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1 Introduction

The goal of the regulatory changes for banks, such as higher capital requirements, after
the Great Recession was to reduce the fragility of the financial system. The financial sys-
tem, however, is complex and includes unregulated firms. So-called shadow banks per-
form bank-like activities, such as lending and liquidity provision, and compete with tra-
ditional banks in these activities. Do tighter regulations on regulated commercial banks
cause an expansion of shadow banks? Does a larger shadow banking sector imply an
overall more fragile financial system?1

In this paper, we build a tractable general equilibrium model to address these ques-
tions by quantifying the costs and benefits of tighter bank capital regulation in an econ-
omy with regulated commercial banks and unregulated shadow banks. Both bank types
provide funding for a bank dependent production sector, financed with equity issued in a
competitive market and with deposits issued to households that value their liquidity ser-
vices. All banks have the option to default and therefore may not repay their depositors.
Our model focuses on liability side differences between commercial banks and shadow
banks, and assumes that both bank types hold the same assets. Commercial bank de-
posits are insured and therefore riskfree for depositors. While the government may bail
out shadow bank debt, a shadow bank bailout is a random event and not an insurance.
That is, shadow bank deposits are in principle uninsured and thus risky for depositors.
Because of the lack of full deposit insurance, shadow banks can be subject to bank runs.
The deposit insurance for commercial banks gives them a competitive advantage, lead-
ing to a larger than socially optimal level of the commercial banking sector and riskier
liquidity provision by shadow banks.

Calibrating the model to data from the Flow of Funds, NIPA, Compustat, bank call
reports, and to data on interest rates, we show that a higher capital requirement on com-
mercial banks indeed increases the size of the shadow banking sector. The shadow bank-
ing sector does indeed become riskier. However, the increase in the risk of the shadow
banking sector is economically small and dominated by a large reduction in the riskiness
of commercial banks. Thus, an increase in the capital requirement on commercial banks

1The example of Regulation Q tells a cautionary tale. Introduced after the Great Depression in the
1930s to curb excessive competition for deposit funds it had little effect on banks as long as interest rates
remained low. When interest rates rose in the 1970s, depositors looked for higher yielding alternatives
and the competition for their savings generated one: money market mutual funds (Adrian and Ashcraft
(2016)). Asset-backed commercial paper conduits are another example for entities that emerged arguably as
a response to tighter capital regulation (see Acharya, Schnabl, and Suarez (2013)). These examples highlight
the unintended consequences of regulatory policies.
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leads to an overall reduction of financial fragility in our model.

The main mechanism for an overall safer financial system despite an expansion of the
shadow banking sector is due to a competition effect. This effect arises because both types of
banks, traditional and shadow, compete for equity capital from household investors, and
have to offer the same return on equity in equilibrium. Since liquidity services provided
by the debt of shadow and traditional banks are imperfect substitutes, the model predicts
a socially optimal share of overall liquidity produced by each type of bank. This is where
the competition effect comes in: due to government guarantees, traditional banks have
a competitive advantage, attract more equity, and provide a larger than optimal share of
liquidity in equilibrium. As a result, shadow liquidity is relatively scarce and earns an
inflated convenience yield. Shadow banks react with higher leverage and thus riskiness
relative to the constrained efficient allocation. An increase in the capital requirement
reduces commercial banks’ competitive advantage vis-a-vis shadow banks. In response,
shadow banks expand, their debt becomes less scarce, reducing its convenience yield and
increasing shadow banks’ debt financing costs. As a result shadow banks reduce leverage
and hence take on less risk.

Our model also captures a countervailing force, which we call the demand effect, to
the risk dampening competition effect. As long as households demand for aggregate
liquidity services is downward sloping, an increase in the capital requirement reduces
the supply of commercial bank deposits and raises the convenience yield on both shadow
bank and commercial bank debt. This effect decreases shadow banks’ debt financing costs
and provides incentives to increase leverage and take on more risk.

Which effect dominates, depends on the parameters of the model. We find that the
demand effect dominates the competition effect and shadow banks increase leverage in
response to a higher capital requirement. The risk-dampening force of the competition
effect and the large reduction in risk-taking by commercial banks, however, mean that
on net the financial system becomes more stable, despite riskier shadow banks. The op-
timal capital requirement trades-off an increase in consumption driven by a reduction in
bankruptcy losses, due to a more stable financial system, against a reduction in liquid-
ity services. Across various parameterizations, the optimal capital requirement is around
16%.

We provide suggestive evidence for our model by comparing the post-crisis period
in the data to the model’s response to a financial reform that resembles the post-crisis
reforms. We model the pre-crisis period as a period with a relatively low capital re-
quirement on commercial banks, a large implicit guarantee for shadow banks, and too
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optimistic beliefs about a possible run on shadow banks. To capture the financial crisis,
we hit the model economy with a large productivity shock and a run on shadow banks.
After this shock, the financial system undergoes reforms that result in a small increase
in the capital requirement, a reduction in the bailout probability of shadow banks, and
correct beliefs about future runs on the shadow banking sector. Our model captures the
post-crisis time series pattern of commercial bank leverage and the commercial bank liq-
uidity premium in the data. The reduction in the bailout probability of shadow banks
causes a reduction in shadow bank leverage, also in line with the data. Since the re-
form causes investors to no longer underestimate the risk in the shadow banking system,
the shadow banking share in liquidity production shrinks, as in the data. It is impor-
tant to stress that our definition of the shadow bank share is based on bank liabilities
and not based on assets.2 An important question for future research is to study how our
liability-driven mechanism interacts with asset side differences between regulated and
unregulated banks.

In sum, our model suggests that a tighter capital requirement for commercial banks
will cause a shift towards riskier shadow banks. The increase in risk-taking of shadow
banks is coming from the demand effect. Quantitatively, shadow banks’ increase in risk-
taking is modest due to the competition effect. As a result of having safer commercial
banks, the competitive pressure on shadow banks to deliver high equity returns to their
investors declines. The net-effect from a reduction in commercial banks’ risk-taking, and
the slight increase in shadow banks’ risk-taking, is a more stable financial system.

Related Literature. Our paper is part of a growing literature at the intersection of macroe-
conomics and banking that tries to understand optimal regulation of banks in a quanti-
tative general equilibrium framework.3 Our modeling approach draws on recent work
that analyzes the role of financial intermediaries in the macroeconomy and assumes that
investors can only access assets through an intermediary.4 By introducing limited liabil-
ity and deposit insurance, and by defining the role of banks as liquidity producers, we
bridge the gap to a long-standing microeconomic literature on the functions of banks.5

2Note that other definitions of shadow banks (e.g., Buchak, Matvos, Piskorski, and Seru (2018)) would
yield a different post-crisis trend in shadow banking activity.

3E.g. Begenau (2020), Christiano and Ikeda (2014), Elenev, Landvoigt, and Van Nieuwerburgh (2018),
Gertler, Kiyotaki, and Prestipino (2016), Davydiuk (2017). Nguyen (2014) and Corbae and D’Erasmo (2019)
study quantitative models in partial equilibrium.

4E.g. Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), Garleanu and Pedersen (2011),
Moreira and Savov (2017). In our model, banks raise debt and equity from investors as in Allen et al. (2015).

5For an overview of microeconomic models of banking see Freixas and Rochet (1998). Recent theoretical
papers focusing on bank capital include Admati et al. (2014), Malherbe (2020) and Harris et al. (2017).
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Our goal is to quantify the unintended consequences of regulating commercial banks
for financial stability and macroeconomic outcomes. Other papers have addressed closely
related questions but not in a quantitative setting.6 Bengui and Bianchi (2018) provide
both a theoretical and quantitative analysis of optimal macroprudential taxation of lev-
ered firms when regulators cannot enforce these taxes on a subset of firms. More broadly,
the role of shadow banks in the recent financial crisis has motivated a number of pa-
pers that propose theories why shadow banks emerged and why they can become unsta-
ble (e.g., Gennaioli, Shleifer, and Vishny (2013) and Moreira and Savov (2017)). Shadow
banks are often viewed to emerge in response to tighter regulation (e.g., Plantin (2015);
Huang (2018); Xiao (2020); Farhi and Tirole (2020)), or because they produce financial ser-
vices using a different technology compared to traditional banks (e.g., Gertler, Kiyotaki,
and Prestipino (2016); Ordoñez (2018); Martinez-Miera and Repullo (2017); Dempsey
(2020)). Our paper captures both views as shadow banks can exist independently of
how tightly the traditional banking sector is regulated. Yet tighter financial regulation
can make the shadow banking sector more attractive and lead to its expansion.7

A key difference to other quantitative work is that we explicitly model moral haz-
ard arising from deposit insurance (and more generally government guarantees) akin to
Bianchi (2016).8 In addition, we account for a key institutional feature of financial in-
termediaries by modeling them with limited liability. Hence our setup allows to study
welfare-improving bank regulation in a quantitative framework. Since our focus is on
liquidity provision as a fundamental role of banking, we also relate to the literature on the
demand for safe and liquid assets,9 and on the role of financial intermediaries in provid-
ing such assets.10 Pozsar, Adrian, Ashcraft, and Boesky (2012), Chernenko and Sunderam
(2014), Sunderam (2015), Adrian and Ashcraft (2016), among others, are recent empirical
papers documenting the role of shadow banks for liquidity creation.

After we introduce the quantitative model in Section 2, we discuss its main mechanism
using a simplified version in Section 3. In Section 4, we explain how we map the model
to the data. Section 5 presents the results and Section 6 concludes.

6E.g., Plantin (2015); Huang (2018); Ordoñez (2018); Xiao (2020); Martinez-Miera and Repullo (2017).
7The paper by Buchak, Matvos, Piskorski, and Seru (2018) empirically estimates how much of the rise in

shadow banking, i.e., Fintech firms, is due to a change in the regulatory system or a change in technology.
8In contrast to Bianchi (2016), our focus is not on whether the government guarantee itself is optimal.
9E.g. Bernanke (2005), Caballero and Krishnamurthy (2009), Caballero, Farhi, and Gourinchas (2016),

Gorton et al. (2012), Krishnamurthy and Vissing-Jorgensen (2012)
10There is a large theoretical literature on this subject with seminal papers by Gorton and Pennacchi

(1990) and Diamond and Rajan (2001).
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2 The Quantitative Model

In this section, we present a tractable general equilibrium framework to study the eco-
nomic consequences of higher capital requirements. The basic structure includes a dis-
crete time, infinite horizon model with a representative households that owns all financial
assets in the economy and a Lucas tree that represents non-bank dependent production.
Further, the model features two types of banks, regulated commercial banks (C-banks)
and unregulated shadow banks (S-banks) that control the capital stock in the economy
and production of the bank dependent production sector. Both C- and S-banks provide
liquidity services to households by issuing deposits under limited liability.11 C-banks
benefit from deposit insurance but are also subject to capital requirements. S-banks are
fragile and face the risk of large withdrawals (banks runs) due to the lack of deposit in-
surance. They may also be given a bailout by the government, but this is random.

To write things more compactly, we slightly abuse notation and denote the dependence
on the aggregate state vector Zt (defined in Section 2.5) with the subscript t. Any addi-
tional dependence will be denoted in terms of functions, e.g., xt (yt) means that x depends
on the aggregate state vector Zt and the additional state variable yt.

2.1 Preferences

The representative household values consumption and liquidity services:

U
(

Ct, H
(

AS
t , AC

t

))
=

C1−γ
t

1− γ
+ ψ

[
α(AS

t )
ε + (1− α)(AC

t )
ε
] 1−γH

ε

1− γH︸ ︷︷ ︸
:≡H(AS

t ,AC
t )

, (1)

where γ is the inverse of the intertemporal elasticity of substitution for consumption.
H(AS, AC) is the utility from liquidity that is increasing in Aj, j = S, C, the quantity of
debt of bank type j held by households. The parameter ψ governs the weight of liquid-
ity services relative to the numeraire consumption. The functional form of H(AS, AC)

implies a constant elasticity of substitution between C-bank and S-bank liquidity, param-
eterized by ε ∈ (−∞, 1), and decreasing returns in overall liquidity, parameterized by
γH ≥ 0. The parameter α determines the weight each type of liquidity receives in gener-
ating aggregate liquidity benefits.

11Farhi and Tirole (2020) show how regulated and unregulated banks can both emerge in equilibrium
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The liquidity preference specification in (1) implies that (i) households value debt is-
sued by both types of banks beyond its pecuniary payoff, and (ii) S-bank and C-bank
debt are imperfect substitutes in liquidity services production, independent of their rela-
tive riskiness. Implication (i) follows the literature that models liquidity preferences via
a money-in-the-utility specification (see Poterba and Rotemberg (1986)). Feenstra (1986)
shows that the reduced-form preference specification is functionally equivalent to mi-
crofounding a demand for money with transaction costs. Krishnamurthy and Vissing-
Jorgensen (2012) and others argue that this utility specification is consistent with several
theories for the valuation of liquidity and safety, for example because assets provide col-
lateral benefits. In our particular case, the liquidity preference function H narrowly re-
flects the money-like attributes of bank deposits (C-bank debt) or close substitutes such
as money market fund shares (S-bank debt). Thus, households value these assets because
of their immediate and certain convertibility into a medium of exchange in the sense of
e.g. Gorton and Pennacchi (1990).

Both traditional bank deposits and money market accounts are very safe relative to
other assets available to households. However, C-bank debt is insured and completely
safe, whereas S-bank debt may suffer fractional default. The lower risk of C-bank debt
means that households assign a greater liquidity value to it than to S-bank debt, which
will be reflected quantitatively through a value of α < 1/2 for the relative weight on
S-bank liquidity in (1). The specification in (1) assumes that both α and the degree of
substitutability ε are constant over time and do not depend on fluctuations in riskiness of
S-bank debt. In Section 4.4, we will relax this restriction and allow the weight on S-bank
liquidity to be a time-varying function of S-bank debt relative to insured deposits at times
when S-bank default risk is high or when S-banks are exposed to run risk.

The CES functional form of H can be understood as aggregation of the liquidity de-
mand of households with heterogeneous preferences. This heterogeneity could reflect
unmodeled differences in households’ financial situation. For instance, the monthly with-
drawal limits and lower branch representation associated with many non-commercial
bank money market accounts may not be desirable for hand-to-mouth agents facing un-
expected expenditure shocks. Such heterogeneous preferences over different types of
money-like assets can give rise to the CES form (see e.g., Anderson et al. (1989)).12

12Alternatively, heterogeneous information about the quality or price of both goods (a commercial bank
deposit or a money market account) would allow a microfoundation of the CES liquidity function based
on rational inattention with heterogeneous signals such as in Matějka and McKay (2015) and Matveenko
(2020).
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2.2 Production Technology

There is a continuum of mass one of each type of bank, j = C, S. Banks operate a Cobb-
Douglas production technology combining capital and labor. That is, similar to Brunner-
meier and Sannikov (2014), we assume that banks are directly involved in the production
economy. Each bank owns productive capital K̂ j

t at the beginning of the period. We pro-
vide details on banks’ intertemporal optimization problem and aggregation in Sections
2.3 and 2.4 below. Bank production is exposed to Zt, an aggregate productivity shock
common to all banks. Banks hire labor N j

t from households at competitive wage wt and
combine it with their capital to produce

Y j
t = Zt(K̂

j
t)

1−η(N j
t )

η,

where η is the labor share. After production, capital depreciates at rate δK. Banks can also
invest using a standard convex technology governed by the parameter φI ≥ 0. Creating
I j
t units of the capital good requires

I j
t +

φI

2

(
I j
t

K̂ j
t

− δK

)2

K̂ j
t

units of consumption. Banks can sell new capital goods and their non-depreciated capital
in a competitive market at price pt. Defining the investment rate ij

t = I j
t /K̂ j

t and the
labor-capital ratio nj

t = N j
t /K̂ j

t, we can write the gross payoff per unit of capital as

Πj
t = Zt(n

j
t)

η − wtn
j
t +
(

1− δK + ij
t

)
pt − ij

t −
φI

2
(ij

t − δK)
2,

where the first and second term are the revenue from production and the wage bill
per unit of capital, the third term denote the proceeds from selling one unit of non-
depreciated capital and new capital per unit of capital, while the last two terms denote
the expenses for producing new capital per unit of capital.

Households can also hold capital and produce directly. However, as in Brunnermeier
and Sannikov (2014) and Gertler et al. (2020), we assume that households operate capital
less efficiently, leading to lower productivity Zt < Zt and a higher depreciation rate δK >

δK. Further, households do not have access to an investment technology. Defining nH
t =

NH
t /K̂H

t , the gross payoff per unit of capital when operated by households is

ΠH
t = Zt(n

H
t )

η − wtnH
t + (1− δK) pt.
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Labor input and investment decisions Within each period, banks of either type j =

C, S choose labor input and investment. The first-order conditions for labor input and
investment (see Eq. (33) and (34) in Appendix A.1) allow us to simplify the gross-payoff
per unit of capital for banks and households by substituting for the equilibrium wage and
investment rate

Πj
t = (1− η)Zt(n

j
t)

η + pt − δK +
(pt − 1)2

2φI
, (2)

ΠH
t = (1− η)Zt(n

H
t )

η + pt(1− δK). (3)

The gross payoffs of capital are a function of the aggregate shocks, the price of capital,
and labor-capital ratio.

2.3 S-banks

We now describe the optimization problem of S-banks. Banks make labor input and in-
vestment decision and are subject to runs within a period. In addition, S-banks choose the
amount of capital to purchase for next period KS

t+1 and the amount of deposits to issue to
households BS

t+1 at price qS
t . S-bank debt is generally risky for households, but the gov-

ernment decides with probability πB to bail out defaulting S-bank deposits. We introduce
capital adjustment costs on top of investment adjustment costs to capture balance sheet
rigidities stemming from illiquid assets.

Bank runs and timing To capture the fragility of S-banks, we introduce bank runs in
the S-bank sector similar to Allen and Gale (1994). A fraction of S-bank deposits πR

t

is withdrawn early within a given period (affecting all shadow banks equally), where
πR

t ∈ {0, π̄R > 0}, following a two-state Markov chain. When deposits are withdrawn,
S-banks need to liquidate a fraction of their assets by selling them to households at price
ΠH

t defined in Eq. (3). Liquidated assets do not yield any output to the bank. Households
sell the assets again in the regular capital market later in the same period.13 The timing
of decisions within each period is as follows:

1. Aggregate shocks Zt, Zt and πR
t are realized.

2. If πR
t = π̄R, S-banks sell capital worth π̄RBS

t to households at price ΠH
t .

13Since both transactions take place within the same period and households are unconstrained, house-
holds’ marginal product of capital is ΠH

t that is lower than that of banks, Πj
t. Hence, households never

optimally own any capital at the end of the period.

8



3. Production of all banks and households and investment decisions of banks ensue.

4. Idiosyncratic payoff shocks of banks are realized. Default decisions.

5. Banks choose their portfolios. Surviving banks pay dividends and new banks are
set up to replace liquidated bankrupt banks.

6. Government bails out all defaulting C-bank deposits. S-bank deposits are bailed out
with probability πB.

7. Households consume.

To pay out its depositors in case of a withdrawal shock (πR
t = π̄R) at step 2, the fraction

of assets that needs to be liquidated is

`S
t ≡

πR
t BS

t

KS
t ΠH

t
.

Thus, the capital available for production at step 3 is K̂S
t ≡ (1− `S

t )K
S
t .14

Portfolio problem At step 5 of the intraperiod sequence of events, S-banks solve a
portfolio choice problem. At this time, S-banks are subject to idiosyncratic payoff shocks
ρS

t,i ∼ FS that are iid across banks and over time. We characterize S-banks’ portfolio
problem recursively. In Appendix A.1, we show that at the time banks choose their new
portfolio, all banks have the same value and face the same optimization problem. They
choose how much capital to buy for next period, KS

t+1, and how many deposits to issue,
BS

t+1 to maximize current period dividend payout to shareholders and the continuation
value. To save notation, we make use of the fact that all S-banks face the same optimiza-
tion problem and omit individual subscript i from the presentation of the bank problem.
Note that we introduce intertemporal balance sheet rigidities by subjecting banks’ choice
of KS

t+1 to a quadratic adjustment cost. The total dividend the representative S-bank pays
to its shareholders at step 5 is given by

DS
t = ρS

t ΠS
t K̂S

t − (1− πR
t )BS

t + qS
t

(
BS

t+1, KS
t+1

)
BS

t+1 − ptKS
t+1 −

φK

2

(
KS

t+1

K̂S
t
− 1

)2

K̂S
t . (4)

The first term denotes the payoff of capital after the realization of the S-bank specific iid
capital payoff shock ρS

t . The second term denotes deposit repayment obligations that
14In our baseline calibration as well as all other numerical experiments we consider. π̄R is always below

KS
t ΠH

t /BS
t so that banks can always redeem early withdrawals.
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remained after the realization of the run shock. The third term denotes new funds from
deposits issuance at price qS

t
(

BS
t+1, KS

t+1
)
, and the fourth term is new capital purchased at

price pt. The last term denotes the balance sheet adjustment costs.

We characterize the S-bank’s portfolio problem recursively using the value function
V̂S

t (K̂
S
t , ρS

t ). Recall that in addition to the two individual state variables, the post-run cap-
ital stock K̂S

t and the payoff shock ρS
t , the bank’s value is indexed by t and thus depends

on the aggregate state vector Zt. The value of surviving S-bank is

V̂S
t (K̂

S
t , ρS

t ) = max
KS

t+1,BS
t+1

DS
t + Et

[
Mt,t+1max

{
V̂S

t+1(K̂
S
t+1, ρS

t+1) , VS,De f
t+1

}]
, (5)

where Mt,t+1 is the stochastic discount factor of households and VS,De f
t+1 = −δSΠS

t+1K̂S
t+1

is the value of default with default utility-penalty parameter δS ≥ 0. The default penalty
is proportional to the asset value, which retains the problem’s homogeneity in capital K̂S

t .

To simplify the optimization problem further, we recognize that profits from real pro-
duction activities ρS

t ΠS
t K̂S

t and deposit obligations (1 − πR
t )BS

t are irrelevant for banks’
portfolio choice after they have decided not to default, i.e., after step 4 of the time line
above. Hence, all banks face the same portfolio choice problem for period t + 1, con-
ditional on having the same capital K̂ j

t. This allows us to define a new value function
VS

t (K̂
S
t ) = V̂S

t (K̂
S
t , ρS

t )− ρS
t ΠS

t K̂S
t + (1− πR

t )BS
t such that we can rewrite (5) as

VS
t (K̂

S
t ) = max

KS
t+1,BS

t+1

qS
t

(
BS

t+1, KS
t+1

)
BS

t+1 − ptKS
t+1 −

φK

2

(
KS

t+1

K̂S
t
− 1

)2

K̂S
t + (6)

Et

[
Mt,t+1max

{
ρS

t+1ΠS
t+1K̂S

t+1 − BS
t+1(1− πR

t+1) + VS
t+1(K̂

S
t+1) , VS,De f

t+1

}]
.

Two properties of the S-bank problem allow us to obtain aggregation. First, idiosyncratic
profit shocks ρS

t are uncorrelated over time. Second, the value function is homogeneous
in capital. We use these properties to write the bank value function in terms of the value
per unit of capital vS

t = VS
t (K̂

S
t )/K̂S

t , which only depends on the aggregate state vector

Zt. The two intertemporal choices are the deposit-capital ratio bS
t+1 =

BS
t+1

KS
t+1

and capital

growth kS
t+1 =

KS
t+1

K̂S
t

. We further define bank leverage as

LS
t+1 ≡

BS
t+1

ΠS
t+1KS

t+1
=

bS
t+1

ΠS
t+1

,

with ΠS
t being the effective payoff per unit of capital as defined in (2). Using this defini-
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tion, we write the S-bank’s problem as15

vS
t = max

bS
t+1≥0,kS

t+1≥0
−
(

kS
t+1

(
pt − qS

t

(
bS

t+1

)
bS

t+1

)
+

φK

2

(
kS

t+1 − 1
)2
)

︸ ︷︷ ︸
cost of portfolio for t+1

(7)

+kS
t+1 Et

[
Mt,t+1 ΠS

t+1max

{(
1− `S

t+1

)(
ρS

t+1 +
vS

t+1

ΠS
t+1

)
− LS

t+1(1− πR
t+1) ,−δS

(
1− `S

t+1

)}]
︸ ︷︷ ︸

expected payoff per levered unit of capital in t+1

.

S-bank equity owners optimally trade off the cost of investing in the bank’s portfolio
today against the expected payoff next period. They internalize that the price of their
debt, qS

t , is a function of their default risk and thus their capital structure. The max-
operator in the expectation on the RHS reflects the continuation value per unit of levered
capital, taking into account the optimal default decision next period and the possibility
of an early withdrawal shock that forces the bank to sell fraction `S

t+1 of its capital to
households.16 Eq. (7) clarifies that S-banks optimally default at step 4 in the intraperiod
time line when ρS

t < ρ̂S
t , with

ρ̂S
t =

(1− πR
t )LS

t − (1− `S
t )
(

vS
t

ΠS
t
+ δS

)
1− `S

t
. (8)

The probability of default is thus FS
ρ,t ≡ FS (ρ̂S

t
)
. We provide more details on how to

aggregate the problem of banks in general in Appendix A.1 and derive Euler equations
for S-banks in Appendix A.4.

2.4 C-banks and Government

C-banks. C-banks differ from S-banks in four ways: (i) they issue short-term debt that
is insured and hence risk free for creditors, (ii) they do not experience runs (as result of
(i)), (iii) they are subject to a capital requirement, and (iv) they pay an insurance fee of κ

15Homogeneity of the value function VS
t (K̂

S
t ) of degree one in capital requires that the debt price function

qS
t
(

BS
t+1, KS

t+1
)

is jointly homogeneous of degree zero in BS
t+1 and KS

t+1. This property is satisfied, as the

price function only depends on the ratio bS
t+1 =

BS
t+1

KS
t+1

, which can be verified from the household first-order

condition for S-bank debt in equation (23), Appendix A.3.
16For a hypothetical bank without default risk, early withdrawal shocks and leverage, this continuation

value would simply be ρS
t+1ΠS

t+1 + vS
t+1.

11



for each unit of debt they issue. Using the same notation as for S-banks, C-banks solve

vC
t = max

bC
t+1≥0,kC

t+1≥0
−
(

kC
t+1

(
pt −

(
qC

t − κ
)

bC
t+1

)
+

φK

2

(
kC

t+1 − 1
)2
)

Et

[
Mt,t+1 kC

t+1 ΠC
t+1max

{
ρC

t+1 +
vC

t+1

ΠC
t+1
− LC

t+1 ,−δC

}]
, (9)

subject to the capital requirement

(1− θ)pt ≥ bC
t+1. (10)

C-banks optimally default at step 4 in the intraperiod time line when ρC
t < ρ̂C

t , with

ρ̂C
t = LC

t −
vC

t

ΠC
t
− δC, (11)

where δC ≥ 0 is a default penalty parameter. Given ρC
t ∼ FC, the probability of default is

FC
ρ,t ≡ FC (ρ̂C

t
)
. The full optimization problem of C-banks including Euler equations is in

Appendix A.5.

Bankruptcy, Bailout and Government Budget Constraint. If a bank declares bankruptcy,
its equity (and continuation value) becomes worthless, and creditors seize all of the banks
assets, which are liquidated. The recovery amount per unit of debt issued is

rj
t = (1− ξ j)

ρ
j,−
t

(
1− `

j
t

)
Lj

t
(
1− πR

t Ij=S
) ,

for j = S, C and Ij=S is an indicator function that takes the value of 1 if j = S else it is 0.

A fraction ξ j of assets is lost in the bankruptcy proceedings, with ρ
j,−
t ≡ E

(
ρ

j
t | ρ

j
t < ρ̂

j
t

)
being the average idiosyncratic shock of defaulting banks. Since C-banks do not expe-
rience runs, `C

t = 0 ∀t. Bankruptcy losses are real losses to the economy. They reflect
both greater capital depreciation of foreclosed banks, and real resources destroyed in the
bankruptcy process that reduce bank profits.

After the bankruptcy proceedings are completed, a new bank is set up to replace the
failed one. This bank sells its equity to new owners, and is otherwise identical to a sur-
viving bank after asset payoffs.

If a S-bank defaults, the recovery value per unit of debt is used to pay the claims of
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creditors to the extent possible. We further consider the possibility that the government
bails out the creditors of the defaulting S-bank with probability πB, known to all agents
ex-ante. If a C-bank declares bankruptcy, it is taken over by the government that uses
lump-sum taxes and revenues from deposit insurance, κBC

t+1, to pay out the bank’s credi-
tors in full. Summing over defaulting C-banks and S-banks that are bailed out, we define
lump sum taxes as

Tt = FC
ρ,t

(
1− rC

t

)
BC

t − κBC
t+1 + πBFS

ρ,t

(
1− rS

t

) (
1− πR

t

)
BS

t .

2.5 Households and Equilibrium

Households. Each period, households receive an endowment from a Lucas tree Yt and
the payoffs from owning all equity and debt claims on intermediaries, yielding financial
wealth Wt. They further inelastically supply their unit labor endowment at wage wt and
pay lump-sum taxes Tt.17 Households choose consumption Ct, deposits of both banks
for redemption next period, AS

t+1 and AC
t+1, and bank equity purchases SS

t and SC
t , to

maximize utility (1) subject to their intertemporal budget constraint

Wt + Yt + wt − Tt ≥ Ct + ∑
j=S,C

pj
tS

j
t + ∑

j=S,C
qj

t Aj
t+1, (12)

where pj
t, j = S, C, denotes the market price of bank equity of type j. The transition law

for household financial wealth Wt is

Wt+1 = ∑
j=S,C

(1− Fj
ρ,t+1)

(
Dj,+

t+1 + pj
t+1

)
Sj

t

+
(

1− πR
t+1

)
AS

t+1

[
1− FS

ρ,t+1 + FS
ρ,t+1

(
πB + (1− πB) rS

t+1

)]
+ πR

t+1AS
t+1

+ AC
t+1,

where Dj,+
t+1 is the dividend of banks of type j = S, C conditional on survival as defined in

the Appendix A.3. This appendix section states the full optimization problem of house-
holds including their optimality conditions.

Equilibrium. The aggregate state vectorZt consists of the exogenous productivity shocks
driving Yt and Zt, the aggregate capital holdings of each type of bank K j

t, for j = S, C, and

17Households also receive production income ΠH
t K̂H

t , which is equal to capital purchases from banks.
Thus, these two terms net to zero.
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deposit holdings at the beginning of period, Aj
t, for j = S, C. Market clearing requires

that within period capital holdings by households are K̂H
t = `tKS

t , and that households
purchase all securities issued by banks, which implies Bj

t+1 = Aj
t+1, for j = S, C, in de-

posit markets, and Sj
t = 1 in equity markets. Labor supply by households has to equal

labor demand by banks, and by producing households in case of fire sales, implying
NS

t + NC
t + NH

t = 1. We provide a formal equilibrium definition as well as market clear-
ing conditions for capital and consumption in Appendix A.2. In the capital market, bank
failures lead to endogenous depreciation in addition to production-induced depreciation
δK. Similarly, bank failures also cause a loss of resources in the goods market. Appendix
.1 lists the full set of equations characterizing the equilibrium.

3 Main Mechanism In A Simplified Two-period Model

Before describing the calibration strategy (see Section 4), we discuss the main intuition of
the model. To this end, we strip down the quantitative model to its core and focus on a
two-period version (times 0 and 1) that we can solve by hand.

3.1 Simple Model Set-up

As before, there is a representative household and two types of banks, C-banks and S-
banks. We simplify the production process as follows. The total supply of capital is fixed
at unity. Banks buy capital at time 0 at price p in a competitive market. Each unit of capital
produces one unit of the consumption good at time 1. As in the quantitative model, banks
are financed with equity and uncontingent debt issued to households. Deposit insurance
gives C-banks a competitive advantage.

Households are endowed with 1 unit of the capital good at time 0. Their simplified
preferences are

U = C0 + β (C1 + ψH(AS, AC)) , (13)

where H(AS, AC) is the utility from liquidity, and Aj, j = S, C is the quantity of debt of
bank type j held by households.

S-banks and C-banks issue debt Bj at prices qj and equity shares Sj at prices pj in
competitive markets to households. For both type of banks, we will call debt deposits.
Both types of banks have limited liability and make optimal default decisions at time 1.
In case of default, bank equity becomes worthless. We also assume that all S-bank or
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C-bank assets are lost in default and cannot be used to repay depositors. Yet, C-bank
deposit insurance makes C-bank deposits perfectly safe for depositors. When C-bank
equity is insufficient to fully repay depositors, the government makes up the shortfall by
raising lump-sum taxes on households. In contrast, deposits issued by S-banks are risky.
Since we assumed no recovery in case of default, any return on S-bank capital is lost and
depositors lose all their deposits when the S-bank defaults.

S-banks Problem. An S-bank chooses how much capital, KS, at price p to buy and how
many deposits, BS, to issue to raise qSBS at time 0. It needs to raise the difference in
initial equity from households. As in the quantitative model, individual banks receive
idiosyncratic production shocks ρS at time 1 that are distributed iid, such that the total
payoff to capital at time 1 is ρSKS. S-banks’ maximization problem is a simplified version
of S-banks’ problem in the full model (see Eq. 7) without adjustment costs, runs, and a
default penalty. Thus, each S-bank maximizes its expected net present value

max
KS≥0,BS≥0

qS(BS, KS)BS − pKS︸ ︷︷ ︸
equity raised at t = 0

+βE

max {ρSKS − BS, 0}︸ ︷︷ ︸
dividend paid at t = 1

 . (14)

The price for S-banks’ deposits, qS(BS, KS), depends on the leverage choice of each bank.
Households take into account that higher bank leverage increases the probability of a
default. The bank internalizes this effect when making its leverage decision.

C-bank Problem. C-banks differ from S-banks in two ways. First, C-banks issue safe
deposits due to the government guarantee (deposit insurance). Hence the price at which
they raise deposits, qC, is not sensitive to their leverage choice. Secondly, C-banks are
subject to a regulatory capital constraint that limits the amount of deposits they can issue
to a fraction 1− θ of the expected payoff of capital at time 1, E(ρCKC). C-banks solve

max
KC≥0,BC≥0

qCBC − pKC︸ ︷︷ ︸
equity raised at t = 0

+βE

max {ρCKC − BC, 0}︸ ︷︷ ︸
dividend paid at t = 1

 , (15)

subject to the equity capital requirement

BC ≤ (1− θ)E(ρCKC). (16)
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Bank Size and Leverage Choices. To solve the bank problem, we use the fact that it is
homogeneous in capital and that the ρ shocks are iid across banks. We can then divide
the bank objective by Kj and separate each bank’s problem into a size (Kj) decision and a
leverage (Lj = Bj/Kj) decision. The expected dividend at t = 1 becomes

E
[
max

{
ρj − Lj, 0

}]
=
(
1− Fj(Lj)

) (
ρ+j − Lj

)
,

where we have defined the conditional expectation ρ+j = E(ρj |ρj > Lj).18

Households. Households are endowed with one unit of capital. They optimally sell this
capital to banks at price p. They buy deposits Aj and equity shares Sj of bank type j at
time 0, such that their time 0 budget constraint is

C0 = p− qS AS − qC AC − pSSS − pCSC. (17)

Time-1 consumption is therefore

C1 = (1− LS)AS + AC +SSKS (1− FS(LS))
(
ρ+S − LS

)
+SCKC (1− FC(LC))

(
ρ+C − LC

)
−T,
(18)

where T denotes government lump-sum taxation to bail out deposits, i.e., T = LCBC,
(1− LS)AS and AC are deposit redemptions for S- and C-banks, respectively. The terms(
1− Fj(Lj)

) (
ρ+j − Lj

)
denote the expected cash-flow from owning bank type j equity.

Households choose C0, C1, Sj, and Aj, j = C, S to maximize utility (13) subject to con-
straints (17) and (18).

Equilibrium definition. The equilibrium is a set of prices {p, qS, qC, pS, pC} and quanti-
ties {C0, C1, KS, KC, LS, LC, SS, SC, AC, AS}, such that households maximize (13) subject to
constraints (17) and (18), S-banks maximize (14), C-banks maximize (15) subject to (16),
and the markets for capital 1 = KS + KC, equity shares (sum to 1) and deposits of both
bank types, Aj = Bj, clear. More details are in Appendix I.1.

3.2 Efficient Allocation versus Competitive Equilibrium

Efficient allocation. To understand under which conditions higher capital requirements
improve welfare, we first solve for the optimal allocation of capital and leverage of each

18Appendix I.3 separates out the size and leverage optimization problem for both banks.
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type of bank from the perspective of a social planner that maximizes household welfare.
The planner is restricted to the same resource constraint as the decentralized economy,
and has to use the same risky intermediation technology to produce liquidity services.
Therefore, numeraire consumption in periods 0 and 1 is restricted by the resource con-
straints of the decentralized economy in equations (53) and (54) in Appendix I.1. Recall
from Eq. (13) that households value liquidity services from holding deposits. We assume
that H(AS, AC) has the same functional form as in Eq. (1).

Assumption 1.

H(AS, AC) =

(
αAε

S + (1− α)Aε
C
) 1−γH

ε

1− γH
, (19)

where the parameters are defined below Eq. 1.

Writing deposits as AS = LSKS and AC = LCKC = LC(1−KS), the planner’s optimiza-
tion problem is

max
KS,LS,LC

KS(1− FS(LS))ρ
+
S + (1− KS)(1− FC(LC))ρ

+
C + ψH (LSKS, LC(1− KS)) . (20)

The first two terms are time-1 consumption (see Eq. (54) in the Appendix). Proposition
1 characterizes the solution to this problem.

Proposition 1. If the bank-idiosyncratic shocks ρj, for j = S, C, are drawn from the same distri-
bution, the optimal ratio of S-bank and C-bank capital is given by

A∗ ≡ AS

AC
=

KS

KC
=

(
α

1− α

) 1
1−ε

. (21)

Optimal leverage is equalized across bank types and given by LS = LC = L∗, where L∗ is a
function of parameters and given in the appendix.

Proof. See appendix I.4.

The allocation of capital reflects the weight each type of liquidity receives in the utility
function, parameterized by α. A higher elasticity of substitution 1/(1− ε) “tilts” the op-
timal allocation towards the bank type that receives a greater weight. Leverage is chosen
such that the marginal losses from bank defaults equal the marginal utility of liquidity
for each type. Since both banks have equally good technologies for producing liquidity
of their own type for a given unit of capital, the planner chooses equal leverage for both.
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Competitive Equilibrium Characterization. This section introduces one of the two key
equilibrium forces: the competition effect. This effect arises simply because markets for
equity and debt of both banks, as well as for physical capital, are perfectly competitive.
Thus, resources must be allocated to both types of banks in equilibrium such that house-
holds are indifferent on the margin between investing in either bank type’s equity.19 Since
prices of banks’ debt directly affect their equity values (see Eqs. (14) and (15)), the require-
ment of equal equity valuation feeds back to bank leverage and capital purchase choices.
To see how the competition effect works, we first need to understand how households
price deposits of C- and S-banks. We denote the partial derivatives of the liquidity utility
function with respect to the two types of liquidity asHj(AS, AC) = ∂H(AS, AC)/∂Aj, for
j=S, C, respectively. The household’s first-order conditions for S-bank and C-bank are

qC = β(1 + ψHC(AS, AC)), (22)

qS = β(1− FS(LS) + ψHS(AS, AC)). (23)

Eq. (22) and (23) state that the prices of C-bank and S-bank debt, qC and qS, must equal
their respective expected discounted payoffs plus the discounted marginal liquidity ben-
efit βψHj(AS, AC), for j=S, C. Since C-bank debt is insured, the expected payoff is unaf-
fected by C-bank default and hence risk free.20 In contrast, the expected payoff to unin-
sured S-bank debt is 1− FS(LS), reflecting that in expectation a fraction FS(LS) of S-banks
defaults with a recovery value of zero.

This differential debt pricing affects the optimal leverage and capital choices of both
types of banks, with details given in Appendix I.3. In particular, since C-banks can issue
insured debt that also generates utility for households, there is no interior optimum to
their capital structure choice, and the constraint (16) is always binding. S-banks’ leverage
choice, on the other hand, trades off the marginal benefit of S-bank liquidity to households
against their expected cost of default, which is increasing in leverage.

Furthermore, because of constant returns to scale and competitive markets, both types
of banks must have zero expected value in equilibrium.21 This leads to the following

19Allen, Carletti, and Marquez (2015) analyze a similar mechanism in a model in which banks compete
with public firms (that also borrow from banks) for equity funds from the same investors. More generally,
our framework differs from the canonical macro-finance model with levered intermediaries of e.g. Gertler
and Kiyotaki (2010) in that our banks raise deposits and equity from outside investors.

20We take limited liability and deposit insurance for C-banks, i.e. basic institutional features of the bank-
ing system, as given, with the reasons for their existence outside the model. In the quantitative version of
the model, we take into account that S-banks face the risk of large withdrawals (banks runs) due to the lack
of deposit insurance and may also be given a bailout by the government.

21The market value of equity at time 0 must equal to expected payoff of the bank’s portfolio at time 1.
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capital demand conditions for C-banks and S-banks, respectively:

p = β
(
(1− FC(LC))ρ

+
C + ψLCHC(AS, AC) + FC(LC)LC

)
, (24)

p = β
(
(1− FS(LS))ρ

+
S + ψLSHS(AS, AC)

)
. (25)

The different debt financing costs for C-banks and S-banks translate into different de-
mands for intermediated capital. Both type of banks value capital for its expected payoff
in case of no default, (1− Fj(Lj))ρ

+
j , and its collateral value for the production of liquid-

ity services that households value, ψLjHj(AS, AC), ∀j ∈ {C, S}. C-banks assign additional
value to debt financing, FC(LC)LC, since their debt is insured by the government and thus
its price is insensitive to C-bank default risk. This additional debt advantage increases C-
bank demand for capital that serves as collateral for debt. By equating and simplifying
the capital demand conditions (24) – (25), we get the capital market condition

(1− FS(LS))ρ
+
S − (1− FC(LC))ρ

+
C︸ ︷︷ ︸

payoff difference

+ ψ (LSHS(AS, AC)− LCHC(AS, AC))︸ ︷︷ ︸
liquidity premium difference

= FC(LC)LC. (26)

Since C-banks enjoy the implicit subsidy of government-insured debt (RHS of (26)), S-
banks have to compensate in order to be competitive. They can do this either through
higher payoffs, or a higher equilibrium liquidity benefit. This equation is at the heart of
the competition effect. To see how this relates to capital requirements, notice that C-bank
leverage is directly determined by the capital constraint, LC = E(ρC)(1− θ). Thus, the
benefit C-banks derive from insured deposits, FC(LC)LC, decreases in the capital require-
ment θ. To understand the competition effect, consider an increase in θ that lowers C-bank
leverage. For a given allocation of capital and S-bank leverage, C-banks become less prof-
itable as a result of fewer insured deposits. As a result, investors (i.e., households) shift
towards S-bank equity. The S-bank sector expands by purchasing more capital, which
raises S-bank liquidity AS and reduces C-bank liquidity AC. Since preferences have de-
creasing returns in each type, S-banks’ convenience yields decline and C-banks’ rise. This
process continues until condition (26) holds again.

Efficiency Properties of Equilibrium. To understand the difference between the plan-
ner allocation and the competitive equilibrium, we index equilibria by the liquidity wedge
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m > −1, where m is implicitly defined by

LC fC(LC) = (1 + m)ψHC(AS, AC), (27)

with fC being the density function of distribution FC.22 The factor m represents the wedge
between the social marginal benefit of C-bank liquidity ψHC(AS, AC), and the marginal
cost to society of producing this liquidity LC fC(LC). The social planner solution requires
that the costs and benefits of liquidity provision are equal, in which case m = 0. In the
competitive equilibrium with limited liability and deposit insurance for C-bank deposits,
the default risk of C-banks is unpriced. A high value of m implies that C-banks overpro-
duce liquidity in the sense that LC fC(LC) > ψHC.

We make the following assumption for analytical tractability.

Assumption 2. The bank-idiosyncratic shocks ρj, for j = S, C are distributed i.i.d Uniform[0, 1].

Given this assumption, we can solve the decentralized equilibrium as a function of m.

Proposition 2. For any competitive equilibrium,

(i) S-bank leverage is greater than its social planner solution,

(ii) the S-bank market shares in the debt and capital markets are given by

AS

AC
=

(
1
M

) 1
1−ε

A∗ and
KS

KC
= (1 + m)

(
1
M

) 2−ε
1−ε

A∗, (28)

whereM =
√
(1 + m)(3 + m) and A∗ is defined in Prop. 1.

(iii) there is no θ ∈ [0, 1] that implements the planner allocation from Proposition 1.

Proof. See appendix I.4.

Proposition 2 shows that the competitive equilibrium deviates from the planner so-
lution both in terms of leverage choices and capital allocation. In particular, the rela-
tive size of the S-bank sector is distorted when compared to the planner solution where
KS/KC = AS/AC = A∗ = (α/(1− α))1/(1−ε).

22If an equilibrium exists, it is unique.
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Since the capital constraint of C-banks is always binding with LC = E(ρC)(1 − θ),
and the C-bank default probability increases in leverage, the regulator can choose θ such
that m = 0 and C-banks produce liquidity services efficiently given their scale. Part (iii)
of Proposition 2 states that even in such a case, the competitive equilibrium does not
achieve overall efficiency, because S-banks’ share in liquidity provision is too low relative
to the social planner solution. The reason is competition between S- and C-banks, as
formally expressed by condition (26). Bank equity investors must be indifferent between
investing in C-banks or S-banks. The fact that C-banks can issue insured deposits while
S-banks cannot, provides C-banks with a competitive advantage. As a result, the C-bank

sector is too large (by factor 3
1

2(1−ε) at m = 0). Since the S-bank sector is too small, S-
bank liquidity AS is relatively scarce and S-bank debt enjoys a large liquidity premium.
This large premium boosts the profitability of S-banks to the same level as that of C-
banks, and also causes S-banks to raise leverage above the value in the planner solution.23

Thus, absent additional policy tools to “regulate” S-banks, the capital requirement θ is not
sufficient to achieve overall efficiency.

3.3 The Effect Of A Higher C-bank Capital Requirement

To see how a higher capital requirement affects the economy, we study the comparative
statics of the competitive equilibrium with respect to θ.

Proposition 3. 1. Holding constant all other parameters, an increase in the requirement θ

(i) reduces C-bank leverage,

(ii) causes an expansion in the S-bank share: d(AS/AC)
dθ > 0 and d(KS/KC)

dθ > 0,

(iii) can either raise or lower S-bank leverage, depending on model parameters.

2. For m ≥ 0, a marginal increase in the capital requirement improves aggregate welfare.

Proof. See appendix I.4.

Part 1(i) follows from the fact that a higher θ tightens the C-bank leverage constraint.
Part 1(ii) builds on the results in Proposition 2 to show that a higher capital requirement
always leads to a relative increase in the size of the S-bank sector. A tighter capital re-
quirement means that C-banks benefit less from the implicit subsidy of deposit insurance.

23S-banks choose leverage efficiently given the level of their liquidity premium ψHS(AS, AC). However,
since the S-bank sector is too small, the premium is too large.

21



Thus, they become relatively less profitable and investor equity flows into the shadow
banking sector, causing S-banks to expand their market share.

While unambiguously increasing the size of S-banks, Part 1(iii) states that a higher cap-
ital requirement has an ambigious effect on S-bank leverage. When the regulator raises
θ, there are two effects, the competition effect explained above and the demand effect. The
competition effect underlies the results stated in Part 1(ii) of Proposition 3. Tighter reg-
ulation reduces C-banks’ competitive advantage stemming from deposit insurance, and
thus makes S-banks relatively more competitive. Everything else equal, this effect low-
ers optimal S-bank leverage. However, since the economy features decreasing returns
in overall liquidity provision, tightening C-banks’ constraint will generally cause an in-
crease in the liquidity premium of both types of banks. To see why, note that the economy
has a downward-sloping demand curve for liquidity. An increase in θ shifts the liquidity
supply curve to the left and thus leads to higher prices, i.e. liquidity premia. Everything
else equal, this demand effect causes S-banks to increase leverage. Which effect dominates
depends on the parameters of the model. But the following corollary states a special case.

Corollary 1. If aggregate liquidity production has constant returns to scale (γH = 0), an increase
in the capital requirement θ causes lower S-bank leverage.

If γH = 0, households are perfectly elastic with respect to total liquidity H(AS, AC),
holding fixed its composition. In that case, the demand effect is zero (the demand curve
is flat) and we get dLS/dθ < 0 due to the competition effect alone.

Implication for the optimal level of capital requirements. Part (2) of Proposition 3 pro-
vides a sufficient condition under which an increase in θ improves welfare. In any equi-
librium with m ≥ 0, C-banks (weakly) overproduce liquidity, and raising θ will shrink
the wedge m towards zero. Even at m = 0, a marginal increase in θ is still unambiguously
welfare-improving. The reason is once more competition between both types of banks. In
the decentralized equilibrium, the derivative of households’ utility with respect to θ

dU(θ)

dθ
= mE(ρC)ψHC(AS, AC)KC +

dKS

dθ
FC(LC)LC, (29)

illustrates the trade-off regulators face when setting the optimal capital requirement (see
Appendix I.4 for the derivation). The first term reflects the standard trade-off that would
arise in a model with only C-banks. If m ≥ 0, C-banks are overproducing liquidity and the
term is positive. In a world without S-banks, the optimal level of the capital requirement
trades off the increase in consumption due to fewer defaults against the reduction in
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liquidity provision for C-banks only. In such a model, the second term of (29) would
not exist and the optimal θ would simply set m = 0. However, the second term reflects
the benefit of an expansion in the size of the shadow banking sector, which is too small
because of C-banks’ competitive advantage. From part 1(ii) of the proposition, we know
that raising θ will cause an expansion in the S-bank share, dKS

dθ > 0, moving the allocation
of capital closer to the planner solution. The trade-off of a higher capital requirement in
this model is as follows. To allow an expansion of the S-bank share, the regulator raises
the capital requirement to reduce the competitiveness of C-banks. At the optimal θ that
sets the derivative in (29) to zero, the planner trades off underproduction of liquidity from
C-banks (m < 0) against a too small S-bank sector.

Part (2) of Proposition 3 is a key insight of our simple theoretical model. In an equilib-
rium with m > 0, C-bank leverage is too high relative to the planner solution. A regulator
ignoring the presence of S-banks will want to increase θ. The proposition says that on the
margin, this is optimal, especially once one accounts for the shift of intermediation activity
to unregulated S-banks.

We will use our quantitative model whose parametrization we discuss in the next sec-
tion to see how S-bank leverage responds to an increase in θ and to determine the optimal
capital requirement. In the simple model of this section, S-bank choices are socially opti-
mal in the sense that S-bank leverage efficiently trades off the losses from defaults against
the liquidity benefit from S-bank deposits. The quantitative model takes into account that
due to the lack of deposit insurance, S-bank deposits are exposed to large withdrawal
shocks (“runs”) that force S-banks to inefficiently liquidate assets. Further, S-banks also
enjoy partial insurance of their liabilities.

4 Mapping Model To Data

4.1 Stochastic Environment And Solution Method

Stochastic processes. The stochastic process for the Y-tree (not intermediated by banks)
is an AR(1) in logs

log(Yt+1) = (1− ρY)log(µY) + ρYlog(Yt) + εY
t+1,

where εY
t is i.i.d. N with mean zero and volatility σY. To capture the correlation of asset

payoffs with fundamental income shocks, we model the productivity shock to intermedi-
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ated asset as
Zt = νZYt exp(εZ

t ),

where εZ
t is i.i.d. N with mean zero and volatility σZ, independent of εY

t , and νZ > 0 is
a parameter. This structure of the shocks implies that Zt inherits all stochastic properties
of aggregate income Yt and is subject to a temporary shock reflecting risks specific to
intermediated assets, such as credit risk. The payoff shocks ρ

j
t are iid and follow a Gamma

distribution Γ(ρ; χ
j
0, χ

j
1). The parameters (χj

0, χ
j
1) map into the mean and variance of the

Fj(ρ
j
t) distributions, with details in appendix II.1.

Solution method. We solve the dynamic model using nonlinear methods. We write the
equilibrium of the economy as a system of nonlinear functional equations of the state
variables, with the unknown functions being the agents’ choices, the asset prices, and the
Lagrange multiplier on the C-bank’s leverage constraint. We parametrize these functions
using splines and iterate on the system until convergence. We check the relative Euler
equation errors at the solution we obtain to make sure the unknown functions are well
approximated. We then simulate the model for many periods and compute moments of
the simulated series. For more details, refer to Appendix .

The model features three exogenous state variables, the stochastic endowment Yt, pro-
ductivity Zt, and the run shock πR

t . These shocks are jointly discretized as a first-order
Markov chain with three nodes for Yt and three nodes for Zt. We assume that runs only
occur in low productivity states, yielding a total of 12 different discrete states.

The endogenous state variables are (1) the aggregate capital stock Kt = KC
t + KS

t (recall
that households do not hold any capital at the beginning of each period), the outstanding
amount of bank debt of each type (2) BC

t and (3) BS
t , and the share of the capital stock held

by S-banks (4) KS
t /Kt. Appendix describes the computational solution method.

4.2 Calibration

We match our model to quarterly data from 1999 Q1 to 2019 Q4 using various data
sources, including bank level data from bank holding companies’ (BHCs) call reports
and Compustat/CRSP, as well as aggregate data from the Flow of Funds and NIPA.24

Our calibration strategy divides parameters into two groups. The first group consists of

24We choose 1999 as the start date because it marked the passage of the Gramm-Leach-Bliley Act that
deregulated the banking sector. For example, this legislation removed the mandated separation between
commercial and investment banks. We also choose BHC data to keep the same definition of banks through-
out the paper as Compustat uses BHC data.
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parameters (Table 1 Panel A) that can be set in isolation to their data target. For these
parameters, there is a one-to-one mapping between a parameter and a target moment in
the data. Parameters of the second group (Table 1 Panel B) jointly determine different
moments in our model. We choose those parameters jointly to match moments of the
ergodic distribution in our model to the corresponding moments in the data.25 That is,
we start with a guess for the parameter values, solve the model with these values, then
calculate the moments from the ergodic distribution, and compare them to the data. We
iterate until the targeted moments in Panel B of Table 1 closely match the data. The next
paragraph describes how we map key model variables to the data. Then, we discuss how
we calibrate households’ liquidity demand parameters. To economize on space, we defer
the calibration description of all remaining parameters to Appendix Section II.2.

Data counterparts of model variables We set households’ endowment income Yt equal
to real GDP per capita net of the contribution of the bank-dependent sector.26 Bank out-
put in the model equals the bank-dependent sector contribution to GDP, which requires
us to estimate the share of bank-dependent firms. In the US, many firms are not directly
dependent on banks as they can issue debt and equity in capital markets. Following the
definition in Kashyap, Lamont, and Stein (1994), we classify firms as bank-dependent if
they do not have a S&P long-term credit rating. Because mortgages make up the largest
share of banks’ loan portfolio, we also add construction and real estate firms as identified
by SIC codes 6500-6599 (real estate), 1500-1599 (construction), and 1700-1799 (construc-
tion contractors, special trades) to the set of bank dependent firms. We consider all other
firms as bank-independent.27 We estimate bank-dependent GDP by applying the time
series of the bank-dependent firms’ sales share in Compustat to the nominal GDP series
from FRED, and by deflating and dividing it by the population number.28 On average,
roughly 22% of real GDP is produced by bank dependent firms. This assumes that profit
margins between bank-dependent and non-bank dependent firms are similar. We map
consumption Ct to real consumption and investment It to real gross private domestic in-

25In addition to the parameters listed in Table 1, we normalize the average output of the bank-
independent sector µY and the average idiosyncratic shock received by banks µ

j
ρ, for j = S, C, to one. The

latter implies that banks on average perfectly diversify away idiosyncratic shocks. We set risk aversionγ to
the standard value of 2 in the macro literature (e.g., Gertler et al. (2020)).

26We obtain the quarterly time series of seasonally adjusted real gross-domestic product per capita, in
chained 2012 dollars from FRED, Federal Reserve Bank of St. Louis. We also obtain the US population size
and the GDP price index from the nominal-, real-, and per-capita GDP series.

27The output of bank-independent firms is captured by the endowment income Yt.
28We use data from Compustat quarterly fundamentals (compm/fundq/) and Compustat’s credit rating

database (compm/rating/).

25



vestment, both downloaded from FRED, expressed in per capita terms.

In the model, C- and S-banks hold the same assets. Hence, we can choose either bank
type’s asset as the data counterpart for bank assets in the model. Since it is straightfor-
ward to get the asset series from regulated banks, we map assets in the model to total
assets of BHCs. We deflate this series and express it in per capita terms. We map C-
and S-banks’ idiosyncratic payoff shocks ρC

i,t and ρB
i,t to equity payouts per share for indi-

vidual commercial banks and shadow banks from Compustat/CRSP merged. We define
shadow banks as GSE and Finance companies (27%) with SIC codes 6111-6299 (excluding
SIC codes 6200, 6282, 6022, and 6199), REITS (66%) with SIC code 6798, and Miscella-
neous investment firms (4%) with SIC codes 6799 and 6726. We define commercial banks
as publicly traded depository institutions and bank holding companies with SIC codes
from 6000 to 6089 and 6712. We compute equity payout as the quarterly dividend plus
net repurchases and divide this dollar number by the shares outstanding. Using the same
definition of shadow banks from above, we map S-bank leverage to the value weighted
average debt to asset ratio of shadow banks in the data. The value weights are calculated
using market capitalization (price times shares outstanding). We map C-bank leverage in
the model to the value-weighted debt to asset ratio of BHCs.

We map C-banks’ default rates to the value-weighted net-charge-off rate of BHCs’ loan
portfolio.29 We map S-banks’ default rates to the average default rate of bonds issued by
non-traditional-banks. We get this number from the annual default study by Moody’s
published in January 2020.30 We map the recovery value on C-bank debt to the recovery
value on secured corporate debt from Moodys net of the resolution costs that comes from
moving bank assets into FDIC receivership.31 For shadow banks, we map their recovery
value to the recovery value of unsecured debt and subordinated debt from Moodys.32

We set C-bank debt (AC
t = BC

t ) equal to total deposits of BHCs. S-bank deposits
(AS

t = BS
t ) represent non-bank issued money like assets. Hence, we map them to the

sum of money market mutual fund assets, Repo and commercial paper issued by non-

29We choose the net-loan charge off rate over bank failure rates because (i) our model abstracts from
supervisory actions that allow banks to avoid failure and because (ii) both failure rates and charge-off rates
are highly correlated.

30See exhibit 5 in https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_
1206734. The non-bank financial bond default rate series has only been recently published and therefore
only covers the years from 2018 to 2019.

31The resolution cost number is from the FDIC CFR WP 2014-04 "Understanding the Components of Bank
Failure Resolution Costs".

32From the 2014 annual default study by Moodys, we obtain the excel file called “Default Studies - An-
nual Default Study Corporate Default and Recovery Rates 1920-2013 Excel data (Moodys)” from Moodys.
Exhibit 8 lists the average corporate debt recovery rates by lien position from 1987-2013.
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depository domestic financial institutions (using low of Fund Tables L.207, L.206, and
L.209). The price on C-bank deposits qC is mapped to the inverse of the realized inter-
est rate on deposits. We calculate the interest rate as the value weighted ratio of ag-
gregate interest expenses on deposits at the end of a period, divided by the total de-
posits at the beginning of a period. The data target for qS is the three-month AA-rated
financial commercial paper rate, obtained from FRED. Our model features a liquidity
premium. To map the liquidity premium in the model to the data, we define the price
q̂t of a hypothetical asset that is both riskfree and void of any liquidity benefits, i.e.,
Et [Mt,t+1MRSC,t+1] = qC

t − q̂t.33 Unfortunately, a direct measure of qC − q̂ is difficult
to obtain in the data since most short-term safe interest rates convey some liquidity ben-
efit. Thus, the spread between different short-term safe rates conveys only a relative liq-
uidity premium. Van Binsbergen, Diamond, and Grotteria (2019) propose an alternative
method, by estimating a riskfree rate without a liquidity premium from option prices.
The 3-month option implied riskfree rate averages 46bps per quarter from 2004 to 2018.

Liquidity demand parameters There are five parameters that determine households’
liquidity demand. The parameter β governs the time discount rate and therefore scales
the level of interest rates in the model. Our model determines two interest rates, one
for C-banks and one for S-banks, which can be understood from the household Euler
Eqs. (22) and (23) in the simple model, with their quantitative counterparts (47) and
(48) in Appendix A.3. Both rates are affected by the representative consumer’s stochastic
discount factor, and both contain a liquidity premium. In addition, the S-bank rate reflects
the default risk of S-banks. As a target for β, we use the average real interest rate BHCs
pay on deposits, which over our sample period averaged 0.36% per quarter.

The parameter α is the weight on S-bank liquidity services in the CES liquidity function
(19). It governs how much shadow bank debt contributes to aggregate liquidity services,
and therefore affects the relative size of the S-bank sector. Thus, we target the share of
shadow bank funding of real production activity, as estimated by Gallin (2015).34

The weight ψ on liquidity preferences scales the liquidity premium on both S-bank and
C-bank debt. Using our definition of the liquidity premium in the model and the estimate
of an truely risk-free asset without liquidity premium by Van Binsbergen, Diamond, and

33MRSC,t+1 is the marginal rate of substitution between consumption and C-bank liquidity as defined in
equation (46) of Appendix A.3. The price of the hypothetical asset is q̂t = Et [Mt,t+1].

34Alternatively, we could have used the share of liquid shadow bank debt (i.e., money market mutual
fund shares, REPO funding, and short term commercial paper) relative to the sum of liquid shadow bank
debt and bank deposits. The average share is 36% over our sample period using Flow of Funds data and
therefore close to the 34% estimate by Gallin (2015).
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Grotteria (2019), we calibrate ψ so that the marginal value of C-bank liquidity matches
the option-rate implied liquidity premium (net of the deposit insurance fee) of 21bps.35

The curvature parameter γH and the elasticity of substitution ε govern the dynamic be-
havior of S-bank and C-bank liquidity services in our model. With γH > 0, the marginal
value of liquidity services for either bank type decreases in the amount of aggregate liq-
uidity provision, regardless of ε. That is, households have a downward-sloping demand
for liquidity and γH governs the degree to which households respond to changes in the
quantity of liquidity services. The parameter ε governs how much households care about
the mix between S-bank and C-bank liquidity services. A value of one means S-bank and
C-bank debt are perfect substitutes, a value of zero (Cobb-Douglas) means that neither or
complements nor substitutes, and a value of −∞ means they are perfect complements.

To infer these parameters, we run regressions in the spirit of Nagel (2016) to relate the
relative prices of shadow bank and commercial bank debt to its quantity. We let the model
guide us in which regression to run. We calculate the model implied spread between the
prices of C- and S-bank debt. Using the FOC for C- and S-bank debt, assuming πR

t+1 = 0
and therefore ξS = 0, the spread is

qC
t − qS

t = Et

[
Mt,t+1

(
MRSC

t+1 −MRSS
t+1 + FS

ρ,t+1

)]
(30)

This allows us to write the spread in Eq. (30) as a function of the aggregate discount
factor, the liquidity supply by commercial– and shadow banks, and the default rate of
S-banks. We log-linearize the spread in Eq. (30) to see how γH and ε affect it. Let

¯MRS ≡ MRSC

qC − MRSS

qS be the steady state value of the relative liquidity benefit between
commercial banks and shadow banks weighted by their respective debt price. Let x̂t be
the deviation from the steady state. Then the log-linearized spread becomes

q̂C,t − q̂S,t =Et

[
m̄M̂t+1 + c̄Ĉt+1 + βS ÂS,t+1 + βC ÂC,t+1 + f̄ F̂S

ρ,t+1

]
, (31)

where the coefficients m̄, c̄, and f̄ depend on steady state values and model parameters,

βj = β
(
(1− ε− γH) αj ¯MRS

(
Aj
H

)ε
+ (1− ε) MRSj

qj

)
for j ∈ {C, S}, with αC = 1− α and

αS = α. This suggests a regression of the price spread q̂C
t − q̂S

t on the quantity of shadow
bank debt ÂS,t, and commercial bank debt ÂC,t, consumption, and proxies for the stochas-

35C-banks pay a deposit insurance fee κC for each unit of debt issued. In equilibrium, they pass on this
fee to consumers in the form of lower deposit rates. Hence, we match the liquidity premium implied by the
riskfree rate from Van Binsbergen, Diamond, and Grotteria (2019) and deposit rates to MRSC,t − κC in the
model.
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tic discount factor and shadow banks’ default rate.36 The log-linearized spread shows
that the regression coefficients βS and βC on shadow bank debt and commercial bank
debt, respectively, are functions (among other things) of γH and ε. Note that the steady
state values (e.g., ¯MRS) are also functions of γH and ε. Our calibration strategy for γH

and ε targets these regression coefficients.

Table 2 presents our results.37 In the first column, we regress the debt price spread
on shadow bank and commercial bank debt (i.e., liquidity provision), controlling for con-
sumption and the Federal Funds rate as a proxy for households’ discount factor. To con-
trol for the time-varying risk of the shadow banking sector, we use the VIX index as an
additional control in the second column, which is to say the risk of the market in general.
This is admittedly crude, but the best we can do given the data limitations.

The parameter γH determines how much the marginal value of liquidity services de-
clines when liquidity increases. This means that both qC and qS should be falling with the
quantity of AS. The parameter ε determines the relative price movement. The negative
coefficient on AS means that a higher quantity of shadow bank debt reduces qC relatively
more than qS. Similarly, a higher quantity of AC makes shadow bank debt relatively more
expensive. This is consistent with both debt types to be net substitutes.38 Our calibration
targets the regression coefficients on AS and AC by running the regression in column (1)
of Table 2 in our model. As a result, the calibration sets γH = 1.6 and ε = 0.2.39

4.3 Model Fit With Data

We now turn to a discussion of the model fit. To generate the model moments in the table,
we solve the model and simulate data from it. Then we calculate moments by treating the
simulated data as the actual data.

In Table 1, we list the data moments that are calibration targets and compare them to
the corresponding model moments. Despite its nonlinear dynamics, the model fits the

36We show in Appendix II.3 that the log-linearized spread with ξS > 0 and therefore with the recovery
rate still implies the same regression coefficients on ÂS,t and ÂC,t.

37We use the HAC estimator to compute standard errors and include a constant term in the regression
that is omitted from Table 2.

38Based on Tbill liquidity premium estimates, Nagel (2016) finds an implied elasticity of substitution be-
tween demand deposits and Tbills of one. This suggests that the elasticity of substitution between deposits
and three month commercial paper is less than one, as commercial paper is less money-like than either
deposits or Tbills.

39Including our proxy of the risk of the shadow banking sector, the estimates become more noisy but the
coefficients on both debt types are similar.
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targeted data moments quite well.40 For instance, we match the volatility of commer-
cial bank asset growth. We also match the default rates and recovery rates of shadow
and commercial banks. Our model generates a slightly lower investment volatility. The
model’s shadow bank leverage and liquidity premium are close to data estimates.41

We also check the model’s performance using untargeted moments listed in Table
3. Our model generates a reasonable S-bank leverage and C-bank to S-bank debt ratio
volatility. The latter implies that the unconditional movement of banks’ relative size is a
bit smaller compared to the data. Further, it also generates reasonable business cycle cor-
relations for most variables, that is, the correlation with GDP. We find that consumption
and the investment rate are strongly procyclical in both the data and the model. Using
the relative size of S-banks in liquidity provision, we also find that our model generates
a positive correlation with GDP, in particular using a one-quarter lag of GDP. Our model
produces similar commercial bank leverage dynamics as the data. In particular, the model
rationalizes procyclical book leverage and countercyclical market leverage. The shadow
bank leverage dynamics in our model are much more muted compared to the data. This is
because shadow banks can maintain their target leverage ratio throughout the cycle. Us-
ing an options-implied riskfree rate (see ψ calibration discussion above for more details),
the liquidity benefit in the data is countercyclical. Our model also produces a counter-
cylical liquidity benefit. The reasons is that during an economic downturn, banks scale
down their activities, leading to a lower supply of safe and liquid assets in the economy.
Due to the downward sloping liquidity demand, the reduction in the supply leads to an
increase in the liquidity benefit.

The model fails to produce enough C-bank leverage volatility. This is because the cap-
ital requirement constraint of commercial banks is binding in the model, whereas in the
data banks hold a buffer of equity capital and thus have more flexibility to adjust lever-
age. Table 3 also shows that our model produces countercyclical interest rates, while in
the data interest rates are procyclical. This counterfactual interest rate pattern is a known
feature of models with CRRA preferences and no monetary policy shocks such as ours.
See Boldrin et al. (2001) for an example that shows how preferences with habit formation
can solve this issue. However, importantly for the model mechanism, the business cy-
cle correlation of the spread between shadow bank debt and commercial bank debt has
a positive sign as in the data, albeit at smaller magnitude. This means that the relative
movement of rates, which matters for the competition effect, is in line with the data.

40Refer to Appendix II.4 for details how we calculate the data series.
41Using a longer sample, Krishnamurthy and Vissing-Jorgensen (2012) estimate the liquidity premium to

be roughly 18bps per quarter, which is very close to what our model implies.
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4.4 Sensitivity Checks

Key parameters. In Table 7 in Appendix II.6, we conduct sensitivity checks for several
parameters to verify that they indeed affect model variables as expected. The sensitivity
results regarding the liquidity preference parameters ψ, α, and ε confirm that these pa-
rameters have distinct effects and are separately identified when calibrating the model.42

We further demonstrate that the S-bank bailout probability πB has a quantitatively large,
nonlinear effect on S-bank leverage and defaults; the model would not be able to match
observed S-bank leverage in the data with a zero probability.43 We also analyze the sensi-
tivity of S-bank behavior to idiosyncratic payoff risk σρS . As Table 7 shows, this parameter
determines the baseline riskiness of S-banks and its relationship to C-bank riskiness σρC

is quantitatively important for the response to higher capital requirements, see also the
discussion in Section 5.2 below.

Liquidity Utility. As discussed in Section 2.1, the liquidity preferences in (1) assume
that the relative usefulness of C- and S-bank debt for liquidity services is governed by
α, the weight on S-bank debt in the CES function. The choice of α = 0.33 < 1/2 in our
calibration reflects that S-bank debt produces less liquidity services than C-bank debt per
face value of debt, since it is riskier. In Appendix Table 8, we explore a more general
specification of the liquidity utility function that allows direct dependence of S-banks’
convenience yield on S-bank default risk; in particular, we specify liquidity utility as

H(AS
t , AC

t ,Zt) =

[
Λ(Zt)(AS

t )
ε + (1−Λ(Zt))(AC

t )
ε
] 1−γH

ε

1− γH
,

where the now time-varying weight Λ(Zt) takes on either of two functional forms

Λ(Zt) = α
(

1− FS
ρ,t

)ν
, (A1)

or
Λ(Zt) = α

(
(1− πR

t )(1− FS
ρ,t + πBFS

ρ,t)
)ν

. (A2)

Table 8 shows that the quantitative effect of allowing this endogenous variation in

42Section 5.2 discusses the effect of changes in γH .
43Unless otherwise specified, in all quantitative results we refer to “leverage” as the conventional defini-

tion of debt over the market value of capital, Bj
t/(ptK

j
t). Note this is slightly different than the definition of

leverage Lj in Section 2.3 as Bj
t/(Π

j
tK

j
t), which we chose for expositional convenience. Quantitative differ-

ences are minor.
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the relative liquidity benefit is small. There are two reasons for this small effect. First,
as in the data, the average default rate and run exposure of S-banks is quantitatively
minor. Second, when S-bank debt confers lower liquidity benefits at times of high S-bank
defaults and during runs (as in specifications (A1) or (A2)), households substitute to C-
bank debt unconditionally. The net effect is a smaller S-bank share of capital and debt in
equilibrium, which is similar to solving a model with constant, but lower value of α.

4.5 Macro Effects Of Bank Runs

Bank runs make shadow banks more risky compared to commercial banks. How bad are
bank runs for the economy? Figure 1 compares the impulse response functions of key
model variables to a typical productivity crisis (in black) with the impulse response func-
tions to a productivity crisis coupled with a bank run (in red). They show that a shadow
bank run significantly worsens recessions, leading to higher losses in output, consump-
tion, and investment. This is summarized by 3.5 percentage points higher deadweight
losses. A bank run forces shadow banks to delever, resulting in a liquidity crunch. The
lower productivity of physical capital during a run reduces the value of the intermediated
assets, making investments less attractive.

5 Bank Capital Requirements

5.1 Effect Of Higher Capital Requirements

How do higher capital requirements affect aggregate liquidity provision and do they im-
prove overall financial stability? A safer financial system is naturally the desired outcome
of tighter bank regulation since the 2008 financial crisis. But what if tighter bank regula-
tion shifts activity to the shadow banking sector? We answer this question by solving our
model numerically and simulating the economy for 5,000 periods under different levels
of commercial bank capital requirements. All other parameters stay at their benchmark
level. The results are in Table 4.

The obvious and intended effect of higher capital requirements for C-banks is to make
these banks safer by reducing their leverage. Indeed, line 6 shows that higher values of θ

mechanically lower C-bank leverage. Defaults of C-banks in line 13 decline accordingly.

Do higher capital requirements make the financial system overall safer? This answer
is inherently tied to the question how shadow banks react. If S-banks are more fragile,
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an expansion of the shadow banking sector could undo the gains in financial stability
caused by tighter restrictions on C-banks’ leverage. Table 4 shows that shadow banks
indeed partially fill the void by providing more liquidity: the share of S-bank liabilities
in overall debt (line 2) rises monotonically in the capital requirement. At a requirement
of 20%, double the benchmark, the S-bank debt share is 6.9% higher. This rise in the
debt share is mainly the result of higher S-bank leverage (line 5): as C-banks issue fewer
deposits per dollar of assets they hold, S-bank issue more.

For moderate increases in θ, S-banks also expand their balance sheet, as both S-bank
capital and the S-bank capital share in lines 3-4 increase. However, this effect reverses for
large increases in the capital requirement, which cause a lower S-bank capital share.

As a result of higher leverage, S-banks become riskier: early liquidations in run episodes
rise (line 7), as well as overall S-bank defaults (line 12). However, the increased S-bank
default risk does not cause higher rates on S-bank debt. Instead, S-bank deposit rates
decline (line 8), albeit by less than C-bank deposit rates (line 9). The decline in both rates
is driven by a sharp rise in convenience yields: at the 20% capital requirement, S-banks
earn a 6.3% higher convenience yield (line 10), while C-banks earn a 15.2% higher yield.

Does the increase S-bank default risk undo the gain from safer C-banks? The rise in
aggregate consumption (line 16) shows that this is not the case. Consumption rises mono-
tonically with higher capital requirements since deadweight losses caused by C-bank de-
faults fall. Further, the demand effect (see Section 3.3) causes greater capital accumula-
tion (line 1) and aggregate output (line 15) increases. The resource gains from these two
channels more than offset the greater losses from higher S-bank defaults. The gain in
consumption further dominates the loss in liquidity production (line 15), leading to in-
creased welfare (line 19) relative to the benchmark for capital requirements up to 30%.44

The optimal capital requirement that maximizes aggregate welfare is at 16%.

5.2 Understanding The Effects

We unpack the model response to an increase in the capital requirement by considering
three simplified versions of our quantitative model in Table 5. These numerical exper-
iments allow us to relate our quantitative results to the analytical insights from Section
3.3. With our calibrated model at hand, we can now study the quantitative strength of the
demand effect and competition effect discussed in Section 3.3. To hone in on the compe-
tition effect, we consider three model variations that turn the demand effect off by setting

44We measure welfare in terms of the value function of households.
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γH = 0 in the liquidity function (19).45 By comparing Model (3) to the benchmark model
discussed in the previous section, we can then understand the role of the demand effect.

We begin with Model (1) in Table 5 that only features C-banks. In this model variation,
C-banks own all intermediated assets and only their deposits enter households’ liquidity
utility. Model (1) delivers a simple trade-off for capital requirements: higher θ lowers
C-bank leverage (line 5) and defaults (line 12), thereby raising consumption (line 15),
but reducing liquidity services (line 14). Since C-banks defaults are close to completely
eliminated at a capital requirement around 15%, further increases do not improve welfare.

In Model (2), we add S-banks, but impose several simplifications relative to the full
model: (i) S-banks are not subject to runs, (ii) the probability that their debt will be bailed
out is zero, and (iii) the three parameters governing default and recovery, which are the
dispersion of bank-idiosyncratic shocks σρS , the default penalty δS, and the recovery frac-
tion ξS are the same as for C-banks. We label Model (2) “Simple Model”, since it is closest
in assumptions to the two-period model in Section 3. Raising capital requirements in
Model (2) reduces C-bank defaults and increases consumption like in Model (1). How-
ever, since S-banks hold on average 41.8% of intermediated capital, the reduction in C-
bank defaults and bankruptcy losses per unit of assets causes a smaller rise in consump-
tion (line 15) in Model (2) relative to Model (1). The key differences to Model (1) is the
competition effect discussed in Section 3.2. Raising θ reduces the profitability of C-bank eq-
uity relative to S-bank equity. Thus, the S-bank share increases both for debt and capital
(lines 2 and 3). This improves the mix of liquidity services that is distorted away from
the optimum at a low capital requirement. Hence, liquidity declines less rapidly with
increases in θ (line 14). Welfare is maximized at 15% for Model (1) and 14% for Model (2).

The benefit of tighter capital regulation is smaller in Model (2), with a welfare increase
of 0.0349% compared to 0.0709% in Model (1). It is important to stress that this does not
result from leakage to riskier S-banks. Rather, S-banks in Model (2) are close to perfectly
safe with a baseline default rate of 0.01%. The benefit from regulating C-banks is simply
smaller since they make up a smaller share of the intermediation sector to begin with.

Absent the demand effect, the simple model (see Corollary (1) in Section 3.3) predicts
that S-bank leverage should decline for an increase in the capital requirement. This pre-
diction is also borne out by the dynamic version of the simple model. Due to the compe-
tition effect, the reduction in C-bank leverage lowers the competitive pressures that drive
up S-bank leverage, leading to a reduction in S-bank leverage and risk-taking.

45Since γH affects both the scale and the elasticity of the liquidity premium, we recalibrate ψ for each of
the experiments to keep the scale unchanged.
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In Model (3), we add back S-bank runs, probabilistic bailouts, and S-bank sector spe-
cific parameters (σρS , δS, ξS). The only difference between Model (3) and the full quanti-
tative model in Table 4 is the absence of demand effects (γH = 0 in Model (3)). The main
differences between Models (2) and (3) are due to S-banks now being “runnable”. As a
result, they have a higher baseline default rate of 0.33% and a smaller market share of
33.41%. As before, raising the capital requirement causes C-banks to become safer and
consumption to rise. As in Model (2) the competition effect causes a rise in the S-bank
share (lines 2-3), and S-banks reduce leverage (line 4), also becoming safer (line 11). Since
the fragile S-bank calibration in Model (3) implies that S-banks contribute meaningfully to
deadweight losses, a reduction in S-bank default also contributes to the rise in consump-
tion. As a result, consumption rises by more than in Model (2). The welfare gains from
higher θ are greater than in Model (2), but smaller than in Model (1). The main take-away
from Model (3) is that, due to the competition effect, the presence of riskier S-banks does
not reduce the benefits of higher capital requirements on C-banks, despite shifting market
share to S-banks. Tighter regulation of C-banks lower the distortionary advantages these
banks enjoy, which in turn allows S-banks to reduce risk-taking in equilibrium.

Going from Model (3) in Table 5 to the full quantitative model in Table 4 adds the
demand effect by setting γH = 1.6. Comparing the results for both models, the main con-
sequence of the demand effect is that the convenience yields of both banks rise strongly
with higher θ in the full model (lines 10-11 in Table 4), whereas without the demand ef-
fect the S-bank convenience yield declines and the C-bank yield rises but less strongly
(lines 9-10 in Table 5). This differential response of yields has profound consequences for
the equilibrium cost of capital: without demand effect, higher θ causes the economy to
shrink, leading to a smaller capital stock and GDP (lines 1 and 14 of Table 5). With de-
mand effect, the economy expands (lines 1 and 15 of Table 4). Furthermore, the demand
effect dominates the competition effect, causing S-banks to increase leverage (line 6) and
thus leading to more defaults (line 12).

To sum up, in the counterfactual world without a demand effect (Table 5, Model (3))
higher capital requirements cause the economy to shrink, but S-banks become safer. With
a demand effect as in Table 4, the same increase in θ causes the economy to expand, but
S-banks become riskier. Quantitatively, the demand effect interacts positively with higher
capital requirements: the expansion of GDP and consumption outweigh the greater risk-
taking of S-banks. In our model with a demand effect, welfare is maximized at a 16%
capital requirement with a gain of 0.054% relative to the benchmark. If there was no
demand effect (Model (3)), the optimal capital requirement would be lower at 15%, and
the welfare gain would be smaller at 0.047%.
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5.3 Shadow Banking Pre- And Post-Financial Crisis

We did not design the quantitative model to explain trends in the size of the shadow bank-
ing sector in the U.S. financial system. However, the financial crisis of 2008 set in motion
large changes in financial regulation that can be viewed through the lens of our model.
Implementation of Basel III capital regulation, different measures of the Dodd-Frank act,
and stress testing for large banks post-crisis effectively lead to moderate increases in capi-
tal requirements for banks.46 Further, Berndt, Duffie, and Zhu (2019) have argued that af-
ter the crisis, the willingness of regulators and government agencies to rescue off-balance
sheet operations and other shadow banking vehicles declined substantially. We view the
pre-crisis period as one of relatively lax capital requirements, with large implicit guar-
antees for shadow banks. We further follow Moreira and Savov (2017) in assuming that
agents were underestimating the risk of a run on shadow banks.

To capture these changes in our model, we start the simulation in Q2 of 2008 with a
pre-crisis parametrization that makes the following changes relative to the benchmark
calibration in Section 4: (i) a lower capital requirement at θ = 8%, (ii) a higher S-bank
bailout probability πB = 87%, and (iii) zero (perceived) probability of a run. Then, re-
flecting the collapse of Lehman Brothers and the ensuing distress in money markets, the
economy experiences a run on shadow banks and a bad productivity shock. Following
that, changes in financial regulation over three years lead to an increase in the capital
requirement to 11% and a decline in the bailout probability for S-banks to 70%. Further-
more, agents now correctly anticipate the possibility of future S-bank runs. During this
period, both exogenous shocks follow their stochastic laws of motion.

The solid black lines with circles in Figure 2 plot this scenario. The dotted blue line
shows a counterfactual scenario, in which capital requirements remain at the pre-crisis
level of 8%, isolating their effect. A run episode in our model triggers a sharp contraction
in output of the bank-dependent sector (top row, left panel), see also Section 4.5. Con-
sumption drops by close to 1% and liquidity services decline by over 15% (middle and
right panels). The bottom row compares the response of the financial system to the run
shock and subsequent regulatory changes to the data, see Appendix II.5 for a description
of the data series. The initial share of S-banks in debt markets is high at 42%, close to the
data, due to the high bailout probability and underestimation of run risk. During the run,
shadow banks’ market share declines sharply, and then settles at a new lower level as
households update on run risk and regulators lower the bailout probability. S-bank lever-
age follows a similar trajectory, matching high pre-crisis and low post-crisis leverage of

46See e.g., Greenwood et al. (2017); Duffie (2018); Tarullo (2019).
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shadow banks in the data.

By comparing the solid black and dotted blue lines, we can see the effect of only raising
capital requirements. C-bank leverage (bottom row) directly responds to the tightening
of capital requirements, exhibiting the same decline as in the data. With tighter capital
requirements, consumption recovers to a higher and liquidity production to a lower level
than pre-crisis. Consistent with the results in Table 4, the increase in θ leads to a higher
S-bank share by roughly 1 pp (bottom left). However, since investors realize the correct
run risk and S-bank bailouts are less likely, the S-bank share still drops by 10 pp.

This simulation shows that our model can capture many aspects of the post-crisis
changes to the financial system. While the model supports the narrative that tighter reg-
ulation post-crisis caused an expansion in shadow banking, this effect is quantitatively
dwarfed by other changes that led to a decline in shadow banking.47

6 Conclusion

We propose a quantitative general equilibrium framework that views unregulated shadow
banks as alternative providers of credit and liquidity services to analyze the unintended
consequences of capital requirements on regulated banks. Our model highlights and
quantifies two opposing general equilibrium effects that together determine how shadow
banks respond to tighter regulation of commercial banks.

Our analysis shows that tighter regulation leads indeed to substitution towards shadow
banking. However, it also clarifies that a financial system with more shadow banking is
not necessarily riskier. In our calibration, tighter regulation of commercial banks leads to
larger and riskier shadow banks, yet increases the stability of the financial system overall.

While the focus on funding differences of traditional and shadow banks sharpens our
conclusions, our framework abstracts from differences in technology or expertise on the
asset side. Studying these differences in our framework would be a fruitful avenue for
future research. Further, we only indirectly account for the government’s role in safe asset
provision in that the government is the ultimate backstop for failing banks. However, in
the data the government also provides liquidity directly. Interactions of government debt
supply with shadow banking is an important question for future work.

47Notice that our definition of shadow banking is based on short-term liabilities in money markets: we
consider as shadow banks those financial institutions that fund illiquid assets such as loans by issuing
short-term runnable debt. Using this definition, we see a decline in shadow banking post-crisis. Other
definitions of shadow banks, such as non-bank mortgage originators that sell mortgages to the GSEs as in
e.g. Buchak et al. (2018), yield different post-crisis trends in shadow banking.

37



References

ACHARYA, V. V., P. SCHNABL, AND G. SUAREZ (2013): “Securitization without Risk
Transfer,” Journal of Financial Economics, 107, 515–536.

ADMATI, A. R., P. M. DEMARZO, M. F. HELLWIG, AND P. PFLEIDERER (2014): “Falla-
cies and irrelevant facts in the discussion on capital regulation,” Central Banking at a
Crossroads: Europe and Beyond, London, 33–50.

ADRIAN, T. AND A. B. ASHCRAFT (2016): “Shadow Banking: a Review of the Literature,”
in Banking Crises, Palgrave Macmillan UK, 282–315.

ADRIAN, T. AND H. S. SHIN (2010): “Liquidity and leverage,” Journal of financial interme-
diation, 19, 418–437.

ALLEN, F., E. CARLETTI, AND R. MARQUEZ (2015): “Deposits and bank capital struc-
ture,” Journal of Financial Economics, 118, 601 – 619, nBER Symposium on New perspec-
tives on corporate capital structures.

ALLEN, F. AND D. GALE (1994): “Limited Market Participation and Volatility of Asset
Prices,” American Economic Review, 84, 933–955.

ANDERSON, S. P., A. D. PALMA, AND J.-F. THISSE (1989): “Demand for Differentiated
Products, Discrete Choice Models, and the Characteristics Approach,” The Review of
Economic Studies, 56, 21–35.

BEGENAU, J. (2020): “Capital Requirements, Risk Choice, and Liquidity Provision in a
Business Cycle Model,” Jorunal of Financial Economics, 136, 355–378.

BEGENAU, J. AND E. STAFFORD (2019): “Do Banks have an Edge?” Available at SSRN
3095550.

——— (2021): “Stable NIM and Interest Rate Exposure of US Banks,” Tech. rep., Stanford
working paper.

BENGUI, J. AND J. BIANCHI (2018): “Macroprudential Policy with Leakages,” Federal
Reserve Bank of Minneapolis Working Paper 754.

BERNANKE, B. S. (2005): “The global saving glut and the US current account deficit,”
Working Paper.

BERNDT, A., D. DUFFIE, AND Y. ZHU (2019): “The decline of too big to fail,” Available at
SSRN.

BIANCHI, J. (2016): “Efficient bailouts?” American Economic Review, 106, 3607–59.

BOLDRIN, M., L. J. CHRISTIANO, AND J. D. FISHER (2001): “Habit persistence, asset
returns, and the business cycle,” American Economic Review, 91, 149–166.

38



BRUMM, J., D. KRYCZKA, AND F. KUBLER (2018): “Recursive Equilibria in Dynamic
Economies With Stochastic Production,” Econometrica, 85, 1467–1499.

BRUNNERMEIER, M. K. AND Y. SANNIKOV (2014): “A Macroeconomic Model with a Fi-
nancial Sector,” American Economic Review, 104, 379–421.

BUCHAK, G., G. MATVOS, T. PISKORSKI, AND A. SERU (2018): “Fintech, regulatory arbi-
trage, and the rise of shadow banks,” Journal of Financial Economics.

CABALLERO, R. J., E. FARHI, AND P.-O. GOURINCHAS (2008): “An Equilibrium Model
of "Global Imbalances" and Low Interest Rates,” The American Economic Review, 98, 358–
393.

——— (2016): “Safe Asset Scarcity and Aggregate Demand,” American Economic Review,
106, 513–518.

CABALLERO, R. J. AND A. KRISHNAMURTHY (2009): “Global Imbalances and Financial
Fragility,” American Economic Review, 99, 584–588.

CAMPBELL, J. Y., S. GIGLIO, AND P. PATHAK (2011): “Forced sales and house prices,”
American Economic Review, 101, 2108–31.

CHERNENKO, S., I. EREL, AND R. PRILMEIER (2019): “Nonbank lending,” Working Paper.

CHERNENKO, S. AND A. SUNDERAM (2014): “Frictions in Shadow Banking: Evidence
from the Lending Behavior of Money Market Mutual Funds,” Review of Financial Stud-
ies, 27, 1717–1750.

CHRISTIANO, L. AND D. IKEDA (2014): “Leverage restrictions in a business cycle model,”
Working Paper.

CORBAE, D. AND P. D’ERASMO (2019): “Capital requirements in a quantitative model of
banking industry dynamics,” Tech. rep., National Bureau of Economic Research.

COVITZ, D., N. LIANG, AND G. A. SUAREZ (2013): “The Evolution of a Financial Crisis:
Collapse of the Asset-Backed Commercial Paper Market,” Journal of Finance, 68, 815–
848.

DAVYDIUK, T. (2017): “Dynamic Bank Capital Requirements,” Working Paper.

DEMPSEY, K. (2020): “Capital requirements with non-bank finance,” Tech. rep., Ohio State
University.

DIAMOND, D. W. AND P. H. DYBVIG (1983): “Bank Runs, Deposit Insurance, and Liquid-
ity,” Journal of Political Economy, 91, 401–419.

DIAMOND, D. W. AND R. G. RAJAN (2001): “Liquidity Risk, Liquidity Creation, and
Financial Fragility: A Theory of Banking,” Journal of Political Economy, 109, 287–327.

39



DRECHSLER, I., A. SAVOV, AND P. SCHNABL (forthcoming): “Banking on deposits: Ma-
turity transformation without interest rate risk,” Journal of Finance.

DUFFIE, D. (2018): “Financial regulatory reform after the crisis: An assessment,” Manage-
ment Science, 64, 4835–4857.

ELENEV, V., T. LANDVOIGT, AND S. VAN NIEUWERBURGH (2016): “Phasing out the
GSEs,” Journal of Monetary Economics, 81, 111–132.

——— (2018): “A macroeconomic model with financially constrained producers and in-
termediaries,” National Bureau of Economic Research Working Paper.

FARHI, E. AND J. TIROLE (2020): “Shadow Banking and the Four Pillars of Traditional
Financial Intermediation,” Tech. rep., Harvard university.

FEENSTRA, R. C. (1986): “Functional Equivalence between Liquidity Costs and the Utility
of Money,” Journal of Monetary Economics, 17, 271–291.

FREIXAS, X. AND J.-C. ROCHET (1998): Microeconomics of Banking, MIT Press, Cambridge,
Massachusetts.

GALLIN, J. (2015): “Shadow Banking and the Funding of the Nonfinancial Sector,” in
Measuring Wealth and Financial Intermediation and Their Links to the Real Economy, ed. by
C. R. Hulten and M. B. Reinsdorf, University of Chicago Press, 89–123.

GARLEANU, N. AND L. H. PEDERSEN (2011): “Margin-based Asset Pricing and Devia-
tions from the Law of One Price,” Review of Financial Studies, 24, 1980–2022.

GENNAIOLI, N., A. SHLEIFER, AND R. W. VISHNY (2013): “A Model of Shadow Bank-
ing,” Journal of Finance, 68, 1331–1363.

GERTLER, M. AND N. KIYOTAKI (2010): “Financial Intermediation and Credit Policy in
Business Cycle Analysis,” Handbook of Monetary Economics, 3, 547–599.

GERTLER, M., N. KIYOTAKI, AND A. PRESTIPINO (2016): “Wholesale Banking and Bank
Runs in Macroeconomic Modeling of Financial Crises,” Handbook of Macroeconomics, 2,
1345–1425.

——— (2020): “A macroeconomic model with financial panics,” The Review of Economic
Studies, 87, 240–288.

GOMES, J., U. JERMANN, AND L. SCHMID (2016): “Sticky leverage,” American Economic
Review.

GORTON, G., S. LEWELLEN, AND A. METRICK (2012): “The Safe-Asset Share,” American
Economic Review, 102, 101–106.

GORTON, G. AND A. METRICK (2012): “Securitized banking and the run on repo,” Journal
of Financial Economics, 104, 425 – 451.

40



GORTON, G. AND G. PENNACCHI (1990): “Financial Intermediaries and Liqduity Cre-
ation,” The Journal of Finance, 45, 49–71.

GORTON, G. B. AND A. METRICK (2009): “Haircuts,” National Bureau of Economic Re-
search Working Paper.

GREENWOOD, R., S. G. HANSON, AND J. C. STEIN (2016): “The Federal Reserve’s balance
sheet as a financial-stability tool,” in Designing Resilient Monetary Policy Frameworks for
the Future - Jackson Hole Symposium.

GREENWOOD, R., J. C. STEIN, S. G. HANSON, AND A. SUNDERAM (2017): “Strength-
ening and streamlining bank capital regulation,” Brookings Papers on Economic Activity,
2017, 479–565.

HARRIS, M., C. C. OPP, AND M. M. OPP (2017): “Bank capital, risk-taking and the com-
position of credit,” Tech. rep., Rochester Working Paper.

HE, Z., B. KELLY, AND A. MANELA (2017): “Intermediary asset pricing: New evidence
from many asset classes,” Journal of Financial Economics, 126, 1–35.

HE, Z. AND A. KRISHNAMURTHY (2013): “Intermediary Asset Pricing,” American Eco-
nomic Review, 103, 732–770.

HUANG, J. (2018): “Banking and Shadow Banking,” Journal of Economic Theory, 178C,
124–152.

JUDD, K. L. (1998): Numerical Methods in Economics, The MIT Press.

JUDD, K. L., F. KUBLER, AND K. SCHMEDDERS (2002): “A solution method for incomplete
asset markets with heterogeneous agents,” Working Paper, SSRN.

KASHYAP, A. K., O. A. LAMONT, AND J. C. STEIN (1994): “Credit Conditions and the
Cyclical Behavior of Inventories,” Quarterly Journal of Economics, 109, 565–592.

KRISHNAMURTHY, A. AND A. VISSING-JORGENSEN (2012): “The Aggregate Demand for
Treasury Debt,” Journal of Political Economy, 120, 233–267.

——— (2015): “The Impact of Treasury Supply on Financial Sector Lending and Stability,”
Journal of Financial Economics, 118, 571–600.

KUBLER, F. AND K. SCHMEDDERS (2003): “Stationary Equilibria in Asset-Pricing Models
with Incomplete Markets and Collateral,” Econometrica, 71, 1767–1795.

LUSARDI, A. AND O. S. MITCHELL (2011): “Financial literacy and planning: Implications
for retirement wellbeing,” Tech. rep., National Bureau of Economic Research.

MALHERBE, F. (2020): “Optimal capital requirements over the business and financial cy-
cles,” American Economic Journal: Macroeconomics, 12, 139–74.

41



MARTINEZ-MIERA, D. AND R. REPULLO (2017): “Markets, Banks and Shadow Banks,”
Working Paper.
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Table 1: Calibration

Panel A: Parameters with a one-to-one mapping to the data

Value Description Target

Production
ρY 0.599 Non-bank GDP autocorr. AC(NIPA GDP - Bank dep. GDP)
σY 0.87% Non-bank GDP volatility Vol(NIPA GDP - Bank GDP)
δK 2.5% Depreciation Quarterly depreciation NIPA
η 0.667 Labor share NIPA labor share
σρC 12.1% SD C-bank idiosync. shocks vol(equity payout C-banks)
σρS 25.4% SD S-bank idiosync. shocks vol(equity payout S-banks)

Bank regulation
θ 10% Capital requirement mean(Tier-1 Eq / Assets)
κ 0.142% Deposit insurance fee FDIC report (see table notes)

Runs
Z 26%× Z Real asset foreclosure discount Campbell et al. (2011)
πR [0, 0.333] Fraction of households run Covitz et al. (2013)

ProbπR

[
0.963 0.0375
0.75 0.25

]
Unconditional run probability
Average bank run length

4.76%
1.3 quarters

Panel B: Parameters that jointly match moments in the data

Values Description Target Data Model
Bank technology

νZ 0.23 Scales bank output Real GDP per capita share 22.3% 22.3%
σZ 1.74% Bank dep. output volatility Vol(Bank output growth) 2.93% 3.02%
φI 0.3 Investment adj. cost Vol(Investment) 2.65% 1.04%
φK 0.011 Capital growth adj. cost Vol(C-bank asset growth) 0.50% 0.46%

Bank default
δS 0.39 Default penality S-banks S-bank bond default 0.28% 0.30%

bond default rate
δC 0.204 Default penality C-banks Loan net charge-offs 0.23% 0.23%
ξS 20.5% Bankruptcy cost S-banks Unsecured debt recov. Moody’s 38.1% 38.2%
ξC 35.2% Bankruptcy cost C-banks Sec. debt recov. & FDIC resol. costs 48.1% 48.1%
πB 85% Bailout probability Shadow bank leverage 87.0% 83.2%

Liquidity preferences
β 0.993 Discount rate C-bank interest rate on deposits 0.36% 0.39%
α 0.33 CES weight S-bank debt S-bank share Gallin (2015) 34.0% 33.7%
ψ 0.0072 Liq. preference weight Liq. premium BDG2019 0.21% 0.17%
γH 1.6 Liq. preference curvature Reg. coefficient on AS -0.19% -0.14%
ε 0.2 Liq. type elasticity Reg. coefficient on AC 0.50% 0.68%

Run
δK 2.5% capital dep. Avg. haircut Gorton and Metrick (2009) 15.1% 15.2%

Notes: This table lists the parameters of our model. See discussion in Section 4.2 on data counterparts of model variables
and liquidity demand parameters. All other parameters are discussed in Appendix II.2. The data sources for this table are
from NIPA, Flow of Funds, FRED (https://fred.stlouisfed.org/), Compustat/CRSP and the FR-Y-9C. Sample period is
from 1999Q1 to 2019Q4. The link to the FDIC report is https://www.fdic.gov/about/strategic/report/2016annualreport/
ar16section3.pdf. The volatility of equity payout is the time series average from Compustat/CRSP of the cross-sectional
volatility of equity payout (dividend + net repurchases) per share for commercial banks and shadow banks (see appendix for
definition using SIC codes). Using the same definition and data source, shadow bank leverage is the value weighted debt to
asset ratio. BDG2019 stands for Van Binsbergen, Diamond, and Grotteria (2019).
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Table 2: Commercial − Shadow bank debt price spread regressions

(1) (2)

log(S-bank debt/GDP) -0.19% -0.14%
(-1.86) (-1.13)

log(C-bank debt/GDP) 0.50% 0.44%
(1.64) (1.45)

Federal Funds Rate 54.89% 54.61%
(10.02) (10.66)

log(C/GDP) 0.57% -0.24%
(0.26) (-0.11)

VIX -0.12%
(-1.39)

adj. R2 0.77 0.78

Notes: The sample is 1999Q1 – 2019Q4. The dependent variable is the quarterly spread between the price
on commercial bank debt, defined as the inverse of the interest rate paid on deposits, and the price on
shadow bank debt, defined as the 3-month AA-financial commercial paper price. The interest rate paid on
deposits is calculated as the aggregate amount of interest rate expense on deposits divided by the aggregate
amount of deposits. The data comes from FR-Y-9C reports (bank holding companies). We download the
3-month AA-financial commercial paper rate from FRED (i.e., Federal Reserve Economic Data maintained
by the Federal Reserve bank of St. Louis). We download the Fed Funds rate from FRED. Shadow bank debt
is the sum of REPO claims held by shadow banks (Flow of Funds table L.207), total money market mutual
fund assets (equals liabilities) (table L.206), and commercial paper held by the domestic financial sector less
depository institutions (table L.209). Commercial bank debt is set to aggregate bank deposits (FR-Y-9C). We
download the real consumption series from FRED. All quantities are normalized by GDP and logged. The
VIX is the daily CBOE Volatility Index downloaded from FRED, converted into a quarterly average. We
use the HAC estimator to compute heteroscedasticity and autocorrelation consistent standard errors. We
report the resulting t-statistics in brackets. Both regressions include a constant term.
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Table 3: Properties of the dynamic model

Data Model

Volatility
Consumption 0.38% 0.39%
Mkt Lev C 1.48% 0.10%
Book Lev C 0.29% 0.09%
Mkt Lev S 2.22% 3.51%
Book Lev S 3.41% 3.51%
Debt C/Debt S 0.52 0.20

Business Cycle Correlation
Consumption 0.89 0.72
Investment 0.92 0.95
Debt S Share 0.43 0.03
Debt S (lag GDP) 0.26 0.15

Book Lev C 0.16 0.43
Mkt Lev C -0.21 -0.42
Book Lev S 0.04 -0.00
Mkt Lev S -0.31 -0.02

C-bank liquidity benefit -0.26 -0.52
yield C 0.74 -0.85
yield S 0.82 -0.79
rf. rate 0.70 -0.85
spread S-C 0.51 0.12

This table presents untargeted moments in the model and compares them to their data counterpart. The
sample for the data is 1999 Q1 to 2019 Q4. The volatility is the standard deviation of the HP-filtered variable.
The GDP correlation is the correlation of HP-filtered business cycle component of GDP with the HP-filtered
business cycle component of the variable of interest. See Appendix II.4 for the description of the data.
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Table 4: Effect of higher capital requirements

Base 13% 14% 15% 16% 17% 20% 30%

Capital and Debt

1. Capital 3.15 0.16% 0.23% 0.30% 0.38% 0.46% 0.72% 1.64%
2. Debt share S 31.95% 2.71% 3.39% 4.01% 4.61% 5.18% 6.91% 13.79%
3. Capital share S 33.68% 0.26% 0.09% -0.15% -0.43% -0.73% -1.73% -4.79%
4. Capital S 1.06 0.42% 0.32% 0.16% -0.05% -0.28% -1.02% -3.23%
5. Leverage S 83.18% 0.18% 0.26% 0.34% 0.43% 0.52% 0.80% 1.80%
6. Leverage C 89.95% -3.33% -4.44% -5.56% -6.67% -7.78% -11.12% -22.22%
7. Early Liquidation (runs) 0.00 0.25% 0.36% 0.47% 0.59% 0.72% 1.10% 2.51%

Prices

8. Deposit rate S 0.45 % -0.66% -0.96% -1.28% -1.61% -1.96% -3.05% -6.80%
9. Deposit rate C 0.39% -3.69% -4.86% -6.01% -7.17% -8.35% -12.04% -26.83%
10. Convenience Yield S 0.28% 1.39% 2.00% 2.65% 3.33% 4.04% 6.26% 14.33%
11. Convenience Yield C 0.31% 4.68% 6.14% 7.60% 9.06% 10.54% 15.17% 33.97%

Welfare

12. Default S 0.30% 3.05% 4.40% 5.85% 7.39% 9.00% 14.12% 34.08%
13. Default C 0.23% -65.11% -76.16% -83.96% -89.38% -93.09% -98.28% -100.00%
14. GDP 1.29 0.01% 0.02% 0.02% 0.03% 0.03% 0.05% 0.12%
15. Liquidity Services 1.48 -2.16% -2.85% -3.54% -4.22% -4.90% -6.96% -14.09%
16. Consumption 1.21 0.062% 0.073% 0.081% 0.086% 0.090% 0.098% 0.107%
17. Vol(Liquidity Services) 0.03 -3.16% -4.26% -5.39% -6.53% -7.66% -11.08% -22.31%
18. Vol(Consumption) 0.00 0.31% 0.34% 0.36% 0.36% 0.36% 0.31% 0.07%
19. Welfare 0.0460% 0.0511% 0.0535% 0.0540% 0.0527% 0.0435% 0.0053%

This tables shows the moments of the simulated model for different values of C-banks’ capital requirement θ. The “Benchmark” titled column shows
the moments for the benchmark calibration. All other columns show the percentage change relative to the benchmark moment.
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Table 5: Higher capital requirements without demand effect (γH = 0)

(1) C-bank Only (2) Simple Model (3) No Demand Effect

B 14 15 16% B 14 15 16% B 14 15 16%

Capital and Debt

1. Capital 3.17 -0.64% -0.76% -0.89% 3.20 -0.38% -0.45% -0.52% 3.17 -0.40% -0.47% -0.54%
2. Debt share S - - - - 39.73% 4.37% 5.24% 6.08% 31.75% 4.15% 4.95% 5.72%
3. Capital share S - - - - 41.83% 1.60% 1.77% 1.89% 33.41% 1.29% 1.34% 1.33%
4. Leverage S - - - - 82.47% -0.10% -0.12% -0.15% 83.47% -0.42% -0.50% -0.58%
5. Leverage C 89.99% -4.44% -5.55% -6.66% 89.99% -4.45% -5.56% -6.67% 89.94% -4.43% -5.54% -6.65%
6. Early Liquidation (runs) - - - - - - - - 0.00 -0.62% -0.73% -0.84%

Prices

7. Deposit rate S - - - - 0.46% 1.92% 2.30% 2.65% 0.43% 1.69% 2.01% 2.31%
8. Deposit rate C 0.37% 0.09% 0.14% 0.22% 0.35% -1.93% -2.31% -2.68% 0.38% -1.34% -1.60% -1.83%
9. Convenience Yield S - - - - 0.24% -3.76% -4.50% -5.21% 0.29% -3.15% -3.75% -4.32%
10. Convenience Yield C 0.33% 0.20% 0.22% 0.23% 0.35% 1.94% 2.32% 2.68% 0.32% 1.58% 1.88% 2.15%

Welfare

11. Default S - - - - 0.01% -4.01% -4.81% -5.57% 0.33% -6.62% -7.87% -9.05%
12. Default C 0.23% -76.20% -83.97% -89.37% 0.23% -76.26% -84.02% -89.42% 0.23% -76.14% -83.95% -89.38%
13. GDP 1.29 -0.05% -0.06% -0.07% 1.29 -0.03% -0.03% -0.04% 1.29 -0.03% -0.04% -0.04%
14. Liquidity Services 2.85 -5.06% -6.28% -7.50% 1.47 -3.77% -4.64% -5.50% 1.49 -3.72% -4.60% -5.48%
15. Consumption 1.21 0.10% 0.11% 0.12% 1.21 0.06% 0.07% 0.07% 1.21 0.07% 0.07% 0.08%
16. Vol(Liquidity Services) 0.06 -3.98% -5.02% -6.04% 0.03 -3.76% -4.65% -5.52% 0.05 0.43% 0.30% 0.12%
17. Vol(Consumption) 0.00 0.31% 0.27% 0.19% 0.00 0.61% 0.69% 0.76% 0.00 0.00% 0.02% 0.04%
18. Welfare 0.070% 0.071% 0.069% 0.035% 0.034% 0.031% 0.046% 0.047% 0.045%

This tables presents moments of the simulated model for different model versions and different values of C-banks’ capital requirements θ. All cases
are calculated for γH = 0, which means that there is no demand effect.
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Figure 1: The effect of bank runs on the economy

This figure presents the impulse response functions to a productivity shock (in black) and a productivity
shock together with a run shock (red). The x-axis denotes quarters. The shocks occur in the first quarter.
The y-axis denotes percentage deviations from the stationary equilibrium for all plots but bottom right
(DWL/GDP), which shows the difference to the stationary equilibrium in percentage points.
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Figure 2: Recovery from 2008 financial crisis in model simulations

This figure plots the time path of several model variables in a simulation of the 2008 financial crisis. The
y-axis denotes percentage deviations from the initial state for the four panels in the top row, and percent
in the four bottom panels. The solid black lines with circles plot the baseline simulation described in the
text that raises capital requirements to 11% post-crisis. The dotted blue line includes the same parameter
changes as the black line, except the increase in capital requirements. For the bottom three panels, the
dashed line plots data counterparts to the model variables as described in Appendix II.5.
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A Quantitative Model Appendix

This section describes the quantitative model in detail. Time is discrete and infinite. Households
receive stochastic endowment Yt from a Lucas tree. When the run shock realizes, S-banks need
to sell a fraction of their assets, i.e., physical capital, within the period to households who have a
lower valuation. Production executed by banks is exposed to an aggregate shock Zt, and produc-
tion executed by households is exposed to an aggregate shock Z̄t. Bank dividends are subject to
idiosyncratic shocks ρ

j
t.

We introduce two types of adjustment costs, investment- and balance sheet adjustment costs.

A.1 Bank Optimization and Aggregation

This section describes details of the bank optimization problem resulting in equations (7) and (9)
in the main text. Anticipating the result that all banks are equal due to i.i.d. shocks and a value
function that is homogeneous in capital, we suppress individual bank subscripts throughout.

Production. After aggregate productivity Zt and the run shock πR
t are realized, all banks pro-

duce and invest. Denote by K̂ j
t = (1− `

j
t)K

j
t the capital banks retain after a possible fire sale due

to runs. The profits generated by the two lines of bank business (production and investment) are

D̂j
t = Zt

(
K̂ j

t

)1−η (
N j

t

)η
+ (1− δK)ptK̂

j
t − wtN

j
t + I j

t (pt − 1)− φI

2

(
I j
t

K̂ j
t

− δK

)2

K̂ j
t, (32)

for j = S, C. Banks choose labor input N j
t and investment I j

t to maximize (32). Note that the profit
also includes the proceeds from selling depreciated capital after production, (1− δK)ptK̂

j
t.

The first-order condition for labor demand is the usual intratemporal condition equating the
wage to the marginal product of labor

wt = Ztη

(
N j

t

K̂ j
t

)η−1

= Ztη
(

nj
t

)η−1
. (33)

Similarly, the first-order condition for investment yields the usual relationship between the capital
price and the marginal value of a unit of capital

pt = 1 + φI

(
I j
t

K̂ j
t

− δK

)
= 1 + φI

(
ij
t − δK

)
. (34)

We can substitute both conditions back into the definition of profit in (32) to eliminate the wage
and investment and define the gross payoff per unit of capital in equation (2) to get

D̂j
t = Πj

tK̂
j
t.
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The total dividend banks pay to shareholders is given by

Dj
t = ρ

j
tD̂

j
t − (1− πR

t Ij=S)Bj
t + (qj

t − κj)Bj
t+1 − ptK

j
t+1 −

φK

2

(
K j

t+1

K̂ j
t

− 1

)2

K̂ j
t.

It scales the profit banks receive from their real business, D̂j
t, by the idiosyncratic shock, ρ

j
t, and

also includes redemptions of last period’s deposits, Bj
t, and the equity cost of the portfolio for

next period, (qj
t− κj)Bj

t+1− ptK
j
t+1−

φK
2

(
K j

t+1

K̂ j
t
− 1
)2

K̂ j
t, where the deposit insurance fee κj = 0 for

S-banks in the benchmark model.

Bank value function. We define the value function of a bank that did not default, at the time
it chooses its portfolio for next period as

V̂ j(K̂ j
t, ρ

j
t,Zt) = max

K j
t+1,Bj

t+1

Dj
t + Et

[
Mt,t+1max

{
V̂ j(K̂ j

t+1, ρ
j
t+1,Zt+1) ,−δjΠ

j
t+1K̂ j

t+1

}]
. (35)

We assume that the default penalty −δjΠ
j
t+1K j

t+1 in (35) is proportional to the asset value of the
bank with parameter δj. This is reasonable and also retains the homogeneity of the problem in

capital K̂ j
t.

To simplify the problem, we recognize that profits from real business and deposits redemptions
ρ

j
tD̂

j
t − (1 − πR

t Ij=S)Bj
t are irrelevant for the bank’s choice after the default decision. After the

bankruptcy decision, non-bankrupt banks choose their portfolio for next period, and households
set up new banks to replace those banks who defaulted. With respect to the portfolio choice for
period t + 1, the optimization problem of all banks is identical conditional on having the same
capital K̂ j

t. Thus we define the value function

V j(K̂ j
t,Zt) = V̂ j(K̂ j

t, ρ
j
t,Zt)− ρ

j
tD̂

j
t + (1− πR

t Ij=S)Bj
t,

such that we can write the problem in (35) equivalently as

V j(K̂ j
t,Zt) = max

K j
t+1,Bj

t+1

(qj
t − κj)Bj

t+1 − ptK
j
t+1 −

φK

2

(
K j

t+1

K̂ j
t

− 1

)2

K̂ j
t

+ Et

[
Mt,t+1max

{
ρ

j
t+1Πj

t+1K̂ j
t+1 − Bj

t+1(1− πR
t+1 Ij=S) + V j(K̂ j

t+1,Zt+1) ,−δSΠj
t+1K̂ j

t+1

}]
, (36)

where runs lower banks outstanding liabilities.

Aggregation. Next, using the notation for the dependance on the aggregate state vector Zt, we
conjecture that V j

t (K̂
j
t) is homogeneous in capital K̂ j

t of degree one. This allows us to define the

scaled value function vj
t =

V j
t (K̂

j
t)

K̂ j
t

. Defining the fire sale discount as xj
t =

ΠH
t

Πj
t
, capital structure as

bj
t+1 ≡

Bj
t+1

K j
t+1

, leverage as Lj
t+1 ≡

bj
t+1

Πj
t+1

, asset growth kj
t+1 ≡

K j
t+1

K̂ j
t

, and notice that K̂ j
t

K j
t
= 1− `

j
t, we can
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write vj(Z) as

vj
t = max

kj
t+1,bj

t+1

(
(qj

t − κj)b
j
t+1 − pt

)
kj

t+1 −
φK

2

(
kj

t+1 − 1
)2

+ kj
t+1Et

[
Mt,t+1Πj

t+1max

{(
1− `

j
t+1

)(
ρ

j
t+1 +

vj
t

Πj
t+1

)
− (1− πR

t+1 Ij=S)Lj
t+1 ,−δj

(
1− `

j
t+1

)}]
.

(37)

Generalizing the definition of the default threshold ρ̂
j
t in the main text in equation (8) for both

banks, we define the leverage-adjusted payoff of banks’ portfolio including the default option

Ωj
t(Lj

t) ≡ max

{(
1− `

j
t+1

)(
ρ

j
t+1 +

vj
t

Πj
t+1

)
− (1− πR

t+1 Ij=S)Lj
t+1 ,−δj

(
1− `

j
t+1

)}
. (38)

Note that taking the expectation with respect to ρ
j
t+1 allows us to rewrite the max operator in

equation (37) such that

Eρj

[
Ωj

t(Lj
t)
]
= (1− Fj

ρ,t)

((
1− `

j
t

)(
ρ

j,+
t +

vj
t

Πj
t

)
− (1− πR

t+1 Ij=S)Lj
t

)
− Fj

ρ,tδj

(
1− `

j
t+1

)
,

where Fj
ρ,t = Fj(ρ̂

j
t) is the probability of default and ρ

j,+
t = E

(
ρ

j
t | ρ

j
t > ρ̂

j
t

)
is the expected value of

the idiosyncratic shock conditional on not defaulting.

We can thus rewrite (37) more compactly as

vj
t = max

kj
t+1,bj

t+1

(
(qj

t − κj)b
j
t+1 − pt

)
kj

t+1 −
φK

2

(
kj

t+1 − 1
)2

+kj
t+1Et

[
Mt,t+1Πj

t+1Ωj
t+1(Lj

t+1)
]

. (39)

Equation (39) corresponds to equations (7) and (9) in the main text. It shows that the expectation
only depends on the capital structure choice through leverage Lj

t+1 = bj
t+1/Πj

t+1. The first-order

condition for asset growth kj
t+1 is

pt − (qj
t − κj)b

j
t+1 + φK

(
kj

t+1 − 1
)
= Et

[
Mt,t+1Πj

t+1Ωj
t+1(Lj

t+1)
]

. (40)

Substituting (40) into (39) yields

vj
t = kj

t+1φK(k
j
t+1 − 1)− φK

2

(
kj

t+1 − 1
)2

=
φK

2

(
(kj

t+1)
2 − 1

)
.

The solution for vj
t confirms the conjecture that

V j
t (K̂

j
t) = K̂ j

tv
S
t ,

and we can thus solve the problem of a representative bank of each type. Note that the scaled
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value function vj
t only depends on asset growth kj

t+1, which is a choice variable. Intuitively, if the
bank expects high future capital growth, then the continuation value is large.

A.2 Equilibrium Definition

Given a sequence of aggregate {Yt, Zt, πR
t } and idiosyncratic shocks {ρS

t,i, ρC
t,i}, a competitive equi-

librium consists of a sequence of prices {wt, pt, qS
t , qC

t , pS
t , pC

t }, household choices {Ct, AS
t+1, AC

t+1, SS
t , SC

t , NH
t },

S-bank choices {IS
t , NS

t , BS
t+1, KS

t+1}, and C-bank choices {IC
t , NC

t , BC
t+1, KC

t+1} such that households
and banks optimize given prices, and markets clear.

There is market clearing for capital

KS
t+1 + KC

t+1 = IS
t + IC

t + (1− δK) ∑
j=S,C

(
1− ξ jFj

ρ,tρ
j,−
t

)
K j

t

(
1− `

j
t

)
+ (1− δK)KS

t `
S
t , (41)

securities issued by banks

BS
t+1 = AS

t+1,

BC
t+1 = AC

t+1,

SS
t = 1,

SC
t = 1,

the goods market

Ct + ∑
j=S,C

(
I j
t + Φ(I j

t , K j
t)
)
+ ∑

j=S,C
DWLj

t

= Yt + Zt ∑
j=S,C

(N j
t )

η
(
(1− `

j
t)K

j
t

)1−η
+ Zt(NH

t )η(`S
t KS

t )
1−η , (42)

and the labor market

NS
t + NC

t + NH
t = 1. (43)

The deadweight losses for each bank type are

DWLj
t = ξ jFj

ρ,tρ
j,−
t

(
1− `

j
t

) (
Πj

t − (1− δK)pt

)
K j

t,

and the adjustment costs for capital and investment amount to

Φ(I j
t , K j

t) = K j
t

(
1− `

j
t

)(φI

2

(
ij
t − δK

)2
+

φK

2

(
kj

t − 1
)2
)

.

Note that commercial banks are isolated from bank runs, and so `C
t = 0 ∀t. The market clearing

condition for capital in Equation (41) is also the transition law for the aggregate capital stock. Bank
failures lead to additional depreciation endogenously determined by the failure rate of banks Fj

ρ,t:

when a bank defaults, a fraction of ξ jρ
j
t of that bank’s capital is destroyed. At the same time,

condition (42) shows that bank failures also lead to a loss of production, such that fewer resources
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are available in the goods market.

A.3 Household Problem

Denoting household wealth at the beginning of the period by Wt, the complete intertemporal
problem of households is

VH
t (AS

t , AC
t , Wt) = max

Ct,AS
t+1,AC

t+1,SS
t ,SC

t

U(Ct, H
(

AS
t , AC

t

)
) + β Et

[
Vt+1(AS

t+1, AC
t+1, Wt+1)

]
subject to the budget constraint in (12). The transition law for household financial wealth Wt is

Wt+1 = ∑
j=S,C

(1− Fj
ρ,t+1)

(
Dj,+

t+1 + pj
t+1

)
Sj

t

+
(

1− πR
t+1

)
AS

t+1

[
1− FS

ρ,t+1 + FS
ρ,t+1

(
πB + (1− πB) rS

t+1

)]
+ πR

t+1 AS
t+1

+ AC
t+1,

which clarifies that S-bank liquidity services are risky. The beginning-of-period dividend paid by
S-banks to households conditional on survival is

DS,+
t = ρS,+

t K̂S
t ΠS

t − (1− πR
t )BS

t + K̂S
t

(
kS

t+1

(
qS

t bS
t+1 − pt

)
− φK

2

(
kS

t+1 − 1
)2
)

,

where K̂S
t =

(
1− `S

t
)

KS
t , and for C-banks dividends are

DC,+
t = ρC,+

t K̂C
t ΠC

t − BC
t + K̂C

t

(
kC

t+1

(
(qC

t − κ)bC
t+1 − pt

)
− φK

2

(
kC

t+1 − 1
)2
)

,

where K̂C
t = KC

t since `C
t = 0. Households’ first-order conditions for purchases of bank equity are,

for j = S, C,
pj

t = Et

[
Mt,t+1

(
1− Fj

ρ,t+1

) (
Dj,+

t+1 + pj
t+1

)]
, (44)

where we have defined the stochastic discount factor

Mt,t+1 = β
UC(Ct+1, Ht+1)

UC(Ct, Ht)
= β

(
Ct+1

Ct

)−γ

.

The marginal rate of substitution between consumption and liquidity services of bank type j is
defined as

MRSj,t =
UH(Ct, Ht)

UC(Ct, Ht)

∂H(AS
t , AC

t )

∂Aj
t

,

and given by

MRSS,t = αψCγ
t H−γH

t

(
Ht

AS
t

)1−ε

, (45)

MRSC,t = (1− α)ψCγ
t H−γH

t

(
Ht

AC
t

)1−ε

. (46)
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for S- and C-bank debt, respectively.

Then the first-order conditions for purchases of S-bank debt and C-bank debt are:

qS
t = Et

{
Mt,t+1

[
(1− πR

t+1)
(

1− FS
ρ,t+1 + FS

ρ,t+1(πB + (1− πB)rS
t+1)

)
+ πR

t+1 + MRSS,t+1

]}
. (47)

qC
t = Et {Mt,t+1 [1 + MRSC,t+1]} . (48)

The payoff of commercial bank debt is 1, whereas the payoff of shadow bank debt depends
on their default probability, recovery value, and the probability of a government bailout πB. The
last term in each expectation represents the marginal benefit of liquidity services to households,
as defined in (45) and (46).

A.4 S-bank Optimality Conditions

Each period, S-banks choose investment IS
t , labor input NS

t , capital growth kS
t+1 and capital struc-

ture bS
t+1. The first-order conditions for investment and labor are given by (34) and (33), respec-

tively. They are incorporated into the gross payoff of capital ΠS
t in (2). The first-order condition

for capital growth is given by (40).

It remains to derive the first-order condition for capital structure. Before doing so, we first
recognize that individual S-banks take into account the effect of their capital structure choice the
price of their debt. Thus, they optimally respond to households’ valuation of idiosyncratic S-bank
risk, such that we replace qS

t in (39) by the function

qS(bS
t+1) = Et

{
Mt,t+1

[
(1− πR

t+1)
(

1− FS
ρ,t+1 + FS

ρ,t+1(πB + (1− πB)rS
t+1)

)
+ πR

t+1 + MRSS,t+1

]}
,

which is households’ first-order condition for S-bank debt purchases in (47). Differentiating equa-
tion (39) with respect to bS

t+1 after this substitution yields

qS
t + bS

t+1 q′S(b
S
t+1) = Et

[
Mt+1ΠS

t+1
∂LS

t+1

∂bS
t+1

∂ΩS
t+1(LS

t+1)

∂LS
t+1

]
.

To compute the partial derivatives on the right-hand side note that

∂LS
t+1

∂bS
t+1

=
1

ΠS
t+1

and that

∂ΩS
t+1(LS

t+1)

∂LS
t+1

= −I[ρS
t+1>ρ̂S

t+1]

(
1− πR

t+1 +
`S

t+1

LS
t+1

(
ρS

t+1 +
vS

t+1

ΠS
t+1

))
,

which in turn uses the derivative
∂(1− `S

t )

∂LS
t

= − `S
t

LS
t

.
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Inserting these expression and taking expectations with respect to the distribution of ρS
t+1 yields

qS
t + bS

t+1 q′S(b
S
t+1) = Et

[
Mt+1(1− FS

t+1)

(
1− πR

t+1 +
`S

t+1

LS
t+1

(
ρS,+

t+1 +
vS

t+1

ΠS
t+1

))]
. (49)

To obtain the partial derivative q′S(b
S
t+1), we differentiate equation (47) to get

q′S(b
S
t+1) = (1− πB)Et

[
(1− πR

t+1)Mt+1
∂LS

t+1

∂bS
t+1

(
∂FS

t+1rS
t+1

∂LS
t+1

−
∂FS

t+1

∂LS
t+1

)]
.

In section A.4.1 we calculate ∂FS
t+1rS

t+1
∂LS

t+1
− ∂FS

t+1
∂LS

t+1
, such that the derivative becomes

q′S(b
S
t+1) = −

1− πB

bS
t+1

Et

{
Mt,t+1

[
(1− ξS)FS

t+1ρS,−
t+1

LS
t+1

+ f S
t+1LS(LS

t+1)

(
(1− ξS)(1− `S

t+1)

(
δS +

vS
t+1

ΠS
t+1

)
+ ξS(1− πR

t+1)LS
t+1

)]}
,

(50)

where

LS(LS
t ) =

∂ρ̂S
t

∂LS
t

is the derivative of the default threshold with respect to leverage (equation (51)).

The full first-order condition for the S-bank capital structure choice is obtained by substituting
(50) into (49).

It is useful to examine the FOC for the case of no run, πR
t+1 = 0 and `S

t+1 = 0, zero default
penalty δS = 0, no capital adjustment cost φK = 0 (implying vS

t+1 = 0), and zero bailout probability
πB = 0. In that case, the derivative in (50) reduces to

q′S(b
S
t+1) = −

1
bS

t+1
Et

{
Mt,t+1

[
FS

t+1rS
t+1 + ξS f S

t+1LS
t+1

]}
and the first-order condition (49) becomes

qS
t + bS

t+1 q′S(b
S
t+1) = Et

[
Mt+1(1− FS

t+1)
]

.

Combining these two equations, we get

qS
t = Et

[
Mt+1

(
1− FS

t+1 + FS
t+1rS

t+1 + ξS f S
t+1LS

t+1

)]
.

We can equate this with the household first-order condition (47) and collect terms to get

Et

[
Mt+1ξS f S

t+1LS
t+1

]
= Et [Mt+1MRSS,t+1] .

This equation is the analogue to equation (62) in the simple model. The S-bank chooses leverage
to equalize the expected marginal liquidity benefit to households on the RHS with the expected

56



marginal losses due to bankruptcy on the LHS.

A.4.1 Computing q′S(b
S
t+1)

Computing
∂FS

t+1rS
t+1

∂LS
t+1

. Recall the definition of the recovery value for S-banks as

rS(LS
t ) = (1− ξS)

ρS,−
t (1− `S

t )

(1− πR
t )LS

t
,

with the conditional expectation ρS,−
t = E

[
ρ | ρ < ρ̂S

t
]
.

We can rewrite the recovery value times the probability of default as

FS
t rS

t =
1− ξS

(1− πR
t )LS

t
(1− `S

t )

ˆ ρ̂S
t

−∞
ρ dFS(ρ).

First, we compute the derivative of the default threshold with respect to LS
t as

LS
t (LS

t ) =
∂ρ̂S

t

∂LS
t
=

1− πR
t

(1− `S
t )

2
. (51)

Then differentiating FS
t rS

t with respect to LS
t gives

∂FS
t rS

t

∂LS
t

=− 1− ξS

(1− πR
t )(LS

t )
2
(1− `S

t )FS
t ρS,−

t

+
1− ξS

(1− πR
t )LS

t

[
− `S

t

LS
t

FS
t ρS,−

t + f S
t LS(LS

t )

(
(1− πR

t )LS
t − (1− `S

t )

(
δS −

vS
t

ΠS
t

))]
= − 1− ξS

(1− πR
t )LS

t

[
FS

t ρS,−
t

LS
t

+ f S
t LS(LS

t )

(
(1− `S

t )(δS +
vS

t

ΠS
t
)− (1− πR

t )LS
t

)]
,

where we use the function LS(LS
t ) defined in (51).

Combining. Using that
∂FS

t+1

∂LS
t+1

= f S
t LS(LS

t ),

we get

∂FS
t+1rS

t+1

∂LS
t+1

−
∂FS

t+1

∂LS
t+1

= − (1− ξS)FS
t ρS,−

t

(1− πR
t )(LS

t )
2
− f S

t

(1− πR
t )LS

t
LS(LS

t )

(
(1− ξS)(1− `S

t )

(
δS +

vS
t

ΠS
t

)
+ ξS(1− πR

t )LS
t

)
.

57



A.5 C-bank Optimality Conditions

Like S-banks, C-banks choose investment IC
t , labor input NC

t , capital growth kC
t+1 and capital struc-

ture bC
t+1. The first-order conditions for investment and labor are given by (34) and (33), respec-

tively. They are incorporated into the gross payoff of capital ΠC
t in (2). The first-order condition

for capital growth is given by (40).

To derive the C-bank first-order condition for capital structure, first note that C-banks are sub-
ject to the regulatory constraint in (10). Denote the Lagrange multiplier associated with the con-
straint by λC

t . Differentiating (39) subject to the constraint with respect to bC
t+1 gives

qC
t − κC = λC

t − Et

[
Mt+1ΠC

t+1
∂LC

t+1

∂bC
t+1

∂Ωt+1(LC
t+1)

∂LC
t+1

]
,

where based on (38)

Ωt(LC
t ) = max

{
ρC

t+1 +
vC

t

ΠC
t+1
− LC

t+1 ,−δC

}
.

The partial derivatives on the right-hand side are

∂LC
t+1

∂bC
t+1

=
1

ΠC
t+1

and
∂Ωt+1(LC

t+1)

∂LC
t+1

= −I[ρC
t+1>ρ̂C

t+1]
.

Therefore, the first-order condition, after taking expectations with respect to the distribution of
ρC

t+1, is

qC
t − κC = λC

t + Et

[
Mt+1(1− FC

t+1)
]

. (52)
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Online Appendix

Computational Solution Method

The equilibrium of dynamic stochastic general equilibrium models is usually characterized recur-
sively. If a stationary Markov equilibrium exists, there is a minimal set of state variables that sum-
marizes the economy at any given point in time. Equilibrium can then be characterized using two
types of functions: transition functions map today’s state into probability distributions of tomor-
row’s state, and policy functions determine agents’ decisions and prices given the current state.
Brumm et al. (2018) analyze theoretical existence properties in this class of models and discuss
the literature. Perturbation-based solution methods find local approximations to these functions
around the “deterministic steady-state”. For applications in finance, there are often several prob-
lems with local solution methods. First, portfolio restrictions such as leverage constraints may be
occasionally binding in the true stochastic equilibrium. Generally, a local approximation around
the steady state (with a binding or slack constraint) will therefore inaccurately capture nonlin-
ear dynamics when constraints go from slack to binding. Further, local methods have difficulties
in dealing with highly nonlinear functions within the model such as probability distributions or
option-like payoffs, as is the case for the quantitative model in this paper. Finally, in models with
rarely occurring bad shocks (such as the runs in our model), the steady state used by local methods
may not properly capture the ergodic distribution of the true dynamic equilibrium.

Global projection methods (Judd (1998)) avoid these problems by not relying on the determin-
istic steady state. Rather, they directly approximate the transition and policy functions in the
relevant area of the state space.

.1 Equilibrium Conditions

The solution of the model can be written as a system of 17 nonlinear functional equations in
equally many unknown functions of the state variables. The model’s state variables are St =
(Yt, Zt, πR

t , KC
t , KS

t , AC
t , AS

t ).

The functions are aggregate consumption C(St), prices of C-bank and S-bank equity (pC(St), pS(St)),
prices of C-bank and S-bank deposits (qC(St), qS(St)), C-bank and S-bank deposit issuance per
unit of capital (bC(St+1), bS(St+1)), the Lagrange multiplier on C-bank leverage λC(St), C-bank
and S-bank capital purchases (KC(St+1), KS(St+1)), the capital price p(St), C-bank and S-bank in-
vestment (IC(St), IS(St)), labor demand of C-bank, S-bank and households (NC(St), NS(St), NH(St)),
and the wage w(St). For the equations, we will use time subscripts und suppress the dependence
on state variables. All variables can be expressed as functions of current (St) or one-period ahead
(St+1) state variables.

The equations are
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pC
t = Et

[
Mt,t+1FC

ρ,t+1

(
DC,+

t+1 + pC
t+1

)]
(E1)

pS
t = Et

[
Mt,t+1FS

ρ,t+1

(
DS,+

t+1 + pS
t+1

)]
(E2)

qC
t = Et

[
Mt,t+1

(
1 + MRSC

t+1

)]
(E3)

qS
t = Et

[
Mt,t+1

(
(1− πR

t+1)
(

1− FS
ρ,t+1

(
1− (πB + (1− πB)rS

t+1)
))

+ πR
t+1 + MRSS

t+1

)]
(E4)

Ct + IC
t + IS

t + Φ(IC
t , KC

t ) + Φ(IS
t , (1− `S

t )K
S
t ) = Yt + YC

t + YS
t + YH

t

− ξCFC
t ρC,−

t (ΠC
t − (1− δK)pt)KC

t

− ξSFS
t ρS,−

t (1− `S
t )(Π

S
t − (1− δK)pt)KS

t (E5)

qS
t + bS

t+1 q′S(b
S
t+1) = Et

[
Mt+1(1− FS

ρ,t+1)

(
1− πR

t+1 +
`t+1

LS
t+1

(
ρS,+

t+1 +
vS

t+1

ΠS
t+1

))]
(E6)

qC
t − κ = λC

t + Et

[
Mt,t+1(1− FC

ρ,t+1)
]

(E7)

λC
t

(
pt − (1− θ)bC

t+1

)
= 0 (E8)

pt − qS
t bS

t+1 + φK

(
kS

t+1 − 1
)
= Et

[
Mt,t+1ΠS

t+1 ΩS
(

LS
t+1

)]
, (E9)

pt − (qC
t − κ)bC

t+1 + φK

(
kC

t+1 − 1
)
= Et

[
Mt,t+1ΠC

t+1 ΩC
(

LC
t+1

)]
(E10)

KC
t+1 + KS

t+1 = IC
t + IS

t + (1− δK)
(

1− ξCFC
ρ,tρ

C,−
t

)
KC

t

+ (1− δK)
(

1− ξSFS
ρ,tρ

S,−
t

)
(1− `S

t )K
S
t + (1− δK)`

S
t KS

t (E11)

IC
t =

(
pt − 1

φI
+ δK

)
KC

t (E12)

IS
t =

(
pt − 1

φI
+ δK

)
(1− `S

t )K
S
t (E13)

wt = ηZt(nC
t )

η−1 (E14)

NC
t =

KC
t

KC
t + (1− `S

t )K
S
t + `S

t KS
t (Zt/Zt)1/(1−η)

(E15)

NS
t =

(1− `S
t )K

S
t

KC
t

NC
t (E16)

NH
t = 1− NC

t − NS
t (E17)

(E1) – (E4) are the household Euler equations for bank equity and debt from equations (44)
applied to j = C, S, (47), and (48). (E5) is the resource constraint from (42). (E6) is the S-bank
condition for leverage from (49). (E7) is the C-bank condition for leverage (52), with (E8) being
the complementary slackness condition for the leverage constraint (10). (E9) and (E10) are the
S-bank and C-bank conditions for capital growth from (40), applied to either bank type. (E11) is
the market clearing condition for capital (41), and (E12) – (E13) are the first-order conditions for
investment by banks from (34), applied to j = C, S. (E14) – (E16) are the first-order conditions for
labor demand by banks and households, from (33) applied to j = C, S, H, and (E17) is the market
clearing condition for labor.
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.2 Solution Procedure

The projection-based solution approach used in this paper has three main steps.

Step 1. Define approximating basis for the policy and transition functions. To approximate these
unknown functions, we discretize the state space and use multivariate linear interpolation.
Our general solution framework provides an object-oriented MATLAB library that allows
approximation of arbitrary multivariate functions using linear interpolation, splines, or
polynomials. For the model in this paper, splines or polynomials of various orders achieved
inferior results due to their lack of global shape preservation.

Step 2. Iteratively solve for the unknown functions. Given an initial guess for policy and transi-
tion functions, at each point in the discretized state space compute the current-period opti-
mal policies. Using the solutions, compute the next iterate of the transition functions. Re-
peat until convergence. The system of nonlinear equations at each point in the state space is
solved using a standard nonlinear equation solver. Kuhn-Tucker conditions can be rewritten
as equality constraints for this purpose. This step is completely parallelized across points in
the state space within each iterate.

Step 3. Simulate the model for many periods using approximated functions. Verify that the sim-
ulated time path stays within the bounds of the state space for which policy and transition
functions were computed. Calculate relative Euler equation errors to assess the computa-
tional accuracy of the solution. If the simulated time path leaves the state space boundaries
or errors are too large, the solution procedure may have to be repeated with optimized grid
bounds or positioning of grid points.

We will now provide a more detailed description for each step.

Step 1 The state space consists of

- two exogenous state variables [Yt, πR
t ], and

- four endogenous state variables [Kt, KS
t , BS

t , BC
t ].

The banking sector specific shock Zt does not contain any persistent shocks in addition to Yt and
is therefore not an additional state variable. We first discretize Yt into a NY-state Markov chain
using the Rouwenhorst (1995) method, where NY is an odd number. The procedure chooses the
productivity grid points {Yj}NY

j=1 and the NY × NY Markov transition matrix ΠY between them
to match the volatility and persistence of GDP growth of the bank independent sector. The run
shock πR

t can take on two realizations {0, π̄R} as described in the calibration section. The 2 x 2
Markov transition matrix between these states is given by ΠπR . We assume that run shocks only
occur in states with negative GDP growth. Denote the set of the Nx = NY + (NY − 1)/2 values
the exogenous state variables can take on as Sx, and the associated Markov transition matrix Πx.

Our solution algorithm requires approximation of continuous functions of the endogenous
state variables. Define the “true” endogenous state space of the model as follows: if each endoge-
nous state variable St ∈ {Kt, KS

t , BS
t , BC

t } can take on values in a continuous and convex subset
of the reals, characterized by constant state boundaries, [S̄l , S̄u], then the endogenous state space
Sn = [K̄l , K̄u]× [K̄S

l , K̄S
u ]× [B̄S

l , B̄S
u ]× [B̄C

l , B̄C
u ]. The total state space is the set S = Sx × Sn.
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To approximate any function f : S → R, we form an univariate grid of (not necessarily
equidistant) strictly increasing points for each endogenous state variables, i.e., we choose {Kj}NK

j=1,

{KS
k }

NKS
k=1 , {BS

m}
NBS
m=1, and {BC

n }
NBC
n=1. These grid points are chosen to ensure that each grid covers

the ergodic distribution of the economy in its dimension, and to minimize computational errors,
with more details on the choice provided below. Denote the set of all endogenous-state grid
points as Ŝn = {Kj}NK

j=1 × {KS
k }

NKS
k=1 × {BS

m}
NBS
m=1 × {BC

n }
NBC
n=1, and the total discretized state space

as Ŝ = Sx × Ŝn. This discretized state space has NS = Nx · NK · NKS · NBS · NBC total points, where
each point is a 5 x 1 vector as there are 5 distinct state variables (counting the exogenous state as
one). We can now approximate the smooth function f if we know its values { f j}NS

j=1 at each point
ŝ ∈ Ŝ, i.e. f j = f (ŝj) by multivariate linear interpolation.

Our solution method requires approximation of of three sets of functions defined on the do-
main of the state variables. The first set of unknown functions CP : S → P ⊆ RNC

, with NC

being the number of policy variables, determines the values of endogenous objects specified in
the equilibrium definition at every point in the state space. These are the prices, agents’ choice
variables, and the Lagrange multipliers on the portfolio constraints. Specifically, the 8 policy func-
tions are debt prices qS(S), qC(S), capital price p(S), debt issued by banks in the current period
BS(S), BC(S), the capital purchased by S-banks KS(S), labor demand of S-banks nS(S), and the
Lagrange multiplier for the C-bank leverage constraint λC(S). There is an equal number of these
unknown functions and nonlinear functional equations, to be listed under step 2 below.

The second set of functions CT : S × Sx → Sn determine the next-period endogenous state
variable realizations as a function of the state in the current period and the next-period realiza-
tion of exogenous shocks. There is one transition function for each endogenous state variable,
corresponding to the transition law for each state variable, also to be listed below in step 2.

The third set are forecasting functions CF : S → F ⊆ RNF
, where NF is the number of forecast-

ing variables. They map the state into the set of variables sufficient to compute expectations terms
in the nonlinear functional equations that characterize equilibrium. They partially coincide with
the policy functions. In particular, the forecasting functions for our model are the capital price
p(S), S-bank labor input nS(S), capital growth of both types of banks kS(S), kC(S), and the value
function of households VH(S) (to compute welfare).

Step 2 Given an initial guess C0 = {C0
P, C0

T, C0
F}, the algorithm to compute the equilibrium takes

the following steps.

A. Initialize the algorithm by setting the current iterate Cm = {Cm
P , Cm

T , Cm
F } = {C0

P, C0
T, C0

F}.

B. Compute forecasting values. For each point in the discretized state space, sj ∈ Ŝ , j =

1, . . . , NS, perform the steps:

i. Evaluate the transition functions at sj combined with each possible realization of the
exogenous shocks xi ∈ Sx to get s

′
j(xi) = Cm

T (sj, xi) for i = 1, . . . , Nx, which are the
values of the endogenous state variables given the current state sj and for each possible
future realization of the exogenous state.

ii. Evaluate the forecasting functions at these future state variable realizations to get f 0
i,j =

Cm
F

(
s
′
j(xi), xi

)
.
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The end result is a Nx × NS matrix F m, with each entry being a vector

f m
i,j = [pi,j, nS

i,j, kS
i,j, kC

i,j, VH
i,j ] (F)

of the next-period realization of the forecasting functions for current state sj and future
exogenous state xi.

C. Solve system of nonlinear equations. At each point in the discretized state space, sj ∈ Ŝ ,
j = 1, . . . , NS, solve the system of nonlinear equations that characterize equilibrium in the
equally many “policy” variables, given the forecasting matrix F m from step B. This amounts
to solving a system of 12 equations in 12 unknowns

P̂j = [q̂S
j , q̂C

j , p̂j, B̂S
j , B̂C

j , K̂S
j , n̂S

j , λ̂C
j ] (P)

at each sj. The equations are

q̂C
j = Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
(C1)

q̂S
j = Es′i,j|sj

[
M̂i,j

(
1− FS

i,j

(
1− (πB + (1− πB)rS

i,j)
)
+ MRSS

i,j

)]
(C2)

q̂S
j + b̂S

j q′S(b̂
S
j ) = Es′i,j|sj

[
M̂i,j(1− FS

i,j)

(
1− πR

i +
`i,j

LS
i,j

(
ρS,+

i,j +
vS

i,j

ΠS
i,j

))]
(C3)

p̂j − q̂S
j b̂S

j + φK

(
k̂S

j − 1
)
= Es′i,j|sj

[
M̂i,jΠS

i,j ΩS
(

LS
i,j

)]
(C4)

q̂C
j − κ = λ̂C

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

(C5)

p̂j − (q̂C
j − κ)b̂C

j + φK

(
k̂C

j − 1
)
= Es′i,j|sj

[
M̂i,jΠC

i,j ΩC
(

LC
i,j

)]
(C6)

λ̂C
j

(
p̂j − (1− θ)b̂C

j

)
= 0 (C7)

1 = N̂H
j + N̂C

j + N̂S
j . (C8)

(C1) and (C2) are the household Euler equations for purchases of deposits. (C3) and (C4)
are the intertemporal optimality conditions for S-banks, and (C5) and (C6) are those for
C-banks. (C7) is the leverage constraint for C-banks. Finally, (C8) is the market clearing
condition labor.

Expectations are computed as weighted sums, with the weights being the probabilities of
transitioning to exogenous state xi, conditional on state sj. Hats (·̂) in (C1) – E(C8) indicate
variables that are direct functions of the vector of unknowns (P). These are effectively the
choice variables for the nonlinear equation solver that finds the solution to the system (C1)
– (C8) at each point sj. All variables in the expectation terms with subscript i,j are direct
functions of the forecasting variables (F).

The latter values are fixed numbers when the system is solved, as they we pre-computed in
step B. For example, the stochastic discount factor M̂i,j depends on both the solution and the
forecasting vector, i.e.

M̂i,j = β

(
Ci,j

Ĉj

)−γ

,
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since it depends on future and current consumption. To compute the expectation of the
right-hand side of equation (C1) at point sj, we first look up the corresponding column j in
the matrix containing the forecasting values that we computed in step B, F m. This column
contains the Nx vectors, one for each possible realization of the exogenous state, of the
forecasting values defined in (F). From these vectors, we need consumption Ci,j. Further, we
need current consumption Ĉj, which is a policy variable chosen by the nonlinear equation
solver. MRSC

i,j is a function of future consumption Ci,j, and the future state variables BS
i,j and

BC
i,j (since market clearing implies Aj

t = Bj
t for j = S, C). Denoting the probability of moving

from current exogenous state xj to state xi as πi,j, we compute the expectation of the RHS of
(C1)

Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
= ∑

xi | xj

πi,j M̂i,j

(
1 + MRSC

i,j

)
.

The mapping of solution and forecasting vectors (P) and (F) into the other expressions in
equations (C1) – (C8) follows the same principles and is based on the equations in model
appendix A. In particular, the system (C1) – (C8) implicitly uses the budget constraints of
all agents, and the market clearing conditions for capital and debt of both banks.

Note that we could exploit the linearity of the market clearing condition in (C8) to eliminate
one more policy variable, n̂S, from the system analytically. However, in our experience the
algorithm is more robust when we explicitly include labor demand of all agents as policy
variables, and ensure that these variables stay strictly positive (as required with CD produc-
tion functions) when solving the system. To solve the system in practice, we use a nonlinear
equation solver that relies on a variant of Newton’s method, using policy functions Cm

P as
initial guess. More on these issues in subsection .3 below.

The final output of this step is a NS× 12 matrix Pm+1, where each row is the solution vector
P̂j that solves the system (C1) – (C8) at point sj.

D. Update forecasting, transition and policy functions. Given the policy matrix Pm+1 from
step B, update the policy function directly to get Cm+1

P . All forecasting functions with the
exception of the value functions are also equivalent to policy functions. The household
value function is updated based on the recursive definition

V̂H
j = U(Ĉj, Hi,j) + βEs′i,j|sj

VH
i,j (V)

using the same notation as defined above under step C. Note that the value function com-
bines current solutions from Pm+1 (step C) for consumption with forecasting values from
F m (step B). Using these updated value functions, we get Ĉm+1

F .

Finally, update transition functions for the endogenous state variables using the following
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laws of motion, for current state sj and future exogenous state xi as defined above:

Km+1
i,j = ÎC

j + ÎS
j + (1− δK)

(
1− ξCFC

i,jρ
C,−
i,j

)
KC

i,j

+ (1− δK)
(

1− ξSFS
i,jρ

S,−
i,j

)
(1− `S

i,j)K
S
i,j + (1− δK)`

S
i,jK

S
i,j (T1)

(KS
i,j)

m+1 = k̂S
j KS

i,j (T2)

(BC
i,j)

m+1 = B̂C
j (T3)

(BS
i,j)

m+1 = B̂S
j . (T4)

(T1) is simply the law of motion for aggregate capital, and (T2) is the definition of capital
growth kS

t . (T3) and (T4) follow directly from the direct mapping of policy into state variable
for bank debt. Updating according to (T1) – (T4) gives the next set of functions Ĉm+1

T .

E. Check convergence. Compute distance measures ∆F = ||Cm+1
F − Cm

F || and ∆T = ||Cm+1
T −

CT Fm||. If ∆F < TolF and ∆T < TolT, stop and use Cm+1 as approximate solution. Oth-
erwise reset policy functions to the next iterate i.e. Pm → Pm+1 and reset forecasting
and transition functions to a convex combination of their previous and updated values i.e.
Cm → Cm+1 = D× Cm + (1− D)× Ĉm+1, where D is a dampening parameter set to a value
between 0 and 1 to reduce oscillation in function values in successive iterations. Next, go to
step B.

Step 3 Using the numerical solution C∗ = Cm+1 from step 2, we simulate the economy for
T̄ = Tini + T period. Since the exogenous shocks follow a discrete-time Markov chain with transi-
tion matrix Πx, we can simulate the chain given any initial state x0 using T̄ − 1 uniform random
numbers based on standard techniques (we fix the seed of the random number generator to pre-
serve comparability across experiments). Using the simulated path {xt}T̄

t=1, we can simulate the
associated path of the endogenous state variables given initial state s0 = [x0, K0, KS

0 , BS
0 , BC

0 ] by
evaluating the transition functions

[Kt+1, KS
t+1, BC

t+1, Bg
t+1H0] = C∗T(st, xt+1),

to obtain a complete simulated path of model state variables {st}T̄
t=1. To remove any effect of the

initial conditions, we discard the first Tini points. We then also evaluate the policy and forecasting
functions along the simulated sample path to obtain a complete sample path {st, Pt, ft}T̄

t=1.

To assess the quality and accuracy of the solution, we perform two types of checks. First, we
verify that all state variable realizations along the simulated path are within the bounds of the
state variable grids defined in step 1. If the simulation exceeds the grid boundaries, we expand
the grid bounds in the violated dimensions, and restart the procedure at step 1. Secondly, we
compute relative errors for all equations of the system (C1) – (C8) and the transition functions
(T1) – (T4) along the simulated path. For equations involving expectations (such as (C1)), this
requires evaluating the transition and forecasting function as in step 2B at the current state st. For
each equation, we divide both sides by a sensibly chosen endogenous quantity to yield “relative”
errors; e.g., for (C1) we compute

1 =
1

q̂C
j

Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
,
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using the same notation as in step 2B. These errors are small by construction when calculated at the
points of the discretized state grid Ŝ , since the algorithm under step 2 solved the system exactly
at those points. However, the simulated path will likely visit many points that are between grid
points, at which the functions C∗ are approximated by interpolation. Therefore, the relative errors
indicate the quality of the approximation in the relevant area of the state space. We report average,
median, and tail errors for all equations. If errors are too large during simulation, we investigate
in which part of the state space these high errors occur. We then add additional points to the state
variable grids in those areas and repeat the procedure.

.3 Implementation

Solving the system of equations. We solve system of nonlinear equations at each point in
the state space using a standard nonlinear equation solver (MATLAB’s fsolve). This nonlinear
equation solver uses a variant of Newton’s method to find a “zero” of the system. We employ
several simple modifications of the system (C1) – (C8) to avoid common pitfalls at this step of
the solution procedure. Nonlinear equation solver are notoriously bad at dealing with comple-
mentary slackness conditions associated with a constraint. Judd, Kubler, and Schmedders (2002)
discuss the reasons for this and also show how Kuhn-Tucker conditions can be rewritten as addi-
tive equations for this purpose. Consider the C-bank’s Euler Equation for risk-free debt and the
Kuhn-Tucker condition for its leverage constraint:

q̂C
j − κ = λ̂C

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

0 = λ̂C
j

(
p̂j − (1− θ)b̂C

j

)
Now define an auxiliary variable hj ∈ R and two functions of this variable, such that λ̂C,+

j =

max{0, hj}3 and λ̂C,−
j = max{0,−hj}3. Clearly, if hj < 0, then λ̂I,+

j = 0 and λ̂C,−
j > 0, and vice

versa for hj > 0. Using these definitions, the two equations above can be transformed to:

q̂C
j − κ = λ̂C,+

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

0 = p̂j − (1− θ)b̂C
j − λ̂C,−

j .

The solution variable for the nonlinear equation solver corresponding to the multiplier is hj. The
solver can choose positive hj to make the constraint binding (λ̂C,−

j = 0), in which case λ̂C,+
j takes on

the value of the Lagrange multiplier. Or the solver can choose negative hj to make the constraint
non-binding (λ̂C,+

j = 0), in which case λ̂C,−
j can take on any value that makes (K2) hold.

Similarly, certain solution variables are restricted to positive values due to the economic struc-
ture of the problem. For example, given the Cobb-Douglas production function, optimal S-bank
capital for next period K̂S

j is always strictly positive. To avoid that the solver tries out negative
capital values (and thus output becomes ill-defined), we use log(K̂S

j ) as solution variable for the
solver. This means the solver can make capital arbitrarily small, but not negative.

Grid configuration. We choose to include the relative capital share of S-banks K̃S
t = KS

t /Kt as
state variable instead of borrower debt KS

t such that the total set of endogenous state variables is
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[Kt, K̃S
t , BC

t , BS
t ]. The reason is that the capital share is more stable in the dynamics of the model

than the level, since total capital and S-bank capital are strongly correlated. For similar reasons,
we choose to include S-bank and C-bank book leverage bS

t = BS
t /KS

t and bC
t = BC

t /KC
t instead of

the levels of debt. For the benchmark case, the grid points in each state dimension are as follows

• Y: We discretize Y and Z jointly into a 9-state Markov chain (with three possible realizations
for each) using the Rouwenhorst (1995) method. The procedure chooses the productivity
grid points {Y}3

j=1 and {Z}3
j=1 and the 9× 9 Markov transition matrix ΠY,Z between them

to match the volatility and persistence of GDP growth. This yields the possible realizations
for Y: [0.9869, 1.0000, 1.0132], and for Z: [0.9698, 1.0000, 1.0312].

• πR: [0.0, 0.33] (see calibration)

• K: [2.92, 3.04, 3.15, 3.26, 3.39, 3.50]

• K̃S: [0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38]

• bS: [0.10, 0.218, 0.334, 0.451, 0.568, 0.686, 0.803, 0.92]

• bC: [0.87, 0.882, 0.894, 0.906, 0.918, 0.93]

The total state space grid has 24,192 points. The grid boundaries and the placement of points
have to be readjusted for each experiment, since the ergodic distribution of the state variables de-
pends on parameters. Finding the right values for the boundaries is a matter of experimentation.

Generating an initial guess and iteration scheme. To find a good initial guess for the policy,
forecasting, and transition functions, we solve the deterministic “steady-state” of the model under
the assumption that the bank leverage constraint is binding and no runs are occurring. We then
initialize all functions to their steady-state values, for all points in the state space. Note that the
only role of the steady-state calculation is to generate an initial guess that enables the nonlinear
equation solver to find solutions at (almost) all points during the first iteration of the solution
algorithm. In our experience, this steady state delivers a good enough initial guess.

In case the solver cannot find solutions for some points during the initial iterations, we revisit
such points at the end of each iteration. We try to solve the system at these “failed” points using
as initial guess the solution of the closest neighboring point at which the solver was successful.
This method works well to speed up convergence and eventually finds solutions at all points.

To determine convergence, we check absolute errors in the value function of households, (V).
Out of all functions we approximate during the solution procedure, it exhibits the slowest con-
vergence. We stop the solution algorithm when the maximum absolute difference between two
iterations, and for all points in the state space, falls below 1e-3 and the mean distance falls below
1e-4. For appropriately chosen grid boundaries, the algorithm converges within 120 iterations.

We implement the algorithm in MATLAB and run the code on a high-performance computing
(HPC) cluster. As mentioned above, the nonlinear system of equations can be solved in parallel at
each point. We parallelize across 28 CPU cores of a single HPC node. The total running time for
the benchmark calibration is about 2 hours and 40 minutes.
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Table 6: Computational Errors

Equation Percentile
50th 75th 95th 99th Max

C1 5.63519E-05 6.63392E-05 7.44099E-05 8.19743E-05 8.75681E-05
C2 5.75018E-05 6.76531E-05 7.58158E-05 8.3402E-05 8.91697E-05
C3 6.08842E-05 7.15472E-05 7.98797E-05 8.75013E-05 9.34417E-05
C4 1.31404E-05 1.69366E-05 2.46315E-05 3.18816E-05 7.70292E-05
C5 3.86174E-05 4.73236E-05 5.48711E-05 5.93791E-05 6.23922E-05
C6 1.27067E-05 1.61208E-05 2.29494E-05 2.9007E-05 7.50274E-05
C7 0.00022121 0.000285663 0.000344085 0.000411546 0.000454729
C8 0.000126335 0.000157528 0.000174314 0.000175913 0.000211747

The table reports median, 75th percentile, 95th percentile, 99th percentile, and maximum abso-
lute value errors, evaluated at state space points from a 5,000 period simulation of the bench-
mark model. Each row contains errors for the respective equation of the nonlinear system (C1)
– (C8) listed in step 2 of the solution procedure.

Simulation. To obtain the quantitative results, we simulate the model for 5,000 periods after a
“burn-in” phase of 500 periods. The starting point of the simulation is the ergodic mean of the
state variables. As described in detail above, we verify that the simulated time path stays within
the bounds of the state space for which the policy functions were computed. We fix the seed of
the random number generator so that we use the same sequence of exogenous shock realizations
for each parameter combination.

To produce impulse response function (IRF) graphs in Figure 1, we simulate 10,000 different
paths of 25 periods each. In the initial period, we set the endogenous state variables to several
different values that reflect the ergodic distribution of the states. We use a clustering algorithm to
represent the ergodic distribution non-parametrically. We fix the initial exogenous shock realiza-
tion to mean productivity (Y = Z = 1) and no run (πR = 0). The “impulse” in the second period
is either only a bad productivity shock, or both low productivity and a run shock (πR = 0.3).
For the remaining 23 periods, the simulation evolves according to the stochastic law of motion of
the shocks. In the IRF graphs, we plot the median path across the 10,000 paths given the initial
condition. The simulation dynamics in Figure 2 are constructed similarly, with the difference that
the economy also experiencing unanticipated changes in model parameters.

Evaluating the solution. Our main measure to assess the accuracy of the solution are relative
equation errors calculated as described in step 3 of the solution procedure. Table 6 reports the
median error, the 95th percentile of the error distribution, the 99th, and 100th percentiles during the
5,000 period simulation of the model. Median errors are very small for all equations, with even
maximum errors only causing small approximation mistakes. Errors are comparably small for all
experiments we report.
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I Simple Model

I.1 Equilibrium Definition

Equilibrium definition. The equilibrium is a set of quantities {C0, C1, KS, KC, LS, LC, SS, SC, AC, AS}
and prices {p, qS, qC, pS, pC}, such that households maximize (13) subject to constraints (17) and
(18), S-banks maximize (61) and (60), C-banks maximize (61) and (58) subject to (59), and the mar-
kets for capital 1 = KS + KC, equity shares (sum to 1) and deposits of both bank types, Aj = Bj,
clear.

By Walras law, consumption at time 0 is48

C0 = 0, (53)

and consumption at time 1 is

C1 = KC (E(ρC)− F(LC)E(ρC |ρC < LC)) + KS (E(ρS)− F(LS)E(ρS |ρS < LS)) . (54)

The resource constraint for period-1 consumption (54) clarifies the fundamental welfare trade-off
of the model. If banks did not issue any deposits, then LC = LS = 0, no bank would default, and
household consumption of the numeraire good would be maximized at the full payoff of capi-
tal, E(ρj). However, in that case banks would produce no liquidity services from which house-
holds also derive utility. To produce liquidity services, banks need to issue deposits and take on
leverage, which causes a fraction Fj(Lj) of them to default. In the process, some payoffs of the
numeraire good are destroyed.

I.2 Preliminary Definitions

To unify notation in all following proofs, we first define the ratio of S-Bank to C-Bank deposits

RS =
AS

AC
.

We compute the partial derivatives of the liquidity utility function in equation (19)

Hj(AS, AC) =
∂H(AS, AC)

∂Aj
= (αAε

S + (1− α)Aε
C)
−γ/ε H̃j(RS), (55)

for j = S, C, and where H̃j denote the partial derivatives if γ = 0:

H̃S(RS) =
∂H(AS, AC)

∂AS

∣∣∣∣
γ=0

= α

(
α + (1− α)

(
1

RS

)ε) 1−ε
ε

(56)

H̃C(RS) =
∂H(AS, AC)

∂AC

∣∣∣∣
γ=0

= (1− α) (αRε
S + (1− α))

1−ε
ε (57)

48The funds households spend on their portfolio of bank securities, qC AC + pCSC + qS AS + pSSS, are
equal to the market value of the capital they sell to banks in equilibrium, p.
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The derivatives conditional on γ = 0 only depend on the ratio RS, whereas the full partials also
depend on the levels of C-bank and S-bank deposits.

I.3 C-bank and S-bank problem: size and leverage choice

For C-banks, the leverage problem is

vC = max
LC∈[0,1]

qCLC − p + β (1− FC(LC))
(
ρ+C − LC

)
(58)

subject to
LC ≤ (1− θ)E(ρC), (59)

and for S-banks it is

vS = max
LS∈[0,1]

qS(LS)LS − p + β (1− FS(LS))
(
ρ+S − LS

)
. (60)

The capital purchase decision for each bank is then given by

max
Kj≥0

Kjvj. (61)

Each individual S-bank recognizes that the price of its debt is a function of its leverage accord-
ing to households’ valuation in (23). However, S-banks are price takers and do not internalize the
effect of their leverage choice on the aggregate marginal benefit of S-bank liquidity ψHS(AS, AC).
The following proposition characterizes S-banks’ optimizing behavior, denoting by fS the density
of distribution FS.

Proposition 4. 1. S-bank marginal defaults are equal to the marginal benefit of S-bank liquidity:

LS fS(LS) = ψHS(AS, AC). (62)

2. S-banks’ demand for capital implies the following restriction on the capital price:

p = β
(
(1− FS(LS))ρ

+
S + ψLSHS(AS, AC)

)
.

Proof. To obtain the S-bank FOC for leverage, we differentiate the S-bank objective in (60) to get

qS + q′S(LS)LS = β(1− FS(LS)).

Differentiating the HH FOC (23) with respect to LS, and under the restriction that individual S-
banks do not internalize their effect on aggregate S-bank liquidity AS, gives

q′S(LS) = −β fS(LS).

Combining the two yields
qS = β(1− FS(LS) + fS(LS)LS). (63)

Substituting this result back into the HH FOC (23) results in equation (62) for part 1. For part
2., we first note that a positive amount of S-bank capital KS > 0 in equilibrium requires that the
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expected profit per unit is zero, vS = 0, which when combined with equation (60) gives

p = qSLS + β(1− F(LS))(ρ
+
S − LS).

Substituting for qS from (63) and (62), and simplifying gives the result.

Proposition 4 states that S-banks optimally choose leverage such that the marginal benefit of
S-bank liquidity to households, on the RHS of (62), is equal to the marginal loss due to defaulting
S-banks (LHS).

Further, because of constant returns to scale and competitive markets, S-banks must have zero
expected value in equilibrium. This restriction leads to equation (25), which states that S-bank
demand for capital is perfectly elastic at a price p.

Turning to C-banks, the following proposition characterizes their optimal choices.

Proposition 5. If there is a positive marginal benefit of C-bank liquidity, ψHC(AS, AC) > 0, the C-bank
leverage constraint is always binding, implying LC = E(ρC)(1− θ), and C-banks’ capital demand requires

p = β
(
(1− FC(LC))ρ

+
C + ψLCHC(AS, AC) + FC(LC)LC

)
.

Proof. Differentiating the C-bank objective in (58) with respect to LC gives

qC = µC + β(1− FC(LC)), (64)

where µC is the Lagrange multiplier on the leverage constraint. Combining equations (22) and
(64) yields

µC = β(ψHC + FC(LC)) > 0. (65)

Under the assumption that ψHC > 0, this implies that the multiplier is positive and the constraint
is binding, with leverage given by

LC = E(ρC)(1− θ).

Like for S-Banks, a positive amount of C-Bank capital KC > 0 requires zero expected profit per
unit of capital vC = 0, which by equation (58) implies

p = qCLC + β(1− F(LC))(ρ
+
C − LC).

Substituting for qC from the household FOC for C-Bank deposits (22) gives the result in (24).

Since C-banks can issue insured debt that also generates utility for households, there is no
interior optimum to their capital structure choice. Analogous to S-banks, the scale invariance of
the C-bank problem requires that C-banks make zero profits. Combining this condition with the
price of C-bank debt required by HH optimization in (22) gives the equation in (24).
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I.4 Proofs for Main Text

Proof of proposition 1. The proposition assumes identical distributions for bank-idiosyncratic
shocks, i.e. FS = FC = F. Then the first-order conditions for S- and C-bank leverage are given by

f (Lj)Lj = ψHj(LSKS, LC(1− KS)) (66)

for j = S, C respectively. The first-order condition for the S-bank capital share is

(1− F(LS))(ρ
+
S − LS)− LSψHS(LSKS, LC(1−KS)) = (1− F(LC))(ρ

+
C − LC)− LCψHC(LSKS, LC(1−KS)).

(67)
We conjecture and verify that the optimal allocation features equal leverage

LS = LC.

Under this assumption, (66) imply H̃S(RS) = H̃C(RS), using the definition from (56) and (57), or

α

[
α + (1− α)

1
Rε

S

] 1−ε
ε

= (1− α) [αRε
S + 1− α]

1−ε
ε .

It is easy to verify that the solution to this equation is

RS =

(
α

1− α

) 1
1−ε

,

implying H̃S(RS) = H̃C(RS) = 1. Given this solution, we indeed get that LS = LC as conjectured
from (66).

Since
RS =

LSKS

LCKC
=

KS

KC
,

we obtain the solution for the capital shares in the proposition.

Plugging this solution back into either condition (66) gives an implicit equation for optimal
leverage

L∗ f (L∗) =

ψ(1− α)

(
α

(
α

1− α

) ε
1−ε

+ 1− α

) 1−ε−γ
ε
(

(1− α)1/(1−ε)

α1/(1−ε) + (1− α)1/(1−ε)

)−γ


1
1+γ

. (68)

Proof of proposition 2.

Proof. This proposition assumes that bank-idiosyncratic shocks are distributed Uniform[0, 1]. Given
this assumption, we can write the S-bank leverage condition as

LS = ψHS(AS, AC), (69)

and the definition of the liquidity wedge m as

LC = ψ(1 + m)HC(AS, AC). (70)
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Further, the capital market condition (26) simplifies to

L2
S = L2

C + 2LCψHC (AS, AC) , (71)

which combined with (69) and (70) gives

LS =

√
m + 3
m + 1

LC. (72)

Part (i) follows directly from this relation: for any value of m ∈ (−1, ∞) we have LS > LC. In
particular, at the “planner solution” of m = 0, we have LS =

√
3LC.

For part (ii), combining (72) with (69) and (70), we get the following equation in m and the
deposit ratio RS

H̃S(RS) =
√
(m + 1)(m + 3)H̃C(RS),

using the definitions in (56) and (57). Defining the wedge factorM =
√
(m + 1)(m + 3) this can

be written as

α

[
α + (1− α)

1
Rε

S

] 1−ε
ε

=M(1− α) [αRε
S + 1− α]

1−ε
ε ,

which can be rearranged to

α(1− α)
ε

1−εM ε
1−ε R2ε

S +
(
(1− α)

1
1−εM ε

1−ε − α
1

1−ε

)
Rε

S − (1− α)α
ε

1−ε = 0.

This is an exponential polynomial of the form

Aexp(2εx) + Bexp(εx) + C = 0,

with x = log(RS) and

A = α(1− α)
ε

1−εM ε
1−ε

B =
(
(1− α)

1
1−εM ε

1−ε − α
1

1−ε

)
C = −(1− α)α

ε
1−ε .

Given α ∈ [0, 1], the unique real root is

x =
1
ε

log

 (1− α)
(

α
1−α

) 1
1−ε

αM ε
1−ε

 ,

which simplifies to

RS =
AS

AC
=

(
1
M

) 1
1−ε
(

α

1− α

) 1
1−ε

,

which is equation (28) in the main text. To get the result for the capital ratio KS/KC in equation
(28), note that

RS =
LSKS

LCKC
=

√
m + 3
m + 1

KS

KC
,
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using (72), which implies
KS

KC
=

1 + m
M RS.

To prove part (iii), suppose the regulator in the competitive equilibrium can choose θ such that
m = 0, which yields the planner solution for C-bank leverage LC = ψHC(AS, AC) (the proof to
proposition 3 below establishes that there is unique mapping between θ and m). Choosing m = 0

implies M =
√

3, which yields a smaller S-bank ratio RS by factor 1/
√

3
1

1−ε compared to the
planner solution in proposition 1. This proves that there is no competitive equilibrium (for any
value of θ and the other parameters) that simultaneously satisfies optimal leverage and S-bank
share in the planner solution of proposition 1.

The following lemma establishes that there is a unique mapping between the capital require-
ment θ and the liquidity wedge m in the competitive equilibrium.

Lemma 6. The liquidity wedge m is strictly decreasing in the capital requirement θ everywhere, i.e., dm
dθ <

0.

Proof. Since LC = 1
2 (1 − θ) and thus dθ

dLC
< 0, we prove the result by showing that dLC

dm > 0.
We start by substituting the definition of HC from (55) into the optimality condition for C-bank
leverage (27) to obtain

LC = ψ(1 + m)(1− α) (αRε
S + (1− α))

1−ε−γ
ε A−γ

C .

Since AC = LCKC and by (28)

KC =
M

M+ (1 + m)RS
,

we can solve for L1+γ
C as a function of m and other parameters

L(m) ≡ L1+γ
C = ψ(1− α)(1 + m)M−γ (αRε

S + (1− α))
1−ε−γ

ε (M+ (1 + m)RS)
γ ,

whereM =
√
(1 + m)(3 + m) and RS are also functions of m. To establish that dLC

dm > 0, it suffices
to show that L′(m) > 0. Differentiating and collecting terms, we get

L′(m) = L1
m + L2

m,

where

L1
m = ψM−γ (αRε

S + (1− α))
1−2ε−γ

ε

(
1− α +

α

3 + m
Rε

S

)
,

and

L2
m = 2γ

αRε
S (6 + m(5 + m) + (1− ε)RSM)− (1− α)(1 + m + ε)RSM

(1 + m)(3 + m)(3 + m + RSM)
.

Clearly, L1
m > 0 for α ∈ [0, 1]. Thus L2

m > 0 is a sufficient condition for L′(m) > 0. L2
m > 0 if its

numerator is positive:

αRε
S (6 + m(5 + m) + (1− ε)RSM)− (1− α)(1 + m + ε)RSM > 0.
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To verify this condition, first note that

Rε
S =

1− α

α
RSM,

such that the condition simplifies to

6 + m(5 + m) + (1− ε)RSM− (1 + m + ε) > 0.

Since RSM > 0 and ε ≤ 1, we can further reduce the condition to

m2 + 4m + 5 > ε.

Since m is bounded from below by−1, the left-hand side is bounded from below by 2. Since ε ≤ 1,
the right-hand side is bounded from above by 1. Thus the condition is globally satisfied, proving
that

dLC

dm
> 0 ⇔ dm

dθ
< 0.

Proof of proposition 3.

Proof. Part (1.i) follows directly from the binding bank leverage constraint LC = 1
2 (1− θ).

For part (1.ii), recall that

RS =
AS

AC
=

(
1
M

) 1
1−ε
(

α

1− α

) 1
1−ε

.

We differentiate this expression with respect to m

dRS

dm
= − (2 + m)RS

(1− ε)M ,

implying dRS/dm < 0. Since by lemma 6 above, dm/dθ < 0, we have dRS/dθ > 0.

For the capital ratio, recall
KS

KC
=

LS AS

LC AC
=

√
1 + m
3 + m

RS,

by equation (28). We again differentiate with respect to m

dKS/KC

dm
= − (1 + m + ε)RS

(1− ε)(3 + m)M ,

which implies that d(KS/KC)/dm < 0. Again combining this with dm/dθ < 0 by lemma 6, we get
d(KS/KC)/dθ > 0.

For part (1.iii), first recall that from the S-Bank first-order condition for leverage we have

LS = ψHj(AS, AC).
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Based on the definition ofHj(AS, AC) in (55) this can be written as

LS = ψα (α + (1− α)Rε
S)

1−ε−γ
ε A−γ

S .

Using AS = KSLS and

KS =
(1 + m)RS

M+ (1 + m)RS
,

this can be expressed as function of m and parameters

L̂S = L1+γ
S = ψα (α + (1− α)Rε

S)
1−ε−γ

ε ((1 + m)RS)
−γ(M+ (1 + m)RS)

γ.

We differentiate with respect to m
dL̂S

dm
=

L1
mL2

m
L3

m
,

with

L1
m = (1 + m)1−γM ε

1−ε−2Rε−γ
S (M+ (1 + m)RS)

γ (α + (1− α)R−ε
S
) 1−γ

ε ,

L2
m = γ(3 + m)(1 + m + ε)Rε

S + (1− α) ((1− ε)(2 + m− γ)(3 + m) + (1− ε− γ)(2 + m)RSM) , and

L3
m = (1− ε) (1− α + αRε

S)
2M 1

1−ε (1 + (1 + m)RS) .

Since L1
m > 0 and L3

m > 0 for all parameter values, the sign of the derivative depends on the
sign of L2

m. This expression can be positive or negative, depending on parameters. In particular, it
can be negative if γ is large. The following result proves Corollary 1 in the main text: if γH = 0,
we get

L2
m|γH=0 = (1− α)(1− ε)(2 + m)(3 + m + RSM) > 0.

Thus for γH = 0, we have that dLS
dm > 0 and dLS

dθ < 0.

For part 2., we differentiate the household objective given by (20) in the decentralized equilibrium
with respect to θ. After collecting terms, the derivate is

dU(θ)

dθ
=

dKC

dθ

(
ψHC(AS, AC)LC + (1− FC(LC))ρ

+
C
)
+

dKS

dθ

(
ψHS(AS, AC)LS + (1− FC(LS))ρ

+
S
)

+
dLC

dθ
(ψHC(AS, AC)KC − KCLC fC(LC)) +

dLS

dθ
(ψHS(AS, AC)KS − KSLS fS(LS)) .

Since in equilibrium LS fS(LS) = ψHS(AS, AC) and LC fC(LC) = (1 + m)ψHC(AS, AC), this ex-
pression becomes

dU(θ)

dθ
=

dKC

dθ

(
ψHC(AS, AC)LC + (1− FC(LC))ρ

+
C
)
+

dKS

dθ

(
ψHS(AS, AC)LS + (1− FC(LS))ρ

+
S
)

−mψHC(AS, AC)KC
dLC

dθ
.

Further noting that dKC/dθ = −dKS/dθ (since KC = 1− KS), applying the capital market con-
dition (26), and noting that dLC/dθ = −E(ρC) gives expression (29) in the main text. Since
dKS/dθ > 0 by part (1.ii) and FC(LC)LC > 0, this expression is positive for any m ≥ 0.
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II Calibration Appendix

II.1 Bank idiosyncratic shocks

In the model, we parameterize the idiosyncratic ρ shocks as gamma distributions. Let the gamma
cumulative distribution function be given by Γ(ρ; χ0, χ1) with parameters (χ0, χ1). These param-
eters map into means µ

j
ρ and variances σ2

ρj as follows:

χ1 = σ2
ρ /µρ,

χ0 = µρ/χ1.

A standard result in statistics states that the conditional expectations are

E(ρ | ρ < x) = µρ
Γ(x; χ0 + 1, χ1)

Γ(x; χ0, χ1)
,

E(ρ | ρ > x) = µρ
1− Γ(x; χ0 + 1, χ1)

1− Γ(x; χ0, χ1)
,

which we use to compute the conditional expectations ρj,− and ρj,+ used in bank payoffs to share-
holders and recovery values for creditors.

II.2 Detailed calibration description

The main text focussed only on the five parameters (β, α, ψ, γH, ε) that govern households’ liq-
uidity preferences. This appendix subsection discusses the calibration strategy for all remaining
parameters.

The parameters of our model belong to one of two groups. We can set parameters of the first
group (listed in Panel A of Table 1) in isolation of any other parameters, i.e., there is a one-to-one
mapping between target moment in the data and corresponding model parameter. The second
group involves parameters listed in Panel B of Table 1 that we choose jointly to match moments
of the ergodic distribution in our model to the corresponding moments in the data. We start with
a guess for the parameter values, solve the model with these values, then calculate the moments
from the ergodic distribution, and compare these moments to the data. We iterate until the tar-
geted moments in Panel B of Table 1 closely match the data.

Using our definition of bank-dependent sector output, we can calculate the volatility and auto-
correlation (ρY) of the bank-independent sector output growth rate and back out σY. Given σY, we
set σZ to match the volatility of bank-dependent firms’ output growth. We calibrate νZ, the scale
of the bank dependent sector productivity shock, to target the share of bank-dependent real GDP
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per capita in total GDP.49

Our model has two types of adjustment costs: investment and capital growth adjustment costs.
They are governed by the parameters φI and φK, respectively. The value of φI determines the
marginal cost of investment and therefore the investment volatility of the bank dependent sector
in the model. We use the volatility of 2.65% of the logged and HP-filtered investment-asset time
series as our target. We introduce capital growth adjustment costs in the model to reflect frictions
in the capital flow between shadow- and commercial banks. Hence, the asset growth volatility
of either bank type should be informative about φK. Because it is straightforward to obtain, we
choose to the asset growth volatility of commercial banks as a target. We deflate this series, express
it in per capita terms, and calculate a quarterly growth rate of 0.5%. Based on NIPA data, we set
δK to match the depreciation rate of the capital stock to 2.5% per quarter. We set η to 0.667, the
labor share in production.

We set the regulatory capital ratio θ in the baseline model to commercial banks’ aggregate Tier-
1 equity ratio 10%. Although the regulatory minimum ratio is lower in the data, banks tend to
keep a small capital buffer, presumably to withstand small shocks without immediately risking
supervisory action. To calibrate the deposit insurance fee κC, we use the 2016 FDIC report that
states that banks paid $10 billion in FDIC insurance fees on an insurance fund balance of $83.162
billion. This represents 1.18% of insured deposits, implying a κC of 14.2 basis points per dollar of
insured deposits.50

Banks’ default behavior is predominately governed by five parameters (δj, ξ j, with j ∈ {C, S},
and πB). The non-pecuniary default penalties δj determine default thresholds of both types of
banks. Typically, the default threshold is assumed to be zero with the reasoning that default oc-
curs whenever equity holders are wiped out. However, distressed firms’ franchise value is often
difficult to measure. Rather than assuming a zero threshold, we use default rates in the data to
inform our choice of δj. To calibrate the default rates, we use commercial banks’ average quar-
terly loan net-charge off ratio of 0.23% and the quarterly default rate on non-bank financial bond
defaults of 0.28% as targets. The bankruptcy costs parameters ξ j with j ∈ {C, S} determine how
much of banks’ asset value can be recovered to pay out their creditors in case of default. For
commercial banks, we target the recovery value on senior secured debt and loans of 71.9% (from
Moody’s) net of an additional loss of 33.18% due to the FDIC’s resolution costs. This means that
our target for the total recovery value on commercial bank debt amounts to 48.1%. For shadow
banks’ recovery value, we target the average recovery value of 38.1% of senior unsecured debt
and subordinated debt.

Using our data definition of banks’ valuation shocks ρj, t, we parameterize each bank type’s
Gamma distribution with the standard deviation that we set to the time-series average of the cross-
sectional standard deviation of each bank type’s equity payout per share. This results in 12.1% for
commercial banks and 25.4% for shadow banks. The leverage of shadow banks is informative
about the shadow bailout probability parameter πB. A higher value of πB means that a large
fraction of S-bank debt is insured. For this reason, creditors do not fully price the default risk of
S-banks, lowering S-banks’ incentives to internalize default costs. S-banks can then increase their

49In the model, we calculate the bank-dependent GDP share as(
YC

t + YS
t

)
/
(

YC
t + YS

t + YH
t + Yt

)
.

50https://www.fdic.gov/about/strategic/report/2016annualreport/ar16section3.pdf
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equity valuation by increasing leverage. Hence, we use S-bank leverage of 87% as a target for
πB.51

The behavior of runs is governed by several parameters in the model. We match the bank
asset payoffs during the run state to 26% based on Campbell, Giglio, and Pathak (2011), and the
fraction of households that run on banks during a run state to 0.333 consistent with Covitz, Liang,
and Suarez (2013). We set the run state probabilities such that (i) the unconditional run probability
matches the occurrence of banking panics over our sample period and (ii) the average length of the
run state equals just over a quarter. The remaining parameter to be determined is the depreciation
rate of the capital stock during a run state δK. This parameter is important for the discount rate
on assets during the run state. To determine this parameter, we pick the average haircut of 15.1%
documented by Gorton and Metrick (2009) as a target.52

II.3 Derivation of liquidity spread regression

To motivate our regression design for calibrating ε and γH, we derive an equation for the model
spread between the rate on S-bank and C-bank debt. The starting point are the household first-
order conditions for holdings of the two types of debt, (47) and (48), under the simplifying as-
sumptions that πB = 0 and πR

t+1 = 0 (these assumptions do not affect the fundamental conclu-
sions from the derivation). Since we are looking for a simple empirical relationship, we further
suppress the expectations operators. Under these assumptions, the equations are

qC
t = Mt,t+1

(
1 + MRSC

t+1

)
qS

t = Mt,t+1

(
1− FS

ρ,t+1 + FS
ρ,t+1rS

t+1 + MRSS,t+1

)
,

where

MRSS,t = αψCγ
t H−γH

t

(
Ht

AS
t

)1−ε

, (73)

MRSC,t = (1− α)ψCγ
t H−γH

t

(
Ht

AC
t

)1−ε

, (74)

and

Mt,t+1 = β

(
Ct+1

Ct

)−γ

.

We perform a first-order log-linear expansion of both conditions around the deterministic steady
state of the model. Variables without time subscript and a bar (x̄) denote steady state values,
and hatted (x̂) variables denote log-deviations from steady state. The usual log-linearization tech-
niques give

q̂C
t = −γĈt+1 +

β ¯MRSC

q̄C
ˆMRSC

t+1,

51Note that our shadow bank definition includes GSEs that tend to be very highly levered. Finance
companies, also included in our definition of shadow banks, have typically lower leverage ratios.

52See the haircut for various asset classes during the crisis in Figure 2 in Gorton and Metrick (2009)

79



and

q̂S
t =

β

q̄S

[(
1− F̄S + F̄Sr̂S + ¯MRSS

t+1

)
M̂t+1 − F̄S

(
1− r̂S

)
F̂S

ρ,t+1 + F̄Sr̂Sr̂S
t+1

]
....

+
β

q̄S
¯MRSS

(
γĈt+1 + (1− ε− γH) (1− α)

Āε
C

H̄ε
ÂC,t+1 +

(
(1− ε− γH) α

Āε
S

H̄ε
+ (ε− 1)

)
ÂS

t+1

)
.

Further expanding
ˆMRSj

t = γĈt + (1− ε− γH) Ĥt − (1− ε) Âj
t

and

Ĥt = α
(AS)ε

Hε
ÂS

t + (1− α)
(AC)ε

Hε
ÂC

t ,

we can compute the spread q̂C
t − q̂S

t and collect terms to get

ˆqC,t − ˆqs,t = M̂t+1

(
β

q̄C

(
1 + ¯MRSC

t+1

)
− β

q̄S

(
1− F̄S + F̄Sr̂S + ¯MRSS

t+1

))
...

+ βγ

(
¯MRSC

q̄C −
¯MRSS

q̄S

)
Ĉt+1 +

β

q̄S F̄S
(

1− r̂S
)

F̂S
ρ,t+1 −

β

q̄S F̄Sr̂Sr̂S
t+1...

+ β

(
¯MRSC

q̄C (ε− 1) +

(
¯MRSC

q̄C −
¯MRSS

q̄S

)
(1− ε− γH) (1− α)

Aε
C

Hε

)
ÂC,t+1...

+ β

((
¯MRSC

q̄C −
¯MRSS

q̄S

)
(1− ε− γH) α

Aε
S

Hε
−

¯MRSS

q̄S (ε− 1)

)
ÂS,t+1. (75)

The coefficients in front of the liquidity quantities ÂS
t+1 and ÂC

t+1 in equation (75) reveal the role
of γH and ε for the effect of debt quantities on the spread. Clearly, if ε = 1 (perfect substitutes)
and γH = 0 (constant returns in total liquidity), the liquidity quantity terms drop out and thus do
not affect the spread. If ε = 1 and γH > 0, the equation becomes

ˆqC,t − ˆqs,t = M̂t+1

(
β

q̄C

(
1 + ¯MRSC

t+1

)
− β

q̄S

(
1− F̄S + F̄Sr̂S + ¯MRSS

t+1

))
...

+ βγ

(
¯MRSC

q̄C −
¯MRSS

q̄S

)
Ĉt+1 +

β

q̄S F̄S
(

1− r̂S
)

F̂S
ρ,t+1 −

β

q̄S F̄Sr̂Sr̂S
t+1...

− βγH

(
¯MRSC

q̄C −
¯MRSS

q̄S

)
Ĥt+1, (76)

i.e., in this case it is only the total quantity of liquidity services Ĥt that matters but not the type of
liquidity services.

For simplicity further assume that ξS = 1. This implies that we run the following regression:

ˆqC,t − ˆqs,t =ωAS ˆAS,t + ωAC ˆAC,t + ωm M̂t + ωFS
F̂S

ρ,t + ωCĈt,

where the ω’s are regression coefficients that map into the log-linearization coefficients of equation
(75) as stated in the main text in Eq. (31).
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II.4 Untargeted data momemts

The data for Table 3 covers the period from 1999 Q1 to 2019 Q4. All statistics are for the HP filtered
business cycle component.

We download the real personal consumption expenditures series from FRED (Federal Reserve
Bank of St. Louis). This series is in billions of chained 2012 dollars and seasonally adjusted. We
express this series in per capita terms. To get the per capita time series, we divide the real GDP
series by the real GDP per capita series in billions, both series downloaded from FRED. Then we
take logs and apply the HP filter. We use the HP-filtered real GDP per capita series to calculate
the business cycle correlations. We define investment as described in the calibration Section 4.2. It
is the real gross private domestic investment series, expressed in billions of chained 2012 dollars
divided and per capita terms. Then we take logs and apply the HP filter.

We calculate leverage for S-banks using data from Compustat, defining firms as S-banks as
described in Section 4.2 in paragraph “parameters to match moments of the ergodic distribution”.
Book leverage is defined as the ratio of total liabilities (ltq) to total assets (atq). Market leverage
is defined as the ratio of total liabilities (ltq) to the market value of assets, defined as the sum
of the market value of equity (cshoq*prccq) and total liabilities (ltq). We apply the HP filter to
each series and calculate its standard deviation and business cycle correlation. To calculate the
market leverage rate for C-banks, we use Compustat/CRSP data in addition to BHC data to get
the market value of equity for the subset of publicly traded BHCs.

We define the data counterpart of S-bank liquidity provision using Flow of Funds data as the
sum of money market mutual fund shares (Table L.206), repurchase agreements not involving
commercial banks or the Fed (the total from Table L.207 less repos by the Fed and commercial
banks), and financial sector commercial paper (Table L.209). We measure total liquidity provision
as the sum of shadow bank liquidity provision and commercial bank liquidity provision, the latter
defined as total deposits of BHCs.

We define the yield C, yield S, and the liquidity benefit in the data as described in Section 4.2.
That is, we use the deposit rate BHCs pay on deposits for yield C, and the AA rated financial
commercial paper series downloaded from FRED for yield S. We use the option-based measure
of the riskfree rate without a liquidity premium as calculated by Van Binsbergen, Diamond, and
Grotteria (2019) to calculate a liquidity premium. Note that the option based riskfree rate time
series is slightly shorter, starting in 2004 Q1 and ending in 2018 Q1. We map the spread between
the rate on S-bank and C-bank debt to the spread between the AA-rated financial commercial
paper series and deposit rates.

II.5 Simulation Data Variables

For our post-crisis simulation exercise, we download quarterly data for the period from 2008 to
2018.

We measure bank-dependent sector output (BDS output in Fig. 2) by applying the share of
bank-dependent sales (saleq) from Compustat to the real GDP per capita series from FRED, Fed-
eral Reserve Bank of St. Louis. We follow the definition in Kashyap, Lamont, and Stein (1994)
to classify firms as bank-dependent if they do not have a S&P long-term credit rating. Because
mortgages make up the largest share of the bank loan portfolio, we also add construction and real
estate firms as identified by SIC codes 6500-6599 (real estate), 1500-1599 (construction), and 1700-
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1799 (construction contractors, special trades) to the set of bank dependent firms. We consider
all other firms as bank-independent. We measure investment of the bank dependent sector (BDS
investment) as the ratio of capital expenditures (capxq) to assets (atq) from Compustat using the
same definition of bank dependent firms. We define consumption as the quarterly time series of
real personal consumption per capita, in chained 2012 dollars, downloaded from FRED, Federal
Reserve Bank of St. Louis.

We define aggregate liquidity as the sum of shadow bank debt and commercial bank liquidity
provision. We define the shadow bank liquidity supply as the sum of money market mutual fund
shares (Table L.206 in the Flow of Funds), repo (Table L.207) less the repo position of the Fed
and banks, and commercial paper from the domestic financial sector (Table L.209). We define the
commercial bank liquidity supply as deposits using the sum of total deposits of BHCs. We then
express these time series in chained 2012 dollars and in per capita terms. We calculate the S-bank
debt share as the ratio of the shadow bank liquidity supply as defined above in total liquidity
provision.

The shadow bank leverage time series comes from Compustat data using SIC codes to define
shadow banks. Shadow banks are GSE and Finance companies (27%) with SIC codes 6111-6299
(excluding SIC codes 6200, 6282, 6022, and 6199), REITS (66%) with SIC code 6798, and Miscel-
laneous investment firms (4%) with SIC codes 6799 and 6726. We measure leverage as the value
weighted total debt over asset ratio. This means that each quarter we sum up total liabilities and
total assets of all financial institutions that meet our shadow bank definition. Leverage is then just
the ratio of total liabilities to total assets for each quarter. The commercial bank leverage series is
derived similarly using also Compustat data. We define commercial banks as financial institutions
with SIC codes from 6000 to 6089 or SIC code 6712.

II.6 Parameter Sensitivity Checks

Table 7 presents the results of the model if a single parameter is changed relative to the benchmark
calibration of Section 4. In the first three columns, we focus on parameters of the liquidity function
(19).

First, we perturb the scale of the liquidity benefit ψ; as one would expect, higher ψ raises
liquidity production (line 16) and convenience yields (lines 10–11). As a result, deposit rates for
both types of banks decline (lines 8–9), the banking sector expands, and it funds more productive
capital (line 1). Because the marginal utility from liquidity is higher, S-banks increase leverage
(line 5). Overall, the economy suffers higher deadweight losses from bank failures of both kinds
of banks, partially the effect of higher GDP on consumption (line 17). Higher ψ exacerbates the
implicit subsidy to C-banks from deposit insurance and thus increases the C-bank market share.

Column (2) perturbs the weight on S-bank liquidity α. Predictably, higher α, leads to an expan-
sion in the S-bank share (lines 2-3). Raising α increases the wedge between decentralized equilib-
rium and the optimal planner allocation; in other words, the S-bank sector expands by less than
it ideally would for this increase in α. This reduces overall liquidity production (line 16), which
raises convenience yields (lines 10–11). The capital stock, but also S-bank leverage and defaults,
increase.

In column (3), we vary ε, which parameterizes the elasticity of substitution between S-bank
and C-bank debt. The main effect of higher ε is a smaller S-bank sector, as households care less
about the composition of liquidity services and C-bank have a competitive advantage.
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We do not include variations in γH in Table 7 since the effect of this parameter is discussed
at length in Section 5.2 of the main text. Overall, our take-away from these liquidity parameter
variations relative to the baseline is that they affect model moments in predictable and sufficiently
distinct ways that allow for separate “identification” of the parameters’ values when calibrating.

In column (4), we vary dispersion of S-banks’ idiosyncratic productivity shocks. An increase
in this parameter makes S-banks riskier at the same level of leverage. As a result, S-bank debt
becomes more expensive, and S-banks reduce leverage (line 5), yet not by enough to prevent a
higher default probability (line 13). Lower leverage implies that their equity is less attractive,
causing a somewhat smaller S-bank share. The level of σρS is a key parameter for the effect of
increased capital requirements: the riskier S-banks are in the model, the less the economy benefits
from shifting intermediation activity away from C-banks to S-banks.

In column (5), we consider variations of the S-bank bailout probability πB. If S-banks do not
receive any guarantees of their liabilities as in the simple model of Section 3, they choose 13%
lower leverage than in the benchmark model (line 5). Their capital share rises, yet their debt share
declines. Increasing πB by only 1.5pp relative to the benchmark has large opposite effects on the
S-bank leverage (+5.31%) and defaults (+169.25%). This comparison demonstrates that πB has
large and non-linear effect on the behavior of S-banks, and is a key parameter for determining
their leverage choice.

Table 8 evaluates different specifications of the liquidity function described in the main text,
equations (A1) and (A2). In these functions, the relative weight that S-banks receive in liquidity
production depends directly on their default risk: greater S-bank defaults reduce their liquidity
benefit. This specification nests the function used in the main text, (19), as special case with ν = 0.
As we can see, the net effect of these changes is similar to a reduction in α, but with a quantita-
tively smaller effect than the direct reduction in α considered above in Table 7. In fact, we verified
that our baseline model with a reduction in α by 5% yields very similar aggregate moments to the
model in column 2 of Table 8. The reason is that time-variation in the liquidity benefits produced
by S-bank debt makes this debt less attractive for households unconditionally. As result, house-
holds substitute to C-bank debt, which leads to a smaller S-bank share of capital and debt. This
comparison demonstrates that our preference specification is flexible enough to accommodate a
more direct interaction between default risk and liquidity premia; however, for a reasonable S-
bank default rate level and volatility, this interaction is sufficiently captured by the level of α.
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Table 7: Parameter Sensitivity Checks

(1) ψ (2) α (3) ε (4) σρS (5) πB

−25% +25% −25% +25% −25% +25% −5% +5% = 0 = .865

Capital and Debt

1. Capital -2.57 2.47 -0.83 0.74 0.05 -0.05 -0.03 0.01 0.38 -0.26
2. Debt share S 4.44 -2.30 -29.89 31.32 3.03 -3.34 1.50 -1.46 -8.10 0.99
3. Capital share S 6.56 -3.90 -28.88 29.89 2.93 -3.22 0.25 -0.29 1.37 -2.38
4. Capital S 3.82 -1.52 -29.46 30.84 2.98 -3.27 0.22 -0.28 1.75 -2.60
5. Leverage S -3.19 2.53 -0.88 0.59 0.06 -0.07 1.83 -1.70 -13.27 5.31
6. Leverage C -0.01 -0.01 0.02 0.03 0.03 -0.01 0.00 -0.00 0.02 0.02
7. Early Liquidation (runs) -4.18 3.49 -1.32 0.95 0.16 -0.19 1.75 -1.62 -12.77 4.95

Prices

8. Deposit rate S 11.75 -9.98 3.52 -2.96 -0.17 0.22 0.39 -0.19 -12.28 11.57
9. Deposit rate C 15.15 -14.01 4.47 -3.64 -0.26 0.29 0.20 -0.12 -2.44 1.53
10. Convenience Yield S -22.49 20.50 -6.65 4.43 0.32 -0.40 -1.97 1.97 13.89 -3.07
11. Convenience Yield C -18.71 17.48 -5.40 3.55 0.31 -0.34 -0.27 0.25 3.46 -1.97
12. Corr(Conv. Yield C,Y) -17.29 8.75 4.24 -10.18 2.10 -2.50 -1.28 1.23 8.40 -13.82

Welfare

13. Default S -43.08 50.34 -13.52 9.90 0.64 -0.81 -12.32 14.26 -94.65 169.25
14. Default C -1.76 1.23 0.11 1.43 0.83 -0.40 0.04 -0.02 0.90 0.54
15. GDP -0.19 0.18 -0.06 0.05 0.00 -0.00 -0.00 0.00 0.03 -0.02
16. Liquidity Services -4.00 3.44 8.95 -4.98 -0.38 0.43 0.50 -0.48 -3.81 1.40
17. Consumption -0.022 0.015 0.000 -0.006 -0.001 0.001 0.000 -0.001 0.031 -0.047
18. Vol(Liquidity Services) 17.82 -11.78 1.51 1.03 -0.59 0.48 2.54 -2.49 -13.33 -14.73
19. Vol(Consumption) 0.52 -0.39 -0.99 1.85 0.17 -0.13 0.07 -0.05 -0.68 5.46

This tables presents moments of the simulated model for different single-parameter changes. In columns (1)-(3), we decrease or increase the param-
eter by 25%. In Column (4), we de-/increase the volatility of S-banks’ idiosyncratic shock by 5%. In Column (5), we set the bailout probability of
S-banks to zero or increase it to 86.5%. All numbers are percentage changes relative to the baseline.
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Table 8: Time-varying S-bank Liquidity Preference Function

(A1) with ν = 1 (A1) with ν = 10 (A2) with ν = 1

Capital and Debt

1. Capital -0.01 -0.09 -0.02
2. Debt share S -0.37 -3.60 -0.93
3. Capital share S -0.36 -3.49 -0.88
4. Capital S -0.37 -3.57 -0.90
5. Leverage S -0.00 -0.05 -0.05
6. Leverage C -0.00 -0.01 -0.01
7. Early Liquidation (runs) 0.01 0.07 -0.23

Prices

8. Deposit rate S 0.03 0.35 0.08
9. Deposit rate C 0.05 0.47 0.11
10. Convenience Yield S -0.06 -0.64 -0.14
11. Convenience Yield C -0.06 -0.57 -0.13
12. Corr(Conv. Yield C,Y) 0.42 3.91 -2.98

Welfare

13. Default S -0.13 -1.38 -0.29
14. Default C -0.10 -0.39 -0.20
15. GDP -0.00 -0.01 -0.00
16. Liquidity Services 0.08 0.82 0.22
17. Consumption 0.000 0.001 0.000
18. Vol(Liquidity Services) -0.07 -0.59 22.84
19. Vol(Consumption) -0.02 -0.16 -0.05

This tables presents moments of the simulated model for different specifications of the utility function for
liquidity, see Section 4.4 in the main text. All numbers are percentage changes relative to the baseline.
Columns 1 and 2 use specification (A1), which means that S-bank liquidity supply in the liquidity aggrega-
tor H is multiplied by (1− FS)ν. The first column sets ν = 1, and the second column sets ν = 10. The third
column instead uses specification (A2) that also incorporates S-bank run risk and bailout probability.
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