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1 Introduction

Theoretical and empirical analyses of differentiated product markets usually assume that firms

have complete information (CI) and set prices to maximize their current profits. If an al-

ternative is considered, it is typically tacit collusion with repeated CI stage games. These

assumptions provide tractability, but there is surprisingly little evidence that they accurately

predict how prices change after events such as mergers. The CI assumption is also inconsistent

with how firms closely guard information about the margins of individual product lines and

how sensitively this information is treated during merger investigations.

This paper considers what happens when we relax the static and CI assumptions. Specif-

ically, we will assume that each firm has a payoff-relevant state variable, such as its marginal

cost, which is imperfectly serially-correlated and unobserved by rivals. In this environment,

each firm may want to choose its price strategically to affect its rivals’ inferences. We will

consider fully separating equilibria where, in equilibrium, a firm’s chosen price perfectly reveals

its current cost, and beliefs have a simple form. In these equilibria, all firms that do not have

the lowest possible marginal cost set prices above static best response levels to credibly signal

this information to their rivals. This can, in turn, cause static best response prices to increase,

and signaling prices to rise further, a positive feedback that can cause equilibrium prices to be

significantly above static CI Nash levels, although, as we discuss, separating equilibria may not

exist if prices rise too much. While a small theoretical literature has shown that oligopoly sig-

naling can affect equilibrium prices in two- or three-period models, we provide the first analysis

of how large these effects may be, and the first empirical application.

We apply our model to horizontal merger analysis. Signaling is a strategic investment to

raise rivals’ future prices, and like many strategic investments, the equilibrium incentive to

invest can rise when the number of competitors is reduced. We use an example to illustrate

how a standard static CI merger simulation can significantly underpredict post-merger price

increases if the firms are playing a dynamic signaling game. We then apply the model to data

from the U.S. beer market around the time of the 2008 Miller-Coors (MC) joint venture (JV).

Miller and Weinberg (2017) (MW) show that, after the JV, domestic brewers’ prices increased

in a way that is inconsistent with static CI Nash pricing. We calibrate our dynamic signaling

model using only data on pre-JV price dynamics and show that it predicts the observed change

2



in the level of prices accurately and that it also predicts directional changes in measures of

observed price dynamics. We also extend MW’s conduct parameter framework (Bresnahan

(1982), Lau (1982), Nevo (1998), Berry and Haile (2014)) to show that the CI tacit collusion

explanations for the post-JV price increase advanced by MW and Miller, Sheu, and Weinberg

(2020) (MSW) do not fully describe the pricing of domestic brewers, suggesting the need to

explore new explanations, such as ours.

Before discussing the related literature, we should be clear about several limitations of our

analysis. First, we have to assume that each firm has exactly one privately-known state and can

send exactly one signal per period. This imposes restrictions on how firms are modeled after

mergers. Second, we only consider fully separating equilibria, even though these may not exist

for some parameters and we can only prove existence and uniqueness in special cases. Third,

while we can reject some specific tacit collusion models, folk theorems imply that collusive

models may exist that could fit the data perfectly.

The rest of this introduction reviews the related literature. Section 2 lays out the model and

the equilibrium concept. Section 3 presents some examples and illustrates the implications

for merger analysis. Section 4 provides our empirical application. Section 5 concludes.

The online Appendices detail the computational algorithms; additional examples; a proof of

existence and uniqueness for the case of linear demand; and, further details of the data and

empirical analysis.

Related Literature. Shapiro (1986) and Vives (2011) examine how equilibrium prices and

welfare change when marginal costs are private information in one-shot oligopoly models. Most

of our focus will be on models where marginal costs lie in quite narrow intervals and the static

effects that these papers identify are very small. A large theoretical literature has considered

one-shot signaling models where only one player has private information. The classic Industrial

Organization example is the Milgrom and Roberts (1982) limit pricing model, where an incum-

bent monopolist may lower its first period price to deter entry in a two-period game. Sweeting,

Roberts, and Gedge (2020) develop finite and infinite-horizon versions of this model where

an incumbent monopolist’s type changes over time, as we will assume in this paper.1 They

1Kaya (2009) and Toxvaerd (2017) analyze one-sided, dynamic signaling games where the informed firm’s
type is fixed, and, in equilibrium, the informed firm signals until its reputation is established.
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estimate the model and show that it can explain why incumbent airlines dropped prices by

as much as 15% when Southwest threatened entry on monopoly routes. The oligopoly setting

considered here is potentially applicable to many more markets.

The literature on games where multiple players signal simultaneously is much more lim-

ited.2 Mailath (1988) identifies conditions under which a separating equilibrium will exist in

an abstract two-period game with continuous types, and shows that the conditions on payoffs

required for the uniqueness of each player’s separating best response function are similar to

those shown by Mailath (1987) for models where only one player is signaling (Mailath and von

Thadden (2013) generalize these conditions). Mailath (1989) applies these results to a two-

period pricing game where differentiated firms have static linear demands and marginal costs

that are private information but fixed. Firms raise their prices in the first period in order to

try to raise their rivals’ prices in the second period.3 Mester (1992) extends this approach to

a three-period quantity-setting model where marginal costs change over time, and she shows

that signaling, which leads to increased output in this case, happens in the first two periods.

We rely on Mailath’s results to characterize best response signaling pricing functions, and

we will focus on the magnitude, empirical relevance and implications of the equilibrium effects

in multi-period settings with more standard forms of differentiated product demand. Fersht-

man and Pakes (2012) and Asker, Fershtman, Jeon, and Pakes (2020) develop an alternative

approach to discrete state and discrete action dynamic games with asymmetric information.

They reduce the computational burden using the concept of Experience-Based Equilibrium

(EBE) where firms have beliefs about their payoffs from different actions rather than rivals’

types.4 Our equilibrium concept is more standard, and the computational burden is reduced

by focusing on fully separating equilibria in continuous action games.

We discuss the relationship between our paper and discussions of coordinated effects in

horizontal merger analysis (Ordover (2007), Baker and Farrell (forthcoming), Farrell and Baker

2Bonatti, Cisternas, and Toikka (2017) analyze linear signaling strategies in a continuous-time Cournot
game where each firm’s marginal cost is private information and fixed, but firms cannot perfectly observe the
quantities that their rivals choose. We will assume that prices are perfectly observable.

3Caminal (1990) considers a two-period linear demand duopoly model where firms have private information
about the demand for their own product, and also raise prices to signal that they will set higher prices in the
final period.

4The rest of the literature on dynamic games, following Ericson and Pakes (1995) and Pakes and McGuire
(1994), has assumed that players observe all state variables up to iid payoff shocks so that there is no role for
signaling.
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(2021)) in the conclusion. Our paper is partly motivated by the empirical merger retrospectives

literature. Ashenfelter, Hosken, and Weinberg (2014) find that 36 of 49 studies across several

industries identify significant post-merger price increases.5 Peters (2009) and Garmon (2017)

show that merger simulations and other methods, such as pricing pressure indices, that are

derived from static CI first-order conditions often perform poorly at predicting price changes

after airline and hospital mergers. This leads naturally to the question of which alternative

models can do better.

2 Model

In this section, we present our general model. More specific assumptions will be made in our

examples and application.

2.1 Outline.

There are discrete time periods, t = 1, ..., T , where T ≤ ∞, with discount factor 0 < β < 1.

β = 0.99 in the rest of the paper. There are a fixed set of N risk-neutral firms. Each

firm either sells a single-product or sells multiple products, which are symmetric in demand

and are produced at the same marginal cost, at a single price. There may be observed and

fixed differences in demand and costs across firms, but exactly one dimension of a firm’s type is

private information. In the text, we will assume that the type is continuous on a known compact

interval [θi, θi], but Appendix B.1 uses examples where firms can have two discrete types, θi

and θi. Types are assumed to evolve exogenously, and independently, from period-to-period

according to a first-order Markov process, ψi : θi,t−1 → θi,t.
6

5Ashenfelter, Hosken, and Weinberg (2014) note that retrospectives have not typically found price increases in
banking. Interestingly, the Mester (1992) analysis of a Cournot oligopoly model with asymmetric information
was explicitly motivated by a desire to explain why, contrary to the predictions of Nash and tacit collusion
models, concentration appeared to lead to more competitive behavior in banking.

6This assumption seems unrealistic, but it is consistent with how the empirical literature on horizontal
mergers and the production function literature that has followed Olley and Pakes (1996) (see Doraszelski and
Jaumandreu (2013) for an exception) has treated marginal cost or productivity changes.

5



2.2 Within-Period Timing.

In each period t of the game, timing is as follows. Firms enter period t with their t− 1 types,

which then evolve according to ψi. Firms observe their own new types, but neither the previous

nor the new type of other firms.7 Each firm then simultaneously chooses a price, pi,t, with no

menu costs. Once a firm sets its period t price, it is unable to change it. A firm’s profits are

given by πi(pi,t, p−i,t, θi,t) and we assume that ∂πi
∂p−i,t

> 0 for all −i. Note that πi(pi,t, p−i,t, θi,t)

only depends on current prices and the firm’s type, consistent with static and time-invariant

demand. Current and past prices are assumed to be perfectly observed by each firm.

2.3 Assumptions.

For continuous types, we make the following assumption.

Assumption 1 Type Transitions for the Continuous Type Model. The conditional

pdf ψi(θi,t|θi,t−1)

1. has full support, so that the type can transition from any value on the support to any other

value in a single period.

2. is continuous and differentiable (with appropriate one-sided derivatives at the boundaries).

3. for any θi,t−1 there is some θ′ such that
∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and

∂ψi(θi,t|θi,t−1)

∂θi,t−1
< 0 for

all θi,t < θ′ and
∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′. Obviously it will also be the case that∫ θi

θi

∂ψi(θi,t|θi,t−1)

∂θi,t−1
dθi,t = 0.

This assumption implies types are positively, but not perfectly, serially correlated so that a

higher type in one period implies that a higher type in the next period is more likely.

Beliefs about rivals’ types play an important role in our game. In a fully separating equi-

librium, each firm will (correctly) believe that each rival has a particular type in the previous

period. For convenience, we assume that beliefs about types in t = 1 have the same structure.

Assumption 2 Initial Period Beliefs. Firms know what their rivals’ types were in a ficti-

tious prior period, t = 0.

7Our fully separating equilibria would be unchanged if t− 2 types were revealed.
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2.4 Fully Separating Equilibrium in a Finite Horizon and Continu-
ous Type Game.

We now describe the equilibrium for a game with two ex-ante symmetric single-product duopolists,

which we will use in our first example.

2.4.1 Final Period (T ).

In the final period, each firm maximizes its expected payoff given its own type, its beliefs about

the types of the other firms and their pricing strategies. Play is therefore consistent with a

Bayesian Nash Equilibrium. If firm j believes that firm i’s period T − 1 type was θ̂ji,T−1 and

j’s period T pricing function is Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)8, then a type θi,T i will set a price

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = arg max

pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

2.4.2 Earlier Periods (1, .., T − 1).

In earlier periods, i may choose not to set a static best response price in order to affect j’s belief

about its type. The equilibrium concept that we use is symmetric Markov Perfect Bayesian

Equilibrium (MPBE) (Roddie (2012), Toxvaerd (2008)). An MPBE specifies period-specific

pricing strategies for each firm i as a function of its current type, and its belief about j’s

previous type, and j’s belief about i’s previous type; and, each firm’s belief about its rival’s

type given observed histories of prices. Equilibrium beliefs should be consistent with Bayes

Rule given equilibrium pricing strategies. If there are multiple rivals, they should all have

the same beliefs given an observed history. While only current types and prices are directly

payoff-relevant, history can matter in this Markovian equilibrium because it affects beliefs. We

will only consider fully separating MPBEs where, in every period, a firm’s equilibrium pricing

strategy perfectly reveals its current type, and j’s belief about i’s current type will come from

inverting i’s pricing function.

8This notation reflects the fact that we are assuming that player j used an equilibrium strategy in T − 1
that revealed its type (θj,T−1), but we are allowing for the possibility that firm i may have deviated so that j’s
beliefs about i’s previous type are incorrect.
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2.4.3 Characterization of Separating Pricing Functions in Period t < T .

We follow Mailath (1989), which shows that one can apply the results in Mailath (1987) to

this problem, in characterizing fully separating pricing functions using a definition of firm i’s

period-specific “signaling payoff function”, Πi,t(θi,t, θ̂
j
i,t, pi,t). This is the present discounted

value of firm i’s expected current and future payoffs when its current type is θi,t, it sets price

pi,t and j believes, at the end of period t, that i has type θ̂ji,t. Πi,t is assumed to be continuous

and at least twice differentiable in its arguments. It is implicitly conditional on (i) j’s period

t pricing strategy, which will depend on beliefs about types at t − 1, and (ii) both players’

strategies in future periods. As j’s end-of-period t belief about i’s type enters as a separate

argument, pi,t only affects Πi,t through period t profits. Given conditions on Πi,t that will be

listed in a moment, the fully separating best response function of firm i, which is also implicitly

conditioned on j’s current pricing strategy and beliefs about previous types, can be uniquely

characterized as follows (see Appendix C for a restatement of the Mailath (1987) theorems):

i’s pricing function will be the solution to a differential equation where

∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

) > 0, (1)

and a boundary condition. The subscript n in Πi,t
n denotes the partial derivative of Πi,t with

respect to the nth argument. Assuming that lower types want to set lower prices (e.g., a type

corresponds to the firm’s marginal cost), the boundary condition will be that p∗i,t(θi) is the

solution to

Πi,t
3

(
θi, θ̂

j
i,t, pi,t

)
= 0, (2)

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing policy. The

numerator in (1) is i’s marginal future benefit from raising j’s belief about θi,t, and the de-

nominator is the marginal effect of a price increase on i’s current profit. For prices above a

static best response price, the denominator will be negative, and the pricing function will slope

upwards in the firm’s type.

This characterization of a separating best response will be valid under four conditions on

Πi,t, in addition to continuity and differentiability,
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Condition 1 Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Πi,t

(
θi,t, θ̂

j
i,t, pi,t

)
has a

unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t
33

(
θi,t, θ̂

j
i,t, pi,t

)
> 0, there is some

k > 0 such that
∣∣∣Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

)∣∣∣ > k.

Condition 2 Type Monotonicity. Πi,t
13

(
θi,t, θ̂

j
i,t, pi,t

)
6= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 3 Belief Monotonicity. Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t) or < 0

for all (θi,t, θ̂
j
i,t).

Condition 4 Single-Crossing.
Πi,t

3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t

2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all θ̂ji,t and

for (θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).

To interpret these conditions, assume that types correspond to marginal costs. The first

condition will be satisfied if, for any marginal cost and distribution of prices that the rival may

set, a firm’s expected current period profit is quasi-concave in its own price. This will hold

for common forms of differentiated product demand such as the multinomial and nested logit

models. Type monotonicity requires that, when a firm increases its price, the profit that it loses

will be lower if it has higher marginal costs. This will hold for constant marginal costs. Belief

monotonicity requires that a firm’s expected future profits should increase when rivals believe

that it has a higher cost, holding its actual cost fixed. This condition may fail: Appendix B.1

discusses in detail a two-type example where j will respond to i having a higher cost by setting

a lower price in the next period. The single-crossing condition requires that a firm with a higher

marginal cost should always be more willing to raise its price, reducing its current profits, in

order to raise its rival’s belief about its marginal cost. This condition can also fail.

For completeness, we also need to define beliefs that a firm will have if the rival sets a price

that is outside the range of the pricing function (i.e., a price that is not on the equilibrium

path). When types correspond to marginal costs, we will assume that when a firm sets a price

below (above) the lowest (highest) price in the range of the pricing function, it will be inferred

to have the lowest (highest) possible cost type.
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2.4.4 Existence and Uniqueness of a Fully Separating Equilibrium.

The conditions defined above guarantee the existence and uniqueness of fully separating best

responses in any period, but this does not prove the existence or uniqueness of a fully separating

equilibrium in the whole game. Mailath (1989) proves existence and uniqueness in a two-

period duopoly game with linear demand and there is private information about marginal costs.

Appendix C shows the existence and uniqueness in a finite horizon, linear demand duopoly game

where marginal costs are private information. The proof requires that the marginal cost interval

(θ − θ) is small enough so that a single-crossing condition holds when prices rise.

In our application, we will assume nonlinear demand and, to reduce the computational bur-

den, an infinite horizon. We will therefore proceed without proofs of existence or uniqueness.

Appendix A details how we compute equilibrium strategies, and verify belief monotonicity and

single-crossing as part of the algorithm. We will discuss examples where we cannot find a sepa-

rating equilibrium below. We have only ever found a single equilibrium in finite horizon games

and infinite horizon games with continuous types, but we have found examples of multiplicity in

infinite horizon games with two types even when, as we describe below, we impose a refinement

that is needed to guarantee unique best response functions in that case.9

3 Examples

This section uses examples to illustrate the equilibrium of our game and the effects of a merger.

Additional examples described in Appendix B are also discussed.

3.1 Continuous-Type Duopoly Example.

3.1.1 Specification.

There are two ex-ante symmetric single-product firms. Demand is determined by a nested logit

model, with both products in one nest, and the outside good in its own nest. Consumer c’s

indirect utility from buying from product i is ui,c = 5 − 0.1pi + σνc + (1 − σ)εi,c where pi is

9In examples where we have found multiplicity, the algorithm that we use elsewhere in the paper appears to
consistently pick out an equilibrium that is the limit of the equilibrium in the early periods of a finite horizon
game as the number of periods grows.
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the dollar price, εi,c is a draw from a Type I extreme value distribution, σ = 0.25, and νc is an

appropriately distributed draw for c’s nest preferences. For the outside good, u0,c = ε0,c. We will

set market size equal to 1, so that our welfare numbers have a “per-consumer” interpretation.

We first examine what happens to strategies in a finite horizon game with T = 25 periods. The

game is solved backwards, starting at the last period.

We assume that marginal cost is private information, and that, for each firm, it lies in the

interval [c, c] = [$8, $8.05]. Costs evolve independently according to an exogenous truncated

AR(1) process where

ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t (3)

where ρ = 0.8 and ηi,t ∼ TRN(0, σ2
c , c − ρci,t−1 − (1 − ρ) c+c

2
, c − ρci,t−1 − (1 − ρ) c+c

2
), where

TRN denotes a truncated normal distribution, and the first two arguments are the mean and

variance of the untruncated distribution, and the third and fourth arguments are the lower and

upper truncation points. σc = $0.025.

Two features of this parameterization are worth highlighting. First, marginal costs are

restricted to a narrow range (diverging by less than 0.32% from mean value) and the probability

that a firm will switch from a relatively high cost to a relatively low cost across periods is quite

high.10 Therefore, no signal should affect a rival’s posterior belief about a firm’s next period

marginal cost very much. Despite this, we find large signaling effects. Second, the demand

parameters imply high margins and limited substitution to the outside good in both static and

dynamic equilibria. As we will discuss, these features contribute to the existence of a fully

separating equilibrium with large price effects.

3.1.2 Equilibrium Outcomes and Strategies.

Table 1 shows expected price levels, the standard deviation of prices and various welfare mea-

sures when we simulate data using equilibrium strategies in different periods of the finite hori-

zon game. For comparison, expected joint-profit maximizing prices and static Nash equilibrium

prices under CI (given average costs) are $45.20 and $22.62, with small standard deviations

($0.007 and $0.011). Signaling MPBE prices are higher and significantly more volatile than

10For example, the probability that a firm with the highest marginal cost has a cost in the lower half of the
support in the next period is 0.32.
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Table 1: Equilibrium Prices and Welfare in the Duopoly Game

Expected Welfare Measures
Per Market Size Unit

Nature of Mean Std. Dev. Cons. Producer Total
Period Equilibrium Price Price Surplus Surplus Welfare
T-24 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-13 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-10 MPBE $24.75 $0.47 $30.92 $15.95 $46.87
T-7 MPBE $24.68 $0.45 $30.98 $15.89 $46.88
T-4 MPBE $24.25 $0.36 $31.40 $15.51 $46.91
T-2 MPBE $23.38 $0.17 $32.23 $14.74 $46.97
T-1 MPBE $22.88 $0.06 $32.71 $14.29 $47.00
T BNE $22.62 $0.01 $32.96 $14.05 $47.01

Infinite Stationary $24.76 $0.47 $30.91 $15.96 $46.87
Horizon MPBE

Notes: except for the last row, all prices are based on equilibrium strategies in a
finite horizon model with parameters described in the text. The last line reports
results for the stationary strategies in an infinite horizon model with the same pa-
rameters.

Nash prices when the game is more than a couple of periods from the end, but they are always

much lower than joint profit-maximizing prices. We now describe the strategies that result in

these outcomes.

Figure 1(a) shows four static BNE period T pricing functions for firm 2, for different values

of firm 1’s period T − 1 marginal cost (c1,T−1), assuming that both firms know/believe that

c2,T−1 = $8. Firm 2’s price increases with c1,T−1 as firm 1’s expected period T price rises with

c1,T−1. However, the variation in firm 1’s prior cost affects firm 2’s price by less than one

cent, and, averaging across all possible cost realizations, average prices and welfare are almost

identical to outcomes with CI.11 Therefore the existence of asymmetric information alone (i.e.,

when not combined with some form of dynamics) does not generate interesting effects given

our parameters.

There is an incentive to signal in period T − 1 because a firm’s price can affect its rival’s

price in period T . Assuming both firms’ period T − 2 costs were $8, Figure 1(b) shows firm 1’s

signaling pricing function (found by solving the differential equation in (1) given the boundary

condition (2)) if it expected that firm 2 was using its period T strategy. We reproduce the

11Expected producer and consumer surplus differ by less than $0.0001 across these models.

12



Figure 1: Period T and T − 1 Pricing Strategies in the Finite Horizon, Continuous Type
Signaling Game
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period T pricing strategy for comparison. The pricing functions intersect for c1,T−1 = $8, but

signaling may lead firm 1 to raise its price by as much as 20 cents for higher costs. At first

blush, this large increase may seem surprising given that we know the effect on firm 2’s price

can only be small. However, the assumed demand implies that firm 1’s profit function, shown

in Figure 2, is sufficiently flat that, if c1,T−1 = $8.025, its expected lost period T −1 profit from

using a signaling price of $22.76, rather than the statically optimal period T −1 price of $22.61,

is only $0.00070 per consumer, which is less than the (discounted) expected period T profit gain

of $0.00079 from being viewed as a firm with a c1,T−1 = $8.025 rather than c1,T−1 = $8.0001

(which is how firm 2 would interpret a price of $22.61).
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Figure 2: Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 = c2,T−2 = $8
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Notes: the profit function is drawn “per potential consumer” for a firm assumed to have a marginal

cost of $8.025, and with a rival using the static BNE pricing strategy when both firms’ previous period

marginal costs were $8.

Figure 1(b) assumed that firm 2 was using its period T strategy with no signaling. Figure

1(c) shows firm 2’s best signaling response when firm 1 uses the strategy in Figure 1(b) (repeated

in the new figure as a comparison). As firm 1’s expected price has increased, firm 2’s static

best response pricing function shifts upwards. Of course, this positive feedback will cause firm

1’s pricing function to rise as well. Figure 1(d) shows the equilibrium period T − 1 pricing

functions. The increase in the slope and the dispersion of the pricing functions means that

period T − 1 prices will be higher and more volatile than period T prices.

The increased vertical spread also means that period T − 1 prices are more sensitive to

perceived period T −2 costs which increases period T −2 signaling incentives. Figure 3 shows a

selection of equilibrium pricing functions for period T −2 and earlier periods. The pricing func-

tions become more spread out and the level of prices increases, although by successively smaller

amounts, in earlier periods. Further back than period T − 15 equilibrium pricing functions and

average prices barely change. The figure also plots the stationary pricing strategies that we

compute for an infinite horizon game with the same parameters. They are indistinguishable

from the strategies in the early periods of the finite horizon game.12

12We have consistently found this convergence except in cases when the conditions required for separation
are violated or are very close to being violated (in which case the infinite horizon strategies may not converge).
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Figure 3: Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game and Various
Periods of the Finite Horizon Game.
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Notes: all functions drawn assuming that firm 1’s perceived marginal cost in the previous period was

$8.

3.2 Merger Analysis.

There are many possible applications of our model, but we will focus on its predictions for hor-

izontal mergers. We present a simple motivating example using the infinite horizon, continuous

cost model with the same demand and marginal cost parameters that we have just assumed,

although we will allow for more firms. We will assume that a merger occurs as an unanticipated

one-off shock, i.e., firms signal assuming the prevailing market structure will last forever. As

discussed in a two-type example with up to seven firms in Appendix B.1.3, signaling tends to

have more effects on pricing when there are fewer firms, because each firm’s price will tend to

have a larger effect on its rivals’ next period prices.

Table 2 shows the effects of 4-to-3 and 3-to-2 mergers. Before either merger, there are

symmetric single-product firms. In the upper panel, we assume that a merger eliminates a

product, so that after the merger there are only single-product firms with symmetric demand.
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Table 2: The Effects of Signaling on Mergers and Merger Analysis When Firms Use Infinite
Horizon Signaling Strategies

(a) Merger Leads to the Elimination of a Product By the Merged Firm

4-to-3 Merger 3-to-2 Merger

Signaling MPBE

Pre-Merger Average Price $18.25 $19.79

Post-Merger Average Price of Merged $19.81 (+8.5%) $24.75 (+25.1%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.81 (+8.5%) $24.75 (+25.1%)
Merging Firm if No Marginal Cost Synergy

Merged Firm Marginal Cost Required to $5.73 -$2.20
Prevent Merged Firm Average Price from Rising

If Merger Analyzed under Complete Information . . .

Implied Pre-Merger Average Marginal Cost $8.29 $8.62

Merged Firm Marginal Cost Required $7.11 $5.13
to Prevent Prices from Rising

Average Merged Firm Price in Signaling Model $19.17 (+5.0%) $23.25 (+17.4%)
if Analyst Required Marginal Cost is Realized

(b) Merging Firm Owns Two Products Post-Merger

4-to-3 Merger 3-to-2 Merger

Signaling MPBE

Pre-Merger Average Price $18.25 $19.79

Post-Merger Average Price of Merged $21.53 (+18.0%) $27.18 (+37.3%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.12 (+4.8%) $23.59 (+19.2%)
Merging Firm if No Marginal Cost Synergy

Merged Firm Marginal Cost Required to $2.26 -$11.92
Prevent Merged Firm Average Price from Rising

If Merger Analyzed under Complete Information . . .

Implied Marginal Cost $8.29 $8.62

Merged Firm Marginal Cost Required $3.43 -$2.05
to Prevent Prices from Rising

Average Price in Signaling Model $18.85 (+3.2%) $23.00 (+16.2%)
if Analyst Required Marginal Cost is Realized
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If we assume that the firms always use equilibrium signaling strategies, then a 4-to-3 merger

with no synergy (implying the firms remain symmetric post-merger) will raise average prices

by 8.5%. To prevent the merged firm’s price from rising, the merger would need to reduce the

average marginal cost of the merging firm from $8.025 to $5.73, a 29% reduction.13

We can compare these effects to the predictions of an analyst who knows demand and uses

a standard CI merger simulation model.14 Using average prices and CI first-order conditions,

the analyst would infer that average pre-merger marginal costs are equal to $8.29 (i.e., higher

than they really are), and that a 14% synergy (reducing marginal costs to $7.11) would prevent

price increases. If the 14% synergy was achieved but firms play a signaling equilibrium after

the merger, then the merged firm’s average price would increase to $19.17 (a 5% post-merger

increase). In the case of a 3-to-2 merger, all of the effects seen in the 4-to-3 case become

larger, and, in fact, the merged firm’s marginal cost would need to be negative to prevent a

price increase.15 The realization of the synergy identified by a CI simulation would not prevent

prices from rising by 17%.

The lower panel assumes that, after the merger, the merged firm has two products, which

have the same marginal cost and which are sold at the same price. This restrictive assumption

preserves the structure that each firm has one piece of private information and can send exactly

one signal. Ownership of two products increases incentives to raise prices, and hence the size of

required synergies. As in the upper panel, a CI analysis will underpredict price increases and

required synergies.

3.3 Signaling Incentives and the Existence of Separating Equilibria.

In our example, signaling incentives are relatively weak because marginal costs are only weakly

correlated from period to period. Increasing the AR(1) parameter or c− c, or reducing σc tend

to increase signaling incentives and raise equilibrium prices. However, when price increases are

too large, the conditions for characterizing best responses can fail and we may not be able to

13We assume that the range of marginal costs, $0.05, and the process by which marginal costs evolve remain
the same after the merger and after any synergy is realized.

14This characterization follows how merger simulation is used in the academic literature. Agency economists
typically calibrate the price and nesting parameters in the demand system to match average margins given CI
Nash pricing. An incorrect static CI Nash assumption would then lead to the wrong demand parameters.

15We assume that the firm cannot freely dispose of products so that it cannot choose to produce an infinite
amount if it has negative marginal costs.
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Table 3: Equilibrium Pricing in a Finite Horizon Game with Alternative Cost Specifications

Reduce Expand Range

Baseline Expand Range Std. Deviation & Increase Std. Dev.

c− c ($) [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc ($) 0.025 0.025 0.025 0.025 0.02 0.01 0.25

T-24 $24.76 $26.51 - - $25.71 - $24.90
T-10 $24.75 $26.59 - - $25.70 - $24.89
T-9 $24.74 $26.59 fails - $25.69 fails $24.89
T-8 $24.72 $26.57 $28.48 - $25.66 $28.58 $24.89
T-7 $24.68 $26.50 $29.17 fails $25.60 $28.76 $24.87
T-6 $24.61 $26.37 $29.35 $30.40 $25.49 $28.65 $24.85
T-1 $22.88 $23.05 $23.42 $23.93 $22.93 $23.05 $23.55
T $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

∞-Horizon $24.76 $26.50 fails fails $25.71 fails $24.90

Notes: values in all but the last line are based on the duopoly, continuous type, finite horizon model with
demand parameters described in the text (cost parameters indicated in the table). The last line reports
results for the stationary strategies in the infinite horizon model with the same parameters. “Fails” indi-
cates that the belief monotonicity or single-crossing conditions fail so that we cannot calculate signaling
best response pricing functions.

find a separating equilibrium.

The first six columns of Table 3 show, for different periods, the baseline average prices and

average prices when signaling incentives are strengthened. Small parameter changes result in

higher equilibrium prices, but larger changes result in the failure of our algorithm as we cannot

define best response pricing functions. Pooling or partial pooling equilibria may exist, but we

do not know how to characterize them. Appendix B.1.2 uses a two-type example to examine

the failure of the conditions, including belief monotonicity, in more detail.16

However, as illustrated in the final column, we can sustain separating equilibria if we increase

c− c and increase σc simultaneously.17 This pattern will be relevant for our application.

16The two-type model has a much lower computational burden but requires imposing a refinement just to
identify unique separating best responses. Specifically, we always find the best response that achieves separation
at the lowest cost to the signaling firm, consistent with the type of “intuitive criterion” (Cho and Kreps (1987))
refinement that has been widely used in one-sided signaling models with two types. However, even with this
refinement, we have found examples of multiple separating equilibria in the infinite horizon version of the
two-type model. The algorithm that we use to produce the reported results appears to consistently select the
equilibrium that corresponds to the limit of a (seemingly unique) equilibrium in a finite horizon game as the
number of periods grows large.

17The probability that a cost goes from one extreme of the support to the opposite half of the support is 0.32,
which is the same as in the baseline case.
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3.4 Additional Examples.

Appendix B.1 uses two-type duopoly examples to examine how price effects vary with the

number of firms and to examine the relationship between the existence of separating equilibria,

the magnitude of price effects, the serial correlation of costs and the extent to which, when a

firm’s price rises, demand is diverted to the outside good. When there is limited diversion to

the outside good we find large increases in prices above static CI Nash levels (an increase of

45% in one case) under duopoly even when there is moderate serial correlation in costs (e.g.,

Pr(ci,t = ci,t−1)=0.75). On the other hand, price increases are small with more than three

firms, and only small increases can be sustained in separating equilibria when there is more

diversion to the outside good even under duopoly. The examples suggest that thinking about

the effects of signaling is most relevant when two or three firms dominate a market or a very

distinct segment of a market.

Appendix B.2 present three simple duopoly examples where marginal costs are fixed and

known, but firms have private information about some other element of their payoff function

(a feature of demand, the weight managers place on revenues rather than profits, or the weight

they place on the profits of rivals). Signaling can raise prices significantly above CI Nash levels

in each case.

4 Empirical Application: The MillerCoors Joint Ven-

ture

In this section, we apply our model to data from the U.S. beer industry around the time of the

2008 MC JV. MW show that, relative to the price of imports, the real prices of brands owned

by MC and Anheuser-Busch (AB) increased after the JV.18 We describe the setting and the

data, before explaining the calibration of our model using pre-JV pricing data and reporting

how well it predicts observed changes in pricing after the JV. Finally, we examine how well the

CI models that have previously been used to explain why price increased fit the data.

18Anheuser-Busch was purchased by InBev in 2008. Throughout the paper we will use AB to refer to
Anheuser-Busch before 2008 and Anheuser-Busch InBev afterwards.
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4.1 The JV and Its Effects.

The MC JV, announced in October 2007, effectively merged the U.S. brewing, marketing and

sales operations of SABMiller (Miller) and MolsonCoors (Coors), the second and third largest

U.S. brewers. The Department of Justice (DOJ) decided not to challenge the transaction in

June 2008 because it expected “large reductions in variable costs of the type that are likely to

have a beneficial effect on prices”.19 For example, the JV was expected to lower transportation

costs by producing Coors products at Miller breweries around the country. Ashenfelter, Hosken,

and Weinberg (2015) provide evidence that transportation efficiencies were realized.

MW show that, at a national level, the real prices (i.e., deflated by the CPI-U price index)

of the most popular domestic brands, such as Bud Light (BL), Miller Lite (ML) and Coors

Light (CL), increased after the JV, relative to the prices of imported brands, such as Corona

Extra and Heineken, which MW use as controls for industry-wide cost shocks. Regressions in

Appendix D quantify these price increases to lie between 40 cents and a dollar per 12-pack, or

3%-6%, depending on the specification. We will proceed assuming that MW’s interpretation

that the relative price increase was a causal anticompetitive effect of the JV is correct.20

An important feature of the relative price change is that AB’s prices increased as much as

those of Miller and Coors. If AB’s marginal costs were unaffected by the JV, this pattern is

inconsistent with static CI Nash pricing, as a static best response function would predict that

AB should have responded to any JV price increase by raising its prices by a smaller amount.

4.2 Data.

We use the same data as MW, which comes from the IRI Academic Dataset (Bronnenberg,

Kruger, and Mela (2008)) which provides weekly UPC-store-level scanner data for the beer

category from an unbalanced panel of grocery stores from 2001 to 2011. Appendix D provides

details, but we will note in the text where our treatment differs from MW. We will follow the

typical convention of assuming that retail prices are set directly by brewers, and that any retail

19Department of Justice press release, 5 June 2008.
20This interpretation is complicated by how the Great Recession may have affected demand and the fall in

the deflator, from 220.0 in July 2008 to 210.2 in December 2008, at exactly the same time that the merger was
being consummated.
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Table 4: Highest-Selling Beer Brands in 2007 with Ownership, Share and Average Nominal Prices
per 12-Pack.

2007 2011
Brand Company Packs % 18+ Mkt. Share Price Mkt. Share Price

Bud Light∗,† AB 10 72.5% 15.7% $8.29 15.7% $8.92
Miller Lite∗,† M 10 75.1% 10.0% $8.11 8.4% $8.73
Coors Light∗,† C 10 74.8% 8.3% $8.36 9.4% $8.98
Budweiser† AB 10 70.8% 7.7% $8.30 6.5% $9.00
Corona Extra†,♦ GM 5 15.6% 4.1% $13.88 3.9% $13.46
Natural Light∗ AB 7 68.6% 3.9% $6.01 3.2% $7.15
Busch Light∗ AB 9 78.4% 2.8% $6.07 2.5% $6.96
Miller High Life† M 9 54.1% 2.4% $6.33 2.2% $7.21
Heineken†,♦ H 7 12.8% 2.3% $14.06 2.3% $13.86
Miller Genuine Draft† M 10 67.0% 2.3% $8.26 1.3% $8.94
Michelob Ultra∗,† AB 9 27.4% 2.1% $10.05 2.4% $10.51
Busch AB 9 70.0% 1.9% $6.08 1.6% $7.05
Keystone Light∗ C 6 81.4% 1.4% $5.83 1.5% $7.03
Budweiser Select AB 9 62.0% 1.3% $8.37 0.7% $8.76
Milwaukee’s Best Light∗ M 6 66.8% 1.3% $5.37 0.8% $6.19
Corona Light∗,†,♦ GM 3 2.3% 1.2% $14.23 1.3% $13.79
Tecate♦ H 7 66.3% 1.2% $8.65 1.2% $9.04
Natural Ice AB 7 51.3% 1.1% $5.96 0.9% $7.19
Pabst Blue Ribbon SP 9 49.3% 1.0% $6.26 1.4% $7.53
Milwaukee’s Best M 5 61.8% 0.8% $5.46 0.4% $6.46
Coors† C 10 73.3% 0.8% $8.44 1.0% $8.84
Michelob Light∗,† AB 7 29.3% 0.7% $9.76 0.3% $10.72
Heineken Prem. Light∗,†,♦ H 5 1.9% 0.6% $14.28 0.5% $14.18

Notes: the table lists the 20 highest-selling brands plus additional brands in MW’s sample. Market shares and
prices are based on all units sold in packs equivalent to 6, 12, 18, 24, 30 and 36 12oz servings. “Packs” is the num-
ber of 2007 bottle/can-pack size combinations for 6, 12, 18, 24 and 30 packs, as 36 packs are rare. “% 18+ ” is the
percentage of 2007 volume sold in the packs of more than 18 cans or bottles. 2007 companies are: AB=Anheuser-
Busch, M=SABMiller, C=MolsonCoors, GM=Grupo-Modelo, H=Heineken, SP=S&P. Prices are nominal prices
per 12-pack equivalent (i.e., total dollars sold in all pack sizes divided by total volume in 144oz. units). ∗=light
beers, †=included in MW’s sample, ♦=imports.

margin is a fixed component of brewers’ marginal costs.21

Table 4 lists the 20 brands with the largest sales by volume in 2007, together with additional

brands that MW include in their analysis. The table lists market shares and average nominal

prices (per 144 oz, the volume in a standard 12-pack) in 2007 and 2011. Most domestic brands

are differentiated from imports by being sold primarily in larger packs and at lower prices. The

relative prices of domestic brands increased after 2007, but, although CL gained share at ML’s

expense, the domestic brewers’ market shares remained stable: for example, AB’s volume share

21MW estimate a model that allows for a monopolist retail margin, and cannot reject a model with fixed
retail pass-through.
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Figure 4: Average Nominal Prices (excluding sales) of 12-Packs of the Domestic Flagship
Brands in Two Regional Markets Around the JV.

Notes: averages are calculated as the total dollar sales of 12-packs at prices not identified as temporary

price reductions, divided by the number of 12-packs sold. See Appendix D for the same figure with

real prices.

was 41.3% in 2007, 41.5% in 2009 and 39.6% in 2011, with light beer shares of 50.0%, 50.8%

and 50.6% respectively.22

We calibrate the model to match observed pre-JV dynamics of BL, CL and ML prices.

As an example of the dynamics in the data, Figure 4 shows monthly average nominal prices

of 12-packs for the flagship domestic brands in two large markets for 49 months around the

consummation of the JV.23 Average prices are calculated excluding all sales at prices that IRI

indicates are temporary price reductions, as changes in regular prices are more likely to reflect

changes in wholesale prices. Within-year volatility is a clear feature of this data, even if we

ignore the drop in ML prices during the DOJ’s investigation.

22Appendix D presents a figure showing the evolution of market shares over this period. The post-JV decline
in the shares of several non-flagship domestic brands reflected a continuation of pre-existing trends.

23We use nominal prices so that they are not distorted by fluctuations in the CPI-U deflator, including the
drop referenced in footnote 20. See Appendix D for the same figure plotted using real prices.

22



4.3 Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product version of our

model using pre-JV data, and then compare its predictions with post-JV data. We say “cal-

ibration”, even though we estimate five cost parameters, because of the strong assumptions

we make to limit the computational burden. The most important simplification is that our

calibration will treat data from different markets as data from independent repetitions of the

same game, rather than reflecting markets with different demand and cost primitives.

4.3.1 Products.

We model the pricing of three brands. We label these brands as BL, ML and CL, and will

estimate the cost parameters to match the observed price of dynamics of these flagship products.

However, Appendix D shows that the prices of brands in the same portfolio (e.g., Budweiser

and BL) are highly correlated, and one can also view the brands as representing the portfolios

of AB, Miller and Coors. Products of other brewers, including imports and craft beers, are

included in the outside good.24 We will assume that ML and CL are symmetric before the

JV, as we will have to assume that MC sets the same price for both products after the JV.

Appendix D also shows the correlation of ML and CL prices increased after the JV.

4.3.2 Demand.

We assume static, time-invariant nested logit demand, with the three brands in the same nest.

The parameters are the nesting and price parameters, and the mean utilities (excluding the

effect of price) of BL and ML/CL. Our baseline parameters are chosen so that, at average

real prices in the pre-JV data, the average own price elasticity is -3, the market shares of

the three products are 28% for BL and 14% each for ML/CL and, on average, if the price

of one brand increased, 85% of the demand that it loses would go to the other brands (with

the remainder to the outside good).25 When we use weekly data on 6/12/18/24/30-packs and

exclude temporary price reductions, the pre-JV cross-market average prices are $10.09 for BL

24In an earlier version, we estimate the model allowing for imports to be a non-signaling fringe that used
Bayesian Nash pricing. The model predicted that, after the JV, they would raise their prices by a couple of
cents.

25These assumed shares overstate the share of BL relative to ML and CL, but understate the share of AB,
relative to Miller and Coors, in the beer market and the light beer segment.
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and $9.95 for ML/CL, and the implied nesting and price parameters are 0.772 and −0.098, and

the BL and ML/CL mean utilities are 1.044 and 0.863 respectively.

As motivation for the assumed elasticity and diversion, Table 5 reports five sets of demand

estimates (the first three will be used in Section 4.4). For these specifications, we follow

MW as closely as possible in the choice of data, instruments and controls, except that we

use optimal GMM for the nested logit models as doing so affects the estimates.26 The first

three columns contain one nested logit specification, using monthly data, and two random

coefficients nested logit (RCNL) specifications, where the 13 MW brands are all included in a

single inside nest, and preferences vary with income. The remaining columns estimate nested

logit models using monthly and weekly data (we will use weekly price changes when estimating

the cost parameters) where flagship products are grouped into a flagship nest, and the remaining

products are placed in an “other beer” nest with a different nesting coefficient. The flagship

nesting coefficients are larger, consistent with these brands being close substitutes.

The table reports several implied statistics for each specification, including the average ML

brand elasticity (i.e., the effect on demand when all ML prices increase), the proportion of lost

demand that switches to other flagship products when a flagship price is increased, and the

average, across pre-JV observations, predicted change in flagship sales when the prices of all

domestic products increase by 75 cents, which is within the range of the observed post-JV price

change. The statistics vary across the specifications. Given that the limited decline in flagship

brand and domestic brewer market shares after the JV, we assume values for elasticity and

diversion that are consistent with the estimates in columns (4) and (5).

4.3.3 Marginal Costs.

We assume that the marginal costs of product i, ci,t, lie on the interval [ci, ci + c′], where

we estimate cBL, cML/CL and c′. ci,t evolves according to an AR(1) process with truncated

innovations

ci,t = ρci,t−1 + (1− ρ)
ci + ci + c′

2
+ ηi,t (4)

26None of the specifications yield exactly the same estimates as MW although the monthly RCNL estimates
are almost identical.
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Table 5: Estimates of Demand

(1) (2) (3) (4) (5)
Nested Logit RCNL RCNL Nested Logit Nested Logit

Nests All Beer All Beer All Beer Flagship/Other Flagship/Other
Data Freq. Monthly Monthly Quarterly Monthly Weekly

Real Price Coefficient -0.056 -0.083 -0.099 -0.073 -0.047
(2010 dollars) (0.017) (0.014) (0.014) (0.018) (0.011)
Nesting Coefficients

Single All Brand Nest 0.741 0.838 0.831 - -
(0.051) (0.039) (0.039)

Two Nests
Domestic Flagship - - - 0.838 0.898

(0.049) (0.040)
Other Brands - - - 0.634 0.815

(0.047) (0.037)
Income Coefficients (RCNL Models)
*constant - 0.014 0.014 - -

(0.005) (0.005)
*price - 0.001 0.001 - -

(0.000) (0.000)
*calories - 0.004 0.004 - -

(0.002) (0.002)

Median Product -2.31 -4.71 -5.41 -2.51 -3.12
Elasticity

Mean ML Brand -1.66 -3.68 -4.22 -3.06 -3.09
Price Elasticity

Mean Flagship 0.41 0.48 0.47 0.83 0.90
Diversion

% Change in Flagship -5.20% -8.24% -9.65% -4.30% -2.20%
Sales Given 75¢
Domestic Price Rise

Observations 94,656 94,656 31,777 94,656 405,004

Notes: all specifications include time period and product (brand*size) fixed effects, and use data from Jan
2005 to Dec 2011, excluding June 2008 to May 2009. All estimates use two-step optimal GMM. Instruments
are the same as in MW for the relevant specification, apart from the two nest models where we define in-
struments for the number and distance measures for other products based on products in the same nest, and
interact instruments with a flagship brand dummy. Market size is defined as 50% more than the highest sales
observed in the geographic market for monthly and quarterly specifications. For the weekly specifications it is
estimated as 50% more than the sum of the highest sales from stores observed in the scanner data that week.
ML Brand Elasticity reflects the change in ML sales when the prices of all ML products are increased. Mean
Flagship Diversion is the average proportion of lost sales that go to other flagship products (i.e., BL, ML and
CL products) when the price of a flagship product is increased. The change in flagship sales after a 75 cent
price rise is the average across pre-JV observations change in total flagship sales when the prices of all domes-
tic products are increased by 75 cents. Standard errors, clustered on the geographic market, in parentheses.
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where ηi,t ∼ TRN(0, σ2
c , ci−ρci,t−1−(1−ρ)

ci+ci+c
′

2
, ci+c

′−ρci,t−1−(1−ρ)
ci+ci+c

′

2
) and σc is the

standard deviation of the untruncated innovation distribution. The fit of the model improves

only slightly if we allow ρ, σc and c′ to vary across firms.

4.3.4 Objective Function, Matched Statistics and Identification.

The cost parameters are estimated using indirect inference (Smith (2008)). For a given value

of the cost parameters, we solve the model (see Appendix A.2 for the method) and simulate a

time-series of data to calculate six statistics/regression coefficients that we match to ones from

the data that we describe below. The estimation problem is

θ̂ = arg min
θ
g(θ)′Wg(θ)

where g(θ) is a vector where each element k has the form gk = 1
M

∑
m τ

data
k,m − τ̂k(θ) where τ datak,m

is a statistic estimated using the actual data and τ̂k(θ) is the equivalent coefficient estimated

using simulated data from the model solved using parameters θ. W is a weighting matrix. The

reported results use an identity weighting matrix, although the choice of W has little effect on

the parameters as we match all of the moments almost exactly. The objective function is mini-

mized using fminsearch in MATLAB (version 2018a). Standard errors are calculated treating

different markets before the JV as independent observations on the same game. Estimation

takes between 12 and 24 hours.27

For each geographic market, we calculate six statistics using data from January 2001 to the

announcement of the JV in October 2007.28 Our preferred specification uses weekly data and

the five most common pack sizes (6, 12, 18, 24 and 30-packs).29 Market-week-brand-size average

real prices per 12-pack equivalent are calculated excluding temporary store price reductions,

and using only market-weeks where we observe more than five stores.30 The first two statistics

that we match are the (unweighted) average prices for BL and ML across pack sizes and weeks.

27Computationally light two-step approaches, which are often used to estimate dynamic games, cannot be
used because they require that all serially-correlated state variables, which in our setting would include beliefs,
are observed by the researcher.

28MW use data from 2005 when estimating demand because they need to match sales data to data on market
demographics. We use a longer sample as we do not include demographics in our estimation of the supply-side.

29Our model does not have different pack sizes, market heterogeneity, varying sets of stores or time trends,
so the regressions using simulated data do not control for these factors.

30See Appendix D for a discussion of the sample selection.

26



The third statistic is the interquartile range (IQR) of prices for BL. This is calculated as the

IQR of the residuals for each market from a regression where, pooling markets, we regress the

week-market-size prices of BL products on dummies for the specific set of stores observed in

the market-week (interacted with pack size) and week-size fixed effects in order to control for

fixed retail price differences across stores and any national promotions. The remaining statistics

are coefficients from market-brand-specific regressions of market-week-brand-size prices on the

lagged prices of all three brands. Specifically we use the averages of ρML,ML and ρCL,CL, ρBL,CL

and ρBL,ML, and ρML,CL and ρCL,ML, where ρi,j is the coefficient on the lagged price of brand j

when the dependent variable is the price of brand i. These AR(1) regressions include dummies

for the exact set of stores observed, interacted with pack size, and a linear time trend.

Assuming that the equilibrium is unique, the intuition for identification is straightforward.31

Given the assumed demand parameters and the observed price levels, the mark-ups implied by

the model will identify the lower bounds on brand marginal costs. The AR(1) coefficients and

the dispersion of prices will identify the range of costs and the parameters of the cost innovation

process.32 We will compare additional statistics that we do not match during estimation to

understand the fit of the model.

To provide a sense of the AR(1) coefficients, Table 6 shows the coefficients from similar

regressions that pool data from all markets for four alternative samples. Panel (a) reports the

results for our preferred specification. The serial correlation parameters for a product’s own

price are between 0.41 and 0.46, while the cross-product correlations are positive but smaller.

If price reductions are included (panel (c)), serial correlations fall, which is consistent with sales

lasting one week and being proceeded and followed by higher regular prices. Serial correlation

is higher if we use only 12-packs (panel (b)). Panel (d) repeats (a) using monthly prices and

31The possibility that our game has multiple equilibria may create two issues for estimation. First, the
objective function may be hard to minimize if our solution algorithm jumps between different sections of the
equilibrium correspondence. In practice, we can match our moments almost exactly across many alternative
parameterizations. Second, another equilibrium supported by different parameters might give similar predictions
to the equilibrium that our algorithm finds. This is essentially a potential identification problem. Here we have
to rely on the fact that we have never found multiple equilibria in continuous-type games, although we suspect
that they may exist for some parameters.

32Larger cross-brand ρ coefficients imply stronger signaling effects, so that a smaller range of costs may be
required to generate the dispersion of prices in the data. Our experience is that we need to match average prices,
some measures of own-brand and cross-brand serial correlation, and some measure of either the dispersion of
prices or the variance of innovations in prices to identify the parameters. The exact combination of moments
used has little effect on the results.
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Table 6: AR(1) Price Regressions Using Flagship Market-Pack Size-Week or -Month Data

(a) Week, Price Reductions Excluded, (b) Week, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores 12 Packs Only, Fixed Effects for Set of Stores

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043 pBL,t−1 0.489 0.071 0.028
(0.033) (0.017) (0.010) (0.032) (0.026) (0.018)

pML,t−1 0.030 0.409 0.016 pML,t−1 0.062 0.505 0.028
(0.011) (0.036) (0.014) (0.013) (0.038) (0.012)

pCL,t−1 0.027 0.021 0.461 pCL,t−1 0.004 0.016 0.549
(0.012) (0.015) (0.040) (0.012) (0.015) (0.043)

Observations 36,659 36,670 36,700 Observations 10,829 10,817 10,828
R-squared 0.979 0.972 0.978 R-squared 0.964 0.945 0.957
Mean Price ($) 10.08 9.95 9.94 Mean Price ($) 10.30 10.22 10.19
SD residuals ($) 0.184 0.221 0.197 SD residuals ($) 0.144 0.183 0.163

(c) Week, Price Reductions Included, (d) Month, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores All Pack Sizes, Fixed Effects for Markets

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.287 0.036 0.020 pBL,t−1 0.646 0.097 0.091
(0.027) (0.013) (0.013) (0.025) (0.015) (0.012)

pML,t−1 0.045 0.322 0.010 pML,t−1 0.074 0.601 0.066
(0.009) (0.027) (0.012) (0.015) (0.027) (0.014)

pCL,t−1 -0.023 -0.049 0.267 pCL,t−1 0.100 0.097 0.682
(0.013) (0.020) (0.039) (0.010) (0.016) (0.025)

Observations 37,449 37,431 37,442 Observations 13,972 13,973 13,975
R-squared 0.939 0.941 0.942 R-squared 0.974 0.971 0.974
Mean Price 9.79 9.67 9.68 Mean Price 10.08 9.95 9.94
SD residuals 0.337 0.342 0.336 SD residuals 0.210 0.229 0.216

Notes: regressions also include time period*pack size interactions and use pack sizes containing volumes
equivalent to 6, 12, 18, 24 and 30 12 oz. containers. Market or store fixed effects described in the label to
each panel. Standard errors, clustered on the market, are in parentheses. The SD residuals statistic is the
standard deviation of the residuals from the regression.
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Figure 5: Estimated Pre-JV Price Dynamics and the Combined Market Shares of AB, Miller
and Coors.

Notes: The estimated univariate regression coefficients, with standard errors in parentheses, for panel

(a) are BL: 0.011 (0.226) + 0.558C3 (0.288), R2 = 0.080; ML : 0.044 (0.192) + 0.465C3 (0.245),

R2=0.077; CL : -0.025 (0.215) + 0.568C3 (0.278), R2=0.091; and for panel (b): -0.039 (0.046) +

0.120C3 (0.058), R2=0.088.

market, rather than group-of-store, fixed effects (equivalent regressions will be used in our

monthly data specification). In this case, the serial correlation parameters increase, but further

investigation reveals that this happens primarily due to the change in the fixed effects.33

While our calibration does not seek to match cross-market heterogeneity, the serial corre-

lation coefficients show some interesting patterns across markets. Using data simulated from

our model, we typically estimate higher serial correlation parameters when we change the pa-

rameters to induce larger signaling effects on prices, by, for example, reducing diversion to the

outside good. Given any type of logit or nested logit preferences, diversion to other brands will

tend to be lower when the market share accounted for by the signaling brands is higher. Figure

5(a) shows scatter plots of the estimated market-level serial correlation parameters for BL, ML

33We have estimated monthly regressions including set of store fixed effects and dropping market-months
where the set of stores changes within months. This causes the number of observations to drop dramatically:
for example, the number of observations in the BL regression falls to 2,806, and the estimated coefficient on pBLt−1

falls to 0.318. For some individual markets, there is not enough data to estimate serial correlation coefficients.
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Table 7: Parameter Estimates for Six Specifications

(1) (2) (3) (4) (5) (6)
Data Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Mean Brand Price Elasticity -3 -3 -3 -2.5 -3.5 -3
Mean Flagship Diversion 85% 85% 85% 90% 80% 85%

Lower Bound Cost for BL $5.259 $5.278 $4.845 $4.248 $5.973 $4.616
(cBL) (0.201) (0.048) (0.046) (0.043) (0.026) (0.127)
L.B. Cost for ML/CL $6.425 $6.528 $5.984 $5.786 $6.874 $5.711
(cML/CL) (0.020) (0.014) (0.022) (0.024) (0.017) (0.020)

Width Cost Interval $0.625 $0.752 $1.246 $0.556 $0.672 $1.793
(ci−ci) (0.029) (0.021) (0.018) (0.102) (0.026) (0.037)
Cost AR(1) Parameter 1.156 0.939 0.850 1.222 0.959 0.742
(ρ) (0.020) (0.011) (0.026) (0.013) (0.012) (0.025)
SD Cost Innovations $0.282 $0.278 $0.566 $0.260 $0.270 $0.400
(σc) (0.024) (0.001) (0.050) (0.104) (0.026) (0.052)

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Standard errors in parentheses.
The data specifications using weekly data include group-of-store fixed effects when calculating the
data statistics. For the monthly specification, the regression using the data only include market
fixed effects

and CL against the share of all beer sales accounted for AB, Miller and Coors in 2007 (i.e., the

C3). Figure 5(b) shows a similar plot for the average of the six cross-brand coefficients. In both

cases there is a positive, and, using a regression analysis, a statistically significant, relationship,

consistent with our simulations.34

4.3.5 Parameter Estimates and Model Fit.

Table 7 reports estimates from six specifications, using different data or alternative demand

parameters. Estimated marginal costs increase when demand is more elastic, and the range of

costs and the standard deviation of the innovations increase when we try to match data that

contains temporary price reductions. The estimated marginal cost ranges are much larger than

in our examples, but the estimated σcs imply that the probability that a marginal cost can go

from high to low across periods is quite high.35 As we will note below, the volatility of observed

prices means that the marginal costs implied by CI Nash or conduct parameter models are also

34We also find positive, statistically significant relationships when we look at individual cross-brand coeffi-
cients.

35For example, for the specification in column (1) the probability that a firm with marginal cost ci will have
a marginal cost in the lower half of the range in the next period is 0.24, similar to 0.32 in our baseline example.
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Table 8: Model Fit for Three Specifications Using Weekly Data, Average Brand Price Elas-
ticity of -3 and Flagship Diversion of 85%

(1) (2) (3)
Frequency Week Week Week
Sizes All 12 All
Price Reductions Excl. Excl. Incl.

Data Model Data Model Data Model

Matched Moments
Mean pBL $10.09 $10.09 $10.30 $10.30 $9.81 $9.81
Mean pML $9.96 $9.96 $10.22 $10.22 $9.68 $9.68
Mean ρML,ML, ρCL,CL 0.402,0.413 0.408 0.468,0.450 0.444 0.330,0.290 0.313
Mean ρBL,ML, ρBL,CL 0.082,0.066 0.074 0.102,0.056 0.076 0.070,0.060 0.059
Mean ρML,CL, ρCL,ML 0.051,0.036 0.033 0.065,0.026 0.035 0.049,-0.004 0.028
IQR pBL $0.189 $0.189 $0.185 $0.212 $0.314 $0.313

Unmatched Moments
Mean pCL $9.95 $9.96 $10.20 $10.23 $9.68 $9.68
ρBL,BL 0.444 0.385 0.442 0.418 0.311 0.296
Mean ρML,BL, ρCL,BL 0.059,0.0.42 0.038 0.065,0.040 0.038 0.076,0.004 0.029
SD of BL Res. $0.177 $0.109 $0.136 $0.122 $0.317 $0.188
SD of ML/CL Res. $0.204,$0.189 $0.159 $0.161,$0.149 $0.179 $0.322,$0.311 $0.271
IQR pML, pCL $0.222,$0.210 $0.281 $0.228,$0.206 $0.316 $0.335,$0.316 $0.462
Skewness of BL Res. -0.361 -0.337 -0.307 -0.314 -0.806 -0.098

ML/CL Res. -0.100,-0.329 -0.331 -0.296,-0.201 -0.297 -0.717,-0.696 -0.080

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. SD = standard deviation. Res. = resid-
uals from the AR(1) regressions. For the data we report separate values for the statistics for ML and CL,
but, because the model assumes that ML and CL are symmetric, and so predicts identical statistics (ignoring
simulation error), we match the average of these values during estimation and report a single prediction.

quite volatile.

The upper panel of Table 8 reports the fit of the moments that we match during estimation

for the column (1), (2) and (3) specifications. The lower part of the table reports moments

that are not matched, including the skewness of the innovations from the AR(1) regression.

The model systematically underpredicts the standard deviation of price residuals for BL. The

other moments are matched quite accurately, except that we cannot match the skewness of the

residuals when price promotions are included in the data, consistent with our model having no

mechanism to match these types of changes.

4.3.6 Predicted Effects of the JV.

Table 9 reports predicted prices when we resolve the six models assuming that ML and CL

have the same marginal cost and are sold by a single firm at the same price. We assume that

31



Table 9: Predicted Average Prices Before and After the MC JV

(1) (2) (3) (4) (5) (6)
Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Brand Elasticity -3 -3 -3 -2.5 -3.5 -3
Flagship Diversion 85% 85% 85% 90% 80% 85%

Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $10.09
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.95
Assumed ML/CL Synergy -$1.18 -$1.20 -$1.14 -$1.50 -$0.94 -$1.17
Post-JV Mean Prices
BL $10.62

(+5.3%)
$10.90
(+5.7%)

$10.17
(+3.7%)

$10.98
(+8.7%)

$10.42
(+3.3%)

fails

ML/CL $10.48
(+5.2%)

$10.79
(+5.8%)

$10.02
(+3.5%)

$10.82
(+8.5%)

$10.27
(+3.1%)

fails

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. For the data we report
separate values for the statistics for ML and CL, but, because the model assumes that ML
and CL are symmetric, and so predicts identical statistics (ignoring simulation error), we
report a single prediction.

MC benefits from a synergy that would have prevented average prices from rising if firms set

static CI Nash prices, as this seems consistent with the DOJ’s expectation, but the width of

the cost interval and the remaining parameters remain the same. The predicted price changes

in columns (1)-(5) are all within the estimated 40¢-$1 or 3-6% ranges.36 We cannot find an

equilibrium for the monthly data specification. In this case, the estimated parameters imply

marginal costs are more persistent (the probability that a firm with the cost ci will have a

cost less than
ci+ci+c

′

2
is only 0.067) because, in this case, we are matching coefficients from

a regression that does not control for cross-store heterogeneity in retail prices, and signaling

incentives raise prices so high that the conditions for separation fail.

Figure 6 compares, using the column (1) parameters, BL’s equilibrium pricing strategies for

the static Bayesian Nash 3-firm model, the estimated signaling 3-firm model and the counter-

factual post-JV model. Signaling increases the level and the range of BL prices, which span

from the lowest point on the two BL pricing functions to the highest point, especially in the

counterfactual.

36One might be concerned that our assumed discount factor of β = 0.99 is too low for weekly data. We have
recomputed the column (1) estimates assuming β = 0.998, implying an annual discount factor of around 0.9.
While a higher discount factor increases signaling incentives, the estimated parameters change to rationalize
pre-JV dynamics in such a way that the predicted post-JV prices are within 1 cent of those reported in Table
9.
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Figure 6: Bud Light Equilibrium Pricing Strategies (for estimates in column (1) of Table 7).

Notes: the strategies shown assume that cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (lower line) and

cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (upper line). Therefore, for each type of equilibrium, the

maximum range of BL’s prices spans from the lowest point on the bottom line to the highest point on

the upper line.

Table 10 compares the cross-market averages of the price dynamic statistics before and after

the JV in the data, and the values predicted by the column (1) model. The model correctly

predicts the directional change in each statistic except the skewness measures, even if it does

not predict which statistics change the most. We view our ability to match qualitative changes

in dynamics, as well as the increase in average price levels, even though our model is calibrated

using only pre-JV data, as an encouraging result.

4.4 Testing Alternative Explanations for the Post-JV Price Increases.

Some people have suggested that, even if our model can explain why prices rose after the JV,

MW and MSW’s CI theories of tacit collusion provide pre-existing and satisfactory explanations.

While folk theorems imply that a CI tacit collusion model that fits the data almost perfectly

is likely to exist, we can test how well MW and MSW’s assumptions fit the data. MSW’s

supermarkup model of collusion is clearly rejected and, in some specifications, MW’s baseline

interpretation that there was CI Nash pricing before the JV is also rejected. The estimates

also imply that marginal costs are serially correlated and quite volatile, a feature that plays an
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Table 10: Observed and Predicted Changes in Price Dynamics

Data Fitted Model
Pre-JV Post-JV Change Pre-JV Post-JV Change

IQR of Prices

BL $0.189 $0.241 +0.052 $0.189 $0.353 +0.164
ML $0.222 $0.256 +0.034 $0.281 $0.350 +0.069
CL $0.210 $0.244 +0.034 $0.281 $0.350 +0.069
AR(1) Regression Coefficients

ρBL,BL 0.444 0.524 +0.080 0.385 0.415 +0.030
ρML,ML 0.402 0.483 +0.081 0.408 0.409 +0.001
ρCL,CL 0.413 0.453 +0.040 0.408 0.409 +0.001
ρBL,ML 0.082 0.092 +0.010 0.074 0.122 +0.048
ρBL,CL 0.066 0.095 +0.029 0.074 0.122 +0.048
ρML,BL 0.059 0.087 +0.028 0.038 0.141 +0.103
ρCL,BL 0.042 0.080 +0.038 0.038 0.141 +0.103
Std. Dev. of AR(1) regression residuals

BL regression $0.177 $0.188 +0.011 $0.109 $0.203 +0.094
ML regression $0.204 $0.204 +0.000 $0.159 $0.204 +0.045
CL regression $0.189 $0.193 +0.004 $0.159 $0.204 +0.045
Skewness of AR(1) regression residuals

BL regression -0.361 -0.181 +0.180 -0.337 -0.504 -0.167
ML regression -0.100 0.001 +0.101 -0.331 -0.470 -0.139
CL regression -0.329 -0.104 +0.225 -0.331 -0.470 -0.139

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation
of the statistics is explained in Section 4.3.4. Pre-JV averages are calculated for 45
markets, and post-JV averages are calculated for 44 markets, as one market does not
have at least 5 stores observed in consecutive weeks after the JV.

important role in our model.

Our tests extend MW’s conduct parameter framework. The framework assumes that pricing

is characterized by stacked static, CI first-order conditions

(
Ωmt ◦

[
∂qmt(pmt, θ

D)

∂pmt

])
(pmt − cmt) + qmt(pmt, θ

D) = 0,

where pmt, qmt and cmt are vectors of prices, quantities and (constant) marginal costs and

∂qmt(pmt,θD)
∂pmt

is a matrix of demand derivatives.

Ωmt is the “conduct” matrix, with (row i, column j) element Ωi,j. Ωi,j = 1 if products i and

j are owned by the same firm. Under static Nash pricing, all other elements of Ωmt are zero.

MW’s baseline specification assumes static Nash pricing before the JV, but allows Ωi,j = κ

after the JV if i and j are owned by different domestic brewers. κ = 1 is consistent with joint

profit-maximization, while 0 < κ < 1 could be interpreted as reflecting partial internalization
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of pricing externalities.

Given demand estimates, MW estimate the post-JV κ using equations

pmt = Wmtγ −
(

Ωmt(κ) ◦
[
∂smt(pmt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (5)

where cimt = Wimtγ + νimt and W includes time, product (brand-size) and geographic market

fixed effects; a “distance measure” that multiplies distance to the brewery or port with real

diesel prices; and, a dummy for MC products after the JV to allow for an additional efficiency.

The JV is assumed not to affect AB’s marginal costs. The instruments are the variables in W

and a dummy for domestic products after the JV. The post-JV κ is identified by how much

more AB’s prices increase than the increase that can be rationalized as a static best response.

MW’s single exclusion restriction implies that they cannot estimate separate pre- and post-

JV κs or test whether a change in conduct is the source of the price increase.37 We provide

this type of test by adding additional instruments and controls.38 Note, however, that we will

only use the model to test MW and MSW’s assumptions and we will not interpret positive

κs as evidence of collusion. As shown by Corts (1999), some forms of tacit collusion may be

consistent with estimates of κ that are less than or equal to zero, and, as we discuss below, our

signaling model tends to imply positive estimates of κ even though there is no collusion.

Our specifications include separate pre- and post-JV product and market fixed effects in

W . To understand our choice of instruments, consider the first-order condition for product i

owned by AB

pimt = Wimtγ +
qimt
∂qimt

∂pimt

+
∑
j∈AB
j 6=i

∂qjmt

∂pimt

∂qimt

∂pimt

(pjmt − cjmt) + κ
∑
k∈M,C

∂qkmt

∂pimt

∂qimt

∂pimt

(pkmt − ckmt) + νimt.

Valid instruments will be correlated with
∑

k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt−ckmt) (i.e., the incremental effect

of a change in i’s price on a rival’s profits), and uncorrelated with the cost unobservable νimt.

The first six columns in Table 11 report conduct coefficients for the columns (1)-(3) demand

37MW re-estimate the post-JV κ assuming, but not estimating, different pre-JV κ ≤ 0.5. These estimates
imply that κ rose after the JV, although by smaller amounts as the assumed pre-JV κ rises, as a pre-JV κ also
implies that AB would increase its prices when MC benefits from an efficiency.

38We continue to assume that imported brands use Nash pricing and that Ωi,j = 1 when i and j have the
same owner.
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specifications in Table 5.39 Columns (1)-(3) use the distance measures of rivals as instruments,

as they affect rivals’ margins, and, as MW already assume that a product’s own distance mea-

sure is uncorrelated with νimt, the additional assumptions required are minimal.40 Columns

(4)-(9) use additional instruments in the form of the average value of the demand unobserv-

ables (ξs) for rival brewers over either the pre- or post-JV period, and the interactions of these

instruments with the distance instruments.41 These additional instruments are valid if νimt is

uncorrelated with the demand unobservables of rivals’ products. This is a stronger assumption,

although economists sometimes assume that a product’s own demand and marginal costs unob-

servables are uncorrelated in order to estimate demand (MacKay and Miller (2019)). Columns

(7)-(9) include linear domestic-market-fiscal year fixed effects in W . These controls allow for

possible correlations between local preferences and costs for domestic products as a group, and

cause conduct to be identified only from within-market-year cross-brewer/-product variation.

We will also use these specifications to test the MSW model.

We reject Nash pricing after the JV in all nine specifications. This is, of course, consistent

with MW’s interpretation that there was collusion after the JV. All of the estimated pre-JV κs

are positive, and some are significant. The estimates in columns (1)-(6) are consistent with an

increase in κ after the JV, but the estimates with market-year controls suggest that conduct

did not change, even though the κ estimates are very precise.

The plausibility of these CI pricing models can also be assessed by looking at what they

imply for marginal costs and synergies. Table 11 reports average implied marginal costs for

ML 12-packs. Less elastic demand and higher κ imply lower marginal costs, and the (1), (4)

and (7)-(9) costs are implausibly/impossibly low. The remaining columns imply synergies for

ML, which was being shipped the same distances before and after the JV in most markets,

39We have also estimated specifications using the two nest nested logit models, and specifications that estimate
κs based only on the pricing of the flagship brands. These estimates lead us to reject Nash pricing behavior
before the JV, and the pre- and post-JV parameters are closer than those in columns (1)-(6).

40There are eight excluded distance instruments. For AB products in market m and time t before the JV, the
(m, t) distance measure for Miller and the (m, t) distance measure for Coors are instruments. For pre-JV Miller
products, the distance measures for AB and Coors are instruments. For pre-JV Coors products, the distance
measures for Miller and AB are instruments. For AB (MC) products in market m and time t after the JV, the
(m, t) distance measure for MC (AB) is the instrument.

41Specifically, we calculate the average value of the demand residuals for the products sold by brewer b in
market m either before or after the JV, and then construct eight instruments in the same way that we construct
the instruments for distance. We average across periods because the demand unobservables are more variable
than the distance measures.
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that are higher than the 17.5% synergy for ML and CL that we assumed for the column (1)

specification of our model. Controlling for market and time effects, the implied νimts are also

serially correlated and quite volatile.42 While cost volatility is certainly not inconsistent with

CI, we view volatility as suggesting that a collusive interpretation of the data requires a very

strong CI assumption: if CI is not satisfied, then, given that prices are volatile, collusion would

be hampered by the difficulty of distinguishing cheating from a conforming price set by a low

marginal cost firm.

The conduct model is not a fully-specified model of collusion because it does not specify

why firms choose not to cheat. Some collusion models cannot be tested using the conduct

framework, but the MSW supermarkup model can. MSW assume that, every fiscal year, both

before and after the JV, a price leader suggests a “supermarkup” on top of Bertrand Nash prices

that domestic brewers should charge. If a domestic firm fails to charge the supermarkup, a

punishment phase ensues, but in a CI subgame perfect equilibrium, the suggested supermarkup

will satisfy the incentive-compatibility constraints (ICCs). Prices may increase after a merger

if the ICCs are relaxed. We can test this model by using an appropriately defined domestic

product market-fiscal year fixed effect to control for the supermarkup. If the “supermarkup on

Nash” theory is correct, estimates of conduct κ parameters should be equal to zero once the

fixed effects are included.

The columns (7)-(9) include linear domestic-market-fiscal year fixed effects. These specifica-

tions are not quite consistent with the MSW’s exact theory43, but they are simple to estimate.

As already discussed, we can reject κ = 0 before or after the JV at any significance level.

Column (10) tests MSW’s exact model by allowing for non-linear domestic-market-fiscal year

fixed effects (see Appendix E for details) using the quarterly RCNL model (most favorable to

pre-JV Nash pricing in columns (3) and (6)). We estimate the model separately for each fiscal

year to reduce the number of coefficients estimated simultaneously. Consistent with column

(9), the reported conduct parameters are precisely estimated and are between 0.9 and 1, and,

because estimated supermarkups are also positive, most of the implied marginal costs are neg-

42The rich fixed effects in columns (7)-(9) cause the νimts to jump across fiscal years, so the estimated serial
correlation falls.

43Linear fixed effects would be consistent with a model where the leader suggested domestic firms set Nash
prices “as if” all of their marginal costs had been raised by a common fixed amount, rather than suggesting a
common dollar per 12-pack equivalent price addition to Nash prices.
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ative. Therefore, we can clearly reject the MSW formulation of CI collusion, although, as we

have emphasized, this does not imply that all models of collusion would be rejected.

While our model implies that the conduct parameter framework is misspecified, because

it does not control for beliefs or signaling incentives, we have estimated conduct parameter

models using data simulated from two and three-firm versions of our model with cross-firm

heterogeneity. The estimated conduct parameters are typically between 0.3 and 1, and the

implied marginal costs are usually significantly below their true levels.44 The estimated conduct

parameters can rise, fall or stay roughly unchanged after a merger. The results of our conduct

analysis are therefore not inconsistent with what one would expect given our model.

5 Conclusion

We have developed a model where oligopolists simultaneously use prices to signal private in-

formation that is relevant for their future pricing decisions. Although the possibility that this

type of behavior would raise equilibrium prices was identified in the theoretical literature over

thirty years ago, we provide the first attempt to quantify the magnitude of these effects, both in

examples and in an empirical application. We find that effects can be large, and that they can

explain changes in price levels and price dynamics after a large horizontal transaction in the

U.S. beer industry. While CI theories of tacit collusion can also explain an increase in price lev-

els, our model provides a natural explanation of the period-to-period price changes observed in

this data, and in data from other industries where tacit collusion has been suggested (Ordover

(2007)). It is also consistent with how firms treat margin information as highly confidential.

We have often been asked how our model and our empirical analysis relate to theories of

“coordinated effects” in merger analysis. There is no standard definition of coordinated effects:

the presentation in Ordover (2007) is focused on variants of tacit collusion models, but Baker

and Farrell (forthcoming) and Farrell and Baker (2021) use a much broader definition which

includes both “purposive” theories of collusion and “non-purposive” theories, a group which

includes the non-collusive Markov Perfect theories of Maskin and Tirole (1988). Our model

44If, conditional on controls for costs, firms tend to set higher prices when other firms have higher margins
or there is more diversion to those rivals’ products, then estimated κs will be positive. As discussed previously,
these features also tend to lead to stronger signaling effects in our model, so we tend to estimate positive κs
using simulated data from our model.
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lies within this group. Non-purposive theories are valuable partly because they can explain

why it may not be appropriate to rely exclusively on static CI unilateral effects models in

industries that do not have the characteristics that economists typically believe favor tacit

collusion (Stigler (1964)) or where, before a transaction, prices do not display the rigidity that

collusive theories often predict (Athey, Bagwell, and Sanchirico (2004)). They can also explain

why coordinated effects do not raise prices to joint-profit maximizing levels, an outcome that

a tacit collusion model will predict if prices are set frequently and firms are patient. However,

we also believe that combining tacit collusion and asymmetric information is likely to be a

profitable direction for future research, building on the work of Kreps, Milgrom, Roberts, and

Wilson (1982) and Athey and Bagwell (2008) who have examined the links in very stylized

theoretical models.45 In fact, one of our examples in Appendix B.2 illustrates how signaling

could exacerbate the impact of small coordination incentives.

One could also ask what our model adds to existing non-purposive theories. Maskin and

Tirole (1988) provide examples of price-setting games which lead to both price rigidity and

price volatility without any underlying volatility in costs or asymmetries of information. We

view our introduction of serially correlated asymmetric information as not only realistic, but,

also potentially helpful in solving more complicated models, without assuming price changes are

asynchronous or subject to potentially large menu costs (Maskin and Tirole (1988), Nakamura

and Zerom (2010)), because it means that firms choose prices against a perceived continuous

distribution of rivals’ prices. This feature of asymmetric information models has long been

appreciated in both the static and dynamic discrete choice games literatures (e.g., Seim (2006)),

but there are also benefits when choices are continuous.

45Athey and Bagwell (2008) consider an example that is explicitly connected to the Mailath (1989) model.
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