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ABSTRACT

Social distancing via shelter-in-place strategies, and wearing masks, have emerged as the most 
effective non-pharmaceutical ways of combatting COVID-19. In the United States, choices about 
these policies are made by individual states. We develop a game-theoretic model and then test it 
econometrically, showing that the policy choices made by one state are strongly influenced by the 
choices made by others. If enough states engage in social distancing or mask wearing, they will 
tip others that have not yet done so to follow suit and thus shift the Nash equilibrium. If 
interactions are strongest amongst states of similar political orientations there can be equilibria 
where states with different political leanings adopt different strategies. In this case a group of 
states of one political orientation may by changing their choices tip others of the same 
orientation, but not those whose orientations differ. We test these ideas empirically using probit 
and logit regressions and find strong confirmation that inter-state social reinforcement is 
important and that equilibria can be tipped. Policy choices are influenced mainly by the choices 
of other states, especially those of similar political orientation, and to a much lesser degree by the 
number of new COVID-19 cases. The choice of mask-wearing policy shows more sensitivity to 
the actions of other states than the choice of SIP policies, and republican states are much less 
likely to introduce mask-wearing policies. The choices of both types of policies are influenced 
more by political than public health considerations.
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1 Introduction

Our aim in this paper is to understand the factors that influence whether and
when states in the United States introduce non-pharmaceutical interventions
(NPIs) directed to reducing the incidence of COVID-19. These interventions
can take many forms. They may involve testing and contact-tracing, quar-
antining those who test positive and their contacts, shelter-in-place (SIP)
orders, or requiring the wearing of masks in public.1 These NPIs are com-
mon to most countries, and in most countries they policies are implemented
at the federal or equivalent level.2 Rather uniquely, the U.S. has left state
governors to choose whether to implement such policies: there is no Federal
policy on any of these issues. As a result the majority of states, but not
all of them, have had such policies in place, and the choice has become a
political one, with most Democratic governors implementing such orders but
many - though not all - Republican governors more reluctant to do so. From
April to July, at least 2/3 of Democratic states launched mandatory orders
for residents to wear masks whenever they are not able to maintain a 6-feet
distance from others. In contrast, most Republican states did not introduce
such orders, or merely gave the power to do so to cities. This remained true
until mid to late July, when the second wave of coronavirus cases occurred

1On wearing masks, see Sunstein [14]
2For a review of COVID-19-related policies see Dalton et al. [4]
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mainly in these states. After these orders took effect in states with high inci-
dence of COVID-19, the curve of COVID-19 flattened (from early August),3

although the causal effects of such orders remain unstudied.
SIP orders have costs and benefits (see Thunstrom et al. for a cost-benefit

analysis [15]). The costs are obvious and largely economic: they bring the
local economy to a grinding halt, as many businesses cannot continue to
operate in a world of SIP orders. There are also social costs associated
with isolation and lack of social interactions. To set against these there
are health benefits, since illnesses spread much less rapidly and fatalities
are reduced when most people are required to stay at home. In New York
in the absence of social distancing the Rt - the reproduction rate in the
classic SIR epidemiological model4 - was about 5, but after several months
of social distancing it fell to below 1.5 6The timing of NPIs matters: they
need to be introduced before the SARS-Cov-2 virus is widespread, but not
too early because there are generally political constraints on how long NPIs
can be maintained, and introducing them too early leads to some of their
potential being wasted. The factors we model in the following sections help
understand the timing of NPIs though an understanding of the factors that
influence states’ decisions about whether or not to introduce them.

We develop a theoretical framework and then test it econometrically. Our
first step is to show in a simple game-theoretic model that a state’s decision
on whether to introduce shelter-in-place or mask-wearing regulations depends
on how many other states have already instituted such orders. The larger the
number of states with such policies, the more effective a new one is and more

3See for example https://www.statnews.com/feature/coronavirus/covid-19-tracker/
4Susceptible Infected Recovered - see [12].
5See https://rt.live/?campaign_id=116&emc=edit_pk_20200623&instance_id=19638&nl=paul-

krugman&regi_id=62166175&segment_id=31644&te=1&user_id=6af929c17b98864ef47928b40024cba8
6For a discussion for the data for New York City see Harris [7], and for a general

discussion of social distancing in epidemic models see Kelso et al.[11], who analyze how
social distancing can reduce the rate at which a disease spreads from infected to susceptible
populations.
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likely it is that an undecided state will follow suit. More formally, state i′s
payoff from implementing a restrictive policy depends on the choices of states
j 6= i for the following reason: if state j does not implement such a policy,
then the virus can continue to spread in state j and people who travel between
j and i can infect people in i, undercutting i′s shelter-in-place policy.7

A good illustration is provided by the tri-state area of New York, New
Jersey and Connecticut. Residents of all these states commute to and work
in New York City, meaning that if New York closes down its businesses,
residents of all three states are affected. Many residents of New Jersey and
Connecticut will now have less reason to travel to New York. So a move by
New York to have people shelter-in-place and to close businesses will make
it easier for the governors of adjacent states to do likewise: the incremental
economic costs are lower because part of the work was already done by New
York in closing businesses based there. The fact that so many people in the
tri-state area travel between states for work, shopping and entertainment,
also illustrates well the ease with which a virus can spread from one state
to another. Reducing the incidence of a diseases in one state will reduce its
incidence in others with whom residents of the first state interact.

In addition, the introduction of SIP policies by one state may makes it
politically easier for others to follow suit: such policies are clearly disliked
by those who stand to lose from them (business owners, and workers who
cannot work from home), so that governors who introduce them need a strong
rationale and their adoption by other states can go some way to providing
this and providing political cover.

Given that the spreading of a virus depends not only on a state’s own
action but those of others, the decisions on whether or not to implement
NPIs by individual states can be formalized as a game. This particular
game is supermodular and so will have multiple Nash equilibria, including

7Quarantine requirements for interstate travelers are hard to enforce and indeed Gov-
ernor Cuomo of New York explicitly stated in October that he would like to impose
quarantine on people coming from New Jersey but that this is not practicable.
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a greatest and a least equilibrium (Topkis [3]). If the effectiveness of an
NPI in state i depends on whether such orders are in place elsewhere and
increases with this number, then the game between states is characterized by
social reinforcement, and in particular its payoffs may show what Heal and
Kunreuther ([8]) call uniform strict increasing differences, a strong form of
strategic complementarity.

Section 2 models this interdependence and shows how the existence of
tipping sets arises. A tipping set in such a game is a set of players (states)
with the following property: if all member of this set choose to implement
particular policies, then the best response of every other agent will be to
follow suit and choose the same policies. In other words the member of the
tipping set can drive all others to the adoption of NPIs, even in the absence
of a federal mandate for such policies.

One can also have local tipping sets. In the context of the social distancing
problem facing states, the Nash equilibria may be regional rather than na-
tional, so that if one or more states change their strategy, some nearby states
may follow suit. For example, a change in policy by New York may force
New Jersey and Connecticut to do likewise. Similarly there may be strong
links between Georgia, South Carolina and Tennessee. Proximity does not
necessarily have to be geographic: it could be measured in terms of economic
or political links between the states.

There are other more complex elements of the relationships between
states. They do assist each other in attaining health goals through the re-
inforcement we have discussed, but they also compete for scarce medical
equipment such as personal protective equipment and ventilators, bidding
up prices. New York Governor Andrew Cuomo frequently complained in his
daily COVID press briefings of the lack of a centralized national purchas-
ing policy and the way in which this pits states against each other. This
means that one state’s actions in response to COVID-19 raises the costs of
the actions that others wish to take. This behavior is a result of policies for
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obtaining medical equipment to deal with illnesses from COVID-19 and not
due to social distancing policies.

Heal and Kunreuther ([8]) provide a simple example of a game that meets
all the conditions mentioned above. There are I players and each may choose
as a strategy either zero or one: think of zero as no policy and one as an
SIP or mask-wearing policy. The payoff to choosing zero, is always 0.1. The
payoff to agent j of choosing 1 is equal to the number of others who choose 1.
If no one else chooses 1, the payoff is 0. It then increases linearly depending
on how many others choose 1 so if n agents choose 1, the payoff to the
n + 1 − th agent to making this choice is n. In this particular game there
are only two Nash equilibria: every agent chooses 0 or every agent chooses
1. If every agent has chosen 0 and a single agent switches to 1, then all the
other agents will also want to switch to 1. In other words, the game has
been “tipped” from a Nash equilibrium where everyone chooses 0 to a Nash
equilibrium where everyone chooses 1.

As mentioned above, there is also a political dimension to choices in
dealing with the coronavirus pandemic. Democratic governors have been
more likely than their Republican counterparts to recognize the seriousness
of COVID-19 and the need for collective action to mitigate the spread of the
virus. In section 3 we address this issue. We divide states into democratic
and republican and assume that the payoff to a state depends more on the
actions of those of the same political affiliation than on those that differ in
this respect. Using a very simple framework, we show that there are Nash
equilibria where all democratic states adopt NPIs such as SIPs or mask-
wearing, while no republican states do so. There are also equilibria where all
states don’t adopt NPIs and others where all states do. At the equilibrium
where no states have NPIs, a subset of the democratic states can tip the
remaining democratic states to the equilibrium where all have NPIs and no
republican states do. Similarly, at the equilibrium where all states have NPIs,
a subset of the republican states can tip the remainder to the equilibrium
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where only democratic states have NPIs.
In Section 4 we use US data to test these predictions by examining the

timing of the introduction of the introduction of SIP and mask-wearing or-
ders by states. We model the probability that any state introduces an SIP or
a mask-wearing order as a function of whether it is democratic or republican,
how many democratic, republican and swing states have already introduced
such orders, and the numbers of new COVID-19 cases in the state. Using
probit, logit and linear probability models, we show that the number of other
states to have introduced SIP or mask-wearing orders is by far the most im-
portant factor in a state’s decision on these issues, confirming the importance
of social reinforcement at the state level. We also show the existence of tip-
ping sets, particularly for mask-wearing orders. The probability of launching
a mask order or not sharply responds to the proportion of same-color states
which have already launched one. For SIP orders, however, the response is
much less sharper.

The recent paper by Sebhatu et al. [13] has some similarity to ours. They
look at all OECD countries and study the extent to which the policies chosen
by one country influence the choices of other countries, and argue that there
is strong “policy diffusion” from one country to another, particularly between
adjacent countries. Their paper is entirely empirical, with no formal model,
and uses different statistical techniques. Another related paper is Adolph et
al. [1], which like us looks at the timing of U.S. states’ introduction of NPIs,
and the factors influencing these. They argue that the political make-up of
the states is the factor that determines whether they introduce NPIs. There
is no formal choice model underlying this paper. Cui et al. [16] study the
differences between states’ responses to the COVID-19 outbreak in the U.S.,
showing the importance of political and social issues for the management of
outbreaks, but with no formal model of the states’ choices.
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2 Formal Model

There are I agents (states) indexed by i = 1, 2, ..., I. Each has a strategy si
and a strategy space given by two alternatives {0, 1} where si = 0 denotes
either no SIP or no mask-wearing policy and si = 1 indicates that such a
policy is in place. We model the choices of SIP or mask-wearing policies
separately, and do not consider the interactions between them (except in
the empirical appendix, where we show that allowing for this makes little
difference to our results). The vector S ∈ RI represents the list of strategies
chosen by all agents S = (s1, s2, ...sI) . Each agent’s payoff function Ui (S) :

SI → R1 depends on the choices of all agents, its own and those of others.
We let 0i or 1i denote a zero or a one in the i−th position of S and the vector
S−i be the vector of all choices made by states other than i. We assume that
the Ui all satisfy uniform strict increasing differences, that is using the usual
vector ordering on RI , ∃ε > 0 : S ′−i > S−i ⇒

Ui
(
1i, S

′
−i
)
− Ui

(
0i, S

′
−i
)
≥ ε+ Ui (1i, S−i)− Ui (0i, S−i) (1)

In words, consider two configurations of strategy choices by players other than
i, denoted S−i and S ′−i. Then if in S ′−i at least one state has changed from
zero to one relative to S−i, which is implied by S ′−i > S−i, then the payoff
to state i to changing from zero to one is strictly and uniformly greater
at S ′−i than at S−i. This means that agent j changing from zero to one
raises the payoff to this change for agent i 6= j for any i and j. This is
implied by the interactions between state strategies discussed above: the
adoption of an SIP or mask policy by state j makes such a policy more
attractive for state i. In the inequality (1) the parameter ε is a measure of
the degree of social reinforcement: the greater is ε, the greater is the degree
of social reinforcement or strategic complementarity and as we will see below
the smaller is the tipping set. For simplicity we are assuming the ε to be
independent of the states involved, though the discussion above of the tri-
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state area makes it clear that in reality some pairs of states reinforce each
other more than other pairs. Think of New York and New Jersey versus New
York and Alabama.

Tipping sets are important in this analysis. Intuitively a tipping set is a
subset T of players which has the following property. If all the members of
T choose strategy 1, then the best response for any other player is strategy
1. If all members of T choose SIP orders, then every other state finds that
its best strategy is also to choose an SIP order. Formally, if Si = 1∀i ∈ T ,
then ∀i /∈ T, Ui (1i, S−i) ≥ Ui (0i, S−i). A minimal tipping set is a tipping
set with the property that no strict subset is also a tipping set.

The set of possible strategy vectors S in this game is the set of vectors
of the form (0, 1, 1, 0, 0, ...) where every coordinate is a zero or a one. These
vectors form the vertices of the unit cube in RI , which is a lattice. By
assumption (1), the game is supermodular. Hence we know by a theorem
of Topkis ([3]) that the set of pure strategy Nash equilibria is non-empty
and contains greatest and least elements which we call S̄ and S respectively.
From Dhall, Lakshmivarahan and Verma ([5]) we know that for two players
S̄ = (1, 1) and S = (0, 0) (corollary 3.2) and for three players these are
(1, 1, 1) and (0, 0, 0) (Corollary 3.6). For two and three players, then, the
greatest and least Nash equilibria are where all agents choose 1 or all choose
0. We assume this is also true for I players: the maximal Nash equilibrium
is where all players choose 1 and the minimal where they all choose 0. In the
Appendix we will give simple conditions that are necessary and sufficient for
this to be the case.

Under these conditions, we can prove that there is a tipping set T a strict
subset of I and these states have the ability to tip the no-SIP (or no mask)
equilibrium to the all-SIP (or all mask) equilibrium. Furthermore there is a
tipping set that will tip any equilibrium with less than every state having SIP
orders to one where all do so. Our proof that there is a set that will tip the
equilibrium of all zeros to that of all ones applies with minor modifications
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to showing that there is a set that will tip from the least Nash equilibrium
to the greatest, whatever these may be. A formal statement of our results is:

Theorem 1. Under assumption (1), there is a minimal tipping set T con-
sisting of less than I − 1 agents, which will tip the least Nash equilibrium to
the greatest Nash equilibrium. Furthermore, any Nash equilibrium with less
than I − 1 SIP or mask-wearing orders can be tipped to the equilibrium with
I such orders.

The proof is given in the appendix.
In addition to tipping, we can have the related phenomenon of cascades.

A cascade occurs when a change of policy by agent 1 causes 2 to change her
policy, which in turn causes 3 to change and so on, a classical “domino effect.”
This process may take in all agents or only a subset. A simple example from
Heal and Kunreuther ([8]) is as follows. There are 10 agents. For any agent i
the return to setting si = 0 is 0.9i. The return to si = 1 is # (1), the number
of other agents also choosing one. Clearly all zeros and all ones are both
Nash equilibria. Suppose that all are choosing zero and agent 10 decides to
switch to one. Then the return to agent 1 to choosing 1 is now 1 > 0.9i and
she will switch to 1. Agent two will now find that the return to choosing 1
is 2 > 1.8 and will switch. And so on for all agents up to and including 9.
Agent 10, by switching, started a cascade of all the other agents beginning
with 1. Heal and Kunreuther ([8]) give sufficient conditions for a cascade to
occur. It is possible that the connections between New York and adjacent
states are best described by a cascade rather than by tipping.

2.1 Political Differences

Returning to the issue of political differences on SIP policies, we model these
by differences in the states’ payoff functions Ui (S−i, Si) : republican states
may value the outcomes associated with SIP policies - reduced morbidity
and mortality - but have a preference against the action of implementing
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an SIP policy. They might prefer a world in which good public health out-
comes are attained by other states implementing SIP policies while they
don’t: they strongly prefer (1−i, 0i) (the vector of ones everywhere except
in their i − th position to (1, 1, ..., 1), the vector of all ones. In this case
there can be no Nash equilibrium where all agents choose one: the greatest
Nash equilibrium S̄ will satisfy S̄ < (1, 1, ..., 1). The fact that states with
conservative governors, such as Georgia, moved first to relax SIP policies, is
consistent with their having a strong negative preference for these policies.
The importance of political orientation for attitudes towards COVID-19 is
studied by Barrios and Hochberg ([2]), who show that the attention paid to
COVID-19 is negatively correlated with support for Donald Trump in the
last presidential election. Using Google search data, they show that areas
showing high Trump support only started paying attention when there were
COVID-related deaths in their region, or when prominent conservative fig-
ures emphasize the reality of the epidemic. Their work actually suggests that
there is support for social distancing in conservative states, but only after
lives are lost due to COVID-19. They suggest that preferences evolve over
the course of the epidemic. Cui et al. [16] also find that support for Trump
is correlated with attitudes towards wearing masks and working from home.

We now distinguish between democratic and republican states and assume
that each is more effected by the policies that its political allies choose than
by those chosen by states run by the other party. We can write a state’s
utility function as

UD
i (S) = UDD

i (SD) + UDR
i (SR) (2)

Here the single superscript D denotes the preferences of a democratic state:
this is assumed to be separable in the strategies of democratic and repub-
lican states, with the superscripts DD and DR respectively denoting the
democratic state’s preferences over strategies chosen by democratic and re-
publican states, with SD and SR being the vectors of strategies chosen by
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democratic and republican states respectively. For a republican state, the
super- and sub-scripts D and R would be interchanged. Clearly, provided
that the utility function meets the increasing differences condition, all the
results established so far are applicable with these preferences.

Suppose for the moment that UDR
i and URD

i are identically zero, so that
each group’s preferences depend only on the actions of its peers within its
group. Then we now have two separate games being played, one amongst
the democrats and one amongst the republicans. It is possible that the
democratic game has a Nash equilibrium of ones while the republican game
has an equilibrium of zeros. Now consider a more realistic and interesting
case in which what republican states choose does matter to democrats, but
less than what democrats do, and vice versa. So the values of UDR

i and URD
i

are less than those of UDD
i and URR

i . A simple example illustrates this. Let
the payoff to a democratic state choosing one [zero] be

UD
i (1 [0]) = #D1 [0] + αD#R1 [0] (3)

where #D1 [0] and #R1 [0] are the numbers of other democratic or republican
states choosing 1 [or zero] and αD ∈ [0, 1] is the weight that a democratic
state puts on the actions of the republican states. Additionally let NR and
ND be the numbers of republican and democratic states, and γR and γD be
the fractions of republican and democratic states choosing strategy 1. For
this formulation of the game we can establish the following results:

Theorem 2. (1) There is a Nash equilibrium at which all states choose 0.
(2) There is a Nash equilibrium at which all states choose 1. (3) There is a
Nash equilibrium at which all democratic states choose 1 and all republican
states choose 0 (or vice versa). (4) If all states are choosing 0 then there is
a tipping set of democratic states that by choosing 1 can tip the remaining
democratic states to choosing 1 so that the equilibrium is that democratic
states choose 1 and republicans choose 0. (5) If all states are choosing 1
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then there is a tipping set of republican states that by choosing 0 can tip
the remaining republican states to choosing 0 so that the equilibrium is that
republican states choose 0 and democratic states choose 1.

The proofs are in the Appendix.

2.2 The Tipping Process

The tipping process begins when at a Nash equilibrium one agent decides to
change her strategy. We have not so far discussed why this might happen.
Essentially there are two possible explanations. Consider the simple game
discussed in the introduction: there are I players and each may choose as a
strategy either zero or one. The payoff to choosing zero, is always 0.1. The
payoff to agent j of choosing 1 is equal to the number of others who choose
1. There are only two Nash equilibria: every agent chooses 0 or every agent
chooses 1. If every agent has chosen 0 and a single agent switches to 1, then
all the other agents will also want to switch to 1. In other words, the game
has been “tipped” from a Nash equilibrium where everyone chooses 0 to a
Nash equilibrium where everyone chooses 1.

Suppose that ten players in this game are all playing zero, which is a Nash
equilibrium. They all receive a payoff of 0.1. At the alternative equilibrium
where all play one, each receives a payoff of nine. If an agent knows the entire
game then she can calculate that if she changes from zero to one, everyone
else will follow suit and she will be far better off. Effectively she can force
the other players to coordinate on the equilibrium that is better for her - and
in this case for them - and so has an economic incentive to do so.

An alternative explanation for the tipping process is that an agent’s payoff
depends on her strategy and the strategies of others, as modeled above, and
also on a non-policy variable such as the number of COVID-19 cases in the
state. If the strategies are “no policy” or “policy,” then an increase in the
number of COVID-19 cases could increase the payoff to “policy” relative
to “no policy” when all others have no policy, and persuade this state to
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change strategy and adopt a policy, tipping the system to the alternative
equilibrium. The number of COVID-19 cases is just one of many variables
that could play this role. A change in the political climate making mask-
wearing less controversial could play the same role, as could a change in social
policy that reduces the financial burdens of SIP policies.

3 Empirical Testing

In order to implement these ideas empirically we modify the theory devel-
oped above to include a random utility element. We assume that the states’
preferences are represented by utility functions with a random term:

Ui (si, S−i) = Vi (si, S−i) + εi (si, S−i) (4)

where the εi (si, S−i) are a set of random variables with mean zero whose
distributions depend on the strategies chosen by states. Each state has to
evaluate the difference between adopting and not adopting a policy, i.e. be-
tween si = 0 or si = 1. This difference, the payoff to policy adoption, is

∆Ui (S−i) = Vi (1, S−i)− Vi (0, S−i) + εi (1, S−i)− εi (0, S−i) (5)

which may be negative even though Vi (1, S−i) − Vi (0, S−i) > 0. We can
rewrite as (5) as

∆Ui (S−i) = ∆Vi (S−i) + ∆εi (S−i) (6)

Note that if the εi are multivariate normally distributed then the ∆εi are nor-
mally distributed and the parameters of the utilities can be estimated by a
probit regression. If they are identically and independently distributed with
extreme value distributions then the ∆εi are distributed as a logistic distri-
bution, meaning that the system can be estimated by a logit regression (see
Hausman and Wise [10]). In the following analysis we use both approaches.
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In this section we use data on shelter-in-place orders, mask-wearing orders
and COVID-19 cases at the state level to test the ideas discussed above. We
know the date at which each state in the U.S. introduced (or rescinded) a
mask-wearing order or SIP order (if in fact it did), and we have data on
the numbers of COVID-19 cases by state by day. We classify each state
as Democratic, Republican, or swing: a state is Democratic (Republican) if
it has two Democratic (Republican) senators and at least 48% of the vote
was for Clinton (Trump) in 2016, or if it has one Democratic (Republican)
senator and at least 50% of the vote was for Clinton (Trump) in 2016. The
remainder are swing states. We have 51 states in total (we treat Washington
D.C. as a state), of which 16 are Democratic, 26 Republican and 9 are swing
states. 8

We use discrete choice models (probit, logit and linear probabilities) and
also conventional linear regression models to test whether the policies of one
state can have an impact on the choices of others, and find unambiguous sup-
port for this. We also test for tipping, which in the probit-logit context we
define as follows. Democratic states that have adopted a policy can remain-
ing democratic states tip (or republican or swing states) to adopt a policy
(which could be shelter-in-place or wear masks) if whenever the fraction of
democratic states which have adopted the policy exceeds a fraction x, then
the probability of the other states (remaining democratic etc) adopting the
policy is one.9

We find substantial support for the theoretical framework set out in the
8The number of new cases per day for each states is taken from

https://covidtracking.com/api/v1/states/daily.json . The dates on
when mask-wearing policies are introduced or rescinded come from
https://edition.cnn.com/2020/06/19/us/states-face-mask-coronavirus-trnd/index.html
. Population data comes from https://www.census.gov/data/tables/time-
series/demo/popest/2010s-state-total.html . We experiment with other definitions
of republican, democratic and swing states and find that our results are not sensitive to
these choices.

9Setting the probability of adoption by category B equal to 1 makes this a strong
definition of tipping: a probability of 0.9 or 0.95 would also be defensible.
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theoretical sections, but do note differences between the factors determin-
ing the choices of mask-wearing policies and SIP policies. There is clearer
evidence of tipping in the case of mask-wearing: a state’s choice of mask-
wearing policies responds more sharply to changes in the choices made by
other states than the choice of an SIP policy. There are also differences
between the responses of democratic and republican states.

This difference between responses on mask-wearing and SIP policies is
predictable because SIP has a real economic cost for anyone who cannot work
from home. Hence it is opposed by economically vulnerable populations.10

Mask-wearing, in contrast, has no economic cost, but can be seen as a signal.
Not wearing a mask was adopted as a signal of support for Trump and
skepticism about the importance of COVID-19 and the appropriateness of
policy measures aimed at it. This suggests that the factors that influence
choices about enacting policies are different in the two cases, with economic
factors weighing more heavily in SIP choices and political/symbolic factors
more important in mask-related policies. The evidence in Cui et al. [16]
clearly supports this.

This can explain democratic-republican differences. Republican states
are more likely to contain economically vulnerable populations who stand to
lose from SIP policies and so will be more reluctant to such policies. And
republican states can also be expected to be less receptive to mask-wearing
because of its symbolism.

3.1 Mask-Wearing

In this subsection we use discrete choice models to estimate the probability of
a state without a mask-wearing order, adopting one on day t. The underlying
hypothesis is that the probability of a state without such a policy adopting
a mask-wearing policy depends on the number of other states of its political

10Economically vulnerable populations are those who cannot work from home, who have
limited savings and whose states have limited social safety nets.
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orientation that have already done so, the numbers of other states of different
political orientations that have done so, and the number of COVID-19 cases
in the state. The model being estimated is

Pi,t = αiND,m,t + βiNR,m,t + γiNS,m,t + δiCi,t +Ki + εi,t (7)

where Pi,t is the probability that state i adopts a mask-wearing order on
day t, ND,m,t is the fraction of democratic states that have adopted mask-
wearing orders by date t, NR,m,t is the fraction of republican states that have
done likewise by date t and NS,m,t the fraction of swing states that have
mask-wearing orders in place. Ci,t is the number of new COVID-19 cases per
100,000 of population in state i at date t, Ki is a constant and εi,t is a NID
serially independent error process. We can think of (7) as an implementation
of the random utility equation (6), with the RHS a linearization of ∆Vi (S−i)

and the probability of choosing a mask-wearing policy being given by the
utility gain from such a policy.

Our approach assumes that the probability of choosing to implement a
mask-wearing policy is independent of whether or not there is an SIP policy
in place. In the appendix, where we conduct robustness checks, we allow
the selection of a mask policy to depend on whether there is an SIP policy
in place: the results show that it does not, and that our specification is
robust. We run equation (7) using Probit, Logit and Linear Probability
models, separately for Democratic and Republican states. The results are
summarized in table 1.

The coefficients of ND, NS and NR in the Probit and Logit regressions
are all positively significant, which means that the numbers of other states
that have adopted mask-wearing rules has a significant and positive impact
on the likelihood of a state adopting such rules, whether it is Republican
or Democratic. The number of current COVID-19 cases, however, has no
significant impact, rather surprisingly.

With logit and probit regressions the values of the coefficients have no sim-
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Probit Logit LPM

R D R D R D

ND,m,t 30.37∗∗ 36.43∗∗∗ 18.14∗∗∗ 41.39∗∗∗ −0.212∗∗∗ 0.553∗∗∗

NS,m,t 12.70∗ 29.89∗∗∗ 10.44∗∗ 46.208∗∗∗ 0.844∗∗∗ 1.300∗∗∗

NR,m,t 40.76∗∗∗ 28.77∗∗ 28.61∗∗∗ 62.55∗∗∗ 0.108 −0.816∗∗∗

NCi,t 0.0269 −0.0204 0.0287 −0.0261 −0.00059 0.0102∗∗∗

Ki −53.19*** −27.26∗∗∗ −31.07∗∗∗ −25.36∗∗∗ −0.0135 −0.0789∗∗

lnsig2u 6.433∗∗∗ 5.05∗∗∗ 5.893∗∗∗ 5.45∗∗∗

N 3978 2448 3978 2448 3978 2448

Table 1: Probit, logit and LPM regressions for republican and democratic
states. Dependent variable is the probability of a mask-wearing order. *, **
and *** denote significant at 5%, 1% and 0.1% levels. The LPM regression
contained state-level fiexed effects.

ple interpretations: the coefficient on an independent variable does not give
the partial derivative of the dependent variable with respect to that indepen-
dent variable. What matters is the sign and the significance of a coefficient,
which establish whether the independent variable matter and qualitatively
what its effect is.

In a probit estimation the underlying equation is

Pi,t = Φ {αiND,m,t + βiNR,m,t + γiNS,m,t + δiCCi,t +Ki + εi,t} (8)

where Φ {.} is the cumulative normal distribution. The marginal effect of
ND,m,t,the derivative of Pi,t with respect to ND,m,t, is αiΦ′ {.} = αiφ {.}
where φ is the normal density function. Clearly the derivative depends on
the values of the other independent variables, and of course depends on the
value of ND,m,t. In the tables that follow we present the partial derivatives
of the dependent variable with respect to selected independent variables.
In doing this we set the variables other than the mask-wearing rate with
respect to which we are differentiating equal to either their sample means or
to their maximum values, and report the marginal effect (derivative) for all
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Probit Logit

Democratic Republican Democratic Republican

ND,m,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.0625 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1250 ” ” ” ” 0.01 0.01 ” ”

0.1875 ” ” ” ” 0.21 0.20 ” ”

0.3125 0.31 0.31 ” ” 0.99 0.78 ” ”

0.3750 0.85 0.54 ” ” 1.00 0.01 ” ”

0.4375 1.00 0.00 ” ” 1.00 0.00 ” ”

0.5000 ” ” ” ” ” ” ” ”

0.5625 ” ” ” ” ” ” ” ”

Table 2: Marginal effect of change in democratic mask rate: other indepen-
dent variables set equal to sample means

possible mask-wearing rates. Table 2 shows the marginal effect of a change
in the democratic mask rate ND,m,t as it varies from zero to one and all
other variable are at their sample means,11 according to both probit and
logit models.12 The first column shows ND,m,t the democratic mask rate,
the second the probability of a mask-wearing policy being implemented in
a democratic state according to the probit model, the third the change in
probability (the marginal effect), the fourth and fifth columns the same for a
republican state, and the remaining columns repeat this for the logit model.

Table 2 shows that according to the probit model, a change in ND,m,t from
0.3125 to 0.3750 increases the probability of a democratic state implementing
a mask-wearing order by 0.54. The equivalent number for the logistic model
is even larger, 0.78, and occurs when the mask rate changes from 0.1875
to 0.3125. So democratic states have a big impact on democratic states:
table 2 also shows that they have no impact on republican states. All these
comments are conditioned on the values of the other independent variables

11When they are at their maximum values, the probability of a democratic state intro-
ducing a mask-wearing policy is constant at one.

12The table omits mask rate below 0.0625 and above 0.5625 as the probability is constant
at zero and one respectively in these ranges.
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Probit Logit

Democratic Republican Democratic Republican

NR,m,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.07692 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.15385 ” ” 0.00 0.00 ” ” 0.06 0.06

0.19231 ” ” 0.02 0.02 ” ” 0.58 0.52

0.23077 ” ” 0.20 0.18 ” ” 0.97 0.39

0.26923 ” ” 0.67 0.47 ” ” 1.00 0.03

0.30769 ” ” 0.95 0.28 ” ” 1.00 0.00

0.34615 ” ” 1.00 0.05 ” ” 1.00 0.00

0.38462 ” ” 1.00 0.00 ” ” 1.00 0.00

0.42308 ” ” 1.00 0.00 ” ” 1.00 0.00

Table 3: Marginal effect of change in republican mask rate: other indepen-
dent variables set equal to maximum values

being equal to their sample means. The probit analysis in Table 2 shows
that once 43% of democratic states have adopted mask-wearing orders, the
probability that any remaining democratic state will follow suit is one. The
logit analysis places the tipping point slightly lower, at 38%.

Table 3 repeats table 2 but for changes in NR,m,t, the republican mask rate
with other independent variable set at their maximum values.13 We see that a
change in the republican mask rate has no impact on democratic choices, but
a significant impact on the choices of republican states. According to the the
probit model a change inNR,m,t from 0.23077 to 0.26923 raises the probability
by 0.47, and according to the logistic model an increase from 0.15385 to
0.19231 raises the probability by 0.52. The probit analysis in Table 3 shows
that once 35% of republican states have adopted mask-wearing orders, then
the probability that the remaining state will also adopt such orders is one.
The logistic analysis gives a slightly lower tipping point, 27%.

In figure 1 we explore how the probabilities of choosing a mask-wearing
13When the other variables are at their sample means, the probability of a republican

state choosing a mask-wearing policy is always zero.
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policy respond to independent variables more multidimensionally, looking
at two-dimensional subspaces of the four-dimensional space of independent
variables. We vary the mask-wearing rates for democratic, republican and
swing states, holding the rate of new COVId-19 cases constant at its mean
value. Figure 1 shows on the horizontal axes the percentages of states adopt-
ing mask-wearing policies (republican and swing stats: in these figures red
= republican, blue = democratic), on the vertical axis the probability of a
democratic state that has not adopted such a policy doing so, with the per-
centage of democratic states that already have mask-wearing policies in place
increasing from top left to lower right, going from 18% to 31% and ending at
68%. Each of these figures is a two-dimensional slice of the four-dimensional
space of independent variables, in the plane defined by the mask adoption
rates of swing and republican states. The adoption rate of the democratic
states varies from one panel to the next, so taken together they are points in
a three-dimensional subspace of the space of independent variables.

For low democratic rates of adoption of mask policies, there is an area of
low swing and republican rates where there is zero probability of a democratic
state adopting a policy, and one of high swing and republican rates where
this probability is one, with a rather sharp transition between them: for
higher democratic rates the area of zero probability is almost non-existent
and corresponds to zero rates for the other two categories of states. The sharp
transitions here from probabilities of zero to one do seem to correspond well
to the notion of tipping discussed in the theoretical model.

Figure 2 shows the same data for republican states, and portrays a very
different story. It is almost impossible for other states to induce a republican
state to adopt a mask-wearing policy. Only if both other categories are at
100% adoption and nearly 50% of republican states have adopted too, will the
probability of a remaining republican state go to one. Again the transition
is sharp, the gradient of the response surface high, so that there is again
tipping but in much more limited circumstances.
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Figure 1: Democratic mask-wearing responses to other states’ choices
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Figure 2: Republican mask-wearing responses to other states’ choices

23



The final step in this subsection is to look at the impact of the number
of new cases in a state on the probability of implementing a mask-wearing
policy. We do this by looking at the probability of adopting as a function
of the number of new cases and the percentage of democratic or republican
states with mask-wearing policies: these results are contained in figure 3.
In these figures the horizontal axes are the number of new cases and the
percentage of republican states with mask-wearing policies, the vertical axis
is the probability of a democratic state without such a policy implementing
one, and each diagram corresponds to a different fraction of democratic states
with policies - these percentages are 0%, 50%, 62.5% and 93%.

The figures show that there is essentially no impact of the number of
new cases on the probability of a democratic state adopting a mask-wearing
policy, which is consistent with the coefficients on NC in table 1: these
coefficients are never significant. This is different from the position with SIP
policies shown in figure 7 below, where the impact of case numbers is more
significant.

Figure 4 presents the same analysis for republican states: they show that
for low values of the republican mask rate and high value of the democratic
rate, there is sensitivity of the probability of a republican state choosing a
mask policy, but otherwise it has no effect. This is similar to the situation
shown in figure 8 for republican states deciding whether to introduce an SIP
policy.

3.2 Shelter-in-Place Orders

In this subsection we use discrete choice models to estimate the probability of
a state without an SIP order, adopting one on day t. The estimating equation
is (9): the dependent variable is the probability of state i with no SIP order
introducing an SIP order on day t, Πi,t.

Πi,t = aiND,SIP,t + biNR,SIP,t + ciNS,SIP,t + diNCi,t +Ki + εi,t (9)
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Figure 3: Effect of new cases on Democratic mask choice
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Figure 4: Effect of new cases on Republican mask choice
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Probit Logit LPM

Rep Dem Rep Dem Rep Dem

ND,SIP,t 5.739∗∗∗ 2.587∗∗∗ 10.65∗∗∗ 4.289∗∗∗ −0.058 0.77∗∗∗

NS,SIP,t −2.010∗∗ 2.800∗∗∗ −3.677∗∗ 5.536∗∗∗ 0.208∗∗ 0.315∗∗∗

NR,SIP,t 8.393∗∗∗ 3.600∗∗∗ 15.22∗∗∗ 9.0669∗∗∗ 0.782∗∗∗ −0.623

NCi,t 0.0378 0.0428∗∗∗ 0.055 0.0817∗∗∗ 0.00017 -0.0004

Ki −9.273∗∗∗ −2.892∗∗∗ −16.89∗∗∗ −5.405∗∗∗ −0.0128 0.0196

lnsig2u 2.713∗∗∗ 0.514 3.905∗∗∗ 1.873∗∗∗

N 2756 1696 2756 1696 2756 1696

Table 4: Probit, logit and LPM regressions for republican and democratic
states. Dependent variable is the probability of an SIP order. *, ** and ***
denote significant at 5%, 1% and 0.1% levels. Dem is Democratic and Rep
is Republican. The LPM regression contained state-level fixed effects.

Here ND,SIP,t is the fraction of democratic states that already have SIP orders
in effect on day t, with similar interpretations for NR,SIP,t (republican) and
NS,SIP,t (swing). NCi,t is the number of new cases per 100,000 of population
in state i on day t, Ki is a constant and εi,t an error term. This approach
assumes that the probability of implementing an SIP policy is independent
of whether or not there is a mask-wearing policy in place. In the appendix,
where we conduct robustness checks, we allow the selection of an SIP policy
to depend on whether there is a mask policy in place: the results show that
it does not, and that this specification is robust. The results of estimating
this equation by probit, logit and linear probabilities are given in table 4.

The probit and logit models both show highly significant coefficients on
all of the SIP shares for both democratic and republican states, though sur-
prisingly republican states show negative coefficients on the share of swing
states with SIP orders in place. The number of new cases is significant for
democratic states but not for republican. Republican governors appear to
be taking their leads from other states rather than from the number of their
resident contracting COVID-19.

To assess the impact of a change in one state’s policies on the choice
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made by another, we need to calculate the marginal effect of a change in
an independent variable on the probability of implementing an SIP policy.
In the tables that follow we set the variables other than the SIP rate with
respect to which we are differentiating equal to either their sample means
or their maximum values, and report the marginal effect for all possible SIP
rates. The first column in table 5 shows ND,m,t the democratic SIP rate, the
second the probability of an SIP policy being implemented in a democratic
state without such a policy according to the probit model, the third the
change in probability (the marginal effect), the fourth and fifth columns the
same for a republican state, and the remaining columns repeat this for the
logit model. Overall this table shows the effects of changes in the fraction
of democratic states with SIP orders on the probability that a democratic or
republican state without such an order will change, with other independent
variables at their mean values. For republican states this effect is zero: for
democratic states it is positive. According to the logit analysis, once 69%
of democratic states have adopted SIP orders, then with probability one all
others will follow suit. The probit analysis does not indicate a tipping point
in this case: the probability of a state without an SIP order choosing such
an order only reaches one when the fraction of states with SIP orders is also
one.

Table 6 shows a similar analysis for the marginal effect of a change in
the fraction of republican states with SIP orders, with other independent
variables again at their mean values. In this case the increase in the number
of republican states with SIP orders tips the democratic states without such
orders once the fraction of republicans with SIP orders exceeds 0.61 in the
probit regression and 0.53 in the logit. It is interesting that an increase in the
number of republican states with SIP orders can tip the democratic states
into following suit. We do not see this cross-party effect in the case of mask-
wearing orders, studied above. Mask-wearing is more politically contentious.
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Probit Logit

Democratic Republican Democratic Republican

ND,SIP,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.000 0.36 0.00 0.00 0.51 0.00 0.00

0.0625 0.42 0.06 0.00 0.00 0.62 0.11 0.00 0.00

0.1250 0.55 0.07 ” ” 0.72 0.10 ” ”

0.1875 0.61 0.06 ” ” 0.80 0.08 ” ”

0.3125 0.67 0.06 ” ” 0.87 0.07 ” ”

0.3750 0.73 0.06 ” ” 0.92 0.05 ” ”

0.4375 0.78 0.05 ” ” 0.95 0.04 ” ”

0.5000 0.82 0.04 ” ” 0.97 0.02 ” ”

0.5625 0.86 0.04 ” ” 0.99 0.02 ” ”

0.6250 0.9 0.04 ” ” 0.99 0.01 ” ”

0.6875 0.92 0.02 ” ” 1.00 0.00 ” ”

0.7500 0.94 0.02 ” ” ” ” ” ”

0.8125 0.96 0.02 ” ” ” ” ” ”

0.8750 0.97 0.01 ” ” ” ” ” ”

0.9374 0.98 0.01 ” ” ” ” ” ”

1.0000 0.99 0.01 ” ” ” ” ” ”

Table 5: Marginal effect of change in democratic SIP rate: other independent
variables set equal to sample means
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Probit Logit

Democratic Republican Democratic Republican

NR,SIP,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.000 0.62 0.00 0.00 0.60 0.00 0.00

0.03846 0.67 0.06 0.00 0.00 0.68 0.08 0.00 0.00

0.07692 0.72 0.07 ” ” 0.75 0.07 ” ”

0.11538 0.77 0.06 ” ” 0.81 0.068 ” ”

0.19231 0.81 0.06 ” ” 0.86 0.05 ” ”

0.23077 0.84 0.06 ” ” 0.90 0.04 ” ”

0.26923 0.87 0.05 ” ” 0.92 0.02 ” ”

0.30769 0.90 0.04 ” ” 0.95 0.03 ” ”

0.34615 0.92 0.02 ” ” 0.96 0.01 ” ”

0.38462 0.94 0.02 ” ” 0.97 0.01 ” ”

0.42308 0.95 0.01 ” ” 0.98 0.01 ” ”

0.46154 0.97 0.02 ” ” 0.99 0.01 ” ”

0.53846 0.98 0.01 ” ” 0.99 0.00 ” ”

0.57692 0.99 0.01 ” ” 1.00 0.01 ” ”

0.61538 0.99 0.00 ” ” 1.00 0.00 ” ”

0.65385 1.00 0.00 ” ” 1.00 0.00 ” ”

Table 6: Marginal effect of change in republican SIP rate: other independent
variables set equal to sample means
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Probit Logit

Democratic Republican Democratic Republican

ND,SIP,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.000 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.0625 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.1250 ” ” 0.01 0.01 ” ” 0.01 0.01

0.1875 ” ” 0.03 0.02 ” ” 0.01 0.01

0.2500 ” 0.07 0.03 ” 0.02 0.01

0.3125 ” ” 0.13 0.06 ” ” 0.05 0.02

0.3750 ” ” 0.22 0.09 ” ” 0.09 0.04

0.4375 ” ” 0.33 0.12 ” ” 0.16 0.07

0.5000 ” ” 0.47 0.14 ” ” 0.27 0.11

0.5625 ” ” 0.61 0.14 ” ” 0.41 0.15

0.6250 ” ” 0.74 0.13 ” ” 0.58 0.16

0.6875 ” ” 0.84 0.10 ” ” 0.73 0.15

0.7500 ” ” 0.91 0.07 ” ” 0.84 0.11

0.8125 ” ” 0.96 0.04 ” ” 0.91 0.07

0.8750 ” ” 0.98 0.02 ” ” 0.95 0.04

0.9375 ” ” 0.99 0.01 ” ” 0.97 0.02

1.0000 ” ” 1.00 0.00 ” ” 0.99 0.01

Table 7: Marginal effect of change in democratic SIP rate: other independent
variables set equal to maximum values

Table 7 shows a similar effect going the other way - the effect of demo-
cratic states’ choices on republican states’ choices, when other independent
variables are set in this case at their maximum values. In this case the prob-
ability of a republican state adopting an SIP order only reaches one when
all democratic states have already adopted such orders. Recall from table 5
that when other independent variables are set at the sample means, a change
in the number of democratic states with SIP orders has no impact on the
probability of a republican state adopting such an order.

In table 8 we look at the case of other independent variables at their
maximum values and the republican adoption rate varying. In this case the
democratic states are already choosing SIP orders with probability one. The
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Probit Logit

Democratic Republican Democratic Republican

NR,SIP,t Prob ∆ Prob ∆ Prob ∆ Prob ∆

0.000 1.00 0.00 0.00 1.00 0.00 0.00

0.03846 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.07692 ” ” 0.01 0.01 ” ” ” ”

0.11538 ” ” 0.02 0.01 ” ” ” ”

0.15385 ” ” 0.04 0.02 ” ”

0.19231 ” ” 0.08 0.04 ” ” ” ”

0.23077 ” ” 0.14 0.06 ” ” 0.00 ”

0.26923 ” ” 0.23 0.08 ” ” 0.02 0.01

0.30769 ” ” 0.33 0.11 ” ” 0.06 0.04

0.34615 ” ” 0.46 0.12 ” ” 0.17 0.11

0.38462 ” ” 0.59 0.13 ” ” 0.35 0.18

0.42308 ” ” 0.71 0.12 ” ” 0.58 0.23

0.46154 ” ” 0.81 0.10 ” ” 0.79 0.20

0.53846 ” ” 0.93 0.13 ” ” 0.98 0.19

0.57692 ” ” 0.97 0.03 ” ” 0.99 0.02

0.61538 ” ” 0.98 0.02 ” ” 1.00 0.00

0.65385 ” ” 0.99 0.01 ” ” 1.00 0.00

0.69231 ” ” 1.00 0.00 ” ” 1.00 0.00

Table 8: Marginal effect of change in republican SIP rate: other independent
variables set equal to maximum values

republican states tip at a fraction 0.69 (probit ) or 0.61 (logit).
Tables 5 through 8 show how the chances of a democratic or republican

state choosing an SIP policy vary with the number of other states that already
have such a policy in place, holding all other independent variables at either
their mean or maximum values. The space of independent variables is four
dimensional (three policy rates and the number of new cases), so we are
looking at the response of probabilities along a one-dimensional subspace in
this four-dimensional space. Clearly this can give only very limited insights
into the relationships between dependent and independent variables.

In figure 5 we explore the response of probabilities of choosing an SIP
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policy to independent variables in a more multidimensional way, looking
at two-dimensional subspaces of the four-dimensional space of independent
variables. We vary the SIP rates for democratic, republican and swing states,
holding the rate of new COVId-19 cases constant at its mean value. Figure 5
shows on the horizontal axes the percentages of swing and republican states
adopting SIP policies (red = republican, blue = democratic), on the vertical
axis the probability of a democratic state that has not adopted an SIP policy
doing so, with the percentage of democratic states that have SIP policies
in place increasing from top left to lower right, going from 0% to 18% then
43% and ending at 63%. Each of these figures is a two-dimensional slice of
the four-dimensional space of independent variables, in the plane defined by
the SIP adoption rates of swing and republican states. The adoption rate of
the democratic states varies from one panel to the next, so taken together
they are part of a three-dimensional subspace of the space of independent
variables.

The figures show the probability increasing with increases in the percent-
ages of swing and republican states that have already adopted, and also in-
creasing with the percentage of democratic states that have already adopted.
All four figures show that when the percentages of swing and republican
states are zero, the probability of a democratic state adopting is zero, however
many such states have already adopted. They also show that for low levels
of democratic adoption (0% and 18%, the first two figures) the probability
is relatively insensitive to the swing state adoption rate, whereas for higher
values of democratic adoption the swing states can drive bigger changes in
the democratic probability of adoption. Comparing the first and last fig-
ures, corresponding to blue SIP = 0% and SIP = 63%, it is clear that the
probability of adoption has risen substantially for low values of the percent-
ages of swing and republican states with SIP policies in place. Tables 5 to
8 show one-dimensional slices through figure 5, taken vertically at the mean
or maximum values of the variables on the horizontal axes and the case rate.
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Figure 5: Democratic SIP response to other states’ choices
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Figure 6 shows the same information for republican states. The proba-
bility of choosing an SIP policy is much less - the surface is uniformly lower
than in the democratic cases - and decreases rather than increases with the
percentage of swing states choosing an SIP policy, reflecting the negative re-
gression coefficient on swing state adoption rates in table 4. In general other
states (swing, democratic) seem to have less influence on republican choices
than they do with democratic choices.

The next step in our analysis is to investigate the effect of the number of
new cases of COVID-19 in a state on the probability of its adopting an SIP
policy. We do this by looking at the probability of adopting as a function
of the number of new cases and the percentage of democratic or republican
states with SIP policies: these results are contained in figure 7 In this fig-
ure the horizontal axes are the number of new cases and the percentage of
republican states with SIP policies, the vertical axis is the probability of a
democratic state without a policy implementing one, and each diagram cor-
responds to a different fraction of democratic states with SIP policies - these
percentages are 0%, 31%, 56% and 93%.

What these figures demonstrate very clearly is that a change in the num-
ber of new cases in a democratic state has little impact on the probability of
that state choosing an SIP policy, except when the percentage of democratic
states with an SIP policy is already high (last figure) and the percentage of
republican states is low. The selection of an SIP policy appears to be driven
more by social and political reinforcement rather than by a focus on the basic
facts of public health.

Much the same is true for republican states. Figure 8 illustrates this: the
interpretation is the same as for democratic states. What we see in this case
is that for high values of the percentage of blue states with SIP policies and
low values of the percentage of red states with such policies, an increase in
the number of cases in a republican state will increase the probability of the
remaining republican states choosing an SIP policy.
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Figure 6: Republican SIP response to other states’ choices
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Figure 7: Effect of new cases on Democratic SIP choice

37



Figure 8: Effect of new cases on Republican SIP choice
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4 Discussion

Shelter-in-place strategies and mask-wearing are integral to overcoming a
pandemic. In the U.S., these strategies have to be implemented by states,
which face complex combinations of economic and political costs and benefits
from their possible choices. Their decisions are affected by those of other
states since strategy choices demonstrate social and political reinforcement.
A compelling illustration of this interdependence is the interactions between
New York and its neighboring states: the tri-state region can be seen as a
single unit in terms of employment, commuting, entertainment and retail
shopping. A move towards SIP orders or compulsory mask-wearing by any
of these states will affect the other two, and its effectiveness will depend on
the reactions of the others. Because of this, we can model their choices as
a game. Specifically, we show that the choice of a policy by a single state
or a group of states may tip a system to a new Nash equilibrium at which
many more agents have adopted shelter-in-place or social distancing policies.
It could also cause a cascade from one equilibrium to another. There may
be equilibria at which all democratic states adopt such policies while no
republicans do, and a subset of democratic states may tip its fellows into
adopting these policies, while a subset of republican states may tip their
fellows into dropping or adopting these policies.

Our empirical work on the introduction of shelter-in-place orders or mask-
wearing confirms that the choices of one state influence strongly those of
others, and that in several cases this interaction is powerful enough to lead
to tipping to the universal adoption of a policy by one category of states. In
general the strongest interactions are between states of the same political ori-
entation, but there are cases when democratic states are strongly influenced
by republican states and by swing states, and republican states influenced by
swing states. Republican states are influenced little by the actions of demo-
cratic states.The number of new COVID-19 cases also has an impact on the
states’ choices in some cases, albeit a small one. The choice of mask-wearing
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policies appears to be far more sensitive to the actions of other states than
the choice of SIP policies. Republican states far more reluctant than demo-
cratic to adopt either SIP or mask-wearing policies. Overall, responses to
the greatest public health challenge the US has faced in a century have been
shaped more by political considerations than by public health requirements.

While we find substantial support for the theoretical framework set out
in the theoretical sections, we do also note differences between the factors
determining the choices of mask-wearing policies and SIP policies. There
is clearer evidence of tipping in the case of mask-wearing: a state’s choice
of mask-wearing policies responds more sharply to changes in the choices
made by other states than the choice of an SIP policy. This is shown very
clearly in the differences between figures 1 and 5. In the former there is a
sharp transition from low to high probability of implementing a policy: this
is not true in the latter. There are also differences between the responses
of democratic and republican states - as evidenced by the contrasts between
figures 1 and 2, and between 5 and 6. There is essentially no part of the
space of independent variables where the democratic SIP probability is zero,
whereas there are large parts for which this is true in the republican case.

As we noted above, the contrast between responses on mask-wearing and
SIP policies is predictable on the basis of arguments made in Cui et al. [16].
There we argue that SIP has a real economic cost for anyone who cannot
work from home, as noted in Thunstrom et al. [15]. Hence it is opposed
by economically vulnerable populations.14 Mask-wearing, in contrast, has
no economic cost: it can however be seen as a signal. Not wearing a mask
was adopted as a signal of support for Trump and skepticism about the im-
portance of COVID-19 and the appropriateness of policy measures aimed
at it: mask-wearing has become heavily politicized. This suggests that the
factors that influence choices about enacting policies are different in the two

14Economically vulnerable populations are those who cannot work from home, who have
limited savings and whose states have limited social safety nets.
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cases, with economic factors weighing more heavily in SIP choices and polit-
ical/symbolic factors more important in mask-related policies. The evidence
in Cui et al. [16] clearly supports this.

This can explain democratic-republican differences. Republican states
are more likely to contain economically vulnerable populations who stand
to lose from SIP policies and so will be more reluctant to such policies:
contrast figure 5 with 6. And republican states can also be expected to
be less receptive to mask-wearing because of its symbolism, a point that is
confirmed by the differences between figures 1 and 2, where the probability
of a republican state adopting a mask-wearing policy is low whatever the
values of the independent variables. For democratic states there is always a
part of the independent variable space where this probability is large.

As of late 2020, states have had access to vaccines against COVID-19
and have had to set vaccination priorities. There may also be an element of
social reinforcement in the choice of vaccination strategies, so the framework
we have developed here may be applicable in that context too.

5 Theoretical Appendix

Theorem 3. Under assumption (1), there is a minimal tipping set T con-
sisting of less than I − 1 agents, which will tip the least Nash equilibrium to
the greatest Nash equilibrium. Furthermore, any Nash equilibrium with less
than I − 1 SIP or mask-wearing orders can be tipped to the equilibrium with
I such orders.

Proof. We study the effect on agent j′s payoff of changing from no SIP to an
SIP (changing from 0 to 1) and how this effect is altered by changes in the
strategy choices of another agent i. We know by (1) that if i switches from 0
to 1 then this will increase the incremental payoff to j from the same switch.
Let S−i−j, 1i, 0j denote the vector of strategies in which all agents other than
i, j are choosing Sk ∈ S−i−j and i, j are choosing 1 and 0 respectively. (S−i−j
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is the vector of strategies chosen by all agents other than i and j.) Define

∆j (i = 0, S−i−j) = Uj (S−i−j, 0i, 1j)− Uj (S−i−j, 0i, 0j) (10)

and
∆j (i = 1, S−i−j) = Uj (S−i−j, 1i, 1j)− Uj (S−i−j, 1i, 0j) (11)

These are the returns to j from changing from 0 to 1 when i chooses either
0 (first line) or 1 (second line) and everyone else chooses sk ∈ S−i−j. The
difference between these is

∆ij

(
S−i−j

)
= ∆j (i = 1, S−i−j)−∆j (i = 0, S−i−j) ≥ 0 (12)

This is the increase in the return to j′s change of strategy as a result of i′s
change of strategy and from (1) we know that this is positive. We focus on
equation (12) when all agents other than i and j are choosing strategy 0 so
as to derive conditions for tipping the Nash equilibrium of all zeros to that
of all ones:

∆ij (0) =
{
Uj
(
0I−2, 1i, 1j

)
− Uj

(
0I−2, 1i, 0j

)}
−
{
Uj
(
0I−2, 0i, 1j

)
− Uj

(
0I−2, 0i, 0j

)}
(13)

where 0I−2 indicates that there are I − 2 zeros in position other than i and
j. Consider the following sequence of inequalities, which link the equilibrium
with all 0s to that will all 1s in a series of steps in each of which an additional
state changes strategy from 0 to 1, and which hold because of (1):

Ui
(
0I−1, 1i

)
− Ui

(
0I−1, 0i

)
+ ε < Ui

(
0I−2, 11, 1i

)
− Ui

(
0I−2, 11, 0i

)
(14)

Ui
(
0I−2, 11, 1i

)
−Ui

(
0I−2, 11, 0i

)
+ε < Ui

(
0I−3, 11, 12, 1i

)
−Ui

(
0I−3, 11, 12, 0i

)
Ui (11, ..1I−2, 0j, 1i)−Ui (11, ..1I−2, 0j, 0i)+ε < Ui (11, ..1I−1, 1i)−Ui (11, ..1I−1, 0i)

The first inequality here (14) shows that the payoff to state i from a
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strategy change is raised by at least ε when state 1 also picks strategy 1.
The second inequality shows that the payoff to i from the change is again
increased by ε when state 2 also changes from 0 to 1. Working back from a
typical inequality in this sequence we find that

Ui
(
0I−k, 11, 12, ..., 1i

)
−Ui

(
0I−k, 11, 12, ..., 0i

)
> (k − 1) ε+Ui

(
0I−1, 1i

)
−Ui

(
0I−1, 0i

)
Note that Ui

(
0I−1, 1i

)
−Ui

(
0I−1, 0i

)
< 0 as the vector of zeros is a Nash

equilibrium so zero is a best response. Note also that the last difference in
this sequence Ui (11, 12, ...1I−1, 1i) − Ui (11, 12, ...1I−1, 0i) > 0 as the vector
of all ones is a Nash equilibrium and therefore 1 is a best response. As the
sequence of differences starts negative and ends positive it must change sign:
there will be a k < I − 1 such that (k − 1) ε−Ui

(
0I−1, 1i

)
+Ui

(
0I−1, 0i

)
> 0

and the first k states will form a tipping set. To be precise we need k to
satisfy

(k − 1) ε > Ui
(
0I−1, 1i

)
− Ui

(
0I−1, 0i

)
∀i (15)

In this case each of the other states finds it in its interest to change its
strategy from zero to one and the equilibrium of zeros is tipped to that of
ones if the first k states all change from zero to one. Equation (15) shows
a tradeoff between the social reinforcement parameter ε and the size of a
tipping set k : the great the social reinforcement (the greater ε) the smaller
the number k in the tipping set.

Next we turn to the characterization of the greatest and least Nash equi-
libria of the game S̄ and S, whose existence is assured by the theorem of
Topkis ([3]).

Theorem 4. A necessary and sufficient condition for S = (0, 0, ..., 0) and
S̄ = (1, 1, ..., 1) is that for every agent i, if all other agents have chosen the
same strategy s, then that common strategy s is i’s best response.

Proof. The proposition is immediate.
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In plain English, we have Nash equilibria at all zeros and all ones if it
never pays to be the odd-man-out. Theorem 4 has implications in terms of the
structure of agents’ utility functions. It requires that Ui (0i, 1i)−Ui (0i, 0i) <
0 and Ui (1i, 1i)−Ui (1i, 0i) > 0. So the derivative of i′s payoff with respect to
its strategy depends heavily on the strategy choices of others, to the extent
of changing sign if these other strategy choices all change.

Theorem 5. (1) There is a Nash equilibrium at which all states choose 0.
(2) There is a Nash equilibrium at which all states choose 1. (3) There is a
Nash equilibrium at which all democratic states choose 1 and all republican
states choose 0 (or vice versa). (4) If all states are choosing 0 then there
is a tipping set of democratic states that can tip the remaining democratic
states to choosing 1 so that the equilibrium is that democratic states choose
1 and republicans choose 0. (5) If all states are choosing 1 then there is a
tipping set of republican states that can tip the remaining republican states
to choosing 0 so that the equilibrium is that republican states choose 0 and
democratic states choose 1.

The proofs are simple. The payoffs to democratic and republican states
from choosing 1 or 0 are

1 : γDND + αDγRNR : 0 : (1− γD)ND + αD (1− γR)NR (16)

1 : γRNR + αRγDND : 0 : (1− γR)NR + αR (1− γD)ND (17)

If all states choose 0 then γR = γD = 0 so in both cases the payoff to 0
exceeds that to 1. Hence all choosing 0 is a Nash equilibrium. And if all
choose 1 then γR = γD = 1 so that the payoff to 1 exceeds that to 0. These
statements are true for all parameter values.

If all democratic and republican states choose 1 and 0 respectively then
the payoffs to 1 and 0 for democrats and republicans are:
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Dem, 1 → ND : Dem, 0 → αDNR : Rep, 1 → αND : Rep, 0 → NR

so that we have a Nash equilibrium if and only if

ND ≥ αDNR & NR ≥ αRND (18)

If we think of ND, NR as being roughly the same size and αD, αR as less than
one half, this condition is generally satisfied.

Now suppose that all states are choosing 0, and look for a set that tips the
democrats to 1. If a fraction γD change to 1, the payoff to 1 for a democratic
state is γDND,and the payoff to 0 is (1− γD)ND + αDNR and the fraction
γD forms a tipping set if and only if γD ≥ αDND+ND

2ND
.

Finally suppose that all states choose 1 and look for a set that can tip
the republicans to 0. If the fraction of republicans choosing 1 falls from 1 to
γR < 1 then the payoff to a republican state from choosing 0 is (1− γR)NR

and from choosing 1 is γRNR + αRND so 0 is the equilibrium if and only
if γR ≤ NR−αRND

2NR
. Of course, as our specification is symmetric, a group of

democratic states could also tip its fellows away from SIP policies, just as a
group pf republicans could tip their fellows to SIP policies.

6 Robustness Checks

In this section we present results which enable us to assess the robustness of
the material presented above. We approach the same questions by different
methods.

6.1 Linear Regressions

Another alternative that we have investigated is the use of linear regres-
sions rather than discrete choice models, with the dependent variable now
the fraction F of days within a specified time window that a state had a

45



D R D R D R
Period, days 1 7 14

Dem mask rate 0.907∗∗∗ −0.112 0.930∗∗∗ −0.141 0.944∗∗∗ −0.188
Swing mask rate 0.29 0.598∗∗∗ 0.291 0.676∗∗∗ 0.287 0.828∗∗∗

Rep mask rate −0.233 0.119 −0.256 0.016 −0.262 −0.18
New cases/100k 0.0035 0.00074 0.00055 0.00055 0.00031 0.0000

Const −0.0043 −0.025 −0.022 −0.022 −0.034 −0.0183

Table 9: Dependent variable is the fraction of the days in the interval in
which state j has a mask policy in place. State-level fixed effects included.

mask-wearing or SIP policy in place. We look at three time windows - one
day, seven days and fourteen days. In the seven day case, the dependent
variable for state j is the fraction of the days in that seven day interval in
which state j has the policy in place, denoted Fpolicy,j,t, where policy may
be either mask or SIP. As independent variables we have for mask-wearing
Maskblueate,t, Maskredrate,t, Maskswingrate,t where t denotes the time inter-
val (one, seven or fourteen days) Maskbluerate,t is calculated for a seven day
interval as follows.

Maskbluerate,t =

∑
bluestates (#days state has policy)

#bluestates ∗ 7

and the other dependent variables are calculated similarly. The estimating
equation is now

Fpolicy,j,t = αjPolicybluerate,t+βjPolicyredrate,t+γjPolicyswingrate,t+δjCj,t+K+εj,t

(19)
where again policy may be either mask or SIP.

We have estimated this equation using as the time interval a single day,
seven days and fourteen days. The results are all similar and are shown in
tables 9 and 10.

Table 9 shows the results of these regressions for mask-wearing policies.
Several aspects of these results are worth mentioning. One, as noted, is that
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D R D R D R
Period, days 1 7 14
Dem SIP % 0.819∗∗∗ −0.0187 0.825∗∗∗ −0.412 0.851∗∗∗ −0.066
Swing SIP % 0.259 0.121 0.272 0.132 0.254 0.152
Rep SIP % −0.055 0.872∗∗∗ −0.072 0.885∗∗∗ −0.072 0.888∗∗∗

New cases/100k 0.0007 0.00232 0.0000 0.00034 0.00002 0.00004
Const 0.0122 −0.0252 0.0052 −0.021 −0.0008 −0.008

Table 10: Dependent variable is the fraction of the days in the interval in
which state j has an SIP policy in place. State-level fiexed effects included.

the period over which data is aggregated makes no difference: patterns of
coefficient significance are the same across all three, and the coefficients are
very similar in the three cases. The next point is that they show a very
robust effect of democratic mask-rates on the choices of democratic states.
This is entirely consistent with the logit and probit results in table 1, which
are reinforced by table 2 and figure 1. The significance of the coefficient on
swing states for republican choices is also consistent with the discrete choice
results in table 1. However the absence of a significant positive coefficient
on the republican mask rate is inconsistent with the earlier results as shown
in table 1, though it is consistent with figure - which is itself at variance
with table 1, except in regions of the state space where the mask rates of
democratic and swing states are both high.

Table 10 shows the analogous results for SIP policies. Democratic states
show a significant positive constant on the democratic policy rate, as do re-
publican states on the republican rate. The results are completely consistent
across the differing time periods (the key entries in the table are underlined,
and are (dem on dem) 0.819, 0.825 and 0.851: (rep on rep) 0.872, 0.885 and
0.888.) The coefficients on new cases are never significant. These results
are consistent with those shown in table 4 and figures 5 through 8, although
table 4 does suggest more of a role for the SIP rates of states of the opposite
political orientation. However the figures make it clear that this is true only
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for limited regions of the state space.

6.2 Geographical proximity

We use an approach based on the cultural and geographical proximity of
states. Rather than assume the the probability of a state adopting a policy
depends on the number of other states that have already done so and their
political orientations, we assume that the states that matter most may be
those that are near to the undecided state and have a similar political cul-
ture. Figure 9 shows one set of regions that we used. These regions were
analyzed by Vandello and Cohen [9], who developed an index of individual-
ism/collectivism and argued that states in these regions have similar political
cultures. This motivated us to carry out logit and probit regressions classi-
fying states by regions rather than by political orientation. The probability
of each state choosing a policy is now expressed as a linear function of the
policy rates in each region (i.e. the fraction of states in the region with the
relevant policy in place), rather than as before a function of the policy rates
of democratic, republican and swing states:

Πi,X,t =
∑
j

αi,jNj,X,t + δiCi,t +K + εi,t (20)

In this equation, i refers to states and t to the day. X denotes the adoption
of either an SIP policy or a mask-wearing policy. Nj,X,t denotes the fraction
of states in region j that have adopted policy X on day t. The results in this
case are poor, with few significant coefficients, and it appears that sorting
states’ by political affiliation rather than culture gives a better explanation
of COVID-19 policies.
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Figure 9: Cultural and geographic proximity from [9]

6.3 Work-from-home ratio

In another extension of the analysis we included as an independent variable
the fraction of jobs in each state that can be done while the employee is at
home - the work from home ratio. We might expect that the Governor of
a state would be less willing to implement a shelter-in-place order if most
people in the state have to leave home to work: a high value for the work
from home ratio suggests a high cost to an SIP order. The data on the work
from home ratios comes from Dingel and Neiman [6]. As shown in table 11,
the work from home ration does have a negative coefficient in the equation
for SIP orders, but in the probit and logit cases it is not significant, and its
inclusion does not alter the coefficients of interest.

6.4 Interactions between SIP and mask choices

So far we have treated the decisions about introducing SIP and mask policies
as separate and independent. In a final check we allow for the possibility that
these may in fact influence each other. We therefore re-estimate our main
equations (9) and (7) for the SIP and mask cases respectively allowing for
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Probit Logit
Rep Dem Rep Dem

Dem SIP % 5.736∗∗∗ 2.60∗∗∗ 10.65∗∗∗ 4.324∗∗∗

Swing SIP % −2.009∗∗ 2.793∗∗∗ −3.679∗∗ 5.524∗∗∗

Rep SIP % 8.394∗∗∗ 3.590∗∗∗ 15.23∗∗∗ 8.996∗∗∗

NewCase/100K 0.0375 0.0431∗∗∗ 0.0542 0.0822∗∗∗

WFH ratio −16.2 −5.777 −32.67 −9.991
Const −4.521 −0.911 −7.701 −1.979
Insig2u 2.659∗∗∗ 0.411 3.919∗∗∗ 1.817∗∗∗

N 2756 1696 2756 1696

Table 11: WFH ratio = work from home ratio

Probit Logit
Rep Dem Rep Dem

ND,SIP,t 5.768∗∗∗ 2.364∗∗∗ 10.70∗∗∗ 3.988∗∗∗

NS,SIP,t −2.031∗∗ 3.184∗∗∗ −3.695∗∗ 6.159∗∗∗

NR,SIP,t 8.492∗∗∗ 2.760∗∗ 15.25∗∗∗ 7.379∗∗

Mask 0.104 −0.385 0.253 −0.689
NCi,t 0.0386 0.0481∗∗∗ 0.0541 0.0895∗∗∗

K −8.183∗∗∗ −2.683∗∗∗ −17.13∗∗∗ −5.019∗∗∗

Table 12: Dependent variable probability of SIP policy

interactions between these choices. In equation (9) estimating the probability
of a state introducing an SIP requirement, we introduce an indicator variable
that is zero if it has not introduced a mask-wearing requirement and one if it
has. Likewise in equation (7) estimating the probability of a state introducing
a mask-wearing requirement we introduce an indicator variable that is zero
if it does not already have an SIP requirement and one if it does. Tables 12
and 11 shows the results of these additions.

The coefficients in table 12 are very similar to those in table 4, which
shows the results of the same estimation except that the variable “mask” is
not included. The coefficient on “mask” in table 12 is never significant. So it
is reasonable to conclude that the choice of an SIP policy is not influenced
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Probit Logit
Rep Dem Rep Dem

ND,M,t 15.83∗∗∗ 31.96∗∗∗ 36.709∗∗∗ 59.35∗∗∗

NS,M,t 8.621∗∗ 27.66∗∗∗ 12.81∗ 57.86∗∗∗

NR,M,t 23.19∗∗∗ 24.756∗∗∗ 35.85∗∗∗ 85.45∗

SIP 0.644 −2.371∗ 11.09 −5.527
NCi,t 0.209 −0.0127 0.0375 −0.0193
K −25.23∗∗∗ −24.06∗∗∗ −55.85∗∗∗ −39.43∗∗∗

Table 13: Dependent variable probability of mask-wearing policy

by whether or not there is a mask-wearing policy in place.
The coefficients in table 11 are again similar to those in table 1 where

we estimated the probability of introducing a mask-wearing policy: all coef-
ficients have the same sign and the pattern of significance is the same. One
of the coefficients on the SIP variable is significant, though only at the 5%
level. Interestingly, the coefficients on “mask” and “SIP” in both table 12 and
table 13 are positive for republican states and negative for democratic states:
however as they are generally not significant we should not read too much
into this.
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