW (W − (1− Z)H,n;S)]

+ ζ(n;S)q(n;S
′)− q(n;S)
q(n;S) VW

(
W − q(n;S)− q(n;S ′)

q(n;S) H,n;S ′
)
. (A.66)

Later, we use (A.66) to derive the equilibrium market return rM .

Next, we derive equilibrium prices and allocations in the mandated market economy.

35Suppose that rS > rU were true, the optimality condition for πS would imply counterfactually πS → ∞,
as (A.65) is linear in πS . Since πS → ∞ cannot be an equilibrium, rS ≤ rU is necessary in equilibrium.
Moreover, we can show that in equilibrium rS < rU holds, which implies that the short-sale constraint
πS ≥ α has to bind. This is because investors have incentives to short S firms otherwise. By combining the
equilibrium condition H = W , we thus conclude that the household’s value function satisfies the simplified
HJB equation (27).
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A.2 Market Equilibrium for a Given Mandate

First, a sustainable firm has no incentive to spend more on mitigation for its sustainability qual-

ification than the minimal requirement m, which implies xS = XS

KS = m. Second, in equilibrium,

the representative household invests her entire wealth in the stock market and holds no risk-free

asset: H = W and W = QS +QU . Third, the representative agent’s dollar-amount investment in

the S portfolio equals the total market value of sustainable firms (πS = α) and her dollar-amount

investment for the U portfolio equals the total market value of the U portfolio which includes all

unsustainable firms (πU = 1− α). Finally, goods market clears.

As in Pindyck and Wang (2013) and Hong, Wang, and Yang (2022), the risk-free asset holding

is zero, H = W = QS +QU = qS(n;S)KS + qU (n;S)KU = q(n;S)(KS +KU ) = q(n;S)K, and

WJ = ZW . Additionally, using πS = α and the portfolio allocation rule given in (A.66), we obtain

rM (n;S) = rf (n;S) + γσ2 + λ(n;S)E
[
(1− Z)(Z−γ − 1)

]
+ ζ(n;S)q(n;S)− q(n;S ′)

q(n;S)

[(
q(n;S ′)

q(n;S)

)−γ
− 1

]
= αrS(n;S) + (1− α)rU (n;S) . (A.67)

As all firms have the same Tobin’s q in equilibrium, using the investment FOCs (23) and (22)

we conclude that both S and U firms invest at the same rate: iS(n;S) = iU (n;S) = i(n;S) and

q(n;S) =
A− i(n;S)−m(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S)

rS(n;S)− g(n;S)

=
A− i(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S)

rU (n;S)− g(n;S) , (A.68)

where the expected growth ate is

g(n;S) = ϕ(i(n;S))− λ(n;S)(1− E(Z))− ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) . (A.69)

Using αrS(n;S) + (1− α)rU (n;S) = rM (n;S), x = αm(n;S), and (A.68), we obtain

A− i(n;S)− x(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S)
rM (n;S)− g(n;S)

=
α(A− i(n;S)−m(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S))

αrS(n;S) + (1− α)rU (n;S)− g(n;S)

+
(1− α)(A− i(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S))

αrS(n;S) + (1− α)rU (n;S)− g(n;S)

=
αq(n;S)(rS(n;S)− g(n;S)) + (1− α)q(n;S)(rU (n;S)− g(n;S))

α(rS(n;S)− g(n;S)) + (1− α)(rU (n;S)− g(n;S)) = q(n;S) . (A.70)

The optimal consumption rule given in (30) implies

c(n;S) = C

K
=

C

W
q(n;S) = ρψu(n;S)1−ψq(n;S) . (A.71)
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And then substituting c(n;S) given by (A.71) and the value function given in (29) into the HJB

equation (27), we obtain

0 =
1

1− ψ−1

(
c(n;S)
q(n;S) − ρ

)
+

(
αrS(n;S) + (1− α)rU (n;S)− c(n;S)

q(n;S) + λ(n;S)(1− E(Z))
)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]

=
1

1− ψ−1

(
c(n;S)
q(n;S) − ρ

)
+

(
rM (n;S)− c(n;S)

q(n;S) + λ(n;S)(1− E(Z))
)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (A.72)

By using (A.70) and the goods market clear condition, we obtain

c(n;S)
q(n;S) = rM (n;S)− g(n;S)− [ω(x(n;S)/n)− ϕ(i(n;S))] nq

′(n;S)
q(n;S) . (A.73)

Substituting (A.73) into (A.72) and using c(n;S) = A− i(n;S)−x(n;S) and (A.71), we obtain

1

1− ψ−1

(
A− i(n;S)− x(n;S)

q(n;S) − ρ

)
+ ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

((A− i(n;S ′)− x(n;S ′))q(n;S)ψ
(A− i(n;S)− x(n;S))q(n;S ′)ψ

) 1−γ
1−ψ

− 1


+ [ω(x(n;S)/n)− ϕ(i(n;S))]

(
ψ

1− ψ

nq′(n;S)
q(n;S) − 1

1− ψ

ni′(n;S) + nx′(n;S)
A− i(n;S)− x(n;S)

)
,(A.74)

which implies (37). Finally, we obtain the equilibrium risk-free rate formula (41) by substituting

rM (n;S) = rf (n;S)+γσ2+λ(n;S)E
[
(1− Z)(Z−γ − 1)

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S)

[(
q(n;S ′)

q(n;S)

)−γ
− 1

]

into (A.73). Next, we provide details on how to obtain the ODE (45) for b(n;S), which equals the

product of u(n;S) and q(n;S). Then, we can obtain the welfare-maximizing mandate by choosing

x to maximize b(n;S).
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A.3 Welfare-maximizing Markovian Mandate

Using (29) and W = q(n;S)K in equilibrium, we may rewrite the ODE (31) for u(n;S) as:

0 =
1

1− ψ−1

[
c(n;S)
q(n;S) − ρ

]
+

(
αrS(n;S) + (1− α)rU (n;S) + λ(n;S)(1− E(Z))− c(n;S)

q(n;S)

)
+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu

′(n;S)
u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (A.75)

Then using (44) and q(n;S) = 1
ϕ′(i(n;S)) , we obtain

0 =
1

1− ψ−1

[(
A− i− x

b(n;S)

)1−ψ−1

− ρ

]
+
(
αrS(n;S) + (1− α)rU (n;S) + λ(n;S)(1− E(Z))

)
− c(n;S)
q(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))] nu

′(n;S)
u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (A.76)

Using (A.73) and (A.69) to simplify (A.76), we obtain:

0 =
ρ

1− ψ−1

[(
A− i− x

b(n;S)

)1−ψ−1

− 1

]
+ ϕ(i(n;S)) + ζ(n;S)

1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]

+ (ω(x(n;S)/n)− ϕ(i(n;S)))
(
nu′(n;S)
u(n;S) +

nq′(n;S)
q(n;S)

)
− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
.

(A.77)

Finally, using b(n;S) = u(n;S)× q(n;S), we obtain (45).

B First Best

The following HJB equation for state S = G,B characterize the planner’s optimization problem:

0 = max
C, i,x

f(C, J ;S) + ϕ(i)KJK + ω(x/n)NJN +
K2JKK + 2NKJKN +N2JNN

2
σ2

+ λ(n;S)E [J (ZK, ZN;S)− J(K,N;S)] + ζ(n;S)
[
J(K,N;S ′)− J(K,N;S)

]
,
(B.78)

subject to the aggregate resource constraint at all time t:

AKt = Ct + itKt + xtKt . (B.79)

The FOC for the scaled investment i is

fC(C, J ;S) = ϕ′(i)JK(K,N;S) . (B.80)
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The FOC for the scaled aggregate mitigation spending x is

fC(C, J ;S) = ω′(x/n)JN(K,N;S) , (B.81)

for the economically interesting case where the first-best mitigation spending is strictly positive:

x > 0.36 The FOCs (B.80) and (B.81) imply the following condition:

ω′(x/n)

ϕ′(i)
=
JK(K,N;S)
JN(K,N;S) . (B.82)

The left side of (B.82) is the ratio between the marginal investment efficiency for N, ω′(x/n), and

the marginal investment efficiency for K, ϕ′(i). The right side of (B.82) is the ratio between the

marginal (utility) value of N and the marginal (utility) value of K.

Substituting the agent’s value function (42) into the FOCs (B.80)-(B.81) and the HJB equation

(B.78) and simplifying these equations, we obtain (50), (51), and (52) for state S = G,B.

C Market Economy with Mandates versus First Best

In this appendix, we first show why the optimally mandated market economy does not generate

the first-best outcome (Subsection C.1) and then provide details on how to attain the first-best by

introducing optimal investment taxes into the mandated market economy (Subsection 5.2).

C.1 Differences between the Optimally Mandated Market Econ-
omy and First Best

First we summarize the key equations for the optimally mandated market and first-best economies.

C.1.1 First Best

The planner chooses i and x to maximize the welfare measure b(n;S) given by the following ODE:

0 =
ρ

1− ψ−1

[(
A− i(n;S)− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S) +

ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ

− 1

]
, (C.83)

which implies the following FOC for investment:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

= ϕ′(i(n;S))b(n;S)− ϕ′(i(n;S))nb′(n;S) , (C.84)

and the FOC for mitigation spending x given in (51).

36Otherwise, x = 0 as mitigation cannot be negative.
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C.1.2 Mandated Market Economy

In contrast, in the mandated market economy, an individual firm chooses i to maximize its market

value, i.e., q(n;S), taking the aggregate mitigation spending x and the evolution of the scaled

decarbonization capital stock n as well as asset prices as given. Then, in equilibrium, an individual

firm’s investment-capital ratio i equals i, the aggregate investment-capital ratio in the economy.

Substituting the equilibrium results qS(n;S) = qU (n;S) = q(n;S) and iS(n;S) = iU (n;S) =
i(n;S) into (22), we obtain the following equation for the aggregate Tobin’s q, q(n;S):

rj(n;S)q(n;S) =max
i

cf j(n;S) + (ϕ(i)− λ(n;S)(1− E(Z)))q(n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S) + ζ(n;S)(q(n;S ′)− q(n;S)) .
(C.85)

Since the preceding equation applies to both S and U firms, we may multiply α and 1 − α on

both sides of the preceding equation for type-S and type-U firms, respectively. Doing so yields two

equations. Summing up these two equations yields an equation for q(n;S). Dividing the two sides

of this new equation and rearranging terms, we obtain:

0 =max
i

A− i− x

q(n;S) + ϕ(i)− λ(n;S)(1− E(Z)))− rM (n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nq
′(n;S)

q(n;S) + ζ(n;S)q(n;S
′)− q(n;S)
q(n;S) . (C.86)

Next, substituting (29) into (27) and using the equilibrium condition W = q(n;S)K, we obtain

the following equation for u(n;S):

0 = max
c

ρ

1− ψ−1

[(
c

u(n;S)q(n;S)

)1−ψ−1

− 1

]
+ rM (n;S) + λ(n;S)(1− E(Z))− c

q(n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
, (C.87)

Substituting the resource constraints c = A− i− x into (C.87), we obtain:

0 = max
i

ρ

1− ψ−1

[(
A− i− x

u(n;S)q(n;S)

)1−ψ−1

− 1

]
+ rM (n;S) + λ(n;S)(1− E(Z))− A− i− x

q(n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (C.88)
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Summing up (C.86) and (C.88), we obtain the following:

0 = max
i

ρ

1− ψ−1

[(
A− i− x

u(n;S)q(n;S)

)1−ψ−1

− 1

]
+ ϕ(i) + (ω(x(n;S)/n)− ϕ(i(n;S)))

(
nu′(n;S)
u(n;S) +

nq′(n;S)
q(n;S)

)

− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ

− 1

]
. (C.89)

Now using b(n;S) = u(n;S)× q(n;S), we obtain

0 = max
i

ρ

1− ψ−1

[(
A− i− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ ϕ(i) + [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S)

− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ
− 1

]
. (C.90)

The firm’s investment FOC for i implied by (C.90) is:

ρ

(
A− i− x(n;S)

b(n;S)

)−ψ−1

= ϕ′(i)b(n;S) . (C.91)

Since in equilibrium firm-level’s investment i equals the aggregate i. Therefore, the following

equation characterizes i:

ρ

(
A− i(n;S)− x(n;S)

b(n;S)

)−ψ−1

= ϕ′(i(n;S))b(n;S) . (C.92)

In equilibrium, the welfare measure b(n;S) then satisfies:

0 =
ρ

1− ψ−1

[(
A− i− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ ϕ(i) + [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S)

− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ
− 1

]
. (C.93)

While the two ODEs, (C.83) and (C.93), at the aggregate level for the mandated market and

first-best economies are the same, the two equations for i, (C.84) and (C.92), are different.37

Therefore, the resource allocations in the two economies are different.

Importantly, in a market economy regardless of mandates, a firm takes the evolution of the

scaled aggregate decarbonization capital n as given. In contrast, in the first-best economy, when

choosing investment i the planner internalizes the impact of aggregate i on the n process. The

aggregate investment i in the optimally mandated market economy differs from that in the first-

best economy because firms does not internalize the benefit of aggregate risk mitigation.

Next, we prove that by introducing an optimally chosen tax that depends on the difference

between a firm’s investment-capital ratio i and the aggregate i into the market economy with

optimal mandates restores the first-best.

37Note that the FOCs (functional forms) for mitigation spending x in the mandated market economy and
the first-best economy are the same (that is, (46) and (51) are the same.)
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C.2 Introducing Investment Taxes into the Mandated Market Econ-
omy Restores First Best

Consider introducing the following optimal tax given in (55) as

τ̂ j(n;S) =
[
ϕ(ij)− ϕ(i(n;S))

]
q(n;S)nb

′(n;S)
b(n;S) , (C.94)

into the market economy with mandates.

The following HJB equation characterizes the firm’s value function in climate state S:

rj(n;S)Qj(Kj ,n;S) = max
Ij

CF j(n;S)− τ̂ j(n;S)Kj +Φ(Ij ,Kj)QjK(Kj ,n;S)

+
1

2
(σKj)2QjKK(K

j ,n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nQjn(Kj ,n;S)

+ λ(n;S)E
[
Qj(ZKj ,n;S)−Qj(Kj ,n;S)

]
+ ζ(n;S)(Qj(Kj ,n;S ′)−Qj(Kj ,n;S)) . (C.95)

Using the homogeneity property of our model, we obtain the following ODE for qj(n;S):

rj(n;S)qj(n;S) = max
ij

cf j(n;S) + (ϕ(ij)− λ(n;S)(1− E(Z)))qj(n;S) (C.96)

−
[
ϕ(ij)− ϕ(i(n;S))

]
q(n;S)nb

′(n;S)
b(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))]nqjn(n;S)

+ ζ(n;S)(qj(n;S ′)− qj(n;S)) . (C.97)

The FOC for investment ij is given by

1 = ϕ′(ij)

(
qj − q(n;S)nb

′(n;S)
b(n;S)

)
. (C.98)

Substituting iU = iS = i and qU = qS = q into (C.96), we obtain the following equilibrium

pricing equation for q:

rj(n;S)q(n;S) = cf j(n;S) + (ϕ(i(n;S)))− λ(n;S)(1− E(Z)))q(n;S)
+ [ω(x(n;S)/n)− ϕ(i(n;S))]nq′(n;S) + ζ(n;S)(q(n;S ′)− q(n;S)) , (C.99)

which implies (A.68) and (A.70) are still held.

Since iU = iS = i and qU = qS = q in equilibrium, the following equilibrium condition between

the aggregate investment-capital ratio (i) and Tobin’s q for the aggregate capital stock (q) holds:

1 = ϕ′(i(n;S))q(n;S)
(
1− nb′(n;S)

b(n;S)

)
, (C.100)

which implies

b(n;S)
q(n;S) = ϕ′(i(n;S))

(
b(n;S)− nb′(n;S)

)
. (C.101)
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Rewriting the optimal consumption rule (30) and using the equilibrium restrictions, we obtain

c(n;S) = C

K
=

C

W
q(n;S) = ρψu(n;S)1−ψq(n;S) = ρψu(n;S)−ψb(n;S) , (C.102)

which implies

b(n;S)ψ
q(n;S)ψ = ρψ

b(n;S)
c(n;S) = ρψ

b(n;S)
A− i(n;S)− x(n;S) . (C.103)

And then combining (C.101) and (C.103), we obtain the FOC in equilibrium at the aggregate level

for i is then given by (58), which is the same at the optimal investment under FB as given in (C.84).

Next, we verify that the ODE for b(n;S) in the mandated market economy with investment

taxes is the same as the ODE (52) for b(n;S) in the first-best economy.

Recall that in the representative agent’s optimization problem, we have the following ODE for

u(n;S):

0 =
ρψu(n;S)1−ψ − ρ

1− ψ−1
+ αrS(n;S) + (1− α)rU (n;S)− ρψu(n;S)1−ψ + λ(n;S)(1− E(Z))

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (C.104)

Using (30) and the equilibrium result W = q(n;S)K, we may rewrite the ODE (C.104) as:

0 =
1

1− ψ−1

[
c(n;S)
q(n;S) − ρ

]
+ αrS(n;S) + (1− α)rU (n;S) + λ(n;S)(1− E(Z))− c(n;S)

q(n;S)

+ [ω(x(n;S)/n)− ϕ(i(n;S))] nu
′(n;S)

u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ
− 1

]
. (C.105)

Then using (58) and q(n;S) = 1

ϕ′(i(n;S))
(
1−nb′(n;S)

b(n;S)

) , we obtain

0 =
ρ

1− ψ−1

[(
A− i(n;S)− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+

(
αrS(n;S) + (1− α)rU (n;S) + λ(n;S)(1− E(Z))

)
− c(n;S)
q(n;S) + [ω(x(n;S)/n)− ϕ(i(n;S))] nu

′(n;S)
u(n;S) − γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ζ(n;S)q(n;S)− q(n;S ′)

q(n;S) +
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ

− 1

]
. (C.106)

Using (A.70) and g(n;S) = ϕ(i(n;S)) − λ(n;S)(1 − E(Z)) − ζ(n;S)q(n;S)−q(n;S′)
q(n;S) to simplify
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(C.106), we obtain:

0 =
ρ

1− ψ−1

[(
A− i− x

b(n;S)

)1−ψ−1

− 1

]
+ ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+ (ω(x(n;S)/n)− ϕ(i(n;S)))

(
nu′(n;S)
u(n;S) +

nq′(n;S)
q(n;S)

)
+
ζ(n;S)
1− γ

[(
u(n;S ′)q(n;S ′)

u(n;S)q(n;S)

)1−γ

− 1

]
.

(C.107)

Finally, using b(n;S) = u(n;S) × q(n;S), we can simplify (C.107) to the following ODE for

b(n;S):

0 =
ρ

1− ψ−1

[(
A− i(n;S)− x(n;S)

b(n;S)

)1−ψ−1

− 1

]
+ [ω(x(n;S)/n)− ϕ(i(n;S))] nb

′(n;S)
b(n;S)

+ϕ(i(n;S))− γσ2

2
+
λ(n;S)
1− γ

[
E(Z1−γ)− 1

]
+
ζ(n;S)
1− γ

[(
b(n;S ′)

b(n;S)

)1−γ
− 1

]
. (C.108)

This ODE is the same as the ODE for b(n;S) given in (52) for the first-best economy.

In sum, we have shown that by introducing the investment tax (55) into the mandated market

economy allows us to attain the first-best outcomes.
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