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1 Introduction and Literature Review

Return predictability remains a hotly debated topic. In the early financial economics literature, the

fact that short-horizon equity-index returns are largely unpredictable and return innovations highly

volatile was seen as a manifestation of a no-arbitrage condition, consistent with no predictability and

efficient markets; see, e.g., Fama (1970). This view started to change in the 1980’s with the recognition

that the relevant risk factors may vary over time and across the business cycle, implying that expected

stock returns must exhibit time-variation to retain an equilibrium risk-reward trade-off.

Theoretically, dynamic present value models stipulate that valuation ratios, such as the price-

earnings, dividend-price, or book-to-market ratios predict future equity returns; see, e.g., Lettau &

Ludvigson (2010) and Campbell (2018, Chapter 5). Similarly, equilibrium asset pricing models such

as the long-run risk model (Bansal & Yaron 2004), dynamic disaster model (Gabaix 2012) or regime-

switching CCAPM (Lettau, Ludvigson & Wachter 2008) suggests that returns are predictable by

persistent state variables, such as the mean and volatility of consumption growth as well as the time-

varying disaster recovery rate; see Neuhierl & Varneskov (2020). Nonetheless, the reliability of the

empirical findings and the appropriate econometric methodology remains highly contentious. For

example, the large-scale empirical study of Welch & Goyal (2008) concludes that skepticism regarding

genuine out-of-sample predictability is warranted. From a methodological perspective, the primary

complication is that many candidate regressors display a very high degree of persistence, inducing

severe finite-sample biases under standard regularity conditions. These problems are only recently

being addressed in a comprehensive manner, and the research continues unabated in the search for

techniques that deliver better finite-sample performance and improved robustness.

This section first highlights the pitfalls that arise when applying standard regression inference for

return predictions with persistent regressors, before reviewing potential solutions that have adopted

local-to-unity and related asymptotic settings. Finally, we explain how these ideas map into the long

memory framework developed in this paper and clarify what our main contributions are.

1.1 Standard Regression Inference

To illustrate the key methodological points in a concise manner, we follow Phillips (2015) by initially

considering the simplest form of a predictive regression, relating the future asset returns, yt, to a single

lagged predictor, xt−1, through a linear regression without an intercept,

yt = Bxt−1 + υt , t = 1, . . . , n, (1)

where the innovations, υt, follow a martingale difference sequence (mds) with respect to the filtration

generated by the past observables in the system.1 Importantly, note that the notation and model

1These assumptions simplifies the exposition, but nothing of essence changes, if returns are allowed to exhibit weak
dependence or to have an intercept. The mds assumption for the error term is consistent with the intuition that
simple profitable strategies, unrelated to systematic risk exposures, should be absent in liquid financial markets. Weakly

1



specifications in this section are only expository. We will formalize our setting in Section 2.

If it is sensible to invoke standard assumptions, including weak dependence and stationarity of the

returns and regressor, then it is straightforward to test for return predictability via the ordinary least

squares (OLS) estimator B̂OLS =
∑n

t=1 ytxt−1/
∑n

t=1 x
2
t−1. The null hypothesis of no predictability

implies that B = 0, and a regular t-test for significance may be constructed. However, many relevant

predictors are inherently stochastic and persistent. The impact of these features is studied by Stam-

baugh (1986), who amends the predictive regression with an AR(1) representation for the regressor

dynamics, so that the inference problem is embedded within a closed system. In Stambaugh (1999),

this approach is utilized to analyze predictive return regressions. Specifically, ignoring the intercept,

the regressor obeys,

xt = φnxt−1 + wt , t = 1, . . . , n, (2)

for a fixed initial value x0, where (υt , wt)
′ is an mds with E[υ2

t ] = σ2
υυ,E[w2

t ] = σ2
ww, and E[υtwt] = συw.

Often, xt is assumed stationary, φn = φ < 1, even if the series is close to featuring a unit root.2

Invoking results of Kendall (1954) and Marriott & Pope (1954), Stambaugh (1986) establishes the

presence of a finite-sample bias, whenever the return and regressor innovations are correlated, that is,

συw 6= 0. Marriott & Pope (1954) show that this endogeneity bias asymptotically (n → ∞), to first

order, equals −(συw/σ
2
ww)(1 + 3φ)/n, if the mean of xt is unknown a priori.3 For common predictors

like the dividend-price or the price-earnings ratio, the covariance συw is inevitably non-trivial due to the

joint dependence of y and x on the price innovation, while, as noted previously, φ is often close to unity.

Finally, because the return innovations typically are an order of magnitude larger than the innovations

in the regressor, inflating (συw/σ
2
ww), the bias may be substantial. This motivates Stambaugh (1986)

to implement a bias-correction, which is applied frequently in the subsequent literature.

Whether the endogeneity correction ensures satisfactory inference hinges on the quality of the

asymptotic approximation to the distribution for the regression coefficient, B̂OLS. In this regard,

the strong persistence of many candidate regressors points towards a potential “spurious regression”

problem, although the absence of strong return correlation may alleviate this concern. Still, under the

alternative hypothesis, B 6= 0, the mean return inherits the persistence of the (true) regressor, even if it

likely will be disguised by the large return innovations. The theoretical justification for predictability

implies we should pay close attention to this scenario. Indeed, through extensive simulations under

carefully calibrated, strictly stationary, alternatives, Ferson, Sarkissian & Simin (2003) demonstrate

that a spurious regression problem is present, if the mean return is strongly persistent.4 Moreover, by

design, these simulations exclude correlations among the innovation series, so endogeneity and spurious

regression features may constitute separate confounding challenges for inference in practice.

dependent return innovations, uncorrelated with past innovations to the regressor, may be accommodated through a
one-sided long-run covariance correction term for most of the discussion below.

2The subscript n in the autoregressive coefficient φn is merely introduced for convenience here. It will be utilized in the
exposition below, however, when we move beyond the strictly stationary setting.

3Alternatively, if the mean is known (zero in our setting), the bias is given by the smaller quantity, −(συw/σ
2
ww)(2φ)/n.

4They further demonstrate that the spurious regression problem is absent under the null hypothesis of no predictability.
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The presence of a highly persistent mean return has implications beyond the need to adapt the

finite-sample inference accordingly. On the one hand, it improves our ability to identify the true

predictive relationship, as the signal-to-noise is enhanced, when we examine the “correct” regressor.

On the other hand, the concern about misleading inference is exacerbated by the high correlation

among many candidate regressors. If one is found significant, a number of others are also likely

to display predictive ability. This implies that a significant regressor is not necessarily the “true”

predictor, and the associated predictive relation should, at best, be viewed as providing an “imperfect”

or noisy indicator for the conditional mean. In the parlance of Pastor & Stambaugh (2009), we have

an imperfect predictor. It constitutes another feature we should seek to accommodate in the design

of suitable inference techniques. An additional implication, stressed by Ferson et al. (2003), is that

the existing evidence for predictability based on conventional inference procedures is subject to a

substantial “data mining” problem. Because many potential regressors have been examined and there

is a potentially significant inferential bias, many such predictors may appear significant – and by

extrapolation, so will many other regressors with which the original predictor is correlated.

A common response to the problems noted above is to turn towards longer-horizon regressions, as-

suming the persistent signal would be more readily identified in that setting. However, the same issues

surface in this setting, along with additional complications introduced by the use of overlapping obser-

vations. In fact, Boudoukh, Richardson & Whitelaw (2008), and more recently Kostakis, Magdalinos

& Stamatogiannis (2015), find that no significant gains are obtained through this approach.

1.2 The Local-to-Unit Root Approach

The inferential problems associated with persistent regressors under the alternative, B 6= 0, have

spurred a large literature on techniques for improved asymptotic approximation schemes. A general

representation enabling an analysis for autoregressive coefficients near unity takes the form,

φn = 1 −
Cφ

nδφ
, Cφ ≥ 0, 0 < δφ ≤ 1. (3)

In particular, for Cφ = 0, we obtain the regular unit root model, φn = 1, while Cφ > 0 and δφ = 1

yields the local-to-unit-root (LUR) specification, φn = 1 − Cφ/n, which ensures that the asymptotic

distribution captures the effect of having a root in the vicinity of unity, irrespective of sample size.

The LUR representation for autoregressions is first analyzed in depth by Phillips (1986), while early

developments for the predictive regression setting are provided by Cavanagh, Elliott & Stock (1995)

and Valkanov (2003), with the latter focusing on applications in financial economics.

The LUR approximation to the asymptotic distribution in the near unit root scenario for the pre-

dictor has two important implications. First, the rate of convergence of B̂OLS increases to n, reflecting

the enhanced signal-to-noise ratio associated with unit root-style regressions. Second, inference gen-

erally becomes non-standard. Specifically, if συw 6= 0, the interaction between the persistent regressor

and the lagged return residual generates a random endogeneity bias that depends on Cφ. Under the
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LUR specification, the deviation of the autoregressive root φn from unity shrinks at the same speed as

the rate of convergence, rendering consistent inference for this coefficient infeasible. This implies that

Cφ is an unidentified nuisance parameter, and the asymptotic distribution for B has a discontinuity

around unity, relative to the stationary case (φn = φ < 1), complicating inference in the absence of

prior knowledge about the underlying strength of the regressor persistence.

Various techniques have been developed to handle the above inference problem within the univariate

regression setting. The most common procedure is the construction of Bonferroni bounds, combining

the confidence intervals obtained across a range of relevant values for Cφ, as explored systematically

by Campbell & Yogo (2006). The main shortcoming of this approach, as noted in Phillips (2014),

is the lack of robustness to the stationary scenario, φn = φ < 1. The latter scenario will entail

spurious rejections of the null hypothesis of no predictability with probability approaching one, as

the sample size increases. Instead, Phillips (2014) advocates reliance on the usual (asymptotically

centered) estimate for the autoregressive coefficient under stationarity in the construction of the LUR

Bonferroni bounds, as Mikusheva (2007) shows this leads to uniformly valid confidence intervals for

φn under a broad set of conditions. Moreover, the induced confidence bands are asymptotically valid

and provide a good approximation to the ones obtained under stationary asymptotics.5

However, even if the the robust Bonferroni approach provides sensible inference in the case of

highly persistent regressors in univariate predictive regressions, it falters for multivariate predictive

regressions due to the complications associated with handling of multiple distinct localizing coefficients.

Moreover, this limitation is shared by many of the other alternative inference techniques for univariate

predictive regressions, as reviewed by Phillips (2015). Consequently, in the next section, we turn to

an approach that has proven successful, also for cases involving multiple predictors.

1.3 The IVX Approach

A tractable approach to multivariate predictive return regressions with highly persistent regressors and

potential endogeneity was obtained only following the developments of Magdalinos & Phillips (2009),

who introduce endogenous instrumentation designed to eliminate the nonstandard asymptotics arising

from the choice of δφ = 1 for the autoregressive coefficient in the regressor dynamics. This is achieved

by ensuring the instrument induces less persistence than the LUR and unit root scenarios, yet retains

a sufficiently high degree of time series dependence to annihilate the potentially severe finite-sample

endogeneity bias and to secure a relatively fast convergence rate, as explained below.

1.3.1 Univariate IVX Estimation

We continue to illustrate the main points within the univariate setting for brevity, noting, however,

that all aspects of the discussion may be extended to multivariate systems. The key deviation in this

section is that prior knowledge about the nature of the persistence of the regressor is not assumed,

5For another procedure to obtain near optimal tests in the univariate setting, see Elliott, Müller & Watson (2015).
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as the IVX framework allows the regressors to contain a unit root, a LUR representation, moderate

integration (Cφ > 0, 0 < δφ < 1), and stationarity (Cφ > 0, δφ = 0). Specifically, in this setting, the

IVX procedure obtains valid inference by generating an instrument for xt =
∑ t

s=1 ∆xs directly from

the series itself through a filter that ensures a mild reduction in the degree of persistence,

z̃t =
t∑

s=1

φt−snz ∆xs, φnz = 1− Cz
nβz

, 0 < βz < 1, Cz > 0. (4)

When βz is chosen below, but near, unity, z̃t is at most mildly integrated, and its dynamics is governed

exclusively through deliberate choices of Cz and βz, which may, thus, be designed to generate a desir-

able limit distribution.6 The IVX estimator is, then, simply the standard IV estimator, with z̃t serving

as instrument, B̂IVX =
∑n

t=1 ytz̃t−1/
∑n

t=1 xt−1z̃t−1. In the unit root and LUR scenarios, the estimation

error for OLS,
∑n

t=1 υt xt−1/
∑n

t=1 x
2
t−1 will have asymptotically dependent numerator and denomi-

nator, generating a non-standard limiting distribution. In contrast, the lower degree of dependence

associated with the moderately integrated IVX instrument is sufficient to ensure asymptotic indepen-

dence and a tractable limit distribution, as shown in Phillips & Magdalinos (2007). Specifically, letting

the errors obey a mds, then, under suitable regularity conditions, n(1+βz)/2(B̂IVX−B)
D−→MN(0, σ2

IVX).

The asymptotic variance, σ2
IVX, is generally stochastic, if the IVX instrument is moderately integrated,

but a feasible, consistent estimator may readily be constructed using the standard linear regression

approach, as detailed in Phillips (2015), and a standard t-test may be constructed. Consequently, the

IVX instrumentation restores standard inference for return regressions, in cases where the predictor

possesses an unknown degree of integration and may be an I(1) or LUR process.

The main cost of the IVX approach is the lower rate of convergence, n(1+βz)/2, compared to n for

the I(1) or LUR scenarios. This suggests picking a value for βz near unity, while still ensuring a finite

sample performance, that avoids mimicking the nonstandard unit root asymptotics. The extensive

simulation evidence in Kostakis et al. (2015) demonstrates that picking βz = 0.95 is sufficient to

ensure reliable inference and induce good power properties in many typical settings.

1.3.2 Multivariate IVX Estimators

As noted previously, the IVX methodology can be generalized to return regressions with multiple

predictors. However, this does require the imposition of additional assumptions. For example, Kostakis

et al. (2015) provide theory for the multivariate regressor case, but impose that the unknown localizing

coefficient is identical for all regressors. That is, they can display memory characteristics ranging from

strictly stationary to non-stationary unit root processes, but they all possess the identical degree of

persistence. Given the range of predictors used in empirical work, including near-unit root valuation

ratios, macroeconomic variables, lagged returns, and realized volatility measures, it is a very strong

6To see this, note that z̃t = zt − (Cφ/n
δφ)

∑t
s=1 φ

t−s
nz xs−1, where zt = φnzzt−1 + wt, implying z̃t equals zt, except for

a term that is asymptotically negligible. The notion of moderate deviation from unity was introduced by Phillips &
Magdalinos (2007) to capture slightly wider deviations from a unit root than accomplished through LUR specifications.
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requirement. Phillips & Lee (2016) show that results can be obtained for mixed localization coefficients

on the regressors, including the presence of both moderately integrated and moderately explosive

regressors, but their general setting does require imposition of various bounds on the size of the IVX

parameter βz relative to the set of (unknown) localizing coefficients for the regressors, which does

not include the strictly stationary case. Likewise, non-trivial conditions must be imposed on the

specification of the linear set of restrictions imposed on the autoregressive coefficient matrix for the

usual multivariate Wald test. Although their findings, combined with the Monte Carlo results in

Kostakis et al. (2015), suggest that the IVX ultimately can deal with multiple regressors possessing

mixed and wide ranging degrees of persistence and long run properties, a fully unified theory is still

not established, as explicitly discussed in the concluding section of Phillips & Lee (2016).

Besides these caveats, Xu (2020) points to the issue of potential cointegration among the multiple

regressors employed within a predictive return regression. This can easily arise, especially if more

than one of the typical valuation ratios are used, as they all represent scaled versions of the stock

price level.7 Xu (2020) proceeds to show that the Kostakis et al. (2015) approach can be robust to an

unknown degree of cointegration among the regressors, but it requires a strong assumption, namely

that the regressors are “perfect” in the sense of Pastor & Stambaugh (2009).

1.3.3 Extensions and Related Inference Principles

The IVX principle induces tractable inference procedures within highly persistent regression systems

through the use of instruments that proxy the original predictors, but are engineered to display a

lower degree of persistence. This bears a resemblance to prior insights, noting that asymptotic normal

inference will obtain for parameters expressed as coefficients on stationary regressors, even within

I(1) systems, see, e.g., Park & Phillips (1989) and Sims, Stock & Watson (1990). The same line of

reasoning inspired the idea of adding lagged regressors and/or regressands to linear regression systems

in settings, where there is uncertainty about the orders of integration among the variables. For

example, if a specific regressor is assumed to have a root close to unity, one may include an additional

lag of this persistent regressor or, alternatively, its first difference, as an additional regressor.8

The idea of variable addition has been adopted for predictive regressions with unknown degrees of

persistence for either the regressand, the regressors or both. Breitung & Demetrescu (2015) compare

the size and power properties of IVX and related variable addition techniques in a LUR setting; Ren,

Tu & Yi (2019) adopt a similar setting with potentially strongly dependent regressors and add an extra

lag of all regressors to obtain the slower, standard rate of convergence,
√
n, along with χ2-distributed

Wald tests. Likewise, Liu, Yang, Cai & Peng (2019) consider univariate predictive regressions, where

7In fact, Lettau & Ludvigson (2001) directly employ a theoretically motivated cointegrating relation to generate a predic-
tive regressor, the so-called cay variable, involving aggregate consumption, income and wealth.

8The point is illustrated in Hamilton (1994, Chapter 18) for scenarios subject to potential spurious regression issues in a
unit root setting, while Choi (1993) explores inference in AR systems with I(1) processes. These procedures are studied
more broadly for inference in possibly (co-)integrated VAR systems by, e.g., Toda & Yamamoto (1995) and Dolado
& Lütkepohl (1996). Moreover, Bauer & Maynard (2012) show how an infinite order VAR system can accommodate
unknown strong persistence in an additional set of forcing variables via the same type of variable augmentation.
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the regressand cannot be stationary under the alternative of predictability, if the regressor is strongly

dependent. They augment the regression with the first-differenced predictor and an additional lagged

predictor, and then conduct inference through an empirical likelihood approach, obtaining standard χ2

distributed test statistics. This particular method is, however, quite unwieldy in multivariate settings.

Moreover, Lin & Tu (2020) study the univariate regression case, where the regressand is strongly

persistent, while the (persistent) predictor is imperfect, so that the persistence spills over into the

regression residuals. They propose a robust inference strategy by including both a lagged regressand

and predictor as extra regressors. Not surprisingly, this generates the usual rate of
√
n convergence

for the slope coefficient, allowing for regular inference procedures. Their results also hold if the system

displays (“perfect”, in the sense of Pastor & Stambaugh (2009)) cointegration. Finally, Georgiev,

Harvey, Leybourne & Taylor (2020) develops a fixed regressor wild bootstrap test for whether the

predictive regression is invalid in a setting where the regressors are persistent and, possibly, imperfect

such that the persistence spills over to the residuals, leading to potential spurious inference.

1.4 Final Observations: Bridging the Gap to LCM

In summary, a variety of econometric issues continue to complicate the analysis of multivariate predic-

tive return regressions. The predictors may possibly be “imperfect”, and they may display unknown

and differing degrees of persistence. The issue of imperfect predictors looms particularly large, as this

feature, intuitively, provides a realistic characterization of the type of scenario encountered in practice.

To alleviate this issue, it is tempting to include a large set of regressors to maximize the ability to

span the most persistent conditional mean component of the regressand. However, currently, there is

no uniform approach that can handle inference for the multivariate, imperfect predictor case.

In our previous work Andersen & Varneskov (2020), we develop a different asymptotic framework for

analyzing predictive regressions within persistent systems. Specifically, we assume that all variables

are fractionally integrated of potentially different orders, and that the regression may, or may not,

feature cointegration. Let L and (1−L)d be the usual lag and fractional differencing operators, then,

drawing parallels to the predictive systems (1)-(4), we stipulate a predictive relation of the form,

yt = B(1− L)dx−dyxt−1 + υt, (1− L)dxxt−1 = ut−1, (5)

where ut−1 ∈ I(0) is weakly dependent, and υt ∈ I(dy − b) with 0 ≤ b ≤ dy captures the possibility

of cointegration (when b > 0). As a result, it follows that yt ∈ I(dy) and xt−1 ∈ I(dx) may exhibit

either weak or strong dependence by allowing their fractional integration orders to fall within a wide

range 0 ≤ d < 2, for d = {dy, dx}. Importantly, the framework in Andersen & Varneskov (2020) is not

confined to univariate predictive regressions (with trivial means or initial values), but accommodates

diverse persistence (i.e., d’s) among the predictors, thus providing a flexible setting to analyze systems

with various financial and macroeconomic variables. This feature corresponds to having different

localization coefficients in the LUR setting (3). Andersen & Varneskov (2020) propose a two-step Local
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speCtruM (LCM) approach that delivers asymptotically Gaussian inference, regardless of persistence

of the variables and cointegration in the predictive relation, by first stripping the persistence of the

variables using a consistent estimate of their integration orders and subsequently by applying a robust,

medium band least squares (MBLS) estimator. However, while tackling the issue of“spurious”inference

in persistent systems, they do not consider scenarios where the predictors may be “imperfect”.

Hence, in this paper, we extend the framework in Andersen & Varneskov (2020) to further allow for

imperfect regressors (in the spirit of Pastor & Stambaugh (2009)) that may exhibit general forms of

endogeneity. That is, we tackle empirically relevant scenarios where the regressors may be imperfect,

persistent and endogenous, for which, as discussed above, there is currently no uniform solution in the

literature. However, as the LCM procedure critically relies on consistent estimation of the fractional

integration orders of the variables, this problem turns out to be particularly difficult for return regres-

sions, since the signal-to-noise ratio of the conditional mean return to its innovations is too “low” for

standard univariate time series techniques to detect (strong) serial dependence in finite samples. We

overcome this issue by proposing a new rank testing procedure, that allows us to discriminate between

the “imperfect” and “perfect” regressor scenario and to determine the persistence of the conditional

return mean. Our, important, identifying condition is that the integration of the returns belongs to

the set of integration orders from the multiple candidate predictors. That is, the set of predictors

have been chosen “sensibly”. If this is the case, the procedure can verify that the conditional mean is,

indeed, persistent and distinguish between inference scenarios. Once we have determined the return

persistence, we may implement the two steps of the LCM procedure, without modification.

We establish the asymptotic properties of our new rank test and rank-augmented LCM procedure

in an endogenous, imperfect, and persistent regressor setting, demonstrating that the asymptotic

distribution theory is Gaussian, regardless of the inference scenario; stationary versus non-stationary

persistence and perfect versus imperfect predictors. Moreover, we examine the finite sample properties

of predictability tests using OLS, IVX and LCM procedures. Specifically, we find that OLS and IVX

may suffer from considerable size distortions in our long memory setting, thus providing “spurious”

inference. Importantly, we also show that our rank selection procedure has considerable finite sample

power to detect a persistent conditional mean return, and that our rank-augmented LCM procedure

is (almost) as efficient as if we had known the true persistence of the system ex-ante, i.e., as an oracle

implementation of LCM. Finally, in an empirical application to monthly S&P 500 return prediction, we

find corroborating evidence that returns contain a fractionally integrated conditional mean component.

In addition, by applying the rank-augmented LCM procedure, we find key state variables, such as the

price-earnings ratio and the default spread, to possess significant predictive power for future returns.

The paper proceeds as follows. Section 2 introduces the setting, draws parallels to the imperfect

regressor model of Pastor & Stambaugh (2009) and describes the LCM procedure. Section 3 provides

our new rank test and rank-augmented LCM procedure as well as examines their asymptotic proper-

ties. Section 4 contains the simulation study, and Section 5 provides the empirical analysis of return

predictions. Finally, Section 6 concludes. The Appendix contains additional theory and proofs.
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2 Predictive Returns Regressions with Persistent Variables

This section introduces a predictive regression framework for asset returns, where all the variables

may exhibit fractional integration of potentially different orders. The framework is inspired by the

persistent economic systems studied by Andersen & Varneskov (2020) as well as the predictive system

for expected returns with imperfect predictors developed by Pastor & Stambaugh (2009). Finally, we

motivate and review the Local speCtruM (LCM) approach, introduced in the former.

2.1 Predictive System and Assumptions

Suppose we observe a (k + 1)× 1 vector Zt = (yt,X ′t−1)′ at times t = 1, . . . , n, where yt contains the

asset returns and X t−1 is a vector of candidate predictors, which has a multi-component structure,

X t−1 = xt−1 + ct−1, xt ⊥⊥ cs, for all t, s, (6)

with xt−1 capturing the most persistent signal, and ct−1 ∈ I(0) being mean-zero and collecting either

measurement errors, additional weakly dependent components embedded in the variables, or both.

Moreover, let us define zt = (yt,x
′
t−1)′, which is assumed to obey a Type II fractional model,

D(L)(zt − µ) = vt 1{t≥1}, (7)

where µ is a (k+ 1)× 1 vector of nonrandom, unknown finite numbers, capturing either the means or

initial values of zt, the vector process vt = (et,u
′
t−1)′ is weakly dependent, and,

D(L) = diag
[
(1− L)d1 , . . . , (1− L)dk+1

]
, with (1− L)d =

∞∑
i=0

Γ(i− d)

Γ(i+ 1)Γ(−d)
Li, (8)

where Γ( · ) is the gamma function.9 In this setting, in which all variables may exhibit high degrees

of persistence, the predictive relation between yt and the observable regressors X t−1 will be defined

through the weakly dependent components of the persistent signals. Specifically, we assume,

et = ϕt−1 + η
(b)
t , ϕt−1 = B′ut−1 + ξt−1, ut ⊥⊥ ξs, for all t, s, (9)

where η
(b)
t = (1 − L)bηt for some constant b ≥ 0 and ηt ∈ I(0), and with ξt−1 ∈ I(0). Importantly,

however, by combining the relations (7) and (9), this is tantamount to a balanced predictive model

for asset returns,

yt = a+ B′Q(L)xt−1 + ξ
(−d1)
t−1 + υt, t = 1, . . . , n. (10)

where Q(L) = Dx(L)(1 − L)−d1 , with Dx(L) being the k × k lower-right submatrix of D(L), a =

µy −B′Q(L)µx for µ = (µy,µ
′
x)′ as well as υt = (1− L)b−d1ηt and ξ

(−d1)
t−1 = (1− L)−d1ξt−1.

9Formal assumptions on the components of the system are stated below.
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The predictive system (6)-(10) encompasses most multivariate fractionally integrated systems in

the literature, in addition to features specific to the problem of predicting asset returns. To see this,

suppose ct−1 = 0 and ξt−1 = 0, ∀t, as well as 0 ≤ b ≤ d1, then the most persistent components of

the explanatory variables are directly observable, the predictive relation is well-defined and balanced,

and the system may (b > 0) or may not (b = 0) feature (fractional) cointegration. By relaxing these

restrictions, however, the system more accurately describe the inferential issues surrounding return

regressions. In particular, ct−1 is included to accommodate endogeneity, multiple components and

measurement errors in the regressors, rendering their signals latent, ϕt−1 captures the possibility that

the predictors may imperfectly describe the conditional mean, and, by letting b = d1, the return re-

gression have a weakly dependent innovation that may dominate the persistent signal in finite samples.

We will detail these points, provide examples and draw parallels to the extant literature, particularly

to Pastor & Stambaugh (2009) and Andersen & Varneskov (2020), in the next section.

Before proceeding, we impose some formal structure on the system. The conditions mirror those

imposed by Andersen & Varneskov (2020) and the assumptions for the semiparametric fractional

cointegration analyses in, e.g., Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Chris-

tensen & Varneskov (2017), but with subtle differences due to the differing model features. To this end,

let “∼” signify that the ratio of the left- and right-hand-side tends to one in the limit, element-wise.

We then impose assumptions in terms of qt = (u′t−1, ηt)
′ and ζt−1 = (c′t−1, ξt−1)′ rather than vt, when

exploring the asymptotic properties for the LCM procedure below.

Assumption D1. The vector process qt, t = 1, . . . , is covariance stationary with spectral density

matrix satisfying fqq(λ) ∼ Gqq as λ → 0+, where the upper left k × k submatrix, Guu, has full rank,

and the (k + 1)th element of the diagonal, Gηη, is strictly greater than zero. Moreover, there exists a

$ ∈ (0, 2] such that |fqq(λ)−Gqq| = O(λ$) as λ → 0+. Finally, let Gqq(i, k + 1) be the (i, k + 1)th

element of Gqq, which has Gqq(i, k + 1) = Gqq(k + 1, i) = 0 for all i = 1, . . . , k.

Assumption D2. qt is a linear process, qt =
∑∞

j=0Ajεt−j, with square summable coefficients∑∞
j=0 ‖Aj‖2 < ∞, the innovations satisfy, almost surely, E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] = Ik+1,

and the matrices E[εt⊗ εtε′t|Ft−1] and E[εtε
′
t⊗ εtε′t|Ft−1] are nonstochastic, finite, and do not depend

on t, with Ft = σ(εs, s ≤ t). There exists a random variable ζ such that E[ζ2] <∞ and, for all c and

some C, P[‖qt‖ > c] ≤ CP[|ζ| > c]. Finally, the periodogram of εt is denoted by J(λ).

Assumption D3. For A(λ, i), the i-th row of A(λ) =
∑∞

j=0Aje
ijλ, its partial derivative satisfies

‖∂A(λ, i)/∂λ‖ = O(λ−1‖A(λ, i)‖) as λ→ 0+, for i = 1, . . . , k + 1.

Assumption C. Suppose ζt−1 = ζt−11{t≥1} is a mean-zero (k + 1) × 1 vector satisfying the same

Assumption D1-D3 as ut−1, except that it has ηt co-spectrum fζη(λ) ∼ Gζη, as λ → 0+, where the

constant vector Gζη may have non-zero entries. Moreover, let ut ⊥⊥ ζs for all t, s ≥ 1. Finally, if

the i-th element of the vector ζt−1 is trivial, that is, if ζt−1(i) = 0 for all t ≥ 1, then the co-spectrum

condition Gζη(i) = Gζζ(i, g) = Gζζ(g, i) = 0 for g = 1, . . . , k + 1, is naturally also required.
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Assumption M. Let 0 ≤ d1 ≤ 1 and 0 ≤ di ≤ 2 for all i = 2, . . . , k+ 1. Define dx = min(di; 2 ≤ i ≤
k + 1), d = min(d1, dx), d̄x = max(di; 2 ≤ i ≤ k + 1), and let dx > 0 and b = d1.

Assumptions D1-D3 are standard in the literature studying fractional (co-)integration. Specifically,

D1 and D3 impose a rate of convergence for the spectral density fqq(λ) as λ → 0+, which depends

on the smoothness parameter $ ∈ (0, 2]. In addition, D1 requires full rank of ut−1 and it being

locally exogenous to ηt as λ→ 0+, but not global exogeneity. Finally, condition D2 specifies linearity,

martingale and moment conditions for qt, allowing for general multivariate dependence among the

variables, thus accommodating flexible lead-lag and predictive structures.

Whereas D1 allows the latent predictive signals, xt−1, to exhibit mild endogeneity (as λ→ c > 0)

through ut−1, Assumption C lets the observable explanatory variables exhibit stronger forms of endo-

geneity, that is, to display non-trivial correlations with the innovations to asset returns. These corre-

lations are captured via the co-spectrum between the less persistent component (and/or measurement

errors) ct−1 and the innovations ηt, which, furthermore, may both be non-trivially correlated with the

“conditional mean errors” from the, possibly, imperfect predictors, ξt−1. This treatment of endogenous

predictors is similar in spirit to Stambaugh (1999) and Pastor & Stambaugh (2009).

Assumption M imposes a mild structure on the memory of the system. Specifically, we restrict the

persistent component of returns to maximally exhibit unit root persistence, whereas the explanatory

variables can be explosive, di > 1. In general, however, the assumptions accommodate flexible per-

sistence among the variables; if 0 < di < 1/2, the variable is (asymptotically) stationary with long

memory; if di ≥ 1/2, the variable is non-stationary, but has a well-defined mean for di < 1. This

flexibility is particularly useful for characterizing the properties of multivariate predictive systems,

whose components are very persistent, yet display different degrees of persistence, which is often the

case for applications with multiple financial and macroeconomic variables.

Finally, we impose b = d1, which implies υt = ηt and, consequently, that the return prediction

model exhibits (fractional) cointegration, if ξt−1 is trivial. Hence, we equip returns with a persistent

conditional mean and weakly dependent innovations. This is consistent with a vast literature, that

finds limited serial correlation in return innovations; see, e.g., the introduction for references.

Remark 1. Assumption M stipulates that dx > 0, i.e., that all predictors have long memory. This

condition is necessary, when the requisite elements of ct−1 are non-trivial. That is, we obtain iden-

tification of the persistent predictive signals through differences in memory relative to their weakly

dependent components (and by using the LCM approach). We can accommodate cases, where di = 0,

when ct−1(i) = 0, ∀t ≥ 1, which is analogous to assuming exogeneity in OLS settings. Our assumption

is reminiscent of the approach in Pastor & Stambaugh (2009), who also, as will be explained below,

utilize memory differentials to identify the conditional mean properties of asset returns, but within a

more standard weakly dependent setting. Importantly, our empirical application in Section 5 illustrates

that popular return predictors from recent macro-finance models, e.g., Bansal, Kiku, Shaliastovich &

Yaron (2014) and Campbell, Giglio, Polk & Turley (2018), exhibit strong persistence and may be
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characteristized as either stationary or non-stationary fractionally integrated processes. Hence, de-

spite Assumption M deviating from the literature by requiring fractional integration, rather than weak,

local-to-unity or I(1) dependence, this assumption has a solid empirical foundation.

2.2 Return Regressions: Dynamics and Implications

The predictive system (6)-(10) has several distinct features. First, the regression model is balanced,

irrespective of the forecasting prowess of the predictors, that is, yt ∈ I(d1) under both H0 : B = 0

and HA : B 6= 0. The null hypothesis, H0, allows for the scenario, where the regressors imperfectly

span the conditional mean, i.e., ϕt−1 = ξt−1 6= 0. Under the alternative hypothesis, HA, the fractional

filter adjusts the persistence of the “latent” signals, xt−1, to ensure regression balance. If the system

is balanced, then Q(L) = Ik, a k-dimensional identity matrix, and the adjustment is trivial. To

further appreciate the mechanics of the fractional filter, consider a scenario where the conditional mean

component has d1 = 0.8, thereby being nonstationary with a well-defined mean. Then, if we observe

an explanatory variable with dx = 1.8, the regressor must be transformed to match the persistence of

the conditional mean. In this case, the predictor requires a simple difference transformation.

Second, even under HA, the regressors may be imperfect, that is, ξt−1 may be non-trivial. This

captures a scenario, where the predictors contain information about the conditional mean, but fail to

fully span its variation. In contrast, if the predictors are “perfect”, we have ϕt−1 = B′ut−1.

Third, the system accommodates endogenous regressors through, ct−1, which is independent of the

persistent signal, xt−1. To motivate this model feature, let us draw a parallel to the long-run risk

model of Bansal & Yaron (2004), where persistent shocks to the mean and volatility of consumption

growth determine the conditional equity premium. In our setting, the persistence of the risk factors is

captured by fractionally integrated processes instead of persistent first-order autoregressive (AR) ones,

whose half-lives have been stipulated to exceed 52 months (coefficients of 0.979 and 0.987). Moreover,

Bansal & Yaron (2004) assume, that these shocks are independent of the innovations to consumption

growth. In contrast, we can accommodate a second component in both factors, that are less persistent,

but allowed to exhibit non-trivial correlation with the return innovations. These components contain

no information about the conditional equity premium, but facilitates richer system dynamics.10

Fourth, the model facilitates non-trivial correlation between unspanned component of the condi-

tional mean, ξt−1, and the observable explanatory variables (again, through ct−1) as well as with the

innovations to asset returns, υt = ηt. This allows for endogeneity through different channels.

Finally, the model allows asset returns to have a weakly dependent component ηt, which may have a

“large” volatility relative to the persistent conditional mean, thereby producing a “low” signal-to-noise

ratio for the return regression and rendering predictability hard to detect empirically. This feature

is consistent with a comprehensive empirical literature, that find limited return serial correlation, yet

10A multi-component structure of the conditional mean of consumption growth is consistent with the dynamic decomposi-
tion in, e.g., Ortu, Tamoni & Tebaldi (2013), who show that consumption growth has a very persistent component with
low volatility as well as a less persistent “error” component with high volatility. Moreover, multi-factor volatility models
are used extensively in financial econometrics; see, e.g., Andersen & Benzoni (2012) and many references therein.
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predictive power from highly persistent financial and macroeconomic variables; see, e.g., Welch &

Goyal (2008), Lettau & Ludvigson (2010) and the many references therein. Likewise, many prominent

asset pricing theories, e.g., the present value, long-run risk and dynamic disaster models, stipulate the

existence of a persistent conditional mean return with a “low” signal-to-noise ratio.

Altogether, these features mimic the qualitative implications of the predictive system for asset

returns in Pastor & Stambaugh (2009), despite arising in our fractionally integrated setting rather

than their first-order AR economy. The following remark outline these similarities.

Remark 2. Pastor & Stambaugh (2009) analyze an asset return system with imperfect predictors,

whose components follow stationary AR(1) processes. Adapted to our notation, it takes the form,

yt = ϕt−1 + ηt, ϕt−1 = aϕ + B′X t−1 + ξt−1,

ϕt = (1− φ)µϕ + φϕt−1 + wt, X t = (Ik −A)µX + AX t−1 + ut,

where 0 < φ < 1, the eigenvalues of A are inside the unit circle, and the innovation vector (ηt, wt,u
′
t)
′

is i.i.d. Gaussian. The system features return predictability via the conditional mean (since φ > 0),

endogenous regressors, and it accommodates imperfect predictors, when ϕt−1 6= aϕ+B′X t−1. Moreover,

if the predictors are imperfect, this generates unspanned return persistence, as we obtain by inclusion

of the component ξ
(−d1)
t−1 in equation (10). Finally, their key identifying assumption for B is 0 < φ < 1,

allowing the persistent conditional mean to be disentangled from the noise. If this assumption fails,

they need exogenous regressors. It is analogous to assuming dx > 0 in Assumption M.

The model (6)-(10) features four competing hypotheses for the return dynamics:

(i) B = 0 and ξt−1 is trivial, ∀t = 1, . . . , n; returns are not predictable.

(ii) B = 0 and ξt−1 non-trivial, ∀t = 1, . . . , n; returns are not predictable by X t−1.

(iii) B 6= 0 and ξt−1 non-trivial, ∀t = 1, . . . , n; returns are predictable, and X t−1 is “imperfect”.

(iv) B 6= 0 and ξt−1 trivial, ∀t = 1, . . . , n; returns are predictable, and X t−1 is “perfect”.

The hypotheses (i) and (ii) imply that X t−1 possess no predictive power for returns, but they have

different dynamic implications; namely, returns are I(0) and I(d1), respectively. Moreover, the first

hypothesis stipulates, that returns are not predictable by any persistent regressor, whereas the second

allows for predictability with, however, the “wrong” set of predictors having been examined. The vast

empirical literature on return predictability and extensive theoretical developments (again, see the

introduction) suggest that, in many settings, we should focus on the null hypothesis given by scenario

(ii) rather than (i), especially if examining a set of predictor variables sequentially in single-regressor

models. In addition, hypotheses (iii) and (iv) also carry different dynamic implications. Specifically,

both hypotheses imply yt ∈ I(d1), but (iii) has regression errors, that are comprised of ξ
(−d1)
t−1 ∈ I(d1)

and ηt ∈ I(0) processes, while (iv) describes a fractional cointegration model with I(0) innovations.

13



The hypotheses imply different inference regime for persistent variables, for which standard OLS is

known to deliver spurious inference; see, e.g., Granger & Newbold (1974), Phillips (1987), and Tsay

& Chung (2000). Estimation and inference is further complicated by the fact, that the particular

scenario as well as the persistence properties of zt = (yt,x
′
t−1)′ are unknown ex-ante. For example, if

we know that yt and X t−1 = xt−1 form a fractional cointegration model (i.e., the signals are significant,

observable and “perfect”), one may readily apply inference procedures such as Robinson & Marinucci

(2003), Robinson & Hualde (2003), Christensen & Nielsen (2006) and Johansen & Nielsen (2012).

Generally, however, we do not know, a priori, which of the hypotheses capture the inference scenario,

i.e., whether the regressors are endogenous and/or the predictors are“perfect”, and we need to estimate

the persistence of zt, which is complicated due to the “low” signal-to-noise ratio for the returns.

As exemplified in Remark 2 and the introduction, related issues have been examined in different

predictive settings, assuming stationary first-order AR dynamics, (near) local-to-unity, unit root or

locally-explosive persistence. In contrast, we assume a flexible long memory system with similar

qualitative features, and we analyze the return predictability via the LCM approach. Moreover,

compared with Andersen & Varneskov (2020), we allow for“imperfect”predictors and the simultaneous

presence of endogeneity and cointegration.11 Hence, all subsequent results are new.

Specifically, we provide a (cointegration) rank testing framework that facilitates discriminating

between hypotheses (i)-(iv) and allows us to determine the persistence of the conditional mean asset

returns. Moreover, we propose a rank-augmented LCM procedure to study return predictability.

These are developed with hypotheses (ii)-(iv) in mind, that is, thinking about inference scenarios,

where returns have a persistent mean component, and the predictors are either insignificant, imperfect

or perfect. However, we emphasize that both our rank test and rank-augmented LCM procedure

remain valid in scenario (i), and we provide comments regarding this case throughout.

2.3 The Local Spectrum Approach

The motivation behind the LCM inference and testing procedure is readily conveyed by considering

decompositions of the spectral density for the observable regressors, X t−1, and their co-spectrum with

the asset returns, yt. Specifically, using that fxc(λ) ∼ 0, as λ→ 0+, we may write,

fXX (λ) ∼ Λ−1
xx Guu Λ

−1
xx +Gcc, (11)

fXy(λ) ∼ Λ−1
xx GuuBΛ

−1
yy + f

(−d1)
xξ (λ) + fxη(λ) + Gcξ Λ

−1
yy + Gcη, (12)

for λ→ 0+, where Λyy and Λxx are the complex conjugates of Λyy, respectively, Λxx, defined as,

Λyy = (1− eiλ)d1 , Λxx = diag
[
(1− eiλ)d2 , . . . , (1− eiλ)dk+1

]
.

11Andersen & Varneskov (2020) study the asymptotic properties of LCM approach in a general predictive setting. However,
when examining the the effect of regressor endogeneity on the inference, they assume cointegration is absent.
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These decompositions are intuitive. First, fXX (λ) shares the multi-component structure of the ob-

servable regressors X t−1, with the spectral density of the persistent signal dominating the frequencies

in the vicinity of the origin. However, the speed of divergence may differ across elements, depending

on the fractional integration orders of the regressors. Second, fXy(λ) not only contains information

about the forecasting prowess of the regressors, B, the first term dominates the remaining ones at

lower frequency ordinates as λ→ 0+. Moreover, GcξΛ
−1
yy +Gcη captures an endogeneity-induced bias,

which may be persistent and even diverge (when d1 > 0) as λ → 0+, however, at a slower rate than

the first term. Finally, the co-spectra f
(−d1)
xξ (λ) and fxη(λ) introduce sampling errors for estimators

of B, with their respective asymptotic orders differing due to ξ
(−d1)
t−1 ∈ I(d1) and ηt ∈ I(0).

In general, the (co-)spectral densities in equations (11) and (12) diverge with rates depending on the,

possibly, different integration orders of the predictors and asset returns. In contrast, the corresponding

co-spectral densities for the unobserved weakly dependent components of the predictive system, ut−1

and et, are,

fuu(λ) ∼ Guu and fue(λ) ∼ GuuB + fuξ(λ) + f (d1)
uη (λ), (13)

which are both asymptotically bounded and convey similar information about B. This suggests that

inference based on ut−1 and et may circumvent issues regarding balance, degeneracy of point estimates

and spurious inference, motivating Andersen & Varneskov (2020) to introduce the LCM procedure,

which consists of two main steps. First, the procedure carries out fractional filtering of the observed

variables Zt = (yt,X ′t−1)′ to obtain an estimate of vt = (et,u
′
t−1)′. Second, it uses medium band

least squares (MBLS) estimation for robust inference. These steps are detailed next, together with

additional subtleties created by the specific problem of predicting asset returns.

Step 1: Fractional Filtering. As we seek to retain flexibility, allowing for different estimators of

the fractional integration orders, we abstain from dedicating a specific estimator and, instead, assume

to have one available, d̂i for i = 1, . . . , k + 1, that satisfies mild consistency requirements.

Assumption F. Let md � n% be a sequence of integers where 0 < % ≤ 1, then, for all i = 1, . . . , k+ 1

elements of zt, we assume to have an estimator with the property,

d̂i − di = Op
(
1/
√
md

)
, and we then let, D̂(L) = diag

[
(1− L)d̂1 , . . . , (1− L)d̂k+1

]
.

Assumption F is very mild, essentially only requiring existence of an estimator which, under ap-

propriate assumptions on equation (7), is consistent. However, since we accommodate both (asymp-

totically) stationary and non-stationary variables in Assumption M, the estimator must apply for a

wide range of di. Examples include the semi-parametric exact local Whittle (ELW), see Shimotsu &

Phillips (2005) and Shimotsu (2010), the trimmed ELW (TELW) by Andersen & Varneskov (2020),

and parametric (long) fractional ARIMA(p, d, q) models using information criteria to determine the

short-memory dynamics; see, e.g., Hualde & Robinson (2011) and Nielsen (2015).
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Once we obtain the filtering matrix, D̂(L), the estimates for vt are,

v̂ct ≡ (êt, (û
c
t−1)′)′ = D̂(L)Zt, (14)

where ûct−1 = ût−1 + ĉt−1, with ût−1 = D̂x(L)xt−1 and ĉt−1 = D̂x(L)ct−1. Similarly, we define

v̂t ≡ (êt, û
′
t−1)′, which is the equivalent (albeit, unobservable) estimate of vt, without an endogenous

component in the regressors. We will, then, utilize frequency domain estimation to extract asymptot-

ically identical information from v̂ct as for v̂t. Moreover, we leave the mean, or initial value, of the

variables unspecified at the filtering stage. Instead, we account for their residual impact on the mean

in a Type-II fractional model, D̂(L)µ1{t≥1}, in a unified manner during second stage estimation.

Step 2: Medium band least squares estimation. We estimate and draw inference about B
using a frequency-domain least squares estimator and v̂ct . To define the former, we let,

wh(λj) =
1√
2πn

n∑
t=1

ht e
itλj , Ihk(λj) = wh(λj)wk(λj), (15)

be the discrete Fourier transform (DFT) and cross-periodogram, respectively, where ht and kt are

generic (and compatible) vector time series, and λj = 2πj/n denotes the Fourier frequencies. Moreover,

we define the trimmed discretely averaged co-periodogram (TDAC), using the real part of Ihk(λj), as,

F̂hk(`,m) =
2π

n

m∑
j=`

<(Ihk(λj)), 1 ≤ ` ≤ m ≤ n, (16)

where ` = `(n) and m = m(n) comprise the trimming and bandwidth functions, respectively. Hence,

we may write the TDAC of ûct−1 as F̂ c
ûû(`,m) and, similarly, of ûct−1 and êt as F̂ c

ûê(`,m). Finally,

these are used to define the medium band least squares (MBLS) estimator,

B̂c(`,m) = F̂ c
ûû(`,m)−1 F̂ c

ûê(`,m), (17)

for which `,m → ∞ and `/m + m/n → 0, as n → ∞. The MBLS estimator has some distinct

advantages for predictive inference and testing with persistent variables. Specifically, by combining

sample-size-dependent trimming with a bandwidth m/n→ 0, equation (17) turns out to be first-order

equivalent to,

B̂(`,m) = F̂ûû(`,m)−1 F̂ûê(`,m), (18)

that is, the corresponding estimator based on v̂t. In other words, trimming and a local bandwidth

suffice to annihilate biases arising as a result of endogenous regressors. Intuitively, this follows from the

MBLS estimator utilizing frequencies, that are asymptotically “close” to the origin, which, as shown

by the decompositions (11) and (12), are dominated by information about B, whereas the higher

frequencies are more prone to endogenous regressor biases. Moreover, the trimming and bandwidth

sequences aid in asymptotic elimination of the residual impact from the filtered mean component (mean
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slippage contamination), occurring at lower frequencies, and first-stage estimation errors from the

filtering procedure, occurring at higher frequencies. This suggests that LCM procedure, particularly

the second step, should be well-suited to draw inference regarding return predictability.

The main obstacle for using LCM to analyze return regressions is the fractional filtering step. It

is complicated due to the low signal-to-noise ratio of the conditional mean relative to the weakly

dependent innovations; the return serial dependence is limited, although some highly persistent series

often provide significant predictive power for the returns. This suggest that we cannot draw inference

about d1 in finite samples using standard univariate time series techniques and, in fact, we verify

these results in both our simulation study and the empirical analysis below. Consequently, the next

section provides a new (cointegration) rank testing framework, that not only facilitates discriminating

between the model hypotheses (i)-(iv), but also allows us to determine the persistence of the conditional

mean return component. Subsequently, in Section 4, we document that this multivariate procedure

overcomes the shortcomings of univariate time series techniques in realistic finite sample settings.

3 LCM Rank Testing and Inference

This section provides a new rank test for fractional cointegration, that facilitates discriminating be-

tween the model hypotheses (i)-(iv). First, we establish the properties of the test, requiring that

Assumption F holds, i.e., we can consistently estimate the fractional integration order for the predic-

tors and the asset returns. As argued above, this assumption is unlikely to hold in finite samples,

using standard univariate techniques, as the signal-to-noise ratio of the conditional mean to the return

innovations is too “low”. Hence, we subsequently outline how a sequence of rank tests may be used to

deduce, whether returns have a persistent conditional mean and to determine its fractional integration

order. Finally, we establish central limit theory for a rank-augmented LCM (RLCM) procedure.

3.1 LCM Rank Testing for Cointegration

Initially, we suppose that the returns are equipped with a conditional mean, and we know its fractional

integration order, 0 ≤ d1 ≤ 1. Then our filtering, heuristically, implies,(1− L)d1yt ' B′ut−1 + η
(d1)
t under models (i) and (iv),

(1− L)d1yt ' B′ut−1 + ξt−1 + η
(d1)
t under models (ii) and (iii),

(19)

with, again, ξt−1 ⊥⊥ ut−1 by Assumption C. Hence, we can apply this decomposition to test for the

presence of ξt−1. The interpretation of the test, however, depends on the magnitude of d1. If the

returns do not feature a persistent mean component, d1 = 0, in line with scenario (i), then we cannot

distinguish ξt−1 and η
(d1)
t = ηt, which are both I(0). As noted in Remark 2, this corresponds to

identification failure (when φ = 0) in the imperfect predictor model of Pastor & Stambaugh (2009).

However, given the extensive empirical and theoretical evidence on return predictability, our primary
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focus is on the persistent mean return case, d1 > 0, corresponding to scenarios (ii)-(iv). In these

cases, we may utilize the low-frequency spectrum to design a cointegration rank test for the presence

of ξt−1 using v̂ct = (êt, (û
c
t−1)′)′. This test design works, since η

(d1)
t is a lower-order residual and has a

degenerate spectral density for λ→ 0+, as discussed below equations (11) and (12).12

Formally, to design a rank testing procedure, we leverage insights from equation (19) and use the

fractionally filtered series, v̂ct . Hence, we must accommodate estimation errors from filtering, mean-

slippage, as well as bias and errors induced by regressor endogeneity, in analogy to the challenges

detailed for the second-stage MBLS in Section 2. To this end, we turn to the trimmed long-run

covariance estimator,

Ĝc
v̂v̂(`G,mG) =

1

mG − `G + 1

mG∑
j=`G

< (Icv̂v̂(λj)) , (20)

where we use separate bandwidth and trimming functions, mG = mG(n) and `G = `G(n). This

class of long-run covariance estimators is used for inference and testing in Andersen & Varneskov

(2020) and is akin to those in Christensen & Varneskov (2017). If we restrict ` = 1, the estimator

also resembles those employed by Robinson & Yajima (2002) and Nielsen & Shimotsu (2007) to design

semiparametric tests for fractional cointegration rank in LW and ELW settings, respectively. However,

we face additional challenges due to the, possibly, endogenous regressors, fractional filtering induced

mean-slippage and estimation errors as well as the lower-order filtering error η
(d1)
t . Hence, we seek ap-

propriate conditions to prevent either feature from impacting the limiting properties. Moreover, while

Andersen & Varneskov (2020) establish consistency of the trimmed estimator (20) for the covariance

matrix Gψψ with ψt−1 ≡ (ϕt−1,u
′
t−1)′ – either in the case with weak endogeneity, as in Assumption

D1, or for the case of stronger endogeneity, but absent cointegration – we now require an associated

central limit theory, covering models (ii)-(iv), to design a suitable rank test for (iv).13

Assumption T-G. let the bandwidth mG � nκG and `G � nνG, with 0 < νG < κG < % ≤ 1. Then,

for some arbitrarily small ε > 0, the following cross-restrictions are imposed on `G, mG, md and n,

m1+2$
G

n$
+

n

`2G
√
mG

(
1
√
mG

+
(mG

n

)d)
+

`G√
mG

+
(mG

n

)dx √mG

`1+ε
G

+→ 0, as n→∞.

The first condition in Assumption T-G is familiar from semiparametric frequency domain estima-

tion, e.g., Robinson & Yajima (2002) and Nielsen & Shimotsu (2007). For the empirically relevant

vector ARFIMA process (with $ = 2), it requires κG < 4/5. In contrast, the last three conditions

impose joint bounds on the bandwidth and trimming rates. Specifically, two and four stipulate a

lower bound on the trimming to eliminate the bias from mean-slippage and regressor endogeneity,

12We explain in the next section how to use sequential rank tests to verify that d1 > 0, indeed, holds. Still, it is worth
noting that our rank test will work, even when d1 = 0; indicating full rank due to the presence of both ξt−1 and ηt.

13Again, we use the definition ψt−1 ≡ (ϕt−1,u
′
t−1)′ to indicate that weakly dependent return innovations have no asymp-

totic impact on the limit theory, when d1 > 0 in scenarios (ii)-(iv).
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respectively, and condition three restricts the loss of information. Taken together,

1− κG
2

∨ (1− κG)(1− d) + κG/2

2
∨ κG

2
− (1− κG)dx < ν <

κG
2
, (21)

These bounds are quite restrictive, if 0 < d ≤ dx is small. Moreover, we require dx > 0 for ν to be

defined on an open interval, again, illustrating the importance of this identifying condition, when the

regressors are endogenous. The fourth restriction can be dispensed with if ct−1 = 0, ∀t = 1, . . . , n. It

is important to note that, if the conditional mean of returns and the regressors are strongly persistent,

e.g., d ' 1, the lower bound simplifies to (1− κG)/2 ∨ κG/4 ∨ 3κG/2− 1 < ν, which is very mild.

Theorem 1. Suppose Assumptions D1-D3, C, M, F and T-G hold, 0 < d1 ≤ 1, and n1/2/mG → 0.

Then, by letting G
(i)
ψψ be the i = 1, . . . , k + 1 column of Gψψ, it follows,

m
1/2
G vec

(
Ĝc
v̂v̂(`G,mG)−Gψψ

)
D−→ N

(
0,
(
Gψψ ⊗Gψψ +

(
Gψψ ⊗G

(1)
ψψ, . . . ,Gψψ ⊗G

(k+1)
ψψ

))
/2
)
.

Theorem 1 shows that the trimmed long-run covariance estimator attains asymptotic properties mir-

roring those of Robinson & Yajima (2002, Propositions 2-3) and Nielsen & Shimotsu (2007, Lemmas

4-5). Hence, despite the additional challenges in the current environment, we may utilize their pro-

cedures to study the (cointegration) rank of Gψψ and, thus, whether predictive model (iv) should

replace models (ii) or (iii). Moreover, the analysis simplifies, as we do not seek to determine an exact

cointegration rank of a system, but rather to test the null hypothesis H̃0 : rank(Gψψ) = k+ 1 against

the specific alternative H̃A : rank(Gψψ) = k, because ut−1 is of full rank.

Remark 3. A result analogous to Theorem 1 still holds, if b = d1 = 0, as for scenario (i). Specifically,

we need to write ψt ≡ vt and Gψψ ≡ Gvv, since η
(b)
t = ηt and ξt−1 are both I(0). Moreover, we can

relax the second trimming condition in Assumption T-G, which is required to eliminate the lower-

order error (when d1 > 0); namely, η
(d1)
t . In scenario (i), Gψψ will be of full rank, and this will be

indicated by our subsequent rank selecetion procedures with probability approaching 1. Hence, despite

being developed with models (ii)-(iv) and d1 > 0 in mind, our approach still applies for scenario (i).

Next, to estimate the rank, we let δi and δ̂i, i = 1, . . . , k+1 denote the eigenvalues of the covariance

matrices Gψψ and Ĝc
v̂v̂(`G,mG), listed in descending order, 0 < δk < · · · < δ1, with 0 < δk+1 < δk and

δk+1 = 0 under H̃0 and H̃A, respectively. Then, for r = 0 and r = 1 indicating the rank reduction

under the two hypotheses, we follow Robinson & Yajima (2002) and Nielsen & Shimotsu (2007) and

estimate r as,

r̂ = argmin
%∈{0,1}

L(%), L(%) = ϑ(n)(k + 1− %)−
k+1−%∑
i=1

δ̂i, (22)

for some ϑ(n) > 0, which is assumed to obey the conditions:

19



Assumption V. The sequence ϑ(n) satisfies ϑ(n) + 1
ϑ(n)
√
mG
→ 0 as n→∞.

Theorem 2. Suppose the conditions of Theorem 1 and Assumption V hold, then,

lim
n→∞

P(r̂ = r) = 1.

The rank selection procedure is consistent and, thus, facilitates discrimination between the pre-

dictive models (ii) or (iii) and the cointegration model (iv). Moreover, as discussed in, e.g., Phillips

& Ouliaris (1988), Robinson & Yajima (2002) and Nielsen & Shimotsu (2007), the rank selection

procedure may be implemented using the corresponding (trimmed) correlation matrix estimator,

P̂ c
v̂v̂(`G,mG) ≡ diag(Ĝc

v̂v̂(`G,mG))−1/2 Ĝc
v̂v̂(`G,mG) diag(Ĝc

v̂v̂(`G,mG))−1/2. (23)

In line with their numerical evidence, we find that the correlation-based procedure performs substan-

tially better in (unreported) finite sample simulation settings, which we return to in Section 4.

As discussed above, the validity of the described rank testing procedure depends on a reliable

finite sample estimate of d1 via Assumption F and, to this end, we cannot rely on univariate time

series techniques. Hence, we continue by demonstrating how a sequence of rank tests may be used to

determine d1, in addition to discriminating between the hypotheses H̃0 and H̃A.

Remark 4. In Appendix A.1, we describe an alternative rank test based on Theorem 1 and feasible

inference for the eigenvalues, inspired by Phillips & Ouliaris (1988). This performance of this testing

procedure, however, falls short of the corresponding one based on equations (22)-(23) in realistically

calibrated finite-sample simulation settings. Hence, these results are omitted for brevity.

3.2 Assessing Cointegration and Persistence in Returns

The vector of (latent) regressors, ut−1, is required to have full rank by Assumption D1, implying

that the consistent LCM-based rank selection procedure based on equations (22)-(23) may be applied

bivariately, sequentially pairing each regressor with the returns. Because we cannot estimate d1 reliably

in finite samples via standard univariate techniques, we implement a restricted version of the test by

replacing d̂1 with d̂i, i = 2, . . . , k + 1, corresponding to the relevant regressor, assuming that,

d1 ∈ {d2, . . . , dk+1}, and still 0 < d1 ≤ 1, (24)

i.e., the vector of regressors has been chosen“sensibly”. For example, the regressors may include theory-

guided state variables from the long-run risk, dynamic disaster and present-value models. Then, under

equation (24), an estimate r̂i = 1 with 0 < d̂i ≤ 1, i = 2, . . . , k + 1, constitutes evidence in favor of

fractional cointegration using the (i − 1)th regressor. Similarly, a corresponding estimate r̂i = 0

indicates that returns have not been over-differenced, and that the predictive relation is “imperfect”,

suggesting that we may“search”among the integration orders of the candidate predictors. However, the
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procedure must be implemented thoughtfully. An indiscriminate inclusion of (irrelevant) predictors, or

regressors with integration orders larger than 1, will render the imposition of the maximal integration

order among the regressors in our testing procedure for the conditional mean return problematic. The

issue is, of course, that it will tend to generate rejections of the full rank hypothesis due to the ex-ante

restricted integration order in the test d1 = di, i = 2, . . . , k + 1, being too large. Specifically, suppose

we include some auxiliary I(dx) predictor with dx > d1, then, heuristically,(1− L)dxyt ' B′(1− L)dx−d1ut−1 + η
(dx)
t under model (iv),

(1− L)dxyt ' B′(1− L)dx−d1ut−1 + (1− L)dx−d1ξt + η
(dx)
t under models (ii) and (iii),

generating a rank estimate r̂x = 1 with probability approaching one, because the spectral density of

the, in this case, over-differenced return series will be degenerate as λ→ 0+.

To guard against this type of mechanical over-differencing, we advocate a screening procedure. Let

R denote the set of regressors, that generate estimates r̂i = 1 with 0 < d̂i ≤ 1 in a bivariate rank test

with returns – indicating cointegration. Our sequential screening procedure now takes the form,

Step 1. Carry out k bivariate rank tests with the returns. If R = ∅, suggesting no cointegration,

choose d1 = maxi=2,...,k+1(di | 0 < di ≤ 1) and stop. If R 6= ∅, proceed to Step 2.

Step 2. Impose d1 = maxi=2,...,k+1(di |ut−1(i − 1) ∈ R) and carry out all k bivariate rank test. If

r̂i = 0 is maintained for at least one variable, stop. If not, choose the second-largest di among the

variables in R and repeat step 2. Continue until r̂i = 0 is maintained for at least one variable.

Step 2 exploits the fact that a single non-rejection indicates the returns, for the given selec-

tion d1 ∈ (0, 1], have not been over-differenced. The identical argument motivates selecting d1 =

maxi=2,...,k+1(di | 0 < di ≤ 1), if R = ∅. In fact, if r̂i = 0 is estimated for just a single persistent

(d1 > 0) candidate predictor, even an irrelevant one, it provides consistent evidence against a weakly

dependent return series. That is, if we find, for fractionally filtered returns, that the rank is non-

degenerate relative to a fractionally integrated series, then the conditional mean return must display

fractional persistence, as (1 − L)d1ηt will be a lower-order residual for all d1 > 0. Moreover, by im-

plementing the rank selection procedure sequentially, we may directly assess the (induced) degree of

persistence of the conditional mean, and which of the inference scenarios (ii)-(iv) apply.

Remark 5. To illustrate the workings of two-step procedure, we consider an example. Suppose there

are two candidate predictors X t−1 = (X1,t−1,X2,t−1)′ with integration orders (d2, d3)′ = (0.45, 0.80)′.

Moreover, let X1,t−1 be insignificant and X2,t−1 be “perfect”, implying that model (iv) applies and

d1 = d3. The integration orders (d2, d3)′ are estimated consistently via Assumption F. In this case, our

bivariate rank test for returns and X2,t−1 using d̂3 will (asymptotically) indicate cointegration, belonging

to the set R. The test for X1,t−1 using d̂2 may or may not indicate cointegration.14 Regardless, since

14The reason is that returns have not been filtered sufficiently, (1 − L)d2−d1(But−1 + ξt) ∈ I(d1 − d2), with d1 > d2.
Hence, the first element of the vector in the rank test may be of “large enough” asymptotic order relative to the second
fractionally filtered element of the vector, which is I(0), to indicate (spurious) cointegration in finite samples.
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d3 > d2, we repeat the test for X1,t−1 with d̂3 in Step 2, which will now (asymptotically) indicate full

rank. Hence, the procedure stops here; we select d1 = d3 and know that inference scenario (iv) applies.

Remark 6. If scenario (i) describes the return model, then we will find r̂i = 1 for all i = 2, . . . k + 1

and di > 0, with probability approaching one, since returns are over-differenced for any di > 0. Hence,

our two-step procedure implicitly provide information about the validity of this model.

3.3 Limit Theory for LCM

Beyond reliable estimates for D̂(L), satisfying Assumption F, obtained either via univariate time series

and/or rank-augmented techniques, we also require trimming and bandwidth conditions for the second-

stage MBLS estimator, along the lines of Assumption T-G. As noted, we impose b = d1 throughout.

We state the requisite conditions in terms of b for comparability with Andersen & Varneskov (2020).

Before proceeding, note, again, that we develop LCM inference with scenarios (ii)-(iv) in mind, but,

as described below, the asymptotic results pertain equally to model (i).

Assumption T. Let the bandwidth m � nκ, ` � nν , and md � n% with 0 < ν < κ < % ≤ 1. Moreover,

recall that the parameter $ ∈ (0, 2] measures smoothness of the spectral density in Assumption D1.

The following cross-restrictions are assumed to apply for `, m, md and n, as n→∞,

m1+2$

n2$
+

`1+$+b

n$m1/2+b
+

n1/2+b

m
1/2
d mb `

+
n1−2d+b

m1/2−2d+b `2
+

nb

m1/2+b
+
m1/2+dx−b

ndx−b `
→ 0.

The restrictions in Assumption T are mild. The first term is standard for semiparametric estimation

in the frequency domain, see, e.g., Robinson (1995) and Lobato (1999), while the remaining conditions

are specific to the second-stage MBLS estimator, adopted in the LCM procedure. Specifically, condition

two, implying ν < ($ + κ(1/2 + b))/(1 + $ + b), restricts the loss of information from trimming

frequencies; three, (1 − %)/2 + b(1 − κ) < ν in conjunction with 0 < ν < κ < % ≤ 1, eliminates

errors from estimating the integration orders; four, (1 − κ/2 − (2d − b)(1 − κ))/2 < ν, alleviates the

low-frequency bias from mean-slippage following fractional filtering; five, b/(1/2 + b) < κ imposes a

mild bound on the bandwidth; six, κ/2− (1− κ)(dx − b) < ν eliminates the endogeneity bias.15

If we consider the empirically relevant vector ARFIMA process (with $ = 2) and select κ close to

its upper bound 4/5, conditions two and four imply (3/5− (2d− b)/5)/2 < ν < 4/5. The lower bound

is strictly decreasing in 2d − b ≥ 0 (as assumed below), implying that its most restrictive scenario is

obtained when d = 0, equaling 3/10. The third condition is (essentially) trivial, if we adopt a para-

metric first-stage estimator with % = 1 and κ close to 4/5. If the estimator is semiparametric, however,

and we select κ < % as well as % arbitrarily close to 4/5, the additional lower bound requirement on

the trimming rate becomes 1/10 + b/5 ≤ 3/10 < ν. Finally, if the regressors are endogenous and we

select κ close to 4/5 for efficiency, we require 2/5−(dx−b)/5 < ν, with most conservative bound being

15We note that the trimming and bandwidth functions in Assumption T are mutually consistent for all values of 0 < dx < 2
and 0 ≤ d1 ≤ 1 if the (implied) condition max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2 holds.
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obtained when dx − b = 0. Intuitively, we require stronger trimming to obtain the same asymptotic

efficiency in the presence of endogenous regressors, if the excess persistence of the system is small.

Theorem 3. Suppose Assumptions D1-D3, C, M, F and T hold as well as the conditions 0 < d1 ≤ 1,

b ≤ d, n1/2/m→ 0, and max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2, then,
√
m
(
B̂c(`,m)−B

)
D−→ N

(
0,G−1

uuGξξ/2
)
, under models (ii) and (iii),

√
mλ−bm

(
B̂c(`,m)−B

)
D−→ N

(
0,G−1

uuGηη/(2(1 + 2b))
)
, under model (iv).

Theorem 3 demonstrates that the LCM procedure, possibly augmented with the rank test to deter-

mine d1, is asymptotically Gaussian for both the predictive models (ii) and (iii) and the cointegration

model (iv). The asymptotic distribution theory differs, however, in the two cases. First, when the

regressors are “imperfect”, ξt−1 is an asymptotic order larger than ηt and drives the limit theory. The

convergence rate is
√
m, in line with well-known results for semiparametric estimators in the frequency

domain, e.g., Brillinger (1981, Chapters 7-8), Robinson (1995) and Shimotsu & Phillips (2005). Sec-

ond, if the regressors are “perfect”, ξt−1 is trivial and the limit theory is determined by ηt. The rate

is
√
mλ−bm �

√
m(n/m)b and the asymptotic variance is scaled by 1/(2(1 + 2b)). Hence, cointegration

improves efficiency of the MBLS estimator, in analogy with super consistency properties.

Despite the limit theory differing across models (ii)-(iii) and (iv), it remains Gaussian in both cases,

regardless of whether the variables are (asymptotically) stationary or non-stationary, whether there is

cointegration, and irrespective of the cointegration being weak (b < 1/2) or strong (b ≥ 1/2). This

is unique within a fractional cointegration context, as similar uniformity applies neither to OLS, the

narrow band least squares (NBLS) estimator, nor for maximum likelihood inference in the fractionally

cointegrated VAR model, where the inference is Gaussian under stationary and exhibits different

forms of non-Gaussianity in non-stationary cases; see Robinson & Marinucci (2003), Christensen &

Nielsen (2006) and Johansen & Nielsen (2012).16 Similarly, the Gaussian limit theory for the MBLS

estimator without fractional filtering in Christensen & Varneskov (2017) holds only for stationary

systems with weak cointegration. Intuitively, the Gaussian limits in Theorem 3 follow from having

fractionally filtered the variables such that the inference, after eliminating various errors and biases

through trimming, becomes reminiscent of the ELW inference in Shimotsu & Phillips (2005).

Moreover, the asymptotic distribution theory of the LCM procedure is correctly centered, thus free

from bias due to persistent and endogenous regressors, which are detailed by Stambaugh (1999), Pastor

& Stambaugh (2009) and Phillips & Lee (2013). Interestingly, since the fractional filtering lowers the

asymptotic order of the weakly dependent innovations, ηt, regardless of the inference scenario, the

LCM procedure may also provide finite sample improvements by alleviating attenuation biases. An

16Such methods generally do not accommodate non-trivial means, or initial values as well as strong endogeneity among
the regressors that may or may not be “perfect”. Moreover, the limit theory of these alternatives rely on the presence
of cointegration. Finally, as demonstrated by Andersen & Varneskov (2020, Theorem 5), the LCM procedure can
accommodate regressors that are generated from pre-estimated fractional cointegration residuals. Consequently, the
LCM procedure remains desirable in this context, delivering added robustness along with a fast convergence rate.
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additional advantage of the Gaussian limit theory is that feasible inference and testing is standard,

once we obtain a consistent estimator of the asymptotic variance in the requisite inference scenario.

Specifically, the latter can be determined by estimating b using our rank-selection procedure from

Section 3.2. We detail how to draw feasible inference in Appendix A.2.

Remark 7. We impose 0 < d1 < 1 for Theorem 3, but can accommodate the case d1 = 0, with

appropriate changes to the asymptotic variance for both models (ii)-(iii) and (iv). In particular, for

the former, we have to replace Gξξ with Gξξ + Gηη. Moreover, since cointegration no longer features

in model (iv), by b = d1 = 0, the result is readily obtained by setting b = 0 in the limit theory, thereby

slowing down the convergence rate. Similarly, the condition d − b ≥ 0 is equivalent to the “balanced

cointegration” requirement in Andersen & Varneskov (2020, Eq. (8)), implying that the cointegration

cannot be stronger than the persistence of the regressors. This condition is not strictly binding, but

simplifies the tuning parameter restrictions on ` and m in Assumption T considerably.

Remark 8. The conditions
√
n/mG → 0 and

√
n/m → 0, as n → ∞, in Theorems 1 and 3, respec-

tively, are not strictly binding, but are imposed for ease of exposition. Specifically, they are used to

bound the endogenous regressor bias in auxiliary Lemmas B.1(a)-(d) (cf., Appendix B). Define,

f̄(m,n) ≡ 1 ∨ (m/n)dxn1/2/m, f̄G(m,n) ≡ 1 ∨ (mG/n)dxn1/2/mG,

then the conditions can be relaxed to
√
n/(m1−ε√md) +

√
n/(m1−ε

G

√
md)→ 0, for some small ε > 0, if

multiplying the bounds in Lemma B.1(a)-(b) and (c)-(d) with f̄(m,n) and f̄G(m,n), respectively. This

feature is important, as we also entertain the selection mG � nκG, with κG = 2/5 for our cointegration

rank procedure, which is valid, albeit with stronger cross-restrictions on the tuning parameters.

While the asymptotic properties for the LCM procedure are highly desirable, it is prudent to study

its finite sample performance for return regressions in realistic settings, in particular, the interplay

between fractional filtering, MBLS estimation and rank testing. This is examined next.

4 Return Regressions and Numerical Evidence

This section illustrates inferential problems surrounding return regressions in a transparent numer-

ical setting. Specifically, we explore the effects of increasing the noise-to-signal ratio of the return

regressions for estimates of its fractional integration order as well as the size and power properties of

predictability tests relying on either OLS, IVX or LCM inference. In particular, the size is assessed

within an imperfect predictor specification. Moreover, we examine the size and power properties of

the cointegration rank selection procedure based on equations (22)-(23). Finally, we study the bias

and RMSE of LCM estimates of B, with and without applying a rank-augmented estimate of d1.
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4.1 Simulation Setting

We study inference problems for return regressions in a setting reminiscent of the ones in Hong (1996)

and Shao (2009), albeit allowing the variables to exhibit non-stationary fractional integration. Specif-

ically, we suppose B and X t−1 are univariate (written as B and Xt−1, respectively) and stipulate that

Xt−1 = xt−1, which renders the signal of the persistent regressor directly observable and excludes

endogeneity. Then, we generate fractional ARMA(0, 0) processes as,

(1− L)d1(yt − µy) = ϕt−1 + η
(d1)
t , ϕt−1 = But−1 + Bξξt−1, (1− L)d2(xt−1 − µx) = ut−1, (25)

and η
(d1)
t = (1− L)d1ηt, where ζt ∼ i.i.d.N(0, σ2

ζ ) for ζt ∈ {ηt, ξt−1, ut−1}. Moreover, to highlight the

impact of the noise-to-signal ratio for drawing inference about return persistence and predictability,

we fix d1 = d2 = d, set µy = µx = 1/2 and, without loss of generality, σξ = σu = 1, while varying

the volatility of the return innovations, ση. This ensures that the dynamic properties of the predictive

system are captured solely by d, B, Bξ, and ση. We consider two long-memory regimes: d = 0.45

and d = 0.80, corresponding to a stationary predictable return component versus one that is non-

stationary, yet mean-reverting. As we vary ση ∈ [0, 25], the noise-to-signal of the predictive relation is

altered, possibly rendering the persistence of the conditional mean undetectable in finite samples.17

Initially, we entertain univariate predictions using xt−1, but fix B = 0 and Bξ = 1.2 in equation

(25), implying that asset returns are comprised of a persistent mean, but the empiricist employs an

irrelevant “imperfect” predictor, so that the persistence “spills over” into the residuals. In this scenario,

we assess if and when ση is sufficiently large to induce “incorrect” inference regarding the fractional

integration order of the returns, d̂1 ' 0, as is generally found empirically. Moreover, we examine the

size properties of predictability tests with, seemingly, I(0) returns using either OLS, IVX or LCM.

These three inference procedures are all “misspecified,” in the sense that OLS and IVX inference

generally does not apply to fractionally integrated systems, as discussed in the introduction, whereas

LCM is implemented using the “wrong” fractional integration order for the returns.

We implement IVX with parameters CIVX = 1 and βIVX = 0.95 to construct the self-filtered

instrument, an additional deterministic instrument sin((t − 1)π/n), t = 1, . . . , n, and Eicker-White

standard errors, in line with the recommendations in Breitung & Demetrescu (2015) and Kostakis et al.

(2015). Similarly, we employ Eicker-White inference for OLS.18 Moreover, we implement LCM using

trimming and bandwidth parameters (ν, κ) = (0.20, 0.60). These are similar to the ones considered

in Andersen & Varneskov (2020) and reflect the dynamic properties of returns and, especially, the

persistent predictor variables in Section 5. Specifically, the bandwidth is chosen locally (m/n → 0)

to avoid placing excessive weight on the higher-frequency errors from ηt and the trimming reflects

condition two in Assumption T, with dx = 0.3 in the empirical analysis. Despite the results not

17We have run similar experiments with ARMA(1, 0) short-run dynamics. The corresponding results, when allowing for
mild autoregressive dynamics in the processes, are almost identical to those presented in Figures 1-2 below.

18We have also carried out OLS-based testing for return predictability using Newey & West (1987) standard errors. The
results are almost identical to those presented in Figure 1, and thus omitted for brevity.
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being reported, we note that, importantly, the results are qualitatively robust to varying the tuning

parameters ν and κ by ±0.05 and ±0.10, respectively. The first stage estimates of d1 and d2 are

constructed using the TELW estimator of Andersen & Varneskov (2020), with corresponding trimming

and bandwidth parameters `d = bn0.3c and md = bn0.7c. Moreover, the significance tests for LCM is

implemented using the feasible inference procedure in Andersen & Varneskov (2020), see also Appendix

A.2, where the consistent spectrum estimator of the asymptotic variance is implemented with νG = 0.20

and κG = 0.60. Finally, we consider a sample size n = 650, mimicking the one for the empirical analysis

(n = 661), a 5% nominal test size, and using 1000 replications.

4.2 Persistence, Size, Bias and RMSE

The estimated integration order of the returns, d̂1, and the OLS, IVX and (misspecified, depending on

d̂1) LCM test sizes are displayed as functions of ση in Figure 1, whereas Figure 2 provides bias and RM-

SEs of the corresponding LCM coefficient estimates, benchmarked against an oracle implementation

of LCM, where the true d1 and d2 are treated as known in the fractional filtering. Several features are

noteworthy. One, the estimated persistence decreases as a function of ση, eventually implying failure

to reject d1 = 0. This occurs, not surprisingly, more rapidly for the weaker signal, d = 0.45, than for

the stronger one, d = 0.80, illustrating that returns may, possibly, have a persistent component that

is hard to identify using standard univariate time series techniques.

Two, OLS and IVX are oversized for a wide range of ση, even when the estimated fractional inte-

gration order, seemingly, suggests that the return series is I(0). This is akin to the well-established

spurious inference problem, arising when applying least squares to fractionally integrated processes,

e.g., Tsay & Chung (2000), and the size distortions for return regressions, when applying persistent

AR(1) predictors, e.g., Ferson et al. (2003). The current results demonstrate, that similar problems

may arise for return regressions with “imperfect” predictors in fractionally integrated settings. More-

over, not only is OLS-based tests unreliable, generating serious size distortions, but similar problems

arise for IVX, although the procedure, otherwise, is equipped to handle local-to-unity regressors.

Three, whereas the size of misspecified LCM-based tests appears considerably more accurate, the

bias and RMSE of the coefficient estimates depend critically on whether the regressors are significant,

i.e., whether (B,Bξ) = (0, 1.2) or (B,Bξ) = (1.2, 0). When (B,Bξ) = (0, 1.2), the LCM estimates are

unbiased, but, not surprisingly, less efficient that the oracle ones. In contrast, when the regressors

are significant, (B,Bξ) = (1.2, 0), the coefficient estimates are severely biased, and this bias raises the

RMSE, in particular, for smaller values of ση. The bias is intuitive; the latent signal of yt has not been

fractionally filtered (since d̂1 ' 0) and the resulting higher asymptotic order of the conditional mean,

thus, blows up the estimate, since B > 0 and ûct−1 has been filtered “correctly”.

At face value, these results are discouraging. OLS and IVX suffer from large size distortions, and

our original LCM procedure is also ill-equipped to analyze significant return regressors. Hence, to

explore whether it provides a potential remedy, we now examine the finite-sample properties of our

rank test and the rank-augmented LCM procedure.
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4.3 Rank Testing and Rank-augmented LCM Estimation

We examine the properties of the rank selection procedure based on equations (22) and (23) using the

setting above, with d ∈ {0.45, 0.80} and either (B,Bξ) = (0, 1.2) or (B,Bξ) = (1.2, 0), corresponding to

the hypotheses H̃0 : r = 0 and H̃A : r = 1, respectively. Specifically, we implement the test with tuning

parameters νG = 0.20 and κG ∈ {0.40, 0.50, 0.60}. Moreover, we let the sequence in Assumption V

be specified as ϑ(n) = n−κ and examine κ ∈ {0.10, 0.20, 0.30}. Finally, to gauge the large(r) sample

properties of the procedure, we consider n = 650 as well as n = 2000. Tables 1-2 provide rejection

frequencies of H̃0 in favor of H̃A, when H̃0 is correct and, similarly, Tables 3-4 display corresponding

rejection rates, when H̃A is correct, reflecting “size and power” properties, respectively.19

First, we observe the that the “size” of the tests is very good, except when combining the tuning

parameter selections κG = 0.40 and κ = 0.10. For example, when κG = 0.40, κ = 0.20 and n = 650,

the procedure selects the wrong rank in approximately 5% of the simulations, reminiscent of a 5%

test size. Second, we observe that the selection procedure generally has good “power” properties,

especially when κG < 0.60 and κ ≤ 0.20, far exceding what is achieved by the corresponding univariate

significance tests for the TELW estimator in Figure 1. Again, if considering κG = 0.40 and κ = 0.20,

the rejection rates are substantially above 5% for both d = 0.45 and d = 0.80 in Tables 3 and 4,

respectively. Moreover, the rejection rates remain non-trivial for large values of the return innovations,

ση, and they are, not surprisingly, larger for the stronger signal, d = 0.80, than the weaker, d = 0.45.

Finally, when the sample size increases to n = 2000, the rejection frequencies in Tables 1 and 2 converge

to zero as expected, and the “power” generally improves in Tables 3 and 4.

The finite sample results in Tables 1-4 are striking, demonstrating that a persistent conditional

mean of asset returns can be identified (with good power) through a multivariate rank test, even if

standard univariate techniques suggest serial dependence is absent. In particular, the tuning parameter

selections κG = 0.40 and κ = 0.20 balance “size” and “power” well. Hence, relying on these choices, we

next seek to augment the LCM procedure with a rank test to determine the memory of the conditional

mean return, as described in Section 3.2. Specifically, to mirror the 2-step testing procedure, if the test

indicates full rank, when restricting d̂1 = d̂2, with d̂2 computed by the TELW estimator, the return

series has not been over-differenced and the restricted memory estimate is maintained. In contrast,

if the rank test indicates cointegration, we test for over-differencing by simulating a fractional noise

process, as for xt−1 in equation (25), but independent of yt, and perform a rank test with êt and the

filtered residuals from the auxiliary variable with, naturally, its own estimated integration order. If this

test maintains full rank, the estimated series êt has not been over-differenced and we use the restricted

memory estimate. If the test, once again, rejects full rank, the series has been over-differenced, and

we implement the LCM procedure with the TELW estimate for d̂1.20

19While Tables 1-2 report false rejection rates for the null hypothesis, akin to test size, the rank selection test is not calibrated
to generate any specific rejection rate asymptotically, so lower (false) rejection rates are simply better. Nonetheless, the
usual tradeoff between size and power properties applies, so comparing the “size” tables with the “power” reflected in
Tables 3-4 provides the best guide towards identifying desirable test configurations.

20It is important to note that even though we only consider one candidate predictor and one auxilliary variable, this mimics
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Once the rank-augmented estimate of d̂1 has been obtained, the remaining filtering and estima-

tion steps of the LCM procedure are the same. In Figure 3, we compare the bias and RMSE of this

rank-augmented LCM (RLCM) procedure to the oracle implementation of LCM, thus mirroring the

structure of Figure 2. The results, however, are in stark contrast. Whereas the unrestricted LCM

procedure suffers from a pronounced bias, when (B,Bξ) = (1.2, 0), the RLCM procedure is unbiased

and essentially as efficient as the oracle version of LCM, demonstrating that our rank-testing step

successfully ameliorates the estimation errors from using a misspecified estimate of d1. That is, the

RLCM procedure overcomes the challenges introduced by the “low” signal-to-noise ratio for the con-

ditional mean return, and our rank selection procedure (22)-(23) represents an effective technique for

detecting “hidden” persistence in the conditional mean and determining its integration order.

5 Empirical Illustration: Forecasting Equity Market Returns

This section analyzes predictions of monthly S&P 500 index returns via persistent and popular state

variables in the macro-finance literature using OLS, IVX and RLCM procedures. Specifically, we

examine the predictive content of the regressors in Bansal et al. (2014) and Campbell et al. (2018).

5.1 Data Description

We employ a data set of monthly observations for log-returns and corresponding realized variance (RV)

measures of the aggregate U.S. stock market, proxied by the S&P 500 index, spanning the period from

March 1960 through March 2015, which amounts to n = 661 observations. Specifically, following,

e.g., Andersen & Bollerslev (1998), Barndorff-Nielsen & Shephard (2002), and Andersen, Bollerslev,

Diebold & Labys (2003), RV is constructed by summing up daily squared returns for each month.

Moreover, inspired by the VAR system in Campbell et al. (2018), we include the default spread (DS),

three-month U.S. Treasury bills (TB), and price-earnings ratio (PE) as additional state variables.

They have all been argued to be successful predictors of equity index returns, see, e.g., Lettau &

Ludvigson (2010) and Campbell (2018, Chapters 5.3-5.4). The construction of these variables follows

literature standards, with the DS being defined as the difference between logarithmic percentage yields

on Moody’s BAA and AAA bonds, TB is log-transformed, and PE is constructed as the log-ratio of the

S&P 500 index to the ten-year trailing moving average of the aggregate S&P 500 constituent earnings.

The DS and TB data are obtained from the website of the Federal Reserve Bank of St. Louis, while

the PE data stem from Robert Shiller’s website, see Shiller (2000).

5.2 RLCM Analysis of Return Predictability

First, we estimate the fractional integration order of returns and the four state variables; RV, DS,

TB and PE. Specifically, we adopt the TELW estimator of Andersen & Varneskov (2020) and the

the two-step selection procedure more generally since we implement bivariate tests and only require one non-rejection of
cointegration (for some di > 0) among all our regressors to conclude that the returns have not been overdifferenced.

28



exact local Whittle (ELW) estimator with a correction for the mean, or initial value, of Shimotsu &

Phillips (2005) and Shimotsu (2010).21 The results, reported in the top half of Table 5, show that

the returns are, seemingly, I(0), RV is stationary and fractionally integrated, and the remaining three

state variables are non-stationary long-memory processes. However, as argued earlier, these results do

not exclude returns from having a “latent” persistent conditional mean.

We proceed by implementing the sequential bivariate, LCM-based, rank selection procedure de-

scribed in Section 3.2, using the TELW estimates from Table 5 and tuning parameters (νG, κG,κ) =

(0.20, 0.40, 0.20), as advocated in Section 4. The results are provided in the bottom half of Table 5.

From Step 1 of the procedure, we find that H̃0 : r = 0 is rejected for RV and PE. Hence, we select

the larger fractional integration order for PE and continue with Step 2. Once restricting the memory

in the second step, we maintain H̃0 (i.e., full rank) for the three remaining predictors and, thus, stop

there. These findings have striking implications. First, they provide consistent evidence that asset

returns contain a fractionally integrated conditional mean, which we cannot detect using standard

univariate time series techniques. Second, the conditional mean cointegrates with PE, suggesting that

the latter is a “perfect” predictor of returns, as described in Section 2.2. Interestingly, this is consistent

with dynamic present-value models for stock returns, e.g., Campbell (2018, Chapter 5.3), for which

significance of standard predictability tests is often illusive; see, among others, Welch & Goyal (2008)

and Lettau & Ludvigson (2010). Third, the rank selection procedure suggests that the remaining

three candidate predictors are “imperfect”, if at all significant. Fourth, this has implications for the

statistical properties of our subsequent RLCM estimates, as demonstrated by Theorem 3. Specifi-

cally, it suggests that the limit theory for model (iv), with its super consistency properties, applies

to PE, whereas the limit theory for models (ii)-(iii) may be used to test significance of the remaining

predictors. We rely on these insights, when drawing feasible inference, as described in Appendix A.2.

Next, we estimate the coefficients of the four candidate predictors and test for their significance using

OLS and IVX with Eicker-White inference, as described in Section 4, as well as our rank-augmented

LCM (RLCM) procedure, where the integration order of the returns is fixed to that for PE.22 The

results are reported in Table 6. There are several interesting findings. First, using both OLS and IVX,

we only find RV to contain statistically significant information about future returns. However, it has

a negative coefficient, running counter to a traditional risk-return trade-off. In contrast, we find a

positive predictive risk-return relation for RLCM, albeit insignificant. Second, using RLCM, we find

significant predictability for both DS and PE. The positive sign for the former is consistent with a

risk-return trade-off, and the negative for the latter reflects return-valuation theory (Campbell 2018).

The sign of the corresponding coefficient estimates for OLS and IVX are similar, but the magnitudes

are smaller, and the results are insignificant. Third, the significance for TB also improves using RLCM,

but not sufficiently to render it a significant predictor at conventional significance levels.

These results are much sharper than typically obtained through return prediction studies, especially

21The TELW estimator, similarly to the mean-corrected ELW of Shimotsu (2010), is more robust to the mean, or initial
value, of the process. Both estimators are valid for stationary and non-stationary fractionally integrated processes.

22We implement LCM with ν = 0.20 and κ = 0.60 to reduce the impact from the contemporaneous return innovations.
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at shorter horizons, e.g., Welch & Goyal (2008), Lettau & Ludvigson (2010), Campbell (2018, Chapter

5) and references therein. We attribute this to the various advantages of our RLCM procedure. First,

uncovering the persistence of the conditional mean via rank testing, we may adequately filter returns,

reducing the impact of the “large” contemporaneous innovations, thus mitigating its asymptotic and

finite sample effect. Second, by letting `/m+m/n→ 0 as n→∞, we further reduce the impact from

the error ηt ∈ I(0) by sampling in a part of the spectrum, where the signal-to-noise ratio is larger.

Finally, as discussed in Section 2.2, the (rank-augmented) LCM procedure is robust to endogenous

innovations, which typically generate severe biases, e.g., Stambaugh (1999), Pastor & Stambaugh

(2009) and Phillips & Lee (2013). These LCM features all alleviate critical attenuation biases, and we

see from Table 6 that the coefficient estimates from RLCM is larger than those from OLS and IVX

for DS, PE and TB. In contrast, in Andersen & Varneskov (2020), LCM is found to provide robust

and reliable inference for return volatility forecasting, and to negate prior claims of auxiliary forecast

power for a number of macro-finance variables. The critical difference across the applications is, that

there are no evidence of latent unidentifiable integrated components in the return volatility series.

6 Conclusion

This paper studies the properties of predictive regressions for asset returns in economic systems gov-

erned by persistent vector autoregressive dynamics and considers robust estimation and inference. In

particular, the dynamic properties of the state variables are captured by fractionally integrated pro-

cesses, potentially of different orders, and returns have a latent persistent conditional mean, whose

memory cannot be consistently estimated in finite samples. The latter feature is consistent with the

typical findings in empirical studies, for which standard time series techniques almost invariably indi-

cate only weak dependence in the return dynamics. We further allow for the regressors in the system to

be endogenous and “imperfect”. In this setting, we provide a cointegration rank test to determine the

suitable predictive model framework as well as the latent persistence of the conditional mean return.

By leveraging this additional source of information, we provide a rank-augmented LCM procedure,

which is consistent and delivers asymptotic Gaussian inference. Simulations illustrate the theoretical

arguments as well as favorable finite sample properties of the rank test and rank-augmented LCM

procedure. Finally, in an empirical application to monthly S&P 500 return predictions, we find con-

sistent evidence, that returns contain a (latent) fractionally integrated conditional mean component.

Moreover, by applying the rank-augmented LCM procedure, we find strong predictive power for key

economic state variables such as the price-earnings ratio and the default spread.
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Figure 1: Fractional integration estimation and size. The top panels provide estimates of d1 and d2 as

a function of the standard deviation of the weakly dependent return innovations, ση. Moreover, 95% confidence

intervals are provided for d̂1. The estimates are constructed using the TELW estimator with tuning parameters

`d = bn0.3c and md = bn0.7c. The dotted vertical line highlights the value of ση where the empirical (unrestricted)

estimate, d̂1, is no longer significantly different from zero. The bottom panels provide the size of OLS, IVX and

unrestricted LCM (LCMU) significance tests for β = 0. LCM is implemented with (ν, κ) = (0.2, 0.6) as well as

(νG, κG) = (0.2, 0.6) for feasible inference; see Andersen & Varneskov (2020) and Appendix A.2 for details. Inference

for OLS and IVX is drawn using Eicker-White standard errors. The left- and right-hand-side panels have d = 0.45

and d = 0.80. Finally, we consider a sample size n = 650, a 5% nominal test size and use 1000 replications.
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LCM bias: d = 0.45 LCM bias: d = 0.80
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Figure 2: Bias and RMSE of LCM. The two top panels illustrate bias of LCM coefficient estimates in two

scenarios when either (B,Bξ) = (0, 1.2) (H0) or (B,Bξ) = (1.2, 0) (HA) as a function of the standard deviation of

the weakly dependent return innovations, ση. The two bottom panels provide corresponding RMSEs. Two versions

of LCM is considered: An unrestricted LCM (LCMU), which uses the (biased) estimates d̂1 and d̂2 from Figure

1; an oracle LCM (LCMO), where d1 = d2 = d is treated as known in the fractional filtering. Both versions of

LCM are implemented with (ν, κ) = (0.2, 0.6). The left- and right-hand-side panels have d = 0.45 and d = 0.80,

respectively. The dotted vertical line highlights the value of ση where the empirical (unrestricted) estimate, d̂1, is

no longer significantly different from zero. Finally, we consider a sample size n = 650 and use 1000 replications.
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“Size” Properties of the Rank Test: d = 0.45

Panel A κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 0.2780 0.0530 0.0080 0.0540 0.0010 0.0000 0.0010 0.0000 0.0000

2.5 0.2820 0.0530 0.0130 0.0660 0.0010 0.0000 0.0010 0.0000 0.0000

5 0.2870 0.0580 0.0100 0.0610 0.0010 0.0000 0.0020 0.0000 0.0000

7.5 0.3000 0.0530 0.0100 0.0570 0.0000 0.0000 0.0020 0.0000 0.0000

10 0.2980 0.0530 0.0110 0.0550 0.0000 0.0000 0.0020 0.0000 0.0000

12.5 0.2950 0.0560 0.0090 0.0550 0.0000 0.0000 0.0020 0.0000 0.0000

15 0.2960 0.0570 0.0090 0.0530 0.0000 0.0000 0.0010 0.0000 0.0000

17.5 0.2940 0.0600 0.0090 0.0520 0.0000 0.0000 0.0010 0.0000 0.0000

20 0.2970 0.0630 0.0090 0.0520 0.0000 0.0000 0.0010 0.0000 0.0000

22.5 0.2980 0.0620 0.0090 0.0530 0.0000 0.0000 0.0010 0.0000 0.0000

25 0.3020 0.0620 0.0090 0.0530 0.0000 0.0000 0.0010 0.0000 0.0000

Panel B κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 0.1360 0.0040 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

2.5 0.1120 0.0050 0.0000 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.1140 0.0100 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

7.5 0.1110 0.0090 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.1120 0.0100 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

12.5 0.1160 0.0100 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.1180 0.0100 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

17.5 0.1230 0.0110 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1250 0.0110 0.0010 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000

22.5 0.1250 0.0100 0.0010 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1230 0.0110 0.0010 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: “Size” results. This tables show the frequency of rejecting full rank H̃0 : r = 0 in favor of finding
reduced rank H̃A : r = 1 when H̃0 is correct, using the LCM-based rank selection procedure in (22) and (23). This
is in analogy with the size properties of a test. The memory of the system is d = 0.45, and the standard deviation of
the weakly dependent return innovations, ση, is varied in [0, 25]. The rank test is implemented with the restricted

estimate d̂2 for both yt and xt, and the trimming rate νG = 0.20 is fixed. Moreover, we consider tuning parameter
selections κG = {0.4, 0.5, 0.6} and κ = {0.1, 0.2, 0.3}. The analysis uses two sample sizes, n = 650 and n = 2000, in
Panels A and B, respectively, and 1000 replications. Finally, the dashed horizontal line highlights the value of ση in

Figure 1, where the empirical (unrestricted) estimate, d̂1, is no longer significantly different from zero.
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“Size” Properties of the Rank Test: d = 0.80

Panel A κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 0.2780 0.0530 0.0080 0.0540 0.0010 0.0000 0.0010 0.0000 0.0000

2.5 0.2860 0.0470 0.0070 0.0550 0.0020 0.0000 0.0030 0.0000 0.0000

5 0.2990 0.0560 0.0110 0.0530 0.0010 0.0000 0.0020 0.0000 0.0000

7.5 0.3030 0.0540 0.0090 0.0530 0.0010 0.0000 0.0020 0.0000 0.0000

10 0.2950 0.0580 0.0120 0.0540 0.0010 0.0000 0.0020 0.0000 0.0000

12.5 0.2970 0.0580 0.0130 0.0530 0.0010 0.0000 0.0020 0.0000 0.0000

15 0.2960 0.0620 0.0100 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000

17.5 0.3010 0.0620 0.0110 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.3000 0.0650 0.0110 0.0570 0.0000 0.0000 0.0000 0.0000 0.0000

22.5 0.3010 0.0630 0.0090 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.3030 0.0650 0.0080 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000

Panel B κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 0.1360 0.0040 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

2.5 0.1290 0.0030 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.1270 0.0050 0.0000 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000

7.5 0.1220 0.0050 0.0000 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.1200 0.0070 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

12.5 0.1090 0.0070 0.0010 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.1050 0.0070 0.0010 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

17.5 0.1050 0.0060 0.0010 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1080 0.0060 0.0010 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

22.5 0.1080 0.0070 0.0010 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1070 0.0070 0.0010 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: “Size” results. This tables show the frequency of rejecting full rank H̃0 : r = 0 in favor of finding
reduced rank H̃A : r = 1 when H̃0 is correct, using the LCM-based rank selection procedure in (22) and (23). This
is in analogy with the size properties of a test. The memory of the system is d = 0.80, and the standard deviation of
the weakly dependent return innovations, ση, is varied in [0, 25]. The rank test is implemented with the restricted

estimate d̂2 for both yt and xt, and the trimming rate νG = 0.20 is fixed. Moreover, we consider tuning parameter
selections κG = {0.4, 0.5, 0.6} and κ = {0.1, 0.2, 0.3}. The analysis uses two sample sizes, n = 650 and n = 2000, in
Panels A and B, respectively, and 1000 replications. Finally, the dashed horizontal line highlights the value of ση in

Figure 1, where the empirical (unrestricted) estimate, d̂1, is no longer significantly different from zero.
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“Power” Properties of the Rank Test: d = 0.45

Panel A κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.5 1.0000 1.0000 0.9990 1.0000 1.0000 0.9760 1.0000 0.9800 0.3950

5 0.9850 0.8930 0.6910 0.9720 0.6530 0.1370 0.8470 0.0630 0.0000

7.5 0.8740 0.6140 0.2990 0.7760 0.1950 0.0120 0.3650 0.0010 0.0000

10 0.7370 0.4070 0.1400 0.5450 0.0680 0.0030 0.1410 0.0000 0.0000

12.5 0.6260 0.2670 0.0940 0.3830 0.0280 0.0020 0.0690 0.0000 0.0000

15 0.5460 0.1980 0.0620 0.2710 0.0160 0.0000 0.0390 0.0000 0.0000

17.5 0.5040 0.1540 0.0460 0.2300 0.0110 0.0000 0.0230 0.0000 0.0000

20 0.4480 0.1340 0.0350 0.1950 0.0090 0.0000 0.0190 0.0000 0.0000

22.5 0.4220 0.1210 0.0270 0.1670 0.0080 0.0000 0.0150 0.0000 0.0000

25 0.3910 0.1100 0.0220 0.1490 0.0030 0.0000 0.0080 0.0000 0.0000

Panel B κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5030

5 1.0000 0.9930 0.9200 0.9990 0.8620 0.1480 0.9820 0.0110 0.0000

7.5 0.9890 0.8370 0.4440 0.9320 0.1930 0.0010 0.3830 0.0000 0.0000

10 0.9240 0.5540 0.1590 0.6620 0.0270 0.0000 0.0610 0.0000 0.0000

12.5 0.8000 0.3330 0.0620 0.4060 0.0060 0.0000 0.0100 0.0000 0.0000

15 0.6830 0.2200 0.0360 0.2590 0.0020 0.0000 0.0010 0.0000 0.0000

17.5 0.5740 0.1470 0.0190 0.1760 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.4900 0.1030 0.0120 0.1180 0.0000 0.0000 0.0000 0.0000 0.0000

22.5 0.4280 0.0770 0.0070 0.0960 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.3810 0.0580 0.0050 0.0740 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: “Power” results. This tables show the frequency of rejecting full rank H̃0 : r = 0 in favor of finding
reduced rank H̃A : r = 1 when H̃A is correct, using the LCM-based rank selection procedure in (22) and (23). This
is in analogy with the power properties of a test. The memory of the system is d = 0.45, and the standard deviation
of the weakly dependent return innovations, ση, is varied in [0, 25]. The rank test is implemented with the restricted

estimate d̂2 for both yt and xt, and the trimming rate νG = 0.20 is fixed. Moreover, we consider tuning parameter
selections κG = {0.4, 0.5, 0.6} and κ = {0.1, 0.2, 0.3}. The analysis uses two sample sizes, n = 650 and n = 2000, in
Panels A and B, respectively, and 1000 replications. Finally, the dashed horizontal line highlights the value of ση in

Figure 1, where the empirical (unrestricted) estimate, d̂1, is no longer significantly different from zero.
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“Power” Properties of the Rank Test: d = 0.80

Panel A κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9960

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9560 1.0000 0.6670 0.0320

7.5 1.0000 0.9920 0.9620 0.9980 0.8850 0.4240 0.8590 0.0640 0.0000

10 0.9890 0.9500 0.7860 0.9630 0.5560 0.0900 0.5330 0.0030 0.0000

12.5 0.9700 0.8340 0.5820 0.8550 0.3070 0.0260 0.2740 0.0000 0.0000

15 0.9230 0.7120 0.4040 0.7310 0.1560 0.0070 0.1570 0.0000 0.0000

17.5 0.8570 0.5870 0.2910 0.6030 0.0740 0.0040 0.0920 0.0000 0.0000

20 0.7990 0.4860 0.1980 0.5020 0.0510 0.0010 0.0580 0.0000 0.0000

22.5 0.7400 0.4070 0.1430 0.4310 0.0350 0.0010 0.0420 0.0000 0.0000

25 0.6900 0.3450 0.1130 0.3580 0.0240 0.0000 0.0290 0.0000 0.0000

Panel B κG = 0.40, κ = κG = 0.50, κ = κG = 0.60, κ =

ση = 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950 0.1370

7.5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9430 0.9980 0.1800 0.0000

10 1.0000 0.9990 0.9960 1.0000 0.9710 0.3960 0.9000 0.0000 0.0000

12.5 1.0000 0.9970 0.9760 0.9980 0.7380 0.0820 0.5080 0.0000 0.0000

15 0.9990 0.9900 0.8850 0.9880 0.3870 0.0190 0.2120 0.0000 0.0000

17.5 0.9970 0.9640 0.7600 0.9240 0.1870 0.0020 0.0740 0.0000 0.0000

20 0.9920 0.8890 0.5780 0.8300 0.0870 0.0000 0.0190 0.0000 0.0000

22.5 0.9830 0.8210 0.4490 0.6940 0.0420 0.0000 0.0050 0.0000 0.0000

25 0.9700 0.7330 0.2930 0.5640 0.0220 0.0000 0.0030 0.0000 0.0000

Table 4: “Power” results. This tables show the frequency of rejecting full rank H̃0 : r = 0 in favor of finding
reduced rank H̃A : r = 1 when H̃A is correct, using the LCM-based rank selection procedure in (22) and (23). This
is in analogy with the power properties of a test. The memory of the system is d = 0.80, and the standard deviation
of the weakly dependent return innovations, ση, is varied in [0, 25]. The rank test is implemented with the restricted

estimate d̂2 for both yt and xt, and the trimming rate νG = 0.20 is fixed. Moreover, we consider tuning parameter
selections κG = {0.4, 0.5, 0.6} and κ = {0.1, 0.2, 0.3}. The analysis uses two sample sizes, n = 650 and n = 2000, in
Panels A and B, respectively, and 1000 replications. Finally, the dashed horizontal line highlights the value of ση in

Figure 1, where the empirical (unrestricted) estimate, d̂1, is no longer significantly different from zero.
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Figure 3: Bias and RMSE of RLCM. The two top panels illustrate bias of LCM coefficient estimates in two

scenarios when either (B,Bξ) = (0, 1.2) (H0) or (B,Bξ) = (1.2, 0) (HA) as a function of the standard deviation of

the weakly dependent return innovations, ση. The two bottom panels provide corresponding RMSEs. Two versions

of LCM is considered: A rank-augmented LCM (RLCM), which uses a rank-test based estimate of d̂1 as well as the

TELW estimate d̂2 from Figure 1; an oracle LCM (LCMO), where d1 = d2 = d is treated as known in the fractional

filtering. Both versions of LCM use (ν, κ) = (0.2, 0.6). The left- and right-hand-side panels have d = 0.45 and

d = 0.80. The dotted vertical line highlights the value of ση where the empirical (unrestricted) estimate, d̂1, is no

longer significantly different from zero. Finally, we consider a sample size n = 650 and use 1000 replications.
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Temporal Dependence and Rank

Returnst RVt−1 DSt−1 PEt−1 TBt−1

Mean 0.0055 0.0021 0.1346 0.0290 0.0468

Std. Dev. 0.0429 0.0047 0.0567 0.0042 0.0294

Skewness -0.6833 11.0620 2.4834 -0.3293 0.5800

Kurtosis 5.5338 161.5564 12.5860 2.5694 3.7378

ACF(1) 0.0527 0.4287 0.9663 0.9955 0.9887

TELW 0.0631
(0.0516)

0.2853
(0.0516)

0.9405
(0.0516)

1.0290
(0.0516)

0.9188
(0.0516)

ELWM 0.0662
(0.0516)

0.2882
(0.0516)

0.8668
(0.0516)

1.1107
(0.0516)

0.9019
(0.0516)

L(% = 0)-unr - -0.8026 -0.8026 -0.8026 -0.8026

L(% = 1)-unr - -0.9305 -0.6227 -0.8088 -0.5697

r̂ - 1 0 1 0

L(% = 0)-res - -0.8026 -0.8026 -0.8026 -0.8026

L(% = 1)-res - -0.5473 -0.6079 -0.8088 -0.6252

r̂ - 0 0 1 0

Table 5: Descriptive statistics. This table displays statistics describing the unconditional and temporal depen-
dence properties of returns and the four candidate predictors: RV, DS, PE and TB. Specifically, for the latter, we
provide estimates of the first-order autocorrelation function (ACF), trimmed exact local Whittle (TELW) estimator
of the fractional integration order (Andersen & Varneskov 2020) as well as exact local Whittle (ELWM) estimates
with correction for the mean, or initial value, (Shimotsu 2010). The ELW estimators are implemented with band-
width bn0.7c and, for TELW, trimming bn0.1c to reduce sensitivity to the mean. Moreover, LCM rank tests uses
(κG,κ) = (0.4, 0.2). The rank tests are implemented using the individual TELW-estimated integration orders of
the predictors (unr) and the integration order for PE in all tests (res), following the two-step procedure in Section
3.2. Finally, the sample of monthly observations spans March 1960 through March 2015 (n = 661).

RLCM Analysis of Return Predictions

RVt−1 DSt−1

OLS IVX RLCM OLS IVX RLCM

B̂c -1.1252 -1.1638 0.3257 0.0236 0.0200 0.1407

Wald 8.3130 8.2154 1.1619 0.3203 0.2326 5.7476

P-Wald 0.0039 0.0042 0.2811 0.5714 0.6296 0.0165

PEt−1 TBt−1

OLS IVX RLCM OLS IVX RLCM

B̂c -0.4956 -0.3987 -1.1421 -0.0280 -0.0277 -0.3953

Wald 1.3162 0.8460 12.4072 0.2218 0.2098 2.1507

P-Wald 0.2513 0.3577 0.0004 0.6377 0.6469 0.1425

Table 6: Return predictions. This table provides coefficient estimates and significance tests based on Wald
statistics (and associated P-values) for three different methodologies; OLS, IVX and RLCM, where the fractional
integration order of returns have been restricted to that of PE. The integration orders required for the fractional
filtering procedure are provided by the TELW estimates in Table 5. The LCM procedure and feasible inference
(cf., Appendix A.2) are implemented with ν = νG = 0.2 and κ = κG = 0.6. Inference for OLS and IVX employs
Eicker-White standard errors. IVX is implemented with two instruments as in Section 4. Finally, the sample of
monthly observations spans March 1960 through March 2015 (n = 661).
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A Additional Theory and Feasible Inference

This section presents an alternative rank test and describes how to draw feasible inference.
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A.1 Alternative Cointegration Rank Test

The eigenvalues δi and δ̂i, i = 1, . . . , k+1, defined in main text, may be utilized to design a cointegration

rank test of the null hypothesis H̃0 against H̃A based on the ratio statistics

θk+1 =
δk+1∑k+1
i=1 δi

, θ̂k+1 =
δ̂k+1∑k+1
i=1 δ̂i

, Θ̂2
k+1 =

δ̂2
k+1

∑k
i=1 δ̂

2
i + δ̂2

k+1(
∑k

i=1 δ̂i)
2

(
∑k+1

i=1 δ̂i )
4

, (A.1)

whose asymptotic properties under H̃0 follow from Theorem 1 and the delta method.

Theorem 4. Under the conditions of Theorem 1 and H̃0,

m
1/2
G

(
ϑ̂k+1 − ϑk+1

)
/Θ̂k+1

D−→ N(0, 1).

As noted by Phillips & Ouliaris (1988) and Robinson & Yajima (2002) in (fractional) cointegration

contexts, Theorem 4 relies on H̃0 and cannot be used to test against H̃A, because the distribution

becomes degenerate for δk+1 → 0. However, for testing whether that the cointegration rank is unity,

that is, against H̃A, we may use the 100(1− α)% upper confidence interval for θ̂k+1,

CI(α, k + 1) = θ̂k+1 + Θ̂k+1Q(α)/m
1/2
G , (A.2)

with Q(α) being the (1 − α)th quantile of the standard Gaussian distribution, and compare it to a

pre-specified threshold, as suggested by Phillips & Ouliaris (1988). Following their recommendation,

and motivated by the numerical results in Nielsen & Shimotsu (2007), we have applied the test with

a threshold 0.1/(k + 1) in the simulation study in Section 4. However, the test is strictly dominated

by the selection procedure based on (22) and (23). These results are left our for brevity.

A.2 Feasible Inference

When drawing feasible inference with the LCM approach, we must provide consistent estimators of

the long-run covariance matrix Guu and either Gξξ or Gηη, depending on whether we are drawing

inference for models (ii)-(iii) or the cointegration model (iv). To this end, we need information from

the residuals, after estimation of B. The main challenge is, again, that we observe v̂ct , not v̂t nor vt .

As a result, the residuals ηt are latent, and we need to estimate them as,

η̂ct = (1− L)−b̂ η̂
(b,c)
t , η̂

(b,c)
t = êt − B̂c(`,m)′ûct−1, (A.3)

where b̂ is some consistent estimator of b. Similarly, we can define η̂t and η̂
(b)
t as in (A.3), but computed

with (the unobservable) B̂(`,m) and ût−1 and, thus, free of regressor endogeneity bias.

Despite the notation, it is important to note that the estimators η̂ct and η̂
(b,c)
t can be utilized to

estimate both Gξξ in models (ii) and (iii) as well as Gηη in (iv). Specifically, when drawing inference for

the former, we estimate the variance with η̂ct = η̂
(b,c)
t , where the contribution from ξt−1 will dominate
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that from η
(b)
t , b = d1 > 0, asymptotically. In contrast, for model (iv), we use (A.3) the consistent

estimate b̂ = d̂1, following Assumption M, since ξt−1 = 0, ∀t = 1, . . . n. Once the estimate η̂ct is

computed for a given inference scenario, we, then, use the trimmed long-run covariance estimators,

described in Section 3 for the purpose of rank testing, and compute the asymptotic variance as,

ÂVAR = Ĝc
ûû(`G,mG)−1

Ĝcη̂η̂(`G,mG)/(2m), under models (ii) and (iii),

Ĝcη̂η̂(`G,mG)λ2b̂
m/
(
2(1 + 2b̂)m

)
, under model (iv).

(A.4)

with, again, mG = mG(n) and `G = `G(n). Specifically, we determine which of the inference scenarios

to apply by means of the rank selection procedure in (22) and (23).

Assumption B. Let mb � nε be a sequence of integers where 0 < ε ≤ 1, then b̂− b = Op(1/
√
mb).

Assumption T-B. Define mn = md ∧ mb ∧ m and ḡn(m,mb,md) = ln(n)√
mb
∨ ln(n)√

md
∨ λbm√

m
, then the

following cross-restrictions are imposed on the trimming and bandwidth parameters:

√
n

mG
+

m

mG
+
mG

`G `
+ ḡn(m,mb,md)

(
n

mG

)b
→ 0, as n→∞.

Finally, additional conditions are imposed, when n→∞, depending on the model:(mG/n)dx/`1+ε
G + (m/n)dx/`1+ε → 0, under models (ii) and (iii),

(mG/n)d−b/`1+ε
G → 0, under model (iv).

Assumption B is similar to Andersen & Varneskov (2020, Assumption B), imposing a mild consis-

tency requirement on the estimator of the (fractional) integration order of the residuals. Moreover,

Assumption T-B imposes additional (mild) conditions on the trimming and bandwidth parameters to

eliminate the endogenous regressor bias when estimating the variance of the residuals. In addition to

these, we invoke Assumption T-G for the covariance estimators. However, it is worth noting that the

necessary conditions on the tuning parameters for consistency of the asymptotic variance estimator

for feasible inference are milder than those stated in Assumption T-G. In particular, instead of the

first three conditions, we require only mG � nκG and ` � nνG , with 0 < νG < κG < % ≤ 1 and

n/(mG`
2
G) + n2/(mG`

2
Gmn)→ 0 as n→∞, the same as in Andersen & Varneskov (2020, Assumption

T-G). Similarly, the equivalent condition four is a factor 1/
√
mG smaller than the one stated. The

reason is that we only need consistency for feasible inference, not a central limit theorem. However,

we refrain from stating separate assumptions to distinguish the two cases.

Theorem 5. Suppose Assumption B, T-B and the conditions of Theorems 1 and 3 hold, thenmÂVAR
P−→ G−1

uuGξξ/2, under models (ii) and (iii),

mλ−2b
m ÂVAR

P−→ G−1
uuGηη/(2(1 + 2b)), under model (iv).
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Feasible inference and testing for the LCM procedure, then, follows by applying Theorems 3 and 5

in conjunction with the continuous mapping theorem and Slutsky’s theorem.

B Proofs

This section provides proofs of the main asymptotic results in the paper. Before proceeding, however,

we introduce some notation. For a generic vector V , let V (i) index the ith element, and, similarly, for

a matrix M , let M(i, q) denote its (i, q)th element. Moreover, K ∈ (0,∞) denotes a generic constant,

which may take different values from line to line or from (in)equality to (in)equality. Sometimes

the (stochastic) orders refer to scalars, sometimes to vectors and matrices. We refrain from making

distinctions. Finally, we provide an auxiliary lemma that expands on Theorem 4 in Andersen &

Varneskov (2020). We will henceforth refer to the latter as AV (2020) and, similarly, to their Online

Appendix as AVOA (2020). Specifically, the lemma provides bounds for the differences,

F̂ c
ûû(`,m)− F̂ûû(`,m), F̂ c

ûê(`,m)− F̂ûê(`,m), (B.1)

Ĝc
v̂v̂(`G,mG)− Ĝv̂v̂(`G,mG), Ĝc

η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG), (B.2)

where, as described in Appendix A.2, η̂ct constitutes an estimate of ηt that is employed when imple-

menting feasible inference. In other words, we provide asymptotic bounds to describe the errors arising

when using the fractionally filtered observations v̂ct rather than the unobservable v̂t when calculating

key measures and statistics, thus quantifying the impact of regressor endogeneity. The auxiliary lemma

differs from AV (2020, Theorem 4) by allowing for cointegration, b > 0.

Lemma B.1. Suppose Assumptions D1-D3, C, M, F, T-G, T hold. Moreover, suppose that the

bandwidths satisfy n1/2/m→ 0, n1/2/mG → 0, then, for some arbitrarily small ε > 0, it follows,

(a) λ−1
m

(
F̂ c
ûû(`,m)− F̂ûû(`,m)

)
= Op((m/n)dx/`1+ε),

(b) λ−1
m

(
F̂ c
ûê(`,m)− F̂ûê(`,m)

)
= Op((m/n)dx/`1+ε),

(c) Ĝc
ûû(`G,mG)− Ĝûû(`G,mG) ≤ Op((mG/n)dx/`1+ε

G ),

(d) Ĝc
ûê(`G,mG)− Ĝûê(`G,mG) ≤ Op((mG/n)dx/`1+ε

G ),

(e) Suppose further Assumption B and T-B (instead of T-G) hold as well as d− b ≥ 0, then

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤

Op((mG/n)dx/`1+ε
G ) +Op((m/n)dx/`1+ε), for (ii)-(iii),

Op
(
(mG/n)d−b/`1+ε

G

)
, for (iv).

Proof. First, (a) and (c) follows directly from AV (2020, Theorems 4(a) and 4(c)), since the specifi-

cation of the regressors in this paper readily follows their framework.23

23While AV (2020) state their results for d rather than dx to maintain notational simplicity in their framework, it is clear
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For (b), let us first define êt = ê
(1)
t + ê

(2)
t , where

ê
(1)
t ≡ (1− L)d̂1a+ B′Q(L)(1− L)d̂1xt−1 + (1− L)d̂1ξ

(−d1)
t−1 , ê

(2)
t ≡ (1− L)d̂1ηt, (B.3)

for which the component ê
(1)
t is equivalent to the case without cointegration considered by AV (2020,

Theorem 4(b)) due to Assumptions D1-D3 and C. By applying the decomposition (B.3), we have

F̂ c
ûê(`,m)− F̂ûê(`,m) = F̂ c

ĉê(`,m) = F̂
(c,1)
ĉê (`,m) + F̂

(c,2)
ĉê (`,m) (B.4)

where F̂
(c,1)
ĉê (`,m) and F̂

(c,2)
ĉê (`,m) are the TDAC between ĉt−1 and ê

(1)
t , respectively, ê

(2)
t . Now, by

applying, AV (2020, Theorem 4(b)) and AVOA (2020, Lemma A.12(b)), we have,

λ−1
m F̂

(c,1)
ĉê (`,m) ≤ Op((m/n)dx/`1+ε), w

(2)
ê (λj) = Op(λ

d1
j ), wĉ(λj , i) = Op(λ

di
j ), (B.5)

for i = 2, . . . , k + 1. Hence, since 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may further write

F̂
(c,2)
ĉê (`,m) ≤ 2π

n

m∑
j=`

Op(λ
dx
j ) ≤ 2πm1+dx

n1+dx

m∑
j=`

Op

((
j

m

)dx 1

j1+ε

)
≤ Op

((m
n

)1+dx 1

`1+ε

)
, (B.6)

for some arbitrarily small ε > 0, using |
∑m

j=`Op(j
−p)| ≤ Op(`−p) for some p > 1 by Varneskov (2017,

Lemma C.4). The stated result follows by combining bounds for F̂
(c,1)
ĉê (`,m) and F̂

(c,2)
ĉê (`,m).

For (d), by applying the same decomposition as for (b), we have

Ĝc
ûê(`G,mG)− Ĝûê(`G,mG) = Ĝc

ĉê(`G,mG) = Ĝ
(c,1)
ĉê (`G,mG) + Ĝ

(c,2)
ĉê (`G,mG), (B.7)

where, again, the DFT bounds in (B.5) apply to w
(2)
ê (λj) and wĉ(λj , i). Moreover, by AV (2020,

Theorem 4(c)), we have

Ĝ
(c,1)
ĉê (`G,mG) ≤ Op((mG/n)dx/`1+ε

G ). (B.8)

Next, using, again, 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may similarly write

Ĝ
(c,2)
ĉê (`G,mG) ≤ 1

mG − `G + 1

mG∑
j=`G

Op(λ
dx
j )

≤
Km

dx
G

ndx

mG∑
j=`G

Op

((
j

mG

)dx 1

j1+ε

)
≤ Op

((mG

n

)dx 1

`1+ε
G

)
, (B.9)

using mG/(mG − `G + 1) ≤ K and Varneskov (2017, Lemma C.4). The stated result follows by

combining asymptotic bounds for Ĝ
(c,1)
ĉê (`G,mG) and Ĝ

(c,2)
ĉê (`G,mG).

that their results apply to dx as the parameter appears when applying the differencing operator to ut−1 and ct−1.
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For (e), let us first write η̂ct ≡ (1− L)−b̂η̂
(b,c)
t , with

η̂
(b,c)
t = êt − B̂c(`,m)′ûct−1 = η̂

(b,1)
t + ê

(2)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1 (B.10)

using êt = ê
(1)
t + ê

(2)
t , where we also let η̂

(b)
t = η̂

(b,1)
t + ê

(2)
t ,

η̂
(b,1)
t = ê

(1)
t − B̂(`,m)′ût−1, τ̂

(1)
t−1 = (B̂c(`,m)− B̂(`,m))′ûct−1, τ̂

(2)
t−1 = B̂(`,m)ĉt−1. (B.11)

The main difference between this decomposition and the corresponding in AV (2020, Theorem 4) is

the presence of ê
(2)
t and the fact that we may have b̂, b 6= 0. Hence, we need to distinguish between

cases without cointegration b̂ = b = 0, i.e., scenarios (ii) and (iii), as determined by the cointegration

rank test, and scenario (iv), where b̂ satisfies Assumption B; see Appendix A.2.

The case without cointegration. Here, η̂ct = η̂
(0,c)
t , η̂

(0)
t = η̂t and let us make the decomposition,

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) = Ĝ

(1,1)
τ̂ τ̂ (`G,mG) + Ĝ

(2,2)
τ̂ τ̂ (`G,mG) + 2Ĝ

(1,2)
τ̂ τ̂ (`G,mG)

− 2Ĝ
(1)
η̂τ̂ (`G,mG)− 2Ĝ

(2)
η̂τ̂ (`G,mG), (B.12)

where the first three terms are the (trimmed) long-run variance and covariance estimates for τ̂
(1)
t−1 and

τ̂
(2)
t−1, and the final two terms are the respective long-run covariances with η̂t. Let us further write,

Ĝ
(i)
η̂τ̂ (`G,mG) = Ĝ

(i,1)
η̂τ̂ (`G,mG) + Ĝ

(i,2)
η̂τ̂ (`G,mG), i = 1, 2, (B.13)

to indicate the decomposition of η̂t into η̂
(0,1)
t = η̂

(1)
t and ê

(2)
t . Now, in this case, the asymptotic

bounds for Ĝ
(1,1)
τ̂ τ̂ (`G,mG), Ĝ

(2,2)
τ̂ τ̂ (`G,mG), Ĝ

(1,2)
τ̂ τ̂ (`G,mG), Ĝ

(1,1)
η̂τ̂ (`G,mG), and Ĝ

(1,2)
η̂τ̂ (`G,mG) are

derived in equations (A.26), (A.27), (A.29) and (A.30) of AVOA (2020) since Ĝ
(2,2)
τ̂ τ̂ (`G,mG) ≤

Op(Ĝ
(1,1)
τ̂ τ̂ (`G,mG)). Hence, to complete the proof, we need to establish corresponding asymptotic

bounds for the terms Ĝ
(2,1)
η̂τ̂ (`G,mG) and Ĝ

(2,2)
η̂τ̂ (`G,mG), i.e., covariances with ê

(2)
t . To this end, let us

first use the bounds in (B.5), B̂(`,m) = Op(1), uniformly by AV (2020, Theorem 1), and 0 < di ≤ d1+di

to write,

Ĝ
(2,2)
η̂τ̂ (`G,mG) ≤ 1

mG − `G + 1

mG∑
j=`G

Op(λ
dx
j ) ≤ Op

((mG

n

)dx 1

`1+ε
G

)
, (B.14)

similarly to (B.9). Now, make the decomposition,

Ĝ
(2,1)
η̂τ̂ (`G,mG) = (B̂c(`,m)− B̂(`,m))′

(
Ĝ

(2)
ûê (`G,mG) + Ĝ

(c,2)
ĉê (`G,mG)

)
(B.15)

where Ĝ
(c,2)
ĉê (`G,mG) ≤ Op((mG/n)dx1/`1+ε

G ) by (B.9) and since

wu(λj , i) = Op(1) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, i = 2, . . . , k + 1, (B.16)
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by AVOA (2020, Lemma A.12(b)), we may write

Ĝ
(2)
ûê (`G,mG) ≤ K

mG

mG∑
j=`G

Op(λ
d1
j ) +

K

mG

mG∑
j=`G

Op

(
λ
d1+dx
j n1/2

j

)
+

K

mG

mG∑
j=`G

Op

(
λd1j ln(n)n1/2

m
1/2
d j

)

≤ Op(1) +Op

((mG

n

)dx n1/2

m1−ε
G `1+ε

G

)
+Op

(
n1/2 ln(n)

m1−ε
G m

1/2
d `1+ε

G

)
, (B.17)

for some arbitrarily small ε > 0, using d1 ≥ 0 and Varneskov (2017, Lemma C.4). Hence, by combining

bounds, n1/2/mG → 0, Lemmas B.1(a)-(b) in the absence of cointegration in conjunction with the

continuous mapping theorem, we have Ĝ
(2)
ûê (`G,mG) ≤ Op(1) and, thus,

Ĝ
(2,1)
η̂τ̂ (`G,mG) ≤ Op((m/n)dx/`1+ε). (B.18)

Consequently, by collecting bounds for all components in (B.12),

Ĝ
(2,1)
η̂τ̂ (`G,mG) ≤ Op((mG/n)dx/`1+ε

G ) +Op((m/n)dx/`1+ε), (B.19)

thereby providing the requisite result when cointegration is absent.

The case with cointegration. First, recall b = d1 > 0 and let us make the decomposition,

η̂ct ≡ (1− L)−b̂η̂
(b,c)
t = (1− L)−b̂

(
η̂

(b)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1

)
≡ η̂t − τ̃ (1)

t−1 − τ̃
(2)
t−1, (B.20)

noting that ξt−1 = 0, for all t = 1, . . . , n in ê
(1)
t and, thus, in η̂

(b,1)
t . Hence, we may decompose the

estimators with and without regressor endogeneity, similarly to (B.21),

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) = Ĝ

(1,1)
τ̃ τ̃ (`G,mG) + Ĝ

(2,2)
τ̃ τ̃ (`G,mG) + 2Ĝ

(1,2)
τ̃ τ̃ (`G,mG)

− 2Ĝ
(1)
η̂τ̃ (`G,mG)− 2Ĝ

(2)
η̂τ̃ (`G,mG). (B.21)

Next, we need the asymptotic bounds for wη̂(λj), w
(1)
τ̃ (λj) and w

(2)
τ̃ (λj). To this end, recall the

bounding function ḡn(m,mb,md) = ln(n)√
mb
∨ ln(n)√

md
∨ λbm√

m
, then, by AVOA (2020, Lemma A.9(b)), we have

wη̂(λj) = wη(λj) +Op

((
j

n

)d−b n1/2

j

)
+Op

(
ḡn(m,mb,md)λ

−b
j

)
, (B.22)

where wη(λj) = Op(1). Moreover, by writing τ̃
(2)
t−1 = B̂(`,m)′(1−L)−b̂ĉt−1 ≡ B̂(`,m)′c̃t−1 as well as by

defining θx = dx−b, we may use B̂(`,m) = Op(1), uniformly by AV (2020, Theorem 1), in conjunction

with AVOA (2020, Lemmas A.8 and A.9(a)) to deduce w
(2)
τ̃ (λj) = B̂(`,m)′wc̃(λj) = Op(wc̃(λj)), with

wc̃(λj) ≤ Op
(
λ
dx−b
j

)
+Op

(
λ
dx−b
j

ln(n)

j1/2

)
+Op

(
n−(dx−b)−1

)
= Op

(
λ
dx−b
j

)
, (B.23)
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as j →∞ when n→∞.24 Hence, w
(2)
τ̃ (λj) ≤ Op(λ

dx−b
j ). Next, for τ̃

(1)
t−1, we may similarly write

τ̃
(1)
t−1 =

(
B̂c(`,m)− B̂(`,m)

)′ (
(1− L)−b̂ (ût−1 + ĉt−1)

)
≡
(
B̂c(`,m)− B̂(`,m)

)′
(ũt−1 + c̃t−1) ,

and, thus, decompose its DFT as,

w
(1)
τ̃ (λj) =

(
B̂c(`,m)− B̂(`,m)

)′
(wũ(λj) +wc̃(λj)) , (B.24)

with wc̃(λj) ≤ Op(λ
dx−b
j ), as for τ̃

(2)
t−1. For wũ(λj), let us further write,

ũt−1 = (1− L)−b̂ (ût−1 − ut−1) + (1− L)−b̂ut−1 ≡ ũ(1)
t−1 + ũ

(2)
t−1, (B.25)

and, accordingly, decompose the DFT as wũ(λj) = w
(1)
ũ (λj) + w

(2)
ũ (λj). First, for w

(1)
ũ (λj), we use

AVOA (Lemmas A.9(a) and A.10) with θx ≥ 0 to show,

w
(1)
ũ (λj) = Op

(
λ−bj

ln(n)
√
mb

)
+Op

((
j

n

)dx−b n1/2

j

)
. (B.26)

Similarly, by AVOA (Lemmas A.8 and A.9(a)), with d− b ≥ 0, w
(2)
ũ (λj) = Op(λ

−b
j ) and, thus,

wũ(λj) = Op

(
λ−bj

)
+Op

((
j

n

)dx−b n1/2

j

)
, (B.27)

by Assumption B. Hence, w
(1)
τ̃ (λj) = Op(B̂c(`,m) − B̂(`,m)) × Op(wũ(λj)), where, as for the case

without cointegration, B̂c(`,m)− B̂(`,m) ≤ Op((m/n)dx/`1+ε). Hence, it suffices to establish bounds

for the terms in (B.21) with wũ(λj) and apply the bound for B̂c(`,m)− B̂(`,m).

Now, for the decomposition in (B.21), we use w
(2)
τ̃ (λj) ≤ Op(λ

dx−b
j ) and b ≤ d ≤ dx to write,

Ĝ
(2,2)
τ̃ τ̃ (`G,mG) ≤ K

mG

mG∑
`G

Op

(
λ

2(dx−b)
j

)
≤ Op

((mG

n

)2(d−b) 1

`1+ε
G

)
(B.28)

for some arbitrarily small ε > 0, using mG/(mG − `G + 1) ≤ K and Varneskov (2017, Lemma C.4) to

derive the final bound. Moreover, since we have the decomposition,

Ĝ
(1,1)
τ̃ τ̃ (`G,mG) = Op

((
B̂c(`,m)− B̂(`,m)

)′ (
B̂c(`,m)− B̂(`,m)

))
×Op

(
Ĝũũ(`G,mG)

)
, (B.29)

24Note that one term from AVOA (Lemma A.8) may be dropped since θx ≥ 0.
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we may use the DFT bound in (B.27) to show

Ĝũũ(`G,mG) ≤ K

mG

mG∑
j=`G

Op

(
λ−2b
j

)
+

K

mG

mG∑
j=`G

Op

(
λ−2b
j

(
j

n

)2d n

j2

)

+
K

mG

mG∑
j=`G

Op

(
λ−2b
j

(
j

n

)2d n1/2

j

)
≡ Ẽ1 + Ẽ2 + Ẽ3, (B.30)

using, again, mG/(mG − `G + 1) ≤ K. For the terms in the decomposition, we have

Ẽ1 ≤
Kn2bmG

m2b
G

mG∑
j=`G

Op

((
j

mG

)2(1−b) 1

j2

)
≤ Op

((
n

mG

)2d (mG

n

)2(d−b) mG

`2G

)
,

Ẽ2 ≤
Km

2(d−b)−1
G

n2(d−b)−1

mG∑
j=`G

Op

((
j

mG

)2(d−b) 1

j2

)
≤ Op

((
n

mG

)(mG

n

)2(d−b) 1

`2G

)
,

Ẽ3 ≤
Kn1/2+1

mG

(mG

n

)1+d−2b
mG∑
j=`G

Op

((
j

mG

)1+d−2b 1

j2

)
≤ Op

(
n1/2+d

m
d
G

(mG

n

)2(d−b) 1

`2G

)
,

using, again, Varneskov (2017, Lemma C.4). Hence, by collecting results, we may write,

Ĝũũ(`G,mG) ≤ Op

((mG

n

)2(d−b) 1

`1+ε
G

((
n

mG

)2d mG

`1−εG

+

(
n

mG

)
1

`1−εG

+

(
n

mG

)d n1/2

`1−εG

))
(B.31)

Furthermore, since Op((B̂c(`,m) − B̂(`,m))′(B̂c(`,m) − B̂(`,m))) ≤ Op((m/n)2dx/`2(1+ε)), it suffices

to show that the second term inside the parenthesis in (B.31) multiplied by ((m/n)2dx/`2(1+ε)) is o(1)

to establish Ĝ
(1,1)
τ̃ τ̃ (`G,mG) ≤ op((mG/n)2(d−b)/`1+ε

G ). For the first of these terms, we have

(
n

mG

)2d mG

`1−εG

(m
n

)2dx 1

`2(1+ε)
≤
(
m

mG

)d mG

`1−εG `2(1+ε)
→ 0,

by Assumption T-B, as ε > 0 is arbitrarily small. Similarly, for the second and third term,(
n

mG

)
1

`1−εG

(m
n

)2dx 1

`2(1+ε)
≤
(

n

mG

)
1

`1−εG `2(1+ε)
→ 0,(

n

mG

)d n1/2

`1−εG

(m
n

)2dx 1

`2(1+ε)
≤
(
m

mG

)dx (m
n

)dx n1/2

`1−εG `2(1+ε)
→ 0,

by invoking n1/2/mG → 0 and Assumption T-B. Hence, this implies

Ĝ
(1,1)
τ̃ τ̃ (`G,mG) ≤ op

(
(mG/n)2(d−b)/`1+ε

G

)
(B.32)
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and, by the Cauchy-Schwarz inequality,

|Ĝ(1,2)
τ̃ τ̃ (`G,mG)| ≤

√
Ĝ

(1,1)
τ̃ τ̃ (`G,mG)Ĝ

(2,2)
τ̃ τ̃ (`G,mG) ≤ op

(
(mG/n)2(d−b)/`1+ε

G

)
. (B.33)

Next, for Ĝ
(2)
η̂τ̃ (`G,mG), we may use (B.22), w

(2)
τ̃ (λj) ≤ Op(λ

dx−b
j ) and b ≤ d ≤ dx to write

Ĝ
(2)
η̂τ̃ (`G,mG) ≤ K

mG

mG∑
j=`G

Op

(
λ
dx−b
j

)
+

K

mG

mG∑
j=`G

Op

(
λ

2(d−b)
j

n1/2

j

)

+
Kḡn(m,mb,md)

mG

mG∑
j=`G

Op

(
λ
d−2b
j

)
≡ Ã1 + Ã2 + Ã3. (B.34)

By applying the same arguments as for Ẽ1, Ẽ2 and Ẽ3, we have, with ḡn(·) ≡ ḡn(m,mb,md),

Ã1 ≤ Op

((mG

n

)d−b 1

`1+ε
G

)
,

Ã2 ≤
Kn1/2

m1−ε
G

(mG

n

)2(d−b) mG∑
j=`G

Op

((
j

mG

)2(d−b) 1

j1+ε

)
≤ Op

(
n1/2

m1−ε
G

(mG

n

)2(d−b) 1

`1+ε
G

)
,

Ã3 ≤ Kḡn(·)
(

n

mG

)d mG∑
j=`G

Op

((
j

mG

)2(d−b) 1

j1+ε

)
≤ Op

(
ḡn(·)

(
n

mG

)b (mG

n

)d−b 1

`1+ε
G

)
,

implying that, by Assumption T-B, Ã2 + Ã3 ≤ op(Ã1) and, thus,

Ĝ
(2)
η̂τ̃ (`G,mG) ≤ Op

(
(mG/n)d−b/`1+ε

G

)
. (B.35)

For the final term, Ĝ
(1)
η̂τ̃ (`G,mG), we have

Ĝ
(1)
η̂τ̃ (`G,mG) = Op

(
B̂c(`,m)− B̂(`,m)

)
×Op

(
Ĝũη̂(`G,mG)

)
.

Hence, we may use (B.22), (B.27) and b ≤ d ≤ dx to write,

Ĝũη̂(`G,mG) ≤ K

mG

mG∑
j=`G

Op

(
λ−bj

)
+
K n1/2

mG

mG∑
j=`G

Op

(
λ
d−b
j

j

)
+
K n1/2

mG

mG∑
j=`G

Op

(
λ
d−2b
j

j

)

+
K n

mG

mG∑
j=`G

Op

(
λ

2(d−b)
j

j2

)
+
Kḡn(·)
mG

mG∑
j=`G

Op

(
λ−2b
j

)
+
K n1/2ḡn(·)

mG

mG∑
j=`G

Op

(
λ
d−2b
j

j

)
≡

6∑
g=1

B̃g.

First, note that we readily have B̃2 + B̃6 ≤ Op(B̃3). For the remaining terms, we may apply the same
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arguments used to establish bounds for {Ãi, Ẽi}, i = 1, 2, 3, to show,

B̃1 ≤
K nb

mb−ε
G

mG∑
j=`G

Op

((
j

mG

)1−b 1

j1+ε

)
≤ Op

((
n

mG

)d (mG

n

)d−b mε
G

`1+ε
G

)
,

B̃4 = Op

(
Ẽ2

)
≤ Op

((
n

mG

)(mG

n

)2(d−b) 1

`2G

)
,

B̃5 = Op

(
ḡn(·)Ẽ1

)
≤ Op

((
n

mG

)2d (mG

n

)2(d−b) ḡn(·)mG

`2G

)
,

B̃3 ≤
K n1/2+d

mG

(mG

n

)2(d−b) mG∑
j=`G

Op

((
j

mG

)2(d−b) 1

j1+d

)
≤ Op

(
n1/2+d

mG

(mG

n

)2(d−b) 1

`
1+d
G

)
,

which, needs to be scaled with B̂c(`,m) − B̂(`,m) = Op((m/n)dx/`1+ε) to determine the asymptotic

order of Ĝ
(1)
η̂τ̃ (`G,mG). Specifically, we will use the trimming and bandwidth conditions in Assumption

T-B to show that Ĝ
(1)
η̂τ̃ (`G,mG) ≤ op((mG/n)d/`1+ε

G ), similarly to the arguments used to bound the

terms in Ĝ
(1,1)
τ̃ τ̃ (`G,mG) above. First, for B̃1 and B̃4, this follow by

(
n

mG

)d (m
n

)dx mε
G

`1+ε
≤
(
m

mG

)d mε
G

`1+ε
→ 0,

(
n

mG

)(mG

n

)d−b (m
n

)dx 1

`1−εG `1+ε
→ 0,

respectively, using Assumption T-B and ε > 0 being arbitrarily small. To see this, note that the

conditions n1/2/mG → 0 and mG/(`G `)→ 0 implies (n/mG)/(`G `)→ 0. Similarly, for B̃3 and B̃5,

n1/2+d

mG

(mG

n

)d−b (m
n

)dx 1

`
d−ε
G

1

`1+ε
≤
(mG

n

)d−b( m

mG

)d n1/2

mG

(
m
d
G

`
d−ε
G `1+ε

)
→ 0,

(
n

mG

)2d (mG

n

)d−b mG

`1−εG

(m
n

)dx ḡn(·)
`1+ε

≤
(
m

mG

)d
ḡn(·)

(
n

mG

)b mG

`1−εG `1+ε
→ 0,

respectively, using Assumption T-B and d ≤ 1. Hence, Ĝ
(1)
η̂τ̃ (`G,mG) ≤ op((mG/n)d/`1+ε

G ) and, by

collecting results from all components of the decomposition (B.21), we have

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op

(
(mG/n)d−b/`1+ε

G

)
, (B.36)

thereby providing the result in the presence of cointegration, concluding the proof.

B.1 Proof of Theorem 1

First, recall that v̂t = (êt, û
′
t−1)′, then, by invoking Lemmas B.1(c)-(d), we have,

Ĝc
v̂v̂(`G,mG)− Ĝv̂v̂(`G,mG) ≤ Op

(
(mG/n)dx/`1+ε

G

)
, (B.37)

52



for some arbitrarily small ε > 0. Hence, we may continue by working with the corresponding estimate

without regressor endogeneity, v̂t. Next, define Â(L) ≡ D̂(L)D(L)−1 and at ≡ D(L)zt such that we

have v̂t = Â(L)at. Moreover, we may write at = µt+vt, where µt ≡D(L)µ1{t≥1} and vt = (et,u
′
t−1)′

with et = ϕt−1 + η
(d1)
t and ϕt−1 = B′ut−1 + ξt−1. Finally, let us define ψt−1 = (ϕt−1,u

′
t−1)′ and write,

Ĝv̂v̂(`G,mG)− Ĝψψ(1,mG) =
(
Ĝψψ(`G,mG)− Ĝψψ(1,mG)

)
+
(
Ĝvv(`G,mG)− Ĝψψ(`G,mG)

)
+
(
Ĝv̂v̂(`G,mG)− Ĝvv(`G,mG)

)
≡ U (G)

1 + U (G)
2 + U (G)

3 , (B.38)

Then, the following lemma provides asymptotic bounds for U (G)
1 , U (G)

2 and U (G)
3 as well as a central

limit theorem for Ĝψψ(1,mG). Hence, the stated limit theory follows by applying Assumption T-G to

eliminate the sampling and trimming errors in conjunction with Slutsky’s theorem.

Lemma B.2. Under the conditions of Theorem 1, the following uniform bounds hold:

(a) m
1/2
G U (G)

1 = Op
(
`G/
√
mG

)
.

(b) m
1/2
G U (G)

2 ≤ Op
(
(`G/
√
mG)(`G/n)d1

)
+Op

(
(mG/n)d1/

√
mG

)
.

(c) For some arbitrarily small ε > 0,

m
1/2
G U (G)

3 ≤ Op
(

n
√
mG`2G

(mG

n

)2dx
)

+Op

(
n1/2

√
mG

(mG

n

)d mε
G

`1+ε
G

)
+Op

(
ln(n)(mG/md)

1/2
)
.

(d) Let m1+2$
G /n$ for mG � nκG and ` � nνG, with 0 < νG < κG < % ≤ 1, then

m
1/2
G vec

(
Ĝψψ(1,mG)−Gψψ

)
D−→ N

(
0,
(
Gψψ ⊗Gψψ +

(
Gψψ ⊗G

(1)
ψψ, . . . ,Gψψ ⊗G

(k+1)
ψψ

))
/2
)
.

Proof. For (a). First, by the cancellation of terms in the summation, U (G)
1 = −Ĝψψ(1, `G − 1). The

result, then, follows by Christensen & Varneskov (2017, Lemma 6).

For (b). First, define the (k+ 1)× 1 vector c̆t ≡ (η
(d1)
t ,0′k)

′, such that vt−ψt = c̆t, and make the

decomposition,

U (G)
2 = Ĝc̆c̆(`G,mG) + Ĝψc̆(`G,mG) + Ĝc̆ψ(`G,mG) (B.39)

Next, as for the bounds in (B.5), we invoke AVOA (2020, Lemma A.12(b)) to show that w
(d1)
η (λj) =

Op(λ
d1
j ), when j � n, ∀ > 0. Hence, uniformly,

Ĝc̆c̆(`G,mG) =
1

mG − `G + 1

mG∑
j=`G

Op

(
λ2d1
j

)
≤
(mG

n

)2d1 K

mG

mG∑
j=`G

Op

((
`G
mG

)2d1
)
. (B.40)
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Moreover, by applying Shimotsu & Phillips (2005, Lemma 5.4(a)), we have

1

mG

mG∑
j=`G

(
`G
mG

)2d1

=

∫ 1

`G
mG

x2d1dx+O
(
m−1
G

)
= O

(
(`G/mG)1+2d1

)
+O

(
m−1
G

)
, (B.41)

and, as a result, Ĝc̆c̆(`G,mG) ≤ Op((`G/mG)(`G/n)2d1) + Op((mG/n)2d1/mG). Now, by combin-

ing Assumptions D1-D3, the same arguments and the Cauchy-Schwarz inequality, Ĝc̆ψ(`G,mG) ≤
Op((`G/mG)(`G/n)d1) +Op((mG/n)d1/mG), providing the result as `G/n+mG/n→ 0 and d1 > 0.

For (c). First, let us further decompose the error term as,

U (G)
3 =

(
Ĝaa(`G,mG)− Ĝvv(`G,mG)

)
+
(
Ĝv̂v̂(`G,mG)− Ĝaa(`G,mG)

)
≡ U (G)

31 + U (G)
32 .

Moreover, write at = ψt + µt + c̆t ≡ bt + c̆t and v̂t = Â(L)(bt + c̆t) ≡ ṽ(1)
t + ṽ

(2)
t . Now, as,

U (G)
31 = Ĝµµ(`G,mG) +

(
Ĝψµ(`G,mG) + Ĝµψ(`G,mG)

)
+
(
Ĝc̆µ(`G,mG) + Ĝµc̆(`G,mG)

)
,

we may apply the same arguments as for AVOA (2020, Lemma A.4(a)) (cf., the error term G2) to

provide the following stochastic bounds,

U (G)
311 ≡ Ĝµµ(`G,mG) +

(
Ĝψµ(`G,mG) + Ĝµψ(`G,mG)

)
≤ Op

(
n

mG`2G

(mG

n

)2dx
)

+Op

(
n1/2

mG

(mG

n

)dx mε
G

`1+ε
G

)
, (B.42)

for some arbitrarily small ε > 0. Moreover, by w
(d1)
η (λj) = Op(λ

d1
j ) and Shimotsu (2010, Lemma B.2),

Ĝµc̆(`G,mG) ≤ K

mG

mG∑
j=`G

Op

(
n1/2j−1

)
×Op

(
λd1j

)
≤
Kmε

Gn
1/2

mG

(mG

n

)d1 mG∑
j=`G

Op(j
−1−ε), (B.43)

which, by Varneskov (2017, Lemma C.4), is uniformly Op(n
1/2mε−1

G (mG/n)d1`−1−ε
G ), implying

U (G)
31 ≤ Op

(
n

mG`2G

(mG

n

)2dx
)

+Op

(
n1/2

mG

(mG

n

)d mε
G

`1+ε
G

)
. (B.44)

Next, for the second term U (G)
32 , we may write,

Ĝaa(`G,mG) = Ĝbb(`G,mG) + Ĝc̆c̆(`G,mG) + Ĝbc̆(`G,mG) + Ĝc̆b(`G,mG),

Ĝv̂v̂(`G,mG) = Ĝ
(1)
ṽṽ (`G,mG) + Ĝ

(2)
ṽṽ (`G,mG) + Ĝ

(12)
ṽṽ (`G,mG) + Ĝ

(21)
ṽṽ (`G,mG).
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Moreover, by applying AVOA (2020, Lemmas A.8-A.9(a), Equations (A.60) and (A.65)), we have

w
(1)
ṽ (λj , i) = wb(λj , i) +Op

(
ln(n)

m
1/2
d

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, wb(λj , i) ≡ wu(λj , i) +wµ(λj , i),

w
(2)
ṽ (λj) = wc̆(λj) +Op

(
λd1j ln(n)

j1/2

)
+Op

(
λd1j ln(n)

m
1/2
d

)
, wc̆(λj) = Op

(
λd1j

)
,

when j � n,  > 0, for i = 1, . . . , k + 1. Now, the difference Ĝ
(1)
ṽṽ (`G,mG)− Ĝbb(`G,mG) has already

been considered in the proof of AVOA (2020, Lemma A.4(a)) (cf. the term G3). Hence, by letting,

f̄G(`G,mG, n) = 1 ∨
n1/2mε

G

mG`
1+ε
G

∨ n

mG`2G
, with f̄G(`G,mG, n)→ 1, (B.45)

as n→∞ by Assumptions T and T-G (condition two), we have, by their arguments,

Ĝ
(1)
ṽṽ (`G,mG)− Ĝbb(`G,mG) ≤ Op

(
ln(n)2

md
f̄G(`G,mG, n)

)
+Op

(
ln(n)
√
md

√
f̄G(`G,mG, n)

)
, (B.46)

and, thus, Ĝ
(1)
ṽṽ (`G,mG) − Ĝbb(`G,mG) ≤ Op(ln(n)/

√
md). Next, by applying the periodogram ap-

proximation error decomposition for w
(2)
ṽ (λj), we have

Ĝ
(2)
ṽṽ (`G,mG)− Ĝc̆c̆(`G,mG) ≤ K

mG

mG∑
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λ2d1
j ln(n)2

j

)
+Op
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λ2d1
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d

)
+Op
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λ2d1
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)
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n

)2d1

(
mε
G ln(n)2
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1+ε
G

+
mε
G ln(n)2

`1+ε
G

√
mGmd

+
ln(n)2

md

((
`G
mG

)1+2d1

+
1

mG

)))

for some arbitrarily small ε > 0, using (B.41) and the same arguments as for (B.42) and (B.43). Hence,

by Assumptions T and T-G, Ĝ
(2)
ṽṽ (`G,mG)− Ĝc̆c̆(`G,mG) ≤ op(U (G)

311). Similarly,

Ĝ
(12)
ṽṽ (`G,mG)− Ĝbc̆(`G,mG) ≤ K

mG

mG∑
j=`G

(
Op

(
ln(n)2λd1j

m
1/2
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)

+Op

(
ln(n)2λd1j
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)
+Op

(
ln(n)2λd1j n

1/2

m
1/2
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)
+Op

(
ln(n)2λd1j n
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mdj
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((mG

n

)d1 ( mε
G ln(n)2

`1+ε
G

√
mGmd

+
ln(n)2

md
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`G
mG

)1+d1

+
1
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)
+

ln(n)2n1/2

m
1/2
d mG`

3/2
G

+
n1/2 ln(n)2

`1+ε
G m1−ε

G md

))
,

which, by Assumptions T and T-G, similarly has Ĝ
(12)
ṽṽ (`G,mG) − Ĝbc̆(`G,mG) ≤ op(U (G)

311), and the

equivalent result for Ĝbc̆(`G,mG)−Ĝ(21)
ṽṽ (`G,mG) follows by symmetry. The final bound, thus, follows

by collecting results for U (G)
311 and Ĝ

(1)
ṽṽ (`G,mG)− Ĝbb(`G,mG).

For (d). The central limit theory follows by Nielsen & Shimotsu (2007, Lemma 5).
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B.2 Proof of Theorem 2

The result follows by combining Theorem 1 and Robinson & Yajima (2002, Theorem 4).

B.3 Proof of Theorem 3

First, recall that v̂t = (êt, û
′
t−1)′, then, by invoking Lemmas B.1(a)-(b) and the continuous mapping

theorem,
√
mλ−bm

(
B̂c(`,m)− B̂(`,m)

)
≤ Op

(
(m/n)dx−b

√
m/`1+ε

)
, (B.47)

for some arbitrarily small ε > 0. Hence, we may continue by working with the corresponding estimate

without regressor endogeneity, v̂t. As for the proof of Theorem 1, define Â(L) ≡ D̂(L)D(L)−1 and

at ≡ D(L)zt such that v̂t = Â(L)at, and further write at = µt + vt, where µt ≡ D(L)µ1{t≥1} and,

again, vt = (et,u
′
t−1)′ with et = ϕt−1 + η

(d1)
t , d1 = b, and ϕt−1 = B′ut−1 + ξt−1. Finally, define

µ
(e)
t as the first element of the vector µt and µ

(u)
t as the remaining k × 1 subvector. Then, as in the

corresponding proof of AV (2020, Theorem 1), we can write by addition and subtraction,

B̂(`,m)−B = F̂ûû(`,m)−1F̂ (b)
uη (1,m) + F̂ûû(`,m)−1F̂uξ(1,m)− C1 + C2 + C(b)

3 + C4, (B.48)

where the four error terms, C1, C2, C(b)
3 , and C4 are defined as

C1 ≡ F̂ûû(`,m)−1F̂
(u)
ûµ (`,m)B, C2 ≡ F̂ûû(`,m)−1F̂

(e)
ûµ (`,m),

C(b)
3 ≡ F̂ûû(`,m)−1

(
F̂

(b)
ûη (`,m)− F̂ (b)

uη (`,m) + D(b)
1

)
, D(b)

1 ≡ F̂
(b)
uη (`,m)− F̂ (b)

uη (1,m),

C4 ≡ F̂ûû(`,m)−1
(
F̂ûξ(`,m)− F̂uξ(`,m) + D2

)
, D2 ≡ F̂uξ(`,m)− F̂uξ(1,m),

with the superscripts indicating µ
(u)
t and µ

(e)
t , respectively. Whereas the asymptotic properties of the

terms C1, C2, C(b)
3 and F̂ûû(`,m)−1F̂

(b)
uη (1,m) are the same irrespective of the models (ii)-(iii) and

model (iv), the properties C4 and F̂ûû(`,m)−1F̂uξ(1,m) depend on the inference regime.

Inference for model (iv): Since ξt−1 = 0, ∀t = 1, . . . , n, we have C4 = 0 and F̂uξ(1,m) = 0. Next,

by applying AVOA (2020, Lemma A.2), we have,

√
mλ−bm

(
C1 + C2 + C(b)

3 ) = op(1), λ−1
m F̂ûû(`,m)

P−→ Guu. (B.49)

The result, then, follows by applying AVOA (2020, Lemma A.3) to
√
mλ−1−b

m F̂
(b)
uη (1,m) in conjunction

with (B.49), the continuous mapping theorem and Slutsky’s theorem.

Inference for models (ii) and (iii): Since F̂ûû(`,m)−1F̂
(b)
uη (1,m) = Op(λ

b
mm

−1/2), with 0 < b =

d1 ≤ 1, and we may use AVOA (2020, Lemma A.2) to show
√
mC4 = op(1), despite ξt−1 being non-

trivial, the central limit theory follows by applying AVOA (2020, Lemma A.3) to
√
mλ−1

m F̂uξ(1,m) in

conjunction with (B.49), the continuous mapping theorem and Slutsky’s theorem.

The mutual consistency condition follows by the corresponding in AV (2020, Theorem 1) since it
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is derived for the worst case bound d = b = 0 and, thus, applies to both inference scenarios.

B.4 Proof of Theorem 5

The result follows by combining Lemmas B.1(c) and (e) with AVOA (2020, Lemma A.4).
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