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1 Introduction

The degree to which taxes or subsidies are reflected in consumer prices – i.e., their rate of “pass-through”

– is now understood to be a key statistic for assessing welfare (Weyl and Fabinger, 2013). Pass-through is

of particular interest in public health insurance programs, where subsidies are distributed to private health

insurers, as in Medicare Advantage, the Affordable Care Act Exchanges, or the setting of this study, Medicare

Part D. There is often a popular perception that pass-through rates are low in such programs, constituting

a “giveaway” to insurers or health care providers, especially in the presence of market power (Lenzner, 2013;

Newhouse et al., 2007; Frank and McGuire, 2017). Complicating matters further, insurers could conceivably

pass-through subsidies to any of a large number of strategic variables. Some strategic variables like premium

affect all consumers, but others like out-of-pocket (OOP) cost for particular drugs are only of interest to the

subset of individuals who take the drug. Even for an overall level of pass-through, whether pass-through is

concentrated on the narrow or broad strategic variables has implications for the equity of the provision of

this public service.

In this paper, we measure pass-through of government subsidies in Medicare Part D by exploiting a

revision to the subsidy system that sharply changed subsidies for different diagnoses and demographic cate-

gories. We develop a theoretical framework to assess how subsidized insurers set both premiums and OOP

costs. Within the model we assess how insurers would react to changes in subsidies that affect only a subset

of individuals (similar to diagnosis-specific subsidies) as well as a change in subsidies for all enrollees. We

empirically measure the pass-through of subsidy changes to Part D enrollees by comparing the change in plan

premiums and typical OOP costs to the change in subsidies. Consistent with our theoretical model, we find

that higher diagnostic subsidies result in lower OOP costs for the related diagnosis, at a pass-through rate

of about 40 percent. Plan premiums do not respond to changes in diagnostic subsidies, but fall substantially

in response to higher demographic subsidies.

A subsidy revision in Medicare Part D represents an ideal setting for studying the pass-through of

government subsidies to consumers. Medicare Part D is a publicly-funded private prescription drug insurance

benefit for twenty million elderly and disabled. The majority of Federal subsidies to insurers in Part D are

“risk adjusted”, meaning they aim to pay insurers the expected cost of treating an enrollee given her diagnosed

conditions and demographics. For example, an average-premium plan in 2010 enrolling a 66 year old man

whose medical claims reflect Multiple Sclerosis would receive a subsidy of $659. If a similar enrollee’s medical

claims instead reflect HIV/AIDS, the plan would receive $2217. In theory, plans are equally willing to enroll

both men because the subsidy offsets the higher expected cost of the HIV/AIDS patient. The levels of the

diagnosis-specific subsidies were calibrated using data from the early 2000s and then left in place through
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2010, despite new drug entry and the onset of generic competition raising or lowering the costs of treating

certain diagnoses (Carey, 2017). In 2011, the subsidy system was updated to again set subsidies equal to

associated treatment costs. For the two men discussed previously, their insurer in 2011 receives $889 for the

Multiple Sclerosis patient (a 35% increase) and $2081 for the HIV/AIDS patient (a 6% decrease). There

were also recalibrations of the demographic-specific portion of subsidies. If this man lives in the community,

his plan gets $95 more in demographic subsidies (a 28% increase). But if the man lives in a nursing home,

the demographic portion of subsidies nearly triples from $515 to $1422. We demonstrate in Section 4 that

the subsidies for many diagnoses and demographic categories were sizably raised or lowered as a result of

the subsidy system revision.

We develop a theoretical model that predicts how Part D insurers should set premiums and OOP costs

as a function of subsidies in Section 3. We start from the results of Weyl and Fabinger (2013), showing how

pass-through of subsidies depends on market and demand characteristics. However, we alter the baseline

model to consider the structure of Part D subsidies and the multivariate strategies of insurers choosing

both the plan premium and a vector of OOP costs. We first consider a subsidy for a subgroup (e.g., a

diagnosis), where the subgroup has differential preferences over one element of the strategy space (e.g., OOP

costs for drugs that treat the diagnosis). We show that insurers will generally pass-through these “‘narrow”

subsidies to the related strategic variable, rather than to other strategic variables. We next consider a broad

increase in all subsidies. We derive the conditions under which this “broad” subsidy will be passed through

the “broad” strategic variable, premium. The model predicts that a diagnosis-specific subsidy in Part D is

likely to be passed-through to related OOP costs, but has ambiguous predictions for the pass-through of the

demographic portion of subsidies, which have features of both “broad” and “narrow” subsidies.

In the empirical portion of the paper, we set out an empirical model that leverages the large 2011

revision to the subsidy system to recover the rate of pass-through. We quantify the effects of the revision

on demographic and diagnostic subsidies. We measure pass-through to premiums and OOP costs using a

panel data model with fixed effects. To measure pass-through to premium, we consider how plan premiums

responded to changes in plans’ average per-enrollee subsidy (freezing a plan’s enrollment in 2010 to avoid

compositional changes). Plan fixed effects net out all plan-specific factors, identifying the effect of subsidies

purely from the premium changes that co-occur with the 2011 revision. To measure pass-through to OOP

costs, we examine how the typical OOP costs for drugs treating a diagnosis respond to the diagnosis’s

subsidy. Again, we use fixed effects to isolate the variation induced by the 2011 subsidy revisions, netting

out all time-invariant plan × diagnosis factors or plan × year factors that are uniform across diagnoses.

In additional specifications, we consider extra controls that accommodate the economic content of subsidy

updates. Since a diagnosis’s subsidy may be revised upward to accommodate an ongoing upward trend in

3



drug prices, we include a diagnosis price spline or a diagnosis-specific time trend.

We find that plan premiums did not respond to changes in the total average subsidy, with the point

estimate suggesting $1 in increased subsidy is associated with a $0.01 decrease in plan premiums. However,

when the diagnostic and demographic components of premiums are considered separately, we find that

the pass-through rate for demographic subsidies is considerable: $1 in increased demographic subsidy is

associated with a $0.74 reduction in plan premiums. An event study version of this analysis supports a

causal interpretation; premiums of plans that went on to get subsidy increases as a result of the revision

were trending similarly to plans that went on to get subsidy decreases. We estimate that plans respond to

increases in diagnostic-subsidies by lowering the associated OOP costs, leading to a pass-through rate to

OOP costs of 37-47%. Since demographic subsidies were approximately 40% of total subsidies in 2010, we

compute an overall pass-through rate of about 53% (= .4 ∗ .74 + .6 ∗ .4).

We next turn to determining exactly how insurers adjust their benefit designs to pass through the diag-

nostic subsidies. We extend our panel-data model to predict the OOP cost, coverage, formulary placement

of the universe of Part D drugs as a function of their diagnostic subsidy. We conduct this exercise separately

for branded and generic drugs. We find that Part D insurers generally pass-through subsidies by beginning

to cover branded drugs, and moving such drugs to more favorable formulary tiers. We find that there is

little response for any of these outcomes among generic drugs. We discuss several potential explanations for

this finding, including differences in the baseline benefit design for brands and generics, differences in the

upstream market (monopolistic vs. competitive), and differences in demand. We also examine the response

of utilization management tools such as prior authorization or requirements that beneficiaries try cheap

alternatives before expensive drugs (step therapy). We find that, much like financial management tools like

OOP costs, the use of “step therapy” falls when subsidies increase. However, the use of prior authorization

increases. Because prior authorization creates a point of contact between the insurer and the provider, in-

surers may use it to ensure that providers are documenting the relevant diagnosis to ensure proper subsidy

payment.

There are two features of Part D that are not reflected in our baseline pass-through model, but which

could affect our interpretation of estimates. If a subsidy related to a particular characteristic increases, and

insurers respond by reducing the related strategic variable, individuals with that characteristic may enroll

in Part D for the first time. As explored in Cabral et al. (2018), if the new enrollees are healthier than

the current enrollees, our pass-through estimates would tend to be biased upward. However, in Section 7.1

we rule out any economically meaningful enrollment response. Our pass-through estimate is also biased if

drug demand is very elastic – i.e., if a reduction in OOP costs induces a large increase in drug utilization.1

1Einav et al. (2018) document a cross-sectional relationship between drug demand elasticity and cost-sharing, suggesting
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elasticity on the order of 2%. In a back-of-the-envelope calculation, we show that accommodating this small

drug-demand elasticity would only slightly alter our pass-through estimates.

This paper contributes to a set of recent reduced-form estimates of pass-through rates, both in health

insurance (Cabral et al., 2018; Duggan et al., 2016) and beyond (Fabra and Reguant, 2014; Miller et al.,

2017; Muehlegger and Sweeney, 2017; MacKay and Remer, 2018). Following the empirical models in this

literature, pass-through is identified over time net of a product fixed effect, accommodating independent

unobserved costs that could otherwise introduce bias in estimates (MacKay et al., 2014). It is novel in

taking advantage of risk adjustment subsidy revision, a periodic feature of risk-adjusted health insurance

markets, to obtain this key market descriptor. It improves on the cross-sectional analyses of Carey (2017)

and Geruso et al. (2018), who showed that insurers provide more generous benefits for diagnoses made

profitable by risk adjustment systems in Medicare Part D and the ACA Marketplaces, respectively. This

paper isolates more credible over-time variation in subsidy levels, and adjusts the outcome variables to obtain

a pass-through rate.

This paper’s estimate of 53% for overall pass-through in Medicare Part D is very similar to that of Cabral

et al. (2018), who use a revision to the capitation rate in Medicare Advantage to recover a pass-through

rate of 54%. On the one hand, the two markets have the same consumers and are federally subsidized in

a similar manner. However, Medicare Advantage is much less competitive than Medicare Part D, with an

average HHI in MA markets of 0.6 as compared to 0.1 in Part D. Cabral et al. (2018) find that market power

is the likely explanation for incomplete pass-through in Medicare Advantage (with estimated pass-through

of 74% in the most competitive markets)2, but that is unlikely to explain incomplete pass-through in Part

D. One candidate explanation for incomplete pass-through is that Medicare Part D insurers face a much

more concentrated upstream market than Medicare Advantage insurers. Of the ∼ 45 cents per dollar that

Medicare Advantage and Part D insurers do not pass-through to consumers, monopoly drug firms may be

better positioned than diffuse health care service providers to obtain a portion in the bargaining process.3

This paper is distinct in considering the breadth of choice variables through which Part D insurers can

respond to subsidies, as well as distinguishing between the effects of narrowly-targeted vs. broad subsidies.

In our theoretical model, diagnosis-specific subsidies are likely to be passed-through to OOP costs rather

than premiums; insurers target the reductions on the variable most likely to pull in the individuals that

that insurers set higher cost-sharing for drugs with the most elastic demand.
2 Following Cabral et al. (2018), we split Part D markets by Herfindahl-Hirschman index in Appendix Section A.5. However,

while MA markets vary greatly in concentration with a sample standard deviation of 0.25, nearly all Part D markets are
unconcentrated, with a 90-10 split of 0.16 to 0.09. Thus, we are underpowered to test for pass-through heterogeneity by
concentration, and unsurprisingly find no differences.

3As we discuss in Section 6.2, pass-through is larger (more negative) for brands supplied monopolistically vs. generics supplied
competitively. However, the differences in the baseline formulary placement of brands vs. generics, as well as potential differences
in the demand functions, make this comparison uninformative for determining the effect of upstream market concentration.

5



qualify for the higher subsidy. We confirm this finding in our empirical model; plans adjust related OOP

costs, but not premiums, in response to larger diagnosis-specific subsidies. However, we do find a large

premium response to demographic-specific subsidies. Demand for particular drugs is unlikely to correlate

with demographic characteristics, which in our model makes it more likely that insurers will pass-through

demographic subsidies to premiums. Cabral et al. (2018) identify pass-through using a broad increase in

subsidies. It is thus unsurprising that of their $0.54 cents in pass-through of an incremental dollar in Medicare

Advantage, $0.45 comes as a reduction in premiums and only $0.09 comes as an improvement in benefits.

This study also helps clarify the relationship between pass-through in insurance products and service-level

selection in insurance. Insurers commonly have both broad and targeted components of their strategy space.

If they have incentives to effectuate service-level selection, they will choose to pass-through to the targeted

components, such as OOP costs for specific diagnoses. If instead they do not have these incentives, they

will instead choose to pass-through subsidy increases broadly, either to premiums or to uniformly improving

benefits. As we know from the work of Carey (2017), Geruso et al. (2018), and Brown et al. (2014), insurers

are highly incentivized by diagnosis-based risk adjustment to effectuate service-level selection.

2 Medicare Part D

This section details the design of the Medicare Part D market, with special attention to insurer incentives

and the diagnosis-specific subsidy system. We first describe how enrollees choose Part D plans and drugs.

We then describe the insurers’ plan benefit design problem and the regulations that constrain their actions.

Finally, we review how Part D plans were paid in their first five years and the nature of the revision in 2011.

2.1 Enrollment and Drug Demand

Medicare Part D implements the managed competition model of public health insurance that underlies

Medicare Advantage, Medicaid managed care, and the Affordable Care Act marketplaces. In the managed

competition model, individuals choose among competing insurers offering a regulated benefit. Approximately

half of Medicare beneficiaries are in the market for stand-alone Medicare Part D (i.e., no prescription drug

coverage through a retiree benefit and not enrolled in a combined medical-drug Medicare Advantage plan).

In 2010, they chose among an average of 45 insurance plans operating in their market. Markets are defined

administratively by CMS as either a state or a group of states. Plans must accept everyone who enrolls at

a uniform premium. Plans differentiate themselves both vertically (overall level of benefit generosity) and

horizontally (level of coverage for competing drugs within a therapeutic class), subject to the regulations

described in Section 2.2.

Because Medicare beneficiaries have very persistent drug utilization, choice of insurance plan commonly
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incorporates enrollees’ private information on predicted drug demand. There are several pieces of evidence

for enrollees’ private information. Firstly, prior to the onset of Medicare Part D in 2006, no free-standing

prescription drug insurance existed for this population; Pauly and Zeng (2004) and Goldman et al. (2006)

suggest the threat of adverse selection inhibited the development of such a market. Secondly, beneficiaries

who remain uninsured despite eligibility for Part D appear to be positively selected (Yin et al., 2008; Levy and

Weir, 2010); however, the presence of substantial government funding, covering 75% of Part D expenditure

on average, means that most eligible beneficiaries enrolled. Thirdly, direct evidence on prescription drug

utilization reflects substantial year-over-year persistence in drug needs (Hsu et al., 2009). An analysis by

Heiss et al. (2013) finds that basing ones’ choices entirely on last year’s drug needs is the choice rule that

minimizes ex post expenditures among a set of heuristics and rational expectations models. Finally, direct

evidence gathered by Polyakova (2016) documents a substantial degree of asymmetric information, resulting

in adverse selection into the most generous Part D plans.

The presence of private information in plan choice affects insurers’ incentives because it means that

individuals are aware of their diagnoses and drug needs at the time of enrollment, and are responsive to

related benefits. In the next section, we explain insurers’ strategic choices in Part D as well as applicable

benefit design regulation.

2.2 Insurers and Drug Firms

Insurers recognize that Part D enrollees can forecast their drug needs. Since they must accept all applicants

at a uniform preannounced premium, they cannot directly select enrollees. Instead, they must use their

benefit designs –what drugs are covered and at what OOP costs– to attract profitable enrollees and deter

those who will spend more than the subsidies the insurer receives for them.

Federal regulation constrains both choice of coverage and choice of OOP costs in hopes of providing

access to an equitable benefit for all enrollees. For coverage, insurers must cover two drugs in each United

States Pharmacopeia therapeutic class and all drugs in six “protected” classes (drugs for serious chronic

illness). This regulation still allows considerable variation in coverage across plans, and plans are allowed to

vary coverage to favor diagnoses with high diagnosis-specific subsidies. The plans we study in this analysis

vary from covering 47 to 97 percent of drugs.

Out-of-pocket costs are also subject to regulation. Out-of-pocket (OOP) costs are defined in relation to

the Part D “Basic Benefit”, which is the coverage level funded by Federal subsidies. In the Basic Benefit,

individuals’ OOP costs depend on the zone of coverage, determined by their expenditure so far in the year:

individuals pay a deductible, then 25% of drug expenditures in an “initial coverage zone”, then 100%4 of

4The Affordable Care Act began reducing this percentage in 2012 as discussed below.
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drug expenditures in the doughnut hole, and finally 5% of drug expenditures after a catastrophic threshold.

Plans can satisfy OOP cost regulation by either setting OOP costs to the Basic Benefit coinsurances or

raising certain OOP costs and lowering others such that OOP costs still attain the Basic Benefit percentages

on average. 90% of plans choose the latter strategy, which gives them considerable latitude to set lower OOP

costs for certain diagnoses over others. Plans may also choose to offer “enhanced coverage”, financed fully

out of premiums, that reduces OOP costs below the Basic Benefit percentages in some zones of coverage.

Enrollees also pay a premium to their chosen plan. Premiums are computed from a bid that represents for

each plan their expenditure on a “typical” enrollee. The premium is then set to premi = (bidi−bid)+γbid. In

this equation, bid is the national average bid (weighted by last year’s enrollment) and γ is a fixed percentage

(36% in 2010). Plans that cover many drugs at low OOP costs spend more for a “typical” beneficiary and

therefore have a higher bid; their premiums are higher by the full amount that their bid exceeds the national

average bid.

Plans (or a contracted pharmacy benefit manager acting as their agent) negotiate with upstream drug

firms over formulary placement and drug price. Plans obtain a discount or rebate when the plan sets a low

OOP cost for the drug relative to competitors in the therapeutic class. The discount or rebate could be a

percentage off the list price, or a quantity discount. Discounts and rebates are a closely-held trade secret and

are not observable in the data. According to the consultant Milliman, the Part D setting is institutionally

distinct, such that an insurer and drug firm may set distinct prices and rebate terms for Part D as compared

to the employer-sponsored market (Dieguez et al., 2018).

Because plans set coverage and OOP costs for approximately 5000 drugs, they have a relatively fine-

grained tool for attracting or deterring potential enrollees who prefer certain drugs (Geruso et al., 2018). In

the next section, we explore the diagnosis-specific subsidies meant to make insurers indifferent between all

enrollees.

2.3 Diagnosis-Specific Subsidies

Diagnosis-specific subsidies, as well as government subsidies in general, play a critical role in Part D market

design. In the absence of any subsidization, many individuals who know their (persistent) drug needs

are inexpensive would not wish to pool with those with high expected expenditures. The high degree of

government subsidies to the Part D market induces the healthy to voluntarily enroll, facilitating a balanced

risk pool and providing financial protection for unexpected drug needs.

To see why subsidies are based on diagnoses and demographics, suppose Medicare had simply paid each

Part D plan the average expenditure for each individual: approximately $1200. Within the benefit design

regulations above, insurers would have designed benefits to disproportionately attract healthy beneficiaries
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and deter the sick. Instead, Medicare conditions its subsidies on diagnoses and demographics: subsidies to

plans are higher for enrollees with high-cost diagnoses or in high-cost demographic categories, and lower for

those who are relatively healthy. Subsidies that vary with individuals’ expected health status are known

as “risk adjustment”. A recent literature has pointed out the weaknesses of basing subsidies exclusively on

diagnostic and demographic factors. These factors may not directly predict demand for insurance (Layton,

2017); alternatively, such subsidy systems may incompletely adjust for predictors of economic choices such as

service elasticity (Einav et al., 2016) or inertia (Bijlsma et al., 2014). Still, diagnosis-based subsidy systems

can be easily computed by regulators and can significantly reduce the scope for selection (Newhouse et al.,

2013). Recent work such as Layton et al. (2018) shows how the risk adjustment calibration process can be

further improved to neutralize selection incentives.

A subsidy system such as Part D’s contains three distinct elements: diagnostic definitions, weights

representing the relative cost of each diagnosis, and a conversion from weights to subsidies. The first

diagnosis-specific subsidy system was calibrated prior to Part D’s beginning in 2006 and is detailed in

Robst et al. (2007). The diagnostic definitions, built up from ICD-9 codes, were borrowed from the subsidy

system used in Medicare Advantage; in addition to diagnoses, individuals were grouped by demographics:

age, sex, and originally entitled to Medicare due to disability. The subsidy system designers obtained

a sample of prescription drug and medical claims from Federal retirees (incurred in 2000) and disabled

Medicaid beneficiaries (incurred in 2002). They applied the Part D Basic Benefit to each individual’s claims

to simulate the expenditure of a Part D plan for these individuals.

To set relative cost weights for diagnoses and demographics, they ran the following regression:

Ei/E =
∑
x

ωxδix +
∑
g

ωgδig + εi (1)

In this expression, Ei/E is the simulated Part D expenditure for this Federal retiree or disabled Medicaid

beneficiary, normalized by the sample mean expenditure. δix and δig are 0/1 flags for the 84 diagnoses5

or demographic categories, and the coefficients ωx and ωg are the relative weights for each. A fixed factor

increases the weight for low-income or long-term institutionalized individuals, since such individuals generally

have more severe forms of diagnoses. An individual with a weight of one is expected to spend the sample

average E .

The subsidy a plan receives for an individual is the product of the plan’s bid and the sum of the individual’s

demographic and diagnostic weights. Scaling weights by a plan’s bid allows subsidies to increase with the

overall generosity of a plan’s benefit design.

5Robst et al. (2007) refer to 87 diagnoses; we disregard two related to Cystic Fibrosis because of extreme rarity, and we treat
as a single diagnosis two that were constrained in Equation 1 to have the same coefficient.
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To see how the original subsidy system works, suppose an insurance plan enrolls a 66-year-old man

(never disabled, not low-income, not institutionalized). His medical claims from the previous year reflect an

Infectious Disease. The total weight for this man is the ωx for Infectious Disease, 0.073, and the ωg for his

demographic category, 0.355. A plan that bids the national average for 2010 ($1060) would receive $454 for

this man. A more generous plan bidding $1500 would receive $642.

As explored in Carey (2017), technological change in the form of the entry of new molecules and the

onset of generic competition (among other forces) caused actual treatment costs in Part D to drift from the

subsidy weights set in the initial calibration. Therefore, Medicare revised the subsidy system for 2011.

2.4 The Subsidy System Revision

The subsidy system revision, detailed in Kautter et al. (2012), altered the diagnostic definitions and recali-

brated the weight associated with each diagnosis (the conversion of weights to subsidies remained the same).

Firstly, diagnostic definitions were altered by reorganizing the ICD-9 codes. For example, the diagnoses

Quadriplegia and Motor Neuron Disease & Spinal Muscular Atrophy in the old subsidy system are collapsed

into one diagnosis – Spinal Cord Disorders – in the new system. Chronic Renal Failure, on the other hand,

is expanded from one diagnosis to four subtypes. Various forms of cancer are completely reorganized.

In addition, each diagnosis and demographic category now comes in five subtypes for disabled × low-

income status and long-term institutionalized. This is because those factors can dramatically change the

expenditure associated with a given diagnosis. A subsidy weight for each subtype was intended to better

align a diagnosis’s subsidy and a plan’s expenditures for that diagnosis.

Finally, Equation 1 was reestimated using the claims and diagnoses of individuals enrolled in free-standing

Part D in 2008.6 The introduction described the change in subsidies for two diagnoses – HIV/AIDS and

Multiple Sclerosis – which were defined by the same ICD-9 codes in both the new and old systems. The

subsidy update for those two diagnoses suggests that many diagnoses received much larger or smaller subsidies

in 2011 relative to 2010. Later, we develop evidence that this is indeed the case.

We have seen that, firstly, beneficiaries’ plan choices are characterized by private information on their

drug needs; secondly, insurers can attract individuals by generous benefit design for drugs that treat their

diagnoses; and, finally, the subsidy system and its revision provide variation over time in the subsidy a plan

receives for each diagnosis and demographic category. In the next section, we explore this interaction in a

simple theoretical model.

6The 2010 Affordable Care Act gradually closed the doughnut hole in the Basic Benefit through a combination of increased
insurer liabilities and drug firm discounts. To compensate insurers for the increased liability, the risk adjustment was again
recalibrated for 2012. This revision, detailed in the Appendix, resulted in very minor changes to subsidies.
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3 Conceptual Model

While original results date to Marshall (1890), the pass-through of taxes or subsidies to consumer prices

(premium and OOP costs in our framework) has recently been revived in the theoretical literature (Weyl

and Fabinger, 2013; Fabinger and Weyl, 2015). In this section, we apply the recent results to show how

insurers in Part D would respond to changes in the subsidies. We adapt the canonical model to determine

how insurers might differentially pass-through to premiums and OOP costs. In addition, we discuss how

adverse selection into Part D or drug demand elasticity might affect our interpretation of estimated pass-

through rates.

3.1 Subsidy Pass-Through

As a baseline model, we greatly simplify the Part D market. Suppose Medicare beneficiaries can be rep-

resented as a set of homogeneous individuals with the same level of illness, each consuming one unit of

prescription drugs. In this case, we can ignore individual-level heterogeneity and represent an enrollee’s

expenditure in plan p by by mp, where mp is the sum of premium and OOP costs for one unit of drugs in

plan p. Let D(mp) represent enrollment in plan p when it sets the sum of premium and OOP costs to mp,

with D′ < 0 and D′′ > 0. For each individual enrolled in insurance, the insurer receives subsidy r for their

enrollment, purchases the drugs at κ. Insurer profits are thus D(mp)[r − κ+mp].

Assume insurers are symmetric: mp = m. Weyl and Fabinger (2013) show that an insurer’s optimal

choice for m for a large range of demand systems can be captured by the following first order condition:

FOC: r − κ+m = −θ D(m)

D′(m)
= θµ

In this expression µ = − D(m)
D′(m) and θ ∈ [0, 1] measures the level of insurer competition, with 0 represent-

ing perfect competition and 1 representing a monopoly insurer.7 Implicitly differentiating the first order

condition we obtain a simple relationship for the response of m to a change in r

∂m

∂r
= − 1

1− θµ′
= −ρ

The pass-through rate ρ8 depends crucially on µ′ = −D
′2−DD′′

D′2 . The sign of µ′ determines whether, in

imperfect competition, the rate of pass-through is above or below 1. Mathematically, µ′ takes the sign of the

second derivative of the log of demand. To build intuition, consider a monopoly insurer (θ = 1). If the log

7Weyl and Fabinger (2013) allow θ to vary with m, but for simplicity we will not allow this dependence. They show that
several imperfectly competitive markets, such as homogeneous products oligopoly, are characterized by a θ that does not vary
with m.

8Following the literature, we define ρ as a positive parameter, such that the effect of a subsidy increase on m is −ρ.
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of D is linear, µ′ = 0, and pass-through to OOP costs would be 1, or perfect pass-through.9 An increase in

subsidy would cause the insurer to reduce m one-for-one, leading to the same markup (r−κ+m) but a larger

share. The demand elasticity is lower at this new lower m. The economic implication of log-concavity is

that the same unit decrease in OOP costs would lead to a region of even less elasticity than in the log-linear

case. In response to the inelasticity, the insurer chooses a higher m than is chosen in the log-linear case,

leading to pass-through between zero and one.

One of the immediate consequences of Weyl and Fabinger’s equation is that pass-through approaches one

as markets become more competitive, meaning as θ approaches 0. Furthermore, if pass-through is below one,

it will approach one from below. In our setting, this prediction means that pass-through should be larger

(more negative) in Part D markets that are more competitive. We test this prediction in Appendix Section

A.5.

3.2 Subsidy Pass-Through to Premiums vs. Out-of-Pocket Costs

In the previous section, we simplified an individual’s spending in Part D to m, the sum of both premiums

and OOP costs. In practice, plans set a multidimensional vector comprised of the plan premium and the

OOP costs cx for each of X diagnoses. All enrollees pay the premium, while enrollees only consider the

OOP costs for the diagnoses they have. We consider two kinds of subsidies: broad, meaning they affect all

enrollees, or targeted, meaning they affect only a subgroup.

In order to consider how pass-through differs across these dimensions, we will consider a setting where

there are two diagnoses; individuals have only one diagnosis of the two and it is known to them at the time of

plan selection. Because diagnoses are known, demand for enrollment among those with diagnosis 1 depends

on the sum prem + c1 while demand for those with diagnosis 2 depends on the sum prem + c2. Using the

sum of these variables is necessary because models with multiple non-additive strategic variables generally

cannot be solved analytically.10 However, because the key parameters always appear added together, profit

maximization only identifies the sum of premium and OOP costs that is optimal; the optimal division

between the two parameters is not given by the model. Still, we can make progress by assuming a plan is

setting optimal premium and OOP costs at baseline and then reacts to an increase in a subsidy.

Assume that the demand functions for diagnoses 1 and 2 are identical, as are the initial subsidy r and the

price of drugs to treat the diagnoses κ. Plans are constrained to a single premium premp for all enrollees but

9An example of log-linear demand is D(m) = exp(am) for a < 0. Then ln(D(m)) = am, with the first derivative of ln(D(m))
equal to a and a second derivative of zero. The elasticity of demand is equal to −am, which is lower at lower m.

10Rothman (2015) studies pass-through when firms are setting a two-part tariff, which is analogous to Part D plans choosing
an annual premium for enrollment as well as OOP costs that are incurred upon filling prescriptions. In contrast to the model
we consider here, the two elements of a two-part tariff cannot be combined additively as arguments for demand or profits.
Rothman shows that there are no clear predictions for pass-through in this setting; it depends on the covariance of demand for
the two goods. An increase in the cost of the first good could lead the firm to actually increase the second’s price (rather than
decrease it).
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can set different OOP costs c1p and c2p. However, given identical demand, subsidy, and drug prices, plans

initially set the same OOP costs cp. Thus, we denote the sum of premiums and OOP costs as mp for both

diagnoses, and furthermore let φ represent the per-person profits at the initial subsidy level: φ = r−κ+mp.

Πpre = 2D(premp + cp)[r − κ+ premp + cp] = 2D(mp)[r − κ+mp] = 2D(mp)φ

3.2.1 Pass-Through of a Targeted Subsidy

Suppose then that there is an exogenous increase of ε in the subsidy for diagnosis 1. Insurers could consider

lowering either premium, OOP costs for that diagnosis, or OOP costs for the other diagnosis. Using the

model developed in the previous section, we know that plans will lower the sum of premium and OOP costs

by ρε. We will show that pass-through to c1p creates higher profits than pass-through to c2p or premp.

We first show that if the subsidy for diagnosis 1 increases, the plan prefers reducing c1p to reducing c2p.

Intuitively, the revenue lost by reducing c1p is offset by the increased subsidy for those with diagnosis 1;

there is no such offset for those with diagnosis 2.

Πpost,pass-through to c1p > Πpost,pass-through to c2p

Π for diag 1︷ ︸︸ ︷
D(mp − ρε)[φ+ ε− ρε] +

Π for diag 2︷ ︸︸ ︷
D(mp)φ >

Π for diag 1︷ ︸︸ ︷
D(mp)[φ+ ε] +

Π for diag 2︷ ︸︸ ︷
D(mp − ρε)[φ− ρε]

D(mp − ρε)[φ+ ε− ρε− φ+ ρε] +D(mp)[φ− φ− ε] > 0

D(mp − ρε)−D(mp) > 0

The inequality holds as long as D′ < 0.

Next, we derive the conditions under which the plan prefers reducing c1p to reducing premp after an

increase in the subsidy for diagnosis 1.

Πpost,pass-through to c1p > Πpost, pass-through to prem

Π for diag 1︷ ︸︸ ︷
D(mp − ρε)[φ+ ε− ρε] +

Π for diag 2︷ ︸︸ ︷
D(mp)φ >

Π for diag 1︷ ︸︸ ︷
D(mp − .5ρε)[φ+ ε− .5ρε] +

Π for diag 2︷ ︸︸ ︷
D(mp − .5ρε)[φ− .5ρε]

On the RHS of the inequality, the premium decrease is half the size of the decrease for c1p, which leads to

the insurer reducing weighted prices by the same amount in the two situations.11 Rearranging the inequality

+ by convexity of D︷ ︸︸ ︷
[D(mp − ρε) +D(mp)− 2D(mp − .5ρε)]

+︷︸︸︷
φ +

+︷ ︸︸ ︷
[D(mp − ρε)−D(mp − .5ρε)][ε− ρε] > 0

This inequality will always hold when pass-through is less than 1 (as we find empirically), and can still hold

11See Appendix Section A.1 for a discussion of this assumption, as well as an exploration of alternatives.
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even with pass-through rates slightly above 1. This finding suggests that targeted subsidies will be applied

to the strategic variable most important in the demand function of the affected population. For diagnostic-

specific subsidies, this suggests that pass-through will be to the OOP costs rather than the premium.

3.2.2 Pass-Through of a Broad Subsidy

Another possibility is that a broad subsidy increase raises r for both diagnoses. Since both enrollees and

plans care only about the sum of OOP cost and premiums, insurers are indifferent between reducing OOP

cost or premiums. However, it is uncertain whether the plan would prefer to pass-through the subsidy

increase equally between the two diagnoses or focus the reductions on a single diagnosis.

Πpost,pass-through to both > Πpost, pass-through to c1p

Π if pass-through to both︷ ︸︸ ︷
2D(mp − ρε)[φ+ ε− ρε] >

Π for diag 1 if pass-through to c1p︷ ︸︸ ︷
D(mp − 2ρε)[φ+ ε− 2ρε] +

Π for diag 2 if pass-through to c1p︷ ︸︸ ︷
D(mp)[φ+ ε]

2D(mp − ρε)[φ+ ε]− 2D(mp − ρε)[ρε]−D(mp − 2ρε)[φ+ ε] + 2D(mp − 2ρε)[ρε]−D(mp)[φ+ ε] > 0

[2D(mp − ρε)−D(mp − 2ρε)−D(mp)]︸ ︷︷ ︸
− by convexity of D

[φ+ ε]︸ ︷︷ ︸
+

+ 2[D(mp − 2ρε)−D(mp − ρε)]︸ ︷︷ ︸
+

[ρε]︸︷︷︸
+

> 0

The inequality only holds if demand is not very convex. To understand the economic intuition, if a plan passes

the subsidy through to both consumer types, demand for those with diagnosis 1 increases from D(mp) to

D(mp− ρε). If the plan targets pass-through only on the type 1 consumers, there is an incremental demand

increase from D(mp − ρε) to D(mp − 2ρε), which is larger than the initial increase due to convexity. If

demand is very convex, the plan gets a large demand response from those with diagnosis 1 and decides to

concentrate all subsidy increases on them. Note that demand that is very convex is not log-concave.

3.3 Predictions for Pass-Through in Part D

In the previous sections, we generated theoretical predictions for an insurer setting premiums and diagnosis-

specific OOP costs who faces an increase in subsidy. When the subsidy is tied to a particular diagnosis, the

insurer will generally choose to reduce the related OOP costs. The insurer’s optimal strategy when subsidies

increase broadly for all enrollees is less clear, and dependent on parameters. In this section, we apply these

predictions to the Part D setting.

Our empirical analogue to the “targeted” subsidy increase considered in the model is a diagnostic increase.

However, there is no exact analogue over our sample period to a “broad” subsidy increase. The demographic

component of Part D subsidies is closer to a “broad” subsidy, in that it affects enrollees irrespective of

diagnoses. In particular, the characteristics that define demographic groups do not strongly predict increased

demand for particular drugs, and thus an insurer cannot differentially appeal to particular demographic
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groups by selective improvement to OOP costs.

An important assumption in the model is that demand functions for the two diagnoses are identical.

Suppose that the subsidy for diagnosis 1 increases, but demand for diagnosis 1 is perfectly inelastic. The

insurer would direct pass-through to diagnosis 2. If the Part D subsidy revisions are concentrated on

diagnoses where demand is particularly inelastic, that could lead Part D insurers to direct pass-through to

alternative diagnoses where demand is elastic. Carey (2017) shows that subsidy inaccuracies are related to

new drug entry and the onset of generic competition, which would not obviously be correlated with demand

parameters.

Some studies of Part D demand have suggested that consumers are less responsive to OOP costs than

they are to premium (Abaluck and Gruber, 2011). The low salience of OOP costs is a countervailing force

that could lead plans to concentrate pass-through on premiums. In Appendix Section A.2 we adapt the

models of Agarwal et al. (2014) and Heidhues et al. (2016) to include a parameter that allows OOP costs

to be less salient in demand than premium. As salience of OOP costs falls, insurers are more likely to

concentrate pass-through on premium rather than OOP costs.

The differing institutions surrounding premium-setting and the determination of OOP costs could also

influence pass-through to each. Plans submit a detailed “bid” to CMS; while the bid must be supported

by data on the plan’s expected cost, the plan has the ability to set a profit margin. Thus, while premiums

must be rationalized by cost, a plan can pick its optimal premium within a range. Out-of-pocket costs are

somewhat more constrained. Plans using coinsurances are setting OOP costs as a percent of list prices;

plans typically pick round numbers (25, 33, 50) as coinsurance rates. And drug list prices are very similar

across plans, limiting the possibility of desired OOP cost adjustments to be generated by price adjustment.

For plans using tiered copays, the number of tiers is usually four or five, meaning that while a plan can

adjust copays by moving drugs between tiers as well as changing the copay associated with each tier, the

plan has to choose from a set of discrete copays for each drug. Conlon and Rao (2020) show that the typical

pass-through models only apply to a setting with continuous choice variables; when choice variables are

discrete, pass-through rates can be above or below the predictions under continuity.

Finally, we note that 13% percent of Part D enrollees have no diagnoses. If these individuals are not

responsive to OOP costs for any particular diagnosis, premium reductions are the only way to attract such

individuals.

3.4 Interpreting the Pass-Through Rate

Finally, once we obtain a pass-through rate, there are two further considerations in interpreting it: adverse

selection into Part D and drug demand elasticities.
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If new individuals join Part D in response to the revision and have a different level of illness than

current enrollees, then the estimated pass-through rate could be inaccurate. Cabral et al. (2018) explore

this possibility in the context of Medicare Advantage. Suppose the subsidy revision raises the subsidy for a

given diagnosis from Sx10 to Sx11, and that plans then lower OOP costs for drugs treating that diagnosis.

Assume that some uninsured individuals choose to join Medicare Part D due to the improved benefits for

their diagnosis, and assume they have milder forms of the diagnosis, as would be suggested by Polyakova

(2016). In this case, we would measure a plan’s subsidy increase as Sx10 − Sx11, but would neglect the

increase in profitability for diagnosis x among new enrollees. We would estimate a pass-through rate that is

larger in magnitude (more negative) than the truth, because we would be comparing a change in OOP cost

to an underestimate of the change in subsidy. In Section 7.1 we consider this potential source of bias.

Another distortion to pass-through rates arises if drug demand is strongly responsive. Above we modeled

enrollment into Part D, because enrollment in a plan is the key condition for subsidy receipt. However,

in reality there is a second stage in which drug demand as a function of OOP costs is realized. Consider

again a subsidy that increases from Sx10 to Sx11, and suppose we find that OOP costs fall from cx10 to cx11.

If individuals with x increase the quantity of drugs that treat x, this would partially offset the measured

increase in subsidy. In this case, our estimated pass-through rate would be overstated. In Section 7.2 we

examine the response of drug demand to the subsidy revision.

4 Measuring Subsidy Updates

We now move to testing the predictions generated by our theoretical model. In this section, we describe a

substantial subsidy system revision in Medicare Part D. The subsidy update is the independent variable in

our estimation of pass-through rates.

4.1 Data

This research combines Medicare claims data with the publicly-available Part D benefit designs. Our Medi-

care claims dataset provides medical and prescription drug claims for a 5% panel of Part D enrollees between

2008 and 2012. The medical claims enable us to assign diagnoses to individuals in the exact same way as

Medicare: if an individual has a medical claim with a specified ICD-9 code in year t−1, the subsidy given to

their Part D plan in year t will reflect that diagnosis. Diagnoses can only be observed for individuals enrolled

in fee-for-service Medicare (not Medicare Advantage) because claims from Medicare Advantage enrollees are

not released to researchers for the relevant years.

The benefit designs of all Part D plans are contained in the Prescription Drug Plan Formulary files for

the years 2009 through 2012. The Formulary files contain coverage and, if covered, OOP costs for all drugs
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and all plans. For all covered drugs a “list” price for the plan is also reported, but the price is before an

unobserved rebate. In 2011, rebates amounted to about 15% of the list price of branded drugs in Part D

(Office of the Inspector General, 2018).

4.2 Measurement of Change in Individual-Level Subsidies

In order to examine the pass-through of subsidy changes, we determine the change in subsidy for each

characteristic (demographic category or diagnosis) in the risk adjustment system. As discussed in Section 2.3,

this step is nontrivial because the revision also altered diagnosis definitions and the treatment of demographic

categories. To measure the updates, we calculate the total subsidies for Part D enrollees in 2011 under both

the new and old subsidy systems. Both new and old subsidies are based on the same underlying data; only

the risk adjustment system varies. We introduce the notation Si(system, data year) to denote individual i’s

subsidy based on a given subsidy system and a given year’s data12. ∆Si = Si(new, 2011)− Si(old, 2011) is

the difference in an individual’s subsidy induced solely by the subsidy revision. We measure ∆Si for 764,621

individuals enrolled in free-standing Part D in 2011 and in fee-for-service Medicare in 2010, and report its

distribution in Panel (a) of Figure 1.13 The average change in subsidy holding characteristics fixed is -$31.14

The variants Sdiag
i (system, data year) and Sdemo

i (system, data year) denote the diagnostic and demo-

graphic components of the subsidy15. Panels (b) and (c) in Figure 1 reports the distribution of ∆Sdiag
i and

∆Sdemo
i . We first note that the overall decrease in total subsidy is the sum of an increase in demographic

subsidies of about $91 and a $122 average decrease in diagnostic subsidies.16 We also point out the bimodal

distribution of the change in demographic subsidies; many demographic categories had only small changes

in their risk adjustment rate, but demographic risk adjustment for those who are long-term institutionalized

increased by several hundred dollars. For diagnostic risk adjustment, there is a point mass at no change for

individuals who have no diagnoses under either system.

12To simplify, we refer to a data year. But since the diagnostic information used in risk adjustment is retrospective while the
demographic information is concurrent, “data year 2011” refers to 2011 demographics and diagnoses from 2010 medical claims.

13Appendix Figure A.3 reports the distribution of Si(old, 2011) and Si(new, 2011) reports the distribution of total subsidies,
as well as its demographic and diagnostic components.

14However, if we instead examine the realized subsidy for the Part D population in 2010 and 2011, the change in subsidy
is much smaller at -$18, representing about 2% of the average 2010 subsidy. There are a number of possible explanations for
this fall in average subsidy. While total drug costs are slightly increasing over the time period, the subsidies are designed only
to compensate plans for their outlays. Much of the increase in total drug costs occurred for high-priced drugs for which plan
outlays are limited by government reinsurance.

15The demographic and diagnostic components are not entirely additively separable under either system. In the old system,
low-income subsidy receipt and long-term institutionalization are factor multipliers for the total subsidy. In the new system,
the subsidy weight for each diagnosis and age-gender category is defined for five subpopulations: low-income subsidy × disabled
and long-term institutionalized. We define the diagnostic subsidy as the component attributable to diagnoses alone in the old
system, and diagnosis × subpopulation in the new system. The demographic component is defined as the total subsidy less the
diagnostic subsidy.

16This decrease in diagnostic subsidies can arise if the diagnoses included in the risk adjustment system simply explain less of
the variance in spending in the new model than they were in the old model, such that more spending loads on the demographic
factors.
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Figure 1: Distribution of Change in Individuals’ Subsidies Induced by 2011 Subsidy Revision
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(a) Change in Total Subsidy
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(b) Change in Diagnostic Subsidy
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(c) Change in Demographic Subsidy

This figure depicts the difference between individuals’ subsidies induced by the revision of the subsidy system. The
histogram in Panel (a) reports the difference in total subsidy, ∆Si, while Panel (b) reports the difference for the
diagnostic component and Panel (c) the demographic component. Each histogram displays 100 bins and is bottom-
and top-coded to the minimum and maximum x-axis values.



4.3 Measurement of Change in Plan and Diagnosis Subsidies

In Section 5 we develop an estimation model to measure subsidy pass-through to enrollee premiums and

OOP cost. To measure the pass-through rate to premiums, we compare plan premiums to average subsidies

in each year 2009-2012. However, in order to isolate changes in a plan’s average subsidy that are attributable

to the subsidy system revision, we measure average subsidy in each year using plan j’s 2010 enrollment and

the enrollees’ 2010 characteristics: Sjt = 1
Nj2010

∑
i∈j in 2010 Si(system in year t, 2010). E.g., Sj2011 measures

the average subsidy a plan would expect if their 2011 enrollment was comprised of the exact same individuals

as their 2010 enrollment and those individuals had the same diagnoses and demographics. This measure

removes changes to a plan’s enrollment that may endogenously arise from its strategic behavior.

To measure the pass-through rate to OOP costs, we measure the subsidy a plan receives for each diagnosis

in the years 2009-2012. For the years 2009-2010, the subsidy for each diagnosis x (as defined by the old

system) is given by the weights ωx from Equation 1 multiplied into dollars using the national average bid.

However, because diagnoses are reorganized in 2011, we use the data to estimate the average change in

diagnostic subsidy associated with each diagnosis under the old definitions. To do so, we regress ∆Sdiagi on

a set of dummies for the 84 diagnoses δix.

∆Sdiagi = Sdiag
i (new, 2011)− Sdiag

i (old, 2011) =
∑
x

δixUx + εi (2)

The coefficients Ux capture the change in diagnostic subsidy associated with diagnosis x, which we refer to

as the “subsidy update” for diagnosis x. Our estimate of the subsidy associated with diagnosis x in the

years 2011 and 2012 simply adds Ux to the subsidy value for 2009 and 2010. We estimate Equation 2 using

764,621 individuals enrolled in free-standing Part D in 2011 and in fee-for-service Medicare in 2010.

Appendix Table A.2 reports each diagnosis’s old subsidy as well as the subsidy update Ux and its robust

standard error as estimated by Equation 2. The diagnoses are sorted by the magnitude of the old subsidy.

Note that standard errors are quite small relative to coefficients; we nearly always reject the hypothesis that

a diagnosis’s subsidy is the same under both systems.

Two figures illustrate the subsidy updates between 2010 and 2011. Figure 2 graphs subsidies before (x-

axis) and after (y-axis) the subsidy update, with the 45 degree line, which would imply no update, provided

for reference. The five most common diagnoses are labeled. Figure 3 shows the magnitude of subsidy updates

Ux across diagnoses, sorted by the magnitude of old subsidies. Updates are economically large; in addition,

it is clear that subsidy updates are not strongly related to the magnitude of old subsidies.17

17While Figure 2 suggests a slight positive association between the magnitude of the old subsidy and the size of the subsidy
update, the association is negative when we include HIV/AIDS, and is statistically indistinguishable from zero.



Figure 2: Diagnostic Subsidies Pre- and Post- Recalibration
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Each marker in this figure represents one of 75 diagnoses (excluding HIV/AIDS for scale). The diagnosis’s
2010 subsidy is measured along the x-axis, and the diagnosis’s 2011 subsidy along the y-axis. The five most
common diagnoses are identified in the legend.

Figure 3: Magnitude of Subsidy Updates
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This figure displays the subsidy updates reported in Table A.2. The 76 diagnoses used in later analyses are
arrayed along the y axis by increasing 2010 subsidy level.
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5 Measuring Pass-Through of Medicare Part D Subsidies

In this section, we exploit the subsidy changes measured in the previous section to estimate the pass-through

of subsidies to premiums and OOP costs.

5.1 Pass-Through of Subsidies to Premiums

To estimate pass-through of subsidies to premiums, our dependent variable is annual premiums for plan j

in year t. The independent variable is the average subsidy a plan receives using t’s subsidy system and plan

j’s 2010 enrollment: Sjt = 1
Nj2010

∑
i∈j in 2010 Si(system in year t, 2010). We also examine how premiums

respond to the diagnostic and demographic components of subsidies.

premiumjt = ηSjt + δj + δt + εjt (3a)

Our model also includes plan (δj) and year (δt) fixed effects. The plan fixed effects account for all time-

invariant aspects of plan premiums, while the year fixed effects account for annual differences in the Part D

program. Our equation is analogous to a two-way fixed effects difference-in-difference model: we compare

the change in premiums for plans receiving positive subsidy updates relative to plans that receive negative

subsidy updates. In this setting, the “parallel trends” assumption is that plans whose average subsidy was

increased or decreased by the subsidy revision would have otherwise evolved similarly to plans whose average

subsidy was similar under both subsidy systems.

Given our fixed effects, our key identifying variation arises from the difference in subsidy induced by the

2011 revision: ∆Sj = Sj2011 − Sj2010. In the left-hand column of Figure 4, we show a scatter plot of the

average change in subsidy between 2010 and 2011 (x-axis) and the change in annual basic premium between

2010 and 2011 (y-axis). Each marker represents a plan, and the size of the marker is the plan’s enrollment.

Panels (a) and (c) reveal that there is no relationship between the change in plan’s premiums and the change

in average total or diagnostic subsidy. However, panel (e) shows a strong negative relationship between

changes in demographic subsidies and premiums.

To support a causal interpretation of the relationship between subsidy and premium, the right-hand

column of the Figure 4 reports the results of the event study version of Equation 3a.

premiumjt =
∑

τ=2009,2011,2012

ητ∆Sj + δj + δt + εjt (3b)

In this event study, the subsidy update is used to predict changes in premiums between all three year

pairs, e.g. η09 measures the change in premiums between 2009 and 2010 associated with a one dollar
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(future) subsidy update. If η09 is small or zero, plans that will go on to have positive subsidy updates

changed premiums similarly in the pre-period to those that will go on to have negative subsidy updates.

The coefficients η11 and η12 measure the impact of the subsidy update, with η12 estimated separately in case

plans do not fully respond in the first year. η10 is normalized to zero. The standard errors are clustered at

the market level and the regression is weighted by the number of enrollees in plan j in year t.

The η coefficients are reported in Figure 4. Panels (b) and (d) show that premiums are not responsive

to the average subsidy or its diagnostic component. However, a $1 increase in a plan’s average demographic

subsidy is associated with a large reduction in the plan’s premiums in 2011, partially reversed in 2012. There

is no evident trend between 2009 and 2010 that explains this post-period pattern.

5.2 Pass-Through of Subsidies to Out-of-Pocket Costs

To measure the pass-through of subsidies to OOP costs, we first measure typical OOP costs associated with

each diagnosis in the subsidy system. Next, we propose our empirical model and report its results.

5.2.1 Measurement of Out-of-Pocket Costs

To begin, we characterize the typical demand for drugs that treat diagnosis x among those with the diagnosis

using the prescription drug claims in a fixed pre-revision year (2010). We then calculate the OOP cost of

taking the typically demanded drugs in each plan 2009-2012.18

To characterize the typical demand for drugs that treat diagnosis x, we first determine the set of such

drugs Dx. We identify this set using a one-versus-all classifier that takes advantage of our large sample of

individuals’ diagnoses and their prescription drug claims; we report full details in Appendix Section A.4.1.

We next total the months’ supply for each drug d ∈ Dx in each zone of coverage z in year 2010 of the claims,

averaging across all those who have the diagnosis Ix2010.19

monthsdz2010 =
1

Ix2010

∑
i

monthsidz2010

The use of zone-specific quantities accounts for the fact that those with expensive diagnoses tend to incur

most of their demand in later zones (e.g., the donut hole or catastrophic zones). We use 2010 claims because

demand after the revision may be induced by changes in OOP costs, and thus calculating the outcome under

2010 demand more cleanly estimates pass-through of subsidy to OOP costs.

Next, we compute the OOP costs in each plan for the estimated diagnosis-specific typical demand. The

OOP costs W for diagnosis x in plan j in year t are equal to the dot product of typical (2010) demand for

18Part D enrollees who get the low-income subsidy also receive a cost-sharing subsidy that further reduces their OOP costs.
We define OOP cost to be the amount before cost-sharing subsidies, since this is the plan’s choice variable.

19A difficulty arises here about how to handle those who take drugs that treat the diagnosis but do not have an ICD-9 code
for the diagnosis in their medical claims; our approach is described in Appendix Section A.4.2.
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Figure 4: Impact of Change in a Plan’s Average Subsidy On Premiums
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Panel (a) reports the scatter plot of a plan’s change in premiums between 2010 and 2011 (y-axis) and the
change in a plan’s average total subsidy (∆Sj = Sj2011 − Sj2010, holding the plan’s enrollment and the
enrollee characteristics fixed at their 2010 levels) on the x-axis. Panel (c) and (e) use the same y-axis but
use the diagnostic (c) or demographic (e) components of subsidy. The marker size represents the number of
enrollees in 2010, and the weighted least squares line is also reported. Panels (b), (d), and (f) report the
event study coefficients estimated by Equation 3b representing the impact of the change in total (b),
diagnostic (d), and demographic (f) subsidies on annual plan premiums.



each drug that treats x and j’s OOP costs in year t, summed across the zones of coverage.

Wxjt =
∑
z

∑
d∈Dx

monthsdz2010 ∗OOP costjdzt

If a plan does not cover the drug in any zone of coverage, we impute OOP cost equal to the average price of

the drug in all plans in that year. We will examine coverage as an outcome variable in Section 6.2.

Figure 5 depicts a histogram of year-over-year changes in annual OOP costs Wxjt for diagnosis-plan

combinations. Two patterns in these histograms suggest the importance of the revision. The first is that the

peak at no change is notably lower at revision (panel b) than in the other two years. The second pattern is

that the share of plan × diagnosis combinations with reductions in OOP costs is much higher between 2010

and 2011, when many diagnoses received a subsidy increase.

5.2.2 Empirical Model for Pass-Through of Diagnostic Subsidies to Out-of-Pocket Costs

The effect of subsidies on OOP costs is estimated using Equation 4a.

typical
OOP

for diag x
in plan j
in year t︷ ︸︸ ︷
Wxjt = β

subsidy
for diag x
in year t︷︸︸︷
Sxt +

diag×plan
fixed
effect︷︸︸︷
δxj +

plan×year
fixed
effect︷︸︸︷
δjt +λ

∅ or
price
spline
or diag
trend︷︸︸︷
Xxjt +εxjt (4a)

The pass-through rate is captured by β, which gives the change in typical annual OOP costs for a $1

increase in subsidy.20 We include two sets of fixed effects: plan × diagnosis and plan × year. The fixed

effect δxj represents all time-invariant demand or supply factors that affect the OOP costs for this plan ×

diagnosis observation. This controls for unobserved drug efficacy and side effects, marginal cost of production,

or (time-invariant) market power of the drug’s maker. In addition, it controls for the plan’s time-invariant

preferences for individuals with this diagnosis, such as a strong negotiating position with the relevant drug

firms. The plan × year fixed effect corrects for any plan-level changes that treat all diagnoses equally, such

as a change in plan strategy that affects all OOP costs, and can also account for unobserved cost or demand

shocks that are not specific to diagnoses (e.g., brand effects, administrative costs). Given these fixed effects,

our identification comes within plan × diagnosis observations as subsidies vary over time due to the revision.

The key identifying assumption is that the pattern of OOP costs for diagnoses that received no or very small

subsidy changes is a good counterfactual for OOP costs for diagnoses with large subsidy changes.

20As discussed in Miller et al. (2017) and Muehlegger and Sweeney (2017), under oligopolistic competition pass-through of
a subsidy or cost shock is the sum of the direct effect on the firm’s price and the indirect effect of competitors’ price changes
inducing further price adjustment. However, only the net effect of these shocks can be obtained when the subsidy or cost shock
is industry-wide, as it is in our setting and that of Miller et al. (2017).
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Figure 5: First Differences in Typical Out-of-Pocket Cost in Consecutive Year Pairs
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Each panel reports a histogram of first differences in typical annual OOP costs for a given diagnosis in a
given plan between consecutive year pairs. The subsidy revision takes place between 2010 and 2011.



We weight each observation by the plan enrollment and the number of individuals with the diagnosis.21

We cluster our standard errors in two ways: at the plan × year and at the diagnosis × market. The first

clustering recognizes that plan benefit designs must comply with regulations requiring an actuarial value of

25%. While our plan × year fixed effect will absorb all positively correlated changes, these requirements may

induce negative cross-sectional correlation in OOP costs within a plan × year; if OOP costs exceed 25% of

price for some diagnoses, the OOP costs for others must be lowered to compensate. The second clustering

allows arbitrary correlation in how plans in the same market design benefits for a diagnosis. Errors may

be serially correlated across time in a diagnosis × market due to market-specific differences in diagnostic

subtype or treatment preferences, or cross-sectionally correlated across plans due to competition.

We report three specifications. The simplest uses only the subsidy and the fixed effects (Xxjt = ∅).

Our preferred specification adds controls that recognize the economic content of subsidy updates. Suppose

that drug prices for a particular diagnosis have been rising since 2000. Price rises through 2008 will be

incorporated into a positive subsidy update, but benefit designs in 2009-2012 will reflect the continued

increase in price between 2009 and 2012. This could induce a positive correlation between subsidies and the

error term of Equation 4a. In the below, we explicitly condition on the annual (pre-rebate) price for the

typical demand for diagnosis x in plan j in year t. In particular, we control for a linear spline in price at

ventiles of the price distribution.

In a more general sense, any persistent trends between 2000 and 2008 that affect benefit design can

generate a spurious correlation between the subsidy update and OOP costs that is not via the pass-through

of diagnosis-specific subsidies.22 We therefore consider models with a time trend in diagnosis x. In the

presence of the time trend, we are identifying β from any deviation from trend that occurs between 2010

and 2011.

We also estimate an event study implementation of Equation 4a. Similar to Equation 3b, the event study

interacts the change in subsidy with year indicators to predict OOP costs in each year. Each βτ represents

the change in OOP costs for that diagnosis × plan combination in year τ for a $1 increase in the subsidy

21In the framework of Solon et al. (2015), these weights recover the average partial effect of subsidies in the presence of
unmodeled heterogeneity across plans and diagnoses in the response of agents to the change in incentives. Such heterogeneity
would result if plans reoptimize benefits for popular diagnoses but ignore the long tail of uncommon diagnoses, or if larger plans
are more likely to reoptimize.

22To see why, suppose each year since 2000 insurers have simply raised the OOP costs for drugs that treat diagnosis x a fixed
amount Ix: OOPxt = OOPx00 + Ixt. Medicare’s subsidy recalibration process finds that the diagnosis-specific costs in 2008 are
a linear function of OOP costs plus some error: ωx08 = ρOOPx08 + νx08, where νx08 captures all the other features of costs in
2008. Subsidy in 2011 is set to ωx08. Insurers continue to raise OOP costs, so for example the change in OOP costs between
2010 and 2011 is simply Ix. In our analysis, we will calculate that the subsidy update is Ux = ωx08−ωx00 = ρ(8Ix)+νx08−νx00.
If we use this subsidy update to identify Equation 4a we will find that the change in subsidy and change in OOP costs are
correlated through Ix. But there is no “pass-through” in this setting – it is simply that a time trend in OOP costs influences
both the updated subsidy and the change in benefit designs that interests us.
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between 2010 and 2011.23

typical
OOP/coverage

for diag x
in plan j
in year t︷ ︸︸ ︷
Wxjt =

∑
τ=09,11,12

βτ

subsidy
update

for diag x︷︸︸︷
Ux 1(t = τ) +

∅ or
price
spline︷︸︸︷
Xxjt +

diag×plan
fixed
effect︷︸︸︷
δxj +

plan×year
fixed
effect︷︸︸︷
δjt +εxjt (4b)

Figure 6: Event Study: Impact of Diagnosis Subsidy Updates Over Time
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These figures depict the coefficients from estimation of Equation 4b. Panel (a) has no controls, while Panel
(b) controls for a price spline.

We present the event study coefficients in Figure 6. We find that diagnoses that go on to have positive

subsidy updates were slightly raising their OOP costs between 2009 and 2010. This movement is what we

would expect if, prior to the subsidy revision, these diagnoses were becoming more expensive and plans were

raising OOP costs to compensate. After the revision, there is a large apparent reduction in OOP costs. While

ideally the coefficient on β09 would be statistically zero, it’s clear from these event studies that response to

the subsidy update is large relative to pre-existing trends.

5.3 Comparing Pass-Through to Premiums and Out-of-Pocket Costs

The event studies in Figures 4 and 6 support the interpretation of ηt and βt in Equations 3a and 4a as

pass-through rates. Table 1 reports these estimated pass-through rates. Panel A summarizes our findings

for pass-through to premiums: no pass-through of total subsidy or diagnostic subsidy, but a pass-through

23Estimating the specification with the diagnosis-specific trend from Equation 4a would require normalizing another βτ to
zero, because the three year-over-year changes cannot identify three βτ coefficients as well as a diagnosis-specific trend. Thus,
we exclude the diagnosis-trend specification from event study estimation.

27



Table 1: Pass-Through to Premiums and Out-of-Pocket Costs

Panel A: Premium
total subsidy -0.0072

(0.0628)
diagnostic subsidy 0.0606

(0.0506)
demographic subsidy -0.7390*

(0.2310)
fixed effects plan, year
N 4,824 plan × year obs

Panel B: Typical Annual OOP Cost
Specification: none price spline diagnosis trend
diagnostic subsidy -0.466** -0.369** -0.467**

(0.0508) (0.0319) (0.114)

fixed effects plan × diagnosis, plan × year
N 397,100 plan × diagnosis × year obs

This table reports the pass-through rates estimated for premiums
using Equation 3a and for OOP costs using Equation 4a. In panel
A, the dependent variable is annual premiums in the years 2009-
2012, and the independent variable is the plan’s average subsidy
(total, diagnostic component, or demographic component) using
the risk adjustment system in year t and the plan’s enrollment in
2010. Analyses are weighted by plan enrollment and standard er-
rors are clustered on the market. In panel B, the dependent vari-
able is the typical annual OOP cost for a diagnosis in a plan in
the years 2009-2012, measured as described in Section A.4.2. The
independent variable is the subsidy for that diagnosis, measured as
described in Section 4.3. In Panel B, analyses are weighted by plan
enrollment and the number of Part D enrollees who have the diag-
nosis, and standard errors are two-way clustered on plan×year and
diagnosis×market. +, * and ** represent significance at the 10, 5
and 1 percent levels.



rate of 74% of demographic subsidies to premium (SE 23pp). In Panel B, all three specifications estimating

pass-through of diagnostic subsidy to OOP costs find a rate of about 40%, with overlapping confidence

intervals.

In Section 3.2 we developed a theoretical model suggesting that diagnosis-specific subsidies should be

passed through exclusively to the diagnosis’s OOP costs. Table 1 reports considerable pass-through of

diagnosis-specific subsidies to OOP costs (40%) but no statistically-significant pass-through to premiums.

Thus, these empirical findings are consistent with our theoretical model. When diagnosis-specific subsidies

increase, insurers focus pass-through on the strategic variable that most affects those with the diagnosis.

The analysis suggests that the demographic component of subsidies is passed-through to premiums. Our

theoretical model suggested that pass-through to premium was more likely for a broad subsidy that affected

all enrollees. The demographic component of subsidies is not exactly a broad subsidy as represented in

the model: it is specific to a given demographic category. However, the characteristics that define the

demographic groups – age, sex, disability, long-term institutionalization – are not clearly linked to any

particular drugs. Thus, the insurer cannot differentially attract individuals in the given demographic category

through selective reductions in OOP costs. In the theoretical model, we suggested that the insurer may be

indifferent between passing-through a broad subsidy to premium or to a broad reduction of OOP costs.

However, any lower salience of OOP costs would push the insurer to favor reducing premium.

One final possibility to consider is how subsidies are passed-through to overall OOP costs. This is not

tested explicitly in Equation 4a because of the plan × year fixed effect. However, we can collapse across

diagnoses x to create the average OOP costs in a plan. Using the average OOP costs in a plan as the

dependent variable in Equation 3a, we find no response of average OOP costs to subsidies.24

6 Mechanisms of Insurers’ Benefit Design Response

Having established in Section 5.2 that insurers indeed reduce the OOP costs for drugs that treat diagnoses

with subsidy increases, we now turn to the exact margins of insurers’ responses. We find that insurers largely

achieve OOP cost reductions by improving benefits for branded drugs – covering slightly more branded drugs

and moving branded drugs to lower formulary tiers. Insurers may also choose to reduce non-price “utilization

management” barriers, or may choose to increase them to offset moral hazard induced by lower OOP costs;

we find mixed results on the response of utilization management to subsidy changes.

24Results available upon request.
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6.1 Empirical Model for Benefit Design Response

In Section 5.2, we aggregated OOP costs for drug × plan observations using the typical annual demand in

order to correctly measure the pass-through rate for an annual diagnostic subsidy. In this section, we return

to outcomes at the level of the drug × plan × year. This change in the unit of observation allows us to subset

on key drug characteristics such as brand/generic status, as well as to study outcomes such as formulary

tier that only have ordinal meaning within a plan. The disadvantage of this approach is that the effect of a

diagnosis’s subsidy on a single drug’s OOP cost cannot be interpreted as a pass-through rate. However, the

direction and magnitude of these effects indicate exactly how insurers are responding.

Figure 7: Distribution of Benefit Design Outcomes: Number of Tiers, Proportion of Drugs on Each Tier,
and Coverage Status
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The left-most bar represents the share of plans (2009-2012), weighted by enrollment, in each of four
categories of plan design: Basic Benefit, four tiers, five tiers, or another plan design. The two central bars
represent the share of plan × drug × year observations on each tier of coverage among four tier and five
tier plans. The right-most bar represents the share of plan × drug × year observations in each of six
categories: covered generics, covered brands, covered brands with an exact generic substitute, and the
uncovered complements of each. The second, third, and fourth bars weight each plan × drug × year
observation with the plan enrollment and the number of individuals who take the drug in Medicare
Advantage (the same weighting applied in Equation 3).

We first describe the benefit designs in use in Part D plans over the sample period. The first column

in Figure 7 shows the distribution of plans across four types, weighted by plan enrollment. Recall from

Section 2.2 that insurers can trivially satisfy the Part D actuarial value regulations by offering the “Basic
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Benefit” of 25% coinsurance for all drugs. Ten percent of plans are taking this option and thus not exercising

any diagnosis-specific latitude.25 For plans choosing to exercise more fine-grained control of benefits, drugs

are commonly placed on “tiers”. Drugs on the same tier in a plan have a uniform dollar copay (or, less

commonly, coinsurance rate), with the copay rising with the tier. Favorable tier placement is traded off

for higher discounts in price negotiations with drug manufacturers. In 2010, the modal benefit design has

four tiers: a generics tier, a preferred brands tier, a non-preferred brands tier, and a specialty tier.26 The

first three tiers have flat copays while the specialty tier, where expensive and less-common drugs are placed,

usually has a coinsurance.

The second column of Figure 7 shows the distribution of drug × plan × year observations across the

four tiers among four-tier plans. We weight each observation by the product of plan enrollment and the

number of MAPD enrollees who take the drug, which is the same weighting we use in estimation below and

analogous to the weighting for Equation 4a.27 The fourth tier, commonly the specialty tier, is depicted but

too small to be visible. A substantial fraction of other plans have five tiers, which usually implies a preferred

and unpreferred generics tier; the weighted distribution of drugs across tiers in these plans is depicted in the

third column of the figure (again the top tier is not visible).

We will examine benefit design outcomes separately for brands and generics because both the formulary

treatment and upstream markets differ between these two drug types. The last column of Figure 7 reports

the weighted distribution of drug × plan × years by coverage status for three drug types. “Brands” are

drugs whose ingredients are only sold in a drug with a brand name in the calendar year. Among drugs whose

ingredients are sold in generic drugs, we distinguish between brands with a substitute (i.e., branded Lipitor

after the entry of generic atorvastatin) and generics (atorvastatin). More than half of the observations are

covered generic drugs, generally occupying the first tier in four tier plans and the first two tiers in five tier

plans. Covered brands as well as covered brands with substitutes occupy the upper tiers. Weighted rates of

coverage are high for generics (98%) and moderate for brands (91% of brands without substitutes, 84% of

brands with substitutes).

This figure motivates our four key benefit design outcomes Ydjt. The first is the monthly OOP cost for a

drug d in the initial coverage zone in plan j in year t. The diagnosis-level outcome Wxjt in the pass-through

estimation reflects costs in all four zones of coverage, but OOP costs in the initial coverage zone account for

the majority of all OOP costs. If drug d is not covered by plan j, the OOP cost is imputed to the average

price for the drug among covering plans. Thus, our next outcomes decompose changes in OOP cost into

25When analyzed separately, “Basic Benefit” plans tend to adjust benefit design parameters less than other plans, as expected,
but standard errors are large due to small sample size. Results available upon request.

26For 2010 only, we have an auxiliary dataset that reports plans’ descriptions of the type of drugs on each tier. This dataset
is not available for other years. Not all four-tier plans in 2010 are using these tier types.

27For these drug-level analyses, we use utilization in Medicare Advantage to reduce sensitivity to the subsidy revision.
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its two components: whether the drug is covered, and the OOP cost conditional on coverage. Finally, we

measure the tier of coverage of the drug in this plan.

Our estimation equation evaluating the impact of diagnosis-specific subsidies on benefit design outcomes

is:
benefit
design

for drug d∈Dx
in plan j
in year t︷︸︸︷
Ydjt = β

subsidy
for diag x
in year t︷︸︸︷
Sxt +

drug×plan
fixed
effect︷︸︸︷
δdj +

plan×year
fixed
effect︷︸︸︷
δjt +λ

∅ or
price
spline

or drug
trend︷︸︸︷
Xdjt +εdjt (3)

This equation is a direct analog to Equation 4a at the plan × drug level, so we highlight only the

differences in estimation details. We use the drug-diagnosis linkage described in Appendix Section A.4.1

to determine the set of drugs that treat each diagnosis x. We use a plan × drug fixed in order to isolate

the change in benefit design associated with the over-time variation in subsidies. The analyses are weighted

by plan j’s enrollment times the number of individuals who take drug d in Medicare Advantage. When

estimating this equation, we drop Basic Benefit plans, which are not actively designing benefits, and we

focus on generics and brands without substitutes, which represent more than 95% of drug demand in this

sample.

6.2 Response of Benefit Designs to Subsidy Revision

Before reporting the results of Equation 3, we support a causal interpretation by estimating an event study

analogous to Equation 4b for each outcome and subsample and reporting the results in Appendix Figures

A.4 and A.5. We again note that we cannot estimate an event study that includes the drug trend. The event

studies with no controls suggest some potential divergent pretrends, although all still show a sharp drop in

2011. The event studies with a price spline, our preferred specification, suggest parallel pre-trends with a

clear difference in 2011.

Panel (a) of Figure 8 reports our estimate of the effect of subsidies on OOP cost for branded and generic

drugs. Each coefficient is estimated in a separate regression. We can see that there is almost no response by

generics with copays. Instead, the reductions in OOP costs are driven by branded drugs.28

Out-of-pocket cost is determined by both coverage and the OOP cost conditional on coverage. Panel (b)

reports the coefficients, in percentage points, when the outcome is coverage. For both types of drugs, the

magnitudes of the changes in coverage are very small: in the model with no controls, $1 in increased subsidy

reduces coverage for generics by -0.00346 percentage points, off of mean of 98%, or increases coverage for

brands by 0.00412 percentage points off a mean of 91%. Thus, even a hundred-dollar increase in subsidy would

change coverage by less than half of a percentage point for either drug type. Panel (c) shows how the subsidy

28In contrast to the findings in Table 1, the coefficients differ for the branded drugs across specification. Our view is that the
price or trend controls are the preferred model.
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increase affects OOP costs conditional on coverage. These coefficients are not statistically distinguishable

from those in panel (a), suggesting that the primary way that plans are responding to the subsidy increase is

via altering OOP costs rather than adding or removing drugs from their formularies. Finally, panel (d) uses

formulary tier as the outcome (which exists only for covered drugs). While the coefficients reported in Panel

(d) of Figure 7 are raw (in units of “tier”), we note that the standard deviation of tier for brands is very

close to 1, so those coefficients approximate the effect in standard deviations. We can see that there is little

response of tier among generics, because most generics are already on the lowest tier. However, branded

drugs are significantly more likely to be moved to lower tiers in response to subsidy increases. The effect size

suggests that a $100 increase in subsidy would reduce a branded drug’s tier by 5% of a standard deviation.

Overall, these results suggest that the rate of pass-through is greater for brands than generics. There are

several reasons why this could occur. Firstly, Part D plans commonly cover all generics on the first tier, and

so there simply is not very much scope for plans to move generics to other tiers, distorting pass-through for

those drugs (Conlon and Rao, 2020). Secondly, generics are generally purchased from competitive upstream

suppliers while brands are commonly supplied by upstream monopolies. While it is possible to solve for

pass-through in the presence of an upstream monopoly, whether this rate is greater or less than the rate

when the upstream market is competitive depends on demand curvature parameters. Finally, brands are

much more expensive for Part D enrollees. If this greater expense means individuals are more sensitive to

OOP costs for these drugs when enrolling in plans, this would alter the curvature of enrollment demand for

these drugs, which would alter pass-through rates.

6.3 Response of Utilization Management to Subsidy Revision

Insurers also have non-financial strategic variables known as utilization management restrictions. These

restrictions affect the quantity demanded of a drug by requiring a patient to first try a cheaper competitor

(step therapy), requiring a plan’s agreement prior to prescription filling (prior authorization), or limiting the

quantity of the drug that can be purchased under the insurance (quantity limits). It’s possible that insurers

would reduce these restrictions in response to a subsidy increase, just as they reduce OOP costs, in order

to attract the enrollment of individuals who want to take these drugs. Alternatively, an insurer could pair

OOP cost reductions with utilization management increases, to reduce the moral hazard impact of the OOP

cost reductions. This strategy could arise if utilization management is less observable to potential enrollees

than OOP costs.

Appendix Figure A.6 reports the results of estimating Equation 3 using indicators for the three utilization

management tools. While utilization management tools are concentrated among branded drugs, we report

the effects for the same branded and generic subsamples as in Section 6.2. Panel (a) reports the results for
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Figure 8: Impact of Diagnosis-Specific Subsidies on Benefit Design Outcomes by Drug Subsample
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This figure depicts the β coefficients from Equation 3. Each coefficient represents the effect of a $1 increase
in the subsidy for the diagnosis the drug treats on the drug’s benefit design outcomes in a plan × year.
Each panel represents a different outcome. Within each panel, the coefficients are estimated separately for
generics and brands. Three specifications are reported: no extra controls (“none”), a price spline (“price”),
and a drug time trend (“trend”).



step therapy, which is overwhelmingly used only among brands. Increases in subsidy reduce the use of step

therapy for branded drugs, on the order of a 15% reduction in the prevalence of step therapy for a $100

increase in subsidies. Thus, step therapy and OOP costs react similarly to subsidy increases.

In Panel (b), we report the effects of subsidy on the use of prior authorization. We generally find increases

in the use of prior authorization as subsidy increases (although they are relatively small in magnitude). Thus,

it is possible that insurers institute prior authorization requirements in part to counter moral hazard induced

by lower OOP costs. In addition, prior authorization is unique among utilization management measures in

creating an opportunity for an interaction between an insurer and a prescriber. The insurer could use

this opportunity to ensure the prescriber has noted the diagnostic code that generates the subsidy before

authorizing this prescription. The rewards to noting the diagnostic code grow in the subsidy value.

In Panel (c), we report the effects of subsidy on the use of quantity limits. Quantity limits are by far the

most commonly used utilization management tool, even common among generic drugs. However, the most

common quantity limits still allow 30 days supply every 30 days, suggesting that many quantity limits allow

the standard course of treatment and are not important in practice. These results are mixed and sensitive

to specification, although coefficients are small relative to the mean.

Overall, our conclusion is that larger subsidies result in a small increase the use of prior authorization,

perhaps due to the importance of noting diagnoses, and reduce the use of step therapy.

7 Interpreting the Pass-Through Rate

In Section 3, we considered two potential issues that would affect our interpretation of our pass-through

estimates: a change in the pool of enrolled individuals in response to the subsidy revision, and a large drug-

demand response to reductions in OOP costs after diagnostic subsidy increases. In this section, we argue

that neither issue is economically important in our setting.

7.1 Response of Enrollment to Subsidy Revision

The first issue is whether individuals with diagnoses or demographics that receive subsidy increases differen-

tially begin to enroll in Part D in 2011. Enrollment into Part D is not mandatory, although there is a “late

enrollment” premium surcharge upon enrollment for individuals who choose to remain uninsured. Enroll-

ment of previously-uninsured individuals can affect our measurement of the change in subsidies. Suppose

Part D plans lower OOP costs by $0.40 after a diagnostic subsidy increase of $1, and uninsured individuals

with that diagnosis choose to join Part D as a result. If those individuals have milder forms of the diagnosis

and consume less prescription drugs, the enrollment of these individuals could make the effective increase

in the subsidy larger than $1 (because the enrollees induced by the subsidy increase are cheaper than the
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incumbent enrollees). A significant enrollment response would suggest that the true pass-through rates are

closer to zero than what is reported in Table 1.

The variation in the subsidies over time lets us directly estimate the enrollment response. Our analysis

uses as its key explanatory variable the subsidy change for each risk adjuster. For the diagnosis risk adjusters,

we use the diagnosis-specific subsidy changes Ux estimated in Equation 2 and reported in Appendix Table

A.2. For the demographic risk adjusters, we use the 2011-2010 change in demographic subsidies for 72

demographic bins created by the interaction of five enrollee types (disabled × dual eligible and long-term

institutionalized) and the age-sex bins used in demographic risk adjustment. Our key dependent variable

is the rate of Part D enrollment among Medicare beneficiaries who have this risk adjuster (i.e., have this

diagnosis or are in this demographic bin) and are in the market for Part D, meaning the union of those

enrolled in Part D and those not enrolled but without other prescription drug insurance.29 In Appendix

Figure A.7, the left-hand figures show a scatter plot of the changes in diagnostic and demographic subsidies

and the change in the enrollment rate between 2010 and 2011. We find that enrollment increases by about

1.8 percentage points1, but this increase is unrelated to the increase in either diagnostic of demographic

subsidies. The right-hand figures report on the estimation of an event study, Equation 4, which interacts

the change in the subsidy for either a diagnosis or demographic category (indexed by r) with year dummies.

The event study shows there is no response of enrollment to subsidy increases.

enrollment ratert =
∑

τ=2009,2011,2012

ητUr + δr + δt + εrt (4)

Because I can rule out significant enrollment effects of the subsidy revision, I can rule out economically-

meaningful selection effects. At the upper bound of the confidence interval, a one-dollar increase in a

diagnosiss subsidy increases enrollment among individuals with that diagnosis by 0.0001 percentage points,

such that even a hundred dollar increase would increase it by 0.01 percentage points. A one-dollar increase

in a demographic groups subsidy increases enrollment among that demographic group by at most 0.002

percentage points, such that a hundred-dollar increase would increase it by only 0.2 percentage points. The

upper-bound enrollment effects are too small to create an economically-meaningful selection effect.

7.2 Response of Drug Demand to Subsidy Revision

Another issue affecting interpretation of our pass-through rates is the possibility of a large drug-demand

response. In Section 3, we examined enrollment demand, holding drug demand conditional on enrollment

fixed at one unit per enrollee. However, pass-through to OOP costs can both increase enrollment among

29Thus, we exclude individuals enrolled in Medicare Advantage Part D plans, those receiving the retiree drug subsidy, and
those known by Medicare to have “other creditable prescription drug coverage”.
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those with the diagnosis (modeled) and increase drug demand conditional on enrollment (unmodeled). If

this second effect is present and large, it would distort our measurement of pass-through. E.g., if a subsidy

increased by $1 and OOP costs fall by $0.40, but a drug demand response increased plans’ outlays, the

pass-through estimate should reflect the subsidy increase net of the increased plan outlays.

In Appendix Section A.6 we describe our estimation of the elasticity of drug demand, using the subsidy

system update as an input cost shock in an instrumental variables (IV) demand estimation. By exploiting

the revision of the subsidy system in an individual-level panel of drug demand, we recover an estimate of

overall elasticity while flexibly controlling for time-invariant individual-level preference heterogeneity. Our

elasticity estimates are 2-3%, somewhat lower than previous estimates from the demand change when Part

D enrollees encounter a 100% coinsurance rate in the coverage gap (Einav et al., 2015; Jung et al., 2014).

However, our lower elasticity captures how total annual demand responds to relatively small changes in OOP

costs, rather than the demand response within the year when a beneficiary encounters the large, salient, and

temporary increase in OOP costs at the onset of the coverage gap.

From the estimates in Appendix Table A.1, we can calculate the expected increase in drug demand. Using

the IV estimates in the first column, we find that $1 in (annual) subsidy increase reduces (monthly) OOP

costs by $0.01553. A $1 decrease in monthly OOP costs increases the months’ supplied of the drug by 0.00141.

Thus, a $1 increase in the subsidy increases the months supplied of the drug by 0.01553∗0.00141 = 0.000022

months. On average, the demand-weighted mean plan outlay for the drug demand used in Appendix Table

A.1 is $63 per month supply. Thus, the estimated drug demand response would increase plan outlays by

0.000022 months ∗ $63 per month ∗ 12 months =$0.017 per year. Using instead the IV estimates in the

third column of Appendix Table A.1, the increase in plan outlays is $0.013.

This demand response would not significantly change our pass-through estimate. If we take $0.40 as our

focal pass-through estimate from Table 1, accommodating this drug demand response would mean that we

acknowledge that for each $1 increase in diagnostic subsidy, $0.017 is spent by the firm on increased drug

demand. Of the remaining $0.983, $0.40 is passed-through to lower OOP costs, for an updated pass-through

rate of ($0.40/$0.983 =) $0.407.

37



References

Abaluck, Jason T. and Jonathan Gruber, “Choice Inconsistencies Among the Elderly: Evidence from

Plan Choice in the Medicare Part D Program,” American Economic Review, 2011, 101 (4), 1180–1210.

Agarwal, Sumit, Souphala Chomsisengphet, Neale Mahoney, and Johannes Stroebel, “Regulat-

ing Consumer Financial Products: Evidence from Credit Cards,” The Quarterly Journal of Economics,

11 2014, 130 (1), 111–164.

Bijlsma, Michiel, Jan Boone, and Gijsbert Zwart, “Competition Leverage: How the Demand Side

Affects Optimal Risk Adjustment,” RAND Journal of Economics, 2014, 45 (4), 792–815.

Brown, Jason, Mark Duggan, Ilyana Kuziemko, and William Woolston, “How Does Risk Selec-

tion Respond to Risk Adjustment? New Evidence from the Medicare Advantage Program,” American

Economic Review, 2014, 104 (10), 3335–64.

Cabral, Marika, Michael Geruso, and Neale Mahoney, “Does Privatized Medicare Benefit Patients or

Producers? Evidence from the Benefits Improvement and Protection Act,” American Economic Review,

Forthcoming 2018.

Carey, Colleen, “Technological Change and Risk Adjustment: Benefit Design Incentives in Medicare Part

D,” American Economic Journal: Economic Policy, February 2017, 9 (1), 38–73.

Conlon, Christopher T. and Nirupama L. Rao, “Discrete Prices and the Incidence and Efficiency of

Excise Taxes,” American Economic Journal: Economic Policy, 2020, forthcoming.

Dieguez, Gabriela, Maggie Alston, and Samantha Tomicki, “A Primer on Prescription Drug Rebates:

Insights into Why Rebates Are a Target for Reducing Prices,” May 2018. Available at http://www.

milliman.com/uploadedFiles/insight/2018/Prescription-drug-rebates.pdf.

Duggan, Mark, Amanda Starc, and Boris Vabson, “Who Benefits when the Government Pays More?

Pass-Through in the Medicare Advantage Program,” Journal of Public Economics, September 2016, 141,

50–67.

Einav, Liran, Amy Finkelstein, and Maria Polyakova, “Private Provision of Social Insurance: Drug-

Specific Price Elasticities and Cost Sharing in Medicare Part D,” American Economic Journal: Economic

Policy, August 2018, 10 (3), 122–53.

, , and Paul Schrimpf, “The Response of Drug Expenditures to Non-Linear Contract Design: Evidence

from Medicare Part D,” The Quarterly Journal of Economics, 2015, 130 (2), 841–899.

38

http://www.milliman.com/uploadedFiles/insight/2018/Prescription-drug-rebates.pdf
http://www.milliman.com/uploadedFiles/insight/2018/Prescription-drug-rebates.pdf


, , Raymond Kluender, and Paul Schrimpf, “Beyond Statistics: The Economic Content of Risk

Scores,” American Economic Journal: Applied Economics, April 2016, 8 (2), 195–224.

Fabinger, Michal and E. Glen Weyl, “A Tractable Approach to Pass-Through Patterns,” March 2015.

Fabra, Natalia and Mar Reguant, “Pass-Through of Emissions Costs in Electricity Markets,” American

Economic Review, September 2014, 104 (9), 2872–99.

Frank, Richard G. and Thomas G. McGuire, “Regulated Medicare Advantage And Marketplace

Individual Health Insurance Markets Rely On Insurer Competition,” Health Affairs, 2017, 36 (9), 1578–

1584.

Geruso, Michael, Timothy J. Layton, and Daniel Prinz, “Screening in Contract Design: Evidence

from the ACA Health Insurance Exchanges,” American Economic Journal: Economic Policy, Forthcoming

2018.

Goldman, Dana E., Geoffrey Joyce, Pinar Karaca-Mandic, and Neeraj Sood, “Adverse Selection

in Retiree Prescription Drug Plans,” Forum for Health Economics and Policy, 2006, 9 (1).

Heidhues, Paul, Botond Koszegi, and Takeshi Murooka, “Exploitative Innovation,” American Eco-

nomic Journal: Microeconomics, February 2016, 8 (1), 1–23.

Heiss, Florian, Adam Leive, Daniel McFadden, and Joachim Winter, “Plan Selection in Medicare

Part D: Evidence from Administrative Data,” Journal of Health Economics, December 2013, 32, 1325–

1344.

Hsu, John, Jie Huang, Vicki Fung, Mary Price, Richard Brand, Rita Hui, Bruce Fireman,

William Dow, John Bertko, and Joseph P. Newhouse, “Distributing $800 Billion: An Early

Assessment of Medicare Part D Risk Adjustment,” Health Affairs, 2009, 28 (1), 215–225.

Jung, Kyoungrae, Roger Feldman, and A. Marshall McBean, “Demand for Prescription Drugs Under

Nonlinear Pricing in Medicare Part D,” International Journal of Health Care Finance and Economics,

2014, 14, 19–40.

Kautter, John, Melvin Ingber, Gregory C. Pope, and Sara Freeman, “Improvements in Medicare

Part D Risk Adjustment: Beneficiary Access and Payment Accuracy,” Medical Care, 2012, 50 (12), 1102–

1108.

Layton, Timothy, “Imperfect Risk Adjustment, Risk Preferences, and Sorting in Competitive Health

Insurance Markets,” Journal of Health Economics, December 2017, pp. 259–280.

39



Layton, Timothy J., Thomas G. McGuire, and Richard C. van Kleef, “Deriving risk adjust-

ment payment weights to maximize efficiency of health insurance markets,” Journal of Health Economics,

September 2018, 61, 93–110.

Lenzner, Robert, “ObamaCare Enriches Only The Health Insurance Giants and Their Shareholders,”

Forbes.com, 2013.

Levy, Helen and David Weir, “Take-up of Medicare Part D: Results from the Health and Retirement

Study,” Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2010, 65 (4), 492–

501.

MacKay, Alexander and Marc Remer, “An Empirical Model of Consumer Affiliation and Dynamic

Price Competition,” January 2018. Available at alexandermackay.org.

, Nathan Miller, Marc Remer, and Gloria Sheu, “Bias in reduced-form estimates of pass-through,”

Economics Letters, 05 2014, 123, 200202.

Marshall, Alfred, Principles of Economics, New York: Macmillan, 1890.

Miller, Nathan H., Matthew Osborne, and Gloria Sheu, “Pass-through in a concentrated industry:

empirical evidence and regulatory implications,” The RAND Journal of Economics, 2017, 48 (1), 69–93.

Muehlegger, Erich and Richard L. Sweeney, “Pass-Through of Input Cost Shocks Under Imperfect

Competition: Evidence from the U.S. Fracking Boom,” November 2017. NBER Working Paper 24025.

Newhouse, Joseph P., Erica Seiguer, and Richard G. Frank, “Was Part D a Giveaway to the Phar-

maceutical Industry?,” INQUIRY: The Journal of Health Care Organization, Provision, and Financing,

2007, 44 (1), 15–25.

, J. Michael McWilliams, Mary Price, Jie Huang, Bruce Fireman, and John Hsu, “Do Medicare

Advantage Plans Select Enrollees in Higher Margin Clinical Categories?,” Journal of Health Economics,

2013, 32, 1278–1288.

Office of the Inspector General, “Increases in Reimbursement for Brand-Name Drugs in Part D,” June

2018. Available at https://oig.hhs.gov/oei/reports/oei-03-15-00080.pdf.

Pauly, Mark V. and Yuhui Zeng, “Adverse Selection and the Challenges to Stand-Alone Prescription

Drug Insurance,” in David M. Cutler and Alan M. Garber, eds., Frontiers in Health Policy Research,

Vol. 7, NBER Books, 2004, pp. 55–74.

40

alexandermackay.org
https://oig.hhs.gov/oei/reports/oei-03-15-00080.pdf


Polyakova, Maria, “Regulation of Insurance With Adverse Selection and Switching Costs,” American

Economic Journal: Applied Economics, July 2016, 8 (3), 165–195.

Robst, John, Jesse Levy, and Melvin Ingber, “Diagnosis-Based Risk Adjustment for Medicare Pre-

scription Drug Plan Payments,” Health Care Financing Review, 2007, 28 (4), 15–30.

Rothman, Dov, “A NOTE ON THE ECONOMICS OF PASS-THROUGH WITH TWO-PART TARIFF

PRICING,” Journal of Competition Law & Economics, 05 2015, 11 (2), 401–408.

Solon, Gary, Steven J. Haider, and Jeffrey Wooldridge, “What Are We Weighting For?,” Journal of

Human Resources, 2015, 50 (2), 301–316.

Weyl, E. Glen and Michal Fabinger, “Pass-Through as an Economic Tool: Principles of Incidence under

Imperfect Competition,” Journal of Political Economy, 2013, 121 (3).

Yin, Wesley, Anirban Basu, James X. Zhang, Atonu Rabbani, David O. Meltzer, and G. Caleb

Alexander, “The Effect of the Medicare Part D Prescription Benefit on Drug Utilization and Expendi-

tures,” Annals of Internal Medicine, 2008, 148 (3).

41



A Appendix: For Online Publication

A.1 Pass-through to Premium vs. OOP costs

In Section 3.2, we compared a plan’s profits if it passed-through an ε increase in the subsidy for diagnosis 1

to OOP costs for diagnosis 1 to its profits if it passed it through to premium. We assumed that the insurer

would reduce the subsidy for diagnosis 1 by ρε and would reduce the premium by 0.5ρε.

We justify this assumption by considering the pass-through rate we would recover if we applied our es-

timation model to this setting. Consider our procedure for estimating the pass-through to premium. Our

measurement of average subsidy increase (∆Sj) for this plan would find an increase of 0.5ε. If the plan

passes-through the subsidy to c1p, there is no change in premium, and we would (correctly) estimate zero

pass-through to premium. If the plan passes-through the subsidy to premium, we would (correctly) estimate

pass-through to premium equal to ρ.

Scenario pass-through to c1p pass-through to premium

“Data” for estimating pass-through to premium

plan’s average subsidy increase 0.5ε 0.5ε

change in premium 0 0.5ρε

estimated pass-through to premium 0 ρ

“Data” for estimating pass-through to OOP costs

subsidy increase for diagnosis 1 ε ε

change in c1p ρε 0

estimated pass-through to OOP costs ρ 0

If we instead hypothesize that the insurer would reduce premium by ρε, it holds without additional

assumptions that the insurer is better off passing through to c1p.

Πpost,pass-through to c1p > Πpost, pass-through to prem

D(mp − ρε)[φ+ ε− ρε] +D(mp)φ > D(mp − ρε)[φ+ ε− ρε] +D(mp − ρε)[φ− ρε]

D(mp)φ−D(mp − ρε)[φ− ρε] > 0

We know this inequality holds because, at baseline, mp was optimal for the insurer, and thus higher profit

than reducing the total price by ρε.
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A.2 Reduced Salience of OOP costs

Adapting the models of Agarwal et al. (2014) and Heidhues et al. (2016), we can allow one of the variables to

be less salient in demand by a factor of ψ ∈ [0, 1]. As in Section 3.2.1 we consider a baseline scenario where

there are two known, mutually exclusive diagnoses with the same demand function, subsidy r, and drug

prices κ, in which case insurers set the same OOP costs for both diagnoses cp. To represent that insurers

potentially choose differently when OOP costs are less salient, let φ′ represent the baseline per-person profits.

Πpre = 2D(premp + ψcp)φ
′

We again consider an increase in the subsidy for diagnosis 1 of ε.

Πpost,pass-through to c1p > Πpost, pass-through to prem

Π for diag 1 if pass-through to OOP︷ ︸︸ ︷
D(premp + ψcp − ρε)[φ′ + ε− ρε] +

Π for diag 2 if pass-through to OOP︷ ︸︸ ︷
D(premp + ψcp)φ

′

>

Π for diag 1 if pass-through to premium︷ ︸︸ ︷
D(premp − .5ρε+ ψcp)[φ

′ + ε− .5ρε] +

Π for diag 2 if pass-through to premium︷ ︸︸ ︷
D(premp − .5ρε+ ψcp)[φ

′ − .5ρε]

Rearranging the inequality

+ by convexity if ψ=1, − if ψ=0︷ ︸︸ ︷
[D(premp + ψcp − ψρε) +D(premp + ψcp)− 2D(premp − .5ρε+ ψcp)]

+︷︸︸︷
φ′

+

+ if ψ>0.5︷ ︸︸ ︷
[D(premp + ψcp − ψρε)−D(premp − .5ρε+ ψcp)][ε− ρε] > 0

If OOP costs are less salient than premium, it is possibly optimal for plans to pass-through to premium

instead of OOP costs.

A.3 2012 Risk Adjustment Recalibration

The Affordable Care Act gradually increased Part D coverage by raising the actuarial value of coverage

in the doughnut hole in 2010 from 0% in 2010 to 75% in 2020. The increase is partially generated by a

requirement from drug firms to reduce the cost of branded drugs purchased in the donut hole by 50%; the

remainder is generated by increased insurer liability (i.e., reduced patient cost-sharing). In 2011 and 2012,

insurers were required to pay 7% and 14% respectively for generic drugs purchased in the donut hole. In

2011 risk adjustment revision, the increase to insurer liability in the donut hole was incorporated into the

dependent variable prior to estimating Equation 1. However, since the increase in insurer liability would

affect expensive and cheap diagnoses differently, CMS decided to recalibrate risk adjustment weights again
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in 2012. They used the same set of diagnoses and the same calibration data (2008), but further altered the

dependent variable to accommodate the incremental increase in liability for generic drugs.

The 2012 recalibration was quite modest compared to the 2011 revision; risk adjustment weights were

often the same up to the thousandth place between the two years. To see the similarity of the 2011 and 2012

systems, we repeat the analysis of Section 4 to determine the change in subsidies between the 2011 and 2012

risk adjustment systems for the same fixed population (764,621 individuals enrolled in Part D in 2011 and

fee-for-service Medicare in 2010). Appendix Figure A.1 mimics the histograms in Figure 1, reporting the

difference in total subsidy, demographic subsidy, and diagnostic subsidy between 2011 and 2012 using the

same x-axis scale and bin sizes. More than 95% of the 2011-2012 changes are within $50 of zero, whereas

for the 2010-2011 revision only 10% of total and diagnostic changes are within $50 of zero, and 24% of

demographic changes.

It is easy to incorporate the 2012 recalibration into the right-hand side variables when t = 2012 for our

key equations (Sjt in Equation 3a and Sxt in Equation 4a). However, the 2012 recalibration is so minor that

results30 are virtually unchanged. Because the event study implementation of our key results (Equations 3b

and 4b) does not easily accommodate the 2012 recalibration, and because it is so small relative to the 2011

revision, we do not incorporate the 2012 recalibration into our main specification.

A.4 Measuring Typical Annual Out-of-Pocket Costs: Detail

A.4.1 Associating Drugs and Diagnoses

While drugs are relatively closely linked to diagnoses, there is no reference work we can consult that tells

us which drugs treat which diagnoses. Instead, we take advantage of our large claims datasets to estimate

the empirical association of prescription drug claims and diagnoses derived from matched contemporaneous

medical claims. In particular, we run a linear probability model to predict whether an individual takes a

given ingredient combination (we abstract from differences in strength and route of administration) using

flags for the 84 diagnoses.
1 if ind i

takes ing combo c
in year t︷︸︸︷
Tict =

∑
x

γcx

1 if ind i
has diag x
in year t︷︸︸︷
δixt +εict (5)

We estimate these models on the prescription drug and medical claims of Part D enrollees in 2007-201231:

more than five million beneficiary × year observations in all. We restrict to 791 ingredient combinations

30Available upon request.
31It is possible that the joint distribution of diagnostic codes and drug utilization adjusts endogenously to subsidy system

incentives (e.g., if a diagnosis’s subsidy rises, Part D plans increase efforts to ensure providers code it.) When we use only
2007-2010 to associate drugs with diagnoses, we find nearly the same correspondence and very similar empirical results. A
downside of using only pre-period years is that drugs introduced in 2011 and 2012 cannot be included in analysis.
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Figure A.1: Distribution of Change in Individuals’ Subsidies Induced by 2011 Subsidy Revision
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This figure depicts the difference between individuals’ subsidies induced by the 2012 recalibration of the 2011
subsidy system. The histogram in Panel (a) reports the difference in total subsidy, ∆Si, while Panel (b) reports the
difference for the demographic component and Panel (c) the diagnostic component. Each histogram displays 100
bins and is bottom- and top-coded to the minimum and maximum x-axis values.



taken by at least 200 beneficiaries in one of the years. Each coefficient γcx gives the marginal increase in

the probability of taking the ingredient combination c associated with having the diagnosis x. We define

an ingredient combination as “treating” the diagnosis that most strongly predicts taking it; i.e., ingredient

combination c treats the diagnosis x with the largest γcx. We assign all drugs containing that ingredient

combination to set Dx, the set of drugs that treat diagnosis x. On average, the largest coefficient (i.e.,

the one for the treating diagnosis) exceeds the second largest coefficient by a factor of three. Eight of 84

diagnoses are not found to be “treated” by any ingredient combination we study; these diagnoses tend to

be catch-alls (Other Neurological Conditions, Coagulation Defects and Other Specified Blood Diseases) or

diagnoses, such as Pelvic Fracture, where drugs are used for general symptoms such as pain or infection but

not for the underlying diagnosis.

A.4.2 Calculating Typical Demand: Detail

Let d index drugs, z index zones of coverage, i index individuals, j index plans, and x index diagnoses. Txt

are the set of individuals taking a drug that treats diagnosis x in year t, and Fxt are the set of individuals

with a flag for diagnosis x in the same year. Recall that diagnostic flags are generated by medical encounters,

and that individuals may fill prescriptions without regard to the presence of related diagnostic flags. The two

sets can diverge for a number of reasons: individuals may be choosing no treatment for a given diagnosis;

individuals may have a chronic diagnosis well-controlled by drug therapy for which they did not seek a

medical encounter; medical providers, whose payment is independent of the diagnostic flags, may not record

them accurately; and the algorithm that assigns drugs to diagnoses in Section A.4.1 may mistakenly assign

drugs to a diagnosis with which they are not well connected.

We choose to characterize demand as the total utilization of drugs that treat a given diagnosis, normalized

by the number of people who have the diagnosis. The first item is denoted as months rawdzt:

months rawdzt =
∑
i∈Txt

monthsidzt|d ∈ Dx

monthsdzt =

∑
i∈Txt

monthsidzt|d ∈ Dx∑
i∈Fxt

1

In words, monthsdzt is the months supply of related drugs per person with the diagnosis. The advantage of

this definition is that
∑
z

∑
d months rawdz = total demand. This holds because every drug d is in Dx for

some diagnosis x. If we instead summed utilization from only those with the diagnosis, a significant fraction

of Part D utilization would be excluded from the measure.
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A.5 Pass-Through Rates by Market Concentration

In Section 3, we described theoretical results suggesting that pass-through is lower (closer to zero) in less

competitive markets. To test this hypothesis, we compute the Herfindahl-Hirschman index for each PDP

region in 2010. We calculate HHI using the market shares of each “contract” operating in the PDP region;

parent insurers often sponsor multiple plans within a single contract, so using the contract is a better measure

of market power than plans. For the plan × diagnosis analyses measuring pass-through to OOP costs, we also

consider an alternative metric that evaluates each diagnosis in each PDP region as an independent market,

and compute the HHI using each contract’s share of the total number of individuals with each diagnosis

in the PDP region. On either measure, the markets are relatively unconcentrated, with a median HHI of

0.1. We split the sample into high-concentration and low-concentration subsamples based on whether the

plan or plan × diagnosis is in a market with above or below average concentration. However, not only is

concentration low in Part D on average, it is almost uniformly low. For the market-based HHI measure,

the 90-10 split ranges from only 0.16 to 0.09. For the diagnosis-market measure, the 90-10 split is similar,

ranging from 0.2 to 0.09.

Figure A.2 reports the estimates of the effect of subsidy on premiums and out-of-pocket costs for sub-

samples defined by market concentration. We find that the pass-through of subsidies is very similar in both

subsamples and cannot be statistically distinguished. However, because even the high-concentration markets

are relatively unconcentrated, we conclude that we are underpowered to test differences in pass-through by

market concentration.

A.6 Recovering Demand Elasticities

To determine the response of drug demand to the subsidy revision, we implement an instrumental variables

analysis. The first stage predicts OOP costs for drug d in year t using models similar to Equation 3: using

the subsidy for the diagnosis in year t and either a price spline or a linear drug trend. The second stage

predicts an individual’s demand – months supplied – for drug d in year t. Our panel data is balanced across

t for id combinations – i.e., if an individual i takes a particular drug d only in 2010, monthsidt is imputed to

zero for years 2009, 2011, and 2012. A balanced panel includes both the intensive and extensive margins of

months supply, but results are similar when we use only the intensive margin.

demand
for i

for drug d
in year t︷ ︸︸ ︷

monthsidt = b

predicted
OOP cost for d

in t︷ ︸︸ ︷
̂OOP costidt +

price
spline

or drug
trend︷︸︸︷
Xdjt +Fixed Effects + εidt

OOP costidt = βSxt +Xdjt + Fixed Effects + εidt

(6)
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Figure A.2: Heterogeneity by Market Concentration
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The top panel represents the coefficients from estimation of Equation 3a for subsidies (panel (a)), the
diagnostic component of subsidies (b), and the demographic component of subsidies (c), split by
subsamples defined by the HHI of the market (PDP region), where HHI is defined by market shares at the
contract level. The bottom panel represents the coefficients from estimation of Equation 4a, with no extra
controls (panel (a)), a price spline (panel (b)), or a diagnosis time trend (panel (c)). Within each panel, the
first two coefficients report for markets with low (below-median) or high HHI. The second two coefficients
report for markets with low (below-median) or high HHI, where HHI is defined at the diagnosis-market
level using the number of individuals with the given diagnosis in the contract.



We consider two sets of fixed effects. The first uses an individual, a drug × plan, and a plan × year fixed

effect. The first stage in this specification is more similar to Equation 3. In the second set, we use an

individual × drug fixed effect and an individual × year fixed effect. This second set is better suited to

capturing individual heterogeneity – both time-invariant taste for a particular drug and overall demand for

drugs in a particular year. We two-way cluster εidt on individuals and drugs.

We estimate this equation on more than 35 million individual × drug × year observations between 2009

and 2012. We drop individuals who receive the low-income subsidy because their out-of-pocket costs are

subsidized by the government. Our results are reported in Table ??. The top panel estimates the relationship

between out-of-pocket cost and months supply using ordinary least squares, and the bottom panel reports the

full instrumental variables model. As is common, the co-determination of out-of-pocket cost and demand

biases our OLS coefficients towards zero. In the IV, the first stage recovers estimates similar to what is

implied by a weighted average of the estimates in Figure 8. Our second stage, which is only significant (and

based on an significant first stage) when we control for a price spline, implies elasticity estimates of about

-2%. Previous research has computed elasticities using the increased out-of-pocket costs at the coverage

gap, and has found larger estimates: -30% to -50% in Einav et al. (2015) and -14% to -36% in Jung et al.

(2014). Similar to those papers, we are estimating elasticity among those who do not receive the low-income

subsidy, meaning those in the top half of the Medicare income and wealth distribution. The benefit design

changes we study may induce less of a utilization response because they are less salient for beneficiaries than

the large discrete changes in out-of-pocket costs at the coverage gap; in addition, beneficiaries entering the

coverage gap may be able to delay purchases for a few weeks or months until the following contract year, a

strategy unavailable to beneficiaries in the setting we study.

A.7 Supplementary Figures and Tables



Table A.1: Demand Elasticity: Instrumental Variables for Out-of-Pocket Cost

OLS

Months Months Months Months
OOP Cost ($) -0.00034+ -0.00060* -0.00020* -0.00039**

(0.00019) (0.00027) (0.00010) (0.00014)
spline for price X X
drug trend X X

FEs
Individual Individual X Drug

Plan X Year Individual X Year
Plan X Drug

Implied ε (%) -0.64 -1.14 -0.38 -0.74

IV

First Stage
OOP Cost ($) OOP Cost ($) OOP Cost ($) OOP Cost ($)

Subsidy ($) -0.01553+ -0.00660 -0.01449+ -0.00463
(0.00882) (0.00572) (0.00806) (0.00444)

Second Stage
Months Months Months Months

OOP Cost ($) -0.00141* 0.08069 -0.00121* 0.07460
(0.00064) (0.09674) (0.00048) (0.10408)

spline for price X X
drug trend X X

FEs
Individual Individual X Drug

Plan X Year Individual X Year
Plan X Drug

Implied ε (%) -2.67 153.01 -2.29 141.46

N 35,469,096

This table reports the results of estimating Equation 6 on the months supplied to each
individual between 2009 and 2012. The top panel estimates ordinary least squares with
the stated controls (price spline or drug trend) and fixed effects. The bottom panel
instruments for out-of-pocket cost using subsidy and reports both the first and second
stage of estimation. Standard errors are two-way clustered at the individual and drug.
+, * and ** represent significance at the 10, 5 and 1 percent levels.



Figure A.3: Distribution of Total Subsidies Under the 2010 and 2011 Risk Adjustment Systems
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(a) 2010 Risk Adjustment Subsidies (Si(old, 2011))
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(b) 2011 Risk Adjustment Subsidies (Si(new, 2011))

These figures report the average subsidy within ventiles of the distribution for 764,621 individuals enrolled in Part
D in 2011 and fee-for-service Medicare in 2010. Panel (a) uses the individuals’ 2011 data and the 2010 risk
adjustment system while panel (b) uses the same 2011 data and the 2011 risk adjustment system. The demographic
component of the subsidy is in black, while the diagnostic component is in gray.



Table A.2: Old Subsidies and Subsidy Update for Each Diagnosis
Old Subsidy

Diagnosis Subsidy ($) Update ($) SE
HIV/AIDS 1889 -256 14
Age<65 & Schizophrenia 347 298 3
Multiple Sclerosis 331 316 9
Parkinson’s Ds 296 -69 4
Leukemia 271 136 41
Diabetes w/ Comps 239 78 1
Opportunistic Infections 238 -146 8
ADD 235 -5 6
Congestive Heart Failure 232 -47 1
Schizophrenia 231 99 5
Hypertension 205 -25 1
Dementia w/ Depression 204 -229 3
Kidney Transplant 199 93 7
Dsr of Immunity 191 88 8
Rheumatoid Arthritis 183 54 2
Inflamm. Bowel Ds 168 82 4
Esophageal Ds 163 12 1
Metastatic Acute Cancers 161 206 6
Age<65 & Other Major Psych. Dsrs 153 235 2
Lipoid Metabolism 151 47 1
Asthma and COPD 151 83 1
Open-angle Glaucoma 149 41 1
Other Major Psych. Dsr 146 -21 1
Motor Neuron Ds/Atrophy 141 38 15
Psoriatic Arthropathy 139 275 12
Dsr of Spine 130 -84 1
Myocardial Infarction/Unstable Angina 129 23 1
Other Psych. 117 -46 3
Seizure Dsr & Convulsions 117 177 2
Osteoporosis 106 35 1
Severe Hematological Dsr 105 59 5
Migraines 98 160 3
Incontinence 94 -45 2
Heart Arrhythmias 86 -20 1
Polycythemia Vera 85 -38 8
Hepatitis 85 163 6
Other Upper Respiratory Ds 77 -8 1
Muscular Dystrophy 77 -57 16
Major Organ Transplant 73 434 12
Other Endocrine 72 91 2
Psoriasis 71 140 3
Polyneuropathy exc. Diabetic 71 91 2
Other Musculoskeletal 71 -22 1
Inflamm. Spondylopathies 69 143 3
Chronic Renal Failure 68 91 1
Infectious Ds 68 -14 3
Mononeuropathy/Abnormal Movement 66 3 1
Female Stress Incontinence 62 12 3
Connective Tissue Dsr 61 133 3
Cerebral Hemorrhage/Stroke 58 24 1
Vascular Retinopathy exc. Diabetic 52 14 2
Huntington’s Ds 51 -23 12
Vertebral Fracture w/o Spinal Injury 51 -45 3
Nephritis 47 36 7
Salivary Gland Ds 46 8 5
Lung Cancer 46 115 1
Other Spec. Endocrine 45 40 1
Chronic Skin Ulcer exc. Decubitus 44 -9 2
Pancreatic Ds 44 16 3
Fecal Incontinence 44 19 6
Cellulitis & Skin Ds 44 -2 1
Quadriplegia 44 23 4
Urinary Obstruction 44 -4 2
Bullous Dermatoses 44 -9 1
”Empyema, Abscess, & Lung Ds” 40 -109 16
Bronchitis & Congenital Lung Dsr 40 29 1
Polymyalgia Rheumatica 40 -8 3
Pneumonias 40 -116 5
Macular Degeneration & Retinal Dsr 37 15 1
Vascular Disease 32 64 1
Ulcer & Gastro Hemorrhage 31 6 2
Vaginal & Cervical Ds 31 63 2
Pulmonary Embolism & Thrombosis 25 42 2
Larynx/Vocal Ds 22 23 8
Impaired Renal Function 21 27 1
Bone Infections 21 22 4

This table reports the diagnosis-specific coefficients from Equation 2 . The second column reports the subsidy for the
diagnosis in a plan bidding the national average bid under the 2010 system. The next columns report the subsidy update,
the coefficient from 2, and its robust standard error. Only the 76 diagnoses used in later analyses are reported.



Figure A.4: Event Study: Impact of Subsidy Updates Among Brands, Plan × Drug Analyses
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These figures depict the coefficients from estimation of Equation 4b on the plan × drug panel. Each row
represents an outcome; the left hand column includes no controls, while the right hand column controls for
a price spline.



Figure A.5: Event Study: Impact of Subsidy Updates Among Generics, Plan × Drug Analyses
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These figures depict the coefficients from estimation of Equation 4b on the plan × drug panel. Each row
represents an outcome; the left-hand column includes no controls, while the right-hand column controls for
a price spline.



Figure A.6: Impact of Diagnosis-Specific Subsidies on Utilization Management Outcomes by Drug Subsample
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This figure represents the β coefficients from Equation 3. Each coefficient represents the effect of a $1 increase in
the subsidy for the diagnosis the drug treats on the drug’s utilization management outcomes in a plan × year. Each
panel represents a different utilization management outcome, and the coefficients and mean are expressed as
percentage points. Within each panel, the coefficients are estimated separately for generics and brands. Three
specifications are reported: no extra controls (“none”), a price spline (“price”), and a drug time trend (“trend”).



Figure A.7: Response of Enrollment in Part D to Changes in Diagnostic and Demographic Subsidies
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In the left-hand figures, the x-axis measures the change in the subsidy for each diagnosis (panel (a)) or
demogaphic bin (panel (c)). The y-axis measures the change in the rate of Part D enrollment among
individuals with this diagnosis or in this demographic bin between 2010 and 2011. The size of the marker
represents the number of individuals with the diagnosis or in the demographic bin. The right-hand figures
represent the estimation of the event study in Equation 4, which predicts enrollment in Part D using the
interaction of the change in subsidy for each diagnosis (panel (c)) or demographic bin (panel (d)) with year
dummies.
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