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ABSTRACT
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attention to ways to incorporate risk into the evaluation of research proposals. This discussion 
often occurs in the absence of well-defined and developed concepts of what risk and uncertainty 
mean in science. This paper sets out to address this void with the goal of providing building 
blocks to further the discussion of the meaning of risk and uncertainty in science. The core 
contributions of the paper are fourfold. First, we outline the meaning of risk in science, drawing 
on insights from literatures on risk and uncertainty. Second, based on this outline, we discuss 
possible ways in which programs can embrace a more comprehensive concept of risk and embed 
it in peer review of proposals, with the goal of not penalizing risky research proposals with the 
potential of high return when funding decisions are made. Third, we make an important 
distinction between research projects involving high-risk and research projects whose evaluation 
is subjected to ambiguity/radical uncertainty. Fourth, we discuss possible ways of addressing 
ambiguity/radical uncertainty by funding agencies.
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1. Introduction 

Among researchers today there is concern that risk-taking in science is overly limited 

(Persko 2012, Edwards et al. 2011; Fedorov, Müller, and Knapp 2010).  Various resons are 

given. Some scholars note that the rewards to undertaking risky research are only descernable 

with a long delay ( Wang, Veugelers, and Stephan 2017) and are modest compared to those 

for incremental research (Foster, Rzhetsky, and Evans 2015). Some emphasize the role 

played by the institutional environment (Hollingsworth 2004), suggesting that risk-taking is 

disfavored by systems that exert strong control on universities and research institutions 

(Heinze, von der Heyden, and Pithan 2020), and that the increase in competitive funding, and 

short-term positions reduces the ability and willingness of scientists to conduct risky research 

(Laudel 2017; Wang, Lee, and Walsh 2018). 

Other scholars put the onerous on peer review that takes place in funding agencies, 

arguing that it focuses excessively on feasibility and things that can go wrong at the expense 

of supporting research that has the potential to lead to major breakthroughs (Azoulay and Li 

2020; Criscuolo et al. 2017; Franzoni, Stephan, and Veugelers 2021; Heinze 2008; Nicholson 

and Ioannidis 2012; OECD 2018; Petsko 2011; Wagner and Alexander 2013).  The result is a 

selection of projects that, despite ensuring good average quality (Li 2017; Park, Lee, and Kim 

2015), disfavors novel approaches (Boudreau et al. 2014; Lane et al. 2021), with the potential 

of high value (Azoulay, Graff Zivin, and Manso 2012).  Early-career investigators with a 

history of doing novel research (Veugelers, Stephan, and Wang 2022) are particularly at a 

disadvantage.  

This discussion often occurs in the absence of well-defined and developed concepts of 

what uncertainty and risk-taking mean in science, how these can be measured and 

incorporated into peer review.1  This paper sets out to address this void. The core 

contributions of the paper are twofold. First, we outline a framework to characterize risk in 

science, drawing on the rich and diverse literature on risk and uncertainty. Our focus is on the 

meaning of risk ex ante—especially at the time a research project is proposed and evaluated.   

Second, based on this framework, we outline a pragmatic way to incorporate risk into peer 

review evaluations of research proposals.  While a large and rich literature exists on science 

funding (Azoulay et al. 2019; Braun 1998; Dasgupta and David 1994; Fortunato et al. 2018; 

 
1 Science is not the only domain in which the term risk is difficult to define. The problems posed by defining 
risk have been extensively debated in various fields. For a review see e.g., Hansson (1989) and Aven (2012). 
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Goldstein and Kearney 2020; Laplane and Mazzucato 2020; Stephan 2012), and specifically 

on peer review of proposals (Azoulay, Graff Zivin, and Manso 2011; van den Besselaar, 

Sandström, and Schiffbaenker 2018; Boudreau et al. 2016; Feliciani et al. 2022; Georghiou 

and Roessner 2000; Groot and García-Valderrama 2006; Li 2017; Viner, Powell, and Green 

2004; Wang et al. 2017), the number of studies that focus on the role that risk plays in 

assessment of researcher-initiated proposals is sparse (Boudreau et al. 2016; Heinze 2008; 

Lane et al. 2021; Linton 2016; Luukkonen 2012; Park et al. 2015). 

The structure of the paper is as follows. Section 2 clarifies concepts and assumptions 

used in the discussion of risk with the goal of eliminating potential sources of confusion and 

common misconceptions. Section 3 reviews insights about risk and uncertainty provided by 

different literatures.  The remaining sections focus on the role that risk plays in research and 

how it can be incorporated into peer review of investigator-initiated research proposals.  

Section 4 provides a conceptual framework of risk in science, using the IceCube Neutrino 

Observatory as an example to illustrate components of risk. Section 5 proposes 

operationalizing the conceptual framework with a Subjective Expected Utility (SEU) 

approach that can be used in peer review of research proposals. It then compares the SEU 

approach with the procedure currently followed by the National Institutes of Health (NIH), 

discusses its advantages and conditions of applicability and alternative ways to address 

research evaluation where the SEU is not applicable. Section 6 discusses limitations and 

directions of future research, including the importance of experiments to test the effectiveness 

of such recommendations, and closes with conclusions. 

   

2. Definitions and potential pitfalls 

The road to the study of risk in science is paved with misconceptions and prone to 

misunderstanding. We thus preface this paper by clarifying concepts and assumptions 

underlying the discussion.  

First, the terms risk and uncertainty are ambiguous and prone to generate confusion. 

Because we frequently use the word risk in everyday life, risk at first appears to be a rather 

intuitive concept. However, when making risk a subject of scholarly investigation, we 

quickly realize that we lack a shared, let alone precise, understanding of the meaning of risk. 

Scholars of risk, recognizing this, have offered extensive discussion on the topic, and have 
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noted a number of different meanings of risk in different literatures (Althaus 2005; Aven and 

Renn 2009; Hansson 2002, 2018). Thus, a pre-condition to holding productive discussions is 

to develop a sound conceptual understanding of risk in science. Failure to do so leads to a 

Tower of Babel in which scientists from different backgrounds implicitly use notions 

germane to their discipline, but alien to others.  

One large source of confusion relates to the fact that the word risk can be used in a 

preventive sense, to mean the possibility of a clearly negative event, as well as in a 

speculative sense, to mean the possibility of events that can be both positive or negative. IRB 

protocols, where scientists are required to specify the risks involved in a research, subscribe 

to the first meaning. Science funding organizations which claim to promote risky research for 

its transformative potential, such as the ERC,2 clearly subscribe to the speculative meaning. 

In this paper we subscribe to the speculative meaning. 

Second, in situations of uncertainty, it is often useful to refer to probabilities, i.e. the 

odds with which a possible outcome may occur. As the work of Frank Knight stressed, in the 

real world we often lack sufficient knowledge for quantifying the odds of an outcome, and -

even more radically- we are often incapable of sketching out what would be the possible 

outcomes, a pre-condition to forecasting the odds (Knight 1921; Shackle 1979). As we 

discuss below, science at times presents decision makers with such situations. Knight 

suggested demarcating such situations with different terms.  In his 1921 book he called 

uncertainty a situation in which probability cannot be measured and risk a situation in which 

it can (Knight 1921). The use of the terms risk and uncertainty to make this distinction has 

been embraced by other scholars in the tradition of economics of science and innovation 

(e.g., Loasby 2001, p.396). In other branches of economics, this distinction has not been 

uniformly adopted. Rather, risk and uncertainty are often used as alternative generic terms, 

whereas unmeasurable uncertainty is sometimes called “Knightian uncertainty”, “radical 

uncertainty”, or “ambiguity” (see e.g., Camerer and Weber 1992: 326). In this paper we 

subscribe to the notion that some risks are quantifiable and other risks are not.  However, we 

do not use the terms risk and uncertainty to demarcate this distinction. This is because risk is 

the term most often used by scientists (outside economics), policy makers and granting 

agencies, arguably to mean both the uncertainty and risk involved in research. Rather, in this 

 
2 See e.g. https://erc.europa.eu/news/transformative-effect-science. Accessed Nov 12, 2021. 

https://erc.europa.eu/news/transformative-effect-science
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essay, we use the term risk and uncertainty interchangeably as synonyms without reference to 

their measurability. When we need to refer to situations of unmeasurable risk, we use the 

terms ambiguity or radical uncertainty.    

Third, research is not free (Stephan 2012).  From the researcher’s point of view, time 

spent on research has an opportunity cost; from a university and/or foundation’s point of 

view, the materials, equipment and space devoted to research come with a cost. These costs 

should be viewed as participation costs and are equivalent to those incurred when purchasing 

a lottery ticket in which one can gain or lose. In this case, participation costs are those 

incurred by funders or researchers who ‘buy’ a chance to discover the outcome of a potential 

course of action. They are fundamentally and conceptually different from the losses that can 

result from the course of action. Although participation costs can be one element to consider 

when evaluating the yield from doing a research project, they should not be confused with 

losses.    

The discussion of risk in science often conjures up comparisons of risk associated 

with financial investments. Such a comparison is helpful in that it reminds us that the 

desirable amount of risk to assume depends upon the goals. As in finance, risk taking in 

science is advocated because of the anticipated higher return associated with taking risk.  

Having said that, risk differs between finance and science in several important respects. In 

finance, risk and reward are correlated, because prices adjust to ensure capital market 

equilibrium. In science, without a price-adjusting mechanism, risk and rewards need not be 

correlated. In finance, the outcomes of investments vary both in the negative and positive 

spectrum. In science, strictly negative outcomes (losses) are rare.  Some research may pose 

harm to a patient, or researcher or pose threats to society,3 but such situations are the 

exception rather than the norm.  More commonly, the outcomes of research findings are 

distributed in the positive spectrum, going from zero (the status quo) on the upside, in the 

sense that most failed research produces no loss: it just does not substantially advance the 

area of study. Another way in which risk differs between finance and science is that in 

finance past volatility of an asset’s price can provide the basis for prediction and calculation 

of risk associated with an investment. The reason is that past volatility is easy to calculate and 

can predict future volatility. By way of contrast, in the case of science, some situations can be 

 
3 Think, for example, of the experiments of power generation from nuclear fusion, where it is easy to imagine 
catastrophic scenarios and uncontrollable unknown events. 
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unique. Moreover, many failed attempts go unpublished and so remain largely unobserved 

(Fanelli 2010; Rosenthal 1979). Thus, it is not always possible to use past experience to form 

predictions about outcomes.4  Finally, in finance, gains and losses come in the form of 

monetary amounts, whose value can be calculated immediately and thus compared with other 

investments. By way of contrast, the results of research are difficult to understand and 

measure, especially in the short-term.  Even in the long-term, their assessment can remain 

subjective. 

Before commencing, we address some extreme simplifications and misconceptions 

that can hijack the discourse on risk and uncertainty in science.  One extreme simplification 

is that “scientific research is always risky.” This blunt approximation fails to recognize a 

considerable degree of nuance, including that, in certain areas of research, risk is limited or 

mitigated by the character of the research.  First, a non-negligible share of research involves 

virtually zero risks. Consider, by way of example, Cochrane reviews that consist of 

collecting, coding and jointly testing the results of multiple studies of the same medical 

treatment.  Cochrane reviews require rigorous methods and provide valuable results to 

scholars and practitioners.  Yet, the researcher who chooses to perform a Cochrane review 

has no doubt that the review can be accomplished and published; the volatility involved in the 

outcome is practically nonexistent.  Second, some research is bound to produce non-zero 

outcomes, although the value of what is found may be uncertain.  For example, many 

archeological excavations are done after a site has been identified. In these cases, findings are 

guaranteed, but there is uncertainty with respect to what they will be and their importance. 

Archival studies, large statistical analyses of galaxies, or research on the collateral effects of 

approved drugs are other examples of similar situations where risk is very small.  Third, some 

research projects have predictable outcomes, although there is uncertainty concerning the 

time required to obtain them.  An example is the Human Genome Project, which was 

formally launched in 1990, with the aim of sequencing the 3 billion base pairs of the human 

genome.  At the time the project was started, the set of techniques readily available was 

sufficient to guarantee eventual success. However, there was uncertainty concerning whether 

the project could be accomplished in the 15 years that it aspired to. In the end, a working 

draft of the genome was obtained within ten years, thanks largely to improvements in the 

 
4 By way of example, protein structure determination became more predictable by developing an “automated 
pipeline for protein production and structure determination” which included the development of robots that 
could grow and screen crystals (Stephan 2012: 93). 
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technology (Stephan 2012: 88).  These three cases suggest that a non-negligible part of 

research involves projects that are virtually certain to lead to an outcome. In these cases, risk 

is confined to the uncertainty associated with the value of the outcomes and/or to the time 

and resources needed to achieve the research, but not to whether an outcome will be 

forthcoming. In the next sections we expand the discussion by considering the array of 

components that coalesce to determine risk in science.    

Another misconception concerning risk in science is that engaging in a new line of 

research is always the riskier course of action, while continuing along an existing research 

path is the play-safe alternative.  Consider, for example, the case of James P. Allison.  Allison 

had spent most of his career studying the use of antibodies blocking the immune inhibitory 

molecule CTLA-4, as a strategy to unleash the immune response to cancer. In 1995, he 

understood that CTLA-4, a T-cell surface receptor, served to dampen T-cells responses and 

could be used as a target for cancer immunotherapy (Krummel and Allison 1995). In the 

same years, other cancer immunotherapy approaches were being investigated, including 

cancer vaccines and agonist antibodies activating immune stimulatory receptors. However, 

cancer vaccines showed very limited efficacy, as an influential NIH review pointed-out in 

2004 (Rosenberg, Yang, and Restifo 2004), and several agonist antibodies (e.g., targeting 

CD28, CD40, or 4-1BB) were found to cause serious adverse effects, which in some cases 

were life-threating for healthy patients (Suntharalingam et al. 2006). As a result, the clinical 

community was skeptical of Cancer Immunotherapy in general and pharmaceutical 

companies were uninterested in further development of these approaches. Despite this, 

Allison engaged with a small biotech company to develop a CTLA-4 blocking antibody for 

clinical use to test in cancer patients, called Ipilimumab. The clinical trial was eventually 

successful and Ipilimumab became the first immune checkpoint inhibitor drug to receive 

FDA approval for cancer treatment in 2011 (Wolchok et al. 2013). Immune checkpoint 

inhibitors have since become one of the most promising frontiers of cancer treatment 

research. Allison shared the Nobel Prize in Physiology or Medicine in 2018 (Dobosz and 

Dzieciątkowski 2019). As the example illustrates, in this case the choice to persist could 

arguably be described as risky behavior. Thus, undertaking a new line of research is not 

always the risky behavior and continuing a line of research does not always imply risk 

avoidance.  Kuhn refers to this choice as an “essential tension” (Kuhn 1991), noting that both 

alternatives, not just the former, can be hazardous. Working in a new area of research often 

requires formulating new theory and using new methods, both of which arguably involve 
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risk. On the other hand, persisting along a line of research can often provide a more 

predictable path, albeit one with diminishing returns, or one potentially leading to a dead-end.  

It suggests that if we want to understand risk, we should refrain from taking shortcuts that 

assume identity between risk and any given observed behavior. 

 

3. Risk in Science and in Adjacent Literatures 

Risk has been the subject of extensive scholarly investigation by many different 

literatures (Althaus 2005; Aven and Renn 2009; Hansson 2002, 2018). A sound conceptual 

notion of risk in science should rely on the concepts and tools developed elsewhere. To this 

aim, we provide an overview of four bodies of work that have contributed important building 

blocks to our understanding of risk.  Before doing so, we note that the risky nature of 

scientific research is well documented by the observation that the distributions of research 

outcomes are systematically skewed (Radicchi, Fortunato, and Castellano 2008; Seglen 1992; 

de Solla Price 1965), with many outcomes leading to modest or no advances and a few 

leading to major leaps forward (Van Noorden, Maher, and Nuzzo 2014; Wang and Barabási 

2021).5 It is also documented by the observation that research can lead to outcomes which are 

unanticipated, or serendipitous (Merton and Barber 2004; Yaqub 2018). This uneven and 

unpredictable nature of scientific advance encumbers optimal choices in the allocation of 

resources to research (Arrow 1962; Dasgupta and David 1994; Nelson 1959).  

Risk Analysis.  A primary focus in engineering studies of risk regards the occurrence 

and impact of potential events. The intent of this literature is fundamentally utilitarian. The 

main focus is on representing and quantifying risks involved in a situation in order to 

facilitate making decisions. The quantification of risk in Risk Analysis is sometimes called 

‘Technical assessment’ (Renn 1998) or ‘Risk metric’ (Johansen and Rausand 2014). This is a 

pragmatic approach that disentangles complex problems into a number of simple pieces, such 

that each item can be quantified in isolation and then combined. The standard model implies 

three items (Kaplan and Garrick 1981): the scenarios/outcomes (e.g. what can happen?), the 

probability associated with each scenario (e.g., how likely is this to happen?) and the 

consequences associated with each scenario (e.g., what loss/gain would this lead to?). More 

 
5 The same pattern has been documented with regards to returns from technological innovation (Scherer 1998). 
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sophisticated models can further disentangle more fine-grained items (Aven 2011). In applied 

risk analyses, each item is analyzed by one or more expert and the combined outcome is 

simply calculated as probability times consequence (Kasperson et al. 1988). This approach 

for quantifying risk is commonly used in insurance, where the primary focus is on unwanted 

events, i.e. events that deserve special consideration because of their negative impact.6  

Mirroring this view, in the insurance literature it is common to distinguish two families of 

strategies of risk reduction: reducing the probability of a loss, called ‘protection’, and 

reducing the size of the loss (the consequences), called ‘insurance’ (Ehrlich and Becker 

1972).  

Return and volatility. In Finance, risk refers to the uncertainty concerning the return 

on the capital that the investors bear, which can be both on the upside -the profits- and on the 

downside – the losses. This view of risk as variability of future values can be operationalized 

by estimating a probability distribution of future returns and measuring the level of dispersion 

in terms of variance (Markowitz 1952; Tobin 1958), or its square root, the standard deviation, 

commonly called volatility. A direct estimation of volatility in finance can normally be 

assessed for those assets that are publicly traded, because the volatility of asset prices 

observed in the past is commonly used to proxy the volatility of the asset prices in the future. 

This is done with econometric methods, which assign diminishing weights to the increasingly 

distant past.7  The ability to measure asset volatility in finance has led to the emergence of 

portfolio diversification as a common strategy of risk-coping, that is: investing in a portfolio 

of assets, such that the average portfolio volatility is stabilized at a level deemed desirable by 

the investor, conditional on the desired returns.  

Probability and Ambiguity.  In Probability and Decision Theory, risk and uncertainty 

refer to knowledge regarding the likelihood of contingencies (Marinacci 2015). Consider first 

that there are situations in which the cause of uncertainty is rather well-known. For example, 

when throwing a dice, the physical properties of the dice -it having 6 equal-shape faces- 

determine the possible outcomes -6 states with equal probability. In this case, the model that 

generates uncertainty can be understood and described as an object, and risk can be expressed 

numerically in terms of objective probabilities. Although such situations are not common in 

 
6 E.g., fire, theft, injury, et cetera. This view of risk as danger places the uncertainty in the area of losses: from 
zero -the status quo- downwards. 
7 The most popular are the Autoregressive Conditional Heteroskedasticity (Engle 1982) and the Generalized 
Autoregressive Conditional Heteroskedasticity (Bollerslev 1986). 
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real life, objective probability can be applied, with some degree of simplification to other -

more common- situations, in which past occurrences, recorded as frequencies, are revealing 

of the underlying model that causes the uncertainty. For example, the mechanism that causes 

an illness to be fatal may not be fully known. However, it may be reasonable to assume that 

the mortality rate observed among people with the illness describes some objective property 

of this mechanism. Such calculations have been common during the COVID-19 pandemic.  

In these cases, the relative frequencies can shed light on the probability of death, similarly to 

objective probability (Hájek 2019). The Bayesian approach extends this method to situations 

in which the past is sufficiently informative to assume that one can always provide subjective 

probabilities (elicited with betting behavior) that satisfy a series of axiomatic properties. In 

this case, even in the absence of objective probabilities, one could compute Subjective 

Expected Utility (SEU) to inform decisions (Savage 1954). This approach may not be 

sufficient when there is a serious lack of knowledge regarding which outcomes may 

materialize, and/or about the (subjective) probabilities of their materializing. These cases, 

called radical uncertainty or ambiguity, lead to fundamental violations of the axioms of SEU 

(Ellsberg 1961).  Empirical work has shown that humans are not only risk-averse, that is they 

prefer a sure thing over a gamble of equal expected value (Arrow 1971; Pratt 1964), but are 

also ambiguity-averse (Trautmann and van de Kuilen, 2015). That is, they prefer situations in 

which they face objective probabilities as opposed to situations in which they face unknown 

probabilities (Ellsberg 1961; Tversky and Fox 2019). For example, they would rather draw a 

marble from an urn that they know has half reds and half blacks, rather than to draw it from 

an urn that one expert says is all reds and another expert says is all blacks (Berger and Bosetti 

2020; Ellsberg 1961). Recent theoretical work in decision theory works on alternative non-

Bayesian approaches to take optimal choice in situations of uncertainty or disagreement 

regarding the probabilities associated to the outcomes (for a review see e.g., Gilboa and 

Marinacci 2011; Marinacci 2015). These non-Bayesian approaches provide alternative 

decision rules that can be used in presence of scientific disagreement, depending on the 

problem faced and preferences of the decision maker (Berger et al. 2021).  

Human Cognition of Risk. In Social and Cognitive Psychology, risk is examined 

from a human perspective. Scholars generally agree that the human mind understands risk 

both through analytical thinking, and through intuition (Epstein 1994; Evans and Stanovich 

2013; Sloman 1996). That is, humans are capable of reasoning about risk in a logical and 

rational way, for example when they consider probabilities. But they also hold instinctive 
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reactions when confronted by risk, for example when they feel danger (Fischhoff et al. 1978; 

Loewenstein et al. 2001; Slovic et al. 2005, 2010).  A second important focus of 

psychological research is how people understand and make decisions in conditions of 

uncertainty. The seminal contribution of prospect theory (Kahneman and Tversky 1979) 

stresses that human choices of risky prospects is biased and deviates from rational behavior 

in predictable ways. In particular, people systematically undervalue perspective gains, while 

they exaggerate the magnitude of perspective losses. Furthermore, the overvaluing of losses 

is larger in magnitude than the undervaluing of gains (Kahneman and Tversky 1979; Tversky 

and Kahneman 1991). Consequently, when people have to make decisions that involve 

uncertain gains or losses, their decisions depart systematically from what rational behavior 

would predict and their behavior is inconsistent and opposite in the spectrum of gains and 

losses.8  

In the following sections, we draw on these four perspectives from distinct disciplines 

to frame the discussion concerning risk and risk-taking in science in a conceptually-sound 

way.   

4. Sources of Uncertainty in Science 

In this section we outline the components of risk in science. We are particularly 

interested in representing risk in the context of peer review of research proposals.  To 

facilitate our understanding, we take as an example the IceCube Neutrino Observatory at the 

Amundsen Scott Station at the South Pole.  The project was initially proposed in 1987 by 

Francis Halzen (University of Wisconsin) in a co-authored paper that he presented at a 

cosmic ray conference in Lodz, Poland (Halzen and Learned 1988) that discussed the 

possibility of using deep polar ice as a detector. 

Neutrinos are subatomic particles of nearly zero mass that have very little interaction 

with other masses and hence travel undisturbed across matter in outer space. The observation 

of neutrinos can thus shed light on astrophysical phenomena originating outside our solar 

system, such as the formation of supermassive black holes; more generally their observation 

can shed light on the origins of the universe.  Although scientists have explored ways to 

detect neutrinos since the late 1950s, constructing, for example, detectors in mines and lakes, 

 
8 The literature on risk in psychology is extremely vast and not exempt from critiques. For a recent test, see e.g. 
Ruggeri et al. (2020). 
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at the time Halzen proposed placing a detector at the South Pole no detection device had 

successfully observed neutrinos from outside the solar system.  The research challenge was 

thus to build an instrument capable of detecting such neutrinos and determine the direction 

from which they came and examine “the relevant optical properties of deep Antarctic ice.” 

(Halzen and Learned 1988).  

In 1988 Halzen and colleagues were awarded $50,000 from NSF to study the optical 

quality of ice.9  The research team at that time knew little about ice or the challenges 

associated with drilling in ice, which was necessary in order to embed the sensors.  This 

exploratory project evolved into the proof-of concept project AMANDA (Antarctic Muon 

and Neutrino Detector Array), supported by NSF with additional funding from other 

foundations and countries.  IceCube, which incorporates the AMANDA arrays, received its 

initial funding from NSF in 2000.  At completion of construction in 2010, the project had 

placed 5,584 digital optical modules in a series of 88 holes drilled into a cubic kilometer of 

ice, lying 1.5 kilometers below the surface at the South Pole. The ice lying above the sensors 

shields the sensors from radiation at the earth’s surface.  The basic principle behind this 

design is that when a neutrino collides with a nucleon it produces a muon through inverse 

beta decay. When this occurs, a pale blue light known as Cherenkov radiation is emitted, 

which can be detected.  Importantly, the light bounces back in the exact same direction from 

which the neutrino came. As a result, the position of the cosmic object from which the 

neutrino originated can be inferred. Some data are sent to the IceCube Project at the 

University of Wisconsin by satellite.  The balance of the data is stored on hard drives and 

sent once a year to the researchers.   

Let us now examine the risks involved in the IceCube Neutrino Observatory. There 

are sufficiently large numbers of uncertainties involved that it would be difficult to judge the 

overall risk of the project without a conceptual framework that first identifies and analyses 

multiple components of risk in isolation and then combines the components into a conceptual 

framework of risk. In order to build a suitable framework, we adopt the approach of risk 

analysis and discuss three main sources of uncertainty: 1) uncertainty concerning the 

outcomes; 2) uncertainty concerning the probability of discovery and 3) uncertainty 

concerning the value of the findings. Each component can be investigated by answering a 

 
9 The funding was obtained in the form of a Small Grant for Exploratory Research (SGER), which did not 
require external review (Bowen: 138-139).   
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number of questions and sub-questions. Figure 1 illustrates the conceptual framework. In this 

section we discuss each component separately. In the next section we discuss how they can 

be combined.  

A first source of uncertainty concerns states of the world that a research can possibly 

uncover. We refer to these as “outcomes.” Understanding this source of uncertainty requires 

an act of imagination that answers the question ‘what can be found?’  The broader the pool of 

possible outcomes that can be found, the larger the uncertainty. Because science investigates 

the unknown and is an open-ended quest (Arrow 1962; Nelson 1959), one can potentially 

conceive of an infinite number of alternative outcomes that might materialize. But in a given 

context, it is generally possible for an expert to conceive of a finite number of possible 

outcomes. The range is normally large in exploratory research (e.g. space exploration, deep 

ocean exploration), the goal of which is to shed light on unknown domains of the natural 

world.  The range is considerably narrower in empirical research which aims at testing a 

formal hypotheses, and can often be represented by two outcomes -hypothesis rejected or 

not-. Other research may require three or more hypotheses. The IceCube Neutrino 

Observatory, for example, is a case of exploratory research with a range of outcomes, 

including the possibility of identifying a variable number of neutrino-emitting sources from 

outside the solar system.  

The second thing to consider concerning uncertainty related to outcomes is that 

research designed for a specific primary goal can also lead to secondary findings, i.e. 

outcomes that materialize beyond the stated ones. Secondary outcomes may exist with or 

without primary outcomes; thus, a second question that one should ask is ‘what else can be 

found’? The discovery of secondary findings has been extensively investigated in STS 

studies (for a recent review see e.g., Yaqub (2018)). Secondary findings are not just an 

accidental by-product of research. They are deeply ingrained in the reasoning of scientists 

and in the research procedures and so they are to some extent not unanticipated. There are 

several common situations in research that induce anticipable secondary outcomes. First, new 

instruments, designed with specific goals in mind, are an especially effective source of 

secondary outcome (Franzoni 2009). Galileo’s telescope, for example, intended for 

navigation, resulted in the discovery of the moons of Jupiter; the radio telescope used by 

Jansky, intended to study noise that could interfere in radio transmission, was further used to 

detect radio galaxies.  Second, the freedom that a principle investigator enjoys in shifting the 

goals of a project provides the ability to direct research towards promising secondary 
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outcomes (Nelson 1959). Flexibility can provide backup or recovery plans when problems 

emerge in a planned task.  This is especially possible when the environmental conditions 

allow sufficient freedom and flexibility to the scientists (Heinze 2008; Heinze et al. 2020; 

Hollingsworth 2004). For example, when the IceCube team found that bubble-free ice did not 

exist until a considerably greater depth than they had initially thought, they realized they had 

a problem.  They had, “’goofed up’ by placing their instrument in shallow ice.” (Bowen 

2017:175). Halzen reportedly began to look for “some way to make this disaster look good.” 

(Bowen 2017:188). The answer was supernova. They realized they had “by far the most 

sensitive supernova detector on the planet.” Their disaster “had a mission.” (Bowen 

2017:189). A third reason that leads one to anticipate secondary outcomes is that many 

scientific projects pose practical and theoretical problems that can be solved only with 

insights from research areas that are distant to the main line of investigation. Such research 

often produces advances in distant domains, which in turn may spur additional research. By 

way of example, the drilling of ice needed to place the IceCube Neutrino detectors lead to 

important discoveries concerning the physical properties of deep-ice useful in glaciology. 

Thus, although secondary outcomes are not the main focus of a project, they may produce 

valuable additional insights. Moreover, it is often possible to anticipate that a line of research 

will lead to secondary outcomes. For example, although it is difficult to think of secondary 

outcomes arising from a Cochrane review, it is easy to think of secondary outcomes arising 

from research that requires building new instruments/methods, involves the exploration of 

nature or involves flexible research agendas.  

A second source of uncertainty concerns whether the proposed research succeeds in 

producing a finding or outcome, i.e. the probability. There are two conceptually different 

reasons that affect the chances of success: methodological uncertainty and natural 

uncertainty.  Methodological uncertainty relates to ‘how likely is the proposed approach to 

work’ and requires an assessment of whether the research method proposed is doable and 

sound. This is often unclear because the scientific knowledge on which a method is grounded 

may be uncertain (epistemic uncertainty) and/or because many details of the execution are 

not yet resolved at the stage of conception (technical uncertainty), or pose challenges 

concerning access to adequate instrumentation and capabilities (organizational uncertainty) 

(Hollingsworth 2004; Laudel and Gläser 2014). An example of epistemic uncertainty in the 

IceCube project related to the strategy for detecting neutrino bursts accompanying the 

formation of black holes, which was drawn in part from recent theoretical work by Shi and 
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Fuller (1998).  Other problems were technical, such as it was not clear how deep one would 

have to drill to find bubble-free ice.10  The original proposal submitted to NSF assumed that 

one would only have to go to a depth of around 500 meters.11 This turned out to be off by 

1000 meters (Bowen 2017:129-30). Uncertainty also existed concerning the difficulty of ice 

drilling and the time required to drill each hole, as well as potential interferences with signal 

detection and the frequency of events. Moreover “optical attenuation of deep ice in the mid 

UV range […] characteristic of the Cherenkov light emitted by high energy muons, had not 

been directly measured” (Halzen and Learned 1988, p.2) at the time the experiment was 

proposed.  The fact that the operations were to be conducted at the South Pole also posed a 

range of organizational challenges about how to assemble and transport the team and 

technical instrumentation that was needed.  Situations of high methodological uncertainty are 

the norm in projects that demand new and highly creative methods. To quote Halzen: “it’s 

pretty clear we had no idea what we were doing, and so this was real research, right? […] if 

we really had [known] what we were doing we would probably not have done it.  And, in 

fact, it turns out that a lot of things we should have known turned out not to be true” (Bowen 

2017:147).  Conversely, projects that employ standard or well-known methods do not 

confront this type of methodological uncertainty.   

In addition to the uncertainty regarding the research method, observational and 

experimental research are subjected to natural uncertainty, i.e. ‘if the expected outcome will 

be found’. This source of uncertainty concerns the probability that the subject of investigation 

is effectively observed, given the spectrum of observation, and depends in part on the laws of 

nature -i.e. the relative rarity of the phenomenon- and in part on chance. In many cases, past 

experiments or data collected in prior works provide information on the laws of nature that 

enable one to compute a probability. In the case of the IceCube, natural uncertainty relates to 

the probability that a supermassive object outside the solar system collapses and generates 

neutrinos that pass to the South Pole. This probability was modeled by an equation, in which 

the key parameters were taken from data collected from previous experiments. 

 
10 Bubbles cause light to bounce in all directions, which means that if a Cherenkov cone were detected, it would 
not travel in a straight line. 
11 This assumption was based in part on a conversation with Prof. Edward Zeller (University of Kansas), who 
thought that “we will obtain good optical clarity below about 150 meters near the pole.” (Bowen 2017:130). 
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Other things equal, a high probability of success makes a project have considerably 

higher expected value.12  Researchers know this and generally address the issue by including 

preliminary findings that prove the viability of a method or corroborate the likelihood of 

success of a research.  Panel members focus on these results, giving them considerable 

weight.  Indeed, when the Protein Structure Initiative was being funded at NIH, proposals 

were extremely unlikely to get funded if they could not demonstrate that the crystal, to be 

used for identification, already existed. This need for preliminary findings became 

popularized in the saying “no crystal, no grant.” (Stephan 2012).  Researchers often use a 

“back burner” approach to fund the research necessary to generate the preliminary findings, 

using funding drawn from an earlier grant. In a sense, they de-risk the proposal before they 

submit it.13 Such a strategy is only available to scientists who have  grants.   

The third and final source of uncertainty in science relates to the value of the potential 

findings and is captured by the question ‘how much is the finding worth?’ This source of 

uncertainty depends on the knowledge about how much such a finding would improve the 

wellbeing of society or advance the pace of science in the same and in different disciplines. 

For example, if cosmic neutrinos detect a cataclysmic astronomical event, what would be the 

value of this new piece of knowledge for science? And for society? Evaluation of societal 

impact involves considering the human, social, economic and ethical implications of research 

in the future and so it is an exercise of imagination. Moreover, weighting of such factors also 

depends to some extent on subjective judgments and personal convictions. Evaluation of 

scientific impact involves considering how much a research would unlock future discoveries. 

Three things are worth noting in this respect. First, a finding that falsifies a theory may 

provide informative content, just as (if not more so than) a finding that complies to the theory 

(Popper 1959). Thus, all outcomes have a non-zero value. Second, values normally range in 

the positive spectrum. Research that may produce direct losses or damages exists, but it is 

rare, partly because these cases are minimized by provisions put in place by the IRB or 

ethical and safety protocols.14  Third, a finding could be more or less valuable depending on 

 
12 Intended here in its probabilistic meaning, i.e. as the product of absolute value times probability. 
13 The back burner strategy is sufficiently common to inspire a cartoon:  
https://fas.org/sgp/crs/natsec/R45088.pdf 
14 Some research involves dangers for safety of human or animal subjects (e.g., testing new surgical methods), 
the researchers (e.g., developing new explosives), the environment (e.g., research on nuclear power), or it could 
involve ethical concerns (e.g., cloning of animals). IceCube, for example, confronted this type of risk 
concerning the safety of the South Pole team. Indeed, one of the drillers was seriously injured while working on 
the project. 

https://fas.org/sgp/crs/natsec/R45088.pdf
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its novelty with respect to the state of the art in the field. First-time findings have more value 

than second-time findings and subsequent replications (Merton 1957; Stephan 1996). To 

illustrate, in 2018 IceCube detected a cosmic neutrino from a blazar, laying 4-light years 

away from Earth (Collaboration 2018). The finding was considered exceptionally valuable 

because it was only the second source of cosmic neutrinos ever-detected apart from a 

supernova identified in 1987.  

In conclusion, the prior discussion outlined a conceptual framework of risk in science. 

The framework describes three sources of uncertainty: 1) outcomes, 2) probabilities and 3) 

values, that describe five main questions. The five main questions are concise and can in turn 

be investigated by answering a set of more fine-grained sub-questions. Table 1 provides a list 

of sub-questions that can be investigated to explore each source of uncertainty more 

precisely. The list can further be expanded depending on the specific context of application.   

This conceptualization is useful for representing research uncertainty and can be used  

to incorporate a measure of risk into the peer review of projects. The comparison also 

reminds us that there are basic differences regarding the risks involved in different types of 

research. Observational studies and experimental research are subject to natural risk, whereas 

theoretical research is not. In this sense, experimental research faces one more challenge that 

can lead the research to come-up empty handed. Basic experimental research (e.g., the 

IceCube) involves a lower probability of success compared to applied experimental research 

(e.g., testing the efficacy of a treatment), due to higher methodological and natural 

uncertainty, but it also enjoys the greater possibility of secondary findings.  

  



 

 18 

Figure 1. Sources of uncertainty in science 
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Table 1. Set of questions and sub-questions needed to investigate the elements of risk 

Uncertainty  Question Sub-questions 
ou

tc
om

es
  What can be found? What is the main intended outcome of the project? 

  Are multiple potential outcomes envisaged? 
  Does a disconfirmation of the main expected finding constitute a potential finding? 
 What else can be found? Does the research involve exploration with the potential to lead to unexpected findings? 
 Does the research involve solving conceptual or methodological problems that may result in secondary outcomes? 
 Does the research involve developing a tool, instrument or data that may result in a secondary outcome? 
    

pr
ob

ab
ili

ty
  How likely is the proposed Is the method known/readily applicable? 

 approach to work? Is the workplan feasible and realistic? 
  Are there backup plans available in case the primary intended method does not work? 
  Are the competences of PI and team sufficient to undertake the research plan successfully? 
  Are the equipment and facilities available to the PI and team sufficient to undertake the research plan successfully? 
 Are the needed resources (team, facilities, equipment, matching funds, ..) under direct control of the PI?  
 How likely is the   Does the PI’s environment allow sufficient flexibility to pursue secondary findings? 
 outcome to be found in nature? How rare are the events/observations that are sought in nature? 
    

va
lu

e 

 How much is the finding worth  Would the potential outcomes constitute a major scientific advance, such as opening a new paradigm or area of research in the field? 
 for science and society? Would the potential outcomes constitute a major scientific advance in different fields? 
  To what extend do the potential outcomes lead to major societal benefits, such as solving a highly-relevant problem for society? 
  To what extent is the research or approach proposed different/innovative with respect to those of existing research? 
  Are there other PIs or teams already competing to uncover the main intended outcome? 
  In case competitors exist, how valuable would a second or replicated finding be? 
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5. Incorporating Risk into Funding Decisions 

The conceptualization set out in Section 4 outlines components of risk in research and 

can be helpful in incorporating considerations of uncertainty into the context of peer review 

assessment, where experts are asked to assess research proposals having varying degrees of 

uncertainty and varying degrees of potential value. Such assessments are then typically used 

by a panel to make funding decisions. We make the case in what follows that in principle we 

can incorporate the components of risk into the peer review process, by building on the 

models of risk metrics described in Section 3 (Budnitz et al. 1998; Haimes 2009; Kaplan and 

Garrick 1981) and by adopting a Subjective Expected Utility (SEU) approach for evaluating 

research proposals. We compare this approach with one frequently used in peer review by 

NIH and argue that it holds three potential advantages:  (i) it incorporates both potential value 

and probability into the peer review process, thereby addressing the concern that proposals 

with low probabilities of success are scored by reviewers without considering their value 

(Lane et al. 2021); (ii) it requires that reviewers explicitly consider secondary outcomes and 

(iii) it provides a way forward for incorporating risk into the deliberations of panels and 

opens-up the opportunity to have a better understanding of the role risk plays in peer review. 

We then briefly comment on how the SEU approach might be incorporated into the process 

by which panels and agencies make funding decisions, discuss when the SEU approach is 

applicable and present alternative approaches for when it is not.  

A Subjective Expected Utility (SEU) approach for peer-review evaluations of 

research proposals. Let us now see how we can measure the different components that 

determine risk in a peer review protocol for research project evaluation.  

The starting point is to ask the reviewer if the project i may have only a primary 

outcome or also a primary and secondary outcome, by answering the questions of what and 

what else. The subsequent step is to ask the reviewer to assess the value that each outcome 

may entail for science and/or society, by answering the question how much. The value can be 

scored on a scale (e.g., 0-100) separately for the primary (u1i) and, the secondary (u2i) 

outcome, if a secondary outcome exists. Next, the reviewer shall be asked to assess the 

probability of the primary outcome occurring (P1i), expressed in the range [0-1], by 

answering the questions how likely. As noted above, in experimental research, the outcome 

probability can further be seen as the probability of methodological success (p1i), conditional 

on natural success (q1i), i.e. the probability that the outcome is observed with the planned 
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method, conditional on it happening in nature. In this case, the probability P1i
  is the product 

of natural and methodological probabilities (P1i = p1i . q1i) 15  When a secondary outcome is 

conceivable, the reviewer needs to provide a separate probability for the secondary (P2i) 

outcome in a similar way.  

All in all, the protocol we have outlined asks peer reviewers to perform one open-

ended task (question what primary and secondary outcomes are conceivable, if any) and 

provide one value and one probability if the project is expected to have only a primary 

outcome or two values plus two probabilities if the project also has a secondary outcome. Of 

course, as is customary, reviewers may also be asked to provide verbal comments explaining 

the values.  There is no need to ask the reviewer to provide an overall evaluation of the 

project. The values provided are indeed sufficient for computing a numeric score that 

represents the reviewer’s Subjective Expected Utility (SEU) of the project (Yi ). Specifically, 

the SEU is the sum of values times probability across the possible combinations of primary 

and secondary outcomes, i.e. Yi = u1i .P1i + u2i .P2i + (u1i + u2i) .P2i .P1i.16  Of course, if only 

one outcome is conceivable, the SEU would simply be the product of value times probability 

of that outcome. The same values are also sufficient to compute the project standard 

deviation, which measures the degree to which the values are dispersed around the expected 

utility. 

Comparing Current and Alternative SEU Approach   We now ask how the SEU 

approach compares to a traditional peer review approach in terms of efficiency and efficacy 

in evaluating project risk. In order to do so, we take as a reference point the peer review 

approach used for R01s, the largest grant program at the NIH.17 18  Evaluations are done by 

panelists of a disciplinary committee of experts (called a “Study Section”). Each panelist is 

required to read and rate a subset of proposals independently from the other reviewers before 

the panel meets. Evaluation is required along five criteria (Significance, Investigator(s), 

 
15 Note that the probabilities of methodological and natural success are assumed to be independent. Moreover, 
the outcome is expected to be non-null only in case of both natural and methodological success. In case of 
natural unsuccess and methodological success, the event cannot be observed because it does not happen. In case 
of natural success and methodological unsuccess, the event happens, but it cannot be observed. 
16 The combinations include: no outcome happens, either one of the outcome happens, both outcomes happen. 
17 See https://grants.nih.gov/grants/peer-review.htm.  Criteria for research are reported in “Review Criteria at a 
Glance”, p.2 at: https://grants.nih.gov/grants/peer/guidelines_general/Review_Criteria_at_a_glance.pdf. 
Accessed on October 26, 2021. The NIH follows different procedures for reviewing the Director’s Grants.   
18 Although the current evaluation of research is not standardized, the essential elements occur repeatedly across 
funding organizations (Lamont 2009; Lee 2015). For a comparison of funding schemas in four countries see 
Heinze (2017). 

https://grants.nih.gov/grants/peer-review.htm
https://grants.nih.gov/grants/peer/guidelines_general/Review_Criteria_at_a_glance.pdf
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Innovation, Approach, Environment).19  The five criteria are scored on a scale [1-9], with 1 

being the highest score.  Reviewers are also asked to provide comments for each score. After 

rating the criteria separately, the evaluator is asked to assign a preliminary overall impact 

score that reflects the “overall impact that the project is likely to have on the research field(s) 

involved”. No formula is used to derive the overall impact score from the individual scores, 

and reviewers are instructed to weigh the different criteria as they see fit.20  The overall 

scores provided by the reviewers then form the basis for the selection of projects when the 

panel meets.21   

The NIH peer-review approach considers some of the same elements as the SEU, but 

not all the elements and in a different way.  Uncertainty in the outcomes is not directly 

addressed and no effort is made to elicit the reviewer’s opinion concerning the probability 

that the research will meet its goals. There is no explicit reference to the potential for 

secondary outcomes, leaving these in a gray area, where they are likely to be neglected.  

Evaluation of the Approach, the scientific Environment and the Investigator draw in part on 

the same considerations that we see as related to the uncertainty in the probability.  However, 

the assessment of the Investigator focuses to a large extent on the past success of the person, 

rather than on the probabilities of success of the project.  No criteria captures explicitly 

natural uncertainty.  Significance and Innovation capture some, but not all of the aspects that 

we see as related to the uncertainty in the value.  Moreover, because the probabilities are not 

directly elicited, and because there is no formula to compute the overall value, the reviewer is 

free to discount high value projects perceived by her to have a low probability of success.  

Let us now imagine replacing the protocol currently in use for NIH for peer review 

with a new protocol, based on the SEU approach. In terms of effort, the two approaches have 

different tasks and a different number of items to evaluate. The SEU approach requires the 

 
19 For a discussion of the five criteria, see https://grants.nih.gov/grants/peer/critiques/rpg.htm. Accessed March 
30, 2022. 
20 See “Scoring guidance” webpage: https://grants.nih.gov/grants/policy/review/rev_prep/scoring.htm.  
Accessed November 02, 2021. 
21 The complete process involves the following: Panelists submit the preliminary impact scores to the Study 
Section prior to its meeting.  Selection of proposals to discuss is done by rank-ordering the proposals on the 
basis of the average overall impact scores given by the subset of panel members who reviewed them. The worst-
performing are immediately eliminated. The panel then meets to discuss the subset of remaining proposals.  
Each voting member provides a final impact score. Final impact scores are added together and the mean score 
computed.  Proposals are then arrayed in terms of mean impact score, and funding is recommended starting with 
the application with the best score until the budget is depleted. Proposals finally go to the Advisory Council 
which has the possibility of overriding the recommendations of the Study Section but rarely does. 

https://grants.nih.gov/grants/peer/critiques/rpg.htm
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expert to perform one open-ended task (outlining primary and/or secondary outcomes) and to 

estimate two or four measures, accordingly. The overall SEU scores do not require reviewers 

intervention, as they are computed at a later time from the values submitted. The NIH 

approach requires the expert to score on five criteria, plus give one overall score. An exact 

comparison of effort can only be done empirically, but on paper, the two approaches appear 

rather comparable in terms of effort.  

A comparison of the efficacy of the two approaches is ultimately a question of an 

empirical nature, best investigated with experiments. On paper, we see the SEU approach as 

potentially holding three major advantages. First, the formula for computing the overall score 

ensures that all the components of risk are accounted for in the evaluation. This is not 

guaranteed in standard protocols, because the evaluator who computes the overall score is 

often at the mercy of the cognitive biases discussed in Section 3, such as under-reacting to 

potential gains, and over-reacting to potential problems, or anchoring evaluations to easy 

reference points. For example, a potential outcome of high value, and small probability of 

success may be completely disregarded because, no matter how big the impact could 

potentially be, the prevailing impression is that it could not be achieved.  The SEU approach 

ensures that both value and probability are taken into consideration so that proposals with 

high value but low probability of success are considered.  

Second, the SEU approach requires reviewers to focus on and assess possible 

secondary outcomes (the what else). This is critical for taking into full consideration the 

possibility of rare, but exceptionally large gains, which are normally observed in the outcome 

distributions of research, as stressed in Section 3.  

Third, the SEU approach provides a way forward for incorporating the risk 

preferences of a decision maker into the rules of deliberations of panels. Although a 

discussion of deliberation rules is beyond the purpose of this paper, it is straightforward to 

notice that the SEU allows taking into account not only the expected utility of the projects 

(Yi), but also the standard error, which expresses the degree to which the estimate of Yi 

derives from a more or less dispersed distribution of outcomes. It is therefore possible under 

the SEU to choose a rule for rank-ordering the proposals that is more or less favorable to 

risky proposals. For example, a program designed to favor risky proposals could use only the 

expected utility (and not the standard error) to rank projects, implying indifference between 

sure and uncertain prospects of equal expected utility. A program designed for regular 
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research proposals could look at both the expected utility and the dispersion (standard errors) 

of the values, and favor projects with more certain (less dispersed) outcomes. 

 In conclusion, we have hopes that the SEU approach, without being dramatically 

laborious, may ensure a more complete and less biased assessment of risk in research than 

evaluation procedures commonly in use.  

Applicability of SEU. The SEU approach, just like the traditional one, requires 

reviewers to rate projects, and assumes that their knowledge of the subject is sufficient to 

quantify the variables. Is this a realistic assumption? Or is it too strong? In answering this 

question, it is easy to fall into extreme views. On the one hand, one can deny the possibility 

of quantifying the variables under any circumstance, on grounds that research is always 

unpredictable. We have cautioned in Section 2 about taking such an over-simplistic view.22 

Many methods in science are routinized (e.g., determining the structure of a crystal for 

protein structure determination or creating a knock-out mouse), or used in prior studies (e.g., 

drug-testing with animal models), making it possible to quantify technical uncertainty. 

Sometimes the probabilities of observing natural events are known from experimental work, 

or can be computed from theoretical models (e.g., the probability of detecting the Higgs-

boson). In many cases, the value of potential findings is rather clear (e.g., finding an 

immunotherapy treatment for cancer or finding-- or not -- water on Mars). Even the potential 

to uncover secondary findings is to some extent anticipable, for example, in projects that 

investigate particularly under-explored areas of science. Cases in which the experts have 

sufficient knowledge to make predictions are those in which the SEU approach is applicable.  

On the other hand, we should refrain from the opposite extreme view that sees experts 

as capable of giving meaningful predictions under any circumstance. Whereas some areas of 

science are reasonably predictable, other areas arguably are not. Take the case of the IceCube 

Neutrino observatory. In general, almost all reviewers would agree that detecting neutrinos 

from beyond the solar system would be of high potential value. They would also agree that 

the methods involved would require solving unprecedented intellectual and technical 

problems (aka high probability of secondary findings). However, they would also know that 

 
22 Moreover, the only consequential behavior of denying expert ability to gauge research is to abandon 
evaluation by peer-review and distribute funding in some other way, such as by lottery or through block funding 
to institutions.  
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the method proposed was sufficiently new and different from anything else attempted before 

that meaningful probabilities that a telescope could be built in the ice were extremely difficult 

to make. An expert could, of course, be asked to provide a probability even in such a case, 

e.g. based on research on properties of ice, but the opinions would be almost entirely based 

on guessing, with arguably little predictive validity.  Recall from Section 3 that such 

situations entail ambiguity or radical uncertainty. Projects that entail assessment in situations 

of ambiguity/radical uncertainty, are not the norm, but they do exist in science especially in 

nascent areas, in the very early stages of research, and/or in studies conducted in unique 

conditions that prevent predictions. Examples include first-time explorations of nature (e.g., 

space exploration, screening of sites for the possible excavation of fossils, deep-sea 

exploration, gene mapping), and exploratory studies of new areas of science. In these cases, 

the SEU approach is not sufficient for the evaluation. To see why, consider the example of 

two proposals that lead to the same expected value and standard deviation, despite the fact 

that the reviewers hold different degrees of confidence in the values they have provided. In 

one case the proposal is based on a known method, which has led to success in about 20% of 

cases, and so the evaluator has reasonable confidence in her own probability estimate. In the 

other case, there is no knowledge upon which to base the estimate of probability and the 

evaluator has guessed a probability of 20%. Under the SEU approach, the two proposals 

would lead to the same computed values and may appear as perfectly equivalent, regardless 

of the preferences for risk and the rules chosen for ranking. However, we know from the 

experimental studies of ambiguity aversion mentioned in Section 3 (see e.g., Trautmann and 

van de Kuilen 2015) that, in comparable conditions, humans are not indifferent. Instead, most 

people would prefer the first proposal (evaluated with greater confidence) to the second 

(evaluated with little confidence).23  This situation happens not because evaluators are 

mistaken or risk-averse, but because they are ambiguity-averse.  In one case they simply do 

not have enough knowledge to provide a meaningful estimate, while in the other they do.24  

In this case, the SEU does not provide sufficient information to allow a rule of comparison 

and ranking that takes into account differences across projects in terms of ambiguity. 

Therefore the SEU approach may be expected to work reasonably well only when a qualified 

evaluator, i.e. one who knows well the state of the art, is sufficiently informed to provide 

 
23 This is a situation that violates Savage axioms, known as the Ellsberg paradox (Ellsberg 1961) 
24 The example refers to ambiguity with respect to probability, but the argument would hold also for conditions 
of ambiguity with respect to the other components of risk. 
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meaningful opinions. But in situations of insufficient knowledge, the SEU is not sufficient. 

Consequently, evaluators should be instructed to assess their level of knowledge concerning 

the research being proposed before scoring the proposal.25  Proposals for which knowledge is 

sufficiently scant that a competent reviewer does not exist, should be flagged and dealt with 

separately.   

Does the non-applicability of SEU constitute a problem for the funding of risky 

science? In general, projects with ambiguity/radical-uncertainty are not necessarily low-

probability of success or high-risk projects. They are simply projects for which too little 

knowledge exists to provide meaningful peer review estimates. But some projects with 

ambiguity/radical uncertainty may also be high-risk; it is just too early to know. An 

appropriate funding system for science caters to the possibility of providing funding also in 

such conditions.  

Funding programs for dealing with ambiguity/radical uncertainty.  From our 

discussion it appears clear that ambiguity is often a temporary condition in science that can 

be resolved with more knowledge. One approach can then be to design funding for more 

investigation to resolve ambiguity (e.g., testing feasibility, providing preliminary evidence). 

How should this be organized? The options are many and open to experimentation, but our 

conceptualization of risk is useful in discerning what alternatives could make sense in 

different situations.  

A first case, rather common in research, relates to situations in which the 

ambiguity/radical uncertainty concerns the probabilities (methodological and/or natural), but 

not the potential value. In this case, a first screening can be made by assessing the value of 

primary and secondary outcomes and ranking the projects in order of descending absolute 

potential values. Projects with low absolute values can be eliminated upfront, leaving us with 

a ranked shortlist of potentially high-gain projects. A possible course of action for these 

projects is to provide them with staged-funding, where an initial amount of funding is given 

immediately with the purpose of reaching a milestone, entailed in the testing of the 

methodological or natural feasibility of the approach. Upon reaching the milestone, additional 

funding can be released for undertaking the study (Goldstein and Kearney 2020; Vilkkumaa 

 
25 There are several different ways to ascertain these conditions that are commonly used in expert elicitation 
practices. See e.g. Morgan and Henrion (1990).  
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et al. 2015). Staged-funding can be provided as one possible form of support for research 

proposals submitted to general-purpose funding programs. Alternatively, special grants could 

be designed for projects deemed to have the possibility of high gain if successful, but for 

which there is insufficient knowledge to support the approach. IceCube for example, received 

a small amount of funding from the SGER program at NSF to investigate the feasibility of ice 

drilling.  The ARPA-E adopts this model: it accepts projects with high technical uncertainty 

upfront, and then supports or abandons under-performing projects (Goldstein and Kearney 

2020).  

A second case relates to situations in which the radical uncertainty concerns the 

potential value, but not the probabilities. This applies, for example, to the case of 

archeological site-excavation: the probability that the excavation leads to some results is 

normally known from previews of the site, but one may not want to commit to funding 

upfront, until it is clear that the potential value of what can be found is sufficiently high. In 

this situation, staged-funding may be inadequate because it is difficult to specify a milestone. 

A possible course of action may be to provide seed-funding. In this case, an initial amount of 

funding is given to conduct preliminary exploration and obtain a preview of the potential 

value. Once the results of the preliminary exploration are available, the project can be re-

evaluated with a SEU approach. Again, this type of support could possibly be funded through 

a general-purpose funding program, or through a separate funding program designed for seed 

support.  

A third and final situation relates to cases where the ambiguity/radical uncertainty 

involves both the potential value and the probability. These are arguably cases in which there 

is very little material to evaluate. Rather than perform an expensive expert evaluation based 

on little information, a possible approach could be to ensure some sort of block-funding to 

universities and institutes, aimed at supporting ambiguous research of this nature. As a 

complement, funding institutions could provide grants in areas where science is particularly 

expensive. The goal would be to give researchers the freedom to pursue preliminary and 

open-ended investigations, which eventually could lead to more concrete research ideas for 

future evaluation under one of the proposed approaches.  
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6. Discussion and conclusion 

In Sections 4 and 5 we proposed a conceptual framework to characterize and quantify 

risk using a SEU approach. The approach could be applicable for peer review decisions 

regarding project funding. We have discussed the potential advantages of our approach 

compared to the review approach often adopted by funding agencies. Our model nonetheless 

has several limitations.  Five are noted below. 

First, we have conceptualized risk in science from the point of view of society, 

consistent with our focus on granting institutions. But achievements in research bring also 

personal rewards and consequences that accrue to the principle investigator, for example in 

the form of recognition, career advancement, and future grants (Stephan 1996, 2012).26 Our 

discussion has not considered these. However, it is important to stress that the expected 

personal value of research outcomes plays an important role in making scientists more or less 

willing to propose risky research projects (see e.g., Franzoni and Rossi-Lamastra 2017). 

Future research may be needed to conceptualize risk from the point of view of the scientist 

and to discuss how this feeds-back into the willingness to undertake and propose risky 

science.  

Second, our discussion has focused on evaluations conducted by individual reviewers, 

the initial step of the evaluation process generally conducted by granting agencies. In 

subsequent steps, the opinions of multiple reviewers are typically aggregated at a panel 

meeting and funding decisions are taken following rules and procedures for ranking and 

deliberation. Our discussion has not addressed these subsequent steps.  Ways the SEU 

approach can be incorporated into the deliberation call for investigation. Another area 

deserving attention relates to how risky proposals are dealt with during the process of 

aggregation at the panel, especially when this involves a collective discussion among 

reviewers that may influence one another. Recent experiments conducted by Lane and 

colleagues (2021) demonstrate that the scoring of panel members is heavily swayed by 

negative evaluations of other panel members, but not by positive evaluations of panel 

members, suggesting that discussion among panel members moves the estimate of the 

 
26 This means that the ‘value’ of the outcomes is different if evaluated from the point of view of the investigator 
or from the point of view of the granting agency. 
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probability of success closer and closer to zero. It is possible that a SEU approach could 

mitigate some of these effects. Future studies are needed in this area.  

Third, the advantages of the SEU approach and the suggested possible ways in which 

funding agencies can deal with ambiguity/radical uncertainty are hypotheses, untested at this 

time. Future theoretical and empirical research is needed to assess the feasibility and test the 

effectiveness of these approaches (Fortunato et al. 2018; Franzoni et al. 2021).  Experiments 

conducted both in lab and in the field are especially needed to examine the question of 

whether the SEU approach selects proposals deemed more risky than does the standard 

approach used by funding organizations such as NIH and the ERC.  

Fourth, we have provided a list of sub-questions highlighting possible that the 

reviewers  Experiments could also be conducted on ways the proposed set of sub-questions 

underlying the estimation of the SEU variables should be posed to the reviewers.By way of 

example, does the order in which the sub-questions are displayed matter in the estimation of 

the parameters? Should the ability of the PI or the adequateness of the research environment 

(Hollingsworth 2004) be given a particular salience in evaluating the probability that the 

approach will be successful? success? 

Fifth, the operationalization that we proposed of our conceptual framework implies 

several simplifications, which serve the primary purpose of minimizing reviewers’ workload 

and input asked in the protocols. One main simplification is that we focus on having primary 

and/or secondary outcomes as the main source of variability in project outcomes. A more 

complete operationalization of the conceptual framework could allow for more nuanced 

project outcomes (e.g., outcomes achieved quickly vs. slowly; outcomes entirely achieved vs. 

partially), and consequently provide a more detailed evaluation of risk. A second 

simplification of our operationalization is that we ask the reviewer to provide a single 

probability estimate for each outcome. A more complete model could ask for several points 

of a probability distribution (e.g., minimum, maximum, quartiles). Future research could 

extend the operationalization in these or other directions and conduct experiments to test the 

extent to which a more extensive operationalization of the estimates compensates for the 

additional workload imposed on the reviewers.    

Despite these limitations, the paper contributes an important step forward with regard 

to funding of risky research. We began this essay by discussing that the scholarly 

understanding of risk taking in research was underdeveloped, yet critical given the key role 
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that risk plays in advancing the knowledge frontier. We noted the concern that funding 

agencies may be risk averse in their selection of projects. We developed a conceptual 

framework to address this void, drawing on the multiple insights offered from economics of 

science and other fields that study risk. The SEU approach we propose takes risk directly into 

consideration by asking reviewers to assess both value and probability of obtaining the goals 

of proposed research. The approach can counter some of the cognitive biases that can lead 

evaluators to eschew risk under current procedures and thus enable better decision making in 

conditions of risk. In some situations, called  ambiguity/radical uncertainty, the SEU 

approach may not be sufficient. In these circumstances, granting agencies can consider a 

menu of alternative options that are outlined in the paper. 

While we see this paper as advancing our understanding of the meaning of risk-taking 

in science and how the evaluation of risk may affect funding decisions, the research agenda 

going forward is challenging and rich.  We encourage others to take up this important subject.   
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