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ABSTRACT

We examine all known “credibly causal” studies to explore the distribution of the causal effects 
of public K-12 school spending on student outcomes in the United States. For each of the 31 
included studies, we compute the same marginal spending effect parameter estimate. Precision-
weighted method of moments estimates indicate that, on average, a $1000 increase in per-pupil 
public school spending (for four years) increases test scores by 0.0352 , high school graduation 
by 1.92 percentage points, and college-going by 2.65 percentage points. These pooled averages 
are significant at the 0.0001 level. The benefits to marginal capital spending increases take about 
five years to materialize, and are about half as large as (and less consistently positive than) those 
of non-capital-specific spending increases. The marginal spending impacts for all spending types 
are less pronounced for economically advantaged populations—though not statistically 
significantly so. Average impacts are similar across a wide range of baseline spending levels and 
geographic characteristics—providing little evidence of diminishing marginal returns at current 
spending levels.

To assuage concerns that pooled averages aggregate selection or confounding biases across 
studies, we use a meta-regression-based method that tests for, and removes, certain biases in the 
reported effects. This approach is straightforward and can remove biases in meta-analyses where 
the parameter of interest is a ratio, slope, or elasticity. We fail to reject that the meta-analytic 
averages are unbiased. Moreover, policies that generate larger increases in per-pupil spending 
tend to generate larger improvements in outcomes, in line with the pooled average.

To speak to generalizability, we estimate the variability across studies attributable to effect 
heterogeneity (as opposed to sampling variability). This heterogeneity explains between 76 and 
88 percent of the variation across studies. Estimates of heterogeneity allow us to provide a range 
of likely policy impacts. Our estimates suggest that a policy that increases per-pupil spending for 
four years will improve test scores and/or educational attainment over 90 percent of the time. We 
find evidence of small possible publication bias among very imprecise studies, but show that any 
effects on our precision-weighted estimates are minimal.
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1 Introduction

For decades, social scientists have debated whether school spending affects student outcomes. This

question is not just of academic importance, as public K–12 education is one of the largest single

components of government spending (OECD, 2020). Additionally, current legal cases and policy

decisions hinge on the extent to which, in what contexts, and how reliably increases in school

spending causally impact students.1 As such, understanding if, how much, and in what contexts

increased school spending improves student outcomes is of considerable societal importance.

School spending impacts likely differ across studies due to differences in context, policy imple-

mentation, and treated populations. As a result, single estimates, however well-identified, may not

meaningfully reflect the impacts of future policies in other contexts (DellaVigna and Linos (2021);

Tipton et al. (2020); Vivalt (2020); Bandiera et al. (2021); Dehejia et al. (2021)). Without knowing

the nature of heterogeneity across settings, there is no way to know how much the impacts of a

particular study would generalize to a different setting (Tipton and Olsen (2018)). It is not the

mere existence of heterogeneity that makes it difficult to generate policy predictions from exist-

ing studies, rather, the difficulty stems from a lack of understanding of that heterogeneity. Such

an understanding can only be credibly obtained by examining impacts across several settings and

contexts and among different populations.

Speaking to these issues, we perform a meta-analysis of all known “credibly causal” studies to

quantify the averages and the spreads of the distributions of the causal effect of increased public K-

12 school spending on test scores and educational attainment in the United States. This approach

(a) generates pooled averages that are not driven by the particulars of any individual context or

study, (b) provides greater statistical power than possible in any individual study to draw more

precise conclusions, (c) facilitates more variability than available in individual studies to test new

hypotheses, (d) allows one to measure and quantify treatment heterogeneity (i.e., the variability in

impacts across studies not driven by sampling variability), which (e) facilitates the calculation of

a plausible range of policy impacts that one may expect to observe in new settings. In sum, this

approach allows us to provide several new insights.

Hanushek (2003) reviewed 163 studies published before 1995 that related school resources to

student achievement. He documented more than ten times as many positive and significant studies

than would be expected by random chance if spending had no impact, and almost four times as

many positive and significant estimates than negative and significant – strong evidence of a positive

association between school spending and student achievement in these older studies.2 In a meta-

analysis of these data, Hedges et al. (1994) concluded that “it shows systematic positive relations

1States with Supreme Courts cases challenging the funding of public schools in 2020 include Delaware, New York,
Maryland, New Mexico, Illinois, and Tennessee.

2That is, Hanushek (2003) found that that 27 percent of these studies were positive and statistically significant
and 7 percent negative and significant. By not considering the distribution of study impacts under the null hypothesis
of no spending impact, Hanushek did not interpret this as evidence of a positive school spending effect. It is worth
noting that the older studies may have overstated statistical significance irrespective of sign. However, a general
overstatement of statistical significance would not explain the over-representation of positive estimates.
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between resource inputs and school outcomes.” However, these older studies were observational

(based on partial correlations) and therefore unlikely to reflect causal impacts that are informative

for policy (Hedges et al. (1994); Jackson (2020)). Understanding causal policy relationships requires

an examination of studies that identify the causal impacts of school spending policies.

In the past decade there has been a notable increase in “credibly causal” papers using quasi-

experimental variation (i.e., changes caused by specific identifiable policies) to identify the causal

effect of school spending on student outcomes. However, there are sizable differences in reported

impacts across studies, the reported effects are often noisy and not statistically significant, and

nontrivial differences across studies (in reporting, measurement, policy context, etc.) make it

difficult to directly compare one study’s findings to another. Moreover, due to heterogeneity across

studies, it is unclear what impact (or range of impacts) policymakers can expect from increasing

school spending by a specific amount. We provide clarity on these points by using formal meta-

analytic techniques on all “credibly causal” estimates that relate school spending changes to student

outcomes. This analysis not only addresses the perennial question of “does money matter?” but it

also quantifies, based on the best evidence available, (a) how much, on average, student outcomes

would improve from a policy that increases school spending by $1000 per pupil sustained over

four years, (b) how the marginal effects differ for non-capital and capital spending, (c) how the

marginal effects differ for children from low- and non-low-income families, (d) whether marginal

school spending impacts vary by baseline spending levels (i.e., if there are diminishing returns), (e)

the extent to which estimates based on existing studies may generalize to other contexts, and (f)

what range of policy impacts can be expected in a given context.

Conducting a rigorous meta-analysis involves several steps. First, we define the study inclusion

criteria ex ante. To focus on credibly causal estimates, we require that the policy variation used in a

study is a plausibly valid instrument (in the econometric sense) for school spending. We compile a

list of all studies from the past 25 years that employ quasi-random or quasi-experimental variation

in school spending and estimate impacts on student outcomes. Among these, we only include

those studies that demonstrate that the variation used is plausibly exogenous (i.e., that the policy-

induced changes in school spending are unrelated to other policies or other determinants of student

outcomes) – this is analogous to the ignorability condition in an instrumental variables model.3

We refer to this set of studies as “credibly causal.” Because we are interested in the impacts of

policies that change school spending, we focus on those “credibly causal” studies that demonstrate

policy-induced variation in school spending. This second condition is analogous to the “instrument

relevance” condition in an instrumental variables model.4

Meta-analysis is typically used to synthesize across randomized experiments where there is a

well-defined treatment and estimate reporting is standard across studies. In contrast, school spend-

3This condition excludes all papers analyzed in well-known older literature reviews conducted in Hanushek (2003).
4Not all school spending policies actually change school spending (due to states or districts shifting other monies

around in response to policy changes). For example, local areas may reduce property tax rates in response a state
policy to provide additional money to some schools. In such a setting, the additional state funds are used for tax
savings rather than being spent in the classroom. See Brunner et al. (2020) for an example of this kind of behaviour.
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ing studies examine variation in spending based on a range of policies and they report effects on

multiple outcomes in different ways. Direct comparison across studies requires that we define the

treatment and the outcomes in the same way. To this end, we compute the same underlying empiri-

cal relationship for each study by capturing the estimated policy impact on K-12 per-pupil spending

and the estimated impacts on outcomes. To make our estimates as comparable as possible, we (1)

compute the average impacts for the full population (as opposed to particular sub-samples), (2)

standardize all spending levels to 2018 CPI adjusted dollars, (3) convert all reported impacts into

standardized effects, and (4), where possible, capture impacts four years after the spending change

to keep student exposure to the spending increases consistent across studies. With these estimates,

we compute the estimated effect of a $1000 per-pupil increase in school spending (over four years)

on standardized educational outcomes. That is, for each paper and outcome, we construct an in-

strumental variables (IV) estimate of the marginal policy-induced impact on standardized outcomes

of exposure to a $1000 per-pupil spending increase (CPI adjusted to 2018 dollars) over four years.

Once summarized using the same relationship, studies that are reported in starkly different ways

are remarkably similar – suggesting much less heterogeneity than one might expect at first blush.

Another innovation of our work is to propose a framework to compare the impacts of capital

to non-capital spending. If school construction matters, a 40 million dollar construction project

should affect student outcomes over the life of the building (about 50 years) and not just in the

year the spending occurred. As such, a simple comparison of contemporaneous capital spending to

contemporaneous outcomes would drastically understate the marginal impacts of capital spending

on outcomes. To account for this, we amortize large one-time capital payments over the useful

life of the capital asset. We then relate the change in outcomes to the present discounted “flow”

value to obtain the marginal impacts of capital spending. This approach leads to annual spending

increases comparable to those of non-capital spending increases.

Speaking first to the “does money matter?” question, we show that 90 percent of all included

studies find a positive overall effect of increased school spending (irrespective of significance). If

positive and negative impacts were equally likely (as is the case if school spending did not matter),

the likelihood of observing this many positive estimates or more is less that one in 430 thousand.

Next, we quantify the magnitude of the impact of increased school spending on student outcomes

using formal meta-analysis. Some are skeptical of meta-analysis outside of randomized experiments

because individual studies may vary considerably due to effect heterogeneity – making a naively

pooled estimate difficult to interpret. However, rather than avoid direct comparison of studies

because of heterogeneity, we seek to model and understand this heterogeneity to gain a deeper

understanding of when, to what extent, and in what contexts, school spending affects student

outcomes. To this aim, using the same relationship for each paper, we employ random effects

meta-analysis that does not assume the existence of a single common effect, but rather explicitly

estimates the extent of treatment effect heterogeneity across studies. This approach provides pooled

average estimates that are robust to the inclusion of outlier and imprecise estimates, and produces

a plausible range of predicted policy impacts informed by the variability both within and across
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studies (see Meager (2019), Vivalt (2020), Bandiera et al. (2021), DellaVigna and Linos (2021),

and Dehejia et al. (2021) for similar approaches).

The pooled meta-analytic estimate indicates that, on average, a $1000 per-pupil increase in

school spending (sustained over four years) increases test scores by 0.0352σ - about 1.4 percentile

points. We can reject that the pooled average is zero at the 0.0001 significance level. However,

over 75 percent of the variability across studies reflects unobserved heterogeneity (due to different

LATEs, policy contexts, etc.), so one may observe estimates well outside the confidence interval in

new settings. Based on this information, a policy in a different context that increased per-pupil

school spending by $1000 over a four-year period would have test score impacts between -0.007σ

and 0.078σ ninety percent of the time, and would lead to positive test score impacts more than 91

percent of the time. Looking to educational attainment, our pooled meta-analytic estimate indicates

that, on average, a $1000 per-pupil increase in school spending increases educational attainment

by 0.0539σ (p-value<0.0001). This translates into a 1.92 percentage-point increase in high school

graduation and a 2.65 percentage-point increase in the college-going rate.5 In relative terms, this

is a 2.3 percent increase in high school graduation and a 6.4 percent increase in college-going.

Conservative estimates indicate that heterogeneity across the educational attainment studies may

explain as much as 87% of the variability. Based on this estimate, a policy in a different context

that increased per-pupil school spending by $1000 over a four-year period would be expected to have

high-school graduation impacts between -0.2 and 4.1 percentage points and college-going impacts

between -0.3 and 5.65 percentage points ninety percent of the time. Moreover, such a policy would

lead to positive educational attainment impacts more than 92 percent of the time. We also examine

the cumulative impacts on educational attainment and demonstrate that educational attainment

impacts increase with years of exposure to a spending increase.

Another concern with meta-analysis of non-experimental studies is that a pooled average of

individually biased studies may also be biased. We avoid this by focusing on credibly causal studies

where individual biases should be small. Moreover, we show that by aggregating several studies,

upward bias in some studies may cancel out downward bias in others – yielding an unbiased pooled

average. However, the possibility of bias in our pooled average remains if the included studies all

tend to suffer from a similar positive bias. To assuage this concern, we present a novel approach that

relies on differences in the policy-induced changes in spending across studies to remove the influence

of certain kinds of confounding bias in reported effects. We show that even if all studies are biased

upward in ways that bias the meta-analytic average, our difference-based approach uncovers a bias-

free average marginal impact as long as the size of the bias in a study is unrelated to the size of

the policy effect on per-pupil spending. Using this test, we show that policies that generate larger

increases in per-pupil spending also tend to generate larger improvements in outcomes, and we find

no evidence of bias in our test score or educational attainment impacts. In addition, we show that

5These calculations multiply the standardized impact (0.0539σ) by the standard deviation of each outcome. The
standard deviation of a binary variable is

√
p× (1 − p), where p is the proportion of positive outcomes. We use a

standard deviation of high-school graduation of 0.357 (rate = 0.85) and standard deviation of college-going of 0.492
(rate = 0.41) (Snyder et al. (2019).
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the marginal spending impacts are similar for voluntarily adopted polices (where one may worry

about selection and confounding) and those that are not – further evidence that problematic biases

are unlikely among our set of included studies.

We benchmark our impacts against those of other well-known interventions with measurable

effects on student outcomes (including class size reduction and “No Excuses” charter school at-

tendance). Our pooled aggregate $1000 per-pupil spending estimates are on-par with these in-

terventions. However, the benchmarked effects on educational attainment are consistently much

larger than those on test scores – suggesting that test scores may not measure all of the benefits

of increased school resources (Card and Krueger (1992); Krueger (1998)), and, more broadly, that

test score impacts may only capture a portion of the overall benefits of educational inputs (Jackson

(2018); Jackson et al. (2020)). We also examine observable predictors of differences in outcomes.

Benefits to capital spending increases take a few years to materialize, and the average effects of

increased capital spending on test scores are about half those of non-capital spending. And while

we find that impacts of all spending types are quite stable along several observable dimensions

(including urbanicity and geography), we do find that impacts are smaller, on average, for more

economically advantaged populations.

While our results accurately describe the literature, the distribution of impacts reported may

not reflect the true distribution of impacts if there is publication bias. Indeed, we find evidence of a

relative paucity of imprecise negative point estimates – such that a naively estimated simple average

(which we do not employ) might overstate the average marginal spending effects. To assess the

extent to which potential publication bias impacts our precision-weighted pooled estimates, we

implement several empirical approaches, including removing imprecise studies (which are more

susceptible to biases) (Stanley et al. (2010)), employing the “trim and fill” method to impute

potentially “missing studies” (Duval and Tweedie (2000)), adjusting for bias against non-significant

effects (Andrews and Kasy (2019)), and implementing the precision-effect estimate with standard

error (PEESE) approach (Stanley and Doucouliagos (2014)). In all cases, we find little evidence

of significant impacts of possible publication bias. Additionally, we find no systematic differences

between published and unpublished studies, or studies published in more or less selective outlets –

further evidence of negligible impact of publication bias in our precision-weighted pooled averages.

Some have argued that while school spending may have mattered when baseline spending levels

were low, the marginal impacts may be smaller at current spending levels (Jackson et al. (2016)).

We test this with our data by examining whether the marginal spending impacts are larger in older

studies (when national spending levels were lower) or in states with lower baseline spending levels

(such as in the South). Precision-weighted models reveal that the marginal impacts are remarkably

stable for a wide range of baseline per-pupil spending levels and across geographic contexts for

both test scores and educational attainment. This pattern suggest that policy impacts at current

spending levels are likely to be similar to those from the past (accounting for inflation).

This study moves beyond the question of whether money matters, and is the first to quantify

the pooled average marginal impacts of an increase in per-pupil spending on student test scores and
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educational attainment across studies. It is also the first study to measure and quantify the range of

causal impacts supported by the existing literature. This allows us to measure the extent to which

studies in this literature may estimate the same parameter, and then provide a plausible range

of estimates one may observe in other contexts. We also show how one can compare the impacts

of spending changes that affect students over different spans of time. Finally, we contribute to a

small but growing literature (e.g., Hendren and Sprung-Keyser (2020)) showing how, by carefully

computing the same parameter across studies, one can combine a variety of estimates outside of

randomized controlled trials to provide new and important policy insights.

The remainder of this paper is as follows: Section 2 discuses how we identify and select the

studies to create our dataset for analysis, Section 3 describes how we compute the same underlying

parameter for each paper, Section 4 presents the formal meta-analytic methods, Section 5 presents

our main results, Section 6 presents evidence of robustness to various assumptions and restrictions,

Section 7 accounts for potential biases and shows negligible effect on our main results, Section 8

documents heterogeneity across population and study characteristics, and Section 9 concludes.

2 Data

We capture estimates from studies that employ quasi-experimental methods to examine the impacts

of policy-induced changes (i.e., exogenous policy shocks) in K-12 per-pupil spending on student

outcomes.6 Our inclusion criteria requires that the variation in spending is driven by policy and

(following best econometric practice) requires that the variation used in a study is plausibly a valid

instrument for school spending. That is, the policy examined must lead to meaningful changes

in per-pupil school spending (the treatment), and the variation used must be demonstrated to

be plausibly exogenous to other determinants (i.e., non-school spending determinants) of student

outcomes. Specifically, to be included, a study had to meet each of the following criteria:

1. The study relied on quasi-experimental or policy variation in school spending.7 That is, the

study used a quasi-experimental design (Regression Discontinuity, Event-Study, Instrumental

Variables, or some combination of these) to isolate the impacts of specific school spending

policy shocks (or features of a school spending policy) on student outcomes.

2. The study demonstrated that their analysis was based on policies (or policy-induced variation)

that had a robust effect on school spending – enough to facilitate exploring the effect of school

spending on student outcomes. That is, the study examined the effect of a particular policy

that altered school spending or relied on an identifiable change in school spending caused by

6The two authors independently verified data captured from each study.
7Some well-known studies are excluded based on this criterion. For example, Husted and Kenny (2000) does not

rely on an identifiable change in school spending due to a policy. As they state “Our preferred resource equalization
measure. . . equals the change in resource inequality since 1972 relative to the predicted change (that is, the unexplained
change in inequality). A fall in this variable reflects either the adoption of state policies that have reduced districts’
ability to determine how much to spend in their district or an otherwise unmeasured drop in spending inequality”
(298).
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a specific policy. We included studies that showed a non-zero effect on spending at least at

the 5 percent significance level.8 However, we show that our results are robust to including

only studies for which the effect on spending is significant at the 0.0000001 level (see Table

A.1). We excluded studies of policies that did not demonstrate effects on school spending (as

they are, by definition, uninformative of the effects of school spending on outcomes).

3. The study demonstrated that the variation in school spending examined was unrelated to

other determinants of student outcomes, including other policies, student demographics, or

underlying trend differences. That is, the study maintains and provides evidence that the pol-

icy effect is only due to its effect on school spending. This entails a formal test that the policy

instrument is unrelated to other reasonable predictors of outcomes (such a demographics, so-

cioeconomic measures, or other policies) and (if required) directly accounts for any potential

imbalance.9 That is, we include studies that provide evidence that (after including an ap-

propriate set of controls) they make comparisons across entities with different levels of school

spending but for which on average all else was equal.10

To locate studies that meet this inclusion criteria, we searched for all papers on the topic

published or made public since 1995. We do not look before 1995 because, based on an initial

search, no studies that meet the inclusion criteria existed before 1995.11 Empirical practices in this

literature were not focused on causal estimation until the early 2000s (see Angrist and Pischke (2010)

for a discussion of the “credibility revolution” in empirical economics). Indeed, the earliest “credibly

8This corresponds to a first stage F-statistic of 3.85 for the policy instruments on per-pupil school spending. In a
two-stage-least-squares (2SLS) framework, the typical threshold would be a first stage F-statistic of 10. We impose a
weaker restriction. Still, some well-known studies are excluded based on this criterion. Specifically, van der Klaauw
(2008) states that Title I “eligibility does not necessarily lead to a statistically significant increase in average per pupil
expenditures” (750). Similarly, Matsudaira et al. (2012) do not find a robust association between the policy (Title
I eligibility) and per-pupil spending. Some studies examine the effects of policies that influence school spending,
but they do not report the effect of the policies on school spending in a way that allows us to construct a first-stage
F-statistic. These include Downes et al. (1998), Figlio (1997), Hoxby (2001) and, more recently, Holden (2016). Given
its prominence, we discuss Hoxby (2001) in more detail: Hoxby (2001) reports that some key policy parameters (such
as the inverted tax price) do predict differences in school spending but that others do not (such as the income/sales
tax rate in support of school spending, which has a t-statistic smaller than 1 in predicting per-pupil spending). In a
2SLS model, all the policy variables (including the weak predictors) are used and no first stage F-statistic is reported.
As such, because a strong first stage is not demonstrated, the 2SLS model predicting spending effects on dropout
rates does not satisfy our inclusion criteria. Having said this, two policy variables are individually significant at the
5 percent level in most first stage regressions (inverted tax price and the flat grant/median income). In reduced form
models, both these variables individually indicate that increased school spending reduces dropout rates. As Hoxby
concludes, “while the estimated effects of equalization on student achievement are generally weak, it does appear that
the drop-out rate falls in districts that are constrained to raise spending by the imposition of a per-pupil spending
floor” (p. 1229).

9For all models, this would include testing that the policy instrument is unrelated to observable predictors of
the outcomes. In addition, for Diff-in-Diff studies they would also show no evidence of differential pre-trending or
would include entity-specific time trends. For RD models this would also involve showing that there is smoothness
in covariates through the cutoff point.

10Note that the seminal Hoxby (2001) paper is primarily focused on the effect of reform type on school spending.
The additional analysis of the effect on student outcomes is not main focus of the paper, and explicit tests for bias
were not conducted. As such, this important paper in the literature does not meet this component of our inclusion
criteria for this particular analysis.

11Note that Hedges et al. (1994) find that “most of the studies in Hanushek’s data set are cross-sectional rather
than longitudinal” (12) – that is, relying on simple comparisons across locations or entities at a single point in time.
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Figure 1: Count of Included Studies per Year

causal” study we located was published in 2001, the majority of studies meeting this criteria were

published after 2010, and the lion’s share were written or published after 2015 (Figure 1). We

compiled this list by starting with all studies cited in the Jackson (2020) literature review. We then

supplemented this with Google Scholar searches on relevant terms (including “school spending” and

“causal”). We then consulted the cited papers and all papers that cite those on our list to identify

other papers to possibly include. Finally, to avoid exclusion of unpublished papers or works in

progress, we asked active researchers in the field to locate any additional papers beyond the list we

compiled.12 Using this approach, we identified 31 studies that met our conditions as of December 1,

2020. Where there are multiple versions of the same paper (e.g., a working paper and a published

version) we use the most recent publicly-available version of each paper.13

2.1 Included Studies

Table 1 summarizes the 31 studies that satisfy the inclusion criteria.14 We list the last names of the

authors and the publication (or draft) year of each study (first column). We assign a unique Study

ID to each of the 31 included studies (second column). Because we examine the impacts of school

spending on different outcomes (test scores, educational attainment, and longer-run outcomes),

we include multiple entries for studies that present impacts on multiple outcomes.15 While we

examine the sign of the impacts for all studies meeting the inclusion criteria, we only capture

the estimated impacts on test scores and educational attainment for analyses that quantify the

12This was done using a broad appeal on Twitter to a large network of economists and education-policy scholars.
13When studies were updated (which happened with unpublished work) we updated our database to reflect the

most up-to-date version of the paper’s analysis.
14Given the use of the same data and identification strategy, to avoid double counting we categorize Jackson et al.

(2016) and Johnson and Jackson (2019) as representing a single study.
15Note: Baron (2021) is the only study that reports distinct effects of both non-capital and capital spending, and

in this table we report the average of the test score estimates across the two spending types. For our analyses that
distinguish across spending types, we include both test score estimates separately.
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relationship between spending and outcomes; there are too few studies of other outcomes to provide

credible pooled estimates. As such, we provide a study-outcome Observation ID (third column) for

test score and educational attainment outcomes only. Of 31 unique studies, 24 present estimates

of test score impacts (either test scores or proficiency rates), 12 present estimates of impacts on

educational attainment (high school dropout, high school graduation, or college enrollment), and

3 examine longer-run impacts (wages or income mobility).16

While some prominent studies have employed event-study designs to examine effects on school

finance reforms (including Jackson et al. (2016), Lafortune and Schonholzer (2019), and others), the

set of studies examined represent a diversity of estimation strategies and sources of variation (see

Table 2). Of the 31 studies, 12 employ event-study type designs based on the implementation of

a policy, 11 employ regression discontinuity designs to exploit sudden jumps in per-pupil spending

at some known threshold, and 8 employ instrumental variables strategies to exploit changes in is

per-pupil spending level embedded in school finance formulas that are unrelated to other policy

decisions. These paper are also quite varied in terms of policies examined. There are 6 papers

that examine school finance reforms nationally, 7 that examine particular state level school finance

reforms, 3 that examine school spending referendum, 4 look at school improvement grants, 9 look

at capital construction projects, and others identifying effects of Title I or impacts of economic

shocks on spending. There is also good geographic coverage in terms of the populations treated in

the included studies. The school finance reforms studies cover all districts in treated states (about

25 out of 51), several examine large urban school districts, and one paper (Kreisman and Steinberg,

2019) examines small school grants (focused on sparse, rural areas). Overall, the treated “super

population” covered by these studies is largely representative of the United States as a whole. The

fact that the pooled data cover a variety of setting makes this study well suited to measure the

extent of heterogeneity one may expect across settings and to test for heterogeneous effects across

settings (see Section 8).

Table 1 also reports the results of calculations to construct comparable estimates from each

paper (detailed in Section 3). For each study-outcome combination, we report the sign of the

relationship between school spending and the average student outcome for the study’s full sample.

Positive values indicate a positive association between school spending and improved outcomes.17

For test score effects, we report the sign of the impact on the average test scores across all subjects

and grade levels reported in the study. We also report, for each study-outcome Observation ID,

the estimated marginal impact of a $1000 per-pupil spending increase (in 2018 dollars) sustained

over four years on the standardized outcome (Effect) and its standard error (SE). The last columns

report whether the average marginal effect is statistically significant at the 5 and 10 percent levels.

Table 2 presents details on the estimation strategy and spending type examined in each study.

16One study (Card and Payne (2002)) examines test score inequality, which is not directly comparable to other
studies and therefore not included in the formal meta analysis but is included as a “credibly causal” study on the
topic in the coin test analysis.

17For example, Lee and Polachek (2018) and Cascio et al. (2013) examine impacts on dropout rates. The reported
effects are reverse-coded so that a positive coefficient indicates improved outcomes (in these cases, reduced dropout).
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Table 1: Summary of Studies

Study Study ID Obs ID Outcome(s) Sign Effect SE 5% 10%

Abott Kogan Lavertu Peskowitz (2020) 1 1 High school graduation pos 0.0847 0.0876
Abott Kogan Lavertu Peskowitz (2020) 1 2 Test scores pos 0.1158 0.0667 *
Baron (2021) 2 3 College enrollment pos 0.1869 0.0767 ** *
Baron (2021) 2 4 Test scores neg -0.0049 0.0877
Biasi (2019) 3 . Income mobility pos . .
Brunner Hyman Ju (2020) 4 5 Test scores pos 0.0531 0.0173 ** *
Candelaria Shores (2019) 5 6 High school graduation pos 0.0511 0.0133 ** *
Card Payne (2002) 6 . Test score gaps pos . .
Carlson Lavertu (2018) 7 7 Test scores pos 0.0902 0.0475 *
Cascio Gordon Reber (2013) 8 8 High school dropout pos 0.5546 0.2056 ** *
Cellini Ferreira Rothstein (2010) 9 9 Test scores pos 0.2120 0.0992 ** *
Clark (2003) 10 10 Test scores pos 0.0148 0.0116
Conlin Thompson (2017) 11 11 Test proficiency rates pos 0.0084 0.0062
Gigliotti Sorensen (2018) 12 12 Test scores pos 0.0424 0.0098 ** *
Goncalves (2015) 13 13 Test proficiency rates neg -0.0019 0.0227
Guryan (2001) 14 14 Test scores pos 0.0281 0.0689
Hong Zimmer (2016) 15 15 Test proficiency rates pos 0.1159 0.0652 *
Hyman (2017) 16 16 College enrollment pos 0.0552 0.0257 ** *
Jackson Johnson Persico (2015), Jackson Johnson (2019) 17 17 High school graduation pos 0.0798 0.0163 ** *
Jackson Johnson Persico (2015), Jackson Johnson (2019) 17 . Years of education, Wages, Poverty pos . .
Jackson Wigger Xiong (2021) 18 18 College enrollment pos 0.0380 0.0133 ** *
Jackson Wigger Xiong (2021) 18 19 Test scores pos 0.0499 0.0196 ** *
Johnson (2015) 19 20 High school graduation pos 0.1438 0.0753 *
Johnson (2015) 19 . Wages, Poverty pos . .
Kogan Lavertu Peskowitz (2017) 20 21 Test scores pos 0.0190 0.0127
Kreisman Steinberg (2019) 21 22 High school graduation pos 0.0279 0.0146 *
Kreisman Steinberg (2019) 21 23 Test scores pos 0.0779 0.0237 ** *
Lafortune Rothstein Schanzenbach (2018) 22 24 Test scores pos 0.0164 0.0133
Lafortune Schonholzer (2021) 23 25 Test scores pos 0.2330 0.1032 ** *
Lee Polachek (2018) 24 26 High school dropout pos 0.0640 0.0141 ** *
Martorell Stange McFarlin (2016) 25 27 Test scores pos 0.0304 0.0270
Miller (2018) 26 28 High school graduation pos 0.0662 0.0169 ** *
Miller (2018) 26 29 Test scores pos 0.0515 0.0137 ** *
Neilson Zimmerman (2014) 27 30 Test scores pos 0.0248 0.0187
Papke (2008) 28 31 Test proficiency rates pos 0.0817 0.0121 ** *
Rauscher (2020) 29 32 Test scores pos 0.0083 0.0049 *
Roy (2011) 30 33 Test scores pos 0.3804 0.1563 ** *
Weinstein Stiefel Schwartz Chalico (2009) 31 34 High school graduation pos 0.1595 0.1698
Weinstein Stiefel Schwartz Chalico (2009) 31 35 Test scores neg -0.0541 0.0368
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Table 2: Summary of Estimation Strategy

Study Est. Strategy Spending Type

Abott Kogan Lavertu Peskowitz (2020) Regression Discontinuity operational
Baron (2021) Regression Discontinuity capital
Baron (2021) Regression Discontinuity operational
Biasi (2019) Event Study Any
Brunner Hyman Ju (2020) Event Study DiD Any
Candelaria Shores (2019) Event-Study DiD Any
Card Payne (2002) Difference in Difference Any
Carlson Lavertu (2018) Regression Discontinuity School Improvement Grant
Cascio Gordon Reber (2013) Event Study Title I
Cellini Ferreira Rothstein (2010) Regression Discontinuity capital
Clark (2003) Event-Study DiD Any
Conlin Thompson (2017) Event Study capital
Gigliotti Sorensen (2018) Instrumental Variables Any
Goncalves (2015) Event Study capital
Guryan (2001) Instrumental Variables Any
Hong Zimmer (2016) Regression Discontinuity capital
Hyman (2017) Instrumental Variables Any
Jackson Johnson Persico (2015), Jackson Johnson (2019) Event-Study DiD Any
Jackson Wigger Xiong (2021) Instrumental Variables Any
Johnson (2015) Event-Study DiD Title I
Kogan Lavertu Peskowitz (2017) Regression Discontinuity Any
Kreisman Steinberg (2019) Instrumental Variables Any
Lafortune Rothstein Schanzenbach (2018) Event-Study DiD Any
Lafortune Schonholzer (2021) Event-Study DiD capital
Lee Polachek (2018) Regression Discontinuity Any
Martorell Stange McFarlin (2016) Regression Discontinuity capital
Miller (2018) Instrumental Variables Any
Neilson Zimmerman (2014) Event-Study DiD capital
Papke (2008) Instrumental Variables Any
Rauscher (2020) Regression Discontinuity capital
Roy (2011) Instrumental Variables SFR
Weinstein Stiefel Schwartz Chalico (2009) Regression Discontinuity Title I

We assign a single, primary estimation strategy for each paper. Regression Discontinuity studies are those whose
identification is dependent on a cutoff point for some running variable. Event Study studies are those whose identifi-
cation strategy is driven by a policy or rollout over time. Instrumental Variables studies are those whose identification
is driven by a change that occured conditional on a policy, but not RD.

3 Constructing The Same Parameter Estimate for All Papers

To assess a literature, one must compare studies to each other. However, unlike randomized control

trials, studies on school spending policies are not reported in ways that facilitate direct comparison.

For example, Lafortune et al. (2018) report the impacts (after ten years) of school finance reforms

on 4th and 8th grade test-score gaps between high- and low income districts. In contrast, Hong and

Zimmer (2016) report the impacts of passing a bond referenda on test proficiency rates 1 through 13

years after bond passage in 4th and 7th grades. While both studies report positive school spending

impacts, the time frames are different, the time periods are different, the size of the spending

increases are different, one reports relative changes while the other reports absolute changes, and
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one reports impacts on standardized test scores while the other reports on proficiency rates. It

is unclear which study implies larger marginal school spending impacts – or even how similar the

study impacts are. Because studies report effects in different ways and on different scales, or define

school spending differently, we extract information from each paper that allows us to standardize

estimates for comparability across papers.18

3.1 The Common Parameter Estimate

For each study, we compute the effect of a $1000 per-pupil spending increase (in 2018 dollars),

sustained for four years, on standardized outcomes for the full population affected by the policy.

We compute separate estimates for test scores and educational attainment outcomes. We detail

how we compute this empirical relationship (or parameter estimate) for each study. Because studies

do not all report impacts in this form, this often requires several steps. We lay out these step and

any additional required assumptions in the following subsections. We show that none of these

assumptions change our final conclusions in any appreciable way (see Sections 6 and 7).

Step 1: Choice of outcomes

We report effects on student achievement (measured by test scores or proficiency rates) and educa-

tional attainment (measured by dropout rates, high school graduation, or college (postsecondary)

enrollment). If multiple test score outcomes are reported (e.g., proficiency rates and raw scores)

we use the impacts on raw scores. This allows for standardized test score effects that are more

comparable across studies, and avoids comparing impacts across thresholds of differing difficulty

(i.e., where some areas have higher proficiency standards than others).19 For educational attain-

ment outcomes, we capture impacts on high-school completion measures and college enrollment.

For studies that report multiple of these measures, we take the highest level reported.20

Step 2: Computing Population Average Treatment Effects

For much of our analysis, we use one estimate per outcome per study. When studies report estimates

for multiple specifications, we capture estimates from the authors’ preferred specification. When

there is a reported overall estimate across all populations (e.g., high-income and low-income), all

subjects (e.g., Math and English), and all grade levels (e.g., 8th grade and 4th grade), we take

the overall estimate as reported in the study. When studies report effects by subject, grade level,

or population, we combine across estimates to generate an overall estimate and standard error for

18We detail the information we capture from each paper in Table A.2.
19In one case, Kogan et al. (2017), multiple raw score effects were reported. We took the estimates for the preferred

outcome indicated by the authors.
20For example, if effects are reported for college enrollment and high school graduation, we take the college

enrollment effects. If effects are reported for high school graduation and high school dropout, we take the high-school
graduation effects. This particular decision rule of taking graduation over dropout outcomes is further justified
because: (a) dropout rates are notoriously difficult to measure (Tyler and Lofstrom (2009)) and therefore a less
reliable measure of educational attainment, and (b) different entities often measure dropout rates is very different
ways.
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analysis.21 When we combine test score effects across subjects for the same grade, we assume these

stem from the same population and use the simple average as our overall effect.22 23 We combine

test score effects across grade levels using a precision-weighted average.24 When we combine test

score or educational attainment effects across populations (i.e., high- and low-income), we use the

population-weighted average (i.e., put greater weight on the larger population) as our overall study

effect.25 This ensures that our overall estimate is as representative as feasible of what the effect

would be for the entire population, and facilitates comparison across studies. In Section 6, We

show that all of our results are remarkably similar to alternative ways to combine estimates.

Step 3: Standardize the Effect on the Outcome

Studies report effects on test scores with different scales, and may report impacts on different

outcomes (e.g., district proficiency rates or high school graduation). To facilitate comparison across

studies, we convert each estimated effect into student-level standardized units if not already reported

in these units.26

21Note that we estimate our main models across a range of assumed correlations, displayed visually in Figure 5
and presented in Section A.3. These have little effect on our main results.

22We follow Borenstein (2009) Chapter 24 to compute the standard error of the average effect, and assume a
correlation of 0.5 when combining subjects for the same grade.

23In the single paper (Baron (2021)) that presents impacts for two separate types of spending (non-capital and
capital) on one outcome (test scores), we use the simple average of the impacts of both spending types as our single
overall effect for the coin test analysis; we include both (non-capital and capital) distinct estimates of effects on test
score outcomes for our meta-analysis. To compute the standard error of the overall test score effect for Baron (2021)
we assume a correlation of zero.

24Precision weighting is a way to aggregate multiple estimates into a single estimate with the greatest statistical
precision. Instead of a simple average, this approach more heavily weights more precise estimates (i.e., placing more
weight on the estimates that are the most reliable). We follow Borenstein (2009) Chapter 23 to compute the standard
error of the precision-weighted average as the reciprocal of the sum of the weights (inverse variances). This calculation
of the standard error assumes a correlation of zero between the estimates.

25We follow Borenstein (2009) Chapter 24 to compute the standard error of the average effect, and assume a
correlation of zero when combining outcomes for different populations. We use the relative sample sizes reported
in the study to weight. For example, in Lafortune et al. (2018) we combine the estimates for the top and bottom
income quintiles (using the relative sample sizes) and assume a correlation of zero between these estimates. We make
an exception in one case: Cascio et al. (2013) report dropout rate estimates for Black and White students. For this
study we population-weight by an estimated share White = 0.9 and share Black = 0.1 rather than the 0.68/0.32
shares reported for the study sample.

26When effects are not reported in student-level standardized units, we divide the reported raw effect, ∆ẙ, by
the student-level standard deviation of the outcome to capture the estimated effect on the outcome in student-level
standard deviation units (i.e. σẙ). To perform this standardization, we gather information from each paper on the
standard deviation of the outcome of interest. This standard deviation is generally reported in summary statistics.
In two cases (Rauscher (2020) and Kogan et al. (2017)), the standard deviation is reported at the school or district
level. In these two exceptional cases, we convert the school- or district-level standard deviation into a student-level
standard deviation by dividing the school or district-level standardized estimate impacts by the square root of the
school or district size. Our results are robust to excluding these two studies (see Table A.5). For binary outcomes such
as proficiency rates, graduation rates, or college-going rates, we use the fact that the standard deviation of a binary
variable is

√
p× (1 − p). In the three studies that report on graduation rates for relatively old samples (Jackson

et al. (2016), Johnson (2015) and Weinstein et al. (2009)), we standardize estimated effects using graduation rates
that prevailed at that time (77%) from national aggregate statistics, rather than using the baseline reported for the
study sample. This choice makes studies more comparable by using the same standardization across studies of the
same outcome and time period.

13



Step 4: Equalize the Years of Exposure

Because education is a cumulative process, one would expect larger effects for students exposed to

school spending increases for a longer period of time. Indeed, we show evidence of this empirically

in Section 8.3. To account for this, we standardize all effects to reflect (where possible) the effect of

being exposed to a spending increase for four years. Several studies report the dynamic effects of

a school-spending policy (i.e., the effect over time). For test scores, when the dynamic effects are

reported, we take the outcome measured four years after the policy change.27 Some papers do not

report dynamic effects, and only report a single change in outcome after a policy-induced change in

spending. In such cases, we take the average reported effect.28 Because high school lasts four years,

many papers report the effect on educational attainment of four years of exposure, but not all do.29

30 We adjust the captured effects to reflect four years of exposure by dividing the overall effect by

the number of years of exposure and then multiplying by four. We test the assumption that the

educational effects increase linearly with years of exposure, and find that this holds empirically in

Section 5.3. Formally, the standardized four-year effect of policy j is ∆yj .

Step 5: Equalize the Size of the Spending Change

Each included study isolates the effect of the policy on spending (and that of the policy on out-

comes) from other potential confounding factors and policies. We seek to determine the change in

outcomes associated with a particular change in per-pupil spending. To ensure comparability of

dollar amounts across time, we adjust reported dollars in each study into 2018 equivalent dollars

using the Consumer Price Index (CPI).31 Because we measure the impacts of exposure to four years

of a spending change, we relate this four-year outcome effect to the change in spending during these

same four years. For each study j we collect the average change in per-pupil spending (in 2018 CPI

adjusted dollars) over the four years preceding the observed outcome, ∆$j .
32 When the effect of

spending on outcomes is directly reported in a study, we record this estimate directly. See Section

3.2 for a detailed description of accounting for capital spending.

27Note that some papers may refer to this as a year-three effect when they define the initial policy year as year
zero, while others may refer to this at the year four effect if the initial policy year is year 1.

28In many cases, the average exposure is less than four years so that (if at all) we may understate the magnitude
of any school spending effects for these studies.

29Papers that report effect for years of exposure other than 4 are: Abott et al. (2020), Jackson et al. (2016)/Johnson
and Jackson (2019), and Kreisman and Steinberg (2019).

30We capture the effect of referendum passage on college enrollment 10 years post-election in the case of Baron
(2021) to ensure comparability with other studies which report on the same outcome.

31We adjust based on the article’s reported $ year, and the last year of data if no $ year reported.
32For a policy that leads to a permanent shift in spending, the total four-year change in spending is 4 times the

permanent shift and the average is the permanent shift. However, because spending can vary across years following
policy enactment, the duration of exposure and duration of the policy may not be the same. In these cases, we
use the average increase in spending during the four years preceding the outcome. For example, a policy may have
increased per-pupil spending by $100 in the first year, and increased linearly up to a $400 increase in the 4th year.
In this case, we would use the average increase in spending during the four years, which is $250. If a study does not
report spending change in the four years preceding the observed outcome, we capture the change in spending and the
contemporaneous measured outcome. This decision likely understates the true spending effect because these models
may not account for the benefit of spending in previous years.
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Step 6: The Standardized 4-Year $1000 Spending Effect

For each study, we obtain an estimate of the change in the standardized outcome per $1000 policy-

induced change in school spending (averaged over four years and in 2018 dollars). Our standardized

effect on outcome y from study j is µyj = (∆yj)/(∆$j). For 5 out of 31 study-outcomes, we compute

this ratio manually after standardizing the impact of the policy on both student outcomes and per-

pupil spending. For the 26 out of 31 study-outcomes that report marginal spending effects directly,

we take the reported marginal effect and adjust it (where needed) for exposure, CPI, and student-

level standardization. Importantly, this parameter estimate is comparable across studies.33 µyj can

be interpreted an Instrumental Variables (IV) estimate of the marginal impacts of school spending

on outcomes using the exogenous policy-induced variation in school spending as the instrument.34

To illustrate the importance of computing the same parameter from each paper, consider the

following two papers: Lafortune et al. (2018) report that the “implied impact is between 0.12 and

0.24 standard deviations per $1,000 per pupil in annual spending” while Clark (2003) reports that

“the increased spending [...] had no discernable effect on students’ test scores”, reporting small,

positive, statistically insignificant impacts. At first blush, these two studies suggest very different

school spending impacts. However, when compared based on the same empirical relationship, the

papers are similar. Specifically, precision aside, µyj for Clark (2003) is 0.0148σ. By comparison,

the large positive impact in Lafortune et al. (2018) is based the change in the test-score gap

between high- and low-income groups (a relative achievement effect) over ten years. Their estimates

of absolute overall test score impacts over 4 years yields a µyj of 0.0164σ.35 Despite the two

studies coming to very different conclusions and reporting their results is very different ways,

when compared based on a common parameter, they are, in fact, remarkably similar.

3.2 Making Capital Spending Comparable to Non-Capital

A key contribution of this work is to provide a framework, informed by theory, to allow for a

direct comparison of the marginal impacts of capital spending to those of non-capital spending.

33We also capture the associated standard error of the estimate. When studies report the effects on spending and
then on outcomes, our standardized effect µ is a ratio of two estimates: the estimated change in the outcome divided
by the estimated change in spending. In these cases, where studies report the effect of a policy and not of a specific
dollar change, we account for this in computing the standard error. We follow Kendall et al. (1994) and use a Taylor
expansion approximation for the variance of a ratio. If β and δ are both estimates, if Corr(β, δ) = 0, the standard

deviation of β
δ

is approximately

√
µ2
β

µ2
δ

[
σ2
β

µ2
β

+
σ2
δ

σ2
β

]. In Appendix Tables A.7 and A.8 we run our main specifications

across the range Corr(β, δ) = [−1, 1] and our overall results are largely identical.
34For the 16 study-outcomes that report population average IV estimates, we simply re-scale the reported effects

(and standard errors) to equalize exposure, and CPI-adjust policy spending changes. For 15 study-outcomes, our
overall effect combines estimates across subjects (e.g., math and reading) and/or populations (e.g., grade-levels, high
and low-income, or Black and White students). In all but 1 of these cases we compute the average of the sub-
population IV estimates – as opposed to computing the ratio of the average effects. We only compute the ratio of
the average effects when we combine estimates across grades levels and subjects. In these cases, because there are no
reported differences in spending changes by grade or subject, the ratio of the average effects and the average of the
individual IV ratios are identical.

35In their study, using relative versus absolute achievement gains matters. Specifically, they report test-score
declines for high-income areas which makes the relative gains larger but the absolute gains smaller.
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Increases in non-capital spending go toward educational inputs that are used in the same year

(such as teacher salaries or transportation fees). In contrast, because capital spending goes toward

durable assets that are used for years after the initial financial outlay, it is inappropriate to relate

outcomes in a given year to spending on capital that same year. To account for the difference in

timing between when capital spending occurs and when the inputs purchased may affect outcomes,

we use the annualized accounting value of the one-time increase in spending as the spending change

associated with estimates of student outcomes.

To assess the value of $1000 in capital spending as comparable to the same in non-capital

spending requires some reasonable assumptions. Specifically, a one-time (i.e., non-permanent)

$1000 increase in spending to hire an additional teacher for a single year may be reflected in

outcomes in that year. In contrast, such spending on a building should be reflected in improved

outcomes for the life of the building. In a simplistic case, where the asset does not depreciate (i.e.,

there is no wear and tear and the asset is equally valuable over its life), one would distribute the

total cost of the asset equally over the life of the asset. For example, if the life of a building is 50

years and the building costs $25,000,000, the one-time payment of $25,000,000 would be equally

distributed across the 50-year life span and be equivalent to spending $25,000,000/50=$500,000

per year. Note that, with no depreciation, for a typical school of 600 students, this seemingly large

one-time payment of $25M would be equivalent to $500,000/600= $833.33 per-pupil per year.

In a more realistic scenario with depreciation, during the first year of a building’s life, it is more

valuable than in its 50th year, due to wear and tear and obsolescence. In our example, the building’s

value in its first year would be greater than $500,000 and in its last year less than $500,000. To

account for this, we follow convention in accounting and apply the depreciated value of capital

spending projects over the life of the asset. We assume annual depreciation of 7%, representing

the asset losing 7% of its value each year. We depreciate expenses that went primarily to new

building construction or sizable renovations over 50 years.36 We depreciate expenditures of less

durable assets (such as equipment or upgrading electrical wiring for technology) over 15 years, and

for studies that report the proportion of capital spending that went to new building construction,

we depreciate the capital amount proportionally between 50 and 15 years.37 In Section A.3 we

show that our main conclusions are robust to using lower and upper bounds of years depreciated,

as well as to assuming no depreciation.

For each study of capital spending, we compute the change in student outcomes for each $1000

in average flow value of the capital spending in the years preceding the measured effect.38 We

36In 2013-14, the average age of school buildings in since original construction was 44 years (NCES 2016). Studies
report on building age, including: Lafortune and Schonholzer (2019) (44.5 years), Martorell et al. (2016) (36 years),
and Neilson and Zimmerman (2014) (well over 50 years).

37For example, Martorell et al. (2016) report that most of the spending went to renovations, and Cellini et al.
(2010) provide an example of specific capital projects funded by a bond referenda, including to “improve student
safety conditions, upgrade electrical wiring for technology, install fire doors, replace outdated plumbing/sewer systems,
repair leaky rundown roofs/bathrooms, decaying walls, drainage systems, repair, construct, acquire, equip classrooms,
libraries, science labs, sites and facilities. . . ” (220). We describe capital paper coding in Table A.3.

38Depreciating the asset puts more value on the early years when test scores are measured and less on the years for
which outcomes are not measured (many studies do not evaluate what the effect is more than 6 years after the funds
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illustrate this depreciation in Figure 2, which shows the 15-year depreciation of a $7,800 per-pupil

($4.7 million per school) expenditure (as in Martorell et al. (2016)) and the 50-year depreciation of a

$70,000 per-pupil ($42 million per school) expenditure (as in Neilson and Zimmerman (2014)). This

transforms the extraordinarily large one-time expenditure over the projected life of the asset, which

falls in value over time. After computing the flow value of the capital outlay for each year after

initial payment, we can relate observed student outcomes associated with the average depreciated

value of the asset in the years preceding measured outcomes.39
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Figure 2: Exemplar Capital Expenditure Depreciation

Accounting for Construction Time

Because the typical capital project does not lead to contemporaneous changes in classroom ex-

periences, it is reasonable to expect any possible student improvements to take several years to

materialize after the capital outlay. Indeed, large capital projects that involve entirely new con-

struction or major upgrades to a new wing of a building can take multiple years to complete.

Moreover, capital projects often entail some temporary disruption to everyday operations during

are used). Because our parameter includes the spending change in the denominator, this reduces the reported school
spending effect relative to not depreciating the asset. Accordingly, our approach may be considered conservative.

39Because we use the size of the overall capital spending amount to compute the policy effect on spending, (∆$)
is not an estimate. As such, the standard error of the IV estimate is simply the standard error of the policy effect on
the outcome divided by the actual spending change. The one exception is Rauscher (2020), who does not report an
average bond amount but provides an estimated policy effect on capital spending during the six years following bond
passage. In this case, we do adjust our IV estimate standard error to account for this estimated spending change.
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the renovation/construction period, which may be deleterious to student outcomes. For these rea-

sons, we assign the first two years of a capital spending project to a “construction/adjustment

period” and capture outcomes six years after the increase in capital spending.40

To assess whether this temporal decision is reasonable, Figure 3 presents the dynamic effects of

the nine studies estimating changes in capital spending on student test score outcomes. The left

panel plots the raw effects for each study, not the marginal per-$1000 effects, over time as relative

to a baseline year zero (t = 0) in which there should be no effect of the policy (the year of the

construction or the policy change).41 Consistent with an initial disruption, in several cases there is

an immediate dip in outcomes. Consistent with long-run benefits to capital spending, this initial

dip is followed by a gradual increase in outcomes in most studies. By about 5 or 6 years after a

capital spending increase, one observes improved outcomes in most cases. To more formally assess

the evolution of outcomes over time, we present the average dynamic effect in the right panel of

Figure 3.42 We plot the average (across the nine studies) effects 1 through 6 years after the capital

project or construction along with the 90 and 95 percent confidence intervals. This shows the same

per-study pattern of no change (or possibly a slight dip) in the first two years and then improving

outcomes after about 5 or 6 years. Indeed, one rejects that the effect of capital spending is zero

at the 5-percent level by year five. This pattern validates our assigning the first two years of these

studies to a “construction/disruption” period and using the six-year effect for capital spending

increases as the most comparable to non-capital spending four-year effects. Overall, the pattern

indicates that (a) capital spending does improve outcomes on average, and (b) these benefits take

between 4 and 6 years to materialize. We present more formal statistical tests in Section 5 that

quantify the extent to which capital spending may affect outcomes.

40Eight of nine papers report six-year estimates of the effect of capital spending changes on student outcomes.
When the six-year effect is not reported, we use the latest year reported. Conlin and Thompson (2017) reports only
3 years after capital spending, so we capture their year-three effect as our estimated effect. As a conceptual matter,
if capital spending does not improve student outcomes over both the year-four and the six-year effects, the impacts
of spending would be zero. This distinction matters only if one rejects the null hypothesis of zero spending impacts.

41For Lafortune and Schonholzer (2019), Neilson and Zimmerman (2014), and Goncalves (2015), year one (t = 1)
represents first year of occupancy at a new or renovated school. In the case of Conlin and Thompson (2017) year one
is the first year of program eligibility. For all other studies, year one (t = 1) represents the first year after a capital
bond was passed.

42Figures A.1 and A.2 aggregate effects over time by precision and random effects weightings.
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4 Meta-Analytic Methods

We quantitatively describe the distribution of school spending impacts on test scores and educa-

tional attainment. While the simple average and standard deviation of the study impacts (µyj)

provides information about the distribution of impacts, this approach can be very misleading in

two important ways that a formal meta-analysis can address.

First, while the simple average across studies is an unbiased estimate of the center of the distri-

bution of impacts, an inverse-variance weighted average is the minimum variance unbiased estimate

(Hedges (1983), Hartung et al. (2008)). Intuitively, when forming an average, one would place less

weight on less reliable estimates (i.e., those which have larger standard errors due to underpowered

methods or small samples) and more weight on those that are more precisely estimated.43 As such,

the inverse-variance weighted average (or precision-weighted average) is be a more reliable measure

(i.e., less sensitive to imprecise outliers) of the center of the distribution of impacts.

Second, because of sampling variability, the spread of the raw estimates may drastically over-

state the spread of the distribution of true impacts. To inform policy, one must know how much

of the spread across studies can be attributed to sampling variability (i.e., the chance variability

across studies that is due to the choice of sample) versus real contextual differences (due to differ-

ent treated populations, different policy types, and different estimation strategies) across studies.

Understanding the role of these contextual differences is critical to being able to predict what one

might expect to observe in a new context, and a failure to account for cross-study heterogeneity

could lead to overconfidence in the ability to extrapolate to other settings.

To address both these limitations, we perform random effects meta-analysis to generate overall

pooled estimates of the average effect of spending on student outcomes and to estimate heterogeneity

across studies. We detail this approach below.

4.1 The Formal Model of the Distribution of Study Impacts

Where µyj is the observed effect of a $1000 spending increase (in 2018 dollars) over four years

on outcome y = {test scores, educational attainment} in study j, each study-outcome can be

represented as in (1).

µyj = θ + δj + εj (1)

In Equation (1), θ is the pooled average effect across all studies (not necessarily the effect estimated

by any individual study). There are two reasons that a study estimate would deviate from this

average. The first is sampling variability (or within-study error), represented by δj . The second is

treatment effect heterogeneity (or the between-study error), represented by εj . Where σ2
µ,yj is the

within-study variance for study j, and τ2 is the variance of the study-specific deviations from the

pooled mean, the study impacts are distributed around a grand mean θ with variance σ2
µ,yj + τ2.

43This logic assumes that the precision of an estimate is unrelated to the the study estimate. In Section 7 we show
that this is reasonable in our setting.
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Where σ2
µ,yj is treated as known and approximated by the squared standard error, se2

µ,yj ,

one can estimate τ2 empirically by method of moments. Specifically, the estimated heterogeneity

parameter τ̂2 is identified based on the difference between the observed variability across studies

and that which would be expected due to sampling variably alone.44 Intuitively, if the confidence

intervals for the individual studies tend to overlap, it would suggest that τ is small, while non-

overlapping intervals would suggest heterogeneity. Accounting for both sources of variability, the

optimal inverse-variance weighted average across all J studies is θ̂pw =
∑
µyjwyj∑
wyj

, where each study

receives weight wyj as in (2).

wyj =
1

(σ2
µ,yj + τ2)

(2)

To form the empirical analog of (2), and therefore θ̂pw, one can use the square of the standard

error (se2
µ,yj) as an estimate of σ2

µ,yj , and estimate τ2 by method of moments. The variables

µyj and se2
µ,yj come from the individual studies, while the parameters τ2, θ̂pw, and the standard

error of the weighted average (seθ̂pw) can be estimated. We estimate this random effects model

using weighted least squares, with inverse-variance weights. We estimate standard errors using

robust variance estimation (RVE), a meta-analytic analog to heteroskedasticity and cluster-robust

standard errors (Hedges et al. (2010)). Following best practice, we use small-sample corrections,

including degrees-of-freedom adjustments, that result in confidence intervals with good coverage

even with fewer than ten studies (Tipton (2015)).45 Another parameter from this estimation is the

relative amount of between-study heterogeneity. This is referred to as I2, and is the ratio of the

variance of the between-study heterogeneity and the overall variance (reported in regression tables

as % Cross-Study Var.).46

4.2 Confidence Intervals and Prediction Intervals

To answer “does money matter?” one can test the hypothesis that the average pooled effect is zero.

For this, one would use the standard error of the estimate to form a t-test.47 Similarly, one can use

the standard error of the mean to compute a confidence interval for the pooled average.

CI = θ̂pw ± t∗ × seθ̂pw (3)

44Formally, where τ = 0, the precision-weighted grand mean is M=
∑
µyj(1/se

2
yj)∑

(1/se2yj)
. The sum of the standardized

square deviations from M across studies is Q =
∑J

1 (
µyj−M
seyj

)2. Importantly, Q follows a χ2 distribution with an

expected value of degrees of freedom (df), which is the number of studies j minus 1. As such, Q − df measures the
extent to which the observed dispersion is greater than can be explained by sampling variability alone. This forms
the basis for an estimate of τ2. That is, the method of moments estimate of τ2 is (Q − df)/C, where C is a factor
based on the study weights used to compute Q. Dividing by C reverses this process so that the τ2 units are the same
as those used in the studies (see Borenstein et al. (2017) for a full derivation).

45We implement these estimators using the “robumeta” package in Stata (Hedberg et al. (2017)).
46Where σ̃2

µ is a precision-weighted average of the individual within-study variances, I2 = τ̂2/(σ̃2
µ + τ̂2).

47All tests we present use the t-distribution with the appropriate degrees of freedom adjustment.
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This confidence interval pertains to the pooled average across all studies and does not account

for treatment heterogeneity (i.e., that different studies provide estimates of different true causal

impacts). As such, it does not provide a sense of what to expect in future studies. For this, one

would form a prediction interval that includes both sources of error. The prediction interval is

given by Equation (4).

PI = θ̂pw ± t∗ ×
√
se2
θ̂pw

+ τ̂2 (4)

The prediction interval is necessarily wider than the confidence interval because it also accounts

for heterogeneity across studies. It represents the range of values that one can expect to observe

in a randomly sampled new study. This is an important policy parameter. That is, while one can

be near certain that, on average, policies that increase school spending improve student outcomes,

policymakers may wish to know how likely they are to have a positive effect of a future policy in

their particular context. While the confidence interval speaks to the former, the prediction interval

speaks to the latter. We discuss both as we interpret our results.

Conservative Prediction Intervals

Recent studies have shown that prediction intervals may be too narrow with fewer than 20 studies

(Nagashima et al. (2019); Kontopantelis et al. (2013)). There are only 12 studies of educational

attainment outcomes, so the estimate of τ2 for this set of studies may understate the true underlying

heterogeneity in the population.48 To account for this, we also compute a conservative predication

interval based on an “overestimate” of τ2. Specifically, we take bootstrap samples from our data

to get 400 estimates of τ2. We then take the 99th percentile of this bootstrap distribution ( ˆτ2
99) as

our upper bound estimate of τ2, and use this to form a conservative prediction interval as in (5).

PI = θ̂pw ± t∗ ×
√
se2
θ̂pw

+ ˆτ2
99 (5)

Our alternate estimate of the heterogeneity parameter ( ˆτ2
99) is near the maximum amount of un-

derlying heterogeneity that is consistent with the studies in the sample. While prediction intervals

based on this may overestimate variability for test score effects (where there are more than 20 stud-

ies), it may be reasonable for educational attainment effects (for which there are only 12 studies).

4.3 Instrument Validity and Interpretation of Our Estimate

Because each standardized effect is an IV estimate, our overall meta-analytic average is an average

of IV estimates. As such, we consider the standard IV assumptions in the context of our meta-

analytic pooled average. For each paper’s estimate to be valid, it must be that the instrument is

relevant (i.e., each policy lead to a real change in per-pupil spending) and it must be excludable

(i.e., each policy only influences the outcomes through its effects on per-pupil spending). As we

48Intuitively, if one happens to have 12 studies with similar estimates, the model may suggest that there is no
heterogeneity in other studies.
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discuss in Section 7, in our setting, for the pooled average to be unbiased and consistent does

not require that each paper have a valid instrument. For our pooled average (of IV estimates) to

be a consistent estimate of the true average marginal spending effect requires the two following

conditions:

Relevance (on average): On average, the policies examined lead to meaningful changes in

per-pupil spending. By focusing only on papers that demonstrate a meaningful policy effect on

spending (our inclusion restrictions), the first condition is satisfied for each study. It follows that

this condition is also satisfied in our meta-analytic average.

Excludable (on average): Our pooled average requires that on average the relationship

between the policies and outcomes only operates through the policy effect on school spending.

This condition does not require that each study satisfy the exclusion restriction, but that it is

satisfied on average. Intuitively, even if all the individual studies are biased due to violations of the

exclusion restriction within each study, if the biases are largely random, some studies will be biased

upward while other will be biased downward. In this case, the average of the biases will be zero in

expectation – yielding an unbiased pooled average. Even though our inclusion criteria reduces the

likelihood that any single study is severely biased, our method does not require that all studies are

actually unbiased, just that any bias in the included studies is essentially random. We present a

novel test of this condition in Section 7.1 and shows that it holds empirically.

5 Results

5.1 Does School Spending Matter? The Coin Test

Before quantifying the extent to which increased spending affects outcomes, we perform a simple

count-based test of whether the causal evidence supports the notion that increased school spending

improves student outcomes. It is well-known that the standard vote-count approach (i.e., counting

the share of statistically significant effects above some pre-specified threshold) as used in Hanushek

(2003) is inconsistent (Hedges and Olkin (1980)). We present an alternative counting approach

that does not suffer these consistency problems, based on simple counts of positive and negative

estimates irrespective of statistical significance.49 The value of this test is that it is intuitive, and

can be used when little is known about a study other than the sign of the study impacts.

Specifically, under the null hypothesis that the true effect is zero (i.e., µyj = 0 ∀j ∈ J),

each study’s reported effect is simply the error term (εyj). By the central limit theorem, εyj

is approximately normal (and hence symmetric) so long at asymptotics apply. It follows that,

if studies are independent and there were no association between school spending and student

outcomes, half the studies would be positive while half would be negative. As such, the probability

of observing X positive estimates out of N studies follows a binomial distribution with probability

p = 0.5. By comparing the number of positive studies out of all studies to the binomial distribution

49See Section 12.2.1.3 of Higgins et al. (2021) for a discussion of this basic idea.
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(with p = 0.5), we can quantify the likelihood of the data under the null hypothesis of no spending

impacts. Given the similarity to a series of fair coin tosses, we refer to this as the “coin” test.

To implement this test, we classify each study as reporting a positive or negative effect of

school spending on outcomes. To be conservative (i.e., stacking the deck against finding a positive

association), studies that examine impacts on multiple outcomes are classified as negative if the

average impacts for any outcome is negative (even if the impacts on all other outcomes is positive).50

Note that with weak instruments, the distribution of the error terms may be non-normal Stock et al.

(2002), so this test may be inappropriate. To address this potential concern, we also present the

coin test using only studies that have strong first stages (first stage F-statistic > 10) where this is

less of a concern. While this mechanically reduces the level of confidence (owing to less data), the

main conclusions are unchanged.

Across all 31 studies, 28 report positive impacts of school spending on student outcomes. If

there were no relationship between spending and outcomes, the likelihood of observing 28 or more

positive effects out of 31 is 1 in 430,185. This is the same likelihood of flipping a fair coin (i.e., a

coin that has a 50/50 chance of head or tails) 31 times and and getting 28 (or more) heads. While

one could quibble with this test on the grounds that each study is not a purely independent draw

(given that some studies examine overlapping policy changes), this is compelling evidence that, on

average, policies that increase school spending improve student outcomes. Looking only to studies

with first stage F-statistics greater than 10, so that the distributional assumption of the test are

satisfied (in expectation), 24 out of 26 papers (92%) are positive, which would happen with with

a 1 out of 190,650 chance, or probability of 0.000005245 under the null hypothesis that there is no

effect of spending on student outcomes.

We present the same test separated by outcome in Table 3. For each specific outcome, the

number of available credible studies is more limited, which leads to a lower level of confidence

about the relationship. Despite this, for all outcomes, most papers find positive impacts of school

spending. Of 24 studies that report effects on test scores, 21 find that increased school spending

increases scores. If there were no effect, observing this high a number of positive studies (or more)

would occur with probability 1 in 7,216 – extremely unlikely. Of the 12 studies that estimate

effects of school spending on educational attainment, all 12 find that increased school spending

leads to increased educational attainment. If there were no effect, this high number of positive

studies would occur with probability 1 in 4,096 – compelling evidence that specific policies that

increase school spending improve students’ educational attainment. The final outcome studied is

adult earnings. All three independent studies that link changes in school spending to adult earnings

find positive impacts. With only 3 studies, there is the possibility that this occurred by chance.

Even so, if there were no effect, this high a number of positive studies would occur by chance with

probability 1 in 8. Looking only to studies with strong first stages, the likelihood of observing

the observed distribution of test score results under the null of no impacts is 1 in 2,745, and for

50Using this conservative definition, we classify Weinstein et al. (2009) as negative even though they find positive
effects on educational attainment.
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educational attainment it is 1 in 256 and for wages it is the same (1 in 8). In sum, the pattern

of results is statistically incompatible with the notion that “money does not matter” and provides

overwhelming evidence that policies that increase school spending improve student outcomes on

average.

Table 3: Coin Test by Outcome Examined

Panel A: All Studies
Outcome Papers Positive Positive & Significant % Positive 1 in X Chance

All Studies 31 28 14 0.90 430185
Test Score 24 21 9 0.88 7216
Educational Attainment 12 12 8 1 4096
Wages (income mobility) 3 3 2 1 8

Panel B: Fstat > 10
Outcome Papers Positive Positive & Significant % Positive 1 in X Chance

All Studies 26 24 14 0.92 190650
Test Score 19 17 9 0.89 2745
Educational Attainment 7 7 6 1 128
Wages (income mobility) 3 3 2 1 8

5.2 How Much Does School Spending Matter?

To assess the extent to which school spending matters, we examine the distribution of effects for

each outcome type. We first present a forest plot to visualize all the estimates, and describe the

distribution of raw estimates with simple averages and medians. We then provide a more rigorous

analysis of the center and spread of the distributions of causal impacts, along with a discussion of

the importance of treatment effect heterogeneity, based on random-effects meta-analysis.

We present forest plots for the test score and educational attainment impacts separately in

Figure 4. For each included study that examines impact on test scores or educational attainment,

we plot the estimate of a $1000 increase in per-pupil school spending (2018 CPI adjusted) sustained

over four years. We also plot the 95% confidence interval associated with each study estimate.

Studies are presented in descending order by estimated impact. To show the meta-analytic results

visually, the 90% confidence interval for the pooled average is in dark blue, and the 90% prediction

interval (using τ) for a new study in a different context is in pink, and the conservative 90%

prediction interval (using τ99) is in light blue (see Section 4.2 for details).

5.3 Test Score Impacts

The forest plot in the top panel of Figure 4 indicates that the most precisely estimates studies are

those in the middle of the distribution, and the most imprecise estimates tend to be at the extremes

of the distribution of effects. This suggests that the most reliable estimates are near the median

of the distribution. The 25th percentile of school spending effects on test scores is 0.0156 and the

75th percentile is 0.103. This range of estimates underscores (a) that school spending effects are

largely positive, and (b) it is important to look at the literature as a whole to gauge magnitudes
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Figure 4: Overall Estimates

of impacts. The simple average is 0.0662σ, while the median is 0.0462σ. The fact that the median

is notably smaller than the mean suggests that some studies with large effects are inflating the
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average. Given that the largest estimates are also the least precise, a precision-weighted average

may be more appropriate than a simple average.

We present meta-regression results in Table 4. We report the pooled average impacts for all test

score studies in column (1), for non-capital spending on test scores in column (2), capital spending

on test scores in column (3), and the effects of non-capital spending on educational attainment in

column (4). For each model, we report the pooled effect in addition to the standard error of the

pooled effect. Importantly, we also report τ , an estimate of the between study variability – which

is critical to helping estimate what one could expect in other settings.

Table 4: Meta-Analysis Estimates

(1) (2) (3) (4)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Educational
Attainment

Panel A: Full sample
Average Effect 0.0352∗∗∗ 0.0431∗∗∗ 0.0150∗∗∗ 0.0539∗∗∗

(0.00723) (0.00878) (0.00536) (0.00577)

N 24 15 9 12
τ 0.0247 0.0246 0.0139 0
% Cross-Study Var. 0.761 0.759 0.501 0
90% PI [-0.00725,0.07767] [0.000,0.086] [-0.010,0.040] [0.044,0.063]
Prob. Pos 0.914 0.951 0.843 1
τ99 0.0355 0.0399 0.0362
% Cross-Study Var. (τ99) 0.868 0.844 0.873
90% PI (τ99) [-0.02462,0.09505] [-0.02424,0.11042] [-0.007,0.115]
Prob. Pos (τ99) 0.834 0.854 0.929

Panel B: Fstat > 10
Average Effect 0.0386∗∗∗ 0.0442∗∗∗ 0.0252∗∗ 0.0553∗∗∗

(0.00737) (0.00836) (0.0122) (0.00724)

N 19 11 8 7
τ 0.0257 0.0222 0.0275 0.0161
% Cross-Study Var. 0.771 0.716 0.755 0.308

Panel C: Cluster like studies
Average Effect 0.0337∗∗∗ 0.0386∗∗∗ 0.0235∗∗ 0.0536∗∗∗

(0.00693) (0.00805) (0.0107) (0.00573)

N 24 15 9 12
τ 0.0227 0.0207 0.0245 0
% Cross-Study Var. 0.729 0.595 0.831 0
90% PI [-0.006,0.073] [0.002,0.075] [-0.021,0.068] [0.044,0.063]
Prob. Pos 0.922 0.959 0.810 1

Standard errors in parentheses

Full sample coefficient on capital= -.0247 (p-val = .0567)
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Looking at our preferred test score estimate (column 1), the pooled effect across all studies

implies that a $1000 increase in per-pupil spending (in 2018 dollars and sustained over four years)
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would increase average test scores by roughly 3.52 percent of a standard deviation. The 95 percent

confidence interval for this pooled average lies well above zero and is between 0.021σ and 0.049σ.

Note the narrower 90 percent confidence interval for this pooled average is depicted in dark blue

in Figure 4.

While the model indicates that the pooled average of the impacts is greater than zero (at the

one-tenth of one percent significance level), this does not mean that one should expect positive

spending impacts more than 99 percent of the time. The models estimates that 76.1 percent of

the variability in impacts reflects heterogeneity across studies (i.e., not all contexts will have the

same treatment effect), which suggests there is uncertainty about what one would observe in other

settings. More specifically, the standard deviation of heterogeneity across studies (i.e., τ) is 0.0247.

This implies that any two studies may have true causal impacts that differ by about 0.0247σ simply

due to treatment heterogeneity. Intuitively, the model estimates this level of heterogeneity because

relatively precise studies like Papke (2008) and Rauscher (2020) both have positive effects but do

not have overlapping margins of error. The model takes this as evidence that these studies likely

come from contexts with different effects (both of which are positive), and infers a positive average

effect with nontrivial heterogeneity across contexts. An implication of this estimate is that even

though the pooled effect is 0.0352, in other contexts one would expect estimates between -0.00725σ

and 0.0777σ about 90 percent of the time. The 90 percent prediction interval for what one would

expect in a new study is depicted in pink in Figure 4. This prediction interval contains the point

estimates of 14 of the 24 studies, and (with the exception of Papke (2008)) those that lie outside

this range are very imprecise. Another policy-relevant summary of the predicted impacts is that a

policy that increases school spending by $1000 over a four-year period would increase test scores

91 percent of the time - more than 9 times out of 10.51

Capital Versus Non-Capital Spending Impacts on Test Scores

In a recent review, Jackson (2020) points out that while the impacts of operational spending

are consistently positive, the impacts for capital spending are less clear. Additionally, Baron

(2021) finds positive test score impacts for operational spending increases but no such pattern for

capital spending.52 However, it is possible that many capital studies may not individually have

the statistical power to detect reasonable effects. As such, it may be useful to formally examine

whether marginal capital and non-capital spending impacts differ across several studies.

Looking at the pooled estimates for non-capital and capital spending (columns 2 and 3), the

average effect is larger for non-capital spending (0.0431σ) than for capital (0.0150σ). However,

the average impacts for both spending types are individually significant at the 1 percent level. A

formal test of the difference in effects involves estimating a meta-regression with a capital indicator

51In Panel C of Table 4, we present our main meta-analytic models using the conservative approach of clustering
estimates from studies based on the same policies as if they came from the same study. This adjustment increases
the precision of our estimates, tightening the prediction interval of the likelihood of positive effects from 91.4 to 92.2.

52It is noteworthy that, as shown in Figure 3, Baron’s results stands in contrast to most other studies of the effects
of capital spending on outcomes.
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variable – representing the difference between the average for capital spending and others, which

yields a p-value slightly greater than 0.05 (see Table 4 note).53 This suggests that both capital and

non-capital spending matters for student outcomes, and that after a few years the economic value

of spending is of a similar order of magnitude across the two types. While the point estimate for

capital spending is about half the size of that for non-capital-specific spending, the similarity also

suggests that our modelling decisions to generate comparable marginal impacts of per-pupil capital

to non-capital spending were reasonable.

To put these capital estimates in perspective, we consider two typical kinds of projects. A

new elementary school construction would typically cost about $27.5M and house 624 students

(Abramson (2015)). This is a one-time expense of about $44,000 per pupil. Assuming a 50 year

life of the asset, and distributing the value of this capital spending over the life of the asset (while

accounting for depreciation at 7% per year), this would be associated with an average per-pupil

flow value in the first four years of about $2693. Using the estimates from column 3, one would

expect test scores to increase by about 2.69×0.015=0.04σ six years after the capital outlay. Given

the depreciation of the building, an extrapolation beyond the variation in the data, suggests that

the marginal effect might fall to about half this amount after 15 years. By way of comparison, a

modest set of upgrades (i.e., a $1,000,000 renovation project) may cost 1000000/600=$1667 per

pupil. Assuming a 15 year life of the asset, this would be associated with an average per-pupil flow

value in the first four years of about $150. This would increase test scores by about 0.15×0.015

= 0.00225σ six years after the capital outlay. This is smaller than what most individual studies

can detect. Moreover, with a study that has a standard error greater than 0.02σ (about the

median standard error of the sample), true effect sizes of this magnitude could yield negative points

estimates over a third of the time by random chance alone. This calculation highlights that, given

the economic life of capital assets, even though the expected annual marginal benefits are relatively

small (often smaller than most individual studies have power to detect), lifetime benefits may be

similar to those for non-capital spending. These facts reinforce the importance of (a) calculating

the flow value of large one-time capital outlays, and (b) the increased statistical precision afforded

by formal meta-analysis that facilitates more conclusive statements than those possible from any

individual study.

5.4 Educational Attainment Impacts

The forest plot of all the estimated impacts on educational attainment outcomes is the bottom panel

of Figure 4. The 25th percentile of school spending effects on educational attainment is 0.0531σ

and the 75th percentile is 0.1517σ. This range of positive estimates underscores the importance of

looking at the literature as a whole to gauge magnitudes. The more precisely estimated studies lie

close to the median of the distribution and some of the larger estimated impacts are imprecise. The

simple average of the educational attainment effects is 0.1260σ, while the median is 0.073σ. As

with test scores, the nontrivial difference between the mean and the median reflects the fact that

53See Section A.5 for separate forest plots by spending types.
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the mean is more heavily influenced by several large, imprecise, positive estimates. This suggests

that the precision-weighted average is more appropriate than a simple average and would likely be

more similar to the median.

The pooled meta-analytic average school spending effect for educational attainment (column

4 of Table 4) is 0.0539σ. This is similar to the median across all studies. To aid interpretation,

we convert the pooled impacts to high school completion and college going rates. For high-school

graduation (with a standard deviation of 0.357 in 2018) the estimates suggests that, on average,

increasing school spending by $1000 (sustained for 4 years) would increase high-school graduation

rates by 0.357×0.0539=1.92 percentage points. For college-going (with a standard deviation of

about 0.492 in 2018) this suggests that on average, increasing school spending by $1000 (sustained

for 4 years) would increase postsecondary attendance rates by 0.49×0.0539=2.65 percentage points.

Estimates for educational attainment suggest similar levels of contextual heterogeneity to test

scores.54 Over 85 percent of the variability in causal impacts across studies can be explained by

heterogeneity. A policy that increases school spending by $1000 per pupil sustained for four years in

some other context would lead to educational attainment impacts between -0.007σ and 0.115σ about

90 percent of the time. This implies high school completion impacts between -0.007×.357= -0.2

percentage points and 0.115×.357= 4.1 percentage points about 90 percent of the time and, college

completion impacts between -0.007×0.49=-0.3 percentage points and 0.115×0.49=5.6 percentage

points 90 percent of the time. Put differently, a policy that increased school spending by $1000

over a four year period would conservatively be expected to increase educational attainment over

92 percent of the time.

Benchmarking the Impacts on Test Scores and Educational Attainment

To put theses estimates into perspective, it is helpful to compare the magnitude of the school

spending impacts to those of other interventions. We show this for three separate interventions.

Class Size: Using Project STAR, Chetty et al. (2011) find that reducing class size by roughly

seven students increases test scores by 0.12σ (4.76 percentile points) and college-going (by age 20)

by 1.8 percentage points. Also, Dynarski et al. (2013) find that reducing class size by seven students

increases college-going (by age 30) by 2.7 percentage points. Using this as a benchmark, our test

score impacts of 0.0352σ are equivalent to reducing class size by 7×0.0352/0.12=2.05 students,

while our college-going impacts of 2.65 percentage points are equivalent to reducing class size by

between 7×2.65/1.8=10.3 students and 7×2.65/2.7=6.87 students.

Teacher Quality: Chetty et al. (2014) find that increasing teacher quality by one standard

deviation increases test scores by 0.12σ and college going by 0.82 percentage points. Using this as a

benchmark, our test score impacts of 0.0352σ would be equivalent to increasing teacher quality by

0.0352/0.12=0.293 standard deviations, while our college-going impacts of 2.65 percentage points

would be equivalent to increasing teacher quality by 2.65/0.82=3.23 standard deviations.

54For our educational attainment estimates, as described in Section 4.2, we use the 99th percentile of the distri-
bution of 400 boootstrap samples to estimate τ2.
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High-achieving Charter Schools: High-achieving charter schools increase test scores by

over 0.3σ (Angrist et al. (2016)) and increase college going by as much as 10 percentage points

(Booker et al. (2011); Davis and Heller (2019)). As such, our $1000 school spending impacts on

test scores are equivalent to about 11.7 percent of the impacts of attending a high-achievement

charter school, while our college-going impacts are equivalent to over 25 percent. One may worry

that these comparisons are skewed by the large test score impacts in Angrist et al. (2016) or by

pulling estimates from different sets of schools. To assuage this concern, we take estimates from

Dobbie and Fryer (2020) who find that “No Excuses” charter schools in Texas increase test scores

by 0.093σ and college going by 2.5 percentage points. Our $1000 school spending impacts on test

scores are equivalent to about a third of the impacts of attending a Texas “No Excuses” Charter,

while our college-going impacts are about the same.

For all three benchmarking interventions, our school spending effects are economically mean-

ingful. However, a consistent pattern is that irrespective of the benchmark, the spending impacts

on educational attainment are at least twice as large as those on test scores. Importantly, these

differences in magnitude between test score and educational attainment impacts are not driven

by a comparison across studies, because this same pattern holds within those studies that examine

impacts on both outcomes. Among the 6 studies that report on both test scores and educational

attainment, 5 indicate larger educational attainment impacts than on test scores (Jackson et al.

(2021), Baron (2021), Miller (2018), Weinstein et al. (2009), and Kreisman and Steinberg (2019)),

while only one does not (Abott et al. (2020)). This suggests that school spending impacts as mea-

sured by test scores may not capture the full benefits of school spending policy (Card and Krueger

(1992); Jackson et al. (2016)). It is also consistent with the view that educational output is only

partially measured by test scores, and that a focus on test score impacts may lead one to under-

state the benefits of school quality on student outcomes (Beuermann et al. (2020); Jackson (2018);

Jackson et al. (2020)).

6 Robustness to Modelling Assumptions and Sample Restrictions

To construct the same parameter for each study, we make several modelling assumptions. It is,

therefore, important to assess the sensitivity of our results to these choices, given that alternative

choices could have been made. In this section, we show our main estimates under different mod-

elling assumptions and sample restrictions - demonstrating the robustness of our estimates to these

assumptions and restrictions.

1. Strong First Stage: It is well understood that when the first stage relationship between

the treatment and the instrument (in this case the policy) is weak, the resulting estimates

may be biased and have unreliable standard errors (Bound et al. (1995) and Conley et al.

(2012)). We are relatively liberal in our inclusion of studies, using any study with a first stage

F-statistic of 3.85. Because we use precision weighting, and studies with weak first stages are

likely to have larger standard errors, our method of moment estimator should be relatively
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robust to this problem. However, to assuage concerns, Table 4, Panel B presents our main

specifications for those studies with a first stage F-statistic greater than 10, as constructed

by the strength of the policy impact on the change in school spending. The results are very

similar to our main results. Moreover, the dark orange bars in Figure 5 present results for

those studies with a first stage F-stat>20 and reveal very similar results.

2. Clustering similar policies: While we are careful to include a single overall population

estimate for each study, one may worry that some studies are based on the same underlying

policies and should not be treated as independent.55 We present our main meta-analyses,

using a conservative approach to assigning dependence between estimates of the same policies

(across different studies) by clustering those estimates as if they stemmed from the same

study.56 We assign dependence for studies of an Ohio capital subsidy program (Conlin and

Thompson (2017), Goncalves (2015)), Michigan’s Proposal A (Hyman (2017), Papke (2008),

Roy (2011)), recent School Finance Reforms (Lafortune et al. (2018), Brunner et al. (2020)),

and the introduction of Title I (Cascio et al. (2013), Johnson (2015)).57 These estimates are

in Panel C of Table 4. The estimated effects are very similar to our main estimates.

3. Coding Proficiency Rates: To make all test score estimates comparable, we converted

reported effects into standardized effects. This is common practice for tests that are given on

different scales, but less common for test score outcomes such as proficiency rates. For these

outcomes, we reported standardized proficiency rate changes by dividing the effect by the

student-level standard deviation of the proficiency rate
√
p(1− p), where p is the proficiency

rate. Improvements in student outcomes above or below the proficiency threshold may lead

to very small changes in the proficiency rate, even if they reflect large changes in standardized

raw scores. Or conversely, concentrated changes right around the proficiency threshold may

appear much larger as proficiency rate increases than they reflect changes in standardized

raw scores. As such, one may worry that our modelling of outcomes for these studies may

skew our results. To assess this, we estimate test score models that remove the 3 studies that

report effects on proficiency rates. We plot this effect and the confidence interval in the blue

bar on the left panel of Figure 5. Dropping these studies has no appreciable effect on our

results – indicating that this modelling choice does not affect our conclusions in a meaningful

way.

4. Combining Effects: For our main analysis we seek to have one single effect per study-

outcome. As such, in many cases we combine impacts across subjects, grade levels, and

populations making different assumptions about the correlation between effects. To ensure

55It is worth noting that while several paper examine the effect of school finance reforms, these do not all overlap.
For example, Jackson et. al. study reforms between 1972 and 1990, while Lafortune et. al. examine reform starting
in 1991. In such cases, we treat these estimates as independent.

56We use the “study()” option in the “robumeta” Stata command.
57Note that Lafortune et al. (2018) and Candelaria and Shores (2019) both examine recent school finance reforms,

but look at different outcomes are are therefore not included in the same regression models.
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that these assumptions do not drive our conclusions, we re-estimate combined studies under

very different assumptions and show that they all yield very similar results. We summarize

these alternative approaches below.

Our main analysis assumes 0 correlation between independent effects (across grades or pop-

ulations), but these correlations could reasonably lie between 0 and 0.5. Our main analysis

assumes 0.5 correlation between dependent effects (math/reading), but the correlations be-

tween dependent effects could reasonably range from 0.25 to 0.75. To show the practical

importance of these assumptions on our estimates, we estimate our main models assuming

all four combinations of the upper and lower bound assumed correlations. We plot the re-

sulting estimates in grey, blue, green, and pink bars in Figure 5.58 The stability of our

results indicates that our main estimates and conclusions are largely insensitive to reasonable

assumptions about the correlations between effect across subjects, grades, and populations.

5. Capital Depreciation: To directly compare the effects of operational and capital spending,

we depreciate capital expenditures following commonly accepted accounting approaches. To

assess the robustness to different assumptions about length of time capital projects depre-

ciated over, we re-run our main specifications with lower and upper bounds on years across

which capital investments are depreciated. At a lower bound, we depreciate buildings at

30 and non-buildings at 10 years. At an upper bound, we depreciate buildings at 50 and

non-buildings at 30 years. Additionally, one may also worry that the 7 percent depreciation

rate is too high and that the value of the asset should be more evenly distributed over time.

To gauge the importance of this choice, we estimate models that assume the the value is

uniform over the life of the asset (or that there is no depreciation). We report the estimated

effects in Appendix Table A.13. Irrespective of the assumptions made, our estimates of the

marginal effect of capital spending are largely similar (ranging between 0.0121σ and 0.0198σ)

and cannot be distinguished from each other nor from our preferred approach using formal

statistical tests.

6. First and Second Stage Standard Errors Correlations: While many studies report

marginal spending effects that we can take directly, for 5 study-outcomes, we must form the

IV effects manually using the policy effects on spending and on outcomes.59 When computing

the standard error of this IV estimate, we assume zero correlation between the spending effect

and the outcome effect. To provide bounds on the importance of this assumption, we estimate

models that assume correlations of -1 and 1 (See Tables A.7 and A.8). The effects are largely

unchanged under either assumed upper and lower bound correlations – underscoring the

robustness of our meta-analytic average to this assumption.

7. Student Level Standard Deviations: For two studies (Kogan et al. (2017) and Rauscher

58See full results in Tables A.9, A.10, A.11, and A.12
59These include Brunner et al. (2020), Johnson (2015), Kogan et al. (2017), Lafortune and Schonholzer (2019),

and Rauscher (2020).
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(2020)), we convert school- or district-level standard deviations to standardize the effect size

at the student standard deviation level. Because this conversion relies on some assumptions,

to assuage any concerns that this drives our results, we drop these two studies and re-estimate

our model, resulting in very similar effects to including them (see Figure 5).
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Figure 5: Modelling Assumptions

7 Assessing Bias in Individual Studies and Publication Bias

In a meta-analysis, one reports on the average of the reported study effects. However, this reported

average may not reflect the true average if (a) the individual studies are biased by confounding or

specification errors, and/or (b) the set of studies is somehow systematically selected. We address the

possibility of both sources of bias and fail to reject that our meta-analytic averages are unbiased.

7.1 Testing for Bias in Individual Studies

A common criticism of meta-analysis is that the end result is only credible if the studies included are

themselves credible. For this reason, we are careful to only include studies that employ methods that

may yield credibly causal effects. However, one may reasonably worry that even these individual

studies may still suffer from bias – potentially biasing our meta-analytic average. In this section,
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we formalize a discussion of these biases and discuss when they may bias our meta-analytic average.

We also present empirical tests to assess the existence and extent of such possible biases. Finally,

we also propose a new meta-analytic approach that is robust to the existence of bias in individual

studies under certain reasonable conditions.

A Framework For Assessing Confounding Bias

In our setting, there is a concern that the change in outcomes observed reflect not just the effect

of school spending per se, but also other factors. This would occur if there were violation of the

exclusion restriction as laid out in Section 4.3. In this section we lay out a framework within

which to think about such violations, clearly define when such violations may lead to a biased

meta-analytic average, and motivate an alternative estimation approach that can uncover average

marginal spending effects even when biases may influence the meta-analytic average. For ease of

exposition, we abstract away from treatment heterogeneity.

Consider a single outcome y. The change in the standardized outcome due to policy j is ∆yj ,

which is a function of the change in spending caused by the policy ∆$j , plus some noise υj , plus

possible bias bj . Where the average mean effect is µ, the observed policy effect on outcome y is:

∆yj = (µ×∆$j)︸ ︷︷ ︸
EffectofSpending

+ υj︸︷︷︸
Noise

+ bj︸︷︷︸
Bias

(6)

To compute a comparable statistic for each policy/paper, we use each study’s marginal effect:

µ̂j ≡
∆yj
∆$j

= µ+
υj

∆$j
+

bj
∆$j

(7)

This is the true average marginal effect, plus the error to treatment ratio, plus the bias to treatment

ratio. Where wyj is the weight for study j for outcome y, our meta-analytic average (θ̂pw) is a

weighted average of each study’s reported standardized effect as below:

θ̂pw =

∑
(

∆yj+upsilonj
∆$j

)wyj∑
wyj

≡ µ︸︷︷︸
True Average

+

∑
(
υj

∆$j
)wyj∑

wyj︸ ︷︷ ︸
Average of Noise Ratio

+

∑
(
bj

∆$j
)wyj∑

wyj︸ ︷︷ ︸
Average of Bias Ratio

(8)

The observed average is comprised of three pieces; the true effect, the average of the random

noise ratios (noise divided by the change in spending) across all the papers, and the average of

the bias ratio terms (bias divided by the change in spending) across all the papers. Equation

8 makes clear that the meta-analytic average is an unbiased estimate of the true average (i.e.,

E[θ̂pw] = µ) so long as (1) the average of the noise terms is equal to zero in expectation, and

(2) the average of the bias terms is equal to zero in expectation. The first condition implies that

while some studies’ impacts may be overstated due to measurement error or sampling variability,

others will be understated for the same reasons so that on average the errors cancel each other out.
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So long as there are enough studies in the pooled sample and the random errors are unrelated to

the policy-induced spending change, this condition will be satisfied. The second condition is less

straightforward. It would trivially be satisfied if the individual studies are themselves unbiased.

However, even with bias in individual studies, the second condition would hold if some studies’

impacts are biased upward while others are biased downward so that the average bias is zero

and the bias is unrelated to the policy-induced spending change so that the average bias ratio is

approximately zero. We will present empirical evidence that this holds in our setting.

Differences by Strength of The First Stage

It is known that biases due to violations of the exclusion restriction tend to be more severe when the

first stage relationship is weak (Bound et al. (1995) and Conley et al. (2012)). In our context, one

can see this clearly because the individual bias-ratio for study j represented by bj/∆$j in equation

(7) is smaller for policies that generate larger changes in spending. It follows that if biases exist

in the included studies, the marginal spending effects should be systematically different (a) among

studies that have strong first stages, and (b) among studies based on policies that generate larger

versus smaller spending changes.

We examine this in two ways. First, we show the main effects based on studies that have

first stage F-statistics over 20 (Table A.1). The results are very similar to models that have first

stage F-statistics above 3.85 and above 10 (Table 4) – suggesting minimal bias in the individual

studies. As a second test, we examine if the marginal policy impact varies by the magnitude of

the spending change induced by the policy. If there were biases (which one expects to be larger

in studies with weaker first stages), then the average marginal effects would be larger for small

spending changes than for larger spending changes. We test this by regressing the marginal effect

of the study against the magnitude of the spending change (see associated scatterplot in Figure

A.8). Such a model yields a slope of 0.000012 (p-value of 0.259) for test scores and slope of -0.00002

(p-value = 0.2390) for educational attainment outcomes – indicating no relationship between the

marginal effect and the size of the spending change. While these tests are not dispositive on their

own, they suggest that the individual studies included (which were specifically chosen because they

are credibly causal) are by-and-large not appreciably biased on average.

An Approach to Testing For and Removing Bias

The test above suggests that the meta-analytic average likely does not suffer from considerable

bias. However, taking the possibility of bias seriously, we present a novel approach to estimating

a meta-analytic average that is robust to the existence of the bias laid out in Equation (8) even

if the average of the bias is non-zero. The meta-analytic average in Equation (7) is an estimate

of the average marginal effect across all papers. However, the equation predicting the policy effect

on outcomes laid out in Equation (6), reveals that one could also estimate the average marginal

effect of differences in spending increases by estimating the relationship between the policy-induced

changes in outcomes and the policy-induced changes in spending. Equation (6) indicates that a
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regression of the change in outcomes for a given policy against the change in spending may yield

an estimate of the true average under certain conditions. Abstracting from precision-weighting, the

simple linear regression of (6) would yield:

θdiff = µ+
cov(υj ,∆$j)

var(∆$j)
+
cov(bj ,∆$j)

var(∆$j)
(9)

This difference-based approach is a consistent estimate of the true pooled average so long as the

random errors are unrelated to the change in spending change induced by a policy and the bias in

each study is unrelated to the spending change induced by a policy. Importantly, the difference-

based approach does not require that the individual studies be unbiased (which is needed to believe

any individual study), nor does it require that the biases in the individual studies average out

to zero (which is needed to believe the meta-analytic average), but relies on a weaker identifying

assumption that the bias in individual studies in unrelated to the spending changes induced by the

policy under study.

We argue that this weaker identification condition is plausible, and we test it empirically.

• Test 1: Some difference-in-difference based studies may be biased due to a violation of the

common trends assumption (Rambachan and Roth (2020)), studies using regression discon-

tinuity designs may have bias due to extrapolation away from the cutoff point, and credible

instrumental variables-based studies may have modest violations of the exclusion restriction

(Conley et al. (2012)). Because some of our included studies may be underpowered, such vi-

olations may not have been detected. This motivates a simple test. If underpowered studies

are less able to detect bias, then in the presence of bias, well-powered studies will be less sus-

ceptible to bias. We can assess the importance of this bias by seeing how robust our estimates

are to the exclusion of underpowered studies. That is, we estimate models only among studies

that would have detected (based on the standard error) our main meta-analytic averages at

the 5% level. Using this approach, we obtain a test score effect of 0.0312 and an educational

attainment effect of 0.0529 – both similar to our main estimates (see Table A.14).

• Test 2: There is no reason to expect that bias of this sort would be correlated with the policy

effect on spending. However, the most plausible cause for concern regarding correlated bias

is for policies that involve voluntary adoption. One may expect that places that voluntarily

implement policies that lead to larger spending increase also are more likely to do other

things that improve student outcomes. Such dynamics would generate bias correlated with

the spending increase and would inflate the marginal estimate. While we cannot entirely rule

out this form of bias, because we can distinguish studies that rely on variation induced by

the voluntary adoption of policies, we are able to test for its potential presence. Specifically,

we compare the average marginal effect for studies that rely on a new policy implementation

(e.g., budget-increasing referenda) versus those that rely on variation conditional on policies

being in place (e.g., differential impacts of the recession or fluctuating student enrolment).

We find that studies based on a voluntary policy adoption are similar to other studies and
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(See Table A.6), suggesting little bias of this form.

Because the meta-analytic average may be biased by b while the difference-based estimate is

not, the extent to which the difference-based estimates differ from the meta-analytic averages may

be indicative of systematic bias in all studies. This motivates a formal test of bias, whether the

meta-analytic average differs from the difference-based estimate (i.e., that θ̂diff = θ̂pw). Note that

while this is a useful test, it comes with an important caveat. The estimators may differ

even when there is no bias if any treatment heterogeneity is correlated with the size of the spending

change.60 Because bias is not the only reason the meta-analytic average and the difference-based

estimates may differ, one should take equality of effects as compelling evidence of no bias, but

should not take differences in these estimates as an indication of bias.
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Figure 6: Policy Impacts against Increase in Spending

To assess this in our setting, in Figure 6 we plot the raw, standardized overall effect of each

policy on student outcomes against the change in per pupil expenditures ($2018) caused by the

60To give a concrete example, image that there were only two studies, of Policy A and Policy B. Policy A increases
per-pupil spending by $1000 and test scores by 0.05σ (leading to µA = 0.05), while Policy B increases per-pupil
spending by $2000 and test scores by 0.04σ (leading to µB = 0.02). Both policies have a within-study positive
relationship between school spending and test scores (so that θ̂pw > 0). However, the policy with the larger spending
increase (Policy B) had a smaller improvement in test sores, so that the difference-based relationship is negative (i.e,
θ̂diff < 0). While this may seem counter-intuitive, if there is some correlation between the size of the policy and
other contextual factors that determine policy efficacy, this could occur.

38



the same policy.61 Each study is represented by a circle, and larger circles indicate more precise

outcome estimates. We also plot the fitted values from a precision-weighted regression relating the

two, along with the 95 percent confidence interval. There is a clear positive relationship between

the size of the spending increase caused by a policy and the increase in outcomes associated with

that policy. Using random effects meta-regression, the slope is 0.0436σ/$1000 for test scores and

0.0457σ/$1000 for educational attainment – both significant at the 0.01 level. Remarkably, for

both outcomes, one fails to reject that the averages of the within-study relationships are the same

as the across-study relationships at the 5 percent significance level.62 This suggests that, for both

outcomes, the documented positive causal relationships between school spending and outcomes

are robust. For both test scores and educational attainment, those policies that lead to larger

spending increases also lead to larger outcome improvements, on average, and the magnitudes of

the differences across policies are similar to those documented within studies. To ensure that our

finding is robust, we conduct the same tests (1) excluding studies for which we were forced to make

assumptions about the size of the policy effect of spending, and (2) excluding (Jackson et al., 2021)

which is an influential point in the model (given its large negative spending effect). As we show in

Table A.15, our finding is robust across these alternate specifications.

A Direct Test of the Exclusion Restriction

The difference-based model allows for a direct and intuitive test of the exclusion restriction on

average. Specifically, the exclusion restriction is that the only mechanism through which the policies

examined affect outcomes is through school spending. If this condition holds, the regression line

relating the effect of the policy on outcomes to the effect of the policy on spending should go

through the origin. That is, the regression model should predict that a policy that has no effect

on school spending should have no effect on outcomes. One can see this mathematically by the

fact that the constant term in (6) reflects the average of the noise plus the average of the bias.

Given that the average of the noise is zero in expectation, this largely reflects the average of the

bias. This is a simple test that the constant in the regression is zero. For test scores, the constant

is -0.0064 with a p-value of 0.387, while for educational attainment is is 0.0127 with a p-value of

0.119. The signs of the constants are different for the two outcomes, suggesting no systematic bias.

Taken together, the data suggest that the exclusion restriction is satisfied for both outcomes.

61There are 6 studies which report policy effects on student outcomes translated into $1000-increases, already
having made assumptions about the linear relationship between effect size and per-pupil spending change. For these
studies, if possible, we capture the reported average policy effect on per-pupil spending, and adjust the reported policy
effect on outcomes assuming linearity in the dollars-effect relationship (Gigliotti and Sorensen (2018), Guryan (2001),
Jackson et al. (2021), Kreisman and Steinberg (2019)). For the two papers that study Michigan’s Proposal A (Hyman
(2017) and Roy (2011)), there is no one clear policy effect on per-pupil spending, and we rely on effects-per-$1000
as reported. In Figure 6 we plot and report regression results for all studies—adjusted for the four we can adjust.
Our results do not change appreciably when we exclude those studies which do not report one average policy effect
on per-pupil spending.

62We perform two-sample unpaired t-tests for the hypothesis of equality of the pooled meta-analytic average effect
and the slope relating the policy-induced spending changes to the policy related impacts on outcomes.
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7.2 Publication Biases

Our analysis may be biased if certain kinds of studies – especially those which find no effect of a

policy or intervention – are systematically not published. There are two kinds of publication biases

that one may worry about in our context. First, journals may be less likely to publish studies that

are not statistically significant. If so, assuming that there is an overall positive effect, those studies

with larger positive impacts (and therefore larger t-statistics) will be more likely to be published

– such that the average among published studies may overstate effects. Second, if researchers and

journals are more likely to publish results consistent with “preferred” results, precisely estimated

impacts of all signs will be published (because they are credible), but imprecise studies (where the

results are are more ambiguous) of the non-preferred sign will be disproportionately not published.

This would lead to a meta-analytic average biased toward the preferred result. We conduct several

tests to assess the extent to which these are a concern in our setting. We visually represent estimates

from these approaches in Figure 8, describe the tests in more detail in Section A.7 (Table A.21),

and summarize them here:

1. One simple approach to assessing publication bias is to compare the average estimates of pub-

lished and unpublished studies (Lipsey (2009)). In a metaregression, we observe no difference

in estimated effects by publication status. If certain kinds of studies were more likely to be

published, then these two groups would differ – but this is not the case in our sample.

2. We compare the average impacts of studies published in the most elite journals (where selec-

tion biases may be most severe (Brodeur et al. (2016)) to other journals, and find no evidence

of differences by journal prestige.

3. To assess whether there is a bias toward statistically significant impacts among the included

studies, we show that there is no excess density (i.e., overrepresentation) of studies right at

the significance threshold (i.e., t-statistic of 1.96). A histogram of all studies shows slightly

less density above the significance threshold (Figure A.5) and regression evidence uncovers

no indication of a discontinuous shift in density at that threshold (Table A.23).

4. To explicitly adjust for bias against insignificant impacts, we implement the selection adjust-

ment described in Andrews and Kasy (2019). They show how bias from selective publication

can be corrected if the probability of publication, as a function of a study’s results, is known.

They propose estimating the publication probabilities (based on the t-statistics) for studies,

and using these to produce bias-corrected estimators and confidence sets. Using estimated

publication probabilities (allowing for differences between significant and not-significant stud-

ies), this approach re-weights the distribution of studies to account for differences in publi-

cation probability (up-weighting studies that are least likely to be observed). When allowing

for a discontinuous change in publication probability at t-statistics of 1.96 and -1.96, their

approach yields similar estimates to our preferred model (Figures A.6 and A.7).63

63We also follow Mathur and VanderWeele (2020) and adjust our estimates assuming extreme levels of selection
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5. To examine whether there is evidence of bias against imprecise studies with a negative sign,

we test for asymmetry in a plot of study impacts against their precision. In a stylized world,

with no publication bias, a scatter plot of study impacts and precision of each study should

be symmetric around the grand mean (Borenstein (2009)). However, with publication bias,

the scatter plot around the grand mean will be asymmetric – suggesting that there are some

“missing” studies. In this stylized world with publication bias, while all of the most precise

studies will be published, there may be an over-representation of published imprecise estimates

in the “desired” direction and no (or few) published imprecise estimates in the “undesirable”

direction. Figure 7 plots the study effects depicted by the black circles. Both outcomes do

indicate some asymmetry among very imprecise studies (i.e., there are some very imprecise

positive estimates but few imprecise negative estimates) – suggestive of possible publication

bias. While it is important to note that our approach uses precision weights, which yields

results relatively robust to missing imprecise estimates, we account for possible publication

bias in three ways. We show the result from each approach in Figure 8 and Table A.21. In

sum, using all three approaches to potential publication bias yields estimates within the 90%

confidence interval of our main specification, and for each one rejects that the pooled average

is zero.
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Figure 7: Funnel Plots

to report “worst case” scenario lower-bound estimates. Under selection of this form, test score impacts fall by less
than 15 percent, educational attainment impacts fall by only 22 percent, and both remain positive and significant at
the 5 percent level.
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(5.1) First we implement the “trim and fill” method (Duval and Tweedie (2000)). Specifi-

cally, to create symmetry in the scatterplot, the “trim and fill” approach imputes additional

“missing” studies. The imputed studies are depicted by the green triangles in Figure 7. The

method imputes four “missing” studies of test score outcomes and five for educational at-

tainment – all but one of which are negative and rather imprecise. For both outcomes, the

re-estimated pooled effects are very similar to our original estimates including all observed

estimates.

(5.2) Second, we estimate our main model using a conservative approach of dropping much of

the data (Stanley et al. (2010)). Specifically, we drop the least precise half of studies shown

above the pink dashed lines in Figure 7. Note that the asymmetry detected lies well below

the level of the included studies – suggesting that there would be little bias among the most

precise half of studies. Indeed, above this cut-off, for both outcomes the estimates are tightly

clustered around the pooled average, and formal tests for asymmetry fail to reject the null

of a symmetric distribution. Using the precise half, for both outcomes the results are very

similar to our preferred estimates – indicating minimal bias.

(5.3) Finally, we follow both Stanley and Doucouliagos (2014) and Ioannidis et al. (2017)

and implement the precision-effect estimate with standard error (PEESE) approach. This

approach estimates the relationship between the precision of the estimates and the estimates

reported in each study. Under the assumption that the most precise estimates will yield the

true relationship, one can empirically model the relationship between the precision of the

estimates and the reported estimates and then infer what the most precise estimate would

be. In practice, this involves regressing the reported effect on the square of its precision

and taking the constant term as the bias-adjusted estimate.64 Using this approach, for both

outcomes, our results are very similar to our preferred estimates – indicating minimal bias.

While no single test can entirely rule out publication bias, taken as a whole the empirical

evidence is consistent with minimal bias. That is, across several empirical tests and adjustments

for potential publication bias, we find little evidence that our estimates are appreciably impacted

by publication bias. Indeed, in all models that adjust for possible publication bias, the point

estimates lie within the confidence interval for our main estimate. Given the consistent pattern of

results (i.e., 90 percent of study impacts are positive), the fact that publication bias is unlikely to

explain our positive overall association is not entirely surprising. The robustness of our effect is

also driven by the fact that we employ precision-weighed estimates that down-weight those studies

most susceptible to bias. We note that there is no prefect test for publication biases and we cannot

entirely rule out the possibility of selection biases in ways these tests are unable to detect.

64This approach has been found to preform well in simulations.
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8 Testing For Additional Patterns

8.1 Assessing Heterogeneous Effects by Income Level

An important policy question is the extent to which school spending impacts vary for students from

more or less economically advantaged backgrounds. While some studies document larger policy

impacts for low-income students (or schools and districts that enroll large shares of low-income

students), because many policies may lead to larger spending increases for low-income students

(such as many school finance reforms), the policy effect may reflect a combination of differences

in spending changes experienced across income groups and differences in the marginal response to

spending changes across income groups.

We disentangle these two channels by exploiting the fact that some studies provide separate

estimates of policy impacts by income status, and some policies (such as Title I) are targeted to

schools that enroll large shares of low-income students. Because some studies report impacts by

the income status of the student, while others report impacts by the income status of the school

or district, low-income estimates are not perfectly comparable across studies. As such, while the

students informing the low-income estimates will disproportionately be from low-income families,

the share of low-income students can vary across studies. This introduces a kind of measurement

error that may bias us away from detecting significant impacts. Another source of error stems

from the fact that the definition of low-income status differs across studies – some define low-
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income as being in the bottom quintile of the income distribution, while others define low-income

based on free-lunch eligibility.65 Changing income distributions across time further complicates

comparisons. Caveats aside, the question is sufficiently important that the hypothesis is worth

testing, albeit imperfectly.

To avoid confounding differences in spending changes with differences in responsiveness to

spending changes, we compute marginal spending impacts for low-income and non-low-income

groups separately for those studies which report effects by income status.66 We first perform a

simple coin test analysis for the 15 study-outcome combinations that provide impacts by income

status (see Table A.16).67 Of these 15 studies, 11 have larger marginal impacts for the low-income

groups. The likelihood of observing this many or more studies with this pattern by random chance

(under a null hypothesis of no difference) is just under 6 percent, or 1 in 17 – suggesting that

marginal impacts are larger for low-income groups than non-low-income groups. When looking at

the outcomes separately, 6 out of 8 test score estimates are larger for low-income groups, and 5

out of 7 educational attainment estimates are larger for low-income groups – suggesting that the

pattern may be stronger for test scores than for educational attainment.

We use meta-regression to quantify the magnitude of these differences. For studies that report

impacts by income level, we compute separate estimates of µyj by income. To connote this, we

add the subscript inc such that µyj,inc is the effect of an increase in per pupil spending of $1000

(sustained over four years) for study j on outcome y for population inc ∈ {average, high, low}.
We then estimate a random effects meta-regression, as described in Equation (10), where each

study-outcome is weighted by the inverse of its precision: 68

µyj,inc = θ + (LowIncomej,inc × β1) + (NonLowIncomej,inc × β2) + δj,inc + εj,inc (10)

The variable LowIncomej,inc is equal to 1 for observations pertaining to a low-income popula-

tion, which we define in two ways (specified below), NonLowIncomej,inc is equal to 1 for observa-

tions pertaining to a higher-income population. β1 and β2 indicate the difference between the effect

for the average student and those from low-income populations and non-low-income populations,

respectively. Because those studies that report impacts by income may incidentally differ from those

that do not (particularly if the number of studies is small) to avoid confounding differences across

studies with differences in responsiveness by income, we control for an indicator δ for whether the

study reports estimates by income level. We report results in Table A.17, which shows consistently

lower estimated effects for economically advantaged populations compared to the average overall

population, and a consistent pattern of larger impacts for less economically advantaged populations

65We detail how studies define low-income in Table A.4.
66For two papers, Baron (2021) and Goncalves (2015), we capture low-income but not non-low-income estimates,

so this analysis compares their low-income to overall estimates.
67Two additional studies examine impacts on achievement or attainment gaps by income (Biasi (2019) and Card

and Payne (2002)). These studies do show that school spending policies reduced gaps in student outcomes by income
status, but they do not allow one to disentangle spending differences from response differences.

68Because this model includes multiple estimates per study (if the study reports effects for different income levels),
we adjust for dependent effects within studies following Hedges et al. (2010).
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than for economically advantaged populations.69

We summarize the results in Figure 9 by plotting the estimated marginal effects for low-income

(θ+β1) and not-low-income (θ+β2) groups, along with 95% percent confidence intervals, from the

regression models. We include two different categorizations of low-income. Our first categorization

includes only those studies with distinct estimates for low-income populations (models 1 and 3), and

our second also includes studies whose overall estimates are of effects of Title I, a program explicitly

aimed at providing funding to schools with low-income students (models 2 and 4). In model 1, the

marginal test score effect for low-income students is 0.049, and that for non-low-income students is

just over half the size at 0.026. While the difference between these two estimates is economically

significant, the formal test that these estimates are different yields a p-value of 0.113. Model 2,

which expands the definition of low-income to also include overall Title I estimates, shows a similar

pattern but lower estimates in general.70 In this model (using the Title I-inclusive definition of low-

income), the low-income estimate is more than twice as large as the for the non-low-income group,

but the formal test that these estimates are different yields a large p-value of 0.3 – suggestive, but

not conclusive evidence of differences by income status.

Our results for differential impacts by income status for educational attainment are directionally

similar. Using our more restrictive definition of low-income (model 3), we find no statistically

significant difference between effects of spending for low-income populations and for non-low-income

populations. However, the marginal effect for low income groups is 0.055 which is more than 50

percent larger than that for the non-low-income group (which is 0.036). With an expanded definition

of low-income to also include overall Title I studies (last set of estimates), the results are similar.

While the results do indicate that the marginal effects are smaller for the higher-income groups, a

formal test of whether the marginal impacts on educational attainment differ across income groups

fails to reject the null that there is no difference.

Taken as a whole, these results show lower marginal effects for economically advantaged pop-

ulations compared to the average overall population – patterns consistent with marginal school

spending impacts varying by socioeconomic status. Importantly, our results suggest that larger

policy impacts of school spending is not only due to lower income populations receiving larger

increases in spending (which does often happen), but also likely reflects more responsiveness to the

same increases in spending by less economically advantaged student populations compared to more

economically advantaged populations. In Tables A.18 and A.19, we show that these results are

robust to clustering like studies and restricting low-income to only include those studies for which

estimated impacts on spending are clearly reported separately by income, respectively.

69In Table A.18, we present our main models with a conservative approach to account for possible correlations
across studies which identify changes form the same policies by clustering estimates of the same policy as if they
stemmed from the same study. Our results become more pronounced and precise.

70As a robustness check, in Appendix Table A.19 we estimate models that exclude two studies for which the
estimated impacts on spending were not clearly reported separately by income – potentially biasing our estimates.
These studies are: Brunner et al. (2020)), and Goncalves (2015). The results are very similar.
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Figure 9: Low-Income versus Non-Low-Income Estimates

8.2 Are There Systematic Differences by Geography?

Given the wide range in average per-pupil spending across regions of the United States, and differ-

ences in institutional contexts between urban and rural communities, we consider whether impacts

of spending vary by specific geographic characteristics. For studies which allow for categorization,

in Table A.20, we document that there do not appear to be systematic differences across geographic

dimensions. First, we test for whether there are differences between multi-state studies and studies

based on smaller levels of geography. In a meta-regression, with a ”multi-state” indicator, the point

estimate is a statistically insiginificant 0.0118. We also test for differences across different regions,

including regional indicators. In this model, none of the regional indicators are significant,and

the point estimates are small in magnitude. Finally, we explore whether there are differences by

urbanicity by including indicators for rural and urban. Such models suggest that marginal effects

do not vary systematically by urbanicity. An implication of these results is that the variability in

marginal effects are not explained by geography and are a result of other factors.

8.3 Do Longer-Run Impacts Increase with Exposure?

Given that learning is a cumulative process, one would expect that the benefits to increased spending

would increase with exposure. Indeed, to make studies comparable to each other, we assumed that
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Figure 10: Educational Attainment by Years of Exposure

the impacts are linear in the years of exposure and adjusted all estimates to reflect four-year

impacts. Because some studies of educational attainment outcomes show the effects of four year of

exposure to a spending increase, while others present effects of 9 years and 12 years, we can test if

our assumption is reasonable.

First, we plot the estimates (not adjusted for exposure) on educational attainment in Figure 10.

We represent more precise studies with larger circles. There are several relatively precise estimates

pertaining to four years of exposure centered around 0.15. There are two observations pertaining

to 9 and 10 years of exposure that are both above the center of the four-year impacts, and two

studies (one very imprecise large estimate) that relate 12 years of exposure to increased spending

with even larger overall impacts. The pattern indicates larger overall impacts for estimates that

relate to more years of exposure (per $1000 per-pupil spending increase).

To formally test this notion, we run a meta-regression on the years-unadjusted effects (denoted

ÿj), and include the years of exposure underlying each estimate as a covariate. If impacts are

increasing with years of exposure, as suggested visually, then studies that report the impacts of

more years of exposure should report larger educational attainment impacts. In addition, we can

directly test if the average four-year effect (the shortest exposure reported) is similar to four times

the average impact of an additional year of exposure. This is a direct statistical test of the notion

that the educational attainment impacts increase linearly with years of exposure. In a regression

this is achieved by estimating equation (11) by random effects meta-regression:

ÿj = α+ β × (Exposurej − 4) + ε (11)

In this model (Exposurej−4) is the years of exposure to the spending change minus 4 so that α

is the average estimated 4-year impact (identified off those studies with four years of exposure). The

parameter β is the increase in impact associated with each additional year of exposure. The formal

test for whether there in greater educational attainment with more years of exposure to increased
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spending is whether β = 0. This test yields a p-value of 0.03 – suggesting that the effects increase

with years of exposure. As described above, a formal test for linearity is whether α− (4× β) = 0.

This test yields a p-value of 0.79 – suggesting that the impacts may increase linearly with years of

exposure. In sum, the data indicate that the educational attainment impacts increase with years

of exposure and that the increase is approximately linear in years of exposure. This is both (a) a

substantively important result to inform policy, and (b) validates our modelling assumptions.

8.4 Examining Evidence of Diminishing Returns

Under optimizing behaviour, schools would spend their first thousand dollars on inputs that produce

the most output, the next thousand dollars on the second most productive input, and so on. If so,

school spending would exhibit diminishing marginal returns. Informed by this notion, some scholars

hypothesize that the level of school spending in United States is sufficiently high that the marginal

impact of spending is approaching zero. To shed light on this, we examine if the marginal impacts

of school spending depend on the baseline spending level in the study context. Per-pupil school

spending levels have more than doubled in the past thirty years (Hill and Zhou (2006)), and at

any given point in time some states spend much more per pupil than others. In principle, studies

based on recent policies in high spending states such as New York (e.g., Gigliotti and Sorensen

(2018) and Lee and Polachek (2018)) would have smaller marginal impacts on average than studies

of old policies (such as the roll-out of Title I in 1965 examined in Cascio et al. (2013)) or in lower-

spending states such as Texas (e.g., Martorell et al. (2016)). To assess this, in Figure 11 we plot

the marginal spending impact against the baseline spending for all papers. Each circle represents

a single study-outcome, and larger circles connote more precise estimates. We also include the

precision-weighted linear relationship along with the 95% confidence interval.

The scatter-plot of marginal test score impacts (left) shows little evidence that marginal impacts

are smaller at higher baseline spending levels. While there are some large positive marginal impacts

at lower spending levels (e.g., Hong and Zimmer (2016) and Roy (2011)), these studies are all very

imprecise relative to those with smaller estimated impacts at similar baseline spending levels (e.g.,

Clark (2003) or Brunner et al. (2020)). A precision-weighted linear regression of the scatter-plot

yields a slightly positive slope with a p-value above 0.1. The scatter-plot for educational attainment

(right panel) follows a similar pattern. There is evidence of larger estimates at very low levels of

spending, but these estimates are also imprecise. A precision-weighted linear regression of the

scatter-plot yields a slightly negative slope with a p-value above 0.1. For both outcomes, the

marginal impacts are remarkably similar across a wide range of per-pupil spending levels. After

accounting for the precision of the estimates, there is no evidence of diminishing returns between

$8,000 and $20,000 per-pupil. Given a national average of $14,439 per-pupil (NCES (2020)), these

patterns suggests that educational spending in the United States is not yet “on the flat.”
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Note that because education is a very labor intensive field, as wages rise in many sectors, wages

for educators will also rise with minimal ability to reduce workers (Baumol and De Ferranti (2012)).

This could explain rising education costs that would not represent movement along the productivity

schedule (i.e., going from the most to the least productive input) – potentially explaining the

constant marginal impacts, on average, across a wide range of spending levels. Another explanation

is that, because public educators do not have a profit motive, school spending is not allocated to

the most productive inputs on the margin, but rather based on rules of thumb or heuristics so that

additional monies go toward bundles of inputs that are generally similarly productive.

9 Discussion and Conclusions

We collect and classify all known credible causal studies of the impact of public school spending

on student outcomes in the United States. Of these 31 studies, 28 find positive impacts of policies

that increased school spending on student outcomes. That is, the most credible evidence to date is

extraordinarily consistent with the notion that money does matter. To shed light on magnitudes,

we estimate the centers and spreads of the distributions of causal school spending impacts on test

scores and educational attainment. On average, a $1000 increase in school spending (sustained

over four years) increases test scores by 0.0352σ, high-school graduation by 1.9 percentage points,

and college-going by 2.65 percentage points. In relative terms, this is a 2.3 percent increase in high

school graduation and a 6.5 percent increase in college-going. These within-study relationships

hold across studies such that policies that generate larger per-pupil spending increases also tend to

generate larger increases in outcomes – bolstering a causal interpretation of these results. We find

little indication that these effects are skewed by confounding biases or publication biases.

We find that school spending impacts on educational attainment are larger than on test scores

– when benchmarked against the impacts of other interventions – suggesting that using test scores

to estimate school spending impacts, while informative, may understate the long-term benefits of

school spending. Another key result of this analysis is that marginal school spending effects are very

similar across a wide range of baseline spending levels – suggesting little evidence of diminishing

returns to school spending at current levels. We present an approach that allows for an economically

meaningful direct comparison of the causal effects of large one-time capital spending increases to

those of annual (mainly operational) spending increases. We find that capital spending increases

take about 5-6 years to materialize into improved outcomes, at which point the marginal effects

are about half as large as other forms of school spending. We find little evidence of larger impacts

for low-income populations as compared to the overall average population, though we do find lower

effects for more economically advantaged populations. Overall, we find that the marginal school

spending effects are remarkable stable across populations, geography, and time – as such, much of

the variability across studies remains unexplained.

Accounting for underlying variability due to context and differences in policy implementation

indicates that not all policies will have similar impacts in the future. We find evidence of con-
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siderable treatment heterogeneity (i.e., variability unexplained by sampling variability). Using our

estimates of the underlying heterogeneity, we “predict” that a policy that increases per-pupil spend-

ing $1000 for at least four years will lead to positive test-score impacts over 91 percent of the time,

and positive educational attainment impacts more than 92 percent of the time. Because we docu-

ment relatively consistent estimates across a variety of observable dimensions on average, further

research uncovering why impacts are larger in some contexts than others (such as Brunner et al.

(2020) and Johnson and Jackson (2019)) may be fruitful.
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A Appendix

A.1 Strength of First Stage

Table A.1: Meta-Analysis, F-stat > 20

(1) (2) (3) (4)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Ed. Attainment

Average Effect 0.0462∗∗∗ 0.0567∗∗∗ 0.0264∗∗ 0.0509∗∗∗

(0.00902) (0.00791) (0.0132) (0.0111)

N 13 7 6 4
τ 0.0296 0.0153 0.0277 0
% Cross-Study Var. 0.836 0.579 0.796 0

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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A.2 Estimates Captured per Paper

Table A.2: Summary of per-study steps

study outcome effect per $1000 $ ∆: source outcome ∆: source

Abott Kogan Lavertu

Peskowitz (2020)

High school graduation 0.0850 $417 (2012$): Table 8 Ex-

pend. P.P. Operations, ≤
5yrs, Bandwidth +/− 10

0.0174: Table 8 Grad.

Rate, ≤ 5yrs, Bandwidth

+/− 10, standardized (Ta-

ble 2 Grad. Rate (4yr),

Passed)

Abott Kogan Lavertu

Peskowitz (2020)

Test scores 0.1160 $417 (2012$): Table 8 Ex-

pend. P.P. Operations, ≤
5yrs, Bandwidth +/− 10

0.066: Table 8 Math/ELA

(SDs), ≤ 5yrs, Bandwidth

+/− 10

Baron (2021) College enrollment 0.1870 $289.743 (2010$): Fig-

ure 1 (b) Total Opera-

tional Expenditures, aver-

aged across 1-10yrs Rela-

tive to the Election (exact

estimates provided by au-

thor)

0.195: Figure 2 Panel (d)

Log(Postsecondary Enroll-

ment) Year 10 relative to

election (exact estimates

provided by author), mul-

tiplied by baseline rate

(.39, Table 2), standard-

ized

Baron (2021) Test scores -0.1890 $4400 (2010$): “the me-

dian per-pupil bond cam-

paign approved in Wiscon-

sin is only approximately

$4,400 per pupil” (24), de-

preciated over 15 years and

averaged over first 6 years

-0.0567: Figure 6 panel (c)

Average 10th Grade Math

Score, cubic Year 6 relative

to election (exact estimates

provided by author), di-

vided by student-level SDs

(43.2, footnote 28)

61



Baron (2021) Test scores 0.1790 $346 (2010$): Figure 1 (b)

Total Operational Expen-

ditures, averaged across 1-

4yrs Relative to the Elec-

tion (exact estimates pro-

vided by author)

3.084: Figure 2 Panel (c)

Average 10th Grade Math

Score Year 4 relative to

election (exact estimates

provided by author), di-

vided by student-level SDs

(43.2, footnote 28)

Brunner Hyman Ju

(2020)

Test scores 0.0530 $498 (2015$): Table 2 Cur-

rent Expenditures, State

Aid, Expanded controls

Yes

0.007: Table 7 All Districts

Years postreform, multiply

by 4 (years)

Candelaria Shores

(2019)

High school graduation 0.0510 $795.02 (2010$): .1xbase-

line (Table 2 Weighted

Mean Total revenues)

0.197: Table 5, Full

log(Rev/Pupil), standard-

ized (Table 2, Graduation

rates)

Carlson Lavertu (2018) Test scores 0.0900 $2048.79 (2014$): Table 8

Dynamic RD model SIG el-

igibilty, average Year 1-4

0.221, 0.171: Table 5 Dy-

namic model SIG eligibil-

ity Year 4 of SIG, average

Reading and Math

Cascio Gordon Reber

(2013)

High school dropout 0.5550 $100 (2009$):“each addi-

tional $100 increase in an-

nual current expenditure

per pupil. . . ” (pg. 152)

-3.46, 0.66: Table 7 ∆

White and Black high

school dropout (reverse

sign), population weighted

(0.9/0.1) and translated to

SD units based on baseline

(pg 147, population-

weighted)
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Cellini Ferreira Roth-

stein (2010)

Test scores 0.2120 $6300 (2010$): “the aver-

age bond proposal in close

elections is about $6,300

per pupil” (249), depreci-

ated over 15 years and av-

eraged over first 6

0.103, 0.160: Table VII,

Academic achievement

6 yrs later Reading and

Math, standardized (“the

year-six point estimates

correspond to effects of

roughly 0.067 student-level

standard deviations for

reading and 0.077 for

mathematics” (252)

Clark (2003) Test scores 0.0150 $1094.28 (2001$): Table 3

Current expenditures per

pupil Post-reform (1=yes)

0.023: Table 6 Composite,

Kentucky x post model (3)

Conlin Thompson

(2017)

Test proficiency rates 0.0080 $4000 (2013$): “Capital

expenditure and capital

stock variables in Panels A

and B are listed in $1000s”

(Table 3 note) x4 (years),

depreciated 15 years aver-

aged over first 3

0.081, 0.07: Table 3 Cap-

ital Exp PPt model (2)

Percent Proficient in Math

and Reading, relative to

time t-3, standardized (Ta-

ble 1 Percent Proficient in

Math and Reading)

Gigliotti Sorensen

(2018)

Test scores 0.0420 $1000 (2016$): “mod-

els. . . measure the effect of

a $1000 spending increase”

(175)

0.0468, 0.042: Table 4 PPE

Math and Reading
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Goncalves (2015) Test proficiency rates -0.0020 $23740.4 (2010$): Table

1 Construction Cost Per

Pupil Total, depreciated

over 36.875 (weighted be-

tween 15 and 50 based

on “60-65% of projects are

new facilities” (6), aver-

aged across first 6 years

1.266, -1.442: Table 4

6+ yr. Completion Ex-

posure Math and Read-

ing, standardized (baseline

Avg. Proficiency Table 4)

Guryan (2001) Test scores 0.0280 $1000 (1991$): “median

estimate. . . implies that a

one standard deviation in-

crease in per-pupil spend-

ing ($1,000). . . ” (21)

0.039, 0.032, -0.034, -

0.026: Table V and Table

VI Math and Reading,

subject-combined and

standardized (assumed

student-level SD of 100),

then precision-weighted

across grades

Hong Zimmer (2016) Test proficiency rates 0.1160 $8123 (2000$): Table 1

Avg. bond amount per

pupil, depreciated over

26.9 years (weighted be-

tween 15 and 50 based on

Table 4 Passed a measure

New building) averaged

over 6 years

2.13, 1.44: Table 5 4th7th

proficiency Relative year 6,

standardized based on Ta-

ble 3 proficiency baseline
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Hyman (2017) College enrollment 0.0550 $1000 (2012$): “interpre-

tation. . . is that $1,000 of

additional spending during

each of grades four through

seven. . . ” (269)

0.03: Table 4 model (4)

Enroll in postsecondary

schooling, standardized

(baseline Table 1 All dis-

tricts and cohorts Enrolls

in postsecondary school)

Jackson Johnson Per-

sico (2015), Jackson

Johnson (2019)

High school graduation 0.0800 $480 (2000$): Table I All

Per pupil spending (avg.,

ages 5-17) ($4,800) x0.1

0.07053: Table III

Prob(High School Gradu-

ate) model (7), standard-

ized based on avg. national

baseline graduation rate of

0.77

Jackson Wigger Xiong

(2021)

College enrollment 0.0380 $1000 (2015$): “preferred

model, a $1000 reduction

in per-pupil spending. . . ”

(14)

0.0201: Table A19 model

(8) 4-Year Avg Per-Pupil

Spending (thousands),

standardized based on Ta-

ble 1 College Enrollment

Rate baseline

Jackson Wigger Xiong

(2021)

Test scores 0.0500 $1000 (2015$): “preferred

model, a $1000 reduction

in per-pupil spending. . . ”

(14)

0.0529: Table A19 model

(4) 4-Year Avg Per-Pupil

Spending (thousands)
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Johnson (2015) High school graduation 0.1440 $85 (2000$): “results indi-

cate that a $100 increase

in per-pupil Title I fund-

ing. . . ” (66) times 0.85

passed through in real dol-

lars seen by students (Fig-

ure 9)

0.0225: Table 2 first col-

umn County Title I per-

pupil spending (00s), aver-

age ages five to seventeen,

standardized based on avg.

national baseline gradua-

tion rate of 0.77

Kogan Lavertu

Peskowitz (2017)

Test scores 0.0190 -$303.096 (2010$): Table

3 Total average Election

year-3 years after, times

12000 (“District spending

per pupil is just under

$12,000 annually” (384))

-0.14: Table 7 3 years after,

to student-level SD units

based on footnote 34

Kreisman Steinberg

(2019)

High school graduation 0.0280 $1000 (2011$): specifica-

tion, abstract

0.021: Table 8 Graduation,

standardized based on Ta-

ble 1 Graduation rate base-

line

Kreisman Steinberg

(2019)

Test scores 0.0780 $1000 (2011$): specifica-

tion, abstract

0.097, 0.077: Table 5 Read-

ing and Math

Lafortune Rothstein

Schanzenbach (2018)

Test scores 0.0160 $907 (2013$): Table 4

Mean Total exenditures

0.004: Table 8 Post event

x years elapsed times 4

(years)
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Lafortune Schonholzer

(2021)

Test scores 0.2330 $15000 (2013$): “projects

we study. . . $15,000 per

pupil” (footnote 6), de-

preciated over 50 years

average across first 6 years

0.031xyear - 0.016,

0.027xyear - 0.004: Table

3 2SLS New School +

Newschool Trend, Math

and English Language

Arts, 6 years

Lee Polachek (2018) High school dropout 0.0640 $169.40 (2018$): Table

2 (percent change) times

baseline spend by authors’

calculations ($16939.79)

-0.1837: Table 3 9th-12th

Grade Cubic, standardized

based on baseline dropout

rate Table 1 Mean Dropout

Rate 9-12th Grade

Martorell Stange Mc-

Farlin (2016)

Test scores 0.0300 $7800 (2010$): “average

per-pupil size of capital

campaigns in Texas, the

state we study in this pa-

per, is about $7800” (14),

depreciated over 15 years

averaged over first 6 years

0.016, 0.03: Table 5 Stan-

dardized Test Scores 6

years after bond passage

Reading and Math

Miller (2018) High school graduation 0.0660 $1371.9 (2013$): specifi-

cation, 0.1 times baseline

spend $13,719.24 (pg. 30)

0.384: Table 4 10th Grade

Cohort 1-4 years, stan-

dardized based on Table

1 Graduation Rate 4-year

lag
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Miller (2018) Test scores 0.0520 $1371.9 (2013$): specifi-

cation, 0.1 times baseline

spend $13,719.24 (30)

0.775, 0.879, 0.929, 0.477:

Table 5 4th Grade Math

and Reading and 8th

Grade Math and Reading,

subject-combined then

precision-weighted across

grades

Neilson Zimmerman

(2014)

Test scores 0.0250 $70000 (2005$): “about

$70,000 in the New Haven

SCP” (25), depreciated

over 50 years averaged over

first 6 years

0.153, 0.031: Table 6 > 5

Reading and Math, FE

Papke (2008) Test proficiency rates 0.0820 $684.75 (2004$): 0.1 times

baseline spend $6847.5

(Table 3 Average Expendi-

ture per Pupil 1992-2004)

36.77: Table 7 Fixed

Effects-Instrumental Vari-

ables log(average eral per

pupil expend), standard-

ized based on baseline Ta-

ble 5 average 50th per-

centile first three years
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Rauscher (2020) Test scores 0.0080 $9600 (2014$): average

capital outlays years 1-6

post election (Table 5), de-

preciated over 15 years av-

eraged across first 6 years

47.77, 12.36: Table 4

models (3) and(6) 6 Years

after election Low-SES

achievement and High-

SES achievement, to

student-level standard de-

viation units extrapolating

from “These estimates

amount to 0.40 to 0.57

standard deviations. . . ”

(119), distributed across

estimated students per

school (NCES)

Roy (2011) Test scores 0.3800 $1000 (2010$): spec-

ification, “estimates

imply. . . for every $1,000”

(159)

0.057, 0.061: Table 8

Instrumental variables re-

gressions Lagged spend-

ing 1998-2001 Reading and

Math, standardized based

on baseline SE (Footnote

35)

Weinstein Stiefel

Schwartz Chalico

(2009)

High school graduation 0.1600 $391.7 (2003$): Table 6

Direct Expenditure Title I

model (2)

3.59: Table 8 Graduation

Rate Title I model (2),

standardized based on avg.

national baseline gradua-

tion rate of 0.77
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Weinstein Stiefel

Schwartz Chalico

(2009)

Test scores -0.0540 $284.3 (2003$): Table 5:

Direct Expenditure Title I

model (2)

-0.011, -.031: Table 7 Title

I Math and Reading

This describes the steps per overall study-outcome (and by spending type, relevant for Baron (2020)).
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Table A.3: Summary of capital depreciation decision

Study Depreciate over (years) Life of project description

Baron (2021) 15 “the median per-pupil bond campaign approved

in Wisconsin is only approximately $4,400 per

pupil, and bond funds are frequently used to

repair, maintain, and modernize existing struc-

tures, rather than to build new schools” (24)

Cellini Ferreira Rothstein

(2010)

15 “Anecdotally, bonds are frequently used to build

new permanent classrooms that replace tem-

porary buildings (e.g., Sebastian (2006)), al-

though repair, maintenance, and modernization

are common uses as well’ (220) // Table 1 av-

erage amount per pupil is of smaller magnitude

than full-building construction

Conlin Thompson (2017) 15 this paper doesn’t specify, and they translate

effects into per-$1000 but the OH program was

for both new construction and renovations

Goncalves (2015) 36.875 “I corresponded with an OSFC employee who

reported that about 60-65

Hong Zimmer (2016) 26.9 for the three years of data they have more de-

tailed spending, percent new building is about

34
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Lafortune Schonholzer (2021) 50 “We restrict attention only to large new school

construction project” // “Nearly $11 billion was

spent over this period, about 86 percent of which

went to new school openings, while the rest went

to additions, renovations, and equipment deliv-

ery at existing schools” (7)

Martorell Stange McFarlin

(2016)

15 “typical capital campaigns deliver only modest

facility improvements for the average student”

(14) // “evidence is stronger for the claim that

capital campaigns increase exposure to reno-

vated schools” (20)

Neilson Zimmerman (2014) 50 “Of 42 school buildings, 12 had been rebuild

completely by 2010, and 18 had been signifi-

cantly renovated. . . school renovations were gen-

erally substantial, incurring costs similar to

those of new construction” (20)

Rauscher (2020) 15 looks at CA bonds, which “can be used only for

construction, rehabilitation, equipping school

facilities, or acquisition/lease of real property for

school facilities” (113)
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Table A.4: Studies with LI and non-LI estimates

Study Outcome non-LI $ LI $ non-LI effect LI effect LI definition

Abott Ko-

gan Lavertu

Peskowitz (2020)

Test scores 279.99 609.19 0.2572 0.0460 “compare spending and

educational outcomes

between districts that

are above or below our

sample median in terms

of poverty rates among

5–17-year-olds (accord-

ing to the American

Community Survey)”

(9)

Abott Ko-

gan Lavertu

Peskowitz (2020)

High school grad-

uation

279.99 609.19 0.1396 0.0295 “compare spending and

educational outcomes

between districts that

are above or below our

sample median in terms

of poverty rates among

5–17-year-olds (accord-

ing to the American

Community Survey)”

(9)
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Baron (2021) College enroll-

ment

. 428.72 . 0.2566 “I classify a school

district as having an

initially-high share of

economically disad-

vantaged students if

its share falls above

the median of the

Wisconsin 2000-01

school district distribu-

tion (the earliest year

this variable is made

publicly available).”

(18)

Baron (2021) Test scores 275.52 328.42 -0.4197 -0.1697 “I classify a school

district as having an

initially-high share of

economically disad-

vantaged students if

its share falls above

the median of the

Wisconsin 2000-01

school district distribu-

tion (the earliest year

this variable is made

publicly available).”

(18)
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Baron (2021) Test scores . 532.74 . 0.1760 “I classify a school

district as having an

initially-high share of

economically disad-

vantaged students if

its share falls above

the median of the

Wisconsin 2000-01

school district distribu-

tion (the earliest year

this variable is made

publicly available).”

(18)

Brunner Hyman

Ju (2020)

Test scores 527.60 527.60 0.0303 0.0682 “We separate the effects

of SFRs by within-state

1980 income terciles be-

cause reforms were de-

signed to differentially

impact state aid for low-

and high-income dis-

tricts, with the goal of

equalizing school fund-

ing” (478)

Candelaria Shores

(2019)

High school grad-

uation

915.52 915.52 0.0188 0.1313 “state-specific poverty

quartiles, defined using

free lunch eligibility sta-

tus” (39)
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Goncalves (2015) Test proficiency

rates

. 1160.92 . 0.0031 Poorest 25% (Table 3)

Hyman (2017) College enroll-

ment

1093.70 1093.70 0.0791 0.0055 “districts with below-

median 1995 district-

level fraction receiving

free lunch” (276)

Jackson Johnson

Persico (2015),

Jackson Johnson

(2019)

High school grad-

uation

710.59 686.24 0.0275 0.1140 “. . . a child is defined as

low income if parental

family income falls

below two times the

poverty line for any

year during childhood”

(165)

Johnson (2015) High school grad-

uation

123.95 123.95 0.0556 0.3406

Kreisman Stein-

berg (2019)

Test scores 1116.33 1116.33 0.0264 0.0618 tercile of poverty

(economically dis-

advantaged) (Table

6)

Kreisman Stein-

berg (2019)

High school grad-

uation

1116.33 1116.33 -0.0053 0.0571 tercile of poverty

(economically dis-

advantaged) (Table

6)
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Lafortune Roth-

stein Schanzen-

bach (2018)

Test scores 672.62 1484.28 -0.0059 0.0189 “bottom or top quin-

tile, respectively, of the

state district-level in-

come distribution” (Ta-

ble 5)

Rauscher (2020) Test scores 766.29 766.29 0.0047 0.0182 “The CDE defines low-

SES students as those

who are eligible for free

or reduced-price lunch

or whose parents both

have less than a high

school diploma. . . I re-

fer to the distinction as

SES throughout the ar-

ticle” (114)

This represents all studies included in our meta-analyses which report separate effects for LI and non-LI populations (Except Baron (2021) operational

and Goncalves (2015), which report for LI but not non-LI). The studies not included in our analyses, but relevant for identifying whether effects of

spending are generally larger for LI populations include: Biasi (2019) on income mobility, Card & Payne (2002) on test score gaps, JJP (2015) on

wages and poverty, Johnson (2015) on wages and poverty. These papers all find either a decrease in outcome gaps between LI and non-LI groups, or

specifically more pronounced effects for LI individuals exposed to increased spending. This assumes the same dollar change for LI and non-LI districts

in Hyman (2017). Without additional information about within- and across-district demographic heterogeneity, we are unable to capture (potentially)

different spending changes for LI and non-LI students despite evidence in the paper which suggests money was distributed disproportionately to

non-LI schools within districts. Analogous to our inclusion criteria for studies, we include only low-income estimates from Baron (2021) and not

non-low-income estimates because (estimates provided by author) indicated no detectable spending change associated with operational referendum

change for that population.
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A.3 Sensitivity and Robustness Analyses

Without assumed SD adjustment

Table A.5: Meta-Regressions w/o Papers Assuming SD adjustment

(1)
Overall

Test Scores

Average Effect 0.0400∗∗∗

(0.00823)

N 22

Standard errors in parentheses

Omits Rauscher (2020) and Kogan et al. (2017)
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

By policy categories

Table A.6: Meta-Regressions by Policy Categories

(1) (2)

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0428∗∗∗ 0.0487∗∗∗

(0.0122) (0.0119)
Voluntary Policy -0.0108 0.00952

(0.0148) (0.0129)

N 24 12

Standard errors in parentheses

Voluntary Policy includes: Equalization, Referenda,

School Finance Reform, New Construction, and School Improvement Grants.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Constructing IV when SE underreported

Table A.7: Meta-Analysis Estimates, Corr = −1

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0356∗∗∗ 0.0437∗∗∗ 0.0157∗∗∗ 0.0434∗∗∗ 0.0539∗∗∗

(0.00742) (0.00899) (0.00576) (0.00883) (0.00577)
Capital -0.0251∗∗

(0.0115)

N 24 15 9 24 12
τ 0.0258 0.0249 0.0151 0.0208 0
% Cross-Study Var. 0.740 0.649 0.593 0.649 0
90% PI [-0.009,0.080] [0.000,0.087] [-0.011,0.042] [0.044,0.063]
Prob. Pos 0.908 0.950 0.834 0.966 1

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.8: Meta-Analysis Estimates, Corr = 1

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0346∗∗∗ 0.0422∗∗∗ 0.0140∗∗∗ 0.0416∗∗∗ 0.0592∗∗∗

(0.00695) (0.00843) (0.00482) (0.00828) (0.00710)
Capital -0.0241∗∗

(0.0107)

N 24 15 9 24 12
τ 0.0224 0.0228 0.0124 0.0195 0.0151
% Cross-Study Var. 0.838 0.779 0.711 0.796 0.309
90% PI [-0.004,0.073] [0.002,0.082] [-0.008,0.036] [0.032,0.087]
Prob. Pos 0.930 0.959 0.855 0.969 1.000

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Correlation bounds

Our preferred analysis assumes 0.5 correlation between dependent effects (math/reading) and 0

correlation between independent effects (across grades or populations). We re-run our main speci-

fications with updated assumed correlations between effects within studies to generate one overall

effect per study. We re-run our main specifications with assumed correlations for dependent effects

from 0.25 to 0.75 and for independent effects from 0 to 0.5.

Table A.9: Meta-Analysis (w/in pop. low (0.25) // across pop. low (0))

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0356∗∗∗ 0.0432∗∗∗ 0.0159∗∗∗ 0.0427∗∗∗ 0.0539∗∗∗

(0.00735) (0.00898) (0.00584) (0.00872) (0.00577)
Capital -0.0239∗∗

(0.0115)

N 24 15 9 24 12
τ 0.0251 0.0251 0.0147 0.0206 0
% Cross-Study Var. 0.780 0.697 0.656 0.705 0

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.10: Meta-Analysis (w/in pop. low (0.25) // across pop. high (0.5))

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0354∗∗∗ 0.0433∗∗∗ 0.0155∗∗∗ 0.0428∗∗∗ 0.0539∗∗∗

(0.00740) (0.00914) (0.00565) (0.00889) (0.00577)
Capital -0.0244∗∗

(0.0115)

N 24 15 9 24 12
τ 0.0253 0.0256 0.0148 0.0212 0
% Cross-Study Var. 0.764 0.696 0.626 0.693 0

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.11: Meta-Analysis (w/in pop. high (0.75) // across pop. low (0))

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0349∗∗∗ 0.0430∗∗∗ 0.0142∗∗∗ 0.0424∗∗∗ 0.0539∗∗∗

(0.00717) (0.00866) (0.00497) (0.00855) (0.00577)
Capital -0.0253∗∗

(0.0109)

N 24 15 9 24 12
τ 0.0244 0.0242 0.0132 0.0198 0
% Cross-Study Var. 0.745 0.654 0.574 0.658 0

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.12: Meta-Analysis (w/in pop. high (0.75) // across pop. high (0.5))

(1) (2) (3) (4) (5)

Overall
Test Scores

Non-Capital
Test Score

Capital
Test Score

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0346∗∗∗ 0.0430∗∗∗ 0.0136∗∗∗ 0.0424∗∗∗ 0.0539∗∗∗

(0.00720) (0.00880) (0.00461) (0.00870) (0.00577)
Capital -0.0259∗∗

(0.0108)

N 24 15 9 24 12
τ 0.0244 0.0245 0.0129 0.0201 0
% Cross-Study Var. 0.723 0.653 0.519 0.639 0

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Depreciation

Our preferred analysis assumed buildings are depreciated 50 years and non-buildings are depreciated

15 years. We re-run our main specifications with lower and upper bounds on years across which

capital investments are depreciated. At a lower bound, we depreciate buildings at 30 and non-

buildings at 10 years. At an upper bound, we depreciate buildings at 50 and non-buildings at 30

years.

Table A.13: Depreciation Sensitivity Meta-Analysis

(1) (2) (3) (4)
Baseline Low Bound (years dep.) High Bound (years dep.) No Depreciation

Average Effect 0.0150∗∗∗ 0.0121∗∗∗ 0.0185∗∗∗ 0.0198∗∗

(0.00536) (0.00450) (0.00617) (0.00830)

N 9 9 9 9
τ 0.0139 0.0113 0.0170 0.0193
% Cross-Study Var. 0.613 0.622 0.587 0.662

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Restricted to Models w/ Power to Detect Main Effects

Table A.14: Meta-Analysis Estimates w/ Power to Detect Main Effects

(1) (2)

Overall
Test Scores

Overall
Educational
Attainment

Average Effect 0.0312∗∗∗ 0.0529∗∗∗

(0.00859) (0.00572)

N 9 7

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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A.4 Capital Spending Effects Over Time
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A.5 Forest Plots by Spending Type
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A.6 Testing for Additional Patterns

Linearity in Spending

Table A.15: Linearity in spend

(1) (2) (3) (4) (5) (6)
Test Scores

All
Test Scores

w/o assumed
Test Scores
w/o JWX

Ed Attain
All

Ed Attain
w/o assumed

Ed Attain
w/o JWX

Policy on Exp. ($1000s) 0.0436∗∗∗ 0.0323 0.0422∗∗∗ 0.0457∗∗∗ 0.0514∗∗∗ 0.0401∗∗∗

(0.00820) (0.0136) (0.0119) (0.00652) (0.0141) (0.0136)

Constant -0.00636 -0.0000539 -0.00496 0.0127 0.0129 0.0171
(0.00686) (0.0103) (0.00998) (0.00584) (0.0105) (0.0112)

N 24 19 23 12 9 11
Pr(slope = pooled avg.) 0.451 0.890 0.587 0.367 0.519 0.213

Standard errors in parentheses
∗ p < .1, p < .05, ∗∗∗ p < .01

Additional Tests by Income Level

We present by-outcome coin test comparisons between low-income and non-low-income estimates

in Table A.16.

Table A.16: Coin Test for Studies w/ LI and non-LI Estimates

Outcome Papers LI> non-LI % LI> non-LI 1 in X Chance

All Studies 15 11 0.73 17

Test Score 8 6 0.75 7

Educational Attainment 7 5 0.71 4

LI > non-LI represents the count (or percent) of studies whose effect per $1000 for non-LI popula-

tions is larger than the effect for LI populations.

We present our main models estimating heterogeneous effects by income level in Table A.17,

which are shown in Figure 9.

We present models which restrict low-income estimates to only include those studies for which

estimated impacts on spending are clearly reported separately by income in columns 2 and 4 of

Table A.19.
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Table A.17: Meta-Regressions w/ LI

(1) (2) (3) (4)
Test

Scores
Test

Scores
Educational
Attainment

Educational
Attainment

Average Effect 0.0385∗∗∗ 0.0389∗∗∗ 0.0554∗∗∗ 0.0553∗∗∗

(0.00894) (0.00875) (0.0101) (0.0101)
Low-Income 0.0108 -0.000601

(0.0175) (0.0181)
Low-Income (w/ Title I) -0.00949 0.0131

(0.0241) (0.0192)
Non-Low-Income -0.0125 -0.0252 -0.0195 -0.0100

(0.0109) (0.0168) (0.0179) (0.0194)
Has Estimates by Income (Indicator) -0.0139 -0.00163 -0.00399 -0.0134

(0.0160) (0.0211) (0.0145) (0.0155)

N 38 38 25 25
τ 0.0248 0.0250 0.00174 0
% Cross-Study Var. 0.765 0.768 0.00349 0
Low-Income = Non-LI = 0 (p-val) 0.170 0.154 0.537 0.692

Standard errors in parentheses

All Low-Income Estimates are comparisons with Non-Low-Income except in the case of Goncalves (2015)

and Baron (2021) operational.

Low-Income w/ Title I is an indicator that additionally captures all Title I studies, even those which do not

present distinct by-income effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.18: Meta-Regressions w/ LI, Cluster Same Policies

(1) (2) (3) (4)
Test

Scores
Test

Scores
Educational
Attainment

Educational
Attainment

Average Effect 0.0363∗∗∗ 0.0374∗∗∗ 0.0546∗∗∗ 0.0545∗∗∗

(0.00778) (0.00725) (0.00999) (0.00998)
Low-Income 0.00693 0.00824

(0.0216) (0.0145)
Low-Income (w/ Title I) -0.0212 0.0132

(0.0297) (0.0145)
Non-Low-Income -0.0165 -0.0340∗ -0.0245∗ -0.0212

(0.0121) (0.0201) (0.0139) (0.0146)
Has Estimates by Income (Ind.) -0.00775 0.00859 -0.00428 -0.00762

(0.0185) (0.0251) (0.0153) (0.0143)

N 38 38 25 25
τ 0.0234 0.0238 0 0
% Cross-Study Var. 0.744 0.751 0 0
Low-Income = Non-LI (p-val) 0.163 0.453 0.186 0.172

Standard errors in parentheses

All Low-Income Estimates are comparisons with Non-Low-Income except in the case

of Goncalves (2015) and Baron (2021).

Low-Income w/ Title I is an indicator that additionally captures all Title I studies, even

those which do not present distinct by-income effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.19: Meta-Regressions w/ LI

(1) (2) (3) (4) (5) (6)
Test

Scores
Test

Scores
Test

Scores
Test

Scores
Educational
Attainment

Educational
Attainment

Average Effect 0.0386∗∗∗ 0.0389∗∗∗ 0.0389∗∗∗ 0.0397∗∗∗ 0.0553∗∗∗ 0.0553∗∗∗

(0.00897) (0.00904) (0.00880) (0.00870) (0.0101) (0.0101)
Low-Income 0.00970 0.00591 -0.000939

(0.0177) (0.0231) (0.0151)
Low-Income (w/ Title I) -0.00745 -0.0180 0.00515

(0.0218) (0.0276) (0.0150)
Non-Low-Income -0.0173 -0.0257 -0.0254 -0.0371∗ -0.0251 -0.0233

(0.0150) (0.0193) (0.0165) (0.0221) (0.0256) (0.0256)
Has Estimates by Income (Ind.) -0.00431 -0.00102 0.00341 0.00962 -0.00361 -0.00535

(0.0152) (0.0188) (0.0174) (0.0220) (0.0106) (0.0108)

N 38 33 38 33 25 25
τ 0.0255 0.0268 0.0254 0.0265 0 0
% Cross-Study Var. 0.670 0.697 0.669 0.693 0 0
Low-Income = Non-LI (p-val) 0.0779 0.0984 0.284 0.335 0.411 0.329

Standard errors in parentheses

All Low-Income Estimates are comparisons with Non-Low-Income except in the case

of Goncalves (2015) and Baron (2021).

Low-Income w/ Title I is an indicator that additionally captures all Title I studies, even

those which do not present distinct by-income effects.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Geographic Dimensions

Table A.20: Meta-Analysis Estimates by Geographic Characteristics

(1) (2) (3) (4) (5)

Test Scores
by Multistate

Test Scores
by Region

Test Scores
by Urbanicity

Educational
Attainment

by Multistate

Educational
Attainment
by Region

Average Effect 0.0321∗∗∗ 0.0452∗∗∗ 0.0377∗∗∗ 0.0585∗∗∗ 0.0523∗∗∗

(0.00913) (0.00949) (0.00799) (0.00756) (0.00748)
Capital

Multistate 0.0118 -0.00660
(0.0132) (0.0106)

South -0.00660 -0.00962
(0.0217) (0.0874)

North -0.00575 0.00570
(0.0203) (0.0205)

Northeast -0.0284 0.0128
(0.0225) (0.0128)

West -0.00137
(0.0765)

Urban -0.0260
(0.0325)

Rural 0.00221
(0.0319)

N 24 24 24 12 12

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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A.7 Details of Publication Bias Tests

Table A.21 presents our preferred estimates (columns 1 and 6) along with estimates using several approaches to potential publication

bias.

Table A.21: Meta-Regressions w/ Approaches to Potential Biases

Test Scores Educational Attainment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Avg. Effect 0.0352∗∗∗ 0.029∗∗∗ 0.0301∗∗∗ 0.032 ∗∗∗ 0.0289∗∗∗ 0.0539∗∗∗ 0.056∗∗∗ 0.0527∗∗∗ 0.053∗∗∗ 0.0513∗∗∗

(0.00723) (0.007) (0.00727) (0.00714) (0.00727) (0.00577) (0.020) (0.00618) (0.00663) (0.00579)

N 24 24 12 28 24 12 12 6 17 12

Standard errors in parentheses

Test Score: (1) Robumeta (2) Andrews & Kasy (3) SE < .023 (4) Meta Trim&Fill (5) PEESE

Educational Attainment: (6) Robumeta (7) Andrews & Kasy (8) SE < .021(9) Meta Trim&Fill (10) PEESE
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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1. Studies that find null results may be less likely to be published than studies that find signif-

icant effects (Franco et al. (2014), Christensen and Miguel (2018)). If one is able to observe

studies that are not published, a simple test for publication bias compares estimates from

studies that are published to those that are not published. In line with this, we compare

average estimates of published and unpublished studies and find no difference in impacts.71

In Table A.22, the coefficients on the indicator for “Unpublished” show no evidence that there

is any difference in average effects reported in published versus unpublished papers for both

test scores and educational attainment outcomes.

2. Related to the first test, if there are biases against publication of certain kinds of studies, one

might expect these biases to be most pronounced at the most selective journals (Brodeur et al.

(2016)). Informed by this notion, we compare the average impacts of studies published in the

most elite journals to studies published in other journals, and similarly find no differences

across journal prestige (in columns 2 and 4 of Table A.22, the formal tests of equality across

publication type and publication status yield p-vals of 0.871 and 0.622 for test scores and

educational attainment, respectively). That is, we do not find evidence that publication

status or type have any bearing on the estimates reported in studies of effects of school

spending.

3. Publication bias is thought to be most prevalent among imprecise studies (Andrews and

Kasy (2019)), and when there are biases against publication of insignificant studies, one

might observe an over-representation of studies right at the significance threshold (in social

sciences this would be the 5 percent level pertaining to a t-statistic of 1.96) and an under-

representation of studies right below the significance threshold (Brodeur et al. (2020)). To

test for this in our data, we test for a discontinuity in the cumulative density of t-statistics at

1.96. We show that there is no over-representation of studies right at the significance threshold

(t-statistic = 1.96) in Figure A.5. In Table A.23, we show that there is no significant jump

in density, by outcome type or combining across both test score and education attainment

outcomes, at the significance threshold (t-stat > 1.96).

4. Even though we find limited evidence of selection of significant impacts, we implement a

model that accounts for any such selection (should it exist). To this aim, we show results for

the Andrews and Kasy (2019) selection adjustment using their web application in Figures A.6

and A.7. They propose estimating the publication probabilities (based on the t-statistics) for

studies, and using these probabilities to produce bias-corrected estimators and confidence

sets. More specifically, using the relative publication probabilities, this approach re-weights

the distribution of studies to account for differences in publication probability (up-weighting

studies that are least likely to be observed). For both test scores and educational attainment,

their model fails to reject the null of no selection at the 1.96 t-statistic threshold. Reassuringly,

71Of course, we cannot observe the unobservable – or those papers which are fully not shared in any form, published
or not.
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their adjustment approach yields similar estimates to our preferred model (columns 2 and 7

of Table A.21).

5. We test whether there is bias against imprecise, negative estimates. In a stylized world,

with no publication bias, a scatter plot of study impacts against the precision of each study

should be roughly symmetric around the grand mean (Borenstein (2009)). However, with

publication bias, the scatter plot around the grand mean will be asymmetric – suggesting

that there are some “missing” studies. In this stylized world with publication bias, while all

or most precise studies will be published, there may be an over-representation of published

imprecise estimates in the “desired” direction and no (or few) published imprecise estimates

in the “undesirable” direction. We account for this kind of publication bias in two ways:

First, we impute “missing” (imprecise, negative) studies and re-estimate our models. Second,

we separately drop the least precise estimates (the least-precise half) and re-estimate our

models. Neither appreciably impacts our estimates.

We visualize the Duval and Tweedie (2000) “trim and fill” approach in Figure 7, where

black circles indicate the individual study impacts. The distribution of effects are largely

symmetrical around the mean for very precise studies (at the top of the figures), but the

distribution may be asymmetric for studies with standard errors greater than about 0.1 and

0.06 for test scores and education attainment, respectively (the bottom of the plots). That

is, while there is little visual evidence of publication bias among precisely estimated studies,

there is some suggestive evidence that imprecise positive studies with large impacts may be

more likely to be published (or written) than imprecise studies with negative or small impacts.

To be clear, because (a) our inclusion criteria requires that the policy has meaningful impacts

on school spending and (b) one would expect there to be some effect heterogeneity across

states and policies, some asymmetry is likely even absent publication bias. Even so, to be

conservative one can assume that any asymmetry is due to publication bias, and assess the

impacts of this asymmetry on the estimated pooled average. We follow this approach.

In the left panel of Figure 7, to create symmetry, the “trim and fill” approach imputes four

“missing” studies of test score outcomes (green triangles) – both of which are negative and

very imprecise. These imputed studies are outside of the more precise range employed for our

first test of bias – validating that approach. The re-estimated pooled effect that includes these

two additional imputed studies is 0.032 (Table A.21 column 4) – very similar to our original

estimate including all observed estimates. Following this same approach for educational

attainment, “trim and fill” imputes five additional negative and relatively imprecise estimates.

The re-estimated pooled effect that includes the three additional imputed studies is 0.053

(Table A.21 column 9) – also similar to our original estimate including all observed estimates.

The fact that estimates do not change very much with the imputed data also reflects the

fact that the evidence of asymmetry is only among very imprecise estimates, which receive

lower weight in our precision-weighted pooled average. This suggests that the impacts of any
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potential publication bias on our estimates are small (at most creating a bias of 5 percent).

When we estimate our main model on all studies using a drastic approach of dropping the

majority of the data (Stanley et al. (2010)), specifically those test score studies with an

estimated standard error of 0.023 or less (Table A.21 column 3) and educational attainment

studies with estimated standard errors of 0.021 or less (Table A.21 column 8), our results

are similar to our main models. We indicate these precision levels in the higher horizontal

lines in the funnel plot in Figure 7. Above this cut-off, estimates are very tightly clustered

around the pooled average.72 In this most precise sample (where there is no evidence of

asymmetry), the coefficient estimate for test scores is 0.0301 Table A.21 column 3). This is

very similar to our preferred estimate – indicating minimal bias. Following this same approach

for educational attainment, when we restrict our sample to studies with standard errors below

0.021, the Egger’s tests indicates no asymmetry, and the regression estimate is 0.0527 (Table

A.21 column 8).73

Finally, we follow both Stanley and Doucouliagos (2014) and Ioannidis et al. (2017) and im-

plement the precision-effect estimate with standard error (PEESE) approach. This approach

estimates the relationship between the precision of the estimates and the estimates reported

in each study. Under the assumption that the most precise estimates will yield the true re-

lationship, one can empirically model the relationship between the precision of the estimates

and the reported estimates and then infer what the most precise estimate would be. In prac-

tice this involves regressing the reported effect on the square of its precision and taking the

constant term as the bias-adjusted estimate. This approach has been found to preform well

in simulations. This approach yields a meta-regression estimate which takes into account

the influence of publication bias – based on estimate precision. In columns (5) and (9) of

Table A.21 we report meta-regression results. For test scores, the PEESE method estimates

a precision-weighted pooled average of 0.0289 and for educational attainment of 0.0513.

In sum, across multiple approaches to testing and accounting for potential publication bias, our

main results hold, suggesting that if this bias exists it is minimal – our conclusions do not change.

72The p-values on both the intercept and slope associated with the Egger’s test for this sample are both above 0.1.
73The Egger’s test is the simply the p-value associated with the y-intercept being different from zero in a regression

on the study effects against its precision. When the funnel is asymmetric, this p-value will be small.
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Table A.22: Meta-Regressions w/ Publication Type

(1) (2) (3) (4)
Test
Score

Test
Score

Educational
Attainment

Educational
Attainment

Unpublished -0.00923 -0.00346 0.00570 0.00967
(0.0183) (0.0213) (0.0159) (0.0196)

Top Field Journal 0.00223
(0.0165)

Field Journal 0.0149 0.00918
(0.0204) (0.0143)

Average Effect 0.0380∗∗∗ 0.0323∗∗ 0.0530∗∗∗ 0.0484∗∗∗

(0.00834) (0.0128) (0.00659) (0.0128)

N 24 24 12 12
τ 0.0257 0.0298 0.00461 0.00872
% Cross-Study Var. 0.775 0.823 0.0389 0.126
Top Field = Field = Unpublished = 0 (p-val) 0.855 0.806
Unpublished = 0 (p-val) 0.615 0.871 0.719 0.622

Standard errors in parentheses

Reference category High Impact ommitted.

High Impact: American Economic Journal, Quarterly Journal of Economics, Review of Economics and Statistics,

Sociology of Education.

Top Field: Journal of Econometrics, Journal of Public Economics.

Field: Economics of Education Review, Education Economics, Education Finance and Policy,

Educational Evaluation and Policy Analysis, Public Finance Review, Russell Sage Foundation Journal of the Social

Sciences, Journal of Public Administration Research and Theory, Journal of Urban Economics
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.23: Regressions to test for jump at 5% significance, Outcome: Cumulative T-stat density

(1) (2) (3)
Test

Scores
1 < tstat < 3

Educational
Attainment

1 < tstat < 3

All
Outcomes

1 < tstat < 3

Sig, 5%-level (ind) -0.0442∗∗∗ 0.0937 -0.0163
(0.0131) (0.0550) (0.0276)

N 15 6 21

Standard errors in parentheses

All models include controls for the t-stat and the square of the t-stat.

In column 3 pooled models (with both outcome types) we include an indicator

for the outcome and interact t-stat and t-stat squared with the outcome.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure A.5: Histogram of all effects
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Figure A.6: Test Scores
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Figure A.7: Non-Test Scores
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A.8 Estimation Strategy

Table A.24: Meta-Regressions w/ Estimation Strategy

(1) (2)

Overall
Test Scores

Overall
Educational
Attainment

RD 0.00126 0.00977
(0.0133) (0.0186)

IV 0.0363∗∗∗ -0.00795
(0.0131) (0.0182)

Capital -0.00701
(0.0124)

Average Effect 0.0240∗∗ 0.0562∗∗∗

(0.00985) (0.0156)

N 24 12
τ 0.0193 0.00615
% Cross-Study Var. 0.659 0.0671
RD = IV = 0 (p-val) 0.0194 0.447

Standard errors in parentheses

Event Study (strategy) omitted
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

99


	Introduction
	Data
	Included Studies

	Constructing The Same Parameter Estimate for All Papers
	The Common Parameter Estimate
	Making Capital Spending Comparable to Non-Capital

	Meta-Analytic Methods
	The Formal Model of the Distribution of Study Impacts
	Confidence Intervals and Prediction Intervals
	Instrument Validity and Interpretation of Our Estimate

	Results
	Does School Spending Matter? The Coin Test
	How Much Does School Spending Matter?
	Test Score Impacts
	Educational Attainment Impacts

	Robustness to Modelling Assumptions and Sample Restrictions
	Assessing Bias in Individual Studies and Publication Bias
	Testing for Bias in Individual Studies
	Publication Biases

	Testing For Additional Patterns
	Assessing Heterogeneous Effects by Income Level
	Are There Systematic Differences by Geography?
	Do Longer-Run Impacts Increase with Exposure?
	Examining Evidence of Diminishing Returns

	Discussion and Conclusions
	Appendix
	Strength of First Stage
	Estimates Captured per Paper
	Sensitivity and Robustness Analyses
	Capital Spending Effects Over Time
	Forest Plots by Spending Type
	Testing for Additional Patterns
	Details of Publication Bias Tests
	Estimation Strategy


