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1 Introduction

Firms increasingly delegate their pricing to algorithms that exploit detailed
data on customers’ preferences and, in some instances, use a learning process
to develop strategies to play an oligopolistic pricing game in the presence of
competitors.1 Artificial intelligence algorithms (AIAs) provide a prominent
approach to implementation. AIAs operate by learning about the returns
to taking feasible actions, and then performing the action that they have
learned works best. The embedded learning process is at the heart of how an
AIA performs. This paper shows that when pricing decisions are delegated
to AIAs the way in which AIAs learn can have an economically significant
impact on the pricing outcomes realized in the market.

This paper focuses on reinforcement learning. Reinforcement learning is a
common way to implement an AIA .2 In reinforcement learning, each action
at each state is given a value. Learning occurs by updating these values from
the information gathered by the AIA during the course of play. The optimal
action at each state is the one with the highest value.3

For clarity, our initial focus is on two learning protocols that lie at op-
posite extremes in terms of the information that they leverage. Consider a
market interaction in which Firm A charges $7 and its rival, B, charges $8.
The first learning approach we investigate, asynchronous learning, allows the
AIA to learn only from actions that are actually taken. So, in the two firm
market above, all the AIA can learn from is the profit that it realizes from
charging $7.4 The second learning approach we investigate, synchronous
learning, allows the AIA to conduct counterfactuals to assist learning. When
an AIA uses synchronous learning, it observes its own profit and that the
rival charged $8, and it can construct the counterfactual profit that would
have arisen had it chosen $6, or any other feasible price.

Synchronous learning requires an understanding of the underlying eco-

1See, for instance, the discussions in Chen (2016), Competition and Markets Authority
(2018), Derakhshan et al. (2016), Brown and MacKay (2020), Assad et al. (2020) and
Calvano et al. (2020).

2See, for instance, Sutton and Barto (2018).
3As discussed later, there are a wide range of ways to implement this broad-brush

approach. An early, seminal discussion can be found in Watkins and Dayan (1992). Sutton
and Barto (2018) provide a contemporary treatment.

4Quite literally, the information that is leveraged is the action (charging $7) and the
realized profit (π($7)). No other information is used in updating the values attached to
actions (i.e., learning).
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nomic environment. In a simple market setting, constructing counterfactuals
requires an understanding of demand conditions, competitors’ prices, and
the market clearing rule. Asynchronous learning requires no understanding
of any of this. An AIA using asynchronous learning needs no information
other than the action it took and the profit it realized.

Figure 1: Price paths with different algorithm designs
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static Bertrand market in which two firms are selling homogeneous goods. The model is parametrized as follows. Market

demand is Q = 1 if P < 10, zero otherwise. Marginal cost = 2. There are 100 feasible prices equally spaced between 0.1

and 10 inclusive. Firms put a zero weight on future profits. The model is parametrized as per figure 2. See notes therein

for further details.

The influence of these different learning protocols on pricing outcomes
can be seen in figure 1. Figure 1 shows prices in a market in which two AIAs
sell products that are perfect substitutes in Bertrand competition. The AIAs
do not care about future profits. Marginal costs are constant and equal to
2. Nash equilibrium prices are just above marginal costs (just above due
to the discreteness in the set of feasible prices). The monopoly price is 10.
When both AIAs employ synchronous learning, they converge to Nash pricing
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quickly. By contrast, when both AIAs employ asynchronous learning they
converge to prices that are substantially above marginal costs.

This paper endeavors to explain why this difference in outcomes occurs
and evaluates the extent to which it is a general feature that is robust across
a variety of environments. In doing so it seeks to contribute to the growing
discussion in the economics, legal, and policy literatures on the impact of the
adoption of AI pricing algorithms on the competitiveness of markets.5

We focus on the two extreme cases of asynchronous and synchronous
learning in order to make the pricing implications of learning protocols from
AI pricing algorithms transparent. Much of the academic literature on AI
pricing algorithms uses asynchronous updating.6 This seems at odds with
how we would expect an AI pricing algorithm to operate in a real market
setting as it ignores information which likely would be viewed as helpful.

Even a simple shopkeeper who sees the demand generated at a given price
realizes that this has implications for the demand that would be realized at
alternative prices. The process of inferring what demand would have been
at alternative prices is a synchronous updating process. The precision of
the shopkeeper’s estimates of demand at alternative prices would depend on
the information available on the underlying demand system and on whether
competitors’ prices are observed. However, even an understanding that the
demand function is downward sloping informs perceptions about the values
of taking different actions and, as we confirm in section 5.1, can have dra-
matic effects on realized prices. We expect that a sophisticated AI pricing
algorithm would ‘understand’ that demand slopes downward as well. As a
result, the view we take in this paper is that actual AI pricing algorithms
live on a spectrum with synchronous and asynchronous algorithms at either
end, and that the position of any algorithm on the spectrum is determined
by the willingness of the firm to invest in algorithmic design, the access the
algorithm has to data, and the ability the algorithm provides managers to

5The policy and legal debates are moving faster than the economic literature. On the
policy side see Competition and Markets Authority (2018), OECD (2017), Sims (2017),
and Federal Trade Commission (2018). All these references discuss algorithms, and AIA
in particular, as potentially facilitating collusive outcomes. Margrethe Vestager, the EU
Commissioner for Competition, commented in 2018 that “The challenges that automated
systems create are very real ... If they help companies to fix prices, they really could make
our economy work less well for everyone else” (quoted in Hirst (2018)).

6This is often referred to as “Q-learning.” However in the machine learning (or AI)
literature, Q-Learning tends to have a broader meaning that subsumes both asynchronous
and synchronous leaning. See, for instance, Watkins and Dayan (1992).
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chose alternative algorithmic settings.
The basic model, a simple Bertrand setting, with two identical firms

selling identical goods, is briefly described in section 2. A more formal de-
scription of the mechanics of the reinforcement learning algorithm that we
investigate makes up the rest of that section. A core result, expanding on
figure 1 above, is contained in section 3. There the full set of computational
results for this base case is provided. These results mirror those in figure 1 -
when the future has no value (the discount factor, β = 0); i.e., asynchronous
updating leads to supra-competitive pricing while synchronous updating does
not. The computational results delve deeper into why this is the case.

The asynchronous result is a function of how the algorithm searches
through, and updates the value of, actions. In a market with competing
AI pricing algorithms, both will choose to play the same action in a period if
that action is perceived to have the highest value by both algorithms. When
subsequent updating does not decrease the value attached to this action,
this action will become a “rest point” and the AIAs will have converged to
a set of stable prices. Computational results show that this process leads to
supra-competitive pricing.

We then provide a proposition with two parts, one of which formalizes the
asynchronous computational results, and the other shows that synchronous
updating, absent any value being placed on the future (i.e., β = 0) leads to
competitive (Nash) pricing. The proposition requires only mild regularity
conditions; in particular it allows for history-dependent pricing, different
demand systems, and so on. So we view the computational results as robust,
and it provides a way of computing Nash equilibrium prices when they are
needed for comparisons.

We then delve deeper into the behavior underlying the rest points reached
by synchronous and asynchronous updating by showing that each satisfies
one of the two sets of equilibrium conditions used in the Experienced Based
Equilibrium (EBE) paper of Fershtman and Pakes (2012). Asynchronous up-
dating finds rest points that are EBE, while synchronous updating finds rest-
points that satisfy the Restricted Experienced Based Equilibrium (REBE)
concept. This result does not require β = 0 or any restriction on the profit
function or the state space (so it allows for history-dependent strategies). It
therefore provides a basis for understanding the rest points generated by the
broader range of algorithms we turn to next.

The base case is extended in a variety of ways in section 5. Section (5.1)
extends the β = 0 case to allow for increases in the number of firms, experi-
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mentation, and intermediate cases lying between the extremes of synchronous
and asynchronous updating7. Section (5.2) first uses the equilibrium concepts
introduced earlier to explain why the results for the β > 0 case can be dif-
ferent, and then considers the extensions listed above for that case.

As would be expected, having more firms in a market mitigates the price
inflation induced by asynchronous updating. In the static setting (β = 0),
a market with five firms displays little propensity to settle on a price above
competitive levels. Experimentation in this setting means that the AIA pe-
riodically chooses a sub-optimal action to explore its payoff.8 At first glance
this experimentation may seem like a substitute for the informationally de-
manding process of synchronous updating. We cannot discuss rest points
if experimentation continues indefinitely. As a result we provide a series of
examples in which experimentation is allowed to occur for twice the length
of time that the base case asynchronous algorithm takes to converge. Exper-
imentation is then stopped and the algorithm is continued until it reaches a
rest point.

What we find is that experimentation does not fully mitigate the price-
inflating propensity of asynchronous updating. In fact, experimentation has
only limited success at reducing prices, and it comes at a significant cost in
computational burden9. The limited success and additional computational
burden imposed by experimentation, coupled with the potential cost of im-
plementing random prices, leads us to be skeptical that naive experimenta-
tion is a practical solution to mitigating the price elevation introduced by
asynchronous algorithms.

Given the ineffectiveness of experimentation in mitigating price eleva-
tion, we consider augmenting the basic asynchronous updating procedure
with a simple insight from economics: that demand curves slope downward.
The knowledge that this is the case allows the algorithm to use an easily

7Appendix A.4, conducting the same exercise on quantity-setting (Cournot) games,
replicates known results in Waltman and Kaymak (2008) and shows the our distinction
between synchronous and asynchronous learning is also relevant in that setting.

8Q-learning algorithms that employ experimentation learn about the values of choosing
non-optimal actions by using an ε-greedy algorithm. The algorithm chooses with proba-
bility 1-ε the optimal action, and with probability ε it experiments and chooses randomly
from all feasible actions. Once it choose an action it may update the value of taking that
action. See Sutton and Barto (2018). Calvano et al. (2020) provide an application in the
economics literature.

9There may also be a cost in terms of the revenue generated, as when the algorithm
experiments it does not use what it currently views as the optimal policy.
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computable bound to update counterfactual prices when the value for an
action in memory is inconsistent with that implied by observed results and
the assumption that demand decreases in price. Leveraging this additional
structure is far more effective at mitigating the supra-competitive pricing of
asynchronous updating than experimentation. It is also less costly and easier
to compute.

In section 5.2 we consider settings in which the future is given positive
weight by the algorithm (what we call the ‘repeated’ setting, with β > 0).
This is done in models in which the state space includes the prices chosen in
the prior period; so policies are history dependent. As in prior work (notably,
Calvano et al. (2020)), asynchronous updating leads to supra-competitive
pricing (indeed, often replicating monopoly). As we explain, whenβ > 0
synchronous updating can also lead to supra-competitive pricing. We find
that it does, albeit to significantly lower prices than in the asynchronous
case.

This extends the results in Calvano et al. (2020) to cases where syn-
chronous updating is used. We show analytically that one source of price
elevation in the synchronous case is analogous to the incentives appearing in
trigger price equilibrium; i.e., the ‘threat’ of lower cashflows in the future in
the event of ‘defection.’ However, a comparison to models with no history-
dependent pricing, i.e., models which do not allow the algorithm to mimic
deviation cum punishment schemes to support collusion, makes it clear that
a significant amount of the difference between the prices at the rest point and
Nash equilibrium prices has nothing to do with such punishment schemes.

Related Literature. Our paper is related to several of strands of litera-
ture. A number of papers investigate how AIAs that employ reinforcement
learning could lead to pricing outcomes that are collusive in nature (see, for
instance, Calvano et al. (2020, 2021) and Klein (2019)).10 Calvano et al con-
sider a differentiated product pricing game with logit demands. We extend
this work by examining how variation in the structure of the AIA varies the
degree to which prices deviate from the static Nash behavior. 11

10Johnson, Rhodes and Wildenbeest (2020) engage in a related computational study
of platform competition, finding that the adoption of Q-learning AIAs can both benefit
consumers and increase the propensity to engage in behavior that resembles collusion.

11 Waltman and Kaymak (2008) conduct a related computational experiment in a static
Cournot setting. Our paper differs in investigating the impact of the sophistication of the
learning process, and comparing environments with static and repeated interactions. A
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A related line of research considers settings in which the adoption of algo-
rithms in the pricing process allows firms to better infer demand and how this
may impact the propensity to collude. Miklos-Thal and Tucker (2019) con-
struct a theoretical model in which algorithms enhance the ability of firms
to forecast demand. They argue that this can lead firms to deviate from
collusive conduct more frequently, leading to lower prices and higher con-
sumer surplus (for a similar argument see also O’Connor and Wilson (2019)).
Hansen, Misra and Pai (2020) consider a setting in which price experimenta-
tion may make demand appear more inelastic than it actually is which leads
to supra-competitive pricing. Brown and McKay (2021) present compelling
empirical evidence that the adoption of pricing algorithms materially im-
pacts pricing patterns and complement this with a theoretical exploration of
how delegation to algorithms may allow firms to commit to strategies leading
to higher prices than would otherwise be the case. Salcedo (2015) consid-
ers a somewhat similar theoretical setting, arguing that demand fluctuations
can allow firms to infer the algorithms used by competitors and tailor their
algorithms to better realize supra-competitive pricing.

Empirical evidence as to the impact of the adoption of algorithms is lag-
ging. A notable paper in this regard is Assad et al. (2020), which provides an
empirical example in which the inferred adoption of algorithmic approaches
to pricing by German gasoline retailers appears to have coincided with an
increase in margins of up to 38%.

An energetic legal and policy debate over the collusive potential of AIAs
underlies much of the interest in the academic literature. Harrington (2018)
provides an excellent overview, while also expressing skepticism about the
ability of current cartel law to address any tendency for AIAs to induce
supra-competitive pricing.12

computer science literature also considers the role of AIAs using reinforcement learning in
shaping market outcomes (see, for instance, Tesauro and Kephart (2002) and Sandholm
and Crites (1995)). Ongoing work in this computer science literature has focused on
designing algorithms that can sustain cooperation in repeated prisoner dilemmas (see, for
instance, Xue et al. (2018)). To our knowledge, this computer science literature has not
explored the sensitivity of market outcomes to the basic informational requirements of the
AIAs learning protocol, or how that interacts with other features of a richer pricing game
environment.

12Examples of contributions directed at this policy debate include Mehra (2015), Ezrachi
and Stucke (2017), Kühn and Tadelis (2017), Schwalbe (2019), and de Coniere and Taylor
(2020). Goldfarb, Gans, and Agrawal (2019) provide a broader overview of the likely
impact of AI on the economy at large.
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This paper also connects with a range of other literature in economics.
Reinforcement learning, and its relationship to Nash equilibrium, has been
investigated in both theoretical (see Fudenberg and Levine, 2016, for a sur-
vey) and experimental (see Erev and Haruvy, 2016, for a survey) literatures.
On the theoretical side, that the AIAs we investigate do not always converge
to Nash pricing is not surprising given Hart and Mas-Colell (2003)’s results.

Lastly, reinforcement learning has a long history as a tool in the compu-
tation of dynamic games (see Pakes and McGuire (2001) for an early imple-
mentation in a rich oligopoly model). Feshtman and Pakes (2012) propose
the experience-based equilibrium concept which we come back to below and
is extended in Asker, Fershtman, Jeon, and Pakes (2020).

2 Model

This section introduces AI pricing algorithms highlighting a choice that must
be made in implementation. To do so in as transparent a context as possible,
we focus on results for a simple model of a market – the homogenous good
Bertrand duopoly. We begin by describing this market environment, and
then explain the different ingredients of the AI algorithm that determine
its pricing policies. The next section considers generalizations and a more
formal result.

2.1 The Bertrand pricing game

Consider two firms i ∈ {1, 2} with equal marginal costs: c1 = c2 = c .
Firms are Bertrand competitors selling homogenous goods. We discretize
the action space and take the set of possible prices to be P = {p1, ..., pM},
with pm+1− pm = ξ, so the increment from one price to the next is constant.
The prices of firm i are denoted pi ∈ P . We let D(p) be the market demand
function. We assume that both firms have the capacity to serve all the
demand they face. We assume that consumers buy from the firm with the
lowest price. In case of a tie, firms split demand equally. Thus the demand
faced by firm i is

di(pi, pj) =


D(pi) if pi < pj
D(pi)

2
if pj = pi

0 otherwise

(1)
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For simplicity we assume that there is a price V > 0 above which the
demand is zero and we assume that pM = V . We denote firm i’s profits as
πi(pi, pj). In the computational example, we make the assumption that the
same quantity is demanded ∀p < V . This simplifies implementation.13 In this
case, if c 6∈ P then there are two Nash equilibria for this (static) Bertrand
game.14 The first one is pi = pj = pc, which is the lowest regular price
greater than or equal to marginal cost, c. The second one is pi = pj = pc+1.
Where pc+1 = pc + ξ. If c ∈ P then there are three equilibria, all symmetric,
corresponding to both firms pricing at either c, c+ ξ or c+ 2ξ. 15

We allow this stage game to be repeated many times. This repetition
allows the AIAs, which determine firms’ pricing policies, to learn to play.
Ultimately we are interested in the pricing outcomes that the AIAs converge
on. Given this, we are agnostic as to whether the learning occurs off-line,
through simulated play, or on-line, through learning from actual interactions
with other AIAs (or any combination of the two). We now turn to a more
detailed description of the AIAs.

2.2 The design of the AI Algorithm

The AI algorithm we use to play the Bertrand pricing game is a reinforcement
learning algorithm.16 In a reinforcement learning algorithm the coder defines
a goal for the algorithm (e.g., maximizing profits), sets a procedure for de-
termining initial values for all feasible actions, and formulates a rule which is
used to update those values. Whenever it is called on to act, the algorithm
chooses the highest valued action (the “greedy” action) with some proba-
bility (which may be one) and experiments with other actions otherwise.
Having acted, it observes the outcome and updates the values it attaches to
actions with an updating rule that the algorithm specifies ex ante. It is this

13 We assume such a structure purely for computational convenience. Any function
where residual demand is decreasing in own price would suffice for our major results.

14For the moment, we ignore the possibility that repetition may enable history-
dependent strategies.

15 This equilibrium structure is purely a consequence of the set of feasible prices be-
ing discrete. If prices were continuous, this would reduce to the familiar undergraduate
example in which p = c is the equilibrium.

16We use a variant of Q-learning which was introduced by Watkins (1989). For a survey
of the different methods of implementing reinforced learning algorithms, see Sutton and
Barto (2018).
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updating that allows experience to inform policies; i.e., the updating rule
determines how the algorithm learns. Reinforcement learning algorithms are
used for a wide range of problems in industry (see, for examples, Sutton and
Barto (2018)), and have been used in the economics literature to study the
interactions of firms in a market for some time.17

We will take the goal of the algorithm to be to maximize the expected
value of the discounted flow of profits the firm earns. For simplicity our base-
line will set the discount factor (β) to zero, resulting in algorithms seeking
to maximize present profits, but we will also consider cases where β > 0, so
the discussion below applies to the latter case as well.

A reinforcement learning algorithm has the following ingredients.

(i) Each firm has a set Si which is a set of states for firm i (possibly a
singleton). The elements of Si, i.e., the si ∈ Si, are the components
of the firm’s information set that the firm conditions on when it deter-
mines which action to take. We assume that Si has a finite number of
elements.18

(ii) A set of numbers (or values) for every firm which can be interpreted as
the firm’s perception of the expected discounted values of net cash-flows
conditional on its state and action. That is, for every firm i

Wi = {Wi(p|si)}p∈P,si∈S .

(iii) A method for choosing an action (in our case, price) in every iteration
conditional on Wi.

(iv) An updating rule: The updating rule describes how the values Wi are
updated after every iteration (or period) k using the information the
firm observed during that period.

17 Pakes and Mcguire (2002) show how to use reinforcement learning to compute Markov
Perfect solutions to dynamic games, Fershtman and Pakes (2012) and Asker et al. (2020)
provide their relationship to EBE (a notion of equilibrium used below), and Calvano,
Calzolari, Denicolo, and Pastorello (2020) use them to study pricing in markets where
prices are set by computer algorithms. Igami (2020) discusses the many links between
AIAs and applied econometric practice, particularly in the estimation of dynamic models.

18 We make this assumption to ensure that at least some subset of the state space is
visited repeatedly (i.e., ”infinitely often”). This will allow us to formally examine limits
of the price process.
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In our context a “firm” in the above description is an algorithm. We will
be primarily concerned with how the properties of algorithms that converge
to a rest point differ with the updating rule built into the algorithm, and, to
the extent that it helps understanding, the relationship of those rest points to
notions of equilibrium. To be clear about what we mean by this statement,
we introduce the following definitions.

Definition 1 (Convergence): We say that the AI pricing algorithm has
converged at iteration k∗ if policies at all k ≥ k∗ are the same as policies at
k∗ for all s ∈ S.

Definition 2 (Rest Point): We will say that the AI pricing algorithm
reaches a rest point by iteration k = k∗ if for all k ≥ k∗ prices are constant,
i.e., {(pki , pkj ) = (pi, pj)}k≥k∗.

An AI algorithm can converge to a set of strategies which do not satisfy
the rest point condition. For example the converged process might put pos-
itive probability on more than one price, as in the Edgeworth cycle example
studied in Maskin and Tirole (1987a). On the other hand, if the pricing
algorithm has reached a rest point the Markov process underlying it has
converged.

When designing a reinforcement learning algorithm, certain choices need
to be made. As will be shown in the rest of the paper, these choices can
have a material impact on the observed price outcomes. As a result, some
comments on each of the components of the algorithm will prove useful.

The state space Si: In a reinforcement learning algorithm the state
space defines what the algorithm knows about its environment, and hence
what it can condition its actions on. If the state space is a singleton, then
from the point of view of the algorithm every period is the same as every
other. If the state space includes some information about the history of
past play, then it becomes possible for the algorithm to condition actions on
that history (although the extent to which it does so will depend on details
of the algorithm). Similarly, if the environment is changing (say, demand
shifts) and this change is registered in the state space, then the algorithm
can condition actions on that information.19

19 The influence of the state space on the set of feasible policies mirrors the influence
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Firms in a given market may condition on different state spaces. If they
do, then Si 6= Sj, and if these are the only two firms then the market’s states
are given by S = (Si, Sj). For example, firms may condition their prices on
different functions of what they observed in the past20, and not all variables
observed by one firm need be observed by other firms.

We begin our analysis of the (repeated) Bertrand pricing game with a
setting in which the state space is a singleton. This restricts play to policies
that are not history dependent. In particular, policies that may mimic the
trigger strategies that can arise in the repeated games literature are not
possible. When the state space is a singleton, the only difference between
adjacent “periods” is that in the second period the algorithm knows the
outcome of the first period. This outcome, however, might influence how the
algorithm values the different actions it might take in the future.

The values Wk
i = {W k

i (p|si)}: Each possible action at each state has a
value attached to it in each period (or iteration), our k. The designer of the
algorithm determines the procedure for choosing the initial values assigned
to each element of Wi, say W0

i = {W 0
i (p|si)}p∈P,si∈S .

The choice of action: In the absence of any experimentation by the
reinforcement learning algorithm, the algorithm chooses the action with the
highest W k

i (p|si) at the state (the si) it finds itself in. That is it pursues
a ‘greedy’ policy which we denote by pk,∗ where pk,∗ ∈ arg max{W k

i (p|si)}.
When experimentation is possible we consider variants on ‘ε−greedy’ poli-
cies. That is, the greedy policy is pursued with probability 1− εk, and with
probability εk a policy is selected randomly. The k indexes the εk to allow it
to vary with the iteration of the algorithm.

Note that there is a sense that experimentation is costly, as the player
does not use the action it perceives to be optimal at the time of play. This
loss must be set against the increment in future profits generated by exploring
what the returns might be from other actions: the familiar exploitation versus
experimentation tradeoff which we return to below.

of the state space on the types of strategies that can be played in a dynamic game. It
is common to restrict state spaces in dynamic games to only include payoff relevant and
informationally relevant variables (see, Maskin and Tirole (2001), Fershtman and Pakes
(2012) and Asker et al. (2020)). For the purposes of this paper, the only necessary
restriction is that the state space be finite.

20For an analysis of an AI pricing algorithm that takes this explicitly into account see
Brown and McKay (2020).

12



The updating rule. After every period k the algorithm updates one
or more of the values W k

i (p|si) that are in memory. That is, for at least
some combinations of p and si, W

k
i (p|si) gets updated and transitions to

W k+1
i (p|si). If a W k

i (p|si) is not updated, W k+1
i (p|si) = W k

i (p|si). There are
different possible updating rules, and the rules that are feasible are limited
by both the information the algorithm can access on competitor’s play and
by what market-specific knowledge the algorithm has built into it.

It is useful to begin by distinguishing between two extremes of possible
updating rules.

1. Synchronous Updating: If the state in the current period is si, then
W k

i (p|si) is updated for all p ∈ P at that si.

2. Asynchronous Updating: If the state in the current period is si, then
only W k

i (pki |si) is updated, where pki is the action (price) chosen by firm
i in period k.21

We now detail the updating rules we use in this paper. Let ski be the state
of firm i in period k and pki (pkj ) be the price chosen by firm i (j). To make our
points in a transparent way, most of the text assumes that the transition from
the current state (ski ) to the state in the next period (sk+1

i ) is deterministic
(later we return to the complications that arise if experimentation is built
into the algorithm). If W k

i (p|si) is changed during the update

W k+1
i (p|ski ) = (2)

α(k)

[
πi(s

k
i , p) + β

(
max
y∈P
{W k

i (y|sk+1
i )}

)]
+ (1− α(k))W k

i (p|ski ).

where β is the discount rate. Otherwise W k+1
i (p|ski ) = W k

i (p|ski ).
Equation (2) implies that the change in perceived value of play (W k+1(·)−

W k(·) ) is αk times the difference between the observed value of the kth

21The terms synchronous and asynchronous are slight abuses of language in the context
of the broader reinforcement learning literature. In that literature ‘asynchronous’ is used
to refer to any algorithm in which only a subset of the Wi(p|s)’s in the system are updated
at each iteration, and that subset can vary with s (see Sutton and Barto (2018)). Asyn-
chronous updating is sometimes referred to in the economics literature as Q-learning (see,
for instance, Calvano, Calzolari, Denicolo and Pastorello (2021)). The early Q-learning
literature explicitly recognized that a wide variety of learning protocols were available in
implementation, though they often used asynchronous updating for expositional simplicity
(see Watkins and Dayan (1992), for instance).
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period’s outcome from choosing p, computed as profits plus the discounted
expected continuation value, and the initial (or kth period) perceived value
of the action. So α(k) ∈ [0, 1) determines the impact of current observations
on perceived values.

When asynchronous updating is used, W k
i (p|si) is updated only for p = pki

at si = ski . In this case πi(s
k
i , p) is the realized profits of firm i in iteration k,

and this is the only object the algorithm needs to know to do the update. But
when synchronous updating is used, W k

i (p|si) is updated for all p ∈ P at si =
ski . In our extreme case we assume the algorithm can calculate the πi(p, p

k
j )

exactly. This would be possible if pkj is observed by the algorithm, and it
knows the market demand function and its own costs, which is the case in the
initial synchronous algorithm we compute. This coding of the synchronous
and the asynchronous, that is endowing the synchronous algorithm with the
ability to compute the profits that would have been earned had it taken a
different action but assuming the asynchronous algorithm can only learn from
the profits generated by the action taken, makes it easy for us to illustrate
the issues we focus on.

For both the synchronous and asynchronous algorithms, we need an initial
set of perceptions, a W0

i = {W 0
i (p|si)}p∈P,si∈S . For all the cases we consider

in this paper, we take this to be a random draw from the same distribution
(specified below).

Baseline Parameterization. In our base case, Si is a singleton, α(k) = α,
β = 0, and both firms have the same profit function, resulting in updating
rule 2 reducing to

W k+1
i (p) = απ(p, pkj ) + (1− α)W k

i (p). (3)

After illustrating what happens in this case, we move to more general cases.

More generally the possible updating processes would depend on (i) what
the algorithm observes about competitors’ play, and (ii) what it knows about
the primitives of the game (in our case the demand and cost functions). A
reinforcement learning algorithm with synchronous updating can be quite
sophisticated. In every period, it updates the values of all feasible prices at
the current state and so necessarily considers the counterfactual profits it
would have received had it chosen an alternate price. To correctly calculate
these counterfactuals it would have to have a model of demand and costs,
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which is the case in the synchronous updating model that we focus on. By
contrast, an algorithm with asynchronous updating is rather simple; all the
updating process does is use its current price and profits to compute an
update on the values of the profits it expects to receive from that price.

Between the synchronous and asynchronous updating there is room for
protocols that incorporate more or less information and approximations that
are understood to be noisy or biased. In the example we illustrate below,
the firm knows its own costs and quantity, does not know the price of its
competitors or the form of the demand function, but does know that its
residual demand is downward sloping in its price. It updates the W k

i (p|·) at
all prices less than the price played whose value can be rationalized only by
quantities less than the quantity it received, and it updates all W k

i (p|·) at
higher prices which require quantities greater than the quantity it received.

A comparison between possible updating rules is really a comparison of
the sophistication of the AI algorithms the firms employ. This is likely to
depend on the complexity of their economic environment and the willingness
to devote resources to supporting the AI program underlying the algorithm.

3 Rest Points of Different AI Algorithms

We begin with computational results from the Bertrand pricing game intro-
duced in section 2.1. Firms have a discount rate of zero, so they do not care
about future payoffs, and the state space is a singleton, so history-dependent
strategies are not feasible. Note that either a discount rate of zero or an
inability to formulate history-dependent strategies makes repeated game in-
teractions that could support prices above a static Nash-in-price equilibrium,
like trigger price strategies, unattainable. The computational results from
this simple setup will show, in a rather stark way, the difference between
AI algorithms that employ synchronous versus asynchronous updating rules
as synchronous updating results in competitive (Nash) pricing and asyn-
chronous updating results in supra-competitive pricing. Following that, in
subsection 3.2, we provide a proof that establishes that these computational
results are not artifacts of the simple parameterization we are using but in-
trinsic to the way the two different approaches to updating work.

The next section shows that the differences in rest points between the two
learning algorithms are consistent with different notions of equilibrium. The
equilibrium notions are not tied to the simple games used for illustration in
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this section. They apply also to the extensions considered in the following
sections. These extensions are designed to explore the implications of differ-
ent updating processes and their use in markets with different characteristics.

3.1 Computational results

This section provides computational results for two homogenous product
static Bertrand games; one game uses an AI algorithm that updates syn-
chronously and the other asynchronously. Both algorithms use the updating
rule in equation 3 with α = 0.1 when updating, and take ”greedy” actions
(i.e., they always chose the price which their perceptions indicate has the
highest profits). Both algorithms also use the same procedure to obtain
their initial perceptions of the value associated with all feasible actions.

Our parameterization has demand equal to zero for any price above ten
(which is also the monopoly price), and equal to one for any price below
or equal to ten. Marginal cost is equal to two. Feasible prices are given
by a grid with 100 elements, equally spaced between 0.01 and 10, inclusive.
There are two Nash equilibria to this game – one in which both firms play
2.03 and the other in which both firms play 2.13. For initial perceptions of
the values associated with each price, we draw from a uniform distribution
with endpoints ten and twenty (or U [10, 20]). The figures we present contain
quantiles of the distribution of a hundred price paths we generate in this way.

Note that the initial perception of profits from playing any given price
is always above any possible profit outcome (though the extent to which
they are above is random). As is well known in the reinforcement learning
literature, the fact that each sample path starts with initial values that are
higher than any possible outcome induces exploration. We deal with different
initial conditions distributions when we consider formal properties of the two
updating algorithms below.

Figure 2 summarizes pricing outcomes for the baseline parametrization
described in section 2.22 Panel (a) of this figure provides quantiles of the
price paths from an algorithm when both firms employ synchronous updating;
panel (b) shows price paths when both employ asynchronous updating. There
are five lines in each panel of figure 2. From bottom to top these are, by
period, the min, 25th percentile, median, 75th percentile, and max price

22The full details of the parametrization are found in the notes at the bottom of the
figure.
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across the 100 simulations that are run.
Start with panel (b) of figure 2. Convergence is relatively slow, but after

4600 periods none of the paths simulated from the AI algorithm with asyn-
chronous updating change their preferred actions and all of the percentiles
stay constant.23 Most notably there is a distribution of rest point prices, but
all are significantly higher than the Nash equilibrium prices. The median
price is 8.34 and the minimum is 5.06. Note also that all quantiles tend to
increase over the course of the learning process; i.e., they move away from
the Nash equilibria.

By contrast, when the AIA learns via synchronous updating prices con-
verge quickly to Nash pricing levels. In this instance all prices, across all 100
simulations settled on 2.13 after approximately 105 iterations. Thus learning
was much faster, price outcomes corresponded to a static Nash outcome, and
initial conditions had no influence on the limiting prices (there is no variance
in the final prices over the 100 simulations).

Figure 2 illustrates the importance of the learning (or updating) process
in understanding the implications of price competition between AI algorithms
on the outcomes that may emerge. Asynchronous updating leads to supra-
competitive (‘high’) prices. Synchronous updating leads to pricing that is
in line with what economists would think of as a competitive outcome (the
static Nash equilibrium in prices). Importantly, this happens in a setting
in which firms do not care about the future and are unable to play history-
dependent strategies. Thus though standard collusive equilibria of the sort
familiar from the repeated game literature are not feasible, the asynchronous
algorithm always generates rest point prices that are significantly above their
Nash equilibrium values.

Figure 3 provides more detail on the learning process. Each panel in
figure 3 shows the convergence process for a set of initial conditions drawn
from U[10,20]. As in figure 2, panel (a) corresponds to the synchronous
updating case and panel (b) corresponds to the asynchronous updating case.
Each panel shows the prices chosen by firm 1’s AIA with circles. The hollow
circles indicate chosen prices for which the W k(p) is not updated upward;
solid circles indicate chosen prices for which the W k(p) is updated upward.

23 Most paths settle on a single price by iteration 2500.
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Figure 2: Price outcomes with different algorithm designs
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(b) Asynchronous Updating

Notes: Prices (vertical axis) by period (horizontal axis) from 100 simulations are shown. The lines, from bottom to top,

represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period. Results

are for a static Bertrand market with two firms selling homogeneous goods.. Results are shown for firm 1. The model is

parametrized as follows. Demand, Q = 1 if P < 10, zero otherwise. Marginal cost = 2. Feasible prices exist on a grid

with 100 elements equally spaced between 0.1 and 10 inclusive. Firms put a zero weight on future profits (the future is

discounted to zero). The state space is a singleton. The weight on current returns in updating is given by α = 0.1.

Initial conditions are i.i.d. draws from U [10, 20], for each W (p) for each firm. For the core code see appendix A.1.

In panel (a) of figure 3, the synchronous case, convergence is fast. The
Nash pricing outcome of 2.13 is reached by period 70. Initially, all perceptions
are higher than the profits that result from the price chosen. This leads to
the updating process (3) in the synchronous case adjusting perceptions of
the profits from all prices downward. For example, in iteration 1, initial
conditions on W (p) lead firm 1 to choose p = 4.05, and its the rival chooses
0.92. Firm 1 does not earn any profits from this price combination. In
iteration 3, after W (p)’s have been updated twice, the rival chooses 3.14.
Next, in round 10, firm 1 changes its choice to 2.94, just undercutting 3.14.
This, however, coincides with the rival raising its chosen price to 3.84 (which
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Figure 3: Convergence with different algorithm designs
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Notes: Prices (vertical axis) by period (horizontal axis) are shown for a firm 1, in a static Bertrand market with two

firms selling homogeneous goods. Hollow circles indicate (chosen) prices for which the W (p) is updated downward. Solid

circles indicate (chosen) prices for which the W (p) is updated upward. The model is parametrized as per figure 2

more profitably undercuts firm 1’s original choice of 4.05). This combination
of chosen prices continues until iteration 15, when firm 1 raises its chosen
price to 3.24. After one iteration of updates to the rival’s W (p), 3.14 becomes
the rival’s best choice. Then, in iteration 17, the cumulative updates of firm
one’s W (p)’s are such that 2.94 becomes the best price. From that point
on, a pattern of intermittent undercutting develops until the prices converge.
This convergence pattern is common, with the influence of initial conditions
in early periods leading to a small amount of non-monotonicity, as seen here.

In panel (b) of figure 3 (the asynchronous updating case) convergence is
non-monotonic and slow. The prices converge to 8.89 in period 1,645. As
in the synchronous case, the fact that the initial condition draws are higher
than monopoly profits, implies that in early periods, the evaluations fall.
That is, when a price pk is chosen, it generates a lower profit than the W k(p)
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associated with pk, and so W k(pk), and in this asynchronous algorithm only
W k(pk), is adjusted downward. Eventually the initial valuation of some other
price is higher than the profit earned from the given price, so some other price
will be chosen. Since only the price that is chosen has its W k(p) updated, and
the second price also starts from a perception which is higher than monopoly
profits, it takes quite a few iterations before the chosen price can generate a
profit which is higher than the iteration’s perception of its value.

The first time the chosen price generates a profit that is higher than its
initial valuation, i.e., W k(pk), is in iteration k = 1, 119. This leads to an
upward adjustment and a solid black circle in the bottom panel of figure 3.
As long as the price of the rival is not reduced to match or undercut the
price, firm i does not change its price. Since at k = 1,119 the rival’s price
is greater than p1,119, it obtains no profits and its valuation of its chosen
price falls. Eventually it chooses a different price which, if equal to or lower
than p1i , 119, generates positive profits. If the rival’s new price is lower, firm
i’s profits go to zero and its evaluation of p1,119i falls. However if the rival
happens to chose p1,119i both firms earn positive profits. If, in addition, at
that k, π(pk, pk) ≥ max[W k

i (p),W k
j (p)], the algorithm will have converged to

pk.
In this example, the two firms matched on price 22 times before the second

requirement for convergence. The asynchronous updating and equation (3)
insures that for k > 1, 119 the absolute value of both [W k

i (p∗)−π(p∗, p∗)] and
[W k

j (p∗) − π(p∗, p∗)] converge monotonically to zero, and if p 6= p∗, W k(p)
remains forever at W k=1,119(p).

3.2 Theoretical results

It should be clear that the price the asynchronous algorithm rests at depends
on initial conditions, hence the distribution of converged values illustrated
by the quantiles of the sample paths in 2. Indeed, provided the distribution
of initial conditions is sufficiently rich, the limiting outcome from the asyn-
chronous algorithm has a positive probability of any p ∈ P . By contrast,
the synchronous algorithm can only converge to a Nash equilibrium. The
following proposition formalizes the discussion above, and establishes that
the computational results reflect intrinsic differences in how asynchronous
and synchronous updating function.
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Proposition 1 Consider the duopoly pricing game between AI algorithms
described above with minp∈P = p and initial conditions drawn from a dis-
tribution which puts positive probability on each of a finite set of points in
[W,W ] with W < π(p, p).

1. If the AI algorithms use synchronous updating

(a) and the two algorithm choose a pair of prices which is a Nash
equilibrium to the static pricing game, they will continue to charge
these prices in every future period, and, in addition,

(b) any rest point of the algorithm must be a Nash pricing equilibrium
of the duopoly game.

2. If the AI algorithm uses asynchronous updating, there is positive prob-
ability that the algorithm converges to any p ∈ P.

Proof: (1a). Assume that at period k, which is the initial condition for
our inductive argument, the two algorithms charge a pair of prices (pN1 , p

N
2 )

which is a Nash equilibrium of the duopoly pricing game. This implies that
π1(p

N
1 , p

N
2 ) ≥ π1(p, p

N
2 ) for every p ∈ P . The updating of the values of the

algorithm of firm 1 at period k is done for every p ∈ P by the updating
rule W k+1

1 (p) = απ1(p, p
N
2 ) + (1 − α)W k

1 (p) (and analogously for firm 2).
Given that π1(p

N
1 , p

N
2 ) ≥ π1(p, p

N
2 ) and that W k

1 (pN1 ) = maxp∈P{W k
1 (p)},

W k+1
1 (pN1 ) = maxp∈P{W k+1

1 (p)} and therefore the algorithm will choose pN1
at iteration k + 1. The same holds for the second firm, and therefore the
prices at iteration k + 1 are (pN1 , p

N
2 ), which proves the inductive step of the

argument. �

Proof: (1b). Assume to the contrary that there is a k∗ such that ∀ k > k∗,
W k(p′1) = maxpW

k
i (p) with the analogous condition holds for firm j, and let

b1(p
′
2) be the best response of player 1 in the duopoly pricing game. 24 For

the contrary assertion to be true b(p′2) 6= p′1 and π1(b1(p
′
2), p

′
2) > π1(p, p2)

for every p ∈ P . With synchronized updating W k+1
1 (p) = απ1(p, p

′
2) + (1 −

α)W k
1 (p) for every p ∈ P . Consequently, limk→∞W

k
i (p′1) = π(p′1, p

′
2) <

limk→∞W
k
i (b(p′1)) = π(b(p′2), p

′
2), a contradiction. �

Proof: (2). Jointly sufficient conditions for p∗ to be a rest point to the
game when updates are asynchronous are: (i), Wi(p

∗) ≥ Wi(p) for every

24 We assume for convenience that there is always a single best response. A best response
will always exist since the set of prices is finite.
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p 6= p∗ and i = 1, 2, and (ii) πi(p
∗, p∗) ≥ Wi(p) for every p 6= p∗ for i = 1, 2.

Under condition (i) the firms indeed choose the price p∗ and condition (ii)
guarantees that condition (i) will continue to holds in all future periods. For
any p∗ there is a positive probability that the random draw on the initial
conditions satisfies both (i) and (ii). �

Remark None of the three parts of this proposition depend on the exact
structure of the profit function, the updating function provided α ∈ (0, 1), or
the initial condition distribution provided it is has a sufficiently rich support.
As a result, though we have computed results for the same two algorithms
from the logit differentiated product case, for quantity-setting games and
for different initial conditions distributions we omit most of them from the
main text. We discuss quantity-setting (Cournot) in appendix A.4 and logit
results in appendix A.2.

4 Equilibria for Algorithmic Pricing Games

The rest points of the asynchronous and synchronous algorithms satisfy dif-
ferent equilibrium conditions, and an understanding of those conditions clar-
ifies why and when different learning rules imply different rest points for
AIA pricing games. Unless otherwise stated, the results in this section ap-
ply to any pricing algorithm that abides by the general description of the
algorithms given in section 2.2. The relevant equilibrium conditions are pro-
vided in Fershtman and Pakes (2012), and Asker et al. (forthcoming) and
the reader interested in a more formal analysis of their implications should
consult those papers.

In the general case, the algorithm’s choice of actions, the choice of p ∈ P ,
can differ with s ∈ S (for e.g., as a function of past prices). If the algorithm
has converged, those policies are constant thereafter for each s ∈ S. Any set
of such policies generates a Markov chain on S; that is, the state at iteration
k together with the prices chosen at that iteration generate a transition to
the state at iteration k + 1. Any finite state Markov chain will eventually
wander into a recurrent subset of the points in S, say R ∈ S, and stay
within it forever. So all rest points of AIA pricing games are contained in
the recurrent class of the Markov process generated by the policies that the
AIA converged to. Since Si can include functions of past prices, this includes
policies with history-dependent strategies.
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The equilibrium concepts we consider are all refinements of experience
based equilibrium (henceforth EBE). An EBE has three components:

• a subset of the state apace, denoted by R ⊂ S.

• strategies for each i, say {p∗i (s)} for every s ∈ S, and

• a set of values for each i, our {Wi(p|s)}p,s, that have the interpretation
of beliefs about the expected discounted value of profits were the agent
to play price pi at state si.

For these objects to satisfy the conditions of an EBE it must be the case that

1. the strategies are optimal given the beliefs embodied in the {Wi(p|s)},
i.e., p∗i (s) = arg maxp∈P{Wi(p|s)} for all i and all s ∈ S,

2. R is a recurrent class of the Markov process generated by these strate-
gies, and

3. at all s ∈ R, Wi(p
∗(s)|s) does in fact equal the expected discounted

value of profits if the policies are followed.

The rest point of an AIA pricing game that plays greedy policies and uses
asynchronous updating will satisfy the conditions of an EBE. The fact that
the policies are greedy insures (1), and if we are at a rest point that point is a
recurrent class (insuring 2).25 The third condition states that if equilibrium
policies are played indefinitely the average of the realized discounted value at
each s ∈ R converges to Wi(p

∗
i (s)|s). Given the updating equation (equation

2), the fact that the state at the rest point, say s = R and the fact that
(p∗i (s), p

∗
j(s)) is played repeatedly, insures that Wi(p

∗
i (s)|s) converges to [1−

β]−1πi(p
∗
i (s), p

∗
j(s)), the discounted value of returns that would be earned if

(p∗i (s), p
∗
j(s)) were played indefinitely, and a similar condition holds for firm

j.
Notice that EBE does not put as stringent a condition on the perception of

returns for feasible policies not played: for policies “off the equilibrium path.”
It requires only that the perceptions of these returns are less than those of
the optimal policy; i.e., that Wi(p|s) ≤ Wi(p

∗
i (s)|s). The implication is that

if randomness in the initial conditions happens to generate high perceived

25For simplicity, here and below we are assuming that the (si, sj) associated with the
rest point (p∗i , p

∗
j ) is unique.
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values for both agents at a particular couple of choices, and those values
generate profits plus discounted continuation values which are higher than
the perceived values at other prices, the values at the other points will never
be updated. Then the algorithm will stick with the values that generated
the initial choice forever. If the initial iteration’s values did not satisfy these
conditions, a subsequent iteration could, and we would reach high prices at
a later iteration, as in panel (b) of figure 1.

Synchronous updating leads to rest points that satisfy stronger conditions
than those of an EBE. In particular, the fact that all values are updated at
each iteration also restricts the perceptions of returns for the feasible policies
that are not played at the rest point. The implications of the additional
conditions are different when the model has β = 0 and when β > 0.

When β = 0, the update for perceptions at the rest point for firm i is just
current returns. With synchronous learning, this implies that the update
for every p ∈ P for firm i is πi(p, p

∗
j) and for agent j it is πj(p, p

∗
i ). Since

the rest point is visited repeatedly, the perceived value of play at every p
converges to the discounted value of these profits for the two firms. As a
result, regardless of initial conditions, the nature of S, or the form of the
profit function, the optimal strategy at the rest point must eventually satisfy
π(p∗i , p

∗
j) = maxp∈P πi(p, p

∗
j) with an analogous condition for firm j. So the

rest point must be a Nash equilibrium, as in panel (a) of Figure 1.
When β 6= 0, the rest point from a synchronous updating algorithm

need not satisfy the condition that the perception of the value of all feasible
policies is equal to the expected discounted value obtained from playing the
action repeatedly. When β 6= 0, the rest point satisfies the only second set
of equilibrium conditions introduced in the article by Fershtman and Pakes
(2012); those of a restricted EBE (or REBE). REBE abides by the first
two conditions of an EBE, but strengthens the consistency requirement (the
third condition) by requiring that the consistency condition hold for feasible
actions that are not optimal (for p(si) 6= p∗(si)) when the feasible actions
result in outcomes that are in R.

The restriction of the consistency condition to outcomes that are in R is
also the rest point condition that emanates from synchronous AIA pricing
algorithms26. This is because the discounted value of future returns for points

26Formally, points in R that can only transit to other points in R no matter which
feasible policy is played are referred to as “interior points,” while points in R for which
there is a feasible policy which would transit to points outside of R are referred to as
“boundary points.”
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outside of R are not visited repeatedly, so we cannot use a law of large
numbers to prove that their perceived values converge to any particular value.
When β 6= 0 and a synchronous learning model is used, the update for a
feasible but non greedy policy consists of current profits plus the discounted
perceived value of future play were the non-optimal action played. However,
since the non-greedy policy is not played at the rest point, the discounted
perceived values of future play are not updated. So if greedy policies are
played throughout, the perceived values for feasible actions at the rest point
will be determined by the random draw on initial conditions, while if there is
some experimentation, the draws on the experiments will also help determine
the rest point.

Asker et al. (2020) consider a condition which restricts the perceptions of
returns from off the equilibrium path play further and use it in their analysis
of dynamic procurement auctions. However their extra condition, labelled
“boundary consistency,” is not used in any AIA pricing game we are aware of,
and will not be satisfied “naturally” at a rest point of the algorithm (to check
it a separate subroutine must be built into the algorithm). Consequently we
focus on the implications of the simpler REBE condition in the extensions
investigated in the next section.

5 Extensions to more complex environments

This section considers the implications of learning models when our basic AI
pricing algorithm is extended in various ways. Given the results above, we
do this first for the case where β = 0 and then for the case where β > 0. The
extensions include allowing for more than two competitors, experimentation,
and cases where the algorithm only has the ability to update the value of
counterfactual policies imperfectly.

The latter case is relevant when either competitor’s prices are not ob-
served or the demand system is not known. Then the algorithm might still
use basic economic reasoning, in our example the assumption that the resid-
ual demand curve slopes downward, to update the value of counterfactual
policies. This example is extreme in that it assumes that neither the com-
petitor’s prices nor the demand system can be even imperfectly inferred from
observed behavior. However, it will suffice to make the point that adding a
little bit of information to the algorithm, in addition to the profits the algo-
rithm “observes,” makes notable changes to the rest point.
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When considering models with β > 0, we allow for history-dependent
strategies. This enables the algorithm to generate equilibria that mimic
collusive equilibria supported by familiar punishment strategies. Two points
should be kept in mind here. First, the strategies generated by the algorithm
are a result of random draws, not purposeful behavior. Second, models with
larger state spaces are harder to compute. The complexity of an algorithm
which keeps past prices (or any other competitor-specific state) in memory
increases, often dramatically, with the number of competitors, and this limits
their usefulness. 27

5.1 β = 0: Algorithms that play static games

Increasing N , the number of firms. Table 1 extends the computational
results reported in figure 2 by varying N , the number of firms. Both the syn-
chronous and asynchronous algorithms are proficient at finding the optimal
monopoly price when N=1. As N increases to 2 and higher, the synchronous
algorithm converges quickly to Nash pricing outcomes28. By contrast, the
asynchronous algorithm converges to a price greater than Nash in 100 per-
cent of instances when N=2, and 71.5 percent of instances when N=3. This
decreases as N increases further, with this percentage approaching zero by
the time N = 10. Further, the time to convergence for the asynchronous al-
gorithm is typically two orders of magnitude higher than for the synchronous
algorithm.29

The results in figure 2 indicate that having multiple competitors can
significantly mitigate any adverse price effects that arise from the use of an
asynchronous algorithm. That said, even in only moderately concentrated
markets (those with 4 to 6 competitors), pricing above static Nash levels can
occur relatively frequently.30

27If we simply bin prices and do not impose further restrictions, the memory require-
ments will increase exponentially in the number of firms, though if we assume, as is often
done in applied work, that the policies are exchangeable in the states of competitors, the
rate of growth in the number of competitors decreases, from exponential to geometric, see
Pakes and McGuire, 1994.

28For N ∈ {2, 3, 4} the highest static Nash price is 2.13 (2.03 is also a Nash outcome).
For N ≥ 5 the only static Nash equilibrium price is 2.03.

29These results are qualitatively similar in an environment with a Logit demand system
in Appendix A.2. Interestingly, in those results the asynchronous case is shown to reach
results higher than monopoly, and also below Nash, in some instances.

30For N = 6, the percentage greater than static Nash is 2.1. In the case of the Logit
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Table 1: Pricing outcomes as N varies

% > Time to
Algorithm N Min 25th Median 75th Max Static Nash converge

Synchronous 1 10.00 10.00 10.00 10.00 10.00 - 50
2 2.03 2.13 2.13 2.13 2.13 0 115
3 2.03 2.13 2.13 2.13 2.13 0 70
4 2.03 2.13 2.13 2.13 2.13 0 75
5 2.03 2.03 2.03 2.03 2.03 0 85
10 2.03 2.03 2.03 2.03 2.03 0 90

Asynchronous 1 10.00 10.00 10.00 10.00 10.00 - 1,235
2 4.65 7.28 8.39 9.29 10.00 100 4,550
3 2.13 2.13 2.84 3.95 10.00 71.5 8,530
4 2.03 2.13 2.13 2.13 7.38 19.9 10,395
5 2.03 2.03 2.03 2.03 3.34 12.1 10,395
10 2.03 2.03 2.03 2.03 2.23 0.1 10,025

Notes: For each N , 1,000 simulation runs were conducted. The minimum, 25th percentile,

median, 75th percentile, and maximum of the prices for firm 1, across the 1,000 simulations,

once all simulations have reached a rest point, is reported. ‘% > Static Nash’ reports the per

cent of simulations that reach a rest point that is higher than the highest static Nash price. For

N ∈ {2, 3, 4} the highest static Nash price is 2.13 (2.03 is also a Nash outcome). For N ≥ 5 the

only static Nash equilibrium price is 2.03. ‘Time to converge’ reports the number of iterations

until the reported price moments cease to change (each simulation was eventually stopped after

40,000 iterations). The model is as per figure 2, but for the reported changes in N .
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Experimentation. Thus far we have investigated algorithms that do not
experiment as they learn. If an algorithm is programed to experiment, it
deviates from choosing the greedy policy, i.e., the policy associated with the
maximum of the W ’s in memory, and instead chooses a random action and
obtains information on what the payoff of that action is. We consider how
experimentation might affect the asynchronous results in figure 2.31

Deciding how an asynchronous algorithm may experiment involves mak-
ing a range of decisions. We consider experimentation which occurs with
probability [k

1
θ ]−1 in each round, where k indexes the iteration of the simu-

lation, and θ is a parameter we vary. So the frequency of experimentation
declines as k increases and the algorithm has more observations to learn
from. For a given k, the frequency of experimentation increases with the
θ parameter. When the algorithm does experiment it chooses each feasible
action with equal probability.

There will not be a rest point after a finite number of iterations without
an end to experimentation. Since the asynchronous algorithm, absent ex-
perimentation, reaches a rest point within 5,000 iterations (see figure 2), we
allow experimentation to occur for 10,000 iterations. That is, we allow exper-
imentation to double the computational time required by the algorithm to
reach a rest point when there is no experimentation. After 10,000 iterations,
we stop experimentation and let the algorithm run until it converges.

Table 2 reports the resulting price distributions as θ, the intensity of
experimentation, varies. For each value of θ we also report the minimum of
the number of times any action is attempted during the course of learning,
labeled ‘Min # of times an action is played’. This provides a way to judge
the extent to which experimentation reaches all feasible actions.

The results in Table 2 indicate that experimentation is not a simple fix
for the propensity for the asynchronous algorithm to elevate prices. Appar-
ently a reasonable amount of experimentation does mitigate this propensity,
but does not remove it. What an optimal experimental process might look
like is unclear as it would have to face the familiar problem of trading off
“exploration” against “exploitation” in an environment with competition.32

model reported in Appendix A.2, the percentages for N = {4, 5, 6} are 71.9, 66.6 and
60.6, respectively, suggesting that the results reported in table 1 may understate these
probabilities for, at least some, alternative environments.

31The addition of experimentation to the synchronous algorithm (panel (a) of figure 2)
would be redundant as the synchronous algorithm updates all possible actions anyway.

32See Sutton and Barto (2018).
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Table 2: Pricing rest points as θ varies

Min # of times an Pr(experimentation)
θ action is played at iteration 10,000 Min 25th Median 75th Max

1 14 0.0001 5.36 7.07 8.03 9.24 10.00
2 17 0.0100 3.04 6.42 7.68 8.89 10.00
3 20 0.0464 3.04 5.46 7.02 8.54 10.00
4 24 0.1000 2.73 4.25 6.27 7.98 10.00
5 29 0.1585 2.53 3.84 5.56 7.68 10.00
6 33 0.2154 2.53 3.54 5.01 7.28 10.00
7 37 0.2683 2.13 3.44 4.65 6.87 10.00
8 42 0.3162 2.13 3.34 4.40 6.57 10.00
9 45 0.3594 2.13 3.34 4.20 6.37 10.00
10 48 0.3981 2.13 3.34 4.15 6.06 10.00

Notes: For each θ, 100 simulation runs were conducted. Experimentation occurs with prob-

ability 1

k
1
θ

in each round, where k indexes the iteration of the simulation. If experimentation

occurs, an action is selected at random (with each possible action having equal probability).

Experimentation stops after 10,000 iterations. The algorithm continues after that point with

no experimentation until a rest point is reached. The minimum, 25th percentile, median, 75th

percentile, and maximum of the prices for firm 1, across the 100 simulations, once all simulations

have reached a rest point, is reported. N = 2. The model is as per figure 2, but for the addition

of experimentation.
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It must surely penalize excessive computational burden, and occur at some
frequency which is both frequent enough to be informative, but no so fre-
quent as to distort the learning environment. What does seem clear is that
algorithms that build in experimentation are not likely to completely fix the
propensity of asynchronous algorithms to elevate prices.

Imperfect counterfactual updating. As previously noted, the asyn-
chronous and synchronous algorithms require access to very different amounts
of information; the asynchronous algorithm needs to know only the profits it
received from the price it played, whereas the synchronous algorithm requires
an ability to run a complete set of counterfactuals conditional on the state.
To obtain accurate counterfactuals the algorithm needs to observe competi-
tors’ prices and then be able to map them, together with different selections
of its own price, into profits (in our example this would require knowledge of
the residual demand curve). We have endowed our synchronous algorithm
with this ability, but in many actual markets accurate counterfactual updat-
ing may be impossible.

We now explore the behavior of algorithms that have access to less infor-
mation than our synchronous but more information than our asynchronous
algorithms. In particular we supply the asynchronous algorithm with a rel-
atively uncontroversial additional bit of information: the knowledge that
residual demand curves slope (weakly) downward. That information allows
us to employ a less accurate form of synchronous updating.

Recall that di(p
∗, pkj ) is our notation for the demand received at the price

chosen in iteration k. Our counterfactual updating rules are modified as
follows. If p > p∗ and the current iteration’s perception of the value at p is
higher than what could be rationalized by assuming demand was given by
current demand, then we update the value of playing the counterfactual price
assuming that di(p, p

k
j ) = di(p

∗, pkj ), so that W k
i (p) is adjusted downward.

Similarly, if p < p∗ and W k
i (p) is lower than could be justified by assuming

that di(p, p
k
j ) = di(p

∗, pkj ), then W k
i (p) is adjusted upward by assuming that

di(p, p
k
j ) = di(p

∗, pkj )). Formally the updating rules for different p are

p = p∗, W k+1
i (p∗) = α(p− c)di(p∗, pkj ) + (1− α)W k

i (p), (4)

p > p∗, W k+1
i (p) = αmin

{
(p− c)di(p∗, pkj ),W k

i (p)
}

+ (1− α)W k
i (p),

p < p∗, W k+1
i (p) = αmax

{
(p− c)di(p∗, pkj ),W k

i (p)
}

+ (1− α)W k
i (p).

Figure 4 shows the impact of taking the model in panel (b) of figure 2
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Figure 4: Price outcomes with asynchronous updating, exploiting downward
demand
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(a) Static Bertrand (singleton state space, β = 0)

Notes: Prices (vertical axis) by iteration (horizontal axis) from 100 simulations are shown. The lines, from bottom to

top, represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period.

The model mirrors that in 2, panel (b), but for the addition of the ability of the asynchronous algorithm to update all

W (p)’s using the assumption that demand slopes (weakly) downward.

(static Bertrand with asynchronous updating) and allowing updating to occur
in instances when the underlying values violate the assumption of downward
sloping demand (as in equation 5). The minimum rest point is 2.03 and
the maximum is 2.23. This suggests that leveraging minimal assumptions
about the economic environment can have a significant mitigating impact on
any tendency for an asynchronous algorithm to generate supra-competitive
prices.33 Leveraging the downward sloping demand assumption also dramat-
ically increases the speed with which the algorithm reaches a rest point. The
speed increase is of at least an order of magnitude.

33Appendix A.2 shows the impact of this augmented procedure in an environment with
Logit demand. Mitigation still occurs, but is muted relative to the homogenous Bertrand
example.
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The example shown here, in which the assumption of downward demand
is explored, indicates that having a complete model of the economic en-
vironment is not necessary to mitigate the propensity for an asynchronous
algorithm to generate high prices. Depending on the setting, other justifiable
assumptions may be able to be leveraged, whether in addition to downward
demand or as a substitute for it.34

5.2 β > 0: Algorithms that consider future returns

When β = 0, pricing algorithms that use asynchronous learning are expected
to generate rest points with supra-competitive pricing, but those that used
synchronous learning will not. These results are independent of the details
of the algorithm, including the structure of the profit function and the states
that strategies can condition on. However the result on synchronous learning
does not generalize to models with β > 0.

Recall that when an algorithm converges to a rest point, that point is the
only point in the recurrent class, and the conditions that the policies and
perceived values a synchronous learning algorithm must satisfy at the rest
point are those of a REBE. If β > 0, the feasible but non optimal policies
at the rest point are updated using a correct measure of current profit but a
discounted continuation value which is not updated because the policies that
are not optimal are never actually played. To explore the implications of
this fact in a way that makes their relationship to the literature on repeated
games transparent, we consider models with history-dependent strategies.

To see the possible implications of not updating continuation values, it
suffices to consider a model where there are two possible actions and a state
space that consists of last period’s prices, that is

P = (p1, p2), and S = {(p1, p1), (p1, p2), (p2, p1), (p2, p2)}.

We consider the conditions that need to be satisfied for (p1i , p
1
j) to be a rest

point of this algorithm.
Since policies have converged, equation (2) guarantees that perceived val-

ues will also. Since states other than (p1i , p
1
j) are not recurrent, the value

34Examples might include: using the realizations of price and quantity to approximate
demand, using one or more mis-specified demand models, or using local regression ap-
proaches to approximate W ’s that are close to those that can be updated precisely (see
Farias et al. (2012) for a related approach in the context of computing approximate MPE
in dynamic oligopoly games).
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associated with play at those points need not equal the discounted value
that would result were those states being visited repeatedly. The REBE
conditions for the rest point imply only that in the limit

Wi(p
1|p1i , p1j) = πi(p

1
i , p

1
j)+βWi(p

1|p1i , p1j), ⇒ Wi(p
1|p1i , p1j) = πi(p

1, p1)[1−β]−1,

Wi(p
2|p1i , p1j) = πi(p

2
i , p

1
j) + βmaxy∈PWi(y|p2i , p1j) < Wi(p

1|p1i , p1j),
and the analogous conditions for firm j.

So for (p1, p1) to be a rest point, all we require is

[πi(p
1
i , p

1
j)− πi(p2i , p1j)] > β

(
max
y∈P

Wi(y|p2i , p1j)− [1− β]−1πi(p
1
i , p

1
j)
)
,

and the analogous condition for firm j. (Wi(p1|p2i , p1j),Wi(p2|p2i , p1j)) are not
constrained to be consistent with the returns that would actually be earned
were those policies actually played. Rather they are determined by the ran-
dom draws – either just those on initial conditions or, if there is experimen-
tation, in conjunction with the draws from experimenting.

These equilibrium conditions also determine what would happen were we
to force the algorithm to engage in “off the equilibrium” path behavior, for
example if we used the policies to simulate a path in which firm i chose price
p2. If maxy∈PWj(y|p2i , p1j) = Wj(p

2|p2i , p1j) firm j would respond in the next
period with p2. If this occurred and maxy∈PWi(y|p2i , p2j) = Wi(p

2|p2i , p2j),
then firm i would chose p2 in the next period, and if the analogous condition
held for firm j both firms would choose p2 in all subsequent periods. That
is (p1, p1) would look like it was supported by a “trigger price” strategy. So
trigger price strategies are consistent with a REBE, and hence with a rest
point to the synchronous game.

Computational results when algorithms care about the future. Fig-
ure 5 provides price paths from AI algorithms that use synchronous and
asynchronous updating when β = .95, the state space is expanded to contain
the prices each firm charged in the prior period, and demand is given by
equation (1).

As in figure 2, which provided the comparison when β = 0, the asyn-
chronous algorithm generates substantially higher price outcomes. Indeed
setting β = .95 and using a richer state space generates a distribution of
pricing rest points from the asynchronous algorithm that stochastically dom-
inates its analogue in the β = 0 case. However, the synchronous algorithm
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Figure 5: Price paths with richer state spaces and β = 0.95.
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Notes: Prices (vertical axis) by iteration (horizontal axis) from 100 simulations are shown. The lines, from bottom to

top, represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period.

The discount factor, β, is set equal to 0.95. Results are shown for firm 1. The model is parametrized as follows. Feasible

prices exist on a grid with 25 elements equally spaced between 0.1 and 10 inclusive. The state space contains the prices

of both firms in the prior period. The weight on current returns in updating is given by α = 0.1. Initial conditions are

i.i.d. draws from U [200, 210], for each W (p) for each firm. In all other respects the model mirrors that in 2.

now also converges to a price that is higher than the static Nash outcome.
The median of the synchronous price distribution is 6.25. This is substan-
tially lower than the median price with asynchronous updating (which is 10),
but substantially higher than the highest Nash price of 2.52. The rate of con-
vergence for the synchronous algorithm is still substantially faster than that
of the asynchronous algorithm35.

These results extend the conclusions of Calvano et al. (2020) to games
played by AI algorithms that use synchronous updating, but only if β >
0. Moreover the theoretical discussion shows that when β > 0 the asyn-
chronous algorithm can generate policy patterns that mimic those obtained

35The synchronous price distribution stabilizes after about 750,000 iterations, while
asynchronous price distribution does not stabilize until around 4,000,000 iterations.
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from trigger-price strategies. However, a comparison among asynchronous
algorithms, that is among the algorithm that use the learning rules used in
Calvano et. al. (2020), which we investigate further in figure 6, throws a
slightly different light on the problem.

This figure displays the frequency of realized prices generated by alterna-
tive asynchronous algorithms. Light grey bars are the static model (singleton
state space and β = 0), medium grey bars are for an enriched state space
(containing the price of each firm in the prior period) but with β = 0, and
dark bars have the enriched state space and β = 0.95. As can be seen, there
is little economically meaningful difference between the distribution of price
outcomes generated by the static model (light grey) and that generated by
the model augmented with an enriched state space (medium grey).36 So a
meaningful portion of any adverse price effect does not depend on leveraging
history-dependent strategies.

More visually noticeable are the differences when we set β = .95 and we
allow for history-dependent strategies; then the mean is 9.83 and the median
is 10. Keep in mind, however, that when β = 0 and we allow for history-
dependent strategies, the median price outcome is 8.75. So the asynchronous
algorithm generates a substantial increase in price even when it does not
consider the impact of its play on the possibility of punishing in the future.
That is, at least in our example, much of the difference between rest point
prices and Nash equilibrium prices generated by an asynchronous learning
algorithm would exist even if we did not allow the algorithm to generate
policies that mimic a punishment scheme.37

36The mean (and median) prices in the ‘static’ (light grey) and ’β = 0’ (medium grey)
cases are 8.33(8.34) and 8.73(8.75) respectively.

37Appendix A.3 illustrates two examples of the path of play following an optimal devi-
ation from a rest point reached by the asynchronous algorithm.
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Figure 6: Price outcomes for models with asynchronous updating.
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static model (singleton state space and β = 0). Medium grey bars are for an enriched state space (containing the price of

each firm in the prior period) but with β = 0. Dark bars have the enriched state space and β = 0.95 as in figure 5 panel

(b). For each version of the model, results are constructed from 100 simulations.

Extensions when β > 0. Table 3 reports the results of extensions to the
basic specifications for synchronous and asynchronous learning presented in
figure 5. For both it begins by reporting results for the simulations underlying
figure 5. As noted when β = 0.95 and the state space includes the previous
period’s prices, both learning algorithms generate supra-competitive pric-
ing outcomes with the distribution of prices generated by the asynchronous
algorithm stochastically dominating that generated by the synchronous al-
gorithm.
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Table 3: Pricing outcomes in extensions, when β = 0.95

Algorithm Treatment Min 25th Median 75th Max

Synchronous N = 2 (as in Figure 5) 5.01 5.84 6.25 6.25 8.34
N = 2, Experimentation (θ = 4) 4.17 4.59 4.59 5.01 6.67
N = 3 2.51 3.34 3.34 3.34 5.84

Asynchronous N = 2 (as in Figure 5) 8.34 9.58 10.00 10.00 10.00
N = 2, Experimentation (θ = 4) 6.25 9.17 9.58 10.00 10.00
N = 3 5.42 8.75 9.17 9.58 10.00
N = 2, Downward demand 6.25 7.09 7.50 8.34 10.00

Notes: For each treatment, 100 simulation runs were conducted. The minimum, 25th percentile,

median, 75th percentile, and maximum of the prices for firm 1, across the 100 simulations, once all

simulations have reached a rest point, is reported. The monopoly price is 10. Prices of 2.09 and 2.51

are both supportable as outcomes of a static Nash equilibrium. The model is as per figure 5, but for

the noted changes in specification.

The introduction of experimentation in this setting mirrors the qualitative
results in table 2. Experimentation appears to have a mild mitigating impact
on price elevation in both cases. However the effect is not as large as the
effect of introducing a third firm in either case, with the difference being
particularly noticeable for the synchronous case. Perhaps most surprising
is the impact on the asynchronous algorithm of imposing that the residual
demand curve is decreasing in price (see section 5.1). This has a greater
downward impact on the price distribution, at all reported moments other
than the minimum, than adding an extra firm38. With rich state spaces and
β > 0, use of algorithms that abide by at least some information about the
economic environment may be at least as important for pricing as increasing
the number of firms in the market.

38Leveraging this tenet would have no additional benefit for the synchronous algorithm.
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6 Summary

The rest point reached by AI pricing algorithms depends on whether feasible
actions which are not played at the rest point are updated a sufficient number
of times with the returns that would be earned if they were actually played.
This, in turn, is determined by a combination of: (i) whether the learning rule
is synchronous or asynchronous and (ii) whether the algorithm is designed
to maximize current profits or the discounted value of future returns. We
provide a summary of our results on each of the four possible cases.

Among algorithms that are designed to maximize current profits, i.e.,
that set β = 0, there is a sharp distinction between whether the learning
rule employed by the algorithm is synchronous or asynchronous. If it is
synchronous the rest point must be a Nash equilibrium, as all feasible actions
are evaluated at every iteration and they are evaluated in terms of the profits
they generate.

If β = 0 and the algorithm employs asynchronous updating, then only
the policy played is updated at each iteration. The policies played at any
iteration are determined by the random draws on initial conditions (with the
possible addition of the random draws from experimentation) and the struc-
ture of the updating process. If the distribution from which starting values
are drawn has a sufficiently large support, any pair of prices can be a rest
point. The extent of supra-competitive pricing can be mitigated by allowing
the algorithm to engage in experimentation, incorporate limited information
about the economic environment, and/or add competitors. Though exper-
imentation does help to bring down the prices at rest points, it does not
seem to be nearly as effective as ensuring the algorithms’ updating protocol
leverages the basic economic tenet that demand curves slope downward.

Though the intuition for why increasing the number of competitors lowers
prices at rest points in synchronous learning algorithms is standard, that for
the asynchronous case is not; yet when there were five or more competitors
at least 75% of the simulation draws generated rest points that were Nash
equilibria. Recall that the rest point of an asynchronous algorithm must
satisfy the conditions of an EBE. The number of those conditions grows
exponentially in the number of competitors. Drawing a sequence of random
variables that converge on a rest point which satisfies all of these conditions
and is not a Nash equilibrium, when Nash equilibria exist, becomes less
likely the larger the number of competitors. So the likelihood of all firms
satisfying those conditions at a potential supra-competitive rest point falls
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as the number of competitors is increased.
The results for the synchronous algorithm are more nuanced when the

objective of the algorithm is to maximize the discounted value of profits (i.e.,
when β > 0). Since continuation values are updated only for the actions that
are played, the continuation values of feasible but non-optimal actions need
not be accurate. Recall that the rest point of an asynchronous algorithm
must satisfy the conditions of a REBE, and the rest point is a boundary
point of that equilibrium. The values attached to feasible but non-optimal
actions at boundary points need not reflect the expected discounted value of
returns were those actions played.

In our computational experiments we find that with β > 0 the syn-
chronous algorithm does generate supra-competitive prices but the distribu-
tion of prices generated by the synchronous algorithm is still stochastically
dominated by the prices of the asynchronous algorithm. This reflects the
burden of the additional conditions (those of a REBE) required to reach a
rest point in the synchronous case. Experimentation mitigates this tendency
to price supra-competitively, although, in the case of asynchronous updating,
not by as much as leveraging the tenet that demand slopes downward. In
both the synchronous and asynchronous cases, adding competitors reduces
the extent of supra-competitive pricing.

7 Conclusion

The results in this paper relate to contemporary policy discussions about
appropriate competition policy in a world in which decisions are delegated
to algorithms. We illustrate the impact of the design on equilibrium prices.
Much of this policy discussion has centered on traditional antitrust tools,
particularly laws prohibiting collusion.39 The results here present significant
challenges for the application of those traditional tools. We show the poten-
tial for algorithms to lead to supra-competitive pricing in settings where, as
in Harrington (2018), it cannot match any economic definition of collusive
behavior.

We have not explicitly discussed the choice of algorithms. Of course,
even if a firm understands that choosing a naive (e.g., asynchronous) algo-
rithm will lead to supra-competitive pricing and, as a consequence, delegates
its pricing to such an algorithm, this is distinct from doing so in concert

39 See, for instance, the discussion in Harrington (2018).
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with other firms as part of some commitment or agreement. Figure 7 shows
the pattern of average (rest point) payoffs arising from alternative choices
of algorithmic designs given the simulations reported in this paper for the
static Bertrand model. It is a Nash equilibrium for both firms to choose to
implement asynchronous algorithms. Indeed, no matter what a rival firm
implements, each firm is weakly better off with the asynchronous algorithm.
That is, employing an asynchronous algorithm is a weakly dominant strat-
egy.40

Firm Y

Asynch. Sync.

Firm X
Async. (8.12, 8.12) (2.13, 2.13)

Sync. (2.13, 2.13) (2.13, 2.13)

Figure 7: The algorithm coordination game

Notes: The payoffs reflect the pattern of expected payoffs reported in figure 2 and Appendix A.5.

That the choice of algorithms leading to supra-competitive pricing could
be an equilibrium outcome in a static game, seems at odds with the require-
ment that illegal cartels have some form of agreement at their core. This
conclusion resonates with ongoing expressions of discomfort, on the part of
antitrust scholars, with the heavy emphasis that cartel enforcement puts on
finding an agreement (see for instance, Turner (1962), Posner (1976), Whin-
ston (2006), Kaplow (2013), and, in the context of algorithms specifically,
Harrington (2018)).

Whether through regulation, or through antitrust oversight, the question
of how to identify a “pro-competitive” implementation of an algorithm seems
to be central to evaluating both existing behavior and possible counterfactu-
als that a regulatory agency might compute. The results in this paper point
toward implementations that are informed by an understanding of the wider
economic environment and that incorporate counterfactual alternatives to
the play actually engaged in when learning. Thus, indicia of the possible ex-
istence of a “pro-competitive” implementation may include the incorporation
of a demand model, likely informed by statistical or econometric studies (such
as A-B testing) to generate returns to alternative actions. Training the al-

40In the Logit version of the model discussed in the Appendix, employing the asyn-
chronous algorithm is a strictly dominant strategy.
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gorithm using results from sub-populations on whom price experiments have
been run may also be a useful indicator of an “pro-competitive” algorithm.41

Additionally, the greater the number of firms in a market, the more muted
any supra-competitive pricing is likely to be.42

Developing an empirical understanding of how algorithm adoption im-
pacts pricing, and the choices the algorithms that are actually used gives
management, seems invaluable. Empirical studies of the nature and the
impact of AI pricing algorithms that have been adopted are one way of eval-
uating the relative merits of human and algorithmic control of pricing in
markets. Assad et al. (2020) provides a valuable first step in this direc-
tion. Additional research in this vein, guided by the growing theoretical and
computational work on algorithms, strikes us as particularly valuable.

41Here the sub-populations should be small enough to have no meaningful impact on
the pricing of any competing firm, and exist merely to inform the computation of coun-
terfactual returns. If experimentation occurs on sub-populations that are large, then the
possibility may arise that experimentation distorts algorithmic learning.

42Additionally, conditional on the design of the algorithm, the more algorithms are
trained to optimize current rather than future profits, the better for competition. Similarly,
the less information about competitors’ actions that resides in the state space, the better.
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A Appendix

A.1 Code for the baseline

The code below, comprises the core content of the m-file required to run
the baseline model in Matlab. It is included here to assist the reader in
understanding implementation. The code was run in Matlab version R2015a.

%------------Set parameters ----------------------------%

theta=10; D=1; nfirms=2; c=2; alpha=.1; beta=0;

pL=0.01; pH=theta; dim=100; p=(linspace(pL,pH,dim))’;

%------------Set updating protocol-----------------------------%

synchronous = 0;

%------------Initialization-----------------------------%

rng(2); W = []; W(:,1,1) = 10+10*rand(dim,1); W(:,1,2) = 10+10*rand(dim,1);

itermax=10000; h=[]; pstar=[]; k=1;

%------------Loop through learning periods-----------------------------%

while k<=itermax

%------------determine price chosen-----------------------------%

for i=1:nfirms

[piestar2, m] = max(W(:,k,i)); pstar(i,k)=p(m,:);

end

%------------Updating-----------------------------%

for i=1:nfirms

pstaro(i,k)= pstar(i,k); pstar(i,k)=pH+1;

prival=min(pstar(:,k)); nshares=sum(pstar(:,k)==prival) + 1;

less= find(p<prival);

equal= find(p==prival);

above= find(p>prival);

W_all(less,k+1,i)= D*(p(less)-c);

W_all(equal,k+1,i)= (1/nshares)*D*(p(equal)-c);

W_all(above,k+1,i)= 0*(p(above)-c);

W(:,k+1,i) = W_all(:,k+1,i);

if synchronous == 0

W(:,k+1,i) = W(:,k,i);

m = find(pstaro(i,k) == p);

W(m,k+1,i) = W_all(m,k+1,i);

end

W(:,k+1,i)=W(:,k+1,i)*alpha + W(:,k,i)*(1-alpha);

pstar(i,k)= pstaro(i,k);

end

k=k+1;

end

This code is used as the base for producing all the figures. For instance,
figure 2 uses this base code, and loops over 100 simulation iterations, with a
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new set of initial condition draws in each iteration.

A.2 Results for a Logit demand system

Table 4: Pricing outcomes with Logit demand

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Synchronous 2 2.53 2.53 2.53 2.53 2.53
3 2.33 2.43 2.43 2.43 2.43
5 2.33 2.33 2.33 2.33 2.33
10 2.23 2.23 2.33 2.33 2.33

Asynchronous 2 6.17 8.13 8.59 9.19 10.00
3 2.63 4.95 6.37 7.93 9.80
5 2.23 2.43 2.43 2.63 9.90
10 2.13 2.33 2.43 2.43 2.73

Synchronous 2 2.53 2.53 2.53 2.53 2.53
w. downward demand

Asynchronous 2 2.33 2.53 2.73 3.04 7.88
w. downward demand

Notes: For each N , 100 simulation runs were conducted. The distribution of prices for firm 1, once all

simulations have reached a rest point, is reported. The model is as per figure 2, but for the substitution

of the Logit demand system described in equation 5 and the reported changes in N . ‘downward demand’

specifications mirror those discussed in section 5.1.

This subsection reports results reproducing the core static computational
analysis in the main text, but substituting the perfect substitutes demand
system for a logit style demand system in which each firm’s product is differ-
entiated. As in the model considered in the main text, firms play a Bertrand
pricing game. The form of the demand system is

Qi =
ea−bpi

1 + ea−bpi +
∑

j 6=i e
a−bpj

(5)
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where Qi is the quantity demanded of firm i’s product. The parameters
are set such that a = 40 and b = 4. In all other respects, the model and
parametrization (including the selection of initial values) are unchanged from
that underlying figure 2.

Table 4 shows the distribution of rest points reached in this new pric-
ing game as the number of firms varies. It shows that the core results are
qualitatively unchanged in the alternative Logit demand environment.43

A.3 Policies in the repeated game with asynchronous
learning

Figure 7 provides examples of the path of play, for two simulations, with
different initial conditions, in the repeated game with asynchronous learning.
The path of play is at the rest point in the first 20 periods (p = 10). At period
21, firm 1 drops the price by an increment (this perturbation is imposed
exogenously). Firm 2 responds according to the policies in memory (the
AIA does not do any learning in this sequence of play). Figure 7 shows the
path of play of firm 2, in each of the two simulations selected as examples. As
can be seen, both paths bounce around a lot for the 20-30 periods following
the deviation and then settle down. One settles down at a constant price,
while the other settles into a regular oscillating pattern.

43Differences in time taken to reach a rest point are also qualitatively similar. For N = 2,
it takes 2,910 iterations to reach the reported distribution in the asynchronous case, and
100 iterations in the synchronous case.
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Figure 7: Price paths following an optimal deviation
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Notes: The underlying model is that in figure 5, panel (B).

A.4 Results for a Cournot game

This subsection reports results reproducing the basic core static computa-
tional analysis in the main text, but replacing the Bertrand game with a
homogenous good Cournot game. The form of the demand system used in
this new game form is

Q = a− P (6)

where Q =
∑

i qi, qi is the chosen output of firm i and P is the market
price. The model is parameterized such that the demand intercept, a, is
equal to 10. Quantities (qi’s) can take on 150 values evenly spaced between
1.51 and 3, inclusive. Initial conditions are set such that each initial W (q)
is an independent draw from U [25, 35]. In all other respects the model and
parametrization are unchanged from that underlying figure 2.

Table 5 shows the distribution of rest points reached in this new pricing
game for N = 2. It shows that the core results are qualitatively unchanged
in the Cournot environment, illustrating that the patterns are not specific to
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games of strategic complements. The same patterns can be seen in games of
strategic substitutes.44

Table 5: Pricing outcomes in Cournot

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Synchronous 2 4.67 4.67 4.67 4.67 4.67

Asynchronous 2 5.24 5.65 5.84 6.00 6.42

Notes: For each N , 100 simulation runs were conducted. The distribution of prices once all

simulations have reached a rest point is reported.

A.5 Results when one firm learns with an asynchronous
algorithm and one with a synchronous algorithm

This subsection reports results for the model underlying figure 2, with the
adjustment that one firm’s algorithm uses synchronous updating, while the
other uses asynchronous updating. Table 6 reports moments of the resulting
price distribution when N = 2.45 Results for Logit demand (see section A.2)
are also reported.

44Differences in time taken to reach a rest point are also qualitatively similar. It takes
6,706 iterations to reach the reported distribution in the asynchronous case, and 346
iterations in the synchronous case.

45It takes 950 iterations to reach the reported distribution
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Table 6: Pricing: Asynchronous versus synchronous

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Homogenous Bertrand
Synchronous (Firm 1) 2 2.13 2.13 2.13 2.13 2.13
Asynchronous (Firm 2) 2 2.13 2.13 2.13 2.13 2.13

Differentiated Bertrand (Logit)
Synchronous (Firm 1) 2 2.73 2.94 3.69 4.45 7.28
Asynchronous (Firm 2) 2 2.84 3.14 4.10 4.95 7.98

Notes: For each N , 100 simulation runs were conducted. The distribution of prices once all simulations

have reached a rest point is reported.

52


	Introduction
	Model
	The Bertrand pricing game
	The design of the AI Algorithm

	Rest Points of Different AI Algorithms
	Computational results 
	Theoretical results 

	Equilibria for Algorithmic Pricing Games
	Extensions to more complex environments
	=0: Algorithms that play static games
	> 0: Algorithms that consider future returns

	Summary

	Conclusion
	Appendix
	Code for the baseline
	Results for a Logit demand system
	Policies in the repeated game with asynchronous learning
	Results for a Cournot game
	Results when one firm learns with an asynchronous algorithm and one with a synchronous algorithm




