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One of the most striking facts of the recent past is the fall of labor’s share of GDP

in the United States and many other countries.1 After being stable throughout much

of the last century, the U.S. labor share declined from a peak of 66% in the 1980s to

60% in 2014, as can be seen in Figure 1.2 The decline of the labor share is not driven

by changes in the industry composition of the U.S. economy. Figure 1 shows that, if

anything, holding industry shares in GDP constant at their 1987 levels would have led to

a more pronounced and earlier decline in the labor share.3 Indeed, most of the decline

in the U.S. labor share is driven by a sizable decline dating back to the mid 80s in the

share of value added accruing to labor in retail and wholesale trade, and in particular in

manufacturing.
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Figure 1: Labor share in the U.S. The blue line plots the headline BLS measure for the U.S.
non-farm business sector. The gold line plots a counterfactual labor share holding industry shares in
GDP constant at their 1987 values. The red and purple lines plot the labor shares for manufacturing and
for retail and wholesale trade. Data from the BLS Multifactor Productivity Tables.

Despite growing consensus on these facts, there is an ongoing debate about the under-

lying causes of the decline. One set of explanations points to the increased substitution

of capital for labor. In these accounts, the development of new or more efficient capital-

1 See for instance Elsby, Hobijn and Şahin (2013); Karabarbounis and Neiman (2013); Piketty (2014);
Dao, Das and Koczan (2019). For a different perspective arguing that the decline in the labor share is
exclusively a U.S. phenomenon, see Gutierrez and Piton (2020).

2The figure plots the labor share in the U.S. from the BLS. Although there is some consensus about
the decline in the labor share, there is more debate on the exact magnitude of the decline and how it
is affected by different measurement issues such as the treatment of self-employment (Elsby, Hobijn and
Şahin, 2013), housing (Rognlie, 2015), depreciation (Bridgman, 2018), income shifting by business owners
(Smith et al., 2019), and intangible capital (Koh, Santaeulalia-Llopis and Zheng, 2020).

3See also Elsby, Hobijn and Şahin (2013); Hubmer (2020).
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intensive technologies—as evidenced by the decline in the price of capital equipment and

software—leads to the substitution of capital for labor and a decline in the labor share.

This substitution can take place along an aggregate production function with an elastic-

ity of substitution greater than one (Karabarbounis and Neiman, 2013; Eden and Gaggl,

2018; Hubmer, 2020), or within tasks in a widening range of tasks that can now be

profitably automated (Acemoglu and Restrepo, 2018). The fact that the decline in the

labor share is more pronounced in manufacturing, and within that sector in industries and

firms adopting new automation technologies or that are more capital-intensive (Acemoglu

and Restrepo, 2020; Acemoglu, Lelarge and Restrepo, 2020; Hubmer, 2020) lends some

credence to these explanations.
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Figure 2: Labor share in U.S. manufacturing firms. The red line plots the aggregate labor
share in manufacturing. The gray lines plot the labor shares for firms at the 25th, 50th, and 75th
percentile of the labor share distribution. Data from Kehrig and Vincent (2020).

This evidence notwithstanding, recent studies using firm-level data have revealed that

the decline in labor shares is far from uniform across firms in an industry. While the

aggregate labor share has declined, the labor share of the typical U.S. firm has risen (Autor

et al., 2020; Kehrig and Vincent, 2020). For example, Figure 2, which we reproduced using

data from Kehrig and Vincent (2020), shows that, in manufacturing, the firms located

at the 25th, 50th, and 75th percentile of the labor share distribution saw a mild increase

in their labor shares over time at the same time as the aggregate labor share in the

sector plummeted. As shown by Autor et al. (2020), a similar pattern holds across all

U.S. sectors and is also evident for other countries. At a first glance, these facts cast

some doubt on explanations based on capital–labor substitution. After all, a simple
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version of these theories in which firms face similar prices and have access to the same

technologies would imply a more uniform decline in labor shares. Instead, these facts seem

to favor a second set of explanations that emphasize the role of rising concentration and

the reallocation of economic activity towards the top firms in an industry (Barkai, 2020;

De Loecker, Eeckhout and Unger, 2020; Autor et al., 2020; Baqaee and Farhi, 2020b).

This reallocation, which could be the result of increased competition or winner-takes-all

dynamics, reduces the aggregate labor share because the top firms in each sector have

higher markups. In these accounts, the decline in the labor share reflects an increase in

the aggregate markup resulting from reallocation and does not represent technological

changes favoring the substitution of capital for labor.4

This paper starts from the observation that the adoption of modern automation tech-

nologies facilitating the substitution of capital for labor is quite uneven and concentrates

on large firms. Our main point is that, once we account for this form of heterogeneity in

technology adoption, one can make sense of the dynamics of the labor share decline across

firms and industries as a response to lower capital prices. As a result, explanations of the

labor share decline based on capital–labor substitution are consistent, both qualitatively

and quantitatively, with the new firm level evidence put forth by Autor et al. (2020)

and Kehrig and Vincent (2020). Moreover, accounting for these differences in technology

adoption leads to different conclusions regarding the relative contribution of markups and

technology to the decline in the labor share across industries. In particular, we provide a

series of decompositions that account for the uneven adoption of automation technologies,

and show that capital-labor substitution played a key role in explaining the decline in the

manufacturing labor share during 1982–2012; whereas rising competition and reallocation

towards firms with lower labor shares played a key role in retail and other sectors.

We develop these points via three exercises. First, we revisit the firm labor share

evidence through the lens of a standard firm-dynamics model with a CES demand struc-

ture augmented with capital–labor substitution decisions across tasks (as in Zeira, 1998;

Acemoglu and Restrepo, 2018). The key assumption in our model is that firms must

make costly upfront investments to adopt the capital-intensive technologies required to

automate tasks. This assumption is motivated by micro evidence pointing to the skewed

adoption of new capital-intensive technologies, including robotics, dedicated machinery,

and specialized software. For instance, Acemoglu, Lelarge and Restrepo (2020) show that,

4A variant of these explanations emphasizes the role of technologies that favor larger firms (see Unger,
2019; Lashkari, Bauer and Boussard, 2019). This is different from our mechanism, which emphasizes the
fact that new automation technologies have a strong factor bias and change the production function of
large firms, making it less labor-intensive.
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in France, only 1% of manufacturing firms purchased industrial robots between 2010 and

2015, but these firms accounted for over 20% of manufacturing value added. The An-

nual Business Survey reveals a similar fact for the U.S., where the adoption of these

technologies is also highly concentrated among large firms (Zolas et al., 2020).5 This

evidence suggest that large firms not only differ in their productivity (and potentially in

their markups) but also in the extent to which their production relies on capital-intensive

technologies.

Using this simple version of our model in which markups are constant, we find that,

following a persistent decline in the price of capital—as the one observed in the US

data since the 1980s—, the resulting dynamics of the labor share across firms match the

evidence put forth by Autor et al. (2020) and Kehrig and Vincent (2020). Large and

growing firms automate more of their tasks and become more capital intensive. In these

firms, capital and labor become substitutes, driving the decline in the aggregate labor

share. Instead, the median firm will not automate additional tasks and will continue

to operate a more labor-intensive technology. For the median firm, capital and labor

remain complements, explaining why the labor share rises in the typical firm.6 Moreover,

as in the Melitz-Polanec decomposition conducted by Autor et al. (2020), the decline in

the labor share is driven by a more negative covariance between the market share of a

firm and their labor share, and not by the change in the unweighted average of labor

shares among surviving firms. Importantly, the negative covariance term reflects the fact

that automation efforts in our model are episodic and coincide with periods of rapid firm

expansion in terms of value added, which aligns with the joint dynamics of changes in

value added and labor shares for manufacturing firms documented by Kehrig and Vincent

(2020). Our model also accounts for the positive contribution of entry and the negative

contribution of exit to changes in the labor share and generates an endogenous rise in sales

concentration and productivity dispersion during episodes of capital–labor substitution

5Dinlersoz and Wolf (2018) document a similar phenomenon for advanced manufacturing technologies
using the Survey of Manufacturing Technologies from 1993. A series of recent papers document that the
adoption of industrial robots also concentrates among the top firms in each manufacturing industry (see
Koch, Manuylov and Smolka, 2019; Humlum, 2019; Bonfiglioli et al., 2020).

6A related mechanism going back to Houthakker (1955) emphasizes the possibility that a decline
in capital prices will reallocate economic activity towards more capital-intensive firms. For example,
Oberfield and Raval (2014) show that this reallocation has a small but positive contribution to the
aggregate substitution between capital and labor in response to lower capital prices. More recently,
Kaymak and Schott (2018) argue that this mechanism can explain up to a third of the decline in the
manufacturing labor share in response to lower corporate taxes—which are isomorphic to lower capital
prices. This form of reallocation to ex-ante more capital intensive firms is different from the main
mechanism in our model, which emphasizes the fact that new automation technologies are unevenly
adopted by large firms which then become more capital intensive.
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that are quantitatively in line with empirical estimates.7

In the second step of our analysis, we extend our model to a non-CES demand system

where demand is log-concave and markups increase with firm size—Marshall’s second law

of demand.8 This extension allows us to quantify the effects of increased competition

on concentration and the labor share. We show that one can use data on the decline

in the aggregate labor share, the change in the median labor share, and the change

in sales concentration in each sector of the economy to decompose the decline in the

labor share into a part driven by rising competition and a part driven by capital–labor

substitution. Our model-based decomposition suggests that in retail and other sectors

outside of manufacturing, rising competition and the ensuing concentration of economic

activity at top firms account for up to 60% of the decline in the labor share during 1982–

2012. However, when looking at manufacturing this pattern reverses and capital–labor

substitution explains over 90% of the decline in the labor share during this period. The

reason why rising competition plays a minor role in manufacturing is that concentration

in this sector increased mildly (as evident from the data in Autor et al., 2020), and that,

based on the distribution of firm sales, we estimate a distribution of firm productivity that

is more log-convex than but not too far from Pareto. When the productivity distribution

is Pareto, the decline in the labor share due to reallocation to high markup firms and the

decline in within firm markups generated by rising competition exactly offset each other.

Our quantitative exercise focuses entirely on differences in markups associated with

firm size (or productivity), which is what existing explanations based on the rise of super-

star firms emphasize. However, the association between size and markups is imperfect.

Increased competition might reallocate economic activity to high-markup firms of any

size, including smaller ones. We address this possibility in our third exercise, where we

provide model-free bounds for the contribution of reallocation to high-markup firms to

the decline of the labor share by sector. These bounds come at the expense of additional

data requirements, and rely heavily on empirical estimates of markups and variable-input

elasticities from Compustat. We first provide estimates of firm-level markups and out-

put elasticities that account for differences in the capital-intensity of technology across

7While we focus on falling capital prices and automation, in our framework, globalization and increased
offshoring as emphasized by Elsby, Hobijn and Şahin (2013) would have similar implications for domestic
labor share and market share dynamics if offshoring decisions were likewise correlated with firm size.
As we are unaware of systematic firm-level evidence on offshoring by firm size, we do not address this
channel in this paper.

8Non-CES demand systems have been widely used in trade (see Melitz and Ottaviano, 2008; Amiti,
Itskhoki and Konings, 2019; Arkolakis et al., 2018). A recent and growing literature uses non-CES demand
systems to quantify the distortions introduced by markups (see Edmond, Midrigan and Xu, 2018). See
also Baqaee and Farhi (2020a) for a thorough discussion on these models and Marshall’s laws.
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firms. In line with the key mechanism in our model, we find that over time, the largest

firms in each industry have experienced a large drop in their elasticity of output with

respect to variable inputs, suggesting that their production processes are becoming less

labor-intensive. On the other hand, we find positive or no changes for smaller firms. Us-

ing these empirical estimates of firm markups, we reach a conclusion that supports our

quantitative model-based results: empirically, reallocation towards high-markup firms can

explain at most a small share of the labor share decline in manufacturing, but plays a

more important role in other sectors.9

The rest of the paper is organized as follows. Section 1 introduces our model for the

special case of a CES demand aggregator, where markups are constant, and shows that the

model matches firm-level evidence on the decline of the labor share. Section 2 considers

a model with variable markups, and decomposes the decline in the labor share into a

part driven by reallocation and tougher competition, and a part driven by capital–labor

substitution. Section 3 provides empirical bounds on the contribution of reallocation to

the decline of the labor share by sector using Compustat firm-level data. The appendix

contains all proofs, as well as additional details and robustness exercises.

1 Model with CES Demand

1.1 Description of the model

We use a standard firm-dynamics model (as in Hopenhayn, 1992; Clementi and Palazzo,

2016), and augment it to include firms’ decisions to automate tasks by adopting costly

capital-intensive technologies (as in Acemoglu and Restrepo, 2018). We consider an econ-

omy in discrete time and omit time subscripts unless needed. Existing firms differ in

their productivity z and in the fraction of production processes or tasks which they have

automated α ∈ [0,1]. A firm of type θ = (z,α) produces output y(θ) by combining a

continuum of tasks indexed by x via a CES production function with task substitution

9 Autor et al. (2020) provide a related exercise when assessing the magnitudes of their superstar firms’
mechanism. In particular, they use empirical estimates of markups across firms and compute the extent
to which the relative expansion of high markup firms contributed to the decline of the manufacturing
labor share. Their markup estimates are based on production function elasticities as in De Loecker,
Eeckhout and Unger (2020), or measured as revenue over total costs. Baqaee and Farhi (2020b) conduct
a similar exercise, but in their case they are interested in computing the contribution of reallocation to
high-markup firms to TFP growth, which they show is equal to the contribution of reallocation to the
decline in the labor share. They also provide estimates based on accounting approaches and a production
function approach. We follow the production function approach, but allow production functions to vary
more flexibly across firms of different sizes.
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elasticity η ≥ 0:

y(θ) = z ⋅ (∫
1

0
Y(θ, x)

η−1
η dx)

η
η−1

.

Tasks in [0, α] are automated and can be produced by capital or labor; whereas non-

automated tasks in (α,1] must be produced by labor:

Y(θ, x) =

⎧⎪⎪
⎨
⎪⎪⎩

ψk(x)k(θ, x) + ψ`(x)`(θ, x) if x ∈ [0, α]

ψ`(x)`(θ, x) if x ∈ (α,1]

Here, Y(θ, x) denotes the quantity of task x, and k(θ, x) and `(θ, x) denote the utilization

of capital and labor in producing task x by a firm of type θ.

Firms face a competitive market for inputs. There is a fixed supply of labor ` rented

to firms at a wage rate w. On the other hand, the capital used for task x is produced

from the final good at a rate q(x) and rented to firms at a rate 1/q(x).

Without loss of generality, we assume that tasks are ordered so that

ψ`(x)

q(x) ⋅ ψk(x)
is increasing in x,

which implies that labor has a comparative advantage at high-indexed tasks.

We start with a CES demand system. Existing firms produce differentiated varieties

that are then combined via a CES aggregator to produce the final good y:

y = (∫
θ
y(θ)

σ−1
σ m(θ)dθ)

σ
σ−1

,

where m(θ) denotes the mass of firms of type θ, and σ > 1 denotes the elasticity of

substitution across varieties. In what follows, we normalize the price of y to 1.

Incumbent firms begin a period with productivity z and automation level α. They

then make optimal employment and capital utilization decisions and collect profits π(θ).

Subsequently, firms draw a fixed operating cost cf ⋅y, where cf ∼ G(cf), and decide whether

to continue operating.10 If they continue, they can automate additional tasks in (α,α′]

at a cost ca ⋅ y ⋅ (α′ − α), and draw next period’s productivity level z′, which follows an

10We specify that all fixed costs are paid in units of the final good and scaled by aggregate output.
This normalization ensures that the model can generate a balanced growth path if labor productivity
increases uniformly.
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exogenous AR1 process in logs:

ln z′ = ρz ln z + ε,

where ρz ∈ (0,1), ε ∼ N (µz, σz), and µz = −(1− ρz) ⋅σ2
z/(1− ρ

2
z) so that the long-run mean

of z is normalized to one.11

We also allow for entry of new firms. In particular, every period a unit mass of potential

entrants decides whether to enter the market. Entrants draw a productivity signal z from

a distribution H(z) and start with a common level of automation α0. After observing z,

α0, as well as the realization of the fixed operating cost cf , entrants decide whether to pay

the fixed cost and enter. After paying this cost, entrants become incumbents and face the

same problem described above. Finally, we assume that automation technologies also have

some exogenous diffusion through entrants, and that α0 equals the unweighted average

of α among incumbents. This is a common specification used in models of technology

diffusion (for a recent example, see Perla, Tonetti and Waugh, 2021).

Both incumbents and new entrants discount the future at a constant interest rate r,

which we take as exogenous. Throughout, we assume that r > g, where g is the growth

rate of output between two consecutive periods.

The timing and treatment of entry and exit in this model follows the standard firm-

dynamics literature. Our key innovation is to incorporate heterogeneity in the extent to

which firms have automated their production process, and to endogenize the evolution of

these decisions over time as determined by the payment of a fixed cost per task ca. This

fixed cost of automation plays a crucial role in our results and ensures that firms will

automate more tasks as they grow and reach the required scale.

The assumption that automating a task entails some fixed cost is plausible and in-

tuitive. For example, consider a car-manufacturing firm contemplating the possibility of

automating welding. Besides purchasing the industrial robots required to complete these

tasks (k(θ, x) in our model), the firm must also hire a team of engineers and integrators

to reorganize its plant and production process, and in some cases to redesign some of

their products so that they are more standardized, so that the robots can be integrated

seamlessly. In the case of industrial robots, these upfront investments and payments to

integrators far exceed the cost of the robot system itself (Acemoglu and Restrepo, 2020).

Likewise, a firm contemplating to deploy a new software to automate its logistics and

inventory management decisions must pay a fixed cost for developing the software and

11In Appendix C.1, we demonstrate that our findings are not sensitive to different timing assumptions.
In particular, we find similar results if we let firms observe z′ before making their automation decisions.
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rearranging its operations (ca in our model) and then continue to pay a variable cost for

the operation of the system ( 1
q(x)ψk(x)

in our model).12

Besides the costly adoption decision by firms to automate additional tasks, we also

assume that these technologies diffuse gradually through the entry of new firms. This is

a natural starting point and a simple way to get automation technologies to fully diffuse

over time, reflecting the standardization of these production techniques and the associated

organizational and productive changes required to deploy them.

1.2 Equilibrium and transitional dynamics

To save on notation, we focus on an equilibrium where firms produce all tasks in [0, α]

with capital. This will be the relevant scenario following a reduction in the cost of capital.

The production function above implies that the unit cost for a firm of type θ is

c(θ,w) =
1

z
⋅ (Ψk(α) +Ψ`(α) ⋅w

1−η)
1

1−η .(1)

This is the usual CES price index, with the difference that the share parameters Ψk(α)

and Ψ`(α) are endogenous and depend on the mass of tasks that are automated:

Ψk(α) =∫
α

0
(q(x) ⋅ ψk(x))

η−1dx, Ψ`(α) =∫
1

α
ψ`(x)

η−1dx.

The share of capital in cost εk(α,w)—which equals the elasticity of output with respect

to capital—and the share of labor in cost ε`(α,w)—which equals the elasticity of output

with respect to labor—are then given by

ε`(α,w) =
Ψk(α)

Ψk(α) +Ψ`(α)w1−η
, ε`(α,w) =

Ψ`(α) ⋅w1−η

Ψk(α) +Ψ`(α) ⋅w1−η
.

As these equations show, by investing in automation, firms increase the share of capital

in cost and reduce the share of labor, becoming more capital-intensive.

Finally, firms charge a constant markup µ ∶= σ/(σ − 1) > 1 and earn profits

π(θ,w) = σ−σ(σ − 1)σ−1 ⋅ y ⋅ c(θ,w)1−σ.(2)

We focus on perfect foresight equilibria. Given a path for investment productivities

12One can think of these fixed costs as intangible investment, which would contribute to firms’ intangible
capital (see, e.g., Corrado, Hulten and Sichel, 2009, on the increasing importance of intangibles). In our
model, firms not only differ in their capital stock, but also in their ability to use capital productively for
additional tasks—an intangible asset.
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qt(x) and an initial distribution of firms m0(θ), an equilibrium is given by a path for

wages wt and aggregate output yt, as well as a path for the distribution of firms mt(θ),

such that for all t ≥ 0:

1. the ideal-price index condition holds

∫
θ
µ1−σ ⋅ ct(θ,wt)

1−σ ⋅mt(θ) ⋅ dθ = 1,(3)

2. the labor market clears

∫
θ
yt ⋅ µ

−σ ⋅ ct(θ,wt)
−σ ⋅

∂ct(θ,wt)

∂wt
⋅mt(θ) ⋅ dθ = `,(4)

3. automation and exit decisions maximize the value function of incumbents

Vt(θ) =πt(θ)+

∫ max{0,−cf ⋅ yt + max
α′∈[α,1]

{−ca ⋅ yt ⋅ (α
′ − α) +

1

1 + r
E [Vt+1(θ

′)∣z,α′]}}dG(cf),

where θ′ = (z′, α′) denotes the vector of technology next period,

4. entry decisions maximize the value of entrants

V e
t (z) = ∫ max{0,−cf ⋅ yt + max

α′∈[α0t,1]
{−ca ⋅ yt ⋅ (α

′ − α0t) +
1

1 + r
E [Vt+1(θ

′)∣z,α′]}}dG(cf),

where z denotes an entrant’s productivity signal, and α0t ≡
∫θ α⋅mt(θ)dθ

∫θmt(θ)dθ
,

5. starting from m0(θ), the evolution of mt(θ) is governed by the exogenous process

for z, the endogenous process for α, and optimal entry and exit decisions of firms.

To characterize equilibrium automation decisions, it is useful to define α∗t as the level

of automation that would minimize production costs if tasks could be automated at no

cost. This involves automating tasks up to the point at which the unit cost of producing

a task with labor equals that of producing it with capital, which defines α∗t as

ψ`(α∗t )

qt(α∗t ) ⋅ ψk(α
∗
t )

= wt.(5)

The following lemma characterizes automation decisions and shows that, in line with

the existence of fixed costs per task, more productive firms automate more of their tasks.
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Lemma 1 A firm with technology (α, z) sets α′ = max{α̂t(z), α}, where α̂t(z) is an in-

creasing function of z with

lim
z→0

α̂t(z) = 0, lim
z→∞

α̂t(z) = α
∗
t+1.

Our first proposition characterizes the steady state of this economy. Due to the diffu-

sion of automation technology, we have that all firms eventually achieve the same level of

automation, and that this is the cost-minimizing level of automation defined above:

Proposition 1 Suppose that qt(x)→ q(x). The economy admits a stationary equilibrium

where α = α∗ for all firms.

We now turn to a characterization of the transitional dynamics in response to improve-

ments in the efficiency with which the economy can produce capital goods qt(x). Suppose

that the economy is in a steady state with q0(x) and experiences a uniform proportional

increase in q0(x) by ∆ ln q > 0.

To analyze the response of the economy, it is useful to define two elasticities of sub-

stitution. On the one hand, we have the elasticity of substitution between capital and

labor holding the level of automation constant—the short-run elasticity of substitution.

In our model, this coincides with the elasticity of substitution across tasks η. On the

other hand, we have the elasticity of substitution between capital and labor that accounts

for the endogenous shifts in technology over time captured by α∗. This long-run elasticity

of substitution is given by

ηLR = η +
∂ ln Ψk(α)/Ψ`(α)

∂ lnα
/
∂ lnψ`(α)/(q(α) ⋅ ψk(α))

∂ lnα
.

Because optimal automation decisions are increasing in the wage and the level of q(x) (as

can be seen from (5)), we have that this long-run elasticity always exceeds η.

Proposition 2 Following a uniform proportional increase in q0(x) by d ln q > 0, the

economy converges to a new steady state with higher output and wages, and a higher level

of automation α∗. The aggregate share of labor in costs (or in value added) changes by

d ln ε` = (1 − ε`) ⋅ (1 − ηLR) ⋅ (d lnw + d ln q) =
1 − ε`
ε`

⋅ (1 − ηLR) ⋅ d ln q.

At the same time, for an incumbent firm with low realizations of z along the transition,
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the share of labor in costs (or in value added) changes by

d ln ε`(θ) = (1 − ε`(θ)) ⋅ (1 − η) ⋅ (d lnw + d ln q) =
1 − ε`(θ)

ε`(θ)
⋅ (1 − η) ⋅ d ln q.

One case that will be particularly relevant for our analysis emerges when the short-run

elasticity is less than 1, and at the same time, the long-run elasticity is greater than 1. In

this case, Proposition 2 implies that the aggregate labor share is governed by the long-

run elasticity of substitution and that it will decline as capital goods become cheaper and

wages increase. At the same time, firms that do not reach a big enough scale to justify

investments in automating additional tasks will keep their α fixed at its initial value.

For these firms, capital and labor are complements, and their labor share rises as capital

goods become cheaper and wages increase.

The previous proposition suggest that, one way to explain the dynamics of the labor

share in the data, is to have a parametrization of our model where the long-run elasticity

of substitution exceeds 1 and the short-run elasticity is below 1. Although this case is

intuitive, and some evidence supports is as a natural starting point, our model can still

generate the dynamics that we see in the data even if capital and labor are complements in

the long run and ηLR < 1. In particular, the aggregate labor share might decline following

improvements in technology that reduce the cost of capital used at marginal tasks (those

around α∗), instead of uniformly across all tasks as in Proposition 2.

Proposition 3 Following an increase in q0(x) for all x > α∗ by d ln q > 0, the econ-

omy converges to a new steady state with higher output and wages, and a higher level of

automation α∗. The aggregate share of labor in costs (or in value added) changes by

d ln ε` = −(1 − ε`) ⋅ (ηLR − η) ⋅ d ln q + (1 − ε`) ⋅ (1 − ηLR) ⋅ d lnw

At the same time, for an incumbent firm with low realizations of z along the transition,

the share of labor in costs (or in value added) changes by

d ln ε`(θ) = (1 − ε`(θ)) ⋅ (1 − η) ⋅ d lnw.

The proposition clarifies that an improvement in the productivity of capital at marginal

tasks could reduce the aggregate labor share even if ηLR < 1. For example, if ηLR ap-

proaches 1 from below, the aggregate labor share will fall while the labor share of some

typical firms will increase slightly. The reason is that these marginal changes lead to the

reallocation of tasks away from labor and towards capital. At the same time, there is no
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change in the price of tasks below α∗, which otherwise would reduce the share of capital

(assuming η < 1). This is the key difference relative to a uniform increase in q(x), which

also reduces the share of infra-marginal tasks produced by capital in value added. This

also clarifies that, while ηLR is an interesting object, it only mediates the response of

the labor share to uniform changes in prices, but not to task-specific changes of the sort

described in Proposition 3. Under the lens of a task model, the observed decline in the

labor share in response to a decline in equipment prices can have one of two interpreta-

tions. Either this decline is uniform across tasks and ηLR > 1, as emphasized in much

of the existing literature and in Proposition 2. Or this decline is more pronounced for

new types of capital used at tasks where humans had a stronger comparative advantage,

as emphasized in Proposition 3. In this last case we could have a long-run elasticity of

substitution above or below 1.

1.3 Calibration and quantitative results

This section presents results from a calibrated version of our model and shows that it is

able to reproduce the firm-level dynamics found in the U.S. manufacturing sector. We

study the effects of a uniform decline in the price of capital goods in the main text, and

leave an analysis of task-specific changes to Appendix C.3.

Initial steady state: We first discuss the calibration of the parameters governing the

initial steady state of the economy. We calibrate the model under the assumption that

industries were in their steady state in 1982, and that at this point in time, there was

a uniform (inverse) price of capital q(x) = q0, which we choose to match the observed

labor share in manufacturing. This choice is motivated by the fact that the decline of

the manufacturing labor share of value added starts in 1982, after being roughly constant

in the decades preceding it. The period after 1982 also coincided with a pronounced

decline in the price of equipment and software, which will be the main driving force

behind the labor share decline in our exercise.13 Likewise, we set the demand elasticity

to σ = 11, which generates a common markup of 1.1. Finally, we pick the dispersion of

firm productivity to match the observed sales concentration in manufacturing in 1982.

Specifically, we target the share of sales among the top 4 firms in each manufacturing

industry reported by Autor et al. (2020), which roughly corresponds to the top 1.1% of

13Appendix E shows that this is also the case for most economic sectors. After having labor shares that
were roughly stable for the 1947–1982 period (and in some cases until 1987), some sectors experienced a
decline in their labor share of value added after this period. This Appendix also provides data for capital
prices and shows a sharp decline for the 1982–2012 period (see Hubmer, 2020, for more on capital prices)
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firms.14 Panel I in Table 1 summarizes the obtained parameters and the corresponding

data moments that we used to calibrate them.

Table 1: Calibration of the CES-demand model for manufacturing

Parameter Moment Data Model

I. Parameters governing steady state in 1982

ln q0
Inverse capital
price

−5.35
Manufacturing labor share from
Kehrig and Vincent (2020)

60.1% 60.2%

σ Demand elasticity 11.0 Aggregate markup 1.10 1.10

σz
Std. dev. of ln z
innovations

0.094
Top 4 firms’ sales share in 1982
from Autor et al. (2020)

40.0% 40.1%

II. Parameters governing firm dynamics

cf
Minimum fixed
cost

6.0 ⋅ 10−6 Entry (=exit) rate from Lee and
Mukoyama (2015)

0.062 0.063

ξ
Dispersion fixed
cost

0.330
Size of exiters from Lee and
Mukoyama (2015)

0.490 0.491

µe
Entrant
productivity

0.935
Size of entrants from Lee and
Mukoyama (2015)

0.600 0.598

III. Parameters related to the elasticity of substitution

η
Task substitution
elasticity

0.4
Short-run K–L elasticity from
Oberfield and Raval (2014)

0.40 0.40

γ
Comparative
advantage

0.95
Long-run K–L elasticity from
Hubmer (2020)

1.35 1.35

Notes: The labor share corresponds to the time average over 1967–1982 in Kehrig and Vincent (2020). The relative capital
price is identified only jointly with the level of the capital productivity schedule ψk(x), which we normalize to 1. The model
equivalent to the top 4 firms’ sales share refers to the top 1.1% of firms, since there are on average 364 firms per 4-digit
industry in the manufacturing sector as reported in Autor et al. (2020). The annual entry rate, as well as relative sizes
of entrants and exiters, are from Lee and Mukoyama (2015) and based on the Annual Survey of Manufactures. The six
parameters listed in Panels I and II are all jointly calibrated to match the six corresponding moments.

The parameters governing firm dynamics in our model are taken from the literature or

calibrated to match entry rates, exit rates, and firm-size distributions.15 Panel II of Table

1 lists the jointly calibrated parameters and corresponding model and data moments.

The calibration of the schedule of capital and labor productivities across tasks is more

novel and important for our purposes. We adopt the following functional form:

ψ`(x) = (x
1−η−γ
γ − 1)

1
1−η−γ

, ψk(x) =1.

14Although not targeted, the model roughly matches the share of sales accounted for by the top 20
firms in an industry (roughly corresponding to the top 5.5% sales share), which according to Autor et al.
(2020) averages 69.7% across manufacturing industries, while the model equivalent is 68.0%.

15We follow Clementi and Palazzo (2016) in parametrizing mean and dispersion of the fixed cost
distribution G(cf) to match the overall frequency and relative size of exiting firms. Specifically, we
impose a Pareto distribution for the operating cost with scale parameter cf and tail coefficient ξ. We
also match the relative size of entrants by modeling the entrant distribution H(z) as a log-normal that
differs from the long-run distribution of z only insofar as it has a lower mean µe. We fix the persistence
of productivity ρz at 0.9, which is in the range of estimates for various TFP measures and demand shocks
in Foster, Haltiwanger and Syverson (2008).
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This specification implies that the short run elasticity of substitution is given by η and

the long-run elasticity of substitution is constant and equal to ηLR = η + γ, where γ > 0 is

an inverse measure of the strength of the comparative advantage of labor at higher index

tasks.

We set η = 0.4 to match the estimate of the firm-level elasticity of substitution between

capital and labor in Oberfield and Raval (2014), which is based on cross-regional wage

variation. Although this is a reasonable starting point, we also explored the implications

of using lower values for η in Appendix C.2. The reason is that wage differences across

regions might persist, which implies that their estimates also account for some changes

in the allocation of tasks and should be seen as an upper bound on the elasticity of

substitution between tasks η. On the other hand, we set γ = 0.95 to match the available

estimates of the aggregate long-run elasticity of substitution between capital and labor

in response to a fall in capital prices, which place it around 1.35 (see Karabarbounis and

Neiman, 2013; Hubmer, 2020).16 As emphasized in Proposition 3 and demonstrated in

Appendix C.3, we can also generate the observed behavior of the manufacturing labor

share through a decline in the price of capital at higher-indexed tasks even if the long-run

elasticity of substitution ηLR is less than 1.

Transitional dynamics: We now explore the adjustment of the economy following a

decrease in the price of capital. In particular, we ask if our model can generate (i) the

observed decline in the manufacturing labor share at the same time as (ii) an increase

in the median labor share in response to a uniform increase in q(x). To this end, we

calibrate the decline in the price of capital and the fixed cost of automation by targeting

(i) and (ii). Intuitively, the decline in the price of capital controls the aggregate labor

share, and the fixed cost of automation controls the behavior of the median labor share.

Column 1 in Table 2 summarizes the manufacturing data, and Column 2 displays the

inferred shocks as well as model moments corresponding to our benchmark calibration.

Column 2 shows that our model with CES demand and a fixed cost of automation per task

of 0.23 generates the observed trends in (i)–(ii) as the response to a decline in the price

of capital of 140 log points.17 Thus, the observation that the labor share has risen for the

16Whether the strategy pursued by Oberfield and Raval (2014) identifies a long-run capital–labor
elasticity or a short-run task-level elasticity of substitution depends on the extent to which the regional
wage differences used for identification are permanent. Presumably, some of the variation in regional
wages is more transitory than the time-series variation in capital prices exploited in Karabarbounis and
Neiman (2013); Hubmer (2020), which could reconcile these divergent estimates in the literature.

17We assume that the capital price declines at a constant rate over the sample period 1982–2012;
subsequently, it remains constant.
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Table 2: Transitional dynamics and decomposition of the manufacturing labor share
using the CES demand system (1982–2012)

Model

Data Benchmark
No fixed cost of

automation
(1) (2) (3)

I. Parameters and inferred aggregate shocks
d ln q . 1.40 1.40
ca . 0.23 0

II. Targeted moments, 1982–2012
∆ aggregate labor share −0.178 −0.176 −0.198
∆ median labor share 0.030 0.026 −0.198

III. Other moments, 1982–2012
∆ Top 4 firms’ sales share 0.060 0.043 −0.015
∆ Top 20 firms’ sales share 0.052 0.070 −0.022
∆ log productivity dispersion 0.050 0.057 0.000

IV. Melitz–Polanec decomposition from Autor et al. (2020)
∆ aggregate labor share −0.185 −0.176 −0.198
∆ unweighted mean −0.002 0.032 −0.198
Exit −0.055 −0.003 0
Entry 0.059 0.006 0
Covariance term −0.187 −0.212 0

V. Covariance decomposition from Kehrig and Vincent (2020)
Market share dynamics 0.047 0 0
Labor share by size dynamics −0.043 −0.036 0
Joint dynamics −0.232 −0.143 0

Notes: Column (2) reports the findings from our benchmark model, which calibrates a uniform decline in the capital price
(log-linear over 1982–2012) as well as the automation fixed cost to replicate both the change in the aggregate as well as in
the median labor share (as documented by Kehrig and Vincent (2020) for the manufacturing sector). Column (3) displays
a counterfactual economy with costless automation. The change in industry concentration in Panel III is from Autor et al.
(2020, Table 1) and refers to the average change 1982–2012 across 4-digit manufacturing industries. The model equivalent
is the top 1.1%, respectively top 5.5%, firm sales share. The change in the standard deviation of log productivity (log unit
cost) is from Decker et al. (2020, Figure 3a), and computed analogously as the difference between the 2000s and 1980s.
Panel IV reproduces the Melitz-Polanec decomposition from Autor et al. (2020, Table 4 Panel B), reported as the sum of
consecutive 5-year changes 1982–2012. Panel V reproduces the covariance decomposition from Kehrig and Vincent (2020,
Figure 5), conducted for a balanced sample of firms and one long change 1982–2012.

typical manufacturing firm is not inconsistent with capital–labor substitution playing a

predominant role in the decline in the manufacturing labor share. Through the lens of our

model, this observation simply tells us that the median firm operates less capital-intensive

technologies than larger firms.

The fixed cost of automation required to rationalize the data is small and of a reason-

able magnitude. The calibrated value of ca implies that increasing α by an amount that

decreases a firm’s labor share by one percentage point incurs a fixed cost equal to 0.6–1.2%
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of annual average firm sales. In fact, in response to lower capital prices in our model,

total spending on automation fixed costs as a share of manufacturing output rises from 0

in the initial steady state to a peak of 0.7% in 2005. The fixed cost of automating tasks

can be thought of as an investment in R&D required to design and integrate automation

equipment or software. Appendix E compares this spending to the observed behavior of

total R&D expenditures in the data. Because not all R&D spending is linked to automa-

tion, we see this series as providing an upper bound on expenditures required to develop

and integrate the software and equipment required for automation. In line with this view,

we find that the model-implied spending on automation fixed costs amounts to only 25%

of the R&D share in the data, and that the rise in spending on fixed costs aligns with

the increasing share of R&D observed over time since the 80s. This comparison shows

that one can make sense of the manufacturing data with a small and reasonable value

for the fixed cost of automation, and that with this cost, our model does not generate a

counterfactual level of R&D expenditures.

Why doesn’t the typical firm automate its production processes further even though

the cost of doing so is small? This is because, despite its sizable effect on factor shares,

the productivity gains from automation might be small. In particular, the productivity

gains from automating a task can be approximated by the product of the cost-saving

gains generated by switching to produce a task with capital, given by

cost saving gains = ln(
w

ψ`(α)
) − ln(

1

q(α) ⋅ ψk(α)
) ≥ 0,

multiplied by the share of the automated tasks in value added—an extension of Hul-

ten’s theorem to our environment.18 This logic implies that, as α approaches the cost-

minimizing level α∗, the productivity gains from automating these tasks will be positive

but small. Moreover, the formula for the cost-saving gains shows that, even for smaller

values of α, the productivity gains from automating tasks might be small when the com-

parative advantage of labor in higher-index tasks is not too strong—i.e., when γ is large

as in our calibration.

On the other hand, the decline in the price of capital of 140 log points over the period

1982–2012 is in the ball park of what we observe for computer-powered equipment and

18 In particular, Appendix A shows that, as α → α∗ from below, the TFP gains of increasing automation
by dα > 0 are given by

TFP gains = [ln( w

ψ`(α)
) − ln( 1

q(α) ⋅ ψk(α)
)] ⋅ (w/ψ`(α))1−η

Ψk(α) +Ψ`(α) ⋅w1−η ⋅ dα ≥ 0.
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software, whose price declined by 170 log points during this period (see Eden and Gaggl,

2018; Hubmer, 2020, and Appendix E for more on capital prices). Because industries also

use other types of capital, we should think of this 170 log point decrease as an upper

bound on the decline in the price of capital that one can feed into the model.

Figure 3 displays the aggregate and the median labor share in the model. The ag-

gregate labor share declines steeply and comes close to the eventual (lower) steady state

value by 2012. On the other hand, the median—summarizing the behavior of a typical

firm—increases during the first part of the transition, and only declines below its initial

level after 2012. Eventually, automation technologies diffuse through entry and as firms

cycle through high-z states, which slowly drives the labor share of the typical firm down,

taking several years to converge to the new steady state.
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Figure 3: Transitional dynamics for the aggregate and typical labor shares in the
CES model for manufacturing. The horizontal dotted lines refer to the initial (upper) and final
(lower) steady states of the aggregate labor share. The solid blue line plots the behavior of the aggregate
labor share. The dashed red line plots the behavior of the median of firms’ labor shares.

To further investigate the predictions of our model for firms’ labor share dynamics

and contrast them with the data, we decompose the decline in the manufacturing labor

share using a Melitz–Polanec decomposition:

∆s` (Change in manufacturing labor share)

= ∆s̄` (Change in unweighted means)

+ ωX(s`S − s`X) + ω′E(s
′
`E − s

′
`S) (Contribution of exit and entry)

+∆∑
f

(ωf − ω̄) ⋅ (s`f − s̄`) (Change in covariance).

Here, ∆s` denotes the change in the manufacturing labor share over a given period of
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time. This can be decomposed into the change in the unweighted mean of labor shares

among continuing firms, ∆s̄`; two terms accounting for the contributions of firms that

exit the market and firms that enter the market; and the change in the covariance among

continuing firms, f , between their share of value added, ωf , and their labor share, s`f .

The contribution of firms that exit the market is given by their share of value added in the

baseline period, ωX , multiplied by the difference in the average labor share of continuing

firms, s`S, and firms that exit, s`X . The contribution of firms that enter the market is

given by their share of value added in the end period, ω′E, multiplied by the difference in

the average labor share of firms that enter, s′`E, and continuing firms, s′`S.

We follow Autor et al. (2020) and conduct this decomposition using 5-year differences,

and report the sum for each component over the first 30 years of the transition in our

model, corresponding to 1982–2012 in the data. Panel IV in Table 2 reproduces the

decomposition from Autor et al. (2020) for manufacturing and reports the decomposition

from our model. As in the manufacturing data, in our model economy the covariance

term fully accounts for the aggregate decline in the labor share. Exit and entry exhibit

the same qualitative patterns as in the data: on average, both entering and exiting firms

have labor shares that are higher than those of surviving firms. However, the differences

between these and continuing firms is not as pronounced as in the data, where many of

the firms that enter or exit have labor shares that exceed 1, presumably reflecting other

elements of the life cycle of firms that are not included in our model.19 The results in

Panel IV show that our theory of capital–labor substitution at the task level and with

fixed costs per task is capable of reproducing the new firm-level facts put forth by Autor

et al. (2020). They also imply that the Melitz–Polanec decomposition is not sufficient to

discriminate between explanations for the decline in the labor share based on technology

or others based on rising competition and reallocation.

The dominant role of the covariance term warrants further inspection. In an account-

19In our model, a firm that enters in t starts with α = α0t and is allowed to automate prior to production.
In contrast, the labor share of entering firms would be higher (amplifying the contribution of entry) if
automation technology diffused more slowly and new entrants were not allowed to automate in the period
they enter. Likewise, the contribution of entry and exit to the labor share would be amplified if fixed
costs were more labor-intensive than the final good (our model assumes they are equally intensive). In
this case, both firms that enter and exit would have higher labor shares, reflecting the importance of the
labor-intensive fixed costs for small firms.
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ing sense, changes in the covariance term can be decomposed as

∆∑
f

(ωf − ω̄) ⋅ (s`f − s̄`) (change in covariance)

=∑
f

∆(ωf − ω̄) ⋅ (s`f − s̄`) (market share dynamics)

+∑
f

(ωf − ω̄) ⋅∆(s`f − s̄`) (labor share by size dynamics)

+∑
f

∆(ωf − ω̄) ⋅∆(s`f − s̄`) (cross dynamics).

That is, we could have a decrease in the covariance driven by a reallocation of value added

towards firms with lower labor shares at baseline (the “market share dynamics” term);

a more pronounced reduction in the labor share of large firms (the “labor share by size

dynamics” term); or the possibility that firms that reduce their labor shares expand at the

same time (the “cross dynamics” term). In practice, decomposing changes in the covari-

ance into these terms might be challenging, since measurement error in value added will

inflate the contribution of the cross dynamics term. Though we do not yet have a definite

answer about the importance of these different components, Kehrig and Vincent (2020)

provide some evidence suggesting that, in manufacturing, the cross dynamics have played

a crucial role in explaining the decline in the labor share. In particular, using a balanced

sample of firms for 1982–2012, Kehrig and Vincent (2020) find that the cross dynamics

contributed -23.2 percentage points to the decline in the covariance term, accounting for

102% of the total decline within the balanced sample, while labor share dynamics by size

account for 19% of the decline.

Panel V in Table 2 provides the contributions of the three components above implied by

the decomposition in Kehrig and Vincent (2020). The panel also shows that our model

economy broadly aligns with their data.20 In particular, in our model, the covariance

term is negative because large firms have a more pronounced decline in their labor share

(labor share dynamics by size account for 20% of the total decline), but primarily because

growing and expanding firms are the ones investing in automation and reducing their

labor share at the same time (cross dynamics account for the remaining 80%). This

follows directly from the policy functions provided in Lemma 1, which show that firms go

through episodes of automation when they receive a series of positive productivity shocks

causing their desired automation level α̂t(z) to exceed their current automation level α.

20We compute the model moments in this panel exactly as in Kehrig and Vincent (2020), reporting
the cumulative change over 30 years in a balanced sample. Therefore, both in model and data, the three
terms in Panel V do not exactly add up to the covariance term in Panel IV.
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For comparison, Column 3 in Table 2 summarizes the transitional dynamics of our

model that would result if firms did not face any fixed cost of automating additional

tasks. We find that while the aggregate labor share evolves similarly in this counterfactual

economy, the firm-level dynamics of labor shares and market shares are strongly at odds

with the data. The comparison between Columns 2 and 3 underscores the importance

of fixed costs and shows that even a small fixed cost can substantially alter the type of

dynamics that we see in response to falling capital prices.

Productivity dispersion and sales concentration: Our model generates endoge-

nous changes in productivity dispersion and sales concentration along the transition of

the economy to its new steady state. For the 1982–2012 period, uneven automation

choices contribute to an increase in productivity dispersion of close to 10 log points and

4 log points for the 1982–2000 period. This is broadly in line with the evidence in Decker

et al. (2020), who estimate an increase in TFP dispersion by about 5 log points for the

U.S. manufacturing sector, comparing the 1980s to the 2000s. In turn, widening produc-

tivity differentials generate an endogenous increase in sales concentration. In terms of

concentration ratios, Autor et al. (2020) document increases of 6 percentage points for

the share of sales by the top 4 firms in each manufacturing industry and 5.2 percent-

age points for the share of sales by the top 20 firms. The model generates comparable

increases of 4.3 percentage points for the top 4 firms and 7.0 percentage points for the

top 20 firms. In sum, our model endogenously generates the observed increase in sales

concentration and productivity dispersion in manufacturing, and by doing so provides an

alternative explanation for the correlation between lower labor shares and higher sales

concentration observed across U.S. industries (see for example Barkai, 2020; Autor et al.,

2020). However, our model also predicts that these differences will revert over time as

automation technologies slowly diffuse to all firms, as shown in Figure 4.

2 Model with Size-dependent Markups

This section extends our model to allow for differences in markups across firms. This

extension allows us to decompose the decline in the labor share and the rise in sales

concentration into a component driven by increasing competition and another driven by

capital–labor substitution.
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Figure 4: Transitional dynamics for productivity dispersion and sales concentration
in the CES model for manufacturing. Productivity dispersion is computed as the cross-sectional
standard deviation of log unit costs. Sales concentration is measured by the top 1% sales share. The
dotted line depicts the steady state values for both variables (the distributions of relative firm productivity
and relative firm sales are unchanged across steady states).

2.1 Description of the model

To allow for differences in markups, we assume that the demand faced by firms is given

by a Kimball aggregator (see Kimball, 1995), where total output in an industry is defined

implicitly as the solution to

∫
θ
λ ⋅H (

y(θ)

λ ⋅ y
)m(θ)dθ = 1.

Here, H is an increasing and concave function. Normalizing the price of the final good to

1 yields the demand curve faced by firms as

y(θ) = y ⋅ λ ⋅D (
p(θ)

ρ
) ,

where the demand function D is decreasing and given by the inverse function of H ′(x),

ρ is an endogenous summary measure of competitors’ prices, which we will define below,

and p(θ) is the price charged by a firm of type θ. Finally, λ is an exogenous proxy for

market size, which will serve to model increasing competition.

When H(x) = x1−1/σ, we obtain the typical CES demand system. The demand function

D(p) is simply given by the log-linear function p−σ, and the competitors’ price index ρ

coincides with the price of the final good, which we normalized to 1. However, for general

aggregators H, the demand function might take different forms and the competitors’ price

index—determining how other prices affect a firm’s demand—will be different from the
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price of the final good.

Given a path for investment productivities qt(x), a path for market size λt, and an

initial distribution of firms m0(θ), an equilibrium is given by a path for wages wt, output

yt, the competitors’ price index ρt, the distribution of firms mt(θ) and their pricing

decisions, such that:

1. pricing decisions by firms pt(θ) maximize

πt(θ) = max
p
yt ⋅ λt ⋅D (

p

ρt
) ⋅ (p − ct(θ,wt)),

2. the ideal-price index condition holds, which defines the final good as the numeraire,

∫
θ
λt ⋅ pt(θ) ⋅D (

pt(θ)

ρt
)mt(θ)dθ = 1,

3. the implicit definition of competitors’ price index solves

∫
θ
λt ⋅H (D (

pt(θ)

ρt
))mt(θ)dθ = 1,

4. the labor market clears

∫
θ
yt ⋅ λt ⋅D (

pt(θ)

ρt
) ⋅
∂ct(θ,wt)

∂wt
⋅mt(θ) ⋅ dθ = `,

5. automation and exit decisions maximize the value function of incumbents

Vt(θ) =πt(θ)+

∫ max{0,−cf ⋅ yt + max
α′∈[α,1]

{−ca ⋅ yt ⋅ (α
′ − α) +

1

1 + r
E [Vt+1(θ

′)∣z,α′]}}dG(cf),

where θ′ = {z′, α′} denotes the vector of technology next period,

6. entry decisions maximize the value of entrants

V e
t (z) = ∫ max{0,−cf ⋅ yt + max

α′∈[α0t,1]
{−ca ⋅ yt ⋅ (α

′ − α0t) +
1

1 + r
E [Vt+1(θ

′)∣z,α′]}}dG(cf),

where z is the initial productivity of an entrant,

7. starting from m0(θ), the evolution of mt(θ) is governed by the exogenous process

for z, the endogenous process for α, and optimal entry and exit decisions of firms.
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2.2 Equilibrium and Rising Competition

As in our baseline model, the equilibrium of the economy converges to a steady state

where α = α∗. Moreover, firms’ automation decisions follow similar policy functions.

We first characterize the behavior of markups—the new element in the extended model.

Denote the price charged by a firm with unit cost c as a function of costs by p∗t (c), the

resulting markup by µ∗t (c), the quantity of goods sold by y∗t (c), and total sales by s∗t (c).

We will impose two assumptions known as Marshall’s weak and strong second law:21

−
D′(x)

D(x)
x is greater than 1 and increasing in x(Marshall’s weak second law)

x +
D(x)

D′(x)
is positive and log-concave(Marshall’s strong second law)

Proposition 4 Under Marshall’s weak second law, firms with lower costs c charge lower

prices p∗t (c) but higher markups µ∗t (c). Moreover, under Marshall’s strong second law,

markups and prices, µ∗t (c) and p∗t (c), are a log-convex function of costs, which implies

lower passthroughs for more productive firms. Finally, sales s∗t (c) are a log-concave and

decreasing function of costs.

The weak second law requires that, as firms lower their prices, their demand becomes

more inelastic. This implies that larger and more productive firms will charge lower prices

but set a higher markup. The strong second law requires marginal revenue to be positive

and log-concave, which ensures that more productive firms have lower passthroughs. Fig-

ure 5 illustrates these features by plotting the behavior of markups, prices, and sales. For

comparison, the figure also illustrates the behavior of these equilibrium objects in a CES

demand system, where markups are constant and prices and sales are log-linear functions

of cost.

We impose Marshall’s second weak and strong law for three reasons. First, these

assumptions receive support from the data (see for example Baqaee and Farhi, 2020a).

Second, this demand structure offers a tractable way of capturing the type of pricing

dynamics that one would get in oligopolistic competition models. In those models, larger

firms recognize that an increase in their price will have a disproportionate effect on the

industry price index, and so they recognize that their revenue is less responsive to changes

in their price. Third, and more importantly, these assumptions ensure that more produc-

tive firms are larger but charge higher markups, and that an increase in competition will

21Throughout, we say that a function y = f(x) is log-concave if ln y is concave in lnx.
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Figure 5: Markups, prices and sales. The figure presents the log of markups, prices and sales
as a function of firm unit costs in a CES demand system and a non-CES system where demand satisfies
Marshall’s weak and strong second laws.

result in a reallocation of economic activity towards these large firms with high markups.

This is precisely the reasoning behind theories emphasizing how rising competition can

reduce the labor share.

To capture the effects of rising competition, we consider an increase in market size

λ. The next proposition shows that increases in λ lead to tougher competition and a

reallocation towards more productive firms. We will focus on a stationary equilibrium,

and with some abuse of notation, denote by x(z) the equilibrium value for object x

associated with a firm with productivity z. Finally, we denote the share of sales of a firm

by ω(z). Recall that in a stationary equilibrium all firms have the same automation level

and we don’t have to keep track of this dimension.

Proposition 5 An increase in λ at time t has the following effects in the stationary

equilibrium time:

• all firms will reduce their markups, µ(z);

• for any two firms with z > z′, we have that µ(z)/µ(z′) is decreasing;

• for any two firms with z > z′, we have that ω(z)/ω(z′) is increasing.

The proposition shows that, as market size increases, firms will be pushed towards

the more elastic segments of their demand curves and will respond by reducing their

markups. However, the reduction in markups is not uniform: larger and more productive

firms will reduce their markups and relative prices disproportionately, capturing a greater

share of the market-size increase. This is a direct consequence of Marshall’s strong second
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law, which implies that large and more productive firms have smaller passthroughs. In

particular, as tougher competition for workers increases real wages, large firms respond

via a modest increase in their prices (and a large reduction in their markup) while small

firms respond via a more sizable increase in their prices (and a smaller reduction in their

markups).

This response by firms generates an ambiguous contribution of markups to the labor

share of the economy. On the one hand, firms reduce their markups, which contributes

to an increase in the labor share. On the other hand, there is a reallocation of economic

activity from small firms with low markups to large firms with high markups, which

contributes to a decline in the labor share.

Proposition 6 Suppose that the distribution of productivities in a stationary equilibrium

is given by z ∼ f(z). The aggregate labor share is given by

s` = ε`(α
∗,w∗) ⋅

1

µ
,

where the aggregate markup µ is a sales weighted harmonic mean of firm-level markups:

1

µ
∶= ∫

z

1

µ(z)
⋅ ω(z) ⋅ f(z) ⋅ dz

An increase in λ increases the aggregate markup if the distribution of productivity z is

log-convex (i.e., more convex than Pareto), lowers it if the distribution of productivity z

is log-concave (i.e., less convex than Pareto), and leaves it unchanged if the distribution

of productivity z is log-linear (i.e., Pareto).22

The proposition shows that the effects of rising competition on the aggregate markup

depend on the distribution of productivity across firms. This insight is well known and

recognized in the literature (see for instance Melitz and Ottaviano, 2008; Autor et al.,

2020). As we will show in our quantitative exercises, this insight is also relevant for

understanding the calibrated effects of rising competition on the labor share and the

aggregate markup.

Propositions 5 and 6 are stated for a stationary equilibrium, where all firms have

the same automation level α. When firms differ in α—for example, along the transition

following a decline in capital prices—, rising competition will also reallocate economic

activity towards more capital-intensive firms (those with larger values of α), generating

an additional force towards reducing the labor share. The reason is that these firms

22We refer to a distribution as log convex (log concave) if its PDF f(z) is log convex (log concave).
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experience less cost inflation as competition tightens and firms bid up wages. Although

we do not have sharp theoretical results for this general case, we will show that this

interaction between differences in technology and rising competition plays an important

role in some of our quantitative exercises.

In the next section, we will quantify these effects and also explain how they interact

with automation decisions in determining the behavior of the labor share.

2.3 Calibration

The previous section characterized the properties of the equilibrium of our extended model

and some of the effects of an increase in market size and competition. We now explore

the full transitional dynamics in response to rising competition and lower capital costs.

This allows us to analyze how capital–labor substitution and reallocation interact in

determining the dynamics of markups, the labor share of firms, and the aggregate labor

share.

We start by calibrating the model to the U.S. manufacturing sector. We first explain

how we parametrize and calibrate the structural parameters. We then explain how we

use the calibrated model to infer the decline in the price of capital 1/q and the increase

in competition λ required to match the observed behavior of the labor share and sales

concentration in this sector.

Manufacturing: We first discuss the calibration of the parameters governing the initial

steady state of the economy. We calibrate the model under the assumption that industries

were in their steady state in 1982, and that at this point in time, there was a uniform

(inverse) price of capital q(x) = q0, which we choose to match the observed aggregate

labor share in manufacturing.

Following Edmond, Midrigan and Xu (2018), we parametrize H using the specification

from Klenow and Willis (2016), which satisfies Marshall’s weak and strong second laws.

The key property from this specification is that the demand elasticity faced by a firm

setting a price p is given by

demand elasticity(p) = σ ⋅D (p/ρ)
− ν
σ ,(6)

which decreases as p falls—so that more productive firms face more inelastic demand. In

this specification, σ controls the average demand elasticity faced by firms, and the supra-

elasticity ν/σ controls the extent to which markups rise for more productive firms as well
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as the extent to which these firms have lower passthroughs. If ν = 0, the demand system

simplifies to the standard CES aggregator. The full specification for H and the derivation

of equation (6) are provided in Appendix B. We will pay special attention to calibrating

ν/σ, which will be the key parameter determining the net effect of rising competition on

sales concentration.

In our general model, we can no longer assume that productivity z is log-normal as

we did in the CES version. The reason is that, as shown in Proposition 4, sales are a log-

concave function of costs (and hence productivity), and so we wouldn’t be able to match

the observed levels of sales concentration with a log-normal distribution of productivities.

In fact, because the sales distribution is approximately Pareto, we need to entertain the

possibility that the productivity distribution is more convex than Pareto. To allow for this

possibility, we assume that productivity is determined by a latent factor z̃ that follows an

AR(1) process as before. This latent factor then determines productivity as:

z = exp (F −1
Weibull(n,ζ) (Φ (z̃))) ,

where Φ denotes the Gaussian cdf, and F −1
Weibull(n,ζ)

the inverse CDF of a Weibull random

variable with shape parameter n > 0 and scale parameter ζ > 0. This specification implies

that the log of z will follow a Weibull distribution whose CDF is given by

FWeibull(n,ζ)(x) = 1 − e−(
x
ζ
)
n

.

The Weibull distribution generalizes the exponential distribution by introducing the shape

parameter n, which controls the log-convexity of the distribution. In the benchmark case

with n = 1, the density of ln z is log-linear, or equivalently, the limit distribution for z

is Pareto with tail index ζ. For n < 1, the density of ln z is log-convex, or equivalently,

the limit distribution for z is more convex than Pareto. As shown in Proposition 6, the

implications of an increase in competition on the aggregate markup depend crucially on

whether the z-distribution is log-convex, log-concave, or log-linear. Thus, we will pay

special attention to calibrating n, which will be another key parameter determining the

net effect of rising competition on the aggregate markup and the labor share.

We jointly calibrate the parameters governing markups {σ, ν}, and the parameters

governing the behavior of productivity {ζ, n} to match the aggregate markup, the differ-

ence between the aggregate and the median labor share, and the share of sales among

the top 4 and top 20 firms in manufacturing in 1982. Panel I in Table 3 summarizes

the moments used and the resulting parameters. Although these parameters are jointly
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calibrated with the remaining model parameters, one can see how the calibration of each

of them is informed by these different moments. We calibrate σ = 6.1 to match an ag-

gregate markup of 1.15, which is in line with our empirical estimates in Section 3. More

importantly, we estimate a supra-elasticity ν/σ of 0.22 to match the difference between

the labor share of the median firm in 1982 and the aggregate labor share. Because we

assume that the economy is in a steady state initially, the difference in labor shares is

entirely due to markups, which in turn reflect changes in the curvature of demand between

the median and more productive firms.23

Table 3: Steady state calibration of the non-CES demand model: Manufacturing

Parameter Moment Data Model

I. Parameters governing steady state in 1982
ln q0 Inverse capital price −6.55 Aggregate labor share 60.1% 60.2%
σ Demand elasticity 6.10 Aggregate markup 1.15 1.15
ν/σ Demand supra-elasticity 0.22 Median labor share ratio 1.169 1.101
ζ Weibull scale 0.086 Top 20 firms’ sales share 69.7% 69.7%
n Weibull shape 0.78 Top 4 firms’ sales share 40.0% 40.0%

II. Parameters governing firm dynamics
cf Minimum fixed cost 4.6 ⋅10−6 Entry (=exit) rate 0.062 0.063
ξ Dispersion fixed cost 0.310 Size of exiters 0.490 0.488
µe Entrant productivity 0.876 Size of entrants 0.600 0.601

Notes: The aggregate and median labor share correspond to the respective time averages in the manufacturing sector 1967–
1982 in Kehrig and Vincent (2020); the median is displayed as ratio over the aggregate. The two concentration measures
are from Autor et al. (2020) and correspond to the manufacturing sector in 1982. The model equivalents refer to the top
1.1% and top 5.5% of firms ranked by sales (since there are on average 364 firms per 4-digit manufacturing industry). The
data moments and calibrated parameters in Panel II follow the model with CES demand, see Table 1. The eight parameters
in Panel I and II are jointly calibrated to match the eight corresponding moments.

For the parameters governing the productivity distribution, we calibrate {ζ, n} to

match the share of sales by the top 4 firms and the top 20 firms in each manufacturing

industry, which roughly corresponds to the top 1.1% and top 5.5% of sales. Intuitively, a

higher top 5.5% share of sales indicates a thicker tail of the productivity distribution—a

23 The Klenow–Willis specification used in our analysis limits the amount of markup variation that one
can generate for a given dispersion in sales. As a result, when matching the dispersion in sales, our model
generates two thirds of the observed ratio of the median vs. the aggregate labor share in manufacturing
(1.169) in steady state. Picking the higher estimate for average markups of 1.15 partly mitigates this
problem and allows us to be conservative, in the sense that it helps us generate enough dispersion in
markups by firm size. Indeed, our calibrated demand supra-elasticity (0.22) is squarely in between the
benchmark (0.14) and high supra-elasticity (0.30) calibration of Edmond, Midrigan and Xu (2018), who
choose their benchmark estimate to match labor share dispersion by firm size in U.S. data. Thus, our
model generates variation in markups by firm size that aligns with the data, which is reassuring since this
is the key dimension of heterogeneity governing the effects of reallocation on the labor share in response
to tougher competition in this model. Instead, the targeted difference between the median and the mean
might reflect other sources of markup and labor share variation unrelated to firm size.
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higher ζ. Moreover, conditional on the top 5.5% share, a higher top 1.1% share signals

lower values of n, which indicate a more than proportional increase in productivity quan-

tiles as we move to the top of the sales distribution. By targeting these two moments we

find that a value of n = 0.78—a small deviation from Pareto and thus a moderate degree

of log-convexity—fits the sales data. The fact that we estimate a log-convex distribution

for productivity follows from our theory. As the above introduced demand system im-

plies that sales are less dispersed than productivity, this is needed to match the roughly

log-linear distribution of sales observed in the data.

All of the remaining parameters are calibrated in the same way as in the CES model,

although we obtain different estimates due to the different demand structure. Panel II in

Table 3 summarizes the targeted moments and resulting parameter estimates.

Retail: We pursue an identical calibration approach for retail and summarize the re-

sulting parameters in Table 4. The main difference relative to what we found for manufac-

turing is that for retail we calibrate a lower value of n = 0.54 (implying more log-convexity

of the z-distribution), which is necessary to match the high sales share of the top 4 firms

in each retail industry (the top 0.023%) of 15% in 1982 relative to the (also high) share

of the top 20 firms (the top 0.12%) in each retail industry of 30%.

Table 4: Steady state calibration of the non-CES demand model: Retail

Parameter Moment Data Model

I. Parameters governing steady state in 1982
ln q0 Inverse capital price −7.35 Aggregate labor share 70.4% 70.5%
σ Demand elasticity 9.0 Aggregate markup 1.15 1.15
ν/σ Demand supra-elasticity 0.20 Median labor share ratio 1.169 1.106
ζ Weibull scale 0.023 Top 20 firms’ sales share 29.9% 29.9%
n Weibull shape 0.54 Top 4 firms’ sales share 15.1% 15.1%

II. Parameters governing firm dynamics
cf Minimum fixed cost 5.2 ⋅10−7 Entry (=exit) rate 0.062 0.062
ξ Dispersion fixed cost 0.250 Size of exiters 0.490 0.488
µe Entrant productivity 0.868 Size of entrants 0.600 0.599

Notes: The aggregate labor share corresponds to the BLS Multifactor Productivity Tables estimate for the retail sector.
The ratio median-to-aggregate is from Kehrig and Vincent (2020), which refers to manufacturing, since in the retail sector
the census data used, e.g., by Autor et al. (2020) does not allow to compute the labor share of value added. The two
concentration measures are from Autor et al. (2020) and correspond to the retail sector in 1982. The model equivalents
refer to the top 0.023% and top 0.116% of firms ranked by sales (since there are on average 17,259 firms per 4-digit retail
industry). The data moments and calibrated parameters in Panel II follow the model with CES demand, see Table 1. The
eight parameters in Panel I and II are jointly calibrated to match the eight corresponding moments.
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2.4 Quantifying the role of competition and capital–labor sub-

stitution

We now use the calibrated version of the model to decompose the observed decline in

the labor share and the rise of sales concentration in manufacturing into a decline in the

price of capital and an increase in competition. That is, we use the model to obtain the

underlying change in q and λ required to match the observed decrease in the aggregate

labor share and the observed rise in concentration in this sector from 1982 until 2012.

Using the shocks recovered by the model, we can then provide a decomposition of the

observed changes into a part explained by each shock and their interaction. We will also

provide results for the retail sector that show that our model is capable of capturing a

wide range of configurations for the relative importance of these shocks, depending on

the concentration of sales in a sector, the rise in sales concentration over time, and the

observed decline in the labor share.

Our exercise puts the capital–labor substitution and rising competition explanations

on equal footing and uses the model to infer the contribution of these two driving forces.

As we will see, our model provides different results across sectors, suggesting that our

approach is capable of discriminating between these two forces.24

The key assumption behind this approach is that there are no other forces affecting

sales concentration or reducing the labor share of an industry. In particular, our exercise

ignores the potential role of labor market power and other forms of rising market power

that could contribute to rising markups and rising concentration via a channel different

from an increase in market size λ.25

Manufacturing: Given data on changes in (i) the aggregate labor share, (ii) the median

labor share, and (iii) concentration, we can use our model to infer (a) the q-shock, (b)

the λ-shock, and (c) the fixed cost of automation. Column 1 in Table 5 summarizes

the manufacturing data and Column 2 provides our results. We find that, to match the

observed trends in (i)–(iii), our model requires a large decline in the price of capital of

140 log points, a mild increase in competition of 4%, and a fixed cost of automating tasks

of 0.16—that is, about 0.5% of average annual revenue in manufacturing industries for a

one percentage point reduction in the labor share. The reason why we calibrate a small

24In Appendix E, we discuss the interpretation of the inferred changes in q and λ further and relate
them to empirical proxies.

25Berger, Herkenhoff and Mongey (2019) find that labor market concentration has decreased over time.
Using a quantitative model, they estimate that this reduction in labor market power by itself would have
raised the labor share by 3 percentage points over the time period considered in our analysis.
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increase in competition is that the rise in sales concentration in the sector has been mild.

Indeed, manufacturing is the sector with the lowest increase in the share of sales accruing

to the top 20 firms from 1982–2012 according to the data in Table 1 of Autor et al. (2020).

Given the small increase in competition, the model requires a large decline in the price of

capital to match the observed behavior of the labor share. As before, a small fixed cost

of automating tasks is enough to ensure a rise in the labor share of the median firm.

We find that, in response to these two shocks, our model provides a good fit to the

manufacturing data. Panels IV and V of Table 5 describe the dynamics of the labor

share across firms by employing the Melitz–Polanec and the covariance decomposition

introduced in Section 1.3. In line with the data, we still find a crucial role for a decline

in the covariance between firm sales and their labor share in explaining the aggregate

decline in the labor share, with most of this change driven by firms that expand at the

same time as their labor share declines (the cross-dynamics term).

To understand the contribution of each of these shocks, we provide a series of coun-

terfactual scenarios where we shut them down sequentially. In Column 3, we shut down

the increase in competition. We find that capital–labor substitution explains 16.3 of the

observed 17.8 percentage points decline in the manufacturing labor share. Moreover,

capital–labor substitution explains 3.8 percentage points of the observed 6.0 percentage

points increase in sales concentration among the top 4 firms in the sector. In line with

these findings, the results in Column 4 show that, when we shut down the decrease in the

price of capital, the increase in competition does not contribute materially to the decline

in the manufacturing labor share. Its main role is to increase sales concentration among

the top 4 firms by 1.9 percentage points.

Several factors combine to explain why rising competition plays a small role in man-

ufacturing. First, given the modest increase in sales concentration, most of which can

be accounted for by the fact that larger firms will be the ones involved in capital–labor

substitution, we calibrate a small increase in competition of d lnλ = 4%. Second, the

distribution of productivities in manufacturing is close to Pareto, which implies that ris-

ing competition does not have a substantial effect on the labor share. Finally, the large

decline in the manufacturing labor share requires a sizable decline in the price of capital,

which then becomes the dominant force in this sector. As we will see in the case of retail,

different observed trends can lead to different conclusions about the relative importance

of these shocks.

As a final exercise, Column 5 shuts down both shocks, which serves to illustrate the

type of labor share dynamics across firms that the model generates in a steady state. By
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construction, there are no changes in the aggregate labor share, sales concentration, and

other aggregates. Instead, we focus on Panel V, which summarizes the results regarding

the covariance decomposition, and illustrates the behavior of firm dynamics in terms of

sales and value added along a steady state. Even in a steady state, all the components

of the change in the covariance term are different from zero. In particular, the model

generates a positive contribution of the market size and the labor share by size dynamics

of equal size. The reason is that there is mean reversion in productivity: firms that are

large today and charge high markups will be small tomorrow, explaining the positive

contribution of market size dynamics. Likewise, firms that are large today have low labor

shares and are expected to contract and lower their markups as they do so, explaining the

positive contribution of the labor share by size dynamics. These two effects are mostly

offset by the reduction in the labor share of firms that receive positive productivity shocks

and expand, and as a result reduce their markups, explaining the negative contribution

of the cross term.26

The findings in Column 5 suggest that covariance decompositions must be interpreted

with caution before drawing inferences about the forces behind the decline in the labor

share. As we have seen, even in the absence of shocks we will have non-zero components

that cancel each other out. By comparing the covariance decomposition in Column 5 with

Column 1, we see that the main features of the data that require an explanation are the

fact that the labor share by size dynamics are negative and not positive, and that the cross

dynamic term is more negative than what one would observe in a steady state. Columns

2 and 3 shows that, at a qualitative level, these are precisely the sort of dynamics that

we get in response to a decline in the price of capital.

Panel VI of Table 5 summarizes the predictions of our model for markups, which

cannot be directly observed in the data. The labor share in an industry can be written as

s` =
ε`
µ
,

where ε` is the share of labor in costs for the whole industry and µ is the aggregate

26These three numbers do not add up to zero because these moments are computed for incumbents.
Likewise, there are some ergodic movements for other objects in the other panels of the table, which in all
cases reflect differences between incumbents and firms that enter and exit along a steady state. However,
these movements are an order of magnitude smaller than what we see in the data and not relevant for
our purposes, so we do not report them nor discuss them here.
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industry markup, defined as the harmonic-sales-weighted mean of markups across firms:

1

µ
=∑

f

ωf ⋅
1

µf
.

As suggested by this decomposition and also by Proposition 6, this is the relevant notion

of an aggregate markup.27 In particular, the above decomposition shows that an industry

labor share might decrease because of technology or changes in factor prices—captured

by the share of labor in costs—or because of an increase in the industry markup.

Our model predicts a mild increase in the manufacturing markup of d lnµ = 1.1% (from

1.15 to 1.162). However, as anticipated in Proposition 6, this net effect masks two distinct

forces. On the one hand, firms lower their markups in response to rising competition. The

contribution of these within-firm changes is given by

within-firm changes ∶=∑
f

ωf ⋅∆ lnµf ,

which lowered the manufacturing markup by 2.4% during this period (in this expression,

the sum is over all continuing firms). On the other hand, rising competition generates

a reallocation of output towards firms with higher markups, which improves allocative

efficiency. The contribution of reallocation to markups is then given by

allocative changes ∶= ∆ lnµ −∑
f

ωf ⋅∆ lnµf ,

which increased the manufacturing markup by 3.5% during this period. As emphasized

by Baqaee and Farhi (2020b), allocative changes also measure the contribution of im-

provements in allocative efficiency to sectoral TFP.28 Thus, our model predicts that rising

competition and capital–labor substitution among large firms improved the allocative

efficiency of the manufacturing sector, and that as a whole, these improvements raised

manufacturing TFP by 3.5%.

27 This decomposition follows from the chain of identities

s` =
∑f s`fyf
∑f yf

= ∑f
s`fyf

∑f 1
µf
yf

∑f 1
µf
yf

∑f yf
= ε` ⋅

1

µ
.

In the last step, we used the fact that ∑f s`fyf equals the wage bill and ∑f 1
µf
yf equals total cost in the

whole industry.
28An application of Proposition 1 in their paper to our context shows that the contribution of changes

in allocative efficiency to TFP are given by −∑f ωf∆ lnµf − ε`∆ ln s` − εk∆ ln sk, where s` and sk denote
the share of labor and capital in industry value added and ε` and εk denote cost shares. With constant
returns to scale, and after some algebra, one can show that −ε`∆ ln s` − εk∆ ln sk = d lnµ.
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Retail: We now conduct the same model-based decomposition for the U.S. retail sector.

Table 6 summarizes the retail data and presents the inferred shocks and their implica-

tions.29 In retail, we observe a decline in the labor share of 10.2 percentage points and

a rise in sales concentration among the top 4 firms of 14 percentage points. This rep-

resents a vast increase in sales concentration, given that the top 4 firms represent only

0.023% of all firms in a retail industry, on average. For comparison, in manufacturing,

the top 4 firms represent 1.1% of the firms in each industry, and their share of sales only

increased by 6 percentage points. Our model can explain the observed patterns for retail

with a decline in the price of capital of 75 log points and an increase in competition of

41%—an order of magnitude larger than in manufacturing. As before, a small fixed cost

of automating tasks is enough to ensure a rise in the labor share of the typical firm.

The counterfactual scenarios in Columns 3 and 4 suggest an important role for both the

relative price of capital as well as the competition shock in explaining the observed trends

in retail. Moreover, the results point to a significant interaction between these two shocks.

For example, the estimated q-shock by itself causes the aggregate labor share to decline

by 4.2 pp, while the estimated λ-shock generates a 2.0 pp decline. Yet, in combination

the two shocks generate a decline of 10.3 pp. Thus, their interaction accounts for 4.1

percentage points—40% of the total decline. Two mechanisms are responsible for this

interaction. First, rising competition reallocates activity towards more automated firms,

since these are the firms who experience less cost inflation as competitors bid up wages.

This form of reallocation also contributes to the decline in the labor share. Second, rising

competition implies that more productive firms will now account for a greater share of

sales, generating extra incentives for automation among these firms and giving a higher

weight to those firms in determining the aggregate labor share.

Turning to the predicted behavior of markups, our model predicts an increase in the

aggregate markup in retail of 3.3% (from 1.15 to 1.19). This is the result of a 2.5%

decrease in the within-firm component and a 5.8% increase driven by improvements in

allocative efficiency. Thus, our model predicts that rising competition improved allocative

efficiency in retail, and this generated an increase in TFP in that sector of 5.8%.

Other sectors: We also conducted a similar decomposition for other economic sectors,

including wholesale, as well as utilities & transportation sectors.30 We relegate the de-

29For retail, our best proxy for the behavior of the labor share of the typical firm is the change in the
mean unweighted payroll share (rather than the median labor share) reported by Autor et al. (2020). For
aggregates in this sector, we target aggregate labor share data from the BLS, both in levels and changes.

30We omit the finance and services sectors. In the former, measuring the labor share of valued added
is conceptually difficult, while the latter did not experience a decline in its labor share.
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tails behind the calibration and the data used to Appendix D. Figure 6 summarizes our

findings and for reference contrasts them with our results for manufacturing and retail.

In wholesale as well as utilities & transportation, the estimated q-shock by itself accounts

for roughly two thirds of the aggregate labor share decline, while the remaining one third

is almost entirely due to the interaction of the two shocks, which reinforce each other.

manufacturing retail wholesale utilities and transportation
-0.18

-0.16

-0.14
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0
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Figure 6: Model-based decomposition of sectoral labor share changes. For each sector,
this figure shows the observed change in the aggregate labor share, the benchmark model with q- and λ-
shocks jointly calibrated to match observed labor share and concentration changes, the two counterfactuals
restricting to a single shock at a time, and the residual interaction term. The data sources are Kehrig
and Vincent (2020) for manufacturing, and BLS MFP Tables for all other sectors. See also Tables 5, 6
and 10 for more detailed information .

We conclude that while the fall in the manufacturing labor share is almost entirely

attributed to automation through the lens of our model-based decomposition exercise, in

non-manufacturing sectors there is an important role for rising competition and the way

in which it interacts with differences in capital–labor substitution across firms.

3 Bounding the effects of reallocation and

changes in markups on the labor share

Our model-based decomposition accounts for the role of rising competition generating a

reallocation towards the most productive firms, which also happen to be the ones with

largest markups. However, the relationship between productivity (or size) and markups

might not be perfect, and one could also imagine that rising competition reallocates

economic activity towards firms with high markups that are not necessarily large or the

most productive. This form of reallocation would also contribute to a rise in the aggregate
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markup and a decline in the labor share.

In this section, we explore the role of this more general form of reallocation empirically.

The greater generality comes at the expense of requiring estimates of markups at the firm

level. In what follows, we explain our approach to estimating markups and compare them

with the existing literature. We then use our estimates to conduct several accounting

exercises designed to illustrate the contribution of more general forms of reallocation and

changes in markups to the labor share of manufacturing and other economic sectors.

3.1 Output elasticities by firm size

We estimate markups for a firm f in industry i at time t as

µft =
εvft
svft

,

where εvft is the elasticity of gross output quantities with respect to the quantity of

variable inputs used, and svft denotes the share of variable inputs in the firm’s revenue.

The elasticity εvft is not observed and must be estimated from firm-level data on

revenue (y), expenditures in variable inputs (v), capital (k), and investment (x). Following

Olley and Pakes (1996) and Ackerberg, Caves and Frazer (2015), we make the following

assumptions:

A1 differences across firms in the price of variable inputs reflect quality, which implies

that we can treat expenditures in variable inputs as a measure of their quality-

adjusted quantity

A2 revenue is given by a revenue production function of the form

ln yft = zft + ε
R
vc(f)t ⋅ ln vft + ε

R
kc(f)t ⋅ lnkft + εft,

where c(f) denotes groups of firms with a common technological bias and the same

process for their revenue productivity, and εft is an i.i.d. ex-post shock orthogonal

to kft and vft

A3 unobserved productivity zft evolves according to a Markov process of the form

zft = g(zft−1) + ζft,

where ζft is orthogonal to kft and vft−1, and
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A4 the gross output production function exhibits constant returns to scale in capital

and variable inputs, which implies that quantity elasticities are given by

εv,ft = ε
R
vc(f)t/(εRvc(f)t + ε

R
kc(f)t) .(7)

Assumptions A1–A3 are standard in the literature. Assumption A4 is added to deal

with the fact that we don’t observe prices, and so the estimation procedure yields revenue

elasticities, not the quantity elasticities that are relevant for computing markups (Bond

et al., 2020).31

Under these assumptions, and given a grouping of firms c(f), we can estimate revenue

elasticities following the usual approach from Ackerberg, Caves and Frazer (2015), which

uses investment as a proxy variable for unobserved productivity. This requires a first-stage

regression where we first compute “true” output as

ln ỹft = E[ln yft∣ lnxft, lnkft, ln vft, t, c(f)] = h(lnxft, lnkft, ln vft; θ
h
c(f)t).

Here θh
c(f)t

is a parametrization for a flexible function h that might vary over time and

between groups of firms. For any pair of revenue elasticities εR
vc(f)t

and εR
kc(f)t

, one can

then compute

z̃ft = ln ỹft − ε
R
vc(f)t ⋅ ln vft − ε

R
kc(f)t ⋅ lnkft,

estimate the flexible model

z̃ft = g(z̃ft−1; θg
c(f)t

) + ζ̃ft,

where θg
c(f)t

is a parametrization for a flexible function g, and form the following moment

conditions that identify the revenue elasticities:

E [ζft ⊗ (lnkft, ln vft−1)] = 0.

31 Suppose that revenue is given by y = p(q)q, where p(q) is the inverse demand curve. Quantity
elasticities and revenue elasticities are then linked according to

εRv =(p
′(q)q
p(q) + 1) ⋅ εv εRk =(p

′(q)q
p(q) + 1) ⋅ εk,

where 1/µ = (p
′(q)q
p(q) + 1). Moreover, firms will demand variable inputs until εRv = sv. Assuming constant

returns to scale implies that εv = εRv /(εRv + εRk ), as wanted.

40



This approach requires the choices of variable inputs to be correlated over time, which we

view as a reasonable requirement.

We implement this approach using data from Compustat. Appendix F describes our

sample selection and definitions. We parametrize the functions h and g using quadratic

polynomials and conduct our estimation over 10-year rolling windows. More importantly,

and in line with the emphasis in our model that large and growing firms might operate

different technologies and have different output elasticities, we group firms by quintiles

of sales in each industry. Thus, our estimation provides output elasticities that vary

over time, by industry, and by quintiles of firm size in each industry. This represents a

significant deviation from previous papers which assume that all firms in a given industry

share a common bias of technology.
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Figure 7: Output elasticity with respect to variable inputs. The left panel presents es-
timates obtained for all Compustat firms. The right panel presents estimates obtained for Compustat
firms in manufacturing.

Figure 7 summarizes our findings for all Compustat firms and for manufacturing. In

the 60s and 70s, firms had similar variable input elasticities. However, from there on, we

estimate a pronounced decline in the variable input elasticity that concentrates among

the firms in the top quintiles of the sales distribution. This clockwise rotation is precisely

what our model predicts and coincides with the motivating evidence discussed in the

introduction and which pointed to the uneven adoption of capital-intensive technologies

by large firms. Appendix F provides alternative estimates assuming that: i. h and g are

given by cubic polynomials; ii. there are no ex-post shocks ε (so that no proxy variables
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are needed and we can treat yft as true revenue); or iii. assuming that zft follows a linear

Markov process, so that we can conduct the estimation using a dynamic panel approach.

All these sets of alternative assumptions deliver similar results.

We recognize that estimating markups at the firm level relies on strong assumptions.

Moreover, we only conduct this exercise for firms in Compustat which are not a repre-

sentative sample of the U.S. economy. Our estimates must be interpreted with the same

caution required to approach previous empirical estimates of markups relying on these

data and on similar methods.

3.2 Markups and comparison to previous papers

Figure 8 plots the implied time series for markups using our estimates of output elasticities

described in the previous section. The black line provides the aggregate markup, which we

compute as a sales-weighted harmonic mean of firm-level markups. As discussed above,

this is the relevant notion of an aggregate markup for the behavior of the aggregate labor

share in an industry or the economy, as well as for welfare (Edmond, Midrigan and Xu,

2018; Baqaee and Farhi, 2020b). Our estimates for markups suggest that they have been

quite stable over time, fluctuating around 1.2.

For comparison, the red line in the figure plots the aggregate markup that would result

if we grouped firms by industry only and assumed that all firms in the same industry

operated technologies with the same capital intensity. This series reveals a mild secular

increase in the aggregate markup from 1.25 in 1960 and 1.2 in 1980 to 1.3 in recent years,

which is broadly in agreement with the harmonic mean (or cost weighted) estimates in

Edmond, Midrigan and Xu (2018). Finally, the dashed red line reports estimates of an

arithmetic mean of sales-weighted markups obtained under the assumption that all firms

in a given industry operate technologies with the same capital intensity. These estimates

are in line with those reported by De Loecker, Eeckhout and Unger (2020), but as we will

see, are not relevant for understanding the contribution of markups to the decline in the

labor share.32

32Appendix F shows that the arithmetic mean of sales-weighted markups computed under the assump-
tion that all firms in an industry operate the same technology will spuriously increase when some firms
adopt technologies with different capital intensities. The harmonic mean does not suffer from this me-
chanical bias, providing an additional reason for looking at the harmonic mean rather than the arithmetic
sales-weighted mean of firm markups, especially if one believes that firms are increasingly diverging in
their use of technology, as is the case in the data.
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Figure 8: Evolution of markups. The figure presents the aggregate markup estimated for firms
in Compustat. The black line provides our baseline estimates. The red line provides estimates obatined
under the assumption of common revenue elasticities across firms in the same industry. The red dotted
line provides a version of the later estimates where the aggregate markup is computed as the arithmetic
sales weighted mean of firm-level markups.

3.3 Contribution to the decline in the labor share

As discussed above, the labor share in an industry at time t can be written as

s`t ∶=
ε`t
µt
,

where ε`t denotes the share of labor in total industry costs, and µt is the industry markup,

defined as a sales-weighted harmonic mean of firms’ markups:

1

µt
∶=∑

f

ωft ⋅
1

µft
.

The effects of technology, changes in factor prices, and substitution across firms with

different factor intensities is captured by the cost share of labor in the industry, ε`t.

In what follows, we investigate the contribution of changes in markups and reallocation

across firms with different markups to the labor share by looking at the percent change
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over time in the inverse of the aggregate markup 1/µt. We focus on the period from

1980 to 2012, which matches the period studied in our model, and provide a number of

extensions and robustness checks in Appendix F.

Figure 9 plots the cumulative percent change in 1/µt between 1960 and each year ag-

gregated across all industries. The figure presents our results separately for manufacturing

firms and for non-manufacturing. Furthermore, following the exercises in Section 2.4, we

decompose the contribution of markups into within-firm changes and allocative changes,

which capture the contribution of reallocation towards firms with higher markups over

time.33 In line with what one would expect from an increase in competition since 1980,

the reallocation component generates a negative contribution to the labor share, while

within firm changes in markups generate a positive contribution.
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Figure 9: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. The left panel provides the decomposition for manufacturing firms in
Compustat. The right panel provides the decomposition for Compustat firms in other economic sectors.

The patterns in Figure 9 suggest that the reallocation towards high-markup firms

played a minor role in explaining the decline of the manufacturing labor share. In this

sector, the reallocation component accounts for a decline of the labor share of 7% between

1980 and 2012—a quarter of the observed decline. These estimates provide an upper

bound on the contribution of rising competition to the decline in the labor share of the

33In particular, we compute the within-firm contribution to the percent change in markups in each
year as −∑f ωf∆ lnµf and the reallocation component as − lnµt +∑f ωf∆ lnµf . We then compute the
cumulative contribution of within firm changes and the reallocation component over time.
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sector, since we would expect the reallocation to higher markup firms induced by rising

competition to be accompanied by a decrease in firm markups. Indeed, once we factor in

the observed changes in firm markups, we find that the total contribution from markups

to the labor share in manufacturing has been essentially zero.

Outside of manufacturing, we find that the reallocation component explained up to

6% of the decline in the labor share since 1980—about one half of the observed decline.

In these sectors, the within component has been much weaker and close to zero. As

a whole, the estimates support the idea that in these sectors, rising competition might

have reduced the labor share via allocative changes towards high markup firms without

bringing a similar offsetting reduction in firm markups.

As a whole, we view this exercise as supporting the quantitative conclusions derived in

our model-based decomposition. In particular, the estimates here point to a crucial role

for technology in the form of increased capital–labor substitution in explaining the decline

in the labor share in manufacturing. Although more noisy, the estimates also suggest that

rising competition and allocative changes might explain up to one half of the decline in

the labor share outside of manufacturing.

This decomposition also highlights the importance of accounting for differences in tech-

nology across firms. If we counterfactually assumed that output elasticities are common

to all firms in a given industry, as is commonly done in the literature, we would estimate

a larger negative contribution of markups to the labor share, especially in manufacturing.

Accounting for differences in technology modifies these conclusions and shows that previ-

ous estimates confound differences in the factor intensity of technology across firms in a

given industry with differences in markups.34

34 An alternative approach to estimating markups assumes constant returns to scale (as we do) but
tries to directly measure the user cost of capital as

R = r + δ − πk,

where r is a required rate of return inclusive of an industry-specific risk premium, δ is the depreciation
rate, and πk is the expected change over time in capital prices. One can then compute markups as
revenue divided by total cost (= V +RK). The user-cost formula, which goes back to Hall and Jorgenson
(1967) requires common and frictionless capital markets and assumes no adjustment costs for capital. In
other words, this formula assumes that at all points in time, the marginal product of capital is equalized
across all firms in a given industry. This strikes us as restrictive when thinking about firms undergoing a
costly automation process. Instead, the approach used above makes no assumption about the marginal
product of capital across firms, or the importance of adjustment costs. In any case, Baqaee and Farhi
(2020b) report that, when using the user-cost formula above, the contribution of the between component
to the decline of the labor share during 1985–2015 is 5%, about half of the observed decline.
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4 Concluding remarks

This paper starts from the observation that the adoption of modern automation technolo-

gies concentrates at large firms. Our main point is that, once we account for this vast

heterogeneity in technology adoption, one can make sense of the dynamics of the labor

share decline across firms both qualitatively and quantitatively. Moreover, accounting

for these differences in technology adoption leads to different conclusions regarding the

relative contribution of markups vs. technology to the decline in the labor share across

industries.

We made this point in three related exercises:

1. First, we developed a model of firm dynamics with costly automation decisions to

study the dynamics of labor shares, market shares, and capital–labor substitution

across firms and industries. We first show that a special case of our model with a

simple demand side—a standard CES aggregator that implies constant markups—

produces firm-level labor share dynamics in response to falling capital prices that

are qualitatively and quantitatively in line with the observed firm-level data in the

U.S. manufacturing sector. In particular, we find that the model reproduces the

striking fact that while the sectoral labor share declined drastically, the labor share

of the median firm increased slightly. The model also explains a range of other

related observations, ranging from specific labor share decompositions proposed in

the literature to the observed increases in concentration and productivity dispersion.

2. Second, we extended our model to allow for a more general demand side—a log-

concave demand system that implies markups which are increasing in firm size and

productivity—, which allows us to account for the effects of rising competition and

the ensuing reallocation towards larger high-markup firms. We used this model to

quantitatively decompose the fall in the labor share and the rise in sales concen-

tration into a component driven by lower capital prices and a component driven

by rising competition. We find that the main drivers of the decline in the labor

share vary by sector. In manufacturing, capital–labor substitution driven by falling

capital prices accounts for the majority of the sectoral labor share decline. Instead,

we find that the rise in competition is more important in other sectors, in particular

in retail, where it accounts for up to 60% of the falling labor share.

3. Third, we empirically estimated the contribution of a more general form of real-

location to high-markup firms, which are not necessarily large in the data. This
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extra flexibility comes at the expense of requiring firm-level estimates of markups

and output elasticities. Using standard techniques to estimate production functions

but allowing for technology to vary across firms of different size, we estimate that

the variable input elasticity of large firms has declined over time. While this finding

is also in line with the costly automation mechanism at the core of our paper, the

main implication here is that accounting for technological heterogeneity substan-

tially weakens the rise in the aggregate markup. This exercise largely confirms our

model-based findings: reallocation to high-markup firms can explain only a small

fraction of the labor share decline in manufacturing, while playing a significant role

in other sectors.

Our paper motivates several avenues for future research. On the empirical front, we

need more direct evidence on the causes and consequences of the heterogeneous adoption

of modern capital-intensive technologies. The new technology modules in the US Census

Annual Business Survey provide a promising tool for studying these questions. Moreover,

our model points to the importance of developing estimates for markups and production

function that can account in a flexible way for heterogeneity in technology, automation,

and factor intensity across firms.

On the theory side, we need more work to understand the root causes of rising competi-

tion as well as more flexible quantitative models to account for more general specifications

of markups and demand. Although the non-CES demand systems used here are gaining

traction in macroeconomics, they only allow markups and passthroughs to be functions

of firm size. Finally, in our work all firms are ex-ante equal and have the same efficiency

at using capital. However, it would be interesting to explore the implications of allowing

for permanent differences in capital efficiency in firm dynamics models, and the response

of the economy to lower capital prices.
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A Proofs for the CES-demand model

A.1 Lemmas and propositions in the main text

This section provides proofs for Lemma 1 and Propositions 1–3 in the main text.

Proof of Lemma 1. We first prove that optimal firm choices are given by α′ =

max{α̂t(z), α}. Consider a firm that sets α′ above α at time t. The first-order condition

pinning down this choice is given by

ca ⋅ yt =
1

1 + r
E
⎡
⎢
⎢
⎢
⎢
⎣

∂πt+1(α′, zt+1)

∂α′
+ ca ⋅ yt+1

RRRRRRRRRRR

zt

⎤
⎥
⎥
⎥
⎥
⎦

.

We can rewrite this as

ca ⋅ ((1 + r)yt − yt+1) = E
⎡
⎢
⎢
⎢
⎢
⎣

σ−σ(σ − 1)σ−1 ⋅ yt+1 ⋅ z
σ−1
t+1 ⋅

∂c̃t+1(α′)1−σ

∂α′

RRRRRRRRRRR

zt

⎤
⎥
⎥
⎥
⎥
⎦

.

By assumption, the left hand side is a positive constant. Moreover, the right-hand side

is increasing in zt and decreasing in α′. It follows that the first-order condition implicitly

defines the optimal choice of α′ as an increasing function of zt, α̂t(z). The restriction that

α′ ≥ α then implies that α′ = max{α̂t(z), α} as wanted.

We now turn to the limiting properties of α̂t(z). Since z follows an AR1 in logs, given

ρz > 0 it holds that limzt→0 E [zσ−1
t+1 ] = 0. Thus, the period t + 1 benefit of automation

converges to zero as zt converges to zero. For any fixed cost ca > 0, automating a positive

measure of tasks ∆α > 0 in period t cannot be optimal, as doing so in t + 1 would reduce

the present discounted value of automation costs by a discrete amount: cayt+1∆α
1+r < cayt∆α,

which holds given the assumption that aggregate output yt grows at a rate below r.

Likewise, since limzt→∞E [zσ−1
t+1 ] = ∞, for any α < α∗t+1 the marginal automation benefit

exceeds the (finite) marginal automation cost for large enough zt.

Proof of Proposition 1. Suppose that qt(x) = q(x). Let’s consider an allocation in

which α = α∗ for all firms. Incumbent firms set α′ = max{α̂t(z), α}. Because α̂t(z) ≤ α∗,
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incumbents keep α′ = α∗. Finally, entrants start with α = α0t = α∗, which shows that this

allocation is a stationary equilibrium.

Note: because of the fixed cost structure, the economy admits multiple stationary

equilibria. In particular, an allocation with all firms having a common automation level

α ∈ [α∗,1] also corresponds to an equilibrium. However, if we start from an allocation

with α ≤ α∗ for all firms, the economy will converge to the stationary equilibrium with

α = α∗ for all firms.

Proof of Proposition 2. To account for a proportional increase in q(x), let’s write

q(x) = q ⋅ q0(x). Consider a steady state, where α = α∗ for all firms. We are interested in

the comparative statics of the stationary equilibrium with aggregate equilibrium objects

(w, y,α∗) as q changes by d ln q.

A firm’s cost function can be written as

c(z;w, q,α∗) =
1

z
⋅ c̃(w, q,α∗),

where

c̃(w, q,α∗) = (Ψk(α
∗) ⋅ qη−1 +Ψ`(α

∗) ⋅w1−η)
1

1−η

is the unit cost function of a firm with unitary productivity.

We claim that c̃ is unchanged across steady states. To see this, observe that if the

claim is true, then firm profits are proportional to y: π(z; y) ∝ zσ−1 ⋅ y. Since fixed costs

are also scaled by y, the value function is linear in y, and across steady states entry

and exit decisions as a function of z are unchanged. Consequently, the distribution of

firm productivities with pdf f(z) does not change across steady states. We now turn

to the ideal-price index condition in equation (3), which can be written in a stationary

equilibrium as

∫
z
µ1−σ ⋅ zσ−1 ⋅ c̃(w, q,α∗)1−σ ⋅ f(z) ⋅ dz = 1,

and implies that the unit cost c̃(w, q,α∗) is constant, verifying our claim.

An application of Shephard’s lemma implies that

d ln c̃ = ε` ⋅ d lnw − εk ⋅ d ln q.

The envelope theorem ensures that the effect of changes in α∗ on c̃ are second order and
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can be ignored. Because d ln c̃ = 0, we can solve for the change in wages as

d lnw =
εk
ε`
⋅ d ln q =

1 − ε`
ε`

⋅ d ln q > 0.

We now turn to the behavior of cost shares. Along the stationary equilibrium, all

firms have the same labor cost share, which is given by

ε` =
Ψ`(α∗) ⋅w1−η

Ψk(α∗) ⋅ qη−1 +Ψ`(α∗) ⋅w1−η
.

This common cost share for labor will vary with prices and α∗. Equation (5) implies that

the change in the optimal threshold α∗ satisfies

d lnα∗ =
1

∂ lnψ`(α∗)/(q(α∗) ⋅ ψk(α∗))/∂ lnα
(d ln q + d lnw).

Using this expression for d lnα∗ and the definition of ηLR, we can compute the change

in the cost share of labor as

d ln ε` = (1 − ε`)d ln
ε`
εk

= (1 − ε`)(1 − η)(d lnw + d ln q) + (1 − ε`)
∂ ln Ψ`(α∗)/Ψk(α∗)

∂ lnα
d lnα∗

= (1 − ε`)(1 − η)(d lnw + d ln q) + (1 − ε`)
∂ ln Ψ`(α∗)/Ψk(α∗)/∂ lnα

∂ lnψ`(α∗)/(q(α∗) ⋅ ψk(α∗))/∂ lnα
(d ln q + d lnw)

= (1 − ε`)(1 − η)(d lnw + d ln q) + (1 − ε`)(η − ηLR)(d ln q + d lnw)

= (1 − ε`)(1 − ηLR)(d ln q + d lnw),

which using the formula above for the change in wages can be written as

d ln ε` =
1 − ε`
ε`

(1 − ηLR)d ln q.

Finally, for a firm that is small enough such that it does not automate along the

transition, the capital–labor elasticity is equal to the task-level substitution elasticity η.

For this firm, we have

d ln ε`(θ) =(1 − ε`(θ))d ln
ε`(θ)

εk(θ)
= (1 − ε`)(1 − η)(d lnw + d ln q),
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which using the formula above for the change in wages can be written as

d ln ε`(θ) =
1 − ε`(θ)

ε`(θ)
(1 − η)d ln q.

Proof of Proposition 3. The reasoning is analogous to 2. To account for a proportional

increase in q(x) for x > α∗, let’s write q(x) = q ⋅q0(x) for x > α∗ and q(x) = q0(x) otherwise.

We are interested in the comparative statics of the stationary equilibrium with aggregate

equilibrium objects (w, y,α∗) as q changes from 1 by d ln q.

First, recall that c̃(w, q,α∗) is the minimum cost of production given w and q. An

increase in q thus reduces c̃ once we account for changes in α∗, which implies that w

increases. Thus, we have d lnw > 0. Note that the first-order approximation used in the

proof of Proposition 2 yields d lnw = 0. This is because the increase in wages is second

order but positive nonetheless.

We now turn to the behavior of cost shares. Along the stationary equilibrium, all

firms have the same labor cost share, which is given by

ε` =
Ψ`(α∗) ⋅w1−η

Ψk(α∗) +Ψ`(α∗) ⋅w1−η
.

This common cost share for labor will vary with prices and α∗. Equation (5) implies that

the change in the optimal threshold α∗ satisfies

d lnα∗ =
1

∂ lnψ`(α∗)/(q(α∗) ⋅ ψk(α∗))/∂ lnα
(d ln q + d lnw).

Using this expression for d lnα∗ and the definition of ηLR, we can compute the change

in the cost share of labor as

d ln ε` = (1 − ε`)d ln
ε`
εk

= (1 − ε`)(1 − η)d lnw + (1 − ε`)
∂ ln Ψ`(α∗)/Ψk(α∗)

∂ lnα
d lnα∗

= (1 − ε`)(1 − η)d lnw + (1 − ε`)
∂ ln Ψ`(α∗)/Ψk(α∗)/∂ lnα

∂ lnψ`(α∗)/(q(α∗) ⋅ ψk(α∗))/∂ lnα
(d ln q + d lnw)

= (1 − ε`)(1 − η)d lnw + (1 − ε`)(η − ηLR)(d ln q + d lnw)

= −(1 − ε`)(ηLR − η)d ln q + (1 − ε`)(1 − ηLR)d lnw.

Finally, for a firm that is small enough such that it does not automate along the

54



transition, the capital–labor elasticity is equal to the task-level substitution elasticity η.

For this firm, we have the same expression derived above:

d ln ε`(θ) = (1 − ε`(θ))(1 − η)(d lnw + d ln q).

A.2 Additional results and formulas

This section derives the formula for the long-run elasticity of substitution provided in the

main text. It also derives the approximation for the productivity gains from automation

given in footnote 18.

Long-run K-L elasticity of substitution ηLR: As usual, we define this elasticity as

the partial equilibrium response of the capital–labor ratio to a change in the relative price

w̃ ≡ w
1/q ; here taking into account the change in α∗. This long-run elasticity of substitution

is therefore defined implicitly by the identity

d ln
ε`
εk

≡ (1 − ηLR) ⋅ d ln w̃.

We have that

d ln
ε`
εk

= d ln
Ψ`(α) ⋅w1−η

Ψk(α) ⋅ qη−1
=
∂ ln Ψ`(α)/Ψk(α)

∂ lnα
⋅
∂ lnα∗

∂ ln w̃
⋅ d ln w̃ + (1 − η) ⋅ d ln w̃.(8)

Equation (5) implies that

∂ lnα∗

∂ ln w̃
= (

∂ lnψ`(α)/(q(α) ⋅ ψk(α))

∂ lnα
)

−1

.

Plugging this in equation (8) we obtain

d ln
ε`
εk

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − (η +
∂ ln Ψk(α)/Ψ`(α)

∂ lnα
/
∂ lnψ`(α)/(q(α) ⋅ ψk(α))

∂ lnα
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ηLR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d ln w̃

which gives the formula for ηLR provided in the main text.

Productivity gains from automation: Consider an increase in the automation

threshold of dα > 0 for a firm with α < α∗. The contribution of this technology to a firm’s
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TFP is then given by

d ln TFPα ∶= −d ln c(θ,w) = −
1

1 − η
[ε`(α,w)

Ψ′
k(α)

Ψk(α)
+ ε`(α,w)

Ψ′
`(α)

Ψ`(α)
]dα.

We can rewrite this expression as follows:

d ln TFPα = −
1

1 − η
[ε`(α,w)

(q(α) ⋅ ψk(α))η−1

Ψk(α)
− ε`(α,w)

ψ`(α)η−1

Ψ`(α)
] ⋅ dα

= −
1

1 − η
[
(q(α) ⋅ ψk(α))η−1

c̃1−η
−
ψ`(α)η−1w1−η

c̃1−η
] ⋅ dα ≥ 0.

Log-linearizing the function 1
1−ηx

1−η, we can approximate the productivity gains when

α → α∗ as

d ln TFPα ≈ [ln(
w

ψ`(α)
) − ln(

1

q(α) ⋅ ψk(α)
)] ⋅

(w/ψ`(α))1−η

c̃1−η
⋅ dα ≥ 0,

which yields the formula in the main text.

B Proofs for the model with variable markups

B.1 Properties of the Klenow–Willis specification

As a convenient functional form for the Kimball (1995) aggregator H(⋅) we use the spec-

ification from Klenow and Willis (2016), defined as

H(ȳ) ≡ 1 + (σ − 1) ⋅ exp(
1

ν
) ⋅ ν

σ
ν
−1 ⋅ [Γ(

σ

ν
,

1

ν
) − Γ(

σ

ν
,
ȳ
ν
σ

ν
)] ,

where ȳ =
y(θ)
λ⋅y is the relative quantity of a variety, and Γ(⋅, ⋅) is the upper incomplete

Gamma function,

Γ(s, x) ≡ ∫
∞

x
ts−1 ⋅ exp(−t)dt.
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This specification gives rise to the following (relative) demand function D−1 =H ′:

D(p̄) = (1 − ν ⋅ ln(p̄ ⋅
σ

σ − 1
))

σ
ν

,

D′(p̄) =
σ

p̄
⋅ (1 − ν ⋅ ln(p̄ ⋅

σ

σ − 1
))

σ
ν
−1

,

where p̄ = p(θ)
ρ is the relative price of a variety. Thus, the price elasticity of demand is

−
D′(p̄) ⋅ p̄

D(p̄)
=

σ

1 − ν ⋅ ln (p̄ ⋅ σ
σ−1

)
= σ ⋅D(p̄)−

ν
σ ,(9)

which reduces to the constant σ if ν = 0 (the benchmark case of a CES aggregator).

In general, equation (9) shows that under this parametrization, the supra-elasticity of

demand is equal to the constant − νσ .

Static profit maximization: As usual, static optimal pricing relates the demand elas-

ticity to the optimal markup µ = p/c as

µ

µ − 1
= −

D′(p̄) ⋅ p̄

D(p̄)
.

Since p̄ = p
ρ =

µ⋅c
ρ , we can re-write this equation using (6) such that it implicitly defines

the optimal markup µ∗ as a function of the relative cost ĉ = c/ρ,

σ ⋅ (1 −
1

µ∗(ĉ)
) = 1 − ν ⋅ ln(

σ

σ − 1
⋅ ĉ ⋅ µ⋆(ĉ)) .

Since the left-hand-side is an increasing function of µ⋆(ĉ) and the right-hand-side a de-

creasing function of ĉ ⋅µ⋆(ĉ), the optimal markup is implicitly defined as a strictly decreas-

ing function of (relative) cost. Moreover, setting µ∗ = 1, we can solve for the (relative)

choke price as

p̄choke =
σ − 1

σ
⋅ exp(

1

ν
) ,

implying that firms with cost c < p̄choke ⋅ ρ do not produce.

Marshall’s second laws: Equation (6) shows that the demand elasticity is increasing in

the relative price and greater than 1 (Marshall’s weak second law), imposing the restriction

that σ > 1 and ν > 0. To see that the strong law holds as well, write the logarithm of
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marginal revenue as

ln(p̄ +
D(p̄)

D′(p̄)
) = ln p̄ + ln(1 +

D(p̄)

D′(p̄) ⋅ p̄
)

= ln p̄ + ln
⎛

⎝

σ + ν ⋅ ln (p̄) + ν ⋅ ln ( σ
σ−1

) − 1

σ

⎞

⎠
,

which is a concave function of ln p̄ as desired.

B.2 Proofs and derivations

Before turning to the proofs of the propositions in the text, we derive the equations used

in the characterization of the equilibrium. We will ignore time subscripts as long as it

causes no confusion.

The demand for each variety is obtained by solving the following cost minimization

problem:

min
y(θ)
∫
θ
p(θ) ⋅ y(θ) ⋅m(θ) ⋅ dθ s.t: ∫

θ
λ ⋅H (

y(θ)

λ ⋅ y
)m(θ)dθ = 1.

Let ρ ⋅ y denote the Lagrange multiplier on the constraint. The first-order condition

for the choice of y(θ) is then

p(θ) = ρ ⋅H ′ (
y(θ)

λ ⋅ y
) ⇒ y(θ) = y ⋅ λ ⋅D (

p(θ)

ρ
) .

Moreover, because the price of the final good is normalized to 1, we must have

y = ∫
θ
p(θ) ⋅ y(θ) ⋅m(θ) ⋅ dθ ⇒ 1 = ∫

θ
λ ⋅ p(θ) ⋅D (

p(θ)

ρ
) ⋅m(θ) ⋅ dθ,

which is the ideal-price index condition given in the text.

Finally, plugging the demand for each variety in the constraint, we obtain

∫
θ
λ ⋅H (D (

p(θ)

ρ
))m(θ)dθ = 1,

which pins down the competitors’ price index ρ.

The labor market clearing condition follows from an application of Roy’s lemma, which

implies that cw(θ,w) yields the demand of labor per unit of goods sold.
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Proof of Proposition 4. Prices are given by

p(c) = arg max
p

y ⋅ λ ⋅D (
p

ρ
) ⋅ (p − c).

This problem has increasing differences in p and c, which implies that p(c) is increasing

in c.

Moreover, the first order condition for this problem is

−
1

ρ
D′ (

p

ρ
) ⋅ (p − c) =D (

p

ρ
) ⇒

µ(c)

µ(c) − 1
= −

p(c)

ρ

D′ (
p(c)
ρ )

D (
p(c)
ρ )

.

Marshall’s weak second law combined with the fact that p(c) increases in c implies that

the right-hand side of the above equation increases in c. The left-hand side is a decreasing

function of µ(c), which therefore implies that µ(c) is decreasing in c as wanted.

We can rewrite the first-order condition for prices as

p(c)

ρ
+
D(p(c)/ρ)

D′(p(c)/ρ)
=
c

ρ
.

Differentiating this expression yields

∂ lnp(c)

∂ ln c
= 1/n(

p(c)

ρ
) ,

where

n(x) =
∂ ln (x +D(x)/D′(x))

∂ lnx

is a decreasing function according to Marshall’s strong second law. It follows that lnp(c)

is a convex function in ln c as wanted. Moreover, lnµ(c) = lnp(c) − ln c will inherit this

convexity.

Turning to sales, we have that s(c) can be written as

s(c) = h(p(c)),

where h(x) = xD(x) is a log-concave and decreasing function of x (from Marshall’s weak

second law). Thus, s(c) is the composition of a log-concave and decreasing function

(h(x)) with a log-convex and increasing function p(c), which results in a log-concave and
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decreasing function.

Proof of Proposition 5. In the next proofs, it will be convenient to define

c̄ ∶=
c̃

ρ
p̄ ∶=

p(c)

ρ
,

where recall that c̃ is the unit cost for a firm with unitary productivity.

We can rewrite the firm problem as

p̄(
1

z
c̄) = arg max

p̄
D(p̄) ⋅ (p̄ −

1

z
c̄) .

Proposition 4 has three implications.

First, we can write prices as p(z) = ρ ⋅ p̄ (1
z c̄), where p̄(.) is an increasing function.

Second, the resulting markup µ(z) is given by

µ(z) = µ̄(
1

z
c̄) ,

where the function µ̄(.) is decreasing and log-convex.

Finally, sales are given by

s(z) = s̄(
1

z
c̄) = λ ⋅ ρ ⋅ p̄(

1

z
c̄) ⋅D (p̄(

1

z
c̄)) ,

where s̄(.) is a decreasing and log-concave function.

The implicit definition of the competitors’ price index implies

∫
z
λ ⋅H (D (p̄(

1

z
c̄))) f(z)dz = 1.

Thus, as λ increases, c̄ must increase. This implies that the effect of an increase in λ on

prices, markups, and sales shares is isomorphic to that of an increase in c̄.

We now turn to characterizing the effects of an increase in c̄.

First, we have that for a given z, µ(z) = µ̄ (1
z c̄) will be decreasing in c̄, as wanted.

Second, because the function µ̄ is log-convex, we have that, for z > z′,

lnµ(z) − lnµ(z′) = ln µ̄(
1

z
c̄) − ln µ̄(

1

z′
c̄)

is decreasing in c̄.
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Third, because the function s̄ is log-concave, we have that, for z > z′,

ln s(z) − ln s(z′) = ln s̄(
1

z
c̄) − ln s̄(

1

z′
c̄)

is increasing in c̄. Note that there is a common λ term multiplying both s(z) and s(z′)

which cancels when computing the difference ln s(z) − ln s(z′). Thus, for relative shares,

the effect of λ continues to be isomorphic to that of an increase in c̄.

Proof of Proposition 6. As before, we investigate the implications of an increase in

c̄. We can write the aggregate markup as

1

µ
= ∫

z

1

µ̄ (1
z c̄)

⋅ s̄(
1

z
c̄) ⋅ f(z) ⋅ dz/∫

z
s̄(

1

z
c̄) ⋅ f(z) ⋅ dz.

With the change of variable x = 1
z c̄, we can rewrite this as

1

µ
= ∫

x

1

µ̄ (x)
⋅ g(x, c̄) ⋅ dx,

where g(x, c̄) is a density function given by

g(x, c̄) = s̄ (x) ⋅ f(c̄/x) ⋅ dx/∫
x
s̄ (x) ⋅ f(c̄/x) ⋅ dx.

First, suppose that f(z) is log-concave. This implies that

ln s̄ (x) + ln f(c̄/x)

has increasing differences in x and c̄. This is equivalent to the following monotone likeli-

hood ratio property (MLRP):

g(x, c̄)

g(x′, c̄)
increasing in c̄ for x > x′.

The MLRP property implies that an increase in c̄ generates a shift up (in the first-order

stochastic dominance sense) in g(x, c̄). Because the function 1
µ̄(x) is increasing in x, the

aggregate markup µ is decreasing in c̄ as wanted.

Second, suppose that f(z) is log-convex. This implies that

ln s̄ (x) + ln f(c̄/x)

61



has decreasing differences in x and c̄. This is equivalent to the following monotone likeli-

hood ratio property (MLRP):

g(x, c̄)

g(x′, c̄)
decreasing in c̄ for x > x′.

The MLRP property implies that an increase in c̄ generates a shift down (in the first-order

stochastic dominance sense) in g(x, c̄). Because the function 1
µ̄(x) is increasing in x, the

aggregate markup µ is increasing in c̄ as wanted.

Finally, suppose that f(z) is log-linear. This implies that

ln s̄ (x) + ln f(c̄/x)

is a linear function in c̄. Equivalently,

g(x, c̄)

g(x′, c̄)
independent of c̄.

Thus, the integral defining µ is independent of c̄ as wanted.

C Robustness of model-based results

In this section, we discuss the robustness of our quantitative findings in Section 1 to the

timing of automation decisions, as well as to different values for the short- and long-run

capital–labor elasticity.

C.1 Timing of automation decisions

In the main text, we assume that firms invest in the adoption of new capital technologies

(raising their α) in period t before the realization of their productivity in period t + 1,

when the new technology first becomes operative. We have experimented with other

timing assumptions and found that our results are robust on this dimension. Specifically,

column (3) in Table 7 shows the calibration for an alternative model version where firms

decide in the beginning of period t+1, after their new productivity draw has materialized,

whether to pay the operating fixed cost and whether to adopt new capital technologies,

which are immediately operative. Column (3) in Table 8 shows the quantitative results

over the transition period. We find that the results largely agree with our findings from

the benchmark model, which are re-produced in column (2). As expected, since firms
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with a high z (i.e., large firms) can raise their α immediately, the cross-dynamics term is

somewhat larger in absolute value, going from -0.143 to -0.157. The inferred automation

fixed cost ca falls from 0.23 to 0.18, which reflects a lower option value of automation for

small firms.

Table 7: Model robustness: Steady state calibration

Data Model

Bench-
mark

Altern.
timing

Lower η ηLR < 1

(1) (2) (3) (4) (5)

I. Parameters
ln q0 Inverse capital price −5.35 −5.36 −5.33 3.82
σ Demand elasticity 11.0 11.0 11.0 11.0
σz Std. dev. of ln z innovations 0.094 0.094 0.094 0.094
cf Minimum fixed cost (×10−6) 6.0 9.0 6.0 6.0
ξ Dispersion fixed cost 0.330 0.350 0.330 0.330
µe Entrant productivity 0.935 0.944 0.936 0.935
η Task substitution elasticity 0.40 0.40 0.20 0.40
γ Comparative advantage* 0.95 0.95 1.15 5.0*

II. Moments
Manufacturing labor share 60.1% 60.2% 60.1% 60.1% 60.1%
Aggregate markup 1.10 1.10 1.10 1.10 1.10
Top 4 firms’ sales share 40.0% 40.1% 40.1% 40.1% 40.1%
Entry (=exit) rate 0.062 0.063 0.063 0.063 0.063
Size of exiters 0.490 0.491 0.490 0.491 0.491
Size of entrants 0.600 0.598 0.600 0.602 0.598
Short-run K–L elasticity 0.40 0.40 0.20 0.40
Long-run K–L elasticity 1.35 1.35 1.35 0.90*

Notes: See Section 1 and Table 1 for the calibration of the benchmark model (corresponding to the manufacturing sector and
using a CES demand system). Column (3) differs from the benchmark model insofar as firms decide in the current period,
after current productivity is realized, whether to pay the fixed cost and whether (and how much) to automate, such that new
capital technologies are immediately productive. Column (4) differs from the benchmark insofar as the task-substitution
elasticity is lower (while, again, other parameters are re-calibrated to match the same data targets). Column (5) features a
different parameterization of the capital and labor productivity schedules, which allows for a lower long-run capital-labor
elasticity ηLR (the parameter γ refers to a different object and is not directly comparable to other model versions). ηLR is
not a constant in this exercise. Locally, at the initial steady state, it equals 0.90, and it falls only slightly to 0.88 over the
range considered in this exercise.

C.2 Short-run capital-labor elasticity

We argued in the main text that we view the calibrated short-run elasticity of η = 0.4

as an upper bound on the elasticity of substitution between tasks, since the firm-level

evidence in Oberfield and Raval (2014) refers to cross-sectional variation, which might

be interpreted as incorporating adjustments in task allocations within firms. Column (4)

in Table 7 describes an alternative calibration with η = 0.2. For this exercise, we hold

the long-run elasticity constant, which requires increasing the comparative advantage
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Table 8: Model robustness: Transitional dynamics

Model

Data Benchmark
Altern.

timing
Lower η ηLR < 1

(1) (2) (3) (4) (5)

I. Parameters and inferred aggregate shocks
d ln q . 1.40 1.40 1.39 3.80*
ca . 0.23 0.18 0.24 0.35

II. Targeted moments, 1982–2012
∆ aggregate labor share −0.178 −0.176 −0.181 −0.176 −0.174
∆ median labor share 0.030 0.026 0.031 0.029 0.016

III. Other moments, 1982–2012
∆ Top 4 firms’ sales share 0.060 0.043 0.045 0.029 0.222
∆ Top 20 firms’ sales share 0.052 0.070 0.074 0.049 0.207
∆ log productivity dispersion 0.050 0.057 0.058 0.059 0.015

IV. Melitz–Polanec decomposition from Autor et al. (2020)
∆ aggregate labor share −0.185 −0.176 −0.181 −0.176 −0.174
∆ unweighted mean −0.002 0.032 0.038 0.035 0.002
Exit −0.055 −0.003 −0.003 −0.003 −0.010
Entry 0.059 0.006 0.005 0.006 0.016
Covariance term −0.187 −0.212 −0.221 −0.215 −0.183

V. Covariance decomposition from Kehrig and Vincent (2020)
Market share dynamics 0.047 0 0 0 0
Labor share by size dynamics −0.043 −0.036 −0.027 −0.036 −0.041
Joint dynamics −0.232 −0.143 −0.157 −0.144 −0.140

Notes: See Section 1 and Table 2 for details on the benchmark model (corresponding to the manufacturing sector and using
a CES demand system). Column (3) differs from the benchmark model insofar as firms decide in the current period, after
current productivity is realized, whether to pay the fixed cost and whether (and how much) to automate, such that new
capital technologies are immediately productive. Column (4) differs from the benchmark insofar as the task-substitution
elasticity is lower. Column (5) features a different parameterization of the capital and labor productivity schedules, which
allows for a lower long-run capital-labor elasticity. The calibrated shock d ln q is not comparable to other model versions,
as it does not raise investment efficiency uniformly across all tasks (see details in text).

parameter γ from 1.35 − 0.4 = 0.95 to 1.35 − 0.2 = 1.15. Comparing columns (2) and (4)

in Table 8 reveals that the results virtually coincide, implying that our findings are not

sensitive to the value of η within a reasonable range.

C.3 Long-run capital-labor elasticity

In the main text, we studied the effects of a uniform decline in the price of capital goods.

This shock requires an above one long-run capital-labor elasticity (ηLR > 1) to match the

decline in the labor share observed in the data. Following Proposition 3, this appendix

shows that even if ηLR < 1, we can also generate a decline in the aggregate labor share

and an increase in the labor share of the typical median firm by introducing declines in

the price of capital at marginal tasks.
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Implementing this exercise requires using a different parametrization of the schedules

of capital and labor productivity, since the one used in the main text does not allow for

ηLR < 1.35 Specifically, we use the parametrization

ψk(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(xL − x)γ if x ≤ xL

0 if x > xL

ψ`(x) = x
γ,

where xL ∈ (0,1] denotes a cut-off such that all tasks in (xL,1] can only be performed by

labor, and γ denotes the comparative advantage parameter. Setting xL = 0.9 and γ = 5

generates a long-run elasticity that ranges between 0.88 and 0.90 along the transitional

dynamics studied in this exercise. Column (5) in Table 7 describes the full steady state

calibration.

With this parametrization, the aggregate labor share would increase in both the short

and long run in response to a uniform increase in q(x). Instead, we consider a task-specific

increase in q(x) of the following form:

1. From 1982, when the economy is in the initial steady state, until 1992, ln q(x)

increases linearly for all x ≥ α∗1982.

2. Over 1992-2002, ln q(x) increases linearly for all x ≥ α∗1992.

3. Over 2002-2012, ln q(x) increases linearly for all x ≥ α∗2002.

The particular formulation of the shock is not crucial; the main point is that we want to

engineer an increase in capital productivity at marginal tasks while limiting a reduction of

capital prices at infra-marginal tasks that are already performed by capital. This reduction

reduces the capital share at those tasks, and is the reason why a uniform decline in the

price of capital across all tasks requires ηLR > 1 to generate a decline in the aggregate

labor share.

Column (5) in Table 8 describes the transitional dynamics in this case. For some tasks,

we infer a change in log investment efficiency of up to 3.8, but one should keep in mind

that this does not map to the observed decline in the price of any broad category of capital

goods.36 The inferred fixed cost of automation needs to be around 50% higher than in

35The specification in the main text is the unique specification with the property that ηLR is a constant,
but it requires ηLR > 1. All other specifications, and by implication all specifications that allow for ηLR < 1,
are such that ηLR is not a constant.

36For x ∈ [0, α∗1982], q(x) does not change at all; for x ∈ [α∗1982, α∗1992], ln q(x) increases linearly by 1.27
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the benchmark to generate a slight increase in median and unweighted mean labor shares,

since the lack of an increase in capital productivity for tasks that are initially performed by

capital implies that the labor shares of non-automating firms increases by little. While the

labor share decompositions are comparable to the main exercise, productivity dispersion

and sales concentration (Panel III) react differently: Since capital productivity increases

primarily in marginal tasks, the productivity benefit of automation is smaller. Thus,

first, the rise in productivity dispersion amounts to merely a quarter to one third of the

effect generated in the benchmark exercise (which roughly matches the data). Second,

the fraction of automating firms is much smaller, such that only the top firms automate

at all. As a result, the difference between the top and the typical firm is much bigger,

and the rise in sales concentration is much stronger. We conclude from this exercise that,

even when the long-run elasticity of substitution is below 1, we can generate the observed

decline in the aggregate labor share and the rise in the labor share of the typical firm as

a response to a reduction of capital prices at marginal tasks.

D Calibration of the non-CES demand model for

other sectors

Table 9 summarizes the steady state calibration of the model with size-dependent markups

in the wholesale as well as the utilities & transportation sector. The calibration strategy

is identical to manufacturing and retail, which we describe in the main text. The log-

convexity of the z-distribution is rather mild in these two sectors (n only slightly below

1), more in line with manufacturing than with retail.

Table 10 shows the model-based decomposition exercise, where we follow the same

strategy as for manufacturing and retail. In wholesale as well as in utilities & transporta-

tion, the labor share decline is of the same magnitude as in retail, while the observed

increase in concentration is not as drastic. Consequently, the inferred decline in the

price of capital (d ln q) is of similar magnitude, while the inferred increase in competition

(d lnλ) is weaker than in retail. The inferred automation fixed costs (ca) are small, both

in absolute terms and relative to manufacturing and retail. Comparing the various model

versions, we find that the declining capital price caused 8.1pp or 70% of the sectoral labor

share decline in wholesale, and 5.2pp or 72% of the sectoral labor share decline in utilities

& transportation. For both sectors, the remainder is almost entirely due to the non-

from 1982 to 1992; for x ∈ [α∗1992, α∗2002], ln q(x) increases linearly by 2.53 from 1982 to 2002; and for
x ∈ [α∗2002,1], ln q(x) increases linearly by 3.8 from 1982 to 2012.
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Table 9: Steady state calibration of the non-CES demand model: Wholesale, Utilities
& Transportation

Parameter Moment Data Model

I. Wholesale: steady state parameters and moments (1982)
ln q0 Inverse capital price −5.97 Aggregate labor share 58.6% 58.6%
σ Demand elasticity 9.2 Aggregate markup 1.15 1.15
ν/σ Demand supra-elasticity 0.20 Median labor share ratio 1.169 1.130
ζ Weibull scale 0.098 Top 20 firms’ sales share 42.9% 42.9%
n Weibull shape 0.83 Top 4 firms’ sales share 22.3% 22.3%
cf Minimum fixed cost 6.5 ⋅10−8 Entry (=exit) rate 0.062 0.063
ξ Dispersion fixed cost 0.210 Size of exiters 0.490 0.485
µe Entrant productivity 0.888 Size of entrants 0.600 0.596

II. Utilities & Transportation: steady state parameters and moments (1992)
ln q0 Inverse capital price −5.38 Aggregate labor share 52.0% 52.0%
σ Demand elasticity 10.2 Aggregate markup 1.15 1.15
ν/σ Demand supra-elasticity 0.16 Median labor share ratio 1.169 1.133
ζ Weibull scale 0.143 Top 20 firms’ sales share 59.1% 56.1%
n Weibull shape 0.95 Top 4 firms’ sales share 30.4% 33.1%
cf Minimum fixed cost 7.0 ⋅10−9 Entry (=exit) rate 0.062 0.062
ξ Dispersion fixed cost 0.180 Size of exiters 0.490 0.488
µe Entrant productivity 0.888 Size of entrants 0.600 0.600

Notes: The aggregate labor shares correspond to the BLS Multifactor Productivity Tables estimate for the wholesale as
well as utilities & transportation sector. The ratio median-to-aggregate is from Kehrig and Vincent (2020), which refers to
manufacturing, since in these sectors the census data used, e.g., by Autor et al. (2020) does not allow to compute the labor
share of value added. The two concentration measures are from Autor et al. (2020) and correspond to these two sectors in
1982, respectively 1992. The model equivalents refer to the top 0.074% and top 0.369% of firms ranked by sales in wholesale
(since there are on average 5,420 firms per 4-digit wholesale industry). For utilities & transportation, the model equivalents
correspond to the top 0.100% and top 0.499% of firms ranked by sales (since there are on average 4,010 firms per 4-digit
industry in this sector). The data moments and calibration strategy on entry rates, size of exiters and of entrants, follow
the model with CES demand, see Table 1. In each of the two sectors, the eight parameters are jointly calibrated to match
the eight data moments.

linearity or interaction effect of the two shocks: rising competition increases automation

incentives for the top firms, and automation increases labor share differentials, magnifying

the effect of reallocation on the aggregate labor share decline. We conclude that while

for these two sectors, both shocks are important to account for the labor share decline,

the inferred q-shock by itself is relatively more important than in retail, and less than in

manufacturing.
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Table 10: Transitional dynamics and decomposition of the labor share using a non-CES
demand system: Wholesale, Utilities & Transportation

Model

Data Benchmark
Only

effects of
d ln q

Only
effects of

d lnλ
(1) (2) (3) (4)

A. Wholesale (1982–2012)
I. Parameters and inferred aggregate shocks

d ln q . 0.74 0.74 0
d lnλ . 0.27 0 0.27
ca . 0.05 0.05 0.05

II. Targeted moments, 1982–2012
∆ aggregate labor share −0.114 −0.115 −0.081 −0.001
∆ unweighted mean labor share 0.047 0.050 0.024 0.007
∆ Top 4 firms’ sales share 0.047 0.063 0.002 0.058
∆ Top 20 firms’ sales share 0.101 0.086 0.003 0.080

III. Other moments, 1982–2012
∆ log productivity dispersion . 0.026 0.014 0.000

IV. Markups, 1982–2012
∆ log aggregate markup . 0.003 0.001 0.001
Within firm change in markups . −0.023 −0.010 −0.018
Reallocation . 0.025 0.011 0.019

B. Utilities & Transportation (1992–2012)
I. Parameters and inferred aggregate shocks

d ln q . 0.40 0.40 0
d lnλ . 0.22 0 0.22
ca . 0.002 0.002 0.002

II. Targeted moments, 1992–2012
∆ aggregate labor share −0.073 −0.072 −0.052 0.000
∆ unweighted mean labor share 0.004 0.007 −0.002 0.003
∆ Top 4 firms’ sales share 0.046 0.045 0.000 0.044
∆ Top 20 firms’ sales share 0.047 0.049 −0.001 0.050

III. Other moments, 1992–2012
∆ log productivity dispersion . 0.015 0.007 0.000

IV. Markups, 1992–2012
∆ log aggregate markup . 0.000 0.000 0.000
Within firm change in markups . −0.011 −0.004 −0.010
Reallocation . 0.011 0.004 0.010

Notes: Column (2) reports the findings from our benchmark model, which calibrates a uniform decline in the capital price,
an increase in competition, as well as the automation fixed cost to replicate the change in the aggregate sectoral labor share
(BLS), the unweighted mean labor share change among surviving firms (Autor et al., 2020, Table 5), and the increase in
the top 4 as well as top 20 firms’ sales share (Autor et al., 2020, Table 1), for both sectors. Due to data availability, the
transition is over 1982–2012 for wholesale, resp. 1992–2012 for utilities & transportation. Column (3) shows results when
shutting down the competition shock, and column (4) when shutting down instead the price of capital shock. Panel IV
displays the log change in the aggregate markup, as well as a decomposition into within firm and reallocation components
as in Baqaee and Farhi (2020b).
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E Comparing estimated shocks to data

This section provides additional motivation for our focus on the 1982–2012 period and

benchmarks the inferred shocks and calibrated model parameters to the available data.

Historical behavior of payroll shares: As a starting point, Figure 10 provide data

on payroll shares by sector for 1947–1987 and 1987–2012 from the BEA industry accounts.

We split the data in these two periods due to changes in industry definitions introduced by

the BEA in 1987, as it switched from the Standard Industry Classification to the North

American Industry Classification System. We also focus on payroll shares, since labor

shares of value added (which also include non-wage compensation), are not available for

the earlier period. Figure 1 in the Introduction already provided the BLS data for labor

shares of value added for the later period.
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Figure 10: Payroll share in the U.S. for 1947–2016. The figure plots the payroll share of value
added for 1947–1987, both for some specific sectors and the economy as a whole. Data from the BEA
industry accounts.

As discussed in the main text, the figure shows that payroll shares were constant or

increasing up to 1982, and then started a sharp decline both in manufacturing, retail and

wholesale. This motivates our focus on the 1982–2012 period and supports our choice of

1982 as the steady state of the model.

Benchmarking the fixed cost of automating tasks: As discussed in the main text,

the fixed cost of automating tasks can be thought of as an investment in R&D required
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to design and integrate automation equipment or software. As such, these fixed costs

will contribute to rising R&D expenditures in the economy. The left panel in Figure 11

compares the inferred behavior of automation fixed costs to the available data on R&D

spending. In particular, the panel displays the time series of automation cost spending as

a share of output in the model, ∫ ca ⋅max{0, α̂t(z)−α} ⋅mt(θ)dθ, both for manufacturing

and for retail. For simplicity, we focus on the non-CES version of the model calibrated

in Section 2.4. As the price of capital declines from 1982 to 2012 and stays constant

thereafter, automation cost spending in manufacturing reaches a peak of roughly 0.7% of

output around 2005, and declines to zero eventually as the model economy converges to

the new steady state. In retail, automation cost spending is much lower, around 0.1% of

output in 2005.

The black line provides the behavior of R&D as a share of GDP for the entire US

economy. This share rose from a level of 1% before 1980 to a current level of 2.5%

of GDP. Because not all R&D expenditure is due to automation, we see this series as

an upper bound for automation cost spending. In line with this view, our calibration

implies that about 25% of manufacturing R&D after 1980 corresponds to investments

in automation fixed costs, and that rising automation cost spending since 1980 explain

about 0.6 percentage points of the 1 percentage point increase in R&D observed from

1980–2005. This comparison shows that our estimated fixed costs are of a reasonable

magnitude, and that they do not generate a counterfactual increase in R&D spending.

Benchmarking the inferred decline in capital prices and rising competition:

The right panel of Figure 11 compares the inferred decline in the price of capital d ln q

to data. As the empirical counterpart for these series, we use the percent decline in the

price of equipment and software over the time period 1982–2012 from the BEA’s Fixed

Asset Tables, which we deflate using the PCE index. We focus on software and equip-

ment because these are most relevant for capital–labor substitution in our framework. In

addition, we display a series by DiCecio (2009), which attempts to correct the BEA series

for missing quality-adjustment in the spirit of Gordon (1990), following the imputation

procedure in Cummins and Violante (2002).

The inferred decline in the price of capital in our model is well within the range of the

empirical counterparts. In particular, the decline in the price of equipment and software

needed to explain the decline of the manufacturing labor share is of 140 log points, which

is comparable to the observed decline of 174 log points in the data (112 without Gordon’s

quality adjustment).
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Figure 11: Automation fixed costs and capital price declines. The left panel displays the
time series of automation fixed cost spending relative to aggregate output for manufacturing and retail
using our estimates from Section 2.4. Before 1982, the model is in steady state, and automation spending
is zero. The black line corresponds to the ratio of R&D investment spending relative to U.S. GDP. The
right panel displays the calibrated decline in capital prices −d ln q for manufacturing and retail using
our estimates from Section 2.4. The black line plots the observed decline in the price of equipment and
software capital for 1982–2012, deflated by the PCE price index (source: BEA Fixed Asset Tables). In
addition, the gray line plots another series for the relative price of equipment and software due to DiCecio
(2009), which builds on work by Gordon (1990) and Cummins and Violante (2002) and imputes missing
quality-adjustment.

Turning to the inferred measure of rising competition, it is difficult to find an empirical

counterpart to λ in the data. Our model infers a particular strong increase in retail (d lnλ =

0.41), followed by wholesale (0.27), utilities/transportation (0.22), and manufacturing

(0.04). The type of changes that λ proxies for include in particular a rise in the effective

market size caused by the widespread availability of internet search engines, and in general

breakthroughs in information and communications technology, which reduce information

frictions. For example, Akerman, Leuven and Mogstad (2021) provide evidence showing

that broadband availability is causally associated with an expansion of the choice set of

importers and exporters in Norway. At a qualitative level, it is reasonable that this type

of technological change most strongly affected retail trade, followed by wholesale trade.
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F Compustat data and additional empirical

results regarding markups and output

elasticities

F.1 Data description, sample, and definitions

We use data from Compustat from 1960 to 2016. We use the following variable definitions

and conventions:

• Revenue yft: we measure revenue using firm sales—SALES in Compustat.

• Expenditures in variable inputs vft: we measure these expenditures using the cost

of goods sold— COGS in Compustat.

• Stock of capital kft: we measure capital using the gross value of property, plants,

and equipment—PPEGT in Compustat.

• Investment xft: we measure investment as the percent change in capital; that is,

lnxft = lnkft+1 − lnkft

• Industry and firm groupings c(f): we conduct our estimation separately for 23

NAICS industries, roughly defined at the 2-digit level. When grouping firms into

size quintiles, we do so for each year and within each 3-digit NAICS industry. We

also experimented with the classification of industries based on SIC codes used in

Baqaee and Farhi (2020b) and obtained very similar results.

• Sample definition and trimming: following De Loecker, Eeckhout and Unger (2020),

we trim the sample by removing firms in the bottom 5th and top 5th percentiles of

the COGS -to-SALES distribution. In addition, following Baqaee and Farhi (2020b),

we exclude firms in farm and agriculture, construction, real estate, finance, and

utilities from our markup and labor share calculations in Figures 7 to 9.

• Winsorizing: we winsorize the obtained revenue elasticities at zero. Moreover, fol-

lowing Baqaee and Farhi (2020b), we winsorize our markup estimates at the 5th

and 95th percentile of their distribution.

F.2 Robustness checks

This sub-section provides estimates for firm markups using different sets of assumptions.
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Estimates parametrizing g and h using cubic polynomials We estimate elastici-

ties under the same assumptions outlined in the main text, but parametrize g and h using

cubic polynomials. Figure 12 plots the behavior of the resulting output elasticities over

time by firm size quintile. Figure 13 reports the contribution of within-firm changes in

markups and between-firm reallocation to (percent) changes in the labor share.

Estimates assuming there are no ex-post shocks ε In the absence of ex-post

shocks, we can treat observed revenue as true revenue and there is no need to use a proxy

variable to recover productivity. Instead, we can compute productivity directly as

zft = ln yft − ε
R
vc(f)t ⋅ ln vft − ε

R
kc(f)t ⋅ lnkft,

and proceed with the rest of the estimation in the same way as before.

Figure 14 plots the behavior of the resulting output elasticities over time by firm

size quintile. Figure 15 reports the contribution of within-firm changes in markups and

between-firm reallocation to (percent) changes in the labor share.

Estimates assuming a linear Markov process for productivity Suppose that

productivity follows a linear Markov process

zft = βzft−1 + ζft.

Define υft ∶= zft + εft. Because ex-post shocks are i.i.d, we have that υft also follows a

linear Markov process

υft = βυft−1 + ζft + εft − βεft−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ιft

.

Estimation proceeds as follows. First, we can compute υft directly as

υ̃ft = ln yft − ε
R
vc(f)t ⋅ ln vft − ε

R
kc(f)t ⋅ lnkft.

Then we estimate the linear model

υ̃ft = βυ̃ft−1 + ι̃ft,
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and base estimation on the moment conditions

E [ιft ⊗ (lnkft, ln vft−1)] = E [(ζft + εft − βεft−1)⊗ (lnkft, ln vft−1)] = 0.

Figure 16 plots the behavior of the resulting output elasticities over time by firm

size quintile. Figure 17 reports the contribution of within-firm changes in markups and

between-firm reallocation to (percent) changes in the labor share.

F.3 Biases of a sales weighted average of markups

This subsection demonstrates that, when there are differences in output elasticities across

firms that are not taken into account, a sales-weighted average of firm-level markups

provides a biased assessment of the contribution of changes in markups to the decline

in the labor share. First, as demonstrated in the main text (see footnote 27), the true

contribution of markups to the labor share is given by

µt ∶= 1/∑
f

ωft ⋅
1

µft
.

Suppose that, as is typically done in the literature, we compute firm-level markups

under the assumption that all firms operate a technology with common output elasticities,

εvt. This implies that the measured firm-level markups µmft and the true markups µft

satisfy

µmft =
εvt
εvft

⋅ µft,

where εvft is the firm-level elasticity of output with respect to variable input. This implies

that measured firm-level markups will over-state the true markups when εvt > εvft and

under-state them otherwise. Moreover, the average elasticity is given by

εvt =∑
f

ωft ⋅ εvft.

We now show that these firm-level biases do not cancel when one computes an arith-

metic sales-weighted average of markups, and that this problem aggravates when there

dispersion of εvft rises.
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The measured sales-weighted markup is given by

µ̄mt =∑
f

ωft ⋅ µ
m
ft.

After some algebra, one can show that

µ̄mt
µt

= 1 +
∑f,f ′ yft ⋅ yf ′t ⋅ (

√
svf ′t
svft

−
√

svft
svf ′t

)
2

(∑f yft)
2 .

This implies that the measured sales weighted markup exceeds the true markup, with

equality if and only if there is no dispersion in factor shares svft = svf ′t.

Moreover, this expression shows that the gap between the measured sales-weighted

markup and the real markup rises with the dispersion in factor shares across firms, even

if this dispersion is fully driven by differences in technology. In particular, if all firms had

µft = 1 and charged no markups, a sales-weighted average of markups computed under

the assumption of common technology would be equal to

µ̄mt = 1 +
∑f,f ′ yft ⋅ yf ′t ⋅ (

√
εvf ′t
εvft

−
√

εvft
εvf ′t

)
2

(∑f yft)
2 .

This sales-weighted markup not only exceeds 1, but would also increase spuriously with

the dispersion in output elasticities, εvft. Thus, the uneven adoption of capital intensive

technologies, like the one produced by our model along the transition, can generate a

spurious increase in the sales-weighted markup, even if there are no changes in market

power.
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Figure 12: Output elasticity with respect to variable inputs estimated using a cubic
parametrization of g and h. The left panel presents estimates obtained for all Compustat firms. The
right panel presents estimates obtained for Compustat firms in manufacturing. See figure 7 in the main
text for our baseline estimates used in the results reported in the paper.
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Figure 13: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. Firm-level markups are estimated using a cubic parametrization for g and
h, as explained in Appendix F.2. The left panel provides the decomposition for manufacturing firms in
Compustat. The right panel provides the decomposition for Compustat firms in other economic sectors.
See figure 9 in the main text for our baseline estimates reported in the paper.
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Figure 14: Output elasticity with respect to variable inputs estimated under the
assumption that there are no ex-post shocks. The left panel presents estimates obtained for all
Compustat firms. The right panel presents estimates obtained for Compustat firms in manufacturing.
See figure 7 in the main text for our baseline estimates used in the results reported in the paper.
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Figure 15: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. Firm-level markups are estimated under the assumption of no ex-post
shocks, as explained in Appendix F.2. The left panel provides the decomposition for manufacturing
firms in Compustat. The right panel provides the decomposition for Compustat firms in other economic
sectors. See figure 9 in the main text for our baseline estimates reported in the paper.
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Figure 16: Output elasticity with respect to variable inputs estimated under the
assumption that productivity follows a linear Markov process. The left panel presents
estimates obtained for all Compustat firms. The right panel presents estimates obtained for Compustat
firms in manufacturing. See figure 7 in the main text for our baseline estimates used in the results
reported in the paper.
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Figure 17: Decomposition of the contribution of within-firm changes in markups and
between-firm reallocation to (percent) changes in the labor share. See the main text for
details on this decomposition. Firm-level markups are estimated under the assumption that productivity
follows a linear Markov process, as explained in Appendix F.2. The left panel provides the decomposition
for manufacturing firms in Compustat. The right panel provides the decomposition for Compustat firms
in other economic sectors. See figure 9 in the main text for our baseline estimates reported in the paper.
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