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1 Introduction

In light of the failure of many legislative bodies to implement carbon emissions taxes, there is

growing pressure on the financial sector to fulfill the 2015 Paris Agreement by keeping global

temperatures within 1.5o Celsius above pre-industrial levels. Regulations and activism are

pushing asset managers toward sustainable finance mandates, whereby a fraction of their

portfolios are constrained to hold firms that can meet net-zero emissions targets by 2050.

Examples include the Net-Zero Managers Initiative (with 43 trillion dollars of assets under

management committed) and the Network for Greening the Financial System (NGFS) (with

central banks proposing climate stress tests of institutional-investor portfolios). Regulations

by the European Union (and likely ones by the Security Exchange Commission) requiring

disclosures of Scope 1 and 2 carbon emissions address enforceability or greenwashing con-

cerns.

Coinciding with the pressure from these mandates, major corporations, including even

energy producers, have announced plans to meet certain net-zero emissions targets. While

part of these targets will be achieved with a switch to renewables, much will rely on spending

enough on decarbonization measures. According to a recent Intergovernmental Panel on Cli-

mate Change (IPCC) special report (Rogelj et al. (2018)), remaining mitigation pathways to

net-zero emissions require a portfolio of decarbonization measures, including negative emis-

sion technologies (NETs) such as afforestation and reforestation, soil carbon sequestration,

bioenergy with carbon capture and storage (BECCs), and direct air capture (DAC).1 While

a number of these measures exist, the stock of decarbonization capital (e.g., forests and

plants to do air capture) is low relative to what is needed to stabilize our climate due to

externalities.

We model how these mandates incentivize firms to address the global warming externality

via the accumulation of this decarbonization-capital stock. We use our model to address a

number of questions. To what extent can mandates achieve first-best outcomes when it

comes to mitigating global warming? How large would these mandates have to be? How

1One reason is that for heavy industrial sectors like cement and steel, which generate nearly 20% of global
CO2 emissions, switching fuel sources is not a viable option for achieving net-zero (de Pee (2018)).
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effective are mandates in competitive stock markets with arbitrageurs? How many years

would it take for the economy to transition to the steady state? What are the consequences

for extreme temperatures? What is the impact on economic growth, particularly during the

transition? And what about the consequences for investors’ portfolio performance? How

much can decarbonization contribute to the goal of reaching a net-zero economy?

While there is a literature on how socially responsible investing incentivizes firms to re-

form via a cost-of-capital channel,2 there is no work that we know of that can address these

welfare issues. In order to conduct these calculations, we first introduce decarbonization

capital into a dynamic stochastic general equilibrium model with traditional capital as the

sole input of producing a homogeneous good and the sole source of carbon emissions.3 De-

carbonization capital only offsets carbon emissions and has no productive role. Both types

of capital are subject to adjustment costs.

Emissions lead to extreme global temperatures, which damage economic growth (Dell,

Jones, and Olken (2012), Burke, Hsiang, and Miguel (2015)).4 The ratio of decarbonization

capital to productive capital reduces the frequency of extreme temperatures and hence ex-

pected losses from global warming. Investments in decarbonization capital, which come at

the expense of firm productivity, increase this ratio.

There is a high willingness-to-pay for mitigation among our households with non-expected

utility ((Epstein and Zin (1989) and Weil (1990)) since disasters cause significant welfare

losses (Barro (2006), Weitzman (2009), and Pindyck and Wang (2013)). But there is an

2The first model of green mandates and the cost-of-capital channel in a static CARA setting is Heinkel,
Kraus, and Zechner (2001). Hong and Kacperczyk (2009) show how ethical investing mandates affect sin
companies. Recent work (Pastor, Stambaugh, and Taylor (2020), Pedersen, Fitzgibbons, and Pomorski
(2020)) model how non-pecuniary tastes of green investors influence cross-sectional asset prices in a CAPM
setting. Sustainable mandates need not only be passive but also active via voting for environmentally friendly
policies (Gollier and Pouget (2014), Broccardo, Hart, and Zingales (2020), and Oehmke and Opp (2020))
but exit or screens are the predominant form of mandates.

3Our two capital stock approach builds on Eberly and Wang (2009), who consider a general equilibrium
model with two sectors of different productivity.

4According to the National Academy of Sciences (2016)), extreme temperatures lead to increased fre-
quency and damage from hurricanes that make landfall (Grinsted, Ditlevsen, and Christensen (2019), Kossin
et.al. (2020)). Similarly, the wildfires in the Western US states are also linked to climate change (Abatzoglou
and Williams (2016)). See Bansal, Ochoa, and Kiku (2017) for the impact of higher temperature on growth
stocks and Hong, Karolyi, and Scheinkman (2020) for a review of evidence on the damage of natural disasters
for financial markets.
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externality when it comes to mitigating the damages of emissions. Since the benefits of

this mitigation only affect the aggregate risk and the market price of risk, which firms take

as given, firms do not contribute to decarbonization capital in competitive markets (Hong,

Wang and Yang (2020)) — i.e., there is over-accumulation of productive capital and under-

accumulation of decarbonization capital.

There is a competitive stock market with a representative investor, who has access to

a complete set of financial securities (e.g., all contingencies including idiosyncratic shocks

are dynamically spanned) but is restricted to passively index a fixed fraction of total wealth

to firms that meet sustainability guidelines. To be included in the representative investor’s

sustainable portfolio, otherwise ex-ante identical firms have to invest a minimally required

amount on decarbonization which they otherwise would not due to externalities. Hence, a

sustainable finance mandate specifies both the fraction of wealth that is restricted to the

sustainable finance index and firm spending on decarbonization that is required to qualify to

be part of this index. Investors also face shorting constraints due to a number of institutional

reasons (see Almazan, Brown, Carlson, and Chapman (2004), Hong and Stein (2007)).

Despite being a dynamic stochastic general equilibrium model, the solution is intuitive

and has a number of implications. The value of productive capital, i.e., Tobin’s q, for sustain-

able and unsustainable firms, are endogenously determined so as to leave value-maximizing

firms indifferent between being sustainable or not — the Tobin’s q or stock price is the same

for all firms in equilibrium. The decarbonization capital, which is unproductive and does

not contribute to output, sits in the firm’s assets but is not priced by markets other than

through the mandate qualification mechanism.5 The risk-free rate, stock-market risk pre-

mium, Tobin’s q for aggregate productive capital, and growth rates are jointly determined.

They in turn depend on the ratio of decarbonization to productive capital, which governs

transition dynamics and the steady state.

In equilibrium, there is a cost-of-capital wedge between qualified and unqualified firms

that equals firm decarbonization investments divided by its Tobin’s q. Since firms have the

same Tobin’s q in equilibrium, the growth paths of both sustainable and unsustainable firms

5The decarbonization capital can equivalently be managed by a public sector.
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are identical (path by path) over time. Sustainable firms have lower cashflows to pay out due

to mitigation spending but have lower cost of capital (the expected return required by the

representative investor). The cash-flow effect and the discount-rate effect have to offset each

other so as to leave all firms indifferent between being a sustainable and an unsustainable

firm. The lower cost of capital for sustainable firms subsidizes their decarbonization, which

they would have otherwise invested in productive capital or distributed to shareholders. The

benefits of this mitigation accrue to the entire economy.

Since there is a perfectly competitive and homogeneous goods market and capital is

the only input, mandates act as a capital tax (i.e. a sustainable-finance tax), funding a

higher decarbonization-to-productive capital ratio to mitigate global warming.6 Due to ad-

justment costs, the ratio of decarbonization-to-productive capital rises gradually over time

until steady-state. Since the cost of capital wedge tracks annual firm decarbonization in-

vestments, which scale with the amount of decarbonization capital in the economy, the

sustainable-finance tax will also vary in the transition, tending to increase before steady

state.

We focus in the paper on two types of solutions. The first is the welfare-maximizing

mandate with markets — taking as given a fraction of wealth that is restricted to sustainable

firms, the government announces the minimum decarbonization spending for firms to qualify

that maximizes the welfare of agents given the competitive market solution. Implementing

this solution only requires a sufficient fraction of wealth be restricted. When the fraction

of wealth that is indexed to sustainable finance mandates is larger, all else equal, each

sustainable firm needs to make less investments (i.e. qualifying standards are lower for being

labeled sustainable). The second is the planner’s solution or first-best solution. We compare

the outcomes of a welfare-maximizing mandate with markets to that of the planner’s first-

best solution to address the welfare questions we posed.

In our quantitative analysis, we show that our model can simultaneously match key

6This is in contrast a tax on emissions (Golosov, Hassler, Krusell and Tsyviski (2014)) in traditional
integrated assessment models featuring an emissions sector as the only input and a perfectly competitive
goods market.
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macro-finance moments (Bansal and Yaron (2004)) and realistic climate mitigation pathways

as emphasized by the recent literature on integrated assessment models of a carbon tax

(see, e.g., Nordhaus (2017), Jensen and Traeger (2014), Cai and Lontzek (2019), Daniel,

Litterman, and Wagner (2019)), and especially by Barnett, Brock, and Hansen (2020)). In

addition, our model can also match price elasticity of stock demand, in that sustainable

finance mandates generate realistic stock price effects that are consistent with the literature

on downward-sloping stock demand curves (i.e. cost-of-capital wedges are not unrealistic

large as to violate limited arbitrage).7

To this end, we use estimates of the damage to GDP growth from abnormal annual coun-

try temperatures of 1.5o Celsius (relative to pre-industrial era) to discipline our model. Such

events are still uncommon, occurring in a few percent of the country-year observations but

damage conditional on such an event is around minus four percentage points of GDP growth

(Dell, Jones, and Olken (2012)). We then calibrate parameters governing the adjustment

cost and efficiency of decarbonization capital to be consistent with reforestation, which is

one of the most cost-effective forms of carbon capture (Rogelj et al. (2018), Bastin et al.

(2019), and Griscom et al. (2017)).

Using the fact that the current level of decarbonization is small, we can pin down both

the economic damage absent mitigation and the cost of mitigation from the first-order condi-

tions of the planner’s problem.8 We then consider a comparative static where we increase the

frequency of annual extreme temperatures. In a 1.5o Celsius world, the frequency of extreme

temperature events will rise (from a few percent of country-year observations to a much

larger fraction). A small amount of mitigation will no longer be optimal. In our baseline

quantitative exercise, we report the solutions (for the welfare-maximizing mandate with mar-

kets and the planner’s solution) as we increase frequencies of extreme annual temperatures

to one (or about 63% of country-year observations).

There are several key messages from our quantitative analysis. First, the fraction of

7See e,g., Shleifer (1986), Wurgler and Zhuravskaya (2002), Chang, Hong and Liskovich (2015), Kashyap,
Kovrijnykh, and Pavlova (2018), and Koijen and Yogo (2019).

8For instance, there are some attempts already at reforestation around the world such as in US, China,
Turkey, Canada and a number of countries in Europe but these are relatively small efforts.
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wealth that needs to be restricted to sustainable finance companies to implement the welfare-

maximizing mandate with markets solution is only a few percent since sustainable firms only

have to satisfy a non-zero dividend constraint and hence can in principle dedicate all their

investments toward decarbonization.9 Estimates conservatively place sustainable finance

restrictions at around 10% to 20% of wealth.10

Second, the welfare-maximizing mandate with markets solution can approximate the first-

best solution. The steady-state ratio of decarbonization to productive capital in the planner’s

solution is close to 5.7%. The decarbonization-to-productive capital ratio in the market

economy with the optimal mandate is around 4.6% at the steady state. Despite this short-fall,

the welfare gains from the mandate solution are substantial, and close to the gains obtained

by the planner’s solution — almost 25% higher measured in the certainty equivalent wealth

than in a purely competitive market setting. One reason is that the rise of decarbonization

capital brings down the jump arrival rate of extreme temperature country-year events non-

linearly, with substantial benefits for even modest increases in decarbonization capital. In our

calibration, the overall benefits to temperature are broadly in line with climate-mitigation

pathways connected to reforestation.

Given that the global capital stock is around 600 trillion dollars, a 4.6% decarbonization-

to-productive capital ratio implies around 27.6 trillion dollars of decarbonization capital (i.e.

book value of new forests) at the steady state.11 Aggregate contributions to decarbonization

capital stock each year under the welfare-maximizing mandate with markets is around 0.23%

of physical capital stock in the steady state, which means spending of around 1.4 trillion

dollars per year towards decarbonization. Decarbonization contributions peak at the steady

state. The transition time to the steady state is about 23 years (a number that we target in

9It is easy to extend our model to add payout constraints. In this setting, there is then value to restricting
a higher fraction of wealth. One can endogenize this fraction by assuming some regulatory costs to having
more assets under management restricted.

10The Net-Zero Manager Initiative accounts for 7% of capital. More generally, according to US SIF Foun-
dation in January 2019, around 38% of assets under management already undergo some type of sustainability
screening (though not all of it is regarding decarbonization) and over 80% of these screens as implemented
as passive portfolios.

11Gadzinki, Schuller and Vacchino (2018) estimate global capital stock (including both traded and non-
traded assets) in 2016 to be between 500 and 600 trillion dollars.
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our calibration to be consistent with the time it takes to reforest).

At 10% (20%) of wealth restricted to sustainable firms, the cost-of-capital wedge rises to

1.40% (0.70%) per annum at the steady state to compensate sustainable firms that have to

spend close to 2.3% (1.2%) of their capital stock each year to qualify.12 Even at fairly high

levels of indexing to a sustainable finance mandate, these cost-of-capital wedges are not too

large, which is consistent with realistic price elasticity of stock demand and limited arbitrage.

The risk-free rate rises over time and the risk premium falls as the economy becomes less

risky with a higher decarbonization-to-productive capital ratio in steady state.

Finally, we find that the welfare-maximizing mandate with markets based only on de-

carbonization (reforestation) can get us about 25% of the way towards aggregate net-zero

emissions targets by 2050. Our analysis is consistent with IPCC estimates that decarboniza-

tion needs to play a significant role in meeting net-zero emissions targets by 2050. Hence, our

paper also offers a new approach for analyzing climate-mitigation pathways and the net-zero

economy.

2 Model

While mitigating climate disaster risk benefits the society, doing so is privately costly for

the firm. We model sustainable finance mandates as portfolio restrictions on the represen-

tative agent’s portfolio and examine the extent to which it encourages firms to provide risk

mitigation and quantify its implications for social welfare. We use a representative-agent

framework for expositional simplicity, where this agent can be interpreted as representing

both public (e.g., sovereign wealth funds) and private investors.

On the demand side for financial assets, the representative agent holds and invests the

entire wealth of the economy between sustainable (S) firms, unsustainable (U) firms, and

the risk-free bonds. The agent has to invest an α fraction of the entire aggregate wealth

in a sustainable type-S firm. The risk-averse representative agent is required to meet the

sustainable investment mandate at all times when allocating assets.

12See Bolton and Kacperczyk (2020) for preliminary estimates of expected returns based on Scope 1+2
emissions.
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On the supply side, a portfolio of S firms and a portfolio of U firms will arise endogenously

in equilibrium, which we refer to as S-portfolio and U -portfolio, respectively. For a firm to

qualify to be type-S, it has to spend at least a fraction m of its capital on mitigation via

a portfolio of decarbonization technologies so as to reduce disaster risk. Otherwise, it is

labeled a type-U for unsustainable.

2.1 Firm Production and K Capital Accumulation

The firm’s output at t, Yt, is proportional to its capital stock, Kt, which we refer to as

productive capital and is the only factor of production:

Yt = AKt , (1)

where A > 0 is a constant that defines productivity for all firms. This is a version of widely-

used AK models in macroeconomics and finance. All firms start with the same level of

initial capital stock K0 and have the same production and capital accumulation technology.

Additionally, they are subject to the same shocks (path by path).

That is, there is no idiosyncratic shock in our model. This simplifying assumption makes

our model tractable and allows us to focus on the impact of the investment mandate on

equilibrium asset pricing and resource allocation. Despite being identical in all aspects,

some firms choose to be sustainable while others remain unsustainable in equilibrium.

Investment. Let It denote the firm’s investment. As in Pindyck and Wang (2013), the

firm’s productive capital stock, Kt, evolves as:

dKt = Φ(It−, Kt−)dt+ σKt−dBt − (1− Z)Kt−dJt . (2)

As in Lucas and Prescott (1971) and Jerrmann (1998), we assume that Φ(I,K), the first

term in (2), is homogeneous of degree one in I and K, and thus can be written as

Φ(I,K) = φ(i)K , (3)

where i = I/K is the firm’s investment-capital ratio and φ( · ) is increasing and concave.

This specification captures the idea that changing capital stock rapidly is more costly than
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changing it slowly. As a result, installed capital earns rents in equilibrium so that Tobin’s

q, the ratio between the value and the replacement cost of capital exceeds one.

The second term captures continuous shocks to capital, where Bt is a standard Brownian

motion and the parameter σ is the diffusion volatility (for the capital stock growth). This

Bt is the source of shocks for the standard AK models in macroeconomics. This diffusion

shock is common to all firms. Had we introduced an additional shock that is idiosyncratic

across firms, our solution would remain unchanged as firms can perfectly hedge idiosyncratic

shocks at no cost and our aggregation results remain valid.

Jump shocks. The firm’s K capital stock is also subject to an aggregate jump shock.

We capture this jump effect via the third term, where Jt is a (pure) jump process with an

endogenously determined arrival rate, which we denote by λt− > 0, which we discuss in detail

later. To emphasize the timing of potential jumps, we use t− to denote the pre-jump time

so that a discrete jump may or may not arrive at t. Examples of jumps include hurricanes

or wildfires (and related extreme temperatures) that destroy physical and housing capital

stock.

When a jump arrives (dJt = 1), it permanently destroys a stochastic fraction (1− Z) of

the firm’s capital stock Kt−, as Z is the recovery fraction where Z ∈ (0, 1). (For example, if

a shock destroyed 15 percent of capital stock, we would have Z = .85.) There is no limit to

the number of these jump shocks.13 If a jump does not arrive at t, i.e., dJt = 0, the third

term disappears. We assume that the cumulative distribution function (cdf) and probability

density function (pdf) for the recovery fraction, Z, conditional on a jump arrival at any time

t, are time invariant. Let Ξ(Z) and ξ(Z) denote the cdf and pdf of Z, respectively.

We use boldfaced notations for aggregate variables. Before discussing the endogenous

jump arrival rate λt−, we first introduce emissions, emission removals, and the dynamics of

decarbonization capital stock N.

13Stochastic fluctuations in the capital stock have been widely used in the growth literature with an AK
technology, but unlike the existing literature, we examine the economic effects of shocks to capital that
involve discrete (disaster) jumps.
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2.2 Aggregate Emissions, Emission Removals, and Decarboniza-
tion Capital Stock N

We assume that the aggregate emissions E is proportional to K:

Et− = eKt− , (4)

where e > 0 is a constant. That is, aggregate emissions increases linearly with the size of

the production sector of the economy, which is measured by the aggregate capital stock K

or equivalently GDP (AK).

Similarly, we assume that the aggregate emission removals R is proportional to the

decarbonization capital stock N:

Rt− = τNt− , (5)

where τ > 0 is a constant. Equations (4) and (5) state that both aggregate emissions and

carbon removals are given by an “AK”-type of technology.

Let Xt denote the aggregate mitigation spending. The aggregate decarbonization capital

stock N evolves as follows:

dNt

Nt−
= ω(Xt−/Nt−)dt+ σdBt − (1− Z)dJt . (6)

In (6), ω(Xt−/Nt−) is the rate at which aggregate mitigation spending Xt− increases dNt/Nt−.

We assume that ω( · ) is increasing and concave as we do for φ(i). This specification captures

the idea that changing the decarbonization capital stock rapidly is more costly than changing

it slowly.

We further assume that the growth rate dNt/Nt− for decarbonization capital stock Nt−

is subject to the same diffusion and jump shocks as the growth rate of capital stock K,

dKt/Kt−, path by path (e.g., for each realized jump and recovery fraction Z). This explains

why the last two terms in (6) take the same form as those in (2).

Let nt− denote the decarbonization stock Nt− scaled by Kt−:

nt− =
Nt−

Kt−
. (7)
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Using Ito’s lemma, we obtain the following dynamics for nt:

dnt
nt−

= [ω(xt−/nt−)− φ(it−)] dt . (8)

Since the two types of capital stock are subject to the same jump-diffusion shocks, there is

no uncertainty for the dynamics of nt. Next, we describe the distribution for the recovery

fraction Z.

2.3 Mitigation and Externality

Since global warming is expected to increase the frequency of disasters, we assume that the

jump arrival rate λt− increases with the aggregate emissions Et− and decreases with the

aggregate emissions removals Rt−. As Et− = eKt− and Rt− = τNt− (see equations (4) and

(5)), we may write λt− as a function that is increasing in Kt− and decreasing in Nt−.

The pre-jump expected damage over a small dt period is λt−E(1−Z)Kt−dt, where E( · )
is the expectation operator. We further make the following homogeneity assumption: the

expected damage doubles if we simultaneously double both the size of the productive sector

(Kt−) and the size of the protective sector (Nt−). This boils down to assuming that λt− is

homogeneous of degree zero in Kt− and Nt−, which means λt− is simply a function of the

pre-jump scaled aggregate decarbonization stock nt− = Nt−/Kt−. It is useful to make the

dependence of λt− on nt− explicit: λt− = λ(nt−). Intuitively, increasing n lowers the jump

arrival rate, λ′(n) < 0. Additionally, the marginal impact of N on the change of λ decreases

as N increases, i.e., λ′′(n) > 0.

As disaster shocks are aggregate and disaster damages are only curtailed by aggregate

decarbonization stock N, absent mandates or other incentive programs, firms have no in-

centives to mitigate on their own as the economy is competitive and their own mitigation

spending have no impact on the aggregate mitigation spending (Hong, Wang, and Yang

(2020)).
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2.4 Sustainable Investment Mandates

Let 1St be an indicator function describing the status of a firm at t. To qualify as a sustainable

(S) firm at t, the firm has to spend at least Mt at t on disaster risk mitigation, which

contributes to the reduction of aggregate risk. That is, 1St = 1 if and only if the firm’s

mitigation spending Xt satisfies:

Xt ≥Mt . (9)

Otherwise, 1St = 0 and the firm is unsustainable (U).

To preserve our model’s homogeneity property, we assume that the mandated mitigation

spending is proportional to firm size Kt for given nt:

Mt = m(nt)Kt , (10)

where mt is the minimal level of mitigation per unit of the firm’s capital stock to qualify

a firm to be sustainable. That is, it is cheaper for a firm (with smaller Kt) to qualify

as a sustainable firm. Later, we endogenize the S-firm qualification threshold, m(nt), to

maximize the representative agent’s utility.

The investment mandate α creates the inelastic demand for S firms. In equilibrium, the

remaining 1− α fraction is invested in the U -portfolio so that the agent has no investment

in the risk-free bonds in equilibrium.

2.5 Optimal Firm Mitigation

Each firm can choose to be either a sustainable (S) or a unsustainable firm (U). We assume

that a firm’s mitigation is observable and contractible. While spending on aggregate risk

mitigation yields no monetary payoff for the firm, doing so allows it to be included in the

S-portfolio.

A value-maximizing firm chooses whether to be sustainable or unsustainable depending

on which strategy yields a higher value. Let Qj
t denote the the market value of a type-j firm

at t, where j = {S, U}. By exploiting our model’s homogeneity property, we conjecture and
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verify that the equilibrium value of a type-j firm at time t must satisfy:

Qj
t = qj(nt)K

j
t , (11)

where qj is Tobin’s average q for a type j-firm for given nt.

In equilibrium, as mitigation spending has no direct benefit for the firm, if the firm

chooses to be U , i.e., 1St = 0, it will set Xt = 0. Moreover, even if a firm chooses to be a S

firm, it has no incentive to spend more than Mt, i.e., (9) always binds for a type-S firm.

As we later verify, the equilibrium expected rate of return for a type-j firm, which we

denote by rj(nt), is a function of nt. A type-j firm maximizes its present value:

max
Ij ,Xj

E
(∫ ∞

0

e−r
j(nt)tCF j(nt)dt

)
(12)

subject to the standard transversality condition specified in the Appendix A. In equation

(12), CF j(nt) is the firm’s cash flow at t, which is given by

CF S(nt) = AKS
t − ISt (nt)−XS

t (nt) and CFU(nt) = AKU
t − IUt (nt) , (13)

as an unsustainable firm spends nothing on mitigation.

Since It and Xt are both proportional to Kt, spending on Xt effectively reduces the

productivity of firms. Hence, Xt can be broadly interpreted as spending on various decar-

bonization measures.

2.6 Dynamic Consumption and Asset Allocation

The representative agent makes all the consumption and asset allocation decisions. We

thus use individual and aggregate variables for the agent interchangeably. For example,

the aggregate wealth, Wt, is equal to the representative agent’s wealth, Wt. Similarly, the

aggregate consumption, Ct, is equal to the representative agent’s consumption, Ct.

The representative agent has the following investment opportunities: (a) the S portfolio

which includes all the sustainable firms; (b) the U portfolio which includes all other firms

that are unsustainable; (c) the risk-free asset that pays interest at a constant risk-free interest

rate r determined in equilibrium; and (d) actuarially fair insurance claims for disasters with

every possible recovery fraction Z (and also for diffusion shocks.)
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Type-S and type-U portfolios. The S and U portfolios include all the S and U firms,

respectively. Let QS
t and QU

t denote the aggregate market value of the S portfolio firm and

the U portfolio at t, respectively. Similarly, Let DS
t and DU

t denote the aggregate dividend

of the S portfolio firm and the U portfolio at t, respectively.

We conjecture and then verify that the cum-dividend return for the type-n portfolio is

given by
dQj

t + Dj
t−dt

Qj
t−

= rj(nt−)dt+ σdBt − (1− Z) (dJt − λ(nt−)dt) , (14)

where rj(nt−) is the endogenous expected cum-dividend return for a type-j firm in equi-

librium for given n. In equation (14), the diffusion volatility is equal to σ as in equation

(2). The third term on the right side of equation (14) is a jump term capturing the effect of

disasters on return dynamics. Both the diffusion volatility and jump terms are martingales

(and this is why rj(nt−) is the expected return.) Note that the only difference between the

S- and U -portfolio is the expected return. The diffusion and jump terms are the same as

those in the capital evolution dynamics given in equation (2).

Disaster risk insurance (DIS). We define DIS as follows: a DIS for the survival fraction

in the interval (Z,Z + dZ) is a swap contract in which the buyer makes insurance payments

p(Z)dZ, where p(Z) is the equilibrium insurance premium payment, to the seller and in

exchange receives a lump-sum payoff if and only if a shock with survival fraction in (Z,Z+dZ)

occurs. That is, the buyer stops paying the seller if and only if the defined disaster event

occurs and then collects one unit of the consumption good as a payoff from the seller. The

DIS contract is priced at actuarially fairly terms so that investors earn zero profits.

Preferences. We use the Duffie and Epstein (1992) continuous-time version of the recur-

sive preferences developed by Epstein and Zin (1989) and Weil (1990), so that the represen-

tative agent has homothetic recursive preferences given by:

Vt = Et
[∫ ∞

t

f(Cs, Vs)ds

]
, (15)
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where f(C, V ) is known as the normalized aggregator given by

f(C, V ) =
ρ

1− ψ−1
C1−ψ−1 − ((1− γ)V )χ

((1− γ)V )χ−1
. (16)

Here ρ is the rate of time preference, ψ the elasticity of intertemporal substitution (EIS), γ

the coefficient of relative risk aversion, and we let χ = (1 − ψ−1)/(1 − γ). Unlike expected

utility, recursive preferences as defined by (15) and (16) disentangle risk aversion from the

EIS. An important feature of these preferences is that the marginal benefit of consumption

is fC = ρC−ψ
−1
/[(1 − γ)V ]χ−1, which depends not only on current consumption but also

(through V ) on the expected trajectory of future consumption.

If γ = ψ−1 so that χ = 1, we have the standard constant-relative-risk-aversion (CRRA)

expected utility, represented by the additively separable aggregator:

f(C, V ) =
ρC1−γ

1− γ − ρ V. (17)

This more flexible utility specification is widely used in asset pricing and macroeconomics for

at least two important reasons: 1) conceptually, risk aversion is very distinct from the EIS,

which this preference is able to capture; 2) quantitative and empirical fit with various asset

pricing facts are infeasible with standard CRRA utility but attainable with this recursive

utility, as shown by Bansal and Yaron (2004) and the large follow-up long-run risk literature.

Wealth dynamics. Let Wt denote the representative agent’s wealth. Let HS
t and HU

t

denote the dollar amount invested in the S and U portfolio, respectively. Let Ht denote the

agent’s wealth allocated to the market portfolio at t. That is, Ht = HS
t + HU

t . The dollar

amount, (Wt − Ht) is the dollar amount invested in the risk-free asset. For disasters with

recovery fraction in (Z,Z + dZ), δt(Z,nt−)Wtdt gives the total demand for the DIS over

time period (t, t+ dt).

The agent accumulates wealth as:

dWt = [r(nt−) (Wt− −Ht−)− Ct−] dt+
(
rS(nt−)HS

t− + rU(nt−)HU
t−
)
dt+ σHt−dBt (18)

− (1− Z)Ht−(dJt − λ(nt−)dt)−
(∫ 1

0

δ(Z,nt−)p(Z,nt−)dZ

)
Wt−dt+ δ(Z,nt−)Wt−dJt .
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The first term in (18) is the interest income from savings in the risk-free asset minus con-

sumption. The second term is the expected return from investing in the S and U portfolios.

Note that the expected returns are different: rS(n) and rU(n) for the S and U portfolios,

respectively. The third and fourth terms are the diffusion and jump martingale terms for the

stock market portfolio. Note that the stochastic (shock) components of the returns (diffu-

sion and jumps) for the two portfolios are identical path by path. The fifth term is the total

DIS premium paid by the consumer before the arrival of jumps and captures the financial

hedging cost. The last term describes the DIS payments by the DIS seller to the household

when a jump occurs.

The total market capitalization of the economy, Qt, is given by

Qt = qS(nt)K
S
t + qU(nt)K

U
t . (19)

Let πSt and πUt denote the fraction of total wealth Wt allocated to the S and U portfolio

at time t, respectively. That is, HS
t = πSt Ht, H

U
t = πUt Ht, and the remaining fraction

1−
(
πSt + πUt

)
of Wt is allocated to the risk-free asset.

In equilibrium, the investment mandate requires that the total capital investment in the

S portfolio has to be at least an α fraction of the total stock market capitalization Qt:

HS
t ≥ αQt . (20)

The total stock market capitalization Qt depends on the mandate. We later derive a closed-

form expression for the relation between Qt and α.

Let Yt, Ct, It, and Xt denote the aggregate output, consumption, investment, and

mitigation spending, respectively. Adding across all type-S and U firms, we obtain the

aggregate resource constraint:

Yt = Ct + It + Xt . (21)

2.7 Competitive Equilibrium with Mandates

We define the competitive equilibrium subject to the investment mandate as follows: (1)

the representative agent dynamically chooses consumption and asset allocation among the
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S portfolio, the U portfolio, and the risk-free asset subject to the investment mandate given

in (20); (2) each firm chooses its status (S or U), and investment policy I to maximizes its

market value; (3) all firms that choose sustainable investment policies are included in the S

portfolio and all remaining firms are included in the U portfolio; and (4) all markets clear.

The market-clearing conditions include (i) the net supply of the risk-free asset is zero;

(ii) the representative agent’s demand for the S portfolio is equal to the total supply by

firms choosing to be sustainable; (iii) the representative agent’s demand for the U portfolio

is equal to the total supply by firms choosing to be brown; (iv) the net demand for the DIS of

each possible recovery fraction Z is zero; and (v) the goods market clears, i.e., the resource

constraint given in (21) holds.

Because the risk-free asset and all DIS contracts are in zero net supply, the agent’s entire

wealth Wt is invested in the S and U portfolios.

3 Equilibrium Solution

In this section, we solve for the equilibrium solution with the sustainable finance mandate.

First, we introduce the investment mandate at the firm level.

3.1 Sustainability Investment Mandate

For a firm to be sustainable at t, it is required to spend the minimal required mt fraction

of its productive capital stock Kt. We assume that mt is a function of nt to preserve our

model’s homogeneity property:

xSt =
XS
t

KS
t

= m(nt). (22)

Any additional spending on mitigation is suboptimal as it yields no further benefit to the

firm. All other firms spend nothing on mitigation and hence are unsustainable, i.e., xUt = 0.

The fraction of total wealth allocated to meet the sustainability investment mandate is α.

Next, we consider the firm’s decision problem when it takes the sustainability mandate

{mt : t ≥ 0} as given.
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3.2 Firm Optimization

We solve for optimal investment policies for both types of firms. The firm’s objective (12)

implies that
∫ s
0
e−

∫ t
0 r

j(nv)dvCF j(nt)dt + e−
∫ s
0 r

j(nv)dvQj
s is a martingale under the physical

measure. We obtain the following Hamilton-Jacobi-Bellman (HJB) equation:

rj(n)Qj(Kj,n) = max
Ij

CF j(n) +

(
Φ(Ij, Kj)Qj

K(Kj,n) +
1

2
(σKj)2Qj

KK(Kj,n)

)
(23)

+ [ω(x/n)− φ(i)] nQn
n(Kj,n) + λ(n)E

[
Qj(ZKj,n)−Qj(Kj,n)

]
,

where rj(n) is the cost of capital and CF j(n) is the cash flow for a type-j firm given by (13).

The preceding equation takes the aggregate decarbonization stock n, aggregate mitigation

spending x, and aggregate investment i as given. In (23), E [ · ] is the conditional expectation

operator with respect to the distribution of recovery fraction Z. The last term depends on

the scaled aggregate decarbonization capital stock n and has the same effect on all firms.

By using our model’s homogeneity property, Qj
t = qj(nt)Kt, we obtain the following

rj(n)qj(n) = max
ij

cf j(n) + g(ij)qj(n) + [ω(x/n)− φ(i)] nqj′(n) , (24)

where g(i(n)) is the expected firm growth rate:

g(i(n)) = φ(i(n))− λ(n)(1− E(Z)) , (25)

and cf j(n) = CF j(n)/Kj is the scaled cash flow for a type-j firm. As xS(n) = m(n) and

xU(n) = 0, we have cfS(n) = A− iS(n)−m(n) for a type-S firm and cfU(n) = A− iU(n)

for a type-U firm.

The investment FOC for both types of firms implied by (24) is the following well known

condition in the q-theory literature:

qj(n) =
1

φ′(ij(n))
. (26)

A type-j firm’s marginal benefit of investing is equal to its marginal q, qj(n), multiplied by

φ′(ij(n)). Equation (26) states that this marginal benefit, qj(n)φ′(ij(n)), is equal to one,

the marginal cost of investing at optimality. The homogeneity property implies that a firm’s

marginal q is equal to its average q (Hayashi, 1982).
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3.3 Representative Agent’s Optimization

In the appendix, we show that both the optimal risk-free asset holding and the jump hedging

demand δ(Z,n) are zero for all Z and n in equilibrium. Additionally, the fraction of total

wealth allocated to the S-portfolio, which we denote by πS = HS/(HS +HU) = HS/W , is

equal to the fraction of wealth mandated to invest in the S portfolio: πS = α. The remaining

1− πS fraction of total wealth is allocated to the U -portfolio. That is, HS
t = αWt = QS

t =

αQt, H
U
t = (1− α)Wt = QU

t = (1− α)Qt, and Wt = Qt = QS
t + QU

t .

To ease exposition, here we only highlight the FOC with respect to consumption and the

following associated simplified HJB equation for the agent’s value function, V (W,n):

0 = max
C

f(C, V ) +
[(
rS(n)α + rU(n)(1− α)

)
W − C

]
VW (W,n) + [ω(x/n)− φ(i)] nVn(W,n)

+
σ2W 2VWW (W,n)

2
+ λ(n)

∫ 1

0

[V (ZW,n)− V (W,n)] ξ(Z)dZ . (27)

The FOC for consumption C is the standard condition:

fC(C, V ) = VW (W,n) . (28)

3.4 Market Equilibrium

The equilibrium risk-free rate r(n), the expected returns (rS(n) and rU(n)) for the S and U

portfolios, Tobin’s average q for all firms are all functions of n.

As a firm can choose being either sustainable or not, it must be indifferent between the

two options at all time. That is, in equilibrium, all firms have the same Tobin’s q, which in

equilibrium is also Tobin’s q for the aggregate economy:

qS(n) = qU(n) = q(n) . (29)

Equations (26) and (29) imply that all firms also have the same equilibrium investment-

capital ratio, which is also the aggregate i(n) for given n:

iS(n) = iU(n) = i(n) . (30)
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As a result, the cash flows difference between a U and an S firm is exactly the mitigation

spending:

cfU(n)− cfS(n) = m(n) , (31)

where cfU(n) = A− i(n).

Since each S firm spends m(n)KS
t units on mitigation and all firms are of the same size,

we have the following relation between the scaled mitigation m(n) at the firm level and

scaled mitigation at the aggregate level x(n) = X(n)/K:

m(n) =
x(n)

α
≥ x(n) . (32)

The mitigation spending mandate for a firm, m(n), is larger than the aggregate scaled

mitigation, x(n), as only an α fraction of firms are sustainable.

In equilibrium, the aggregate consumption is equal to the aggregate dividend:

c(n) = cf(n) = A− i(n)− x(n) . (33)

Equilibrium risk-free rate r(n) and expected market return rM(n) for a given n.

Building on Pindyck and Wang (2013) and Hong, Wang, and Yang (2020), we calculate the

aggregate stock-market risk premium, rM(n)− r(n), by using

rM(n)− r(n) = γσ2 + λ(n)E
[
(1− Z)(Z−γ − 1)

]
.

The risk-free rate is

r(n) =
c(n)

q(n)
+ φ(i(n)) + [ω(x/n)− φ(i(n))]

nq′(n)

q(n)
− γσ2 − λ(n)E

[
(1− Z)Z−γ

]
. (34)

Aggregate i(n), q(n), and c(n) for a given x(n) process. For a given x(n) process,

we obtain the aggregate scaled investment i(n) by solving

0 =
(A− i(n)− x(n))φ′(i(n))− ρ

1− ψ−1 + φ(i(n))− γσ2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
+ [ω(x/n)− φ(i)]

(
ψ

1− ψ
nq′(n)

q(n)
− 1

1− ψ
ni′(n) + nx′(n)

A− i(n)− x(n)

)
, (35)

where q(n) is given by

q(n) =
1

φ′(i(n))
. (36)
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Welfare, optimal mitigation, and equilibrium investment. In Appendix C, we show

that the welfare measure per unit of capital, b(n) = u(n)×q(n), satisfies the following ODE:

0 =
ρ

1− ψ−1

[(
A− i− x

b(n)

)1−ψ−1

− 1

]
+ φ(i) + (ω(x/n)− φ(i))

nb′(n)

b(n)

−γσ
2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
. (37)

The FOC for the welfare-maximizing level of x is given by

b(n)−ψ
−1

b′(n) = (A− i− x)−ψ
−1 ρ

ω′(x/n)
. (38)

The FOC for the optimal investment is

b(n)1−ψ
−1

= (A− i− x)−ψ
−1 ρ

φ′(i)
. (39)

At the steady state, the drift of n is zero. Let i∗ and x∗ denote the corresponding

steady-state investment-capital ratio and mitigation spending, respectively. We have

ω(x∗/n∗)− φ(i∗) = 0 (40)

and

0 =
ρ

1− ψ−1

[(
A− i∗ − x∗

b(n∗)

)1−ψ−1

− 1

]
+ φ(i∗)− γσ2

2
+
λ(n∗)

1− γ
[
E(Z1−γ)− 1

]
. (41)

Summary. The steady state is an endogenously determined boundary that satisfies (38),

(39), (40), and (41). For the transition path, we solve the ODE (37) together with the FOCs

(38) and (39) subject to the boundary conditions for the steady state given above.

We next calculate the costs of capital for S and U firms.

Cost-of-capital wedge. It is helpful to use θj(n) to denote the wedge between the ex-

pected return for a type-j firm, rj(n), and the aggregate stock-market return, rM(n), and

write for j = {S, U},

rj(n) = rM(n) + θj(n) . (42)
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As an α fraction of the total stock market is the S portfolio and the remaining 1−α fraction

is the U portfolio, we have

rM(n) = α · rS(n) + (1− α) · rU(n) . (43)

Using (24) for both S- and U -portfolios, we obtain

θU(n) =
x(n)

q(n)
=
αm(n)

q(n)
> 0 . (44)

Equation (44) states that investors demand a higher rate of return to invest in U firms than

in the aggregate stock market. The expected return wedge between the U -portfolio and the

market portfolio is equal to θU(n), which is equal to the aggregate mitigation spending X(n)

divided by aggregate stock market value Q(n). This ratio x(n)/q(n) can be viewed as a

“tax” on the unsustainable firms by investors in equilibrium.

Substituting (42) into (43) and using (44), we obtain:

θS(n) = −1− α
α

θU(n) = −1− α
α

x(n)

q(n)
= − (1− α)

m(n)

q(n)
< 0 . (45)

The cost-of-capital difference between U and S firms is given by

rU(n)− rS(n) = θU(n)− θS(n) =
1

α

x(n)

q(n)
=
m(n)

q(n)
. (46)

By being sustainable, a firm lowers its cost of capital from rU(n) to rS(n) by rU(n)− rS(n).

To enjoy this benefit, the firm spends m(n) on mitigation. To make it indifferent between

being sustainable and not, the cost-of-capital wedge is given by rU(n)−rS(n) = m(n)/q(n),

the ratio between the firm’s mitigation spending, m(n)K, and its market value, q(n)K.

4 Welfare-Maximizing Mandate with Markets versus

the Planner’s Solution

We focus on two types of solutions: the welfare-maximizing mandate with markets versus

the planner’s solution.

22



4.1 Welfare-Maximizing Mandate with Markets

For a given level of α, we endogenize the criterion at the firm level characterized by the scaled

mitigation threshold Mt = m(nt)Kt, for a firm to qualify as a sustainable firm. Specifically,

at time 0, the planner announces {Mt; t ≥ 0} and commits to the announcement with

the goal of maximizing the representative agent’s utility given in equation (15) taking into

account that the representative agent and firms take the mandate as given and optimize in

competitive equilibrium.14 Since no firm spends more than Mt to qualify as an S firm, the

equilibrium aggregate mitigation spending satisfies:

Xt = αMt. (47)

Comment. In our model, the representative agent represents investors in the whole econ-

omy including both the private and public sectors. We may also interpret our representative-

agent model as one with heterogeneous agents where an α fraction of them are sustainable

investors, who have investment mandates (e.g., large asset managers and sovereign wealth

funds), and the remaining 1−α fraction do not. The sustainable investors group has inelas-

tic demand for sustainable firms and moreover they do not lend their shares out for other

investors to short sustainable firms.

4.2 Planner’s (First-Best) Solution

We contrast the welfare-maximizing mandate with markets to the planner’s solution where

the planner chooses aggregate C, I, and X to maximize the representative agent’s utility

defined in (15)-(16).

As our model features the homogeneity property, it is convenient to work with scaled

variables at both aggregate and individual levels. We use lower-case variables to denote the

corresponding upper-case variables divided by contemporaneous capital stock. For example,

at the firm level, it = It/Kt, φt = Φt/Kt, and xt = Xt/Kt. Similarly, at the aggregate level,

it = It/Kt, xt = Xt/Kt. For consumers, ct = ct = Ct/Kt.

14Broadly speaking, our mandate choice is related to the optimal fiscal and monetary policy literature (e.g.,
Lucas and Stokey, 1983) in macroeconomics. See Ljungqvist and Sargent (2018) for a textbook treatment.
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Let V (K,N) denote the representative agent’s value function. As in Hong, Wang, and

Yang (2020), the following Hamilton-Jacobi-Bellman (HJB) equation characterizes the plan-

ner’s optimization problem:

0 = max
C, i,X

f(C, V ) + φ(i)KVK + ω(x/n)NVN +
K2VKK + 2NKVNK + N2VNN

2
σ2

+λ(n)

∫ 1

0

[V (ZK, ZN)− V (K,N)] ξ(Z)dZ , (48)

subject to the following aggregate resource constraint at all t:

AKt = Ct + itKt + xtKt . (49)

The first-order condition (FOC) for the scaled investment i is

fC(C, V ) = φ′(i)VK(K,N) . (50)

The first-order condition (FOC) for the scaled aggregate mitigation spending x is

fC(C, V ) = ω′(x/n)VN(K,N) , (51)

if the solution is strictly positive, x > 0. Otherwise, x = 0 as mitigation cannot be negative.

The representative agent’s value function takes the following homothetic form:

V (K,N) =
1

1− γ (b(n)K)1−γ , (52)

where b(n) is a function measuring the agent’s certainty-equivalent wealth and is endoge-

nously determined.

Substituting (52) into the FOCs (50)-(51) and the HJB equation (48) and simplifying,

we obtain the following two equations for optimal policies

b(n)1−ψ
−1

= (A− i− x)−ψ
−1

ρ

[
n

ω′(x/n)
+

1

φ′(i)

]
, (53)

b(n)− nb′(n)

b′(n)
=

ω′(x/n)

φ′(i)
, (54)

and the following ODE:

0 =
ρ

1− ψ−1

 A− i− x

ρ
[

n
ω′(x/n)

+ 1
φ′(i)

] − 1

+ φ(i)− γσ2

2
+
ω(x/n)− φ(i)

1 + ω′(x/n)
nφ′(i)

+
λ(n)

1− γ

[∫ 1

0

[
ξ(Z)Z1−γ] dZ − 1

]
. (55)
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At the fist-best steady state nFB, we have

ω(xFB/nFB)− φ(iFB) = 0 , (56)

and

0 =
ρ

1− ψ−1

 A− iFB − xFB

ρ
(

nFB

ω′(xFB/nFB)
+ 1

φ′(iFB)

) − 1

+ φ(iFB)− γσ2

2
+
λ(nFB)

1− γ

[∫ 1

0

[
ξ(Z)Z1−γ] dZ − 1

]
.(57)

Summary. The first-best steady state is an endogenously determined boundary that sat-

isfies (53), (54), (56), and (57). For the transition path, we solve the ODE (55) together

with the FOCs (53) and (54) subject to the boundary conditions for the steady state given

above.

5 Quantitative Analysis

In this section, we operationalize our model. First, we specify various functional forms in

our model. Second, we calibrate our model and choose parameter values based on a variety

of moments from the data. Finally, we describe our quantitative results and findings.

5.1 Functional Form Specifications for the Model

Capital accumulation processes for K and N. As in Pindyck and Wang (2013), we

specify the investment-efficiency function φ(i) as

φ(i) = i− ηK i
2

2
, (58)

where ηK measures the degree of adjustment costs.

We assume that the controlled drift function for decarbonization stock N takes the same

form as that for capital stock K:

ω(x/n) = (x/n)− ηN (x/n)2

2
, (59)

where ηN measures the degree of adjustment costs for decarbonization capital. Note that

x/n = X/N is the firm mitigation spending X scaled by N, which is analogous to the firm’s

investment scaled by capital stock: i = I/K.
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Conditional damage and disaster arrival rate. We define disasters as events that

cause the temperature to be 1.5o Celsius higher than the historical normal level. As in Barro

(2006) and Pindyck and Wang (2013), we model the stochastic damage upon the arrival of

a disaster by assuming that the stochastic recovery fraction, Z ∈ (0, 1), of capital stock is

governed by the following cdf:

Ξ(Z) = Zβ , (60)

where β > 0 is a constant. To ensure that our model is well defined (and economically

relevant moments are finite), we require β > max{γ − 1, 0}. That is, the damage caused by

a disaster follows a fat-tailed power-law function (Gabaix, 2009).

Decarbonization capital can ameliorate the damage of extreme weather to economic

growth by reducing the frequencies of these extreme events. Specifically, we use the fol-

lowing specification for the disaster arrival rate λ(n):

λ(n) = λ0(1− nλ1) , (61)

where λ0 > 0, and 0 < λ1 < 1.

For a given n, the expected aggregate growth rate, g, is

g = φ(i)− λ(n)E(1− Z) = φ(i)− λ(n)

β + 1
= φ(i)− λ(n)` . (62)

5.2 Baseline Calibration

Our calibration exercise is intended to highlight the importance of mitigation for welfare

analysis. Our model has ten parameters in total. We summarize the values of these ten

parameters for our baseline analysis in Table 1.

Preferences parameters. We choose consensus values for the coefficient of relative risk

aversion, γ = 3, and the time rate of preferences, ρ = 5% per annum. Estimates of the EIS

ψ in the literature vary considerably, ranging from a low value near zero to values as high

as two.15 We choose ψ = 1.5 which is larger than one, as in Bansal and Yaron (2004) and

15Attanasio and Vissing-Jørgensen (2003) estimate the elasticity to be above unity for stockholders, while
Hall (1988), using aggregate consumption data, obtains an estimate near zero. Guvenen (2006) reconciles
the conflicting evidence on the elasticity of intertemporal substitution from a macro perspective.
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Table 1: Parameter Values

Parameters Symbol Value

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 5%
coefficient of relative risk aversion γ 3

productivity for K A 14%
adjustment parameter for K ηK 9
diffusion volatility for N and K σ 14%

power-law exponent β 24
jump arrival rate with no mitigation λ0 1

adjustment cost parameter for N ηN 12
mitigation technology parameter λ1 0.3

All parameter values, whenever applicable, are continuously compounded and annualized.

the long-run risk literature for asset-pricing purposes.

Parameters for productive capital accumulation process. We set the productivity

parameter to A = 14% per annum and the capital adjustment parameter ηK = 9 to primarily

target an average q of 1.87 and an average growth rate of g = 3.8% per annum in the pre-

climate-change sample when the disaster arrival rate is low. The estimates of A and ηK are

in the range of estimates reported in Eberly, Rebelo, and Vincent (2012). We set the annual

diffusion volatility at σ = 14% primarily to target a historical stock market risk premium of

6% per annum (Mehra and Prescott, 1985).

Parameters for disaster arrival and conditional damage function. We calibrate the

parameter (λ0) describing the arrival rate of extreme temperature disasters (i.e., abnormal

temperatures above 1.5o Celsius) and damages conditioned on arrival (β) using a set of panel

regressions documenting the adverse effects of exogenous annual changes in temperature (i.e.,

weather shocks) for economic growth (Dell, Jones, and Olken (2012)).16

16This panel regression approach initially focused on how weather affects crop yields (Schenkler and
Roberts (2009)) by using location and time fixed effects. But it is now applied to many other contexts
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First, we calibrate β as follows. For the median country, a 1.5o Celsius abnormal temper-

ature over one year results in a 4% lower GDP growth rate. Conditional on a jump arrival,

the expected fractional capital loss, `, is given by

` = E(1− Z) =
1

β + 1
. (63)

To match this moment, we set the power-law parameter to β = 24 as the implied expected

fractional capital loss is ` = 1/(β + 1) = 1/25 = 4%. Second, using Dell, Jones, and Olken

(2012), we infer that the jump arrival rate is λ0 = 0.05 per annum in the pre-climate-change

sample.

Parameters for decarbonization capital adjustment and its benefits to mitigation.

As discussed in the Introduction, reforestation has the potential to keep global temperatures

from breaching the 1.5o Celsius barrier assuming that we can roughly double the size of

forests. This adjustment is likely to take two to three decades (Bastin et al. (2019), and

Griscom et al. (2017)). In order to match this gradual adjustment, we set ηN =12 for our

baseline analysis. We then calibrate the efficiency parameter of decarbonization capital stock

(λ1) in reducing the disaster arrival rate. Since there has only been negligible attempts at

reforestation, we determine the value of λ1 by using the planner’s FOCs for mitigation and

investment by targeting a small amount of mitigation (x = 0.003%) and a low level of scaled

decarbonization stock (n = 0.05%) in the data.17 Doing so yields a value of λ1 = 0.3.

The first column (λ0 = 0.05) in Table 2 reports the pre-climate-change steady-state

equilibrium when extreme temperature events are uncommon for the economy to which we

calibrate our parameters. Targeting Tobin’s average q at 1.87, the expected annual growth

rate at g = 3.8%, and the annual stock market risk premium at 5.93%, we obtain an annual

including economic growth and productivity. The main idea is that extreme annual temperature fluctua-
tions are plausibly exogenous shocks that causally trace out the impact of higher temperatures on output.
Burke, Hsiang, and Miguel (2015) find that the effects of temperature on growth is nonlinear. But we stay
with the linear specification from Dell, Jones and Olken (2012) in this paper.

17We do not count existing forest as part of the decarbonization capital stock since these are old forests
and not new ones planted with the purpose of addressing climate change. We can think of these new forests
as carbon capture plants of comparable efficiency. Or we can alternatively set n0 using a book value for
current forests. The conclusions would be qualitatively similar.
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Table 2: The effect of λ0 in the steady state under mandates.

variable notation λ0 = 0.05 λ0 = 0.5 λ0 = 1
scaled mitigation spending x 0.003% 0.09% 0.23%
scaled decarbonization stock n 0.05% 1.57% 4.59%
scaled aggregate investment i 5.16% 4.73% 4.35%
Tobin’s q q 1.869 1.740 1.644
scaled aggregate consumption c 8.83% 9.19% 9.42%
expected GDP growth rate g 3.78% 2.30% 1.09%
(real) risk-free rate r 2.58% 1.27% 0.21%
stock market risk premium rM − r 5.93% 6.31% 6.60%
transition time from n = 0 to n0.99 t0.99 3.15 11.35 22.64

n0.99 is the 99% level of that in the steady state: n0.99 = 0.99× n∗ and t0.99 is the transition time

from 0 to n0.99.

risk-free rate of 2.6%, an investment-capital ratio of i = 5.2% per annum, and the aggregate

consumption-capital ratio of c = 8.8% per annum.

5.3 Steady States Under Welfare-Maximizing Mandate with Mar-
kets

To analyze the effects of various key parameter values, we conduct comparative statics for

the steady-state solution.

Varying disaster arrival rate λ0. Now consider how the steady-state equilibrium out-

comes change as we increase λ0. We focus our discussion on the effect of increasing λ0 from

5% to 1, which is the value of λ0 for our baseline.18 Mitigation rises from x = 0.003%

to 0.23% per annum. Since the physical capital stock is 600 trillion dollars, the aggregate

contribution to decarbonization stock is about 1.4 trillion dollars per year. The ratio of

decarbonization to physical capital stock n is 4.6%, which means the aggregate decarboniza-

tion capital stock N is about 27.6 trillion dollars or the book value of new forests dedicated

toward decarbonization in steady-state.

Our model generates mitigation spending that is in line with projections for the cost

18The results for λ0 = 0.5 are between those for the λ = 5% and λ = 1 scenarios.
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of decarbonization (Gates (2021)). Of course, our model can be applied to other forms of

decarbonization capital accumulation such as direct carbon capture. We calibrate our model

using reforestation simply because it is currently the most feasible and well understood form

of decarbonization capital. Other decarbonization methods are less mature and the costs of

these methods are similar to if not more expensive than reforestation.19

As a result of mitigation, aggregate investment is modestly lower at 4.35% as is Tobin’s

q at 1.644. The expected growth rate is still positive at 1.09% per annum as a result of

mitigation, down from 3.78% absent global warming. The market risk premium increases

from 5.93% to 6.60%, and the real risk-free rate falls to 0.21% from 2.6% per annum. From

the time that mitigation starts, it takes 23 years to transition to the 99% of the steady state.

Varying decarbonization capital adjustment parameter ηN. Next, we examine in

Table 3 how the equilibrium outcomes change as we change the decarbonization capital

adjustment parameter ηN. The middle column (ηN = 12) summarizes our baseline case

results. As we increase ηN to 14 from 12, the annual mitigation spending x falls to 0.10% and

the steady-state decarbonization to physical capital ratio n falls to 1.62% corresponding to

a drop of N to 9 trillion dollars. Aggregate investment, Tobin’s q, consumption c are hardly

changed from our baseline case. However, the expected growth rate g decreases significantly

to 0.62%. The reason is that the higher adjustment cost leads to lower levels of optimal

mitigation and steady-state decarbonization capital. The risk-free rate now approaches zero

and the stock market risk premium increased slightly. The transition time to the 99% of the

steady state is now 38.07 years due to the higher adjustment cost.

When we decrease ηN to 9, the scaled mitigation spending increases to 0.33% and the

steady state n is higher at 7.60% since adjustment costs are lower. Again, investment,

Tobin’s q, and consumption c are hardly changed compared to our baseline case. The

growth rate g is higher as is the risk-free rate. Moreover, the transition time to the steady

19According to estimates from a McKinsey Sustainability report (de Pee (2018)), decarbonization using
carbon capture of just the heavy industries that account for around 20% of the global carbon emissions will
cost around 20 trillion dollars up to 2050 (or around 1 trillion dollars per year just for heavy sectors) to be
net-zero.
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Table 3: The effect of ηN in the steady state under mandates.

notation ηN = 9 ηN = 12 ηN = 14
scaled mitigation spending x 0.33% 0.23% 0.10%
scaled decarbonization stock n 7.60% 4.59% 1.62%
scaled aggregate investment i 4.38% 4.35% 4.29%
Tobin’s q q 1.651 1.644 1.629
scaled aggregate consumption c 9.28% 9.42% 9.61%
expected GDP growth rate g 1.36% 1.09% 0.62%
(real) risk-free rate r 0.46% 0.21% -0.20%
stock market risk premium rM − r 6.52% 6.60% 6.73%
transition time from n = 0 to n0.99 t0.99 16.73 22.64 38.07

n0.99 is the 99% level of that in the steady state: n0.99 = 0.99× n∗ and t0.99 is the transition time

from 0 to n0.99.

state falls only slightly to 16.73 years since the targeted steady-state decarbonization level

n is also higher. We view the ηN results as being quite pertinent since adjustment costs

of decarbonization capital has significant effects on the steady-state accumulation level and

hence welfare outcomes.

Varying damages from extreme temperatures ` = 1/(β+1) conditional on arrival.

Next, we consider in Table 4 how varying the conditional damage ` = 1/(β + 1) changes

equilibrium outcomes. Recall that β measures the damage to the economy from extreme

weather in the absence of mitigation. Our baseline of the conditional damage of ` = 4%

(as β = 24) is informed by existing empirical studies based on historical data on extreme

temperature events. We are extrapolating from these estimates. Needless to say, there is

bound to be uncertainty regarding these estimates. In this vein, it is instructive to consider

values for β that are higher and lower than our baseline. A higher β = 49 corresponds to

less damage absent mitigation (about ` = 2% conditioned on an arrival of an extreme 1.5o

Celsius event). A lower β = 11.5 corresponds to a higher conditional damage of ` = 8%.

When ` = 2%, the optimal annual mitigation spending x is lower at 0.08% and so is the

steady-state n at 1.41%, though these are still quite significant amounts. Again, the effects

on investment, Tobin’s q, and consumption are limited. The expected growth rate g is not
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Table 4: The effect of conditional damage ` = 1/(1 + β) in the steady state
under mandates.

notation ` = 2% ` = 4% ` = 8%
scaled mitigation spending x 0.08% 0.23% 0.67%
scaled decarbonization stock n 1.41% 4.59% 16.32%
scaled aggregate investment i 4.75% 4.35% 3.70%
Tobin’s q q 1.747 1.644 1.500
aggregate consumption/dividends c 9.17% 9.42% 9.63%
expected GDP growth rate g 2.29% 1.09% -0.27%
(real) risk-free rate r 1.47% 0.21% -2.35%
stock market risk premium rM − r 6.07% 6.60% 8.50%
transition time from n = 0 to n0.99 t0.99 9.58 22.64 74.30

n0.99 is the 99% level of that in the steady state: n0.99 = 0.99× n∗ and t0.99 is the transition time

from 0 to n0.99.

surprisingly higher at 2.29% and so is the risk-free rate (at 1.47%) even though mitigation

x and decarbonization capital n are much lower in equilibrium. The transition to the 99%

of the steady state is now much faster (it takes about 9.58 years.)

When ` = 9% (as β = 11.5), optimal mitigation x increases significantly to 0.67% per

annum and the steady-state n is now 16.32%. The growth rate g is negative at -0.27% and

the risk-free rate is significantly more negative at -2.35%. It also takes much longer to reach

the 99% of the steady state at 74.30 years.

Overall, our quantitative analysis suggests that our main conclusions are fairly robust

across a number of perturbations. The one outcome that is very sensitive is transition time

to the steady state, which depends on ηN and the severity of the conditional damage `. A

conservative estimate of a higher adjustment cost for decarbonization capital suggests that it

may take up to 38 years to reach steady state should the economy start today to accumulate

decarbonization capital stock.

5.4 Transition Dynamics and Comparison to Planner’s Outcomes

In this subsection, we discuss the transition dynamics. We also highlight the extent to

which welfare-maximizing mandates (Section 4.1) can attain the planner’s first-best outcomes
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(Section 4.2).
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Figure 1: This figure plots the aggregate mitigation spending x, aggregate investment i,
aggregate consumption c and the aggregate welfare measure b as functions of the scaled
decarbonization capital stock n. The parameters values are reported in Table 1.

Mitigation, consumption, investment and welfare gains under mandates versus

planner’s solution. In Figure 1, we examine the transition dynamics for the optimal mit-

igation x, investment i, consumption c and certainty-equivalent welfare measure b. All these

aggregates are dependent on the underlying state variable n — the ratio of decarbonization

capital to physical capital. For all four panels, the blue lines indicate the optimal mandate

solution and the red lines describe the planner’s solution.

Panel A shows that the two solutions track each other closely up to the level of n = 4.59%.

The planner’s solution peaks at a higher value and is also higher in the steady state. That is,

the mitigation spending under the optimal mandate is only materially below the first-best
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when n is sufficiently high. This is intuitive as the marginal return of mitigation is quite

high when n is not too high.

Panel B shows that investment i is higher under the mandate than the planner’s solution,

whereas Panel C shows that consumption c is lower under the mandate than the planner’s

solution. Note that this is to a large extent expected as the sum of i, c, and x is the constant

productivity A. As risk mitigation is a public good, n = 0 is the competitive markets

outcome with no mandate. Therefore, mandates move all three of these policies from the

market solution towards the planner’s solution. However, the mandate solution does not

track well the planner’s solution.

Nonetheless, as Panel D shows, the welfare measure b(n) for the mandate solution is quite

close to that for the planner’s solution. This is good news for the usefulness of mandates in

incentivizing firms to reform and contribute to decarbonization. In fact, the welfare gains

are massive. Under the unmitigated competitive market solution, the certainty equivalent

wealth measure b(0) is 0.0498. The certainty equivalent at the steady state is 0.0627 under

the mandate’s solution and 0.0638 under the planner’s solution. We thus obtain a 26% gain

in welfare with an optimal mandate than without. The magnitudes are large as the world

(based on the estimates we use from the literature) at 1.5o Celsius with no mitigation is

dismal.

Extreme temperature event arrivals λ(n) and the aggregate growth rate g(n). In

Figure 2, we examine how the extreme temperature event arrival rate λ( · ) and the expected

aggregate growth rate g( · ) vary with n. Panel A shows that the disaster arrival rate λ( · )
falls with n, as we expect. In competitive markets (and hence n = 0), the arrival rate is

λ(0) = 1 at 1.5o Celsius with no mitigation. As the society builds up the decarbonization

capital, the disaster arrival rate falls and approaches around 0.6 per annum at the steady

state: λ(n∗) = 0.6 where n∗ = 4.59%.

The high jump arrival rate in competitive markets implies that growth g(0) is low at

around -0.42%. Note that this result depends on the assumptions of our production economy

absent mitigation in the pre-climate-change period. (We have chosen a modest productivity
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Figure 2: This figure plots the jump arrival rate λ( · ) and the expected aggregate growth
rate g( · ) as functions of the scaled decarbonization capital stock n. The parameters values
are reported in Table 1.

scenario where the expected growth rate is about 4%.) Hence, a 1.5o Celsius world if unmit-

igated will lead to low growth. As the society accumulates the decarbonization capital, the

growth rate increases. For the mandate solution, the expected growth rate at the steady-

state is positive at 1.09% per annum as we have discussed above. The planner’s steady-state

growth rate is lower.

The difference of growth rates between the two solutions is because the planner solution

emphasizes de-risking in building up more decarbonization capital at the expense of investing

in productive capital. Despite a lower growth rate, the welfare is higher in the planner’s

solution because the planner fully fixes the under-provision of risk mitigation (a public good).

Next, in Figure 3, we plot the transition path of nt over time t. We see that the society

reaches a higher steady state under the planner’s solution than under the mandate.

5.5 Asset Prices

In Figure 4, we report how key asset pricing variables, the risk-free rate r, the stock market

risk premium rp, and Tobin’s average q, vary with n. At n = 0, the unmitigated competitive

market equilibrium has a negative interest rate of around -1.1%, a market risk premium of
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Figure 3: This figure plots the transition path of nt over time. The parameters values are
reported in Table 1.

around 7% per annum, and Tobin’s q of 1.58. As n increases, the risk-free rate increases,

the risk premium falls, and Tobin’s q rises.

In Figure 5, we analyze the costs of accumulating decarbonization capital to firms and

investors. We consider three investment mandate levels: α = 0.1, 0.2, 0.3. For these three

levels of α, our mandate solution can all be implemented. Naturally when α is lower, each

firm needs to spend more to qualify for the sustainable portfolio but it also gets compensated

with a larger cost-of-capital wedge in equilibrium.

The blue solid line depicts the solution when 10% of wealth is indexed to sustainable

mandates (α = 0.1). The qualifying standard m increases with n, peaking at 2.3% per

annum at the steady state. That is, a firm would need to spend 2.23% of its capital on

decarbonization to qualify for the sustainable portfolio at the steady state. The sustainable

firms get compensated for their contributions with a significant cost-of-capital wedge rU(n)−
rS(n) of over 1.4% per annum at the steady state.

Interestingly, the optimal ramp-up schedules of both m(n) and cost-of-capital wedge
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Figure 5: This figure plots the mitigation spending mandate m(n) and the cost-of-capital
wedge rU(n)− rS(n) as functions of scaled decarbonization capital stock n. The parameters
values are reported in Table 1.

rU(n)− rS(n) are non-linear. As we increase α from 0.1 to 0.2 (the grey dotted line) and 0.3

(the red dotted line), the qualification standard falls and so do the cost-of-capital wedges.

The non-linearity discussed above remains however. Current estimates have sustainable
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finance mandates α in the range of 10% to 20%. Moreover, our model clearly predicts that

as decarbonization n ramps up, qualification standards start rising and the cost to investors

also rise.

5.6 Connecting to Net-zero Emissions Targets

Finally, we show that our calibration implies that a sustainable finance solution based on

reforestation can meet a significant fraction of net-zero emissions targets. First, e = E/K

in equation (4) is approximately 0.067 since net emissions is about 40 billion metric tons

and there is 600 trillion dollars of aggregate productive capital stock K. Second, τ = R/N

in equation (5) is 0.36. We obtain this value by dividing the new forests’ aggregate net

absorption of carbon per annum (which we place at 10 billion metric tons following Bastin

et al. (2019), and Griscom et al. (2017)) by the book value of forests in aggregate (which

based on our calculations is 27.6 trillion dollars) (i.e. .36=10/27.6).

To achieve net-zero emissions, i.e. E − R = e − τn = 0, we need to roughly target

n = 0.18 = 0.067/0.36. The steady-state n from reforestation in our baseline is 4.59%.

Hence, sustainable finance mandates can get us about 25% of the way towards net-zero

through the funding of reforestation pathways. Of course, society also needs to pursue other

strategies as well to achieve a net-zero economy.

6 Conclusion

Sustainable finance mandates have grown significantly in the last decade in lieu of govern-

ment failures to address climate disaster externalities. Firms that spend enough resources on

mitigation of these externalities qualify for sustainable finance mandates. These mandates

incentivize otherwise ex-ante identical unsustainable firms to become sustainable for a lower

cost of capital. We present and solve a dynamic stochastic general equilibrium model fea-

turing the gradual accumulation of nonproductive but protective decarbonization capital to

study the welfare consequences. The model is highly tractable, including a simple formula

that characterizes the cost-of-capital wedge between sustainable and unsustainable firms as
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the tax rate on firm value to subsidize mitigation. There are a number of testable implica-

tions that can be taken to the data. The model is also useful for quantitative analysis of

both transition dynamics and the steady state.
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Appendices

A Firm Value Maximization

Using the standard dynamic programming, we obtain the following HJB equation for Qj given

aggregate decarbonization stock n, aggregate mitigation spending x, and aggregate investment i:

rj(n)Qj(Kj ,n) = max
Ij ,Xj

AKj − Ij −Xj +

(
Φ(Ij ,Kj)QjK(Kj ,n) +

1

2
(σKj)2QjKK(Kj ,n)

)
+ [ω(x/n)− φ(i)] nQnn(Kj ,n) + λ(n)En

[
Qj(ZKj ,n)−Qj(Kj ,n)

]
.(A.64)

And then substituting Qj(Kj ,n) = qj(n)Kj into (A.64), we obtain

rj(n)qj(n) = max
ij ,xj

A− ij − xj + φ(ij)qj(n) + λ [En(Z)− 1] qj(n) + [ω(x/n)− φ(i)] nqj′(n) .

(A.65)

The FOC for investment implied by (A.65) is

qj(n) =
1

φ′(ij)
, (A.66)

which is the standard Tobin’s q formula (e.g., Lucas and Prescott, 1971; Hayashi, 1982). As xU ≥ 0

and xS ≥ m, the optimal mitigation spending is xU = 0 for a type-U firm and xS = m for a type-S

firm as no firm wants to spend more than it has to on mitigation.

As all firms have the same Tobin’s q in equilibrium, we have iS(n) = iU (n) = i(n) and

q(n) =
A− i−m+ [ω(x/n)− φ(i)] nq′(n)

rS − g(i)
=
A− i + [ω(x/n)− φ(i)] nq′(n)

rU − g(i)
. (A.67)

As in the steady state, ω(x∗/n∗)− φ(i∗) = 0, we have

q(n∗) =
A− i∗ −m
rS − g(i∗)

=
A− i∗

rU − g(i∗)
. (A.68)

B Household’s Optimization Problem

Using the same procedure as in Pindyck and Wang (2013) and Hong, Wang, and Yang (2020), we

can show that both the optimal risk-free asset holding and the jump hedging demand for all levels

of Z are zero in equilibrium. Therefore, we may rewrite the household’s wealth dynamics given by

(18) as follows

dWt = Wt−
[[
r(nt−) + (rS(nt−)− r(nt−))πSt− + (rU (nt−)− r(nt−))(1− πSt−)

]
dt+ σdBt

]
−Wt− [(1− Z) (dJt − λ(nt−)dt)]− Ct−dt , (B.69)

where πS = HS/(HS +HU ) = HS/W .
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The post-jump wealth is WJ = W − (1− Z)W = ZW . And by using the standard dynamic

programming method, we may use the following HJB equation to characterize J(W,n):

0 = max
C,πS

[
r(n)W +

(
(rS(n)− r(n))πS + (rU (n)− r(n))(1− πS) + λ(n))(1− E(Z))

)
W − C

]
VW (W,n)

+ f(C, V ) + [ω(x/n)− φ(i)] nVn(W,n) +
σ2W 2VWW (W,n)

2
+ λ(n)

∫ 1

0
[V (ZW,n)− V (W,n)] ξ(Z)dZ ,

(B.70)

subject to πS ≥ α. And the FOC for consumption C is the standard condition given by (28).

Because the S- and the U -portfolio have exactly the same (diffusion and jump) risk exposures with

probability one, the optimality for πS is positive infinity if rS > rU as we can see from (27). This

is not an equilibrium. In equilibrium, rS ≤ rU and πS = α holds, which implies the agent’s value

function satisfies the HJB equation (27). We later pin down the equilibrium relation between rS

and rU .

Let Vt = V (Wt,nt) denote the household’s value function. We show that

V (W,n) =
1

1− γ (u(n)W )1−γ , (B.71)

where u(n) is determined endogenously. Substituting (B.71) into the FOC (28) yields the following

linear consumption rule:

C(W,n) = ρψu(n)1−ψW . (B.72)

C Market Equilibrium

First, a sustainable firm spends minimally on mitigation: xS = XS

KS . Second, in equilibrium, the

household invests all wealth in the stock market and holds no risk-free asset, H = W and W =

QS + QU , and has zero disaster hedging position, δ(Z,n) = 0 for all Z. Third, the representative

agent’s (dollar amount) investment in the S portfolio is equal to the total market value of sustainable

firms, πS = α and (dollar amount) investment for the U portfolio is equal to the total market value

of unsustainable firms, πU = 1− α. Finally, goods market clears.

By using the preceding equilibrium conditions together with H = W = QS + QU = qS(n)KS +

qU (n)KU = q(n)(KS + QU ) = q(n)K, WJ = ZW and πS = α, we obtain

αrS(n) + (1− α)rU (n) = r(n) + γρ2σ2 + λ(n)E
[
(1− Z)(Z−γ − 1)

]
= rM (n) . (C.73)

Using αrS(n) + (1− α)rU (n) = rM (n), x = αm(n), and (A.67), we obtain

A− i− x + [ω(x/n)− φ(i)] nq′(n)

rM (n)− g(i)

=
α(A− i−m(n) + [ω(x/n)− φ(i)] nq′(n)) + (1− α)(A− i + [ω(x/n)− φ(i)] nq′(n))

αrS(n) + (1− α)rU (n)− g(i)

=
αq(n)(rS(n)− g(i)) + (1− α)q(n)(rU (n)− g(i))

α(rS(n)− g(i)) + (1− α)(rU (n)− g(i))
= q(n) . (C.74)
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And then by solving

q(n) =
A− i + [ω(x/n)− φ(i)] nq′(n)

rM(n) + θU − g(i)
=

A− i + [ω(x/n)− φ(i)] nq′(n)

rU(n)− g(i)
=

A− i− x + [ω(x/n)− φ(i)] nq′(n)

rM(n)− g(i)
,

(C.75)

we obtain (A− i+[ω(x/n)− φ(i)] nq′(n))θU (n) = x(rU (n)−g(i)) and θU (n) = x/q(n) = αm(n)/q(n)

as shown in (44).

In addition, the optimal consumption rule given in (B.72) implies

c(n) =
C

K
=

C

W
q(n) = ρψu(n)1−ψq(n) . (C.76)

And then substituting c given by (C.76) and the value function given in (B.71) into the HJB

equation (27), we obtain

0 =
1

1− ψ−1
(
c(n)

q(n)
− ρ
)

+

(
αrS(n) + (1− α)rU (n)− c(n)

q(n)
+ λ(n)(1− E(Z))

)
+ [ω(x/n)− φ(i)]

nu′(n)

u(n)
− γσ2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
=

1

1− ψ−1
(
c(n)

q(n)
− ρ
)

+

(
rM (n)− c(n)

q(n)
+ λ(n)(1− E(Z))

)
+ [ω(x/n)− φ(i)]

nu′(n)

u(n)
− γσ2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
. (C.77)

By using (C.75) and the goods market clear condition, we obtain

c(n)

q(n)
= rM (n)− g(i)− [ω(x/n)− φ(i)]

nq′(n)

q(n)
. (C.78)

And then by substituting it into (C.77) and combining c(n) = A− i(n)− x(n), we have

0 =
1

1− ψ−1
(
A− i(n)− x(n)

q(n)
− ρ
)

+ φ(i(n))− γσ2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
+ [ω(x/n)− φ(i)]

(
nq′(n)

q(n)
+

nu′(n)

u(n)

)
0 =

1

1− ψ−1
(
A− i(n)− x(n)

q(n)
− ρ
)

+ φ(i(n))− γσ2

2
+
λ(n)

1− γ
[
E(Z1−γ)− 1

]
+ [ω(x/n)− φ(i)]

(
ψ

1− ψ
nq′(n)

q(n)
− 1

1− ψ
ni′(n) + nx′(n)

A− i(n)− x(n)

)
, (C.79)

which implies (35).

And then by substituting it into (C.77) and combining rM (n) = r(n)+γσ2+λ(n)E [(1− Z)(Z−γ − 1)],

we obtain the risk-free rate is

r(n) =
c(n)

q(n)
+ φ(i(n)) + [ω(x/n)− φ(i(n))]

nq′(n)

q(n)
− γσ2 − λ(n)E

[
(1− Z)Z−γ

]
. (C.80)

In addition, under the steady state the risk-free rate satisfies

r(n∗) = ρ+ ψ−1φ(i(n∗))− γ(ψ−1 + 1)σ2

2
− λ(n∗)E

[(
Z−γ − 1

)
+
(
ψ−1 − γ

)(1− Z1−γ

1− γ

)]
.(C.81)
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Welfare-maximizing mandate. As the household’s value function is given by (B.71) and

W = q(n)K in equilibrium, we may write

V =
1

1− γ (u(n)W )1−γ =
1

1− γ (u(n)× q(n)K)1−γ =
1

1− γ (b(n)K)1−γ , (C.82)

where b(n) = q(n) × u(n) is proportional to the certainty equivalent wealth (welfare) per unit

capital. And then substituting b(n) = q(n) × u(n) into (C.79) and using c(n) = C
K = C

W q(n) =

ρψu(n)1−ψq(n), we obtain the ODE given in (37) for b(n). Immediately, by following ODE (37)

we have the FOC for x to maximize welfare b(n) is given by (38). And then substituting the good

market clearing conditions c(n) = A− i(n)−x(n) under equilibrium into the optimal consumption

rule (C.76), and recalling b(n) = q(n) ∗ u(n) we obtain the optimal investment satisfying (39).

Finally, the welfare-maximizing mandate is given by (32) for given α by following the welfare-

maximizing mitigation obtained above.
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