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1. Introduction 

An underlying rationale for public support of science is that private companies 

underinvest in research of a risky nature (Arrow 1962; Nelson 1959).  Both spillovers and the 

time horizon necessary to recoup the investment discourage the private sector from investing 

in risky research.  Yet risky research is essential for shifting the knowledge frontier. To the 

extent this was the case in the past, in the days of Bell Labs and other large private research 

labs, it is more so today, when private companies, taking a short-run view, engage in less 

basic, risky research (Arora, Belenzon, and Patacconi 2018; Budish, Roin, and Williams 

2015; Fleming et al. 2019). Yet, among researchers today there is concern that risk-taking in 

science is declining not only among those in the private sector but among those working in 

the non-profit sector (Edwards et al. 2011; Fedorov, Müller, and Knapp 2010).  Many put the 

onerous on funding agencies, focusing on ways in which science is funded and grants 

awarded as well as tight budgets faced by agencies (Azoulay, Graff Zivin, and Manso 2011; 

OECD 2018; Petsko 2011).  James Rothman, for example, who shared the Nobel Prize in 

Physiology or Medicine in 2013, told an interviewer the day after he received the prize, that 

“he was grateful he started work in the early 1970s when the federal government was willing 

to take much bigger risks in handing out funding to young scientists.” Rothman went on to 

say “I had five years of failure, really, before I had the first initial sign of success.  And I’d 

like to think that that kind of support existed today, but I think there’s less of it.  And it’s 

actually becoming a pressing national issue, if not an international issue.” (Harris 2013). 

There is also evidence that the rewards to science not only discourage risk-taking on the part 

of scientists but increasingly do so (Foster, Rzhetsky, and Evans 2015; Stephan, Veugelers, 

and Wang 2017; Wang, Veugelers, and Stephan 2017).  
This discussion often occurs in the absence of well-defined and developed concepts of 

what uncertainty and risk-taking mean in science.1  This paper sets out to address this void.  

The core contributions of the paper are twofold. First, we lay out a conceptual model of risk 

in science, which can also be used to obtain expert-based metrics of risk. Second, based on 

the model and studies of risk taking, we discuss how the current academic environment 

                                                 

1 Science is not the only domain in which the term risk is ambiguous or difficult to define. The problems posed 
by defining risk have been extensively debated in various fields. For a review see e.g., Hansson (1989) and 
Aven (2012). 
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affects risk-taking in science, address ways in which risk can be hedged or encouraged and 

sketch-out a rich research agenda for future investigation.  

The structure of the paper is as follows. Section 2 clarifies concepts and assumptions 

used in the discussion of risk with the goal of eliminating potential sources of confusion and 

common misconceptions. Section 3 reviews insights about risk and uncertainty provided by 

adjacent literatures. Section 4 provides a full conceptual model of risk in science, using the 

IceCube Neutrino Observatory as an example to illustrate risk components. In Section 5, we 

explain how the model can be used to obtain an expert-based assessment of risk in science 

and review alternative approaches to measuring risk.   In Section 6 we review studies of risk 

taking in science and conclude that the current reward structure of science discourages risk-

taking. We discuss ways in which risk can be hedged in Section 7 and encouraged in Section 

8. We close in Section 9 by outlining directions for future research. 

   

2. Definitions and potential pitfalls 

The road to the study of risk in science is paved with misconceptions and prone to 

misunderstanding. We thus preface this essay by clarifying concepts and assumptions 

underlying the discussion.  

First, the terms risk and uncertainty are ambiguous and prone to generate confusion. 

Many scholars of economics of science are acquainted with the work of Frank Knight 

(Knight 1921), who stressed  the measurability of the probability of an event in order to 

distinguish risk from uncertainty.  This distinction, however, is rarely found in contemporary 

economics (Feduzi, Runde, and Zappia 2014). A more recent approach, following Ramsey 

and De Finetti, stresses the ubiquitous imperfect information that surrounds agents’ decisions 

in real life (Marinacci 2015).2 Following this approach, it makes sense only to talk about 

subjective probabilities, i.e. degrees of beliefs expressed with more or less confidence. 

Subjective probabilities are ‘measurable’ by asking agents their willingness to bet on their 

beliefs. This view renders the risk-uncertainty distinction void of substantive meaning.  

Recognizing and subscribing to this view means that we should talk only of uncertainty in 

                                                 

2 In this view, uncertainty is a state of imperfect knowledge that relates to all aspects of a decision, including the 
states of the world (e.g., what might happen, which consequences might derive), and not just to the probability 
of each state. 
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science. However, given that risk is the term most commonly used (albeit not in the 

Knightian sense) by scientists, policy makers and granting agencies to speak about the 

uncertainty of research, we use the term risk as a synonym for uncertainty in this essay. 

Second, research is not free (Stephan 2012).  From the researcher’s point of view, 

time spent on research has an opportunity cost; from a university and/or foundation’s point of 

view, the materials, equipment and space devoted to research come with a cost. These costs 

should be viewed as participation costs and are equivalent to those incurred when purchasing 

a lottery ticket in which one can gain or lose. In this case, participation costs are those 

incurred by funders or researchers who ‘buy’ a chance to discover the outcome of a potential 

course of action.  are fundamentally and conceptually different from the gains and losses that 

can result from the course of action. Although participation costs can be one element to 

consider when evaluating the yield from doing a research project, they should not be 

confused with losses.    

Third, the value associated with successfully accomplishing proposed research and the 

prospects of doing so varies across projects.  Some projects have a high prospects of 

achieving their research goals, others have lower prospects of accomplishing their goals.  

Some projects have a high value if successful; others do not. Individuals or organizations that 

pursue high value research with low prospects of success can be described as being risk-

takers; those that do not can be described as being risk-averse.  

The discussion of risk in science often conjures up comparisons of risk associated 

with financial investments. Such a comparison is beneficial in the sense that the concept of 

risk in finance, especially after the dramatic financial crises of 2008 and 2020, are well 

known by the public.  However, the comparison has drawbacks in the sense that risk and 

volatility differ between finance and science in several important respects. First, in finance, 

the outcomes of investments vary both in the negative and positive spectrum (as many of 

Bernie Madoff’s investors learned all too well). In science, instead, volatility is rarely 

associated with strictly negative outcomes (losses), unless in cases where research involves 

harm to a patient, a researcher or significant damage or loss of resources and reputation.  

More commonly, volatility in science refers to the distribution of research findings that can 

be thought of as either on the upside or as the status quo, in the sense that, although the 

research produces no loss, it does not substantially advance the area of study.  Second, in 

finance, risk has both a speculative meaning, which focuses on the expected gains associated 
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with an investment, and a preventive meaning, which focuses on avoiding the losses 

associated with an investment.  Science funding organizations that embrace the goal of high 

risk/high gain, such as the ERC, clearly subscribe to the speculative concept of risk focused 

on expected gain. The preventive meaning is also present in science, but not with the goal of 

insuring organizations or people against losses, but rather of insuring organizations against 

funding research that comes up “empty.” One could argue that it is this “empty basket” 

outcome that review panels insure against, focusing their review efforts on reasons that the 

research will not yield results rather than focusing on the value of the research if it were to 

succeed.3  Third, in finance, volatility is a popular construct because past volatility (or lack 

thereof) can provide the basis for prediction and calculation of risk associated with an 

investment.  For example, it is common to calculate the alpha associated with an investment, 

as well as other measures such as the beta, standard deviation, R-squared and Sharpe ratio, 

based on price fluctuation history. The reason is that past volatility is easy to calculate and 

can predict future volatility. Instead, in the case of science, past volatility is not necessarily 

predictive of future volatility.4  Moreover, even if volatility were predictable, it would be 

both difficult to observe, because many unsuccessful projects go unpublished (Fanelli 2010; 

Rosenthal 1979), and to compute, because the value of research findings is not fully 

understood, especially in the short term.  

Before commencing, we address some extreme simplifications and misconceptions 

that can hijack the discourse on risk and uncertainty in science.  One extreme simplification 

is that “scientific research is always risky.” This blunt approximation fails to recognize a 

considerable degree of nuance, including that, in certain areas of research, risk is limited or 

mitigated by the character of the research.  First, a non-negligible share of research involves 

virtually zero risks. Consider, by way of example, the Cochrane reviews that consist of 

collecting, coding and jointly-testing the results of multiple studies of the same medical 

treatment.  Cochrane reviews require rigorous methods and provide valuable results to 

                                                 

3 A possible reason review panels may focus on the “empty basket” is fear of wasting the limited money they 
have.  This is an empirical question that deserves investigation.  Today insurance against some undesirable 
outcomes is assumed at the institutional level, for example via the actions of the IRB and GPRD on ethical and 
privacy matters, or via the requirements of funding agencies that the institution certifies access to needed 
equipment and resources. As a result, while, in the past panels concerned themselves with insuring against some 
of these problems, today panels arguably focus on insuring against coming up empty handed. 
4 An exception is when the routinization of aspects of research provide scientists with increased confidence in 
predictions. By way of example, protein structure determination was greatly facilitated by developing an 
“automated pipeline for protein production and structure determination” which included the development of 
robots that could grow and screen crystals (Stephan 2012: 93). 
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scholars and practitioners.  Yet, the researcher who chooses to perform a Cochrane review 

has no doubt that the review can be accomplished and published; the volatility involved in the 

outcome is practically nonexistent.  Second, some research is bound to produce non-zero 

outcomes, although the value of what is found may be uncertain.  For example, many 

archeological excavations are done after a site has been identified. In these cases, findings are 

guaranteed, but there is uncertainty with respect to what they will be and their importance. 

Archival studies, large statistical analyses of galaxies, or research on the collateral effects of 

approved drugs are other examples of similar situations where risk is very small.  Third, some 

research projects have predictable outcomes, although there is uncertainty concerning the 

time or costs required to obtain them.  An example is the Human Genome Project, which was 

formally launched in 1990, with the aim of sequencing the 3 billion base pairs of the human 

genome.  At the time the project was started, the set of techniques readily available was 

sufficient to guarantee eventual success. However, there was uncertainty concerning whether 

the project could be accomplished in the 15 years that it aspired to. In the end, a working 

draft of the genome was obtained within ten years, thanks largely to improvements in the 

technology (Stephan 2012: 88).  These three cases suggest that a non-negligible part of 

research involves projects that are virtually certain to lead to an outcome. In these cases, risk 

is confined to the uncertainty associated with the value of the outcomes or to the time and 

resources needed to achieve the research, but not to whether an outcome will be forthcoming. 

In the next sections we expand the discussion by considering the array of components that 

coalesce to determine risk in science.    

Another misconception concerning risk in science is that engaging in a new line of 

research is always the riskier course of action, while continuing along an existing research 

path is the play-safe alternative.  Consider, for example, the case of James P. Allison.  Allison 

had spent most of his career studying the use of antibodies blocking the immune inhibitory 

molecule CTLA-4, as a strategy to unleash the immune response to cancer. In 1995, he 

understood that CTLA-4, a T-cell surface receptor, served to dampen T-cells responses and 

could be used as a target for cancer immunotherapy (Krummel and Allison 1995). In the 

same years, other cancer immunotherapy approaches were being investigated, including 

cancer vaccines and agonist antibodies activating immune stimulatory receptors. However, 

cancer vaccines showed very limited efficacy, as an influential NIH review pointed-out in 

2004 (Rosenberg, Yang, and Restifo 2004), and several agonist antibodies (e.g., targeting 

CD28, CD40, or 4-1BB) were found to cause serious adverse effects, which in some cases 
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were life-threating for healthy patients (Suntharalingam et al. 2006). As a result, the clinical 

community was skeptical of Cancer Immunotherapy in general and pharmaceutical 

companies were uninterested in further development of these approaches. In spite of this, 

Allison engaged with a small biotech company to develop a CTLA-4 blocking antibody for 

clinical use to test in cancer patients, called Ipilimumab. The clinical trial was eventually 

successful and Ipilimumab became the first immune checkpoint inhibitor drug to receive 

FDA approval for cancer treatment in 2011 (Wolchok et al. 2013). Immune checkpoint 

inhibitors have since become one of the most promising frontiers of cancer treatment 

research. Allison shared the Nobel Prize for Medicine in 2018 (Dobosz and Dzieciątkowski 

2019). As the example illustrates, in this case the choice to persist could arguably be 

described as risky behavior. Thus, undertaking a new line of research is not always the risky 

behavior and continuing a line of research does not always imply risk avoidance.  Kuhn 

refers to this choice as an “essential tension” (Kuhn 1991), noting that both alternatives, not 

just the former, are hazardous. Working in a new area of research often requires formulating 

new theory and using new methods, both of which arguably involve risk. On the other hand, 

persisting along a line of research can often provide a more predictable path, albeit one with 

diminishing returns. But it can also lead to a dead-end with no results, perceived as risky 

behavior by peers.  If we want to understand risk, we should look at the uncertainty of 

prospective results and refrain from taking shortcuts that assume identity between risk and 

any given observed behavior. 

Finally, a further misconception is that some scientists are prone to take risks and 

others are conservative and risk-averse, as if the attitude of scientists towards risk were a 

fixed individual characteristic. While recent empirical work has established with reasonable 

certainty that attitudes towards risk are stable traits, specific to each individual (Frey et al. 

2017; Mata et al. 2018), individual risk preference explains only about half of the predicted 

variance in the measures of risk-taking. The rest depends on erratic behavior and on domain-

specific attitudes that individuals show towards various facets of risks encountered in life.5  

Although few if any studies have looked specifically at risk-attitude and risk-taking in 

scientific research, we would expect that, as for humans in general, the attitude of scientists 

for embracing risk in research varies at any given point in time, depending on their role or the 

situation that they face. For example, prior correlational studies suggest that scientists who 

                                                 

5 Domain-specific factors relate, for example, to preferences for risks exhibited in investments, attitude for 
seeking thrill and adventure, disinhibition in health risks, et cetera. 
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have yet to get tenure, may eschew risk; those who have a stable career position may embrace 

risk (Franzoni and Rossi-Lamastra 2017). Other commentators have proposed that scientists 

who have obtained success in early-career are less likely to be at risk of  losing their 

reputation and hence more likely to engage in risky research (Henrickson and Altshuler 

2012). Regardless of career stage or past success, we expect scientists to share the trait of 

overconfidence about their ability to achieve success consistently found in individuals’ 

assessment of risk (Camerer and Lovallo 1999; Weinstein 1980).  

 

3. The Meaning of Risk in Adjacent Literatures 

We frequently use the word risk in everyday life. As such, risk at first appears to be a 

rather intuitive concept. However, when making risk a subject of scholarly investigation, we 

quickly realize that we lack a shared, let alone precise, understanding of the meaning of risk. 

Scholars of risk, recognizing this, have offered extensive discussion on the topic, and have 

noted a number of different meanings of risk in different literatures (Althaus 2005; Aven and 

Renn 2009; Hansson 2002, 2018). Thus, a pre-condition to holding productive discussions is 

to develop a sound conceptual understanding of risk in science, bringing together different 

pieces of relevant theory which provide insightful concepts and tools. Failure to do so not 

only undermines our ability to make conscious decisions regarding risk, but also leads to a 

Tower of Babel in which scientists from different backgrounds implicitly use notions 

germane to their discipline, but alien to others. In this section we draw insights from four 

main approaches. All see risk as a manifestation of uncertainty, but each focuses on specific 

aspects of uncertainty. We explain each in this section. Together, they constitute the building 

blocks with which we set about defining the meaning of risk in science, presented in the next 

section.  

Risk Analysis.  A primary focus in engineering studies of risk regards the occurrence 

and impact of potential events. The intent of this literature is fundamentally utilitarian. The 

main focus is on representing and quantifying the risks involved in a situation in order to 

facilitate making decisions. The quantification of risk in Risk Analysis is sometimes called 

‘Technical assessment’ (Renn 1998) or ‘Risk metric’ (Johansen and Rausand 2014). This is a 

pragmatic approach that disentangles complex problems into a number of simple pieces, such 

that each item can be quantified in isolation and then combined. The standard model implies 

three items (Kaplan and Garrick 1981): the scenarios (e.g. what can happen?), the probability 
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associated with each scenario (e.g., how likely is this to happen?) and the consequences 

associated with each scenario (e.g., what loss/gain would this lead to?). More sophisticated 

models can further disentangle more fine-grained items (Aven 2011). In applied risk 

analyses, each item is analyzed by one or more experts and the combined outcome is simply 

calculated as probability times consequence (Kasperson et al. 1988). This approach for 

quantifying risk is commonly used in insurance, where the primary focus is on unwanted 

events, i.e. events that deserve special consideration because of their negative impact.6  

Mirroring this view, in the insurance literature it is common to distinguish two families of 

strategies of risk reduction: reducing the probability of a loss, called ‘protection’, and 

reducing the size of the loss (the consequences), called ‘insurance’ (Ehrlich and Becker 

1972).  

Return and volatility. In Finance, risk refers to the uncertainty concerning the return 

on the capital that the entrepreneur or the shareholders bears. This view of risk is well 

represented by the volatility of returns. The uncertainty is in both the upside -the profits- and 

the downside – the losses.  The quantification of risk is needed in order to evaluate the assets. 

The standard approach is to estimate the probability distribution of future returns of the asset 

and measure the level of dispersion in terms of variance (Markowitz 1952; Tobin 1958), or 

its square root, the standard deviation, commonly called volatility. Because prices of traded 

assets are widely available and because measures of volatility over time are self-correlated, 

the volatility of asset prices observed in the past is commonly used to forecast volatility of 

the asset prices in the future. This is done with econometric methods, which assign 

diminishing weights to the increasingly distant past.7  The ability to measure and predict asset 

volatility and the correlation of volatility has led to the emergence of portfolio diversification 

as a common strategy of risk-coping in finance, that is: investing in a portfolio of assets, such 

that the average portfolio volatility is stabilized at a level deemed desirable by the investor, 

conditional on the desired returns.  

Probability and Ambiguity.  In Probability and Decision Theory, risk and uncertainty 

refer to knowledge regarding the likelihood of contingencies (Marinacci 2015). There are 

situations in which the cause of uncertainty is rather well-known. For example, when 

                                                 

6 E.g., fire, theft, injury, et cetera. This view of risk as danger places the uncertainty in the area of losses: from 
zero -the status quo- downwards. 
7 The most popular are the Autoregressive Conditional Heteroskedasticity (Engle 1982) and the Generalized 
Autoregressive Conditional Heteroskedasticity (Bollerslev 1986). 
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throwing a dice, the physical properties of the dice -it having 6 equal-shape faces- determine 

the possible realizations -6 states with equal probability. In this case, the model that generates 

uncertainty can be understood and described as an object, and risk can be expressed 

numerically in terms of objective probabilities. Although such situations are not common in 

real life, objective probability can be applied, with some degree of simplification to other -

more common- situations, in which past occurrences, recorded as frequencies, are revealing 

of the model that causes the uncertainty. For example, the mechanism that causes an illness to 

be fatal may not be fully known. However, it may be reasonable to assume that the mortality 

rate observed among people with the illness describes some objective property of this 

mechanism. The relative frequencies can thus be used to shed light on the risk of death and 

interpreted as objective probability in this case (Hájek 2019). Such calculations have been 

common during the COVID-19 pandemic.  Conversely, when the model that generates 

uncertainty is unknown and frequencies are unavailable or non-informative, we have a 

condition of epistemic uncertainty, in which objective probability is inapplicable and we can 

only resort to subjective probability. These situations are common in science. For example, a 

scientist who prepares an experiment often has no prior observations, because the experiment 

is new, and has only incomplete theories that suggest potential results. The scientist can of 

course express her best belief concerning the outcome, based on the scant knowledge that she 

has and on personal experience. This subjective probability can be thought of in Bayesian 

terms as the degree of confidence in the scientist’s belief. Situations like this are also called 

deep uncertainty or ambiguity (Ellsberg 1961).8   

Recent theoretical works in decision theory have concentrated on modeling decisions 

under ambiguity (Klibanoff, Marinacci, and Mukerji 2005). Empirical work has shown that 

humans are not only risk-averse, that is they prefer a sure thing over a gamble of equal 

expected value but are also ambiguity-averse. That is, they prefer situations in which they 

face objective probabilities as opposed to situations in which they face subjective 

probabilities (Ellsberg 1961; Tversky and Fox 1995). For example, they prefer to draw a 

marble from an urn that they know has half reds and half blacks, than to draw from an urn 

that one expert says is all reds and another expert says is all blacks. (Berger and Bosetti 2020; 

Ellsberg 1961). In situations where there is considerable scientific disagreement, such as 

models that predict the relationship between levels of CO2 abatement and consequent climate 

                                                 

8 Different scholars have used different terms (see Camerer and Weber 1992: 326). 
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change, it appears that policy makers prefer options that reduce not only climate change 

impact, but also the uncertainty/disagreement among the models (Berger, Emmerling, and 

Tavoni 2016). This leads us to discuss a fourth important stream of contributions. 

Human Cognition of Risk. In Social and Cognitive Psychology, risk is examined 

from a human perspective. Scholars generally agree that the human mind understands risk 

both through analytical thinking, and through intuition (Epstein 1994; Evans and Stanovich 

2013; Sloman 1996). That is, humans are capable of reasoning about risk in a logical and 

rational way, for example when they consider probabilities. But they also hold instinctive 

reactions when confronted by risk, for example when they feel danger (Loewenstein et al. 

2001; Slovic et al. 2005, 2010).9  A classical stream of research, known as the psychometric 

paradigm, has conducted extensive empirical research to explain risk perception and to 

identify the kinds of hazardous situations associated with feelings (emotional intuitions) of 

risk. The conclusion, which is widely accepted, is that there are two kinds of risks that 

prompt the strongest emotional reactions in people. These are: “dread risk”, i.e. the 

possibility that something uncontrollable, irreversible or catastrophic will occur, and 

“unknown risk”, the exposure to new, unforeseen or delayed harms (Fischhoff et al. 1978; 

Slovic 1987). This can explain, for example, the skepticism and consequently slow progress 

surrounding several streams of research, such as power generation from nuclear fusion, 

where it is easy to imagine catastrophic scenarios and uncontrollable unknown events. 

A second important focus of psychological research on risk is how people behave and 

make decisions in conditions of uncertainty. The main contributions in this respect is that 

human understanding of risk and probability is biased in systematically predictable ways 

(Tversky and Kahneman 1974). In particular, people systematically undervalue perspective 

gains, while they exaggerate the magnitude of perspective losses (Kahneman and Tversky 

1979). Furthermore, the overvaluing of losses is larger in magnitude than the undervaluing of 

gains (Kahneman and Tversky 1979), a condition called loss aversion (Tversky and 

Kahneman 1991, 1992). Consequently, when people have to make decisions that involve 

uncertain gains or losses, their decisions depart systematically from what rational behavior 

would predict and their behavior is inconsistent and opposite in the spectrum of gains and 

losses (reflection effect) (Kahneman and Tversky 1979). To be more specific, when 

individuals face decisions that involve prospects of gains, they are risk-averse, that is, they 

                                                 

9 Note that the instinctive reaction is solely associated with potential danger, and thus to a negative view of risk. 
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would give away gains for more certainty (prefer gambles with greater certainty even if they 

involve smaller expected gains). When they face decisions that involve prospects of losses, 

they are risk-seeking. That is, they would accept greater losses as long as they are less certain 

(prefer gambles with less certainty even if they involve a greater expected loss over a smaller 

but sure loss) (Kahneman and Tversky 1979).  

In the following sections, we draw on these four perspectives from distinct disciplines 

to frame the discussion concerning risk and risk-taking in science in a conceptually-sound 

way.  

 

4. Components of a Model of Risk in Science 

In this section we outline the components of a model for representing risk in science. 

To facilitate our understanding, we take as an example the IceCube Neutrino Observatory at 

the Amundsen Scott Station at the South Pole.  The project was initially proposed in 1987 by 

Francis Halzen (University of Wisconsin) in a co-authored paper that he presented at a 

cosmic ray conference in Lodz, Poland (Halzen and Learned 1988) that discussed the 

possibility of using deep polar ice as a detector. 

Neutrinos are subatomic particles of nearly zero mass that have very little interaction 

with other masses and hence travel undisturbed across matter in outer space. The observation 

of neutrinos can thus shed light on astrophysical phenomena originating outside our solar 

system, such as the formation of supermassive black holes; more generally their observation 

can shed light on the origins of the universe.  Although scientists have explored ways to 

detect neutrinos since the late 1950s, constructing, for example, detectors in mines and lakes, 

at the time Halzen proposed placing a detector at the South Pole no detection device had 

successfully observed neutrinos from outside the solar system.  The research challenge was 

thus to build an instrument capable of detecting such neutrinos and determine the direction 

from which they came and examine “the relevant optical properties of deep Antarctic ice.” 

(Halzen and Learned 1988).  
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In 1988 Halzen and colleagues were awarded $50,000 from NSF to study the optical 

quality of ice.10  The research team at that time knew little about ice or the challenges 

associated with drilling in ice, which was necessary in order to embed the sensors.  This 

exploratory project evolved into the proof-of concept project AMANDA (Antarctic Muon 

and Neutrino Detector Array), supported by NSF with additional funding from other 

foundations and countries.  IceCube, which incorporates the AMANDA arrays, received its 

initial funding from NSF in 2000.   At completion of construction in 2010, the project had 

placed 5,584 digital optical modules in a series of 88 holes drilled into a cubic kilometer of 

ice, lying 1.5 kilometers below the surface at the South Pole. The ice lying above the sensors 

shields the sensors from radiation at the earth’s surface.  The basic principle behind this 

design is that when a neutrino collides with a nucleon it produces a muon through inverse 

beta decay. When this occurs, a pale blue light known as Cherenkov radiation is emitted, 

which can be detected.  Importantly, the light bounces back in the exact same direction from 

which the neutrino came. As a result, the position of the cosmic object from which the 

neutrino originated can be inferred. Some data are sent to the IceCube Project at the 

University of Wisconsin by satellite.  The balance of the data is stored on hard drives and 

sent once a year to the researchers.   

Let us now examine the risks involved in the IceCube Neutrino Observatory. For 

simplicity, let us assume that the project sought funding all at once and let us take the point of 

view of a scientist or panel member who is tasked with evaluation of the project. There are 

sufficiently large numbers of uncertainties involved that it would be difficult to judge the 

overall risk of the project without a conceptual framework that first identifies and analyses 

multiple components of risk in isolation and then combines the components into a model of 

risk. In order to build a suitable framework, we adopt the approach of risk metric used in risk 

analysis and identify a set of questions concerning risk components. We discuss how the 

components should be combined in the next section. 

A first question to consider is ‘what can be found’. The answer normally entails a 

range of options. The range can be especially large in exploratory research, the goal of which 

is to shed light on unknown domains of the natural world (e.g. space exploration, deep ocean 

exploration).  In the case of the IceCube Neutrino Observatory, for example, the goal was to 

                                                 

10 The funding was obtained in the form of a Small Grant for Exploratory Research (SGER), which did not 
require external review. (Bowen: 138-139).   
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explore the cosmos using ice to detect neutrinos and the direction from which the neutrinos 

came.  In empirical research aiming at the test of formal hypotheses, the range is usually 

narrower.  

There are two important things to note concerning what can be found. The first is that 

uncertainty concerning what can be found cannot be represented by probability. Uncertainty 

here regards outlining the possible states of the world and captures one essential feature of 

research: its being an open-ended quest (Nelson 1959). The second is that this component is 

represented by a range of alternative scenarios. How many scenarios are appropriate is a 

question of practical relevance that should be addressed with a degree of pragmatism. 

Research that involves one formal hypothesis may be represented by two scenarios -

hypothesis rejected or not-. Other research may require three or more hypotheses. For the 

sake of clarity, this risk component should outline only the range of alternative primary 

outcomes and leave aside secondary outcomes of research that may be a byproduct of the 

research agenda.  We return to this point later in this section, when discussing the possibility 

of secondary outcomes (what else). 

Questions two and three conceive uncertainty in terms of the probability of each 

scenario happening and focus respectively on methodological and natural risk.  

Methodological risk—question two-- can be spelled out as: ‘how likely is the proposed 

approach to work’. Uncertainty here concerns (subjective) probability and is both epistemic 

and technical. ‘Epistemic’ because the theory behind the design could be fallacious, or there 

is uncertainty regarding the scientific knowledge on which a method is grounded. For 

example, in the IceCube project the strategy for detecting neutrino bursts accompanying the 

formation of black holes was drawn in part from theoretical work by Shi and Fuller (1998).  

‘Technical’ uncertainty because several details of the execution are typically not yet resolved 

at the stage of conception. For example, in the IceCube project it was not clear how deep one 

would have to drill to find bubble-free ice.11  The original proposal submitted to NSF 

assumed that one would only have to go to a depth of around 500 meters.12 This turned out to 

be off by 1000 meters (Bowen 2017:129-30). There was also uncertainty that “optical 

attenuation of deep ice in the mid UV range … characteristic of the Cerenkov light emitted 

                                                 

11 Bubbles cause light to bounce in all directions, which means that if a Cherenkov cone were detected, it would 
not travel in a straight line. 
12 This assumption was based in part on a conversation with Prof. Edward Zeller (University of Kansas), who 
thought that “we will obtain good optical clarity below about 150 meters near the pole.” (Bowen 2017:130). 
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by high energy muons, had not been directly measured,” (Halzen and Learned 1988, p.2).  

Uncertainty also existed concerning the difficulty of ice drilling and the time required to drill 

each hole, as well as potential interferences with signal detection and the frequency of events. 

In such situations, judgments concerning the risk involved in the method is a matter of 

subjective beliefs made with little confidence. To quote Halzen: “it’s pretty clear we had no 

idea what we were doing, and so this was real research, right?” Halzen goes on to say that “if 

we really had [known] what we were doing we would probably not have done it.  And, in 

fact, it turns out that a lot of things we should have known turned out not to be true” (Bowen 

2017:147).  Situations of deep uncertainty are the norm in projects that demand new and 

highly-creative methods. In such situations, evaluation often involves assessing whether the 

team proposing the research is in the best possible position to make it work. Conversely, 

projects that employ standard or well-known methods do not confront this type of problem 

and judgments can readily be based on prior experiences or data from past research.   

The third question to consider is: ‘if all works, how likely is it that the outcome will 

be found?’, i.e. the odds that the expected primary finding happens within the observation 

spectrum. This can be thought of as natural risk. Note that this question applies only to 

observational/experimental research and not to theoretical research. It depends on the relative 

rarity of the phenomenon in nature, and consequently on the probability of capturing it within 

the spectrum of observation. We can think of this as the natural risk of observing a 

phenomenon, given the size and conditions of the observations. In our example, assuming 

that cosmic neutrinos form as theorized, and that the experiment is well executed and capable 

of detecting neutrinos, the probability that a cosmic event actually happens and is detected 

poses an element of uncertainty. This uncertainty is caused partly by chance and partly by 

nature. In many cases, past experiments in adjacent areas or data collected in prior works can 

provide a basis for computing frequency-based probability. In the case of the IceCube, the 

probability that a supermassive object collapses was modeled by an equation, in which the 

key parameters were taken from data collected from previous experiments, 

The fourth question to consider concerns ‘what else can be found’ and comprises 

evaluations of secondary outcomes that the project might produce, beyond the stated primary 

outcome. There are several common situations in research that induce secondary outcomes. 

First, new instruments, designed with specific goals in mind, are an especially effective 

source of secondary outcome (Franzoni 2009). Galileo’s telescope, for example, intended for 

navigation, resulted in the discovery of the moons of Jupiter; the radio telescope used by 
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Jansky, intended to study noise that could interfere in radio transmission, ended-up detecting 

radio galaxies.  Second, because science is an open-ended quest, it is acceptable for a 

scientist to be flexible and shift the goals driving a project (Nelson 1959). Flexibility can 

provide backup or recovery plans when a planned task is known to pose problems. For 

example, when the IceCube team found that bubble-free ice did not exist until a considerably 

greater depth than they had initially thought, they realized they had a problem.  They had, 

“’goofed up’ by placing their instrument in shallow ice.” (Bowen 2017:175). Halzen 

reportedly began to look for “some way to make this disaster look good.” (Bowen 2017:188). 

The answer was supernova. They realized they had “by far the most sensitive supernova 

detector on the planet.” Their disaster “had a mission.” (Bowen 2017:189).  A third reason 

why secondary outcomes may be found is that in many scientific projects the need to solve 

practical and theoretical problems induces learning in ways that often branch-out from the 

main line of investigation. This learning inevitably suggests directions of additional research 

that could not have been anticipated at the time of project conception. By way of example, 

the drilling of ice needed to place the IceCube Neutrino detectors lead to important 

discoveries concerning the physical properties of deep-ice.  

It should be noted that secondary outcomes may exist with or without primary 

outcomes. Moreover, some types of research are more likely to produce secondary outcomes 

than others. While it is difficult to think of secondary outcomes arising from a Cochrane 

review, research that involves exploration of nature and activities never performed before is 

more likely to have secondary outcomes. More generally, basic research provides, by 

definition, insurance against coming up empty handed in the sense that non-findings are, in 

their own way, findings. To quote Bowen, the physicist who chronicled the IceCube project, 

“There is no such thing as a disaster in basic research.  Whatever happens, you learn from it.” 

(Bowen 2017:163).  The same cannot be said for research that is extremely path dependent, 

with few opportunities for secondary discoveries.  Protein structure determination is a case in 

point; it “is either a complete success or complete failure.”  There are “no intermediate results 

to publish along the way or to fall back upon if you fail, unlike other fields.” (Petsko 

interview July 3, 2020).    

The fifth question to consider is ‘how much is the finding worth,’ and concerns the 

importance of what is found in terms of scientific gains and societal benefits. For example, if 

cosmic neutrinos detect a cataclysmic astronomical event, what would be the value of this 

new piece of knowledge? The uncertainty in this case relates to the magnitude of the impact. 
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There are two important things to note regarding the impact. First, a finding that falsifies a 

theory may provide informative content, just as (if not more so than) a finding that complies 

to the theory (Popper 1959). Thus, all scenarios have a non-zero value. Second, the value of a 

finding in science depends on the context, in the sense that the same finding could be more-

or-less valuable depending on the conditions and actions of other scientists in the same field. 

If the research area is crowded by many competing teams, it is possible that the same finding 

will be reported independently by multiple researchers and will thus be of lower value to 

science and society.  This is not to say that additional independent reports do not add value 

by confirming the result, but they do not have the same value as that of the first discovery 

(Merton 1957; Stephan 1996). Consequently, the ex-ante appreciation of the prospective 

value of a discovery requires speculation concerning the actions of competing groups.13  

So far, we have discussed the five questions that help identify risk components from a 

general point of view. However, if we assume the point of view of the Principle Investigator 

(PI) there is one additional aspect of risk to consider:  personal consequences and/or 

consequences related to the PI’s team or lab, germane to the fifth component discussed 

above. Stated differently, the fifth component concerning how much a project is worth can be 

disentangled into two sub-components: ‘how much is the finding worth for science and 

society’ and ‘how much is the finding worth to the PI’. One or both apply, depending on who 

is doing the assessment.  

Research outcomes have many possible consequences for a PI. Here we consider the 

primary ones:  i) career, ii) reputation, and iii) future funding (Stephan 2012). Career 

consequences depend in part on the position and career stage of the PI. Tenure, for example, 

shelters PIs from the negative consequences of research that has disappointing results 

(Franzoni and Rossi-Lamastra 2017). A tenured scholar is arguably less damaged by a non-

result than a tenure-track scholar. And a tenure-track scholar arguably benefits more than 

does a tenured one from a major success. Even among PIs in the same academic rank, the 

career implications of a non-result may differ. For example, the severity of a non-result for 

tenure-track scholars is more of a problem for those without other successful projects than for 

                                                 

13 To illustrate, in 2018 the IceCube team announced that they had detected a cosmic neutrino from a blazar, 
laying 4-light years away from Earth (Collaboration 2018). Prior to this, the only other identified sources of 
cosmic neutrinos were limited to the Sun and to a supernova identified in 1987. The fact that the finding was 
reported only by IceCube, made it more valuable than if the finding were independently reported by other 
observatories.  
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those with past successes. Regardless of academic rank, scholars in more demanding 

institutions may face more severe consequences from failed research.  

Outcomes affect one’s reputation. Being the lead PI of a successful research project 

can lead to increased visibility and enhanced reputation.  However, if the research results are 

particularly disappointing, it can also jeopardize the scholar’s reputation. This reputational 

effect is magnified by working in crowded areas, where bibliometric indicators are more 

granular and thus respond more directly to small changes. Researchers also worry that a 

proposed idea may appear to be sufficiently on the “wild side” to tarnish their reputation.  

Halzen had such concerns about the idea of proposing a neutrino observatory in the ice.  One 

reason he chose to propose the idea publicly in Poland, at a relatively small conference, was 

to shelter himself from such a reputational loss. (Halzen 2010). 

Accomplishments (or lack thereof) also have implications for future funding, 

necessary in most fields and countries for today’s scientists.14  Uncertainty surrounds funding 

in a variety of dimensions. For example, if the project brings no results or produces results 

deemed insignificant, funds are unlikely to be forthcoming for further work, while, if it 

produces results of sufficient importance, future requests are much more likely to be funded.  

Halzen and colleagues were acutely aware of this and knew that “any type of failure will 

hamper future funding.” (Bowen 2017:175). Risk associated with future funding can 

discourage scientists from moving in new directions.  One eminent scientist who made a 

major change in his research agenda at age 55 reported that while in making the change he 

never considered the risk associated with not finding anything, the risk he did consider was 

“the personal cost: leaving a field in which I was a leader for one in which I was completely 

unknown, the difficulty in getting funding, the difficulty in getting people to work with me. 

And indeed, those were the major problems I faced, for years.” 

Consideration of the value for science and society and for the PI differ in the direction 

of variability of risk they imply. When we consider consequences from the point of view of 

science and society, the how much has a downward limit of zero, in the sense that it cannot 

lead to a direct loss. When we consider the point of view of a PI, the how much implies a 

variability that takes the full spectrum from gains to losses. That is, the personal 

                                                 

14 Although small, “table-top” science exists, research is generally expensive and requires external support.  
IceCube is at the expensive end of the spectrum, but there are other projects, such as LIGO and the LHC that 
cost far more. 
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consequences related to research may imply a direct gain, but also a direct loss in reputation, 

career status, placement or future funding.  

The prior discussion disentangled five components and related questions that must be 

addressed in a meaningful discussion of risk in science: i) what, ii) how likely, iii) if, iv) what 

else and v) how much. They can easily be expanded to include additional components arising 

in special cases. For example, in the relatively rare case in which research could involve 

immediate danger to researchers (e.g., developing new explosives), human or animal subjects 

(e.g., testing new surgical methods), the environment (e.g., research on nuclear power), or it 

could involve ethical concerns (e.g., cloning of animals), the model can be expanded by 

adding components regarding potential losses.15  IceCube, for example, confronted this type 

of risk concerning the safety of the South Pole team.  Indeed, one of the drillers was seriously 

injured while working on the project. Academe has developed provisions to address and cope 

with such risks. They include ethical and safety protocols and procedures like the IRB that 

aim at minimizing such risks.     

More generally, one could also think of sub-questions, that detail specific aspects. For 

example, one can ask separately the value of secondary outcomes from the likelihood of 

finding secondary outcomes. All in all, however, the above questions capture the essential 

components of risk involved in the majority of scientific research projects. Table 1 

summarizes the questions, along with their applicability, focus, and source of uncertainty.  

This conceptualization is useful for representing research uncertainty and can be used to 

compare projects. The comparison also reminds us that there are basic differences regarding 

the risks involved in different types of research. Observational studies and experimental 

research is subject to natural risk (the if), whereas theoretical research is not. In this sense, 

experimental research faces one more challenge that can lead the research to come-up empty 

handed. Although basic experimental research may involve a small likelihood of success, due 

to both methodological and natural uncertainty, in the sense of coming up empty handed, it is 

not necessarily at high risk of failure compared to applied experimental research. This is 

because the probability of secondary findings is more favorable than is the probability of 

secondary findings in applied experimental research.  

15 This can include asking the classical triplets of questions encountered in risk analysis: what harm can happen, 
how likely is this and, in that case, what would be the consequences (Kaplan and Garrick 1981) 
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Finally, it should be noted that the framework outlined in Table 1 also highlights that 

evaluations of risks differ systematically depending on who is doing the evaluation, because 

the consequences that accrue to science and society are different from those that accrue to the 

PI.  

Table 1. Framework for representing the components of risk in science 

5. Measuring risk

Model of Expert-based Metric of Risk. The framework set out in Section 4 outlines  

multiple components of risk in research. In some cases, however, describing risk in its 

multiple components is not sufficient and there is need for  a comprehensive measure of risk. 

This is the case, for example, in the context of peer review evaluation in which experts are 

asked to assess the risk of research of proposed research. We thus need a model that 

Question Applies Focus Source of uncertainty

What  can be found? Always Primary outcome Nature
State of scientific knowledge

How likely  is it that the  Always Method Nature
proposed approach works? Qualifications of the team State of scientific knowledge

Technology

If all works, how likely is the  Experimental research Rarity of event Nature
outcome to happen?

What else  can be found? Always. Secondary outcome Nature
More likely in natural explorations, State of scientific knowledge
activities never performed before, 
new scientific instruments,
and basic research in general

How much  is the finding worth Always Science Scientific advance in own field
for science and society? Scientific community Size of field

Societal benefit Competing results
Scientific advance in other fields 
Size of other fields

How much  is the finding worth Principle Investigator Career stage Personal value of findings
for PI? Professional environment Reputation

Career status
Placement
Funding
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combines components to assess risk. Drawing on models of risk metrics (Budnitz et al. 1998; 

Haimes 2009; Kaplan and Garrick 1981), we adopt the most simplistic approach and use the 

question of what and what else to outline the scenarios of possible outcomes (states of the 

world) —both primary and secondary-- to provide an example of such a model. 

The questions how likely and if, when applicable, shall assess the likelihood of each 

scenario, intended as subjective probabilities, and expressed in the range 0-1. The questions 

how much shall assess the impact for science and society (ui); they could also have a separate 

estimate concerning the value for the scientist. The how much can be quantified with scores, 

e.g., in the 0-100 range. Table 2 illustrates an operational application of the framework using 

a simple functional form. It assumes the point of view of a granting agency and so the 

question how much considers only the value for science and society, and not the value for the 

scientist involved.  

 

Table 2. Example of risk measure for expert-based assessment   

Primary/secondary outcome 
 

Likelihood Value for science and 
society 

 

Expected value  
for science and society 

(i-th scenario) 
 

What /  
What else 

How 
 

 

If 
 

 

Total 
likelihood 

 
 

How much 
 

 

 

 Prob. 
(0-1) 

Prob. 
(0-1) 

Prob. 
(0-1) 

Score  
(0-100) 

Score  
(0-100) 

Scenario i 
Primary outcome (1) p1i q1i P1i= p1i q1i u1i Vi1 = u1i P1i 

Scenario i 
Secondary outcome (2) p2i q2i P2i= p1i q2i u2i V2i = u2i P2i 

Scenario i 
Total  

   Ui= u1i + u2i Vi = V1i + V2i 

Scenario (i+1) 
Primary outcome (1) 

     

Scenario (i+1) 
Secondary outcome (2) 

     

Scenario (i+1) 
Total 

   Ui+1 Vi+1 

…      

 

 

The main outcomes of the framework are pairs of the value (for science/society) and 

the likelihood (ui ; Pi), for each i-th scenario of primary and secondary outcome, where the 
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likelihood Pi is the product of methodological (pi) and natural (qi) risk for each scenario.16  

The expected value of the i-th scenario (Vi) can be computed as the sum of the expected 

values of primary (V1i) and secondary outcomes (V2i), given the respective likelihoods.  The 

number of scenarios considered (N) can vary, depending on the case, and on intended uses of 

the analysis. The pairs can be ordered in descending order of Vi , and eventually plotted and 

fitted by a risk curve, a standard representation of risk analysis (Kaplan and Garrick 1981). 

One can, of course, compute the average expected value of all scenarios ( 𝑉 ൌ ଵ

ே
∑ 𝑉௜
ே
௜ୀଵ ), but 

the result would have little meaning. More informative for the purpose of science would be 

the range of maximum and minimum values for science/society (min Ui ; max Ui) across the 

scenarios and the range of related expected values (min Vi ; max Vi). High-risk high-gain 

projects would stand out for having at the same time a high max Ui , a large range between 

max Ui and min Ui, and a low max Vi . Conversely, low-risk, low-gain projects, like 

Cochrane reviews, would have a low max Vi, but also a low and not-so-variable max Ui. 

Likewise, the metric can detect projects that are High-risk (low max Vi), but Low-gain (low 

and not variable max Ui). 

In the case of IceCube Neutrino project, for example, there was large uncertainty 

concerning the findings, project feasibility (the how) and the if the sought events would 

actually occur. The project almost certainly involved secondary outcomes. Thus, it could 

have led to a large number of scenarios, in which the value of a single potential scenario 

could be very high, and variable. By way of comparison, Cochrane reviews can lead to a 

maximum of two/three scenarios (e.g., absolute effect is significant, not significant; 

mixed/unclear), with no uncertainty in the how, no secondary findings and consequently a 

small and not very variable, value for science/society. The testing of Ipilimumab also 

involved a limited number of scenarios (e.g., the drug is effective; not effective; mixed), with 

no uncertainty in the method and no or limited secondary findings. However, the value of 

discovering an immunotherapy treatment for cancer was very high, given alternative 

treatments available at the time, and the chances of success (if), were small, based on prior 

experience. Thus, Ipilimumab was at higher risk of coming-up empty-handed (low 

probability, no secondary finding), although the methodology involved was not risky and the 

expected value, if successful, was high.  

                                                 

16 Assumed here as independent from one another. In case the probabilities are not independent, the formula 
should be edited to include conditional probabilities. 
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As the example shows, the approach of risk-analysis outlined above can in principle 

be adopted to evaluate risks involved in research that has yet to be implemented. As such, it 

potentially could be deployed by funding agencies, in peer-review assessment for evaluating 

research proposals and could be especially useful in those granting schemas where the high-

risk high-gain evaluation is a key criterion. It is important to stress that the application of this 

method to project evaluation would be an exercise of forecasting, as it involves asking 

experts to gauge actions and events that could happen in the future and are not pre-

determined (Mellers et al. 2015; Tetlock and Gardner 2015). Thus, the opinions would 

necessarily imply a large margin of uncertainty. In other areas where experts’ forecasting is 

essential, such as climate change and risk analysis, behavioral and decision scientists have 

elaborated a set of best practices known as ‘expert elicitation techniques’ to elicit, 

characterize and treat quantitative expert judgments in the form of subjective probability 

(Morgan 2014; Raiffa 1997).  These techniques are meant to make the best possible use of 

the information that experts have, including eliciting more than one point of the subjective 

probability distribution. The approach also takes into account the potential interference of 

human biases, such as overconfidence and anchoring (Clemen and Winkler 1999; Fischhoff 

2015; Fischhoff and Davis 2014; Morgan 2014; Winkler et al. 2019).  

In practice, the application of the model we propose is rather laborious. While the 

approach has much to recommend it, its adoption would undoubtedly increase the burden of 

review boards that manage large numbers of proposals. At present, we do not know if the 

potential gains of using a risk metric in grant peer-review would be justified in a cost-benefit 

logic. This is probably an empirical question that warrants future work. At a minimum the 

concepts and procedures underlying expert elicitation protocols could be used to help educate 

panelists regarding aspects of risk.  

Text-based correlates of risk.  Scholars of the economics of science often wish to 

measure risk associated with research in large samples and often over long periods of time. 

The expert-based metric outlined above is clearly too time and resource-consuming in such 

instances. For these purposes, methods have been developed that can be computed for large 

samples. These methods do not measure risk directly, but instead infer it from correlates 

associated with risk that can be obtained from the codified products of research, such as texts 

of research proposals and published papers.  
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Many text-based correlates of risk rely on the assumption that research that deviates 

considerably from past research can lead to breakthroughs but holds risk in that it has yet to 

be explored by others and can fail. One way to measure the extent to which research deviates 

from past research is to think of past knowledge as a set of building blocks which can be 

combined to produce new knowledge. Research that combines past knowledge in well 

understood ways is referred to as exploitative; research that combines past knowledge in new 

ways is referred to as explorative. Explorative research arguably is more likely to lead to 

breakthroughs than exploitative research (Romer 1994; Varian 2009) and to carry higher 

potential impact (March 1991; Simonton 2003).   

Wang, Veugelers and Stephan (2017) draw on this approach to measure novelty, the 

extent to which a published paper draws on references that have not been jointly referred to 

in previous research.  To be more specific, they retrieve references for each paper published 

in 2001, and construct co-cited journal pairs for each.  They then check to see if the pair has 

previously been made in the last 20 years, identifying pairs (if any) that are novel—that is not 

previously made and compute the “difficulty” of making each novel pair by examining 

whether it has “common friends” in the sense of past journal co-citations.  The novel score 

for the paper is the sum of the novel score for each reference combination.  The authors find 

that 89% of the articles contain no novel combinations.  Among the 11% that do make a 

novel combination, they distinguish between highly novel, being in the top 1%, and 

moderately novel. Importantly, for our perspective, they find that, compared to non-novel 

papers, the citation distribution associated with highly novel papers has a higher variance and 

higher mean value, characteristics that we expect in risky research, suggesting that the novel 

measure correlates with risk. 

Uzzi and coauthors (2013) adopt an alternative measure of knowledge recombination, 

called atypicality.  For each pair of references found in a paper, they compute a z-score, 

comparing the probability of making the combination to making the combination by chance.   

Z-scores for reference pairings greater than zero indicate that the pairing occurred more likely 

than by chance; those below zero indicate less likely than by chance.  For each paper, they 

then take the lowest 10th percentile z-score of its series of z-scores as an indication of how 

novel the paper is and the median z-score as an indication of the paper’s “conventionality.”  

The authors find that the “vast majority of papers displays a high propensity for 

conventionality.” (Uzzi et al. 2013: 469).  
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Responses of corresponding authors to the GlobeSci survey (Franzoni, Scellato, and 

Stephan 2012) concerning a paper published in 2009 are consistent with these findings. 

Authors were asked to report “with regard to the area of research, this paper is: in a high-risk 

(of failure), high-reward (if successful) area of research.”17  The variance of citations to 

papers authors reported as high-risk was greater than the variance of citations to papers 

reported as low risk as was the mean number of citations.  Moreover, the authors’ assessment 

of risk correlated with Uzzi’s measure of atypicality (Franzoni, Scellato, and Stephan 

2018).18  

Other approaches to measuring risk rely on words or findings reported in the text to 

measure the extent to which the current research deviates from past research.  Foster et al. 

(2015), for example, examine the extent to which biochemists introduce novel chemicals and 

chemical relationships, using abstracts from publications indexed in Medline.  The authors 

distinguish between three types of papers based on the chemical relationships described in the 

work.  Research that makes a jump explores previously unexplored chemical relationships -

jumping beyond current knowledge.  Such research arguably is more likely to fail but, if the 

research succeeds, it is more likely to make a breakthrough.  Research that explores 

relationships between previously studied entities, and is thus more likely to succeed, is 

subdivided into research that tests a new relationship, not published before, or research that 

repeats an analysis of a previously studied relationship.  Again, and important for our 

perspective, the authors find that the citation distribution associated with jump papers and 

new papers has a higher variance and higher mean value than that of repeat papers, 

characteristics that we expect in risky research, suggesting their measures correlate with risk. 

The authors also find that papers based on repeat strategies were six times more likely to be 

published than that those that used new or jump strategies during the period 1983-2008 

(Foster et al. 2015: 886). Krieger, Li and Papanikolaou (2019) develop a related measure of 

novelty which compares the chemical structure of new drugs going up for FDA approval to 

that of previous drug candidates. 

                                                 

17 Approximately 8% said they strongly agreed that it was high risk, high gain. Approximately the same percent 
said they strongly disagreed; one third neither agreed or disagreed, while almost a quarter said they agreed—but 
not strongly-- with the statement and a bit more disagreed with it.  
18 The atypicality analysis was only available for a limited subset of respondents.  See Franzoni, Scellato and 
Stephan (2018). 
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Another measure used as a proxy for the degree to which research deviates from past 

work is the average age of keywords associated with a publication, measured by the year a 

keywork first appeared in the scientific literature. The approach works best if applied within a 

single domain. For example Azoulay et al. (2011) use this method for Medical Subject 

Headings (MeSH).  They also compute a Herfindal index of keyword diversity. Boudreau and 

coauthors (2014) use the percent of keywords never used before to calculate the novelty of a 

proposal. A different approach, based on content analysis, measures the degree to which a 

document employs words that suggest vagueness, probability or unsureness (e.g., uncertainty, 

weak modals and negative words), as opposed to certainty (Sauermann et al. 2019). Word 

lists and algorithms exist that can readily provide this metric e.g., for the English language 

(Loughran and McDonald 2013).  

Open issues on risk measures It is important to note that limitations and pitfalls exist 

in the use of these text-based metrics of risk. First, there is the file drawer problem. A large 

share of failed research remains unpublished (Franco, Malhotra, and Simonovits 2014). 

Moreover, published articles are formulated to provide an impression of order and fulfilment 

of the expectations which conceals the trial-and-errors involved (Bourdieu 2001). In this 

respect, looking at research proposals—which are upstream—addresses part of this concern, 

although even research proposals do not include intentions and/or ideas that are censored 

after early-testing. One possible way to reduce the file drawer problem is to look at log-files 

and lab-notes that scholars deposit in digital repositories when research is in progress or 

being proposed (Franzoni and Sauermann 2014; Sauermann, Franzoni, and Shafi 2019). Pre-

registration of experiments can serve the same purpose.19 

A second problem relates to measures based on knowledge recombination, like 

novelty and atypicality. By construction, they see new research which deviates considerably 

from past research as riskier. While such measures capture risky research, they do not 

identify all risky research, such as the risk associated with continuing a line of research that 

has proven fruitless for some time. For example, they would not have detected risk in the 

case of the first immunotherapy cancer treatment made by Allison, described earlier in this 

essay. Third, many of the available metrics rely on citations, which have well-known 

drawbacks and are but one measure of the extent to which research is successful.  

Furthermore, some of the riskiest research may not have a measurable effect for many years.  

                                                 

19 E.g. https://www.cos.io/initiatives/prereg. Accessed November 23, 2020. 
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Last, but certainly not least, these measures provide a single assessment of risk that relates to 

a full project or completed research, and do not discern risk components within projects, the 

importance of which we have stressed in Section 3.  Developing complementary measures or 

metrics that rely on alternative assumptions could thus prove valuable. It is possible that 

textual analysis and other AI-based metrics will offer new opportunities in this direction. 

 

 

6. The Relationship of Rewards to Risk Taking; Extent to Which Funding 

Agencies are Risk Averse 

This paper began with the concern that risk taking in science is on the decline.  Many 

put the onus on funding agencies and changes in the way in which science is funded and 

grants awarded.  Others stress that the rewards to doing science not only discourage risk-

taking, but increasingly do so.  In this section we examine the extent to which the rewards to 

science discourage risk taking and whether there is evidence to suggest that these trends, to 

the extent they exist, are increasing.  We also examine the extent to which funding agencies 

are risk averse.   

Reputation plays an important role in science although by no means is it the only 

reward to doing science (Merton, Stephan and Levin).20  But reputation is key.  It affects 

hiring and promotion opportunities, as well as funding decisions and plays a major role in the 

acquisition of the position and resources necessary to engage in a research. Measures of 

reputation in recent years rely increasingly on bibiometrics, where citation counts and their 

derivatives (e.g., the H-Index, the Journal Impact Factor), play a prominent role.   

The heavy emphasis on reputation, particularly when measured with bibliometric 

indicators, arguably discourages risk taking on the part of scientists.  This is not obvious; 

examples of scientists who have taken a risky course receiving a Nobel Prize, for example, 

are readily available 21 and there is research suggesting that prestigious prizes can encourage 

risk taking (Rzhetsky et al. 2015).  But overall, the citation-premium for doing risky-research, 

                                                 

20  Rewards also include the satisfaction derived from puzzle solving, and financial gain that often accompanies 
a successful research career (Stephan 2012; Stephan and Levin 1992). Cohen, Sauermann and Stephan (2020) 
also show that scientists are strongly motivated by an interest in contributing to society. 
21 Jim Allison is but one case in point.  
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compared to that of doing not-so-risky research, is arguably insufficient to encourage risk 

taking.  To illustrate, Foster and colleagues (2015), using the method described earlier, find 

that “jump” papers reporting highly innovative chemical combinations receive 52% more 

citations on average than “repeat” papers reporting known combinations, while “new” papers 

reporting  moderately-innovative combinations enjoy 30% more citations than those 

reporting known combinations. Their results suggest that taking the risk associated with 

“jump” and “new” research makes it more likely to achieve high impact, but the additional 

rewards are small and arguably do not compensate for the possibly of failing.  Stephan (2019) 

has called this the “quad” effect, referring to the fact that competitive female figure skaters 

attempt fewer quadruple jumps, arguably because the incremental score they can earn for 

completing a quad, compared to successfully completing a triple jump, is insufficient to 

compensate for the risk of failing to complete the quad jump.  For male figure skaters, 

scoring is different: the incremental score is larger and provides sufficient incentive to 

attempt the quad.  The work of Uzzi et al. (2013) is consistent with the findings of Foster et 

al. (2015), and shows that “The highest-impact science is primarily grounded in exceptional 

conventional combinations of prior work yet simultaneously features an intrusion of unusual 

combinations.” Stated differently, a little bit of risk adds spice to the research; but 

conventionality is the dominant characteristic of highly cited papers.22    

Wang, Veugelers and Stephan (2019) find that in the short run highly novel papers are 

less likely to be top-cited (1%) than moderately novel or non-novel papers but over time 

highly novel papers are significantly more likely to be top-cited.  The authors also find that 

highly novel papers are less likely to be published in High Impact Journals.  Causality of 

these findings cannot, of course, be determined but the results are consistent with the idea 

that in the short run the rewards to science are biased against risk-taking.  This can 

discourage risky research, given that universities make crucial career decisions, such as 

hiring, third-year review and tenure, using evaluations based on relatively short-time 

windows.  While the tenure-track system has long been common in the US and Canada, it has 

only recently been introduced in several continental European countries, such as Germany, 

Sweden and Italy, suggesting that the rewards for risk-taking have shrunk globally.   

                                                 

22 Papers characterized as having high medium conventionality coupled with a high tail “novelty” have a hit rate 
in the top 5 percent 9.2 times out of 100. 
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The role that reputation plays in discouraging risk taking arguably is growing not only 

because of an extension of the tenure-track system to an increasing number of countries but, 

and related, because citation counts are becoming increasingly important and readily 

available.  Sixty-five years ago, there was no ready way to measure citations to published 

work.  As late as the early 1990s the only way to count citations was to laboriously look in 

the volumes published by the Institute of Scientific Information.  Today citation counts are 

readily available and arguably affect the direction of the PI’s research.  Consider, for 

example, what the computational chemist Richard Catlow said upon becoming Foreign 

Secretary of the Royal Society:  “I was lucky. When I began my scientific career in the 

1970s, I had no real sense of how my work was cited. […] If I had been citation-driven, I 

might have abandoned a field that is now central […]. By the 1990s, when citation data 

became prominent, I was already a full professor.” 23  The work of Foster et al. (2015) is 

consistent with Catlow’s view, finding that papers which focus on already established 

relationships have been growing over time, consistent with the idea that high risk in research 

is on the decline.   

Although we lack systematic studies of the relationship of risk taking to funding 

success, the work that does exist suggests that reviewers and panels are risk averse.  In an 

experiment conducted at the Harvard Medical School, Boudreau and coauthors (2014), for 

example, find that more novel research proposals, as measured by the percent of keywords 

not previously used, receive more negative evaluations during peer-review. The result is 

driven by proposals with particularly high levels of novelty.  Their preferred explanation for 

this finding rests on bounded rationality of reviewers.  To quote the authors: “experts 

extrapolating beyond the knowledge frontier to comprehend novel proposals are prone to 

systematic errors, misconstruing novel work.  This implies that, rather than receiving 

unbiased assessments (with zero mean errors), novel proposals are discounted relative to their 

true merit, quality and potential.” (Boudreau et al. 2014: 2779).  Veugelers and coauthors 

(2019) find that applicants to the ERC Starting Grant program, with a history of highly novel 

publications, are significantly less likely to receive funding than those without such a history.  

The major effect comes during stage one, when panel members screen a large number of 

applicants based entirely on a five-page summary of the proposed research and a CV. The 

finding suggests that reviewers rely on bibliometrics, which, as we have seen, are biased 

                                                 

23 https://media.nature.com/original/magazine-assets/d41586-017-08289-z/d41586-017-08289-z.pdf. Accessed 
August 6, 2020. 



 30 

against risk taking in the short run, in making decisions. Lanöe (2019), using a measure of 

novelty, finds evidence that funding decisions made by French National Research Agency are 

biased against risk-taking.  Wagner and Alexander (2013) evaluate the SGER NSF program 

designed to support high risk, high reward research that ran from 1990 to 2006.  Funding 

decisions were made entirely by program officers with no external review.  The authors find 

that program officers routinely used but a small percent of available funds.  The findings 

suggest that either officers were averse to funding risky research, despite the number of 

funded proposals that had transformative results or, that risk taking was not rewarded within 

NSF.  Conversely, Sauermann, Franzoni and Shafi (2019), using speculative words as a 

measure of risk, find no evidence to suggest that funding made by citizens who pledge money 

on the research crowdfunding platform Experiment.com either favor or disfavor risky 

research.  

 

7. Hedging Risk 

Financial instruments such as futures are designed to hedge risk in markets where 

volatility exists, as does the ability to assemble a portfolio of assets with various degrees of 

risks.  Insurance reduces the size of losses in cases of a negative event. A question of interest 

is the extent to which strategies exist in science for hedging risk, either at the individual or 

institutional level. If so, understanding such risk hedging strategies has the potential to help 

policy makers and administrators advance risk taking in science.   

Individual level  At the individual level, a strategy for hedging risk that is not publicly 

advertised, but sufficiently common to inspire a cartoon,24 is to pursue the early stage of 

research with funding drawn from an earlier grant. In some instances, research begun on the 

back-burner may eventually be proposed for funding, having been “de-risked” by the back-

burner treatment. Such strategies are only available to scientists who are sufficiently senior to 

have established a funding pipeline. Scientists also attempt to manage risk by seeking 

funding with a sufficient time horizon to allow them to recoup from possible failures that 

may occur along the way.25  Scientists also hedge their bets by pursuing research with 

potential secondary objectives, as we have seen in the case of IceCube.  

                                                 

24 http://phdcomics.com/comics/archive.php?comicid=1431. Accessed October 27, 2020. 
25 HHMI funding is highly prized not only for its status and size but also for the fact that the funding is for 7 
years.   
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Another important strategy for hedging risk at the individual level consists in 

outsourcing parts of the research process to others in exchange for payment.  For example, 

ten years ago  it could take a postdoctoral fellow a year to try to create a transgenic mouse in 

a PI’s lab.  At the end of the year there was a reasonable possibility that the postdoctoral 

fellow would come up empty-handed and the lab would be “mouseless.”  The availability of 

outsourcing the creation of such a mouse to a company has de-risked the activity. While the 

company may experience some failure along the way, by preserving steps of the process it is 

able to guarantee a mouse in a reasonable period and, if it fails completely, the PI will get a 

refund.26  Similar strategies of risk transfer via outsourcing are possible in several other 

domains including experimental psychology.  

University level  At the institutional level, hiring policies help universities insure 

against investing in scientists who are not productive.  “Soft money” positions, for example, 

come with no salary guarantee, but instead salary is funded (or almost fully funded ) from 

grants for which the researcher is responsible.  Such arrangements put faculty under 

considerable pressure to produce results. The bio-physicist Stephen Quake called this 

situation “funding or famine.”27  If their research is not deemed fundable or comes up empty 

handed, the university can cut its losses and hire another individual into the position.  It is 

notable that soft money positions have been on the rise in recent years.  In the US, for 

example, the majority of basic medical faculty are hired in soft money positions and are 

responsible for bringing in most of their own salary (Stephan 2012).  Soft-money positions 

also are common outside of medical institutions.  Stephan documents that during the years 

when the NIH budget doubled, the majority of new hires were made into soft money 

positions (Stephan 2007). Soft money positions not only transfer risk to the faculty; they also 

discourage risk taking on the part of the faculty given the importance of continued funding.  

A second way universities insure against risk is hiring faculty into “tenure-track” positions 

and/or implementing third-year review during the tenure-track period. Such practices mean 

that the university can cut its losses if it views performance to be inadequate. Finally, 

                                                 

26 Cyagen, for example, which at the date of this writing had delivered over 50,000 animal models, states that 
“we will fully refund the client’s service fee if animals with the specified genotype are not generated (except for 
genetic modifications severely affecting viability, morbidity, or fertility.) 
https://www.cyagen.com/us/en/service/transgenic-
mice.html?gclid=EAIaIQobChMI5aCYqo_46gIVDvDACh2PpgnmEAAYAiAAEgK7VfD_BwE. Accessed 
August 6, 2020. 
27 https://opinionator.blogs.nytimes.com/2009/02/10/guest-column-letting-scientists-off-the-leash/ 
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universities also recruit faculty with strong funding streams rather than hire individuals 

without funds28, again a strategy for minimizing risk. 

Universalities and institutions also insure against the risk that research could result in 

serious harm or damage by means of policies that mandate pre-approval for certain types of 

potentially harmful research. For example, most universities require pre-approval by the 

Institutional Review Board (IRB) for all research that involve human subjects. Moreover, 

they often engage external organizations to train and certify faculty in compliance regarding 

the conduct of research, thereby minimizing their own risk in so doing.   

Granting institution level Funding institutions which award money to support 

research have several ways of managing risk.  Perhaps the most straightforward is to favor 

proposals that include preliminary findings, thereby insuring that the research is feasible.29  

Another is to adopt a portfolio approach. There are in principle several ways to do so. One 

widely used in practice is to have separate calls with separate budgets for risky and ‘regular’ 

research, limiting the budget of the former. In principle, the approach assumes the ability of 

panel members to assess risk involved in a proposal and select accordingly. In practice, panel 

committees are given little guidance on how to discern risk and even less on how to select 

accordingly.  

A third strategy granting institutions use to hedge risk is to fund in stages. In the first 

stage, a pool of projects is selected for initial short-term funding. In the second stage, an 

interim evaluation is conducted.  Funds for less promising projects are curtailed; funds for 

more promising ones are continued. Although this strategy is used by DARPA,30  it is 

infrequently used among most funding agencies. A stage-funding approach is, by way of 

contrast, common in the Venture Capital industry for funding entrepreneurial projects, where 

it is called the ‘spray and pray’ strategy (Lerner and Nanda 2020). Although the two domains 

are fundamentally different, the parallel provides some interesting insights. The interim 

evaluation is especially useful when the initial estimate is unreliable, but can be quickly 

updated with initial funding (Vilkkumaa et al. 2015). It is thus especially suitable for research 

                                                 

28 During the NIH doubling, universities recruited senior faculty with more than one grant. Post-doctoral fellows 
in the US are reportedly more likely to get a faculty position if they have secured a K-99 grant from NIH.  More 
generally, getting ERC funding as a starter is seen as a path to obtaining faculty status. 
29 When the National Institute of General Medical Sciences at NIH was funding protein structure projects, the 
mantra was “no crystal, no grant,” code for the requirement of preliminary results 
30 https://fas.org/sgp/crs/natsec/R45088.pdf Accessed August 30, 2020. 
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that can make substantial steps forwards in a relatively short period of time and does not 

require large fixed-costs to be started (Ewens, Nanda, and Rhodes-Kropf 2018).31  Some 

research fields meet these conditions, but the conditions are more the exception than the norm 

in the natural sciences, where the share of research that requires expensive equipment and 

substantial effort is large (Stephan 2010).  

A fourth strategy granting institutions use to hedge risk relies on portfolio 

diversification.  It applies specifically to challenge grants, that is grants designed to address a 

specific challenge or set of pre-defined goals, such as the full sequencing of the human 

genome, or the development of a vaccine for Covid-19. In these special cases, the desired 

outcomes are known, but the way to achieve them is unknown and/or there is uncertainty 

concerning which approach is more likely to be successful, or more efficient or quicker. Risk 

in this case can be managed by funding a pool of projects that take diverse routes to reach the 

same outcome and thus the risks are non-correlated. By way of example, Operation Warp 

Speed, launched in the spring 2020 by the US government to advance a COVID-19 vaccine, 

aimed at having at least one approved vaccine available by the end of 2020, a record-time 

given that normal vaccine development takes about 10 years and has a success rate of 6% 

(Mullard 2020). The approach of the US administration was to select a certain number of 

candidates to maximize the odds that at least one would make it to the finish line. In May 

2020, the task force identified 14 vaccine candidates out of more than 100 that existed at a 

pre-clinical stage. Of the 14 candidates, 8 were projected to reach early stage small clinical 

trials, 3-to-5 were projected to reach large scale clinical trials.32  The selection also aimed at 

vaccine candidates based on different technologies and vaccinal strategies in an attempt to 

accelerate the time frame and increase the odds of having a successful vaccine in the near 

future. By way of example, the AZD1222 developed by University of Oxford and 

AstraZeneca, is an adenovirus-based vaccine. Its strategy is to train the immune system to 

recognize the spike protein typical of the SARS-CoV-2 surface, by carrying DNA for the 

spike antigen in host cells though a vector. In the case of AZD1222 the vector is a 

genetically-engineered adenovirus of chimps. The Moderna’s mRNA-1273 aims at the same 

training strategy, but with a nucleotide-based vaccine. In this case, a synthetic lipid 

                                                 

31 In the VC industry, this has largely favored IT and digital companies. 
32 https://www.hhs.gov/about/news/2020/05/15/trump-administration-announces-framework-and-leadership-for-
operation-warp-speed.html. Accessed November 2020. 
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nanoparticle is engineered to carry mRNA templates. Each approach may have drawbacks: 

for example, some patients have pre-existing immunity to adenovirus and the antigens 

encoded by mRNA may not confer sufficient protection against pathogens. Indeed, no 

vaccine based on either adenovirus or nucleotides had ever been approved in the USA or 

Europe (Mullard 2020) at the time of this writing. A different and possibly more dependable 

strategy is the protein subunit approach taken by Sanofi-GlaxoSmithKline. In this case the 

candidate is the spike antigen itself, combined with an immunogenic adjuvant, to trigger an 

immune response.  

A question of considerable interest is whether a portfolio diversification strategy that 

resembles financial portfolio management can be used to manage risk in science. This would 

consist of choosing a mix of research projects with levels of expected value and volatility that 

lead to a desired average future value with a desired risk-exposure.  As before, the feasibility 

of this approach depends on being able to forecast the outcomes of research projects with 

reasonable accuracy. Moreover, and to complicate things, in this case one would need not 

only to assess projects in isolation, but to also estimate the covariance among the outcomes of 

different projects. A ‘bare bones’ approach is to ask reviewers to classify proposals by levels 

of risk involved, ask if any two pairs of projects have prospective outcomes which are 

correlated,33 then fund projects in each level of risk, keeping the correlation below a 

maximum threshold. It is possible that future experimental studies on protocols for risk 

assessment in peer review will test this approach. 

 

8. Encouraging Risk 

Seed-funding  Universities, for example, can promote risky research with the 

potential of high payoff by providing seed funding to faculty.  The California Institute of 

Technology, by way of example, had such a program whereby faculty could submit a short 

proposal to the Vice Provost for Research and get a decision in a matter of days.  Funds 

ranged from $25,000 to $250,000 a year for a period of two years.  The idea was to give 

faculty the wherewithal to engage in early-stage risky research that, given the risk aversion of 

granting agencies, was deemed not yet ready for submission. If the initial findings looked 

promising, and produced enough preliminary data, the faculty would then submit a full grant 

                                                 

33 Prospective outcomes can be correlated, for example, if projects follow a similar approach and methodology. 
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proposal.  Universities also provide “bridge funding” to keep labs afloat between grants or if 

there is a lapse in funding.  For example, soon after IceCube was funded, George W. Bush 

became president and declared “no-new-starts” which restricted NSF from funding any new 

capital projects in the coming year.  The University of Wisconsin responded by loaning 

IceCube $4.5 million to keep it afloat  (Bowen 2017:288). 

Block-funding  Several scholars have stressed the role of block-funding—the practice 

of assigning resources to scientists with no strings attached and without the need to commit to 

a project—as a way to encourage risk taking. (Heinze 2017; Laudel 2017). Block funds can 

be provided by universities, the employing institution or the national research systems to all 

staff, irrespective of achievement, or can require some minimum level of research activity to 

be funded. The practice is not without its critics, who point out that block funding allows 

scientists to sit on resources and does not hold scientists accountable in case of misuse, thus 

requiring more monitoring than does competitive funding. However, such a system arguably 

encourages longer-term research trajectories and shelters scientists from the negative 

consequences of early failure, in contrast to competitive research-funding. Wang, Lee and 

Walsh (2018) compare the novelty of research funded under the two systems in Japan. They 

find that research performed under block funding was more novel than that performed under 

competitive funding for low-status investigators (e.g., junior and female investigators), but 

the reverse was true for high-status scholars, where competitive funding was associated with 

more novelty.  The latter finding is consistent with work  of Veugelers et al. (2019), which 

finds that junior applicants to the ERC are penalized for having a history of novel research, 

but senior applicants are not penalized. 

 Grants for a Longer Duration of Time  The Howard Hughes Medical Institute 

(HHMI), as noted above, funds successful applicants for seven years, rather than for three to 

five years, as is common for most other funding organizations.  Furthermore, it does not 

demand early results nor does it penalize researchers for early failure. Azoulay et al (2011) 

compare the research output of HHMI investigators to a group of similarly accomplished 

NIH investigators using propensity scoring.  They find that HHMI investigators use more 

novel keywords and produce more hits and more flops, compared to the NIH investigators.  

Although it is not clear whether the results depend upon the longer duration of grants and the 
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practice of HHMI to not demand early results nor penalize researchers for early failure or 

other variables,34 the results suggest that these practices encourage risk taking.   

Special High-Risk High-Gain funding initiatives Competitive funding can also be 

directed specifically to High Risk High Gain science in ways that encourage risk-taking. We 

have noted before that some institutions have research programs especially targeted to risky 

science. Examples include the grants of the ERC, the Director’s Awards for High-Risk, High-

Reward Research program of NIH, the, IDEAS Factory of the Engineering and Physical 

Sciences Research Council of the UK and the Early-Concept Grants for Exploratory 

Research (EAGER) program of NSF that replaced SGER grants.  

Pro-Risk Peer Review Design  Targeting funds to support high risk high gain science 

assumes that high-risk high-gain research can be identified and supported by reviewers. The 

lack of understanding and suitable methods to assess risk, however, has been a critical 

obstacle to the implementation of such a strategy. As an officer of a private foundation said 

when speaking about the topic: “One of the challenges is we don’t have any measures of 

riskiness.  We don’t know when a project is high risk, high reward.” (Michelson 2020:142). 

Furthermore, many practices used in traditional peer review may discourage funding risky 

research rather than promote the funding of risky research.35  One such practice is that of 

requiring strong panel consensus to grant. Assuming that risky research is more uncertain and 

sparks more disagreement than non-risky research (Linton 2016), the requirement of 

consensus may work against risky endeavors.  

At present we have scant knowledge concerning which practices of peer review 

design encourage or discourage the selection of risky projects. Amid a lack of scientific 

understanding, some granting institutions are using creative ways to design peer-review 

assessment that encourage risk taking. For example, the Audacious Project hosted by the 

TED organization places emphasis on goals and type of reviewers involved. They choose to 

focus on research with strong potential global impact, and to employ reviewers who are “not 

typical experts in the relevant fields” (Price 2019:317). Other organizations place emphasis 

on rules of deliberation that do not stress consensus. One example is the provision of a 

                                                 

34 Despite the authors’ efforts to match the HHMI sample with comparable NIH investigators, selection is still a 
concern. 
35 For a humorous account, see Petsko, 2012. https://genomebiology.biomedcentral.com/articles/10.1186/gb-
2012-13-5-155. Accessed August 6, 2020. 



 37 

golden-ticket to each panel member that provides immediate selection, regardless of the 

opinion of other panelists (Sinkjaer 2018). This system has been used by the Villum 

Foundation; a similar system is used by the Melinda and Bill Gates Foundation. HHMI takes 

a different perspective and selects people, instead of projects, encouraging researchers to ask 

“tough questions in science, even at the risk of failure.”36  Leslie Voshall, a highly productive 

mosquito researcher at Rockefeller University, for example, is on record saying that her 

application to HHMI, which was funded by the institute, involved doing something “bold and 

new” and was supported with no preliminary data.37  The Chan Zuckerberg Biohub program 

follows a somewhat similar philosophy, awarding fellowships to researchers for projects that 

are based on “bold ideas that lack preliminary evidence” (Maxmen 2017).  The Open 

Philanthropy Project takes a somewhat similar approach, supporting projects that have “high 

odds of failure” and often have been turned down by other organizations, such as NIH, on the 

grounds that they are too risky.38   

Although these approaches are interesting, at the present time we lack both a scientific 

understanding of peer review design and empirical evidence concerning the supposed 

efficacy of the various approaches. Future research is certainly needed in this area. 

 

9. Conclusions 

We began this paper by asserting that a scholarly understanding of risk taking in 

research was underdeveloped, yet critical given the key role that risk plays in advancing the 

knowledge frontier.  We set out to address this void by reviewing insights offered from other 

fields that study risk. These contributions, combined with knowledge gained from studies of 

science, led us to propose a conceptual model of risk in science that we hope can frame and 

accelerate future research on risk and inform the related policy debate. The model we 

developed disentangles different components that determine risk. It can also be used to 

operationalize an expert-based risk metric, potentially useful in future peer reviewers’ 

evaluations. We also reviewed various text-based metrics of risk currently employed in 

statistical analyses of large samples of research. Most of the studies that employ these metrics 

                                                 

36 https://www.hhmi.org/programs/biomedical-research/investigator-program. Accessed August 6, 2020. 
37 https://podcasts.apple.com/us/podcast/the-inner-scientist/id1419667345. Accessed October 27, 2020. 
38 https://www.nature.com/articles/d41586-017-08795-0. Accessed October 27, 2020. 
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suggest that the current reward structure of science discourages risk taking. There is also 

evidence to suggest that this trend towards “play-it-safe science’ is increasing. This led to a 

review and discussion of strategies for hedging and for encouraging risk taking.  

Although this paper advances our understanding of risk-taking in science, there is 

much that we do not know.  The research agenda going forward is challenging but rich.  We 

encourage others to take up this important subject.  Key issues to be addressed include, but 

are not limited to, the following. 

First, there is a need to develop alternative measures of risk in science. We have 

proposed a new metric, which awaits testing. The pluses are that it elicits different 

components of risk.  But the cost in terms of implementation could be quite high.  Text-based 

correlates of risk are much easier to implement, but, as we have outlined in Section 5, come 

with serious pitfalls and limitations.   Some of these can and should be addressed in future 

research. Second, evidence suggests that selection by panels, which takes place in many 

granting agencies, is biased against risky research, even in cases where risky research is a 

stated priority. Although several funding organizations have started to experiment with 

creative ways to select risky research, the reality is that none of these approaches are based 

on a scientific understanding of which designs lead to more accurate assessments and are 

more appropriate when supporting high-risk science is a priority. Moving forward, there is a 

strong need for theorical and empirical investigations to build a scientific understanding of 

peer review design. We hope that the notion of risk in science that we have offered will pave 

the way to more scientific inquiries. Some of the questions that need investigation include the 

following. Which experts or pool of experts are more accurate in assessing risky research? 

Do experts eschew risk individually? Do they do so when they meet to discuss proposals in 

consensus meetings? Do bolder peer review approaches lead to more polarized views, 

sparking more disagreement? Can alternative deliberation rules, such as golden tickets, 

promote risk? More generally, peer review is an understudied subject that invites research 

into whether the way in which it is currently organized, and consensus formed works against 

risky science.  

Third, is the need to consider how workload associated with large funding initiatives 

affects panel decisions regarding risk. Likewise, there is the question of whether small scale 

promotes risk taking. Is HHMI’s apparent willingness to fund researchers who take risk 

related to the small number of awards it makes and therefore its ability to look more closely 
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at the applicant and their research? If so, could such a model be altered to situations where 

scale is an issue?  One possibility, for example, might be to allot a certain share of the budget 

to risky proposals, then ask reviewers to identify risky proposals and choose among them, 

using some random method such as a lottery, rather than try to score each individually on 

risk. A related question is what should be an appropriate target budget for risk? 10%, 25%, 

50%? Clearly there is no one answer to this question.  The answer depends upon the funding 

agency and the source of its funds.  But in almost all cases the answer is greater than zero and 

among public funders—whose mission is to fund research the private sector eschews-- it is 

considerably larger.  

Fourth, risk and rewards are correlated in financial markets because there is a market 

equilibrium that works through asset price adjustments. To what extent does science operate 

in a parallel universe, inducing individuals to enter research areas where the reward—but also 

the failure rate—is high? More generally, the issue of risk taking in science seems ripe for 

study by financial economists. A promising and understudied line of inquiry is whether 

portfolio approaches similar to those adopted in finance can be adopted by granting agencies.  

Fifth, there are virtually no studies of the attitudes of scientists towards risk, even 

though numerous scholars study risk in other groups and conditions. It would be interesting 

to study the risk attitude of scientists in different subfields and see how these relate to the 

pace at which subfields advance. A related question is whether PhD training and early 

experience of scientists exert a long-term effect on attitudes towards risk.   

Sixth, career conditions and the incentive systems appear to affect scientists’ 

willingness to take on a risky research agenda. But much more work needs to be done in this 

area. Would less emphasis on bibliometrics in hiring, promotion and funding decisions have 

the expected effect of encouraging risk taking? Would fewer soft money positions encourage 

risk-taking?  Would publishing failed research enhance risk-taking? 

Seventh, we need to know more about how risk correlates across projects. We lack 

knowledge, for example, concerning how outcomes of research projects that share similar 

research approaches are correlated. For example, if two projects on protein structure 

determination use the same methodology, is the success/failure rate of projects not 

correlated?  Or, if a group of Alzheimer’s studies focus on the same root cause, are findings 

not likely to either miss the mark or coalescence on a treatment? This question also arises at 

the more macro level.  By way of example, mice constitute 90% of all animal models used in 
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medical research (Stephan 2012). Yet only one out of nine drugs that work on animals work 

on people.  Why?  Is the mouse a poor model? Have researchers, in an effort to standardize 

experiments, controlled mouse environments to such an extent that the mouse is no longer a 

useful model? Can the use of other animal models improve the success rates of drugs? The 

question raises the possibility that while the progress of science is hindered by being risk 

averse at the micro level, it is harmed by assuming too much risk at the macro level in terms 

of highly correlated research models. This is an area that is ripe for research.  

To conclude, we set out to provide a conceptual foundation to inform and advance 

discourse concerning risk in science. As this discussion of key issues shows, a rich agenda for 

future studies, which is both intellectually challenging and critical for the future of science, 

awaits. We call on scholars of science and adjacent disciplines to join in this effort.  
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