We thank Jess Benhabib, Alberto Bisin, Patrick Bolton, Mariacristina De Nardi, Xavier Gabaix, Fatih Guvenen, Dirk Krueger, Ye Li, Erzo Luttmer, Benjamin Moll, Jonathan Payne, Alexis Toda, and seminar participants at Columbia and Shanghai Finance Forum for helpful criticisms. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2021 by Thomas J. Sargent, Neng Wang, and Jinqiang Yang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
The cross-section distribution of U.S. wealth is more skewed than the distribution of labor earnings. Stachurski and Toda (2019) explain how plain vanilla Bewley-Aiyagari-Huggett (BAH) models with infinitely lived agents can't generate that pattern because an equilibrium risk-free rate is lower than the time rate of preference and each person's wealth process is stationary. We provide two modifications of a BAH model that generate this pattern: (1) overlapping generations of agents who have low wealth at birth and pass through N life-stage transitions of stochastic lengths, and (2) labor-earnings processes that exhibit stochastic growth. With only a few parameters such a model can well approximate mappings from the Lorenz curve and Gini coefficient for cross-sections of labor earnings to their counterparts for cross sections of wealth. Three forces amplify inequality in wealth relative to inequality in labor-earnings: stochastic life-stage transitions; a precautionary savings motive for high wage earners that is especially strong after they receive positive permanent earnings shocks; and an energetic life-cycle saving motive for agents who have low wealth at birth. An equilibrium risk-free interest rate that exceeds a time preference rate fosters a fat-tailed wealth distribution.
I. Introduction

We calibrate a sparsely parameterized continuous-time life-cycle model and use it to show how responses to permanent labor-earning shocks by households with high labor earnings widen its equilibrium distribution of wealth. Except for assuming a nonstationary labor earnings process and a stochastic multiple life-stage overlapping generations demographic structure, our model stays close to the discret- time Bewley-Aiyagari-Huggett (BAH) models with stationary labor earnings processes that have struggled to put sufficient mass at upper quantiles of equilibrium wealth distribution. That feature of BAH models led researchers to change assumptions in ways designed to make wealthier agents want to save more. Examples of such alterations include the warm-glow bequest and human capital motives of De Nardi (2004), very large earnings risk for high-earning households of Castañeda, Díaz-Giménez, and Ríos-Rull (2003), heterogenous preferences of Krusell and Smith (1998), and the importance of entrepreneurship of Quadrini (2000) and Cagetti and De Nardi (2006, 2009).

We purposefully exclude these additional motivations to save because we want to determine how far nonstationary labor earnings processes and a stochastic life cycle by themselves go toward allowing a basic BAH’s model to put enough mass in the upper end of an equilibrium wealth distribution. We show that by themselves, they do most of the job.

We use a pure counting process to model an agent’s life cycle. At birth each agent has no wealth, the same initial labor earnings, and the same fixed number N of sequentially ordered life stages. Transition from life stage n to stage $(n + 1)$ occurs at an exogenous constant probability per unit of time. At the final life stage N, the agent purchases an actuarially fairly priced (reverse) life annuity and dies with zero wealth. Our life-stage model is a continuous-time generalization of discrete-time life-cycle models used by Gertler (1999) and Castañeda, Díaz-Giménez, and Ríos-Rull (2003) and nests the “perpetual youth” model of Yaari (1965) and Blanchard (1985) as a special case. Agents are born owning little wealth.

Our model’s equilibrium interest rate exceeds the agent’s time preference rate by enough to motivate sufficient savings to match the empirical aggregate capital-output ratio and to activate a force that helps make the cross-section distribution of wealth fatter than the distribution of labor earnings.
The exogenous labor-earnings process displays random growth within each life stage n, a feature that generates a cross-section fat-tailed earnings distribution via a mechanism similar to ones in Gabaix (1999), Luttmer (2007, 2011), Toda and Walsh (2015), and Jones and Kim (2018). In our quantitative analysis, we economize on parameters by assuming that the labor-earnings process remain unchanged over the agent’s life cycle. Gabaix (1999) shows that the distribution of city populations is well described by a Pareto distribution, also known as Zipf’s law. Luttmer (2007, 2011) constructs models that generate fat-tailed firm size distributions. Toda and Walsh (2015) show that cross-section distributions of US consumption and its growth rate obey the double power law. Jones and Kim (2018) generate an endogenous cross-section fat-tailed earnings distribution in a Schumpeterian creative-destruction model with heterogeneous entrepreneurs. We build on an insight of Gabaix, Lasry, Lions, and Moll (2016) and Jones and Kim (2018) that a properly tweaked random earnings growth model implies that earnings inequality is fractal.

In conjunction with discounted constant-relative-risk-averse (CRRA) preferences, the random growth with drift labor-earnings process implies decision rules that induce wealthier agents to save enough to generate an equilibrium wealth distribution whose upper quantiles approximate US data well. Our model’s analytic tractability allows us to unveil basic forces that shape saving decision rules and equilibrium outcomes.

De Nardi (2015) points out that the heart of the problem with BAH-style models is that they predict that “rich people are not nearly rich enough, middle-class people are too rich, and poor people are too poor, compared with the actual data.” This is because “the nature of precautionary savings implies that households save to self-insure against earnings risk but that, as a result, the saving rate decreases and then turns negative when a person’s net worth is large enough relative to her labor earnings. Hence, the saving rate

1. Gabaix (2009) and Luttmer (2010) survey these mechanisms. A key insight in the power-law literature is that random growth (properly modified to account for stationarity) and ex ante heterogeneity naturally generate Pareto distributions and that a parameter fixing the random growth rate governs the fatness of the tail. For early classics on Pareto distributions, see Champernowne (1953), Simon (1955), and Mandelbrot (1960).

2. Here is an example of (constant) fractal inequality: Jones and Kim (2018) write, “What fraction of the income going to the top 10 percent of earners accrues to the top 1 percent? What fraction of the income going to the top 1 percent of earners accrues to the top 0.1 percent? What fraction of the income going to the top 0.1 percent of earners accrues to the top 0.01 percent? The answer to each of these questions – which turns out to be around 40 percent in the United States today – is a simple function of the parameter that characterizes the power law.”
of the wealthy in these models is negative.” She concludes that “basic Bewley models, whether featuring infinitely-lived agents or life-cycle agents with more realistic patterns of earnings and savings over the life cycle, are far from doing a good job of matching the observed distribution of wealth . . . While in the data wealth is concentrated in the hands of a small number of rich people and the saving rate of the rich is high, many models used for quantitative policy evaluation fail to match these facts.”

In our model, permanent shocks to levels of their labor earnings make rich people keep saving at high rates, as they do in U.S. data. This happens because precautionary savings motives of those with high earnings stay strong even after a long sequence of positive earnings shocks. Even though earnings are expected to grow and shocks are permanent, the marginal propensity to consume (MPC) out of permanent shocks to earnings stays lower than one except for very large wealth-earnings ratios. Because they have little wealth at birth, young agents also have strong incentives to save. Strong saving motives are promoted by an equilibrium interest rate that exceeds a representative agent’s subjective discount rate, something that does not occur in BAH models with infinitely-lived agents. A combination of permanent earnings shocks and a high equilibrium interest rate makes strong savings motives persist throughout even a wealthy person’s life. That leads to big wealth inequality.

We capitalize on the tractability of continuous-time stochastic modeling techniques that also underly mean field game theory. We solve Hamilton-Jacobi-Bellman equations “almost by hand.” We use optimal decision rules and Kolmogorov forward equations to characterize a stationary joint distribution of labor earnings and wealth. Optimal saving rules at different stages of life indicate how permanent earnings shocks ignite precautionary savings motives that affect even wealthier people of all ages and that enable our model to generate a cross-section wealth distribution that has a fatter tail than cross-section earnings.

3. We describe an equilibrium in which an agent’s MPC out of permanent earnings shocks approaches zero as her wealth-earnings ratio \(x \) approaches zero, either because her financial wealth approaches zero or because her earnings are extremely high.

We report both the Gini coefficient and Lorenz curve as Castañeda, Díaz-Giménez, and Ríos-Rull (2003) and De Nardi (2004) have also done.

Concavity of optimal consumption decision in the wealth-earnings ratio \(x \) reflects an agent’s enduring precautionary saving motive and fosters wealth inequality. An agent with high labor earnings can also have a low wealth-earnings ratio, \(x \), making it optimal to save a lot. Furthermore, when an agent with high labor earnings receives a sequence of positive earnings shocks, its motive to save becomes even stronger, providing a force that contributes to high equilibrium wealth inequality.

A typical BAH model’s joint cross-section distribution of wealth and labor earnings also describes the fraction of time that each individual spends in each set of wealth, labor earnings states. Equality between these two probability distributions in BAH models is an essential ingredient of Stachurski and Toda (2019)’s finding that wealth cannot have a fatter tail than labor earnings in BAH models with infinitely-lived agents. Our model decouples those two joint distributions: an equilibrium cross section distribution of wealth and labor earnings does not describe life-time fractions that each individual spends in possible wealth, labor earnings pairs. That disarms the Stachurski-Toda mechanism and makes the equilibrium joint cross-section distribution of wealth and earnings have fatter tails for wealth than for labor earnings.

Research papers that generate endogenous Pareto distributions for wealth include Benhabib, Bisin, and Zhu (2011, 2015, 2016), Toda (2014), Hubmer, Krusell, and Smith (2016), Nirei and Aoki (2016), and Moll et al. (2019). The mechanisms that produce those Pareto distributions operate via either an asset accumulation equation (random growth models) or a capital accumulation equation in a neoclassical growth model. In contrast, we start with an empirically plausible fat-tailed cross-section earnings distribution and use the standard BAH consumption-smoothing mechanism endogenously to generate a cross-section distribution for wealth that has a fatter tail than earnings.

Because they do not start with exogenous earnings and don’t allow for endogenous savings, most continuous-time wealth distribution models are not in the BAH tradition. But there are notable exceptions. Achdou, Han, Lasry, Lions, and Moll (2017) formulate

5. Stachurski and Toda (2019, sec. 4) describe modifications of canonical BAH models that disarm their impossibility theorem.
BAH-style models in continuous time. Unlike our model, they retain the assumption that labor earnings are governed by a stationary stochastic process.

II. DECISIONS

Time and an agent’s age $t \in [0, +\infty)$ are both continuous. Equal measures of agents are born and die over each small interval of time. Markets are incomplete. Agents are identical at birth but differentiated afterwards by their luck. Each agent receives statistically independent realization of an exogenous stochastic labor earnings stream over a stochastic life time that is almost surely finite.

An agent’s life stage $\{S_t\}$ is a non-decreasing integer-valued stochastic process that at age t takes a value inside a set of integers $\{1, 2, \ldots, N\}$, where $N \geq 1$ is finite. An agent begins life in stage $n = 1$ at age $t = 0$. Conditional on being in life stage n at age t, over a small age interval $(t, t + dt)$, an agent remains in life stage n with probability $1 - \lambda_n dt$ and advances to life stage $(n + 1)$ with probability $\lambda_n dt$. This structure induces a sequence $\{\tau_n\}_{n=1}^N$ of random ages at which an agent moves from life stage n to life stage $(n + 1)$, so that $\tau_n = \inf\{t : S_t = n + 1\}$. An agent is exposed to mortality risk only during life stage $S_t = N$. Wang (2002) uses this stochastic life-cycle model to study equilibrium wealth distribution with negative exponential utility and an affine labor-earnings process. Luttmer (2011) uses a closely related stochastic process to model dynamics of firms’ blueprints.

Interpretations of Life Stages. Two interpretations of S_t are plausible. One is that life-stage S_t indexes a single person’s age-t health status. Here we would calibrate stage-dependent labor-earnings processes to make health-related productivity be correlated with age t.

An alternative interpretation is that the entity being modeled is a family dynasty with parents who are altruistic. Parents in stage n want to leave bequests to heirs in stage $(n + 1)$ and cannot fully hedge their own death risk until the dynasty reaches its terminal stage N. A dynasty stochastically transitions from one generation to the next and eventually

6. See Duffie (2010) for applications of affine processes to term structure of interest rates and credit risk models.
Figure I

Probability densities of life lengths z at birth in four models with $N = 1, 3, 6, 12$ life stages. Transition intensities $\lambda_n = \lambda$ for all n in each of four models but $N/\lambda = 60$ across the four models.

becomes extinct. By adopting this interpretation, we could account for accidental bequests. Thus, there is a sense in which the mechanism of De Nardi (2004) and other bequest models is also at work in our model.

Benhabib, Bisin, and Luo (2019) quantified an equilibrium model of the U.S. wealth distribution and social mobility. We can use a family dynasty instance of our model to study inter-generational economic mobility together with a cross-section wealth distribution.

Let z be the remaining length of life of an agent now in stage n who has $(N - n + 1)$ remaining life stages. The random variable z is the sum of $(N - n + 1)$ independently and identically distributed exponentially random variables each with the rate parameter λ (and hence a mean of $1/\lambda$). It has the following probability density function:

$$
\phi_n(z; N) = \frac{\lambda^e^{-\lambda z} (\lambda z)^{N-n}}{(N-n)!}.
$$

(1)

This instance of a Gamma function generates an Erlang distribution with two parameters: the shape parameter k equals $(N - n + 1)$, the number of remaining life stages, and the rate parameter is λ. When $n = 1$, z is also the random length of life for a new born whose
distribution is given by equation (1) in a model with N life stages.

Figure I plots density functions $\phi_1(z; N)$ of life lengths z and also of the remaining lengths of life for an agent in stage 1 with N remaining life stages in models with $N = 1, 2, 6, 12$. To show how models with $N > 1$ can provide more realistic mortality with few parameters, we set transition intensities $\lambda_n = \lambda$ for all n in each of four models and set $N/\lambda = 60$ to deliver the same average life lengths of 60 years for each N. An $N = 1$ perpetual youth model generates too many very old people. Thus, if λ is calibrated to yield a realistic average (working) life span of $\lambda = 1/60$ years then the probability of living longer than 120 years is $e^{-120/60} = 13.5\%$. The probability of living longer than 120 years is 9.2\%, 2.0\%, and 0.3\%, for $N = 2$, $N = 6$, and $N = 12$ models. Evidently, increasing the number of life-stages N while holding average age fixed at N/λ delivers thinner and thinner right tails for life lengths. In an $N > 1$ model, an older agent is more likely to be in a later than an early life-stage n.

An agent ranks consumption processes $\{C_t\}_{t=0}^{\infty}$ by discounted expected utilities

$$
\mathbb{E}\left[\int_0^{\tauN+1} e^{-\rho t} U(C_t) \, dt \right],
$$

where $\rho > 0$ is a discount rate and $\mathbb{E}[\cdot]$ is a mathematical expectation with respect to probability distributions of the stage of life process $\{S_t\}$ and of the labor-earnings process $\{Y_t\}$. We assume a constant relative-risk-aversion instantaneous utility function

$$
U(C) = \begin{cases}
\frac{C^{1-\gamma}}{1-\gamma} & \text{if } \gamma > 0, \gamma \neq 1 \\
\ln(C) & \text{if } \gamma = 1
\end{cases}
$$

Although many BAH models assume a stationary labor-earnings process, econometric studies have often estimated nonstationary processes that include permanent shocks. For that reason, we assume that labor earnings $\{Y_t\}$ follow diffusion processes with permanent

7. We interpret an age of 0 in our model as the beginning of a living individual’s age of 18 in real life.
8. For the agent’s objective function, without loss of generality, we set the agent’s birth time τ_1 to 0.
9. For example, see Macurdy (1982), Abowd and Card (1989), and Meghir and Pistaferri (2004), and Blundell, Pistaferri, and Preston (2008). Here we ignore important fixed effects such as education and gender, as well as other life-cycle variations across agents. Our labor-earnings process could be extended to also feature a transitory component. For example, see Section 10 in Wang, Wang, and Yang (2010) for one such generalization.
shocks only. Thus, each agent has the following labor earnings process during life stage S_t:

\[dY_t = \mu_{S_t} Y_t \, dt + \sigma_{S_t} Y_t \, dB_t, \quad 0 \leq t < \tau_{N+1}, \]

where B is a standard Brownian motion, $Y_0 > 0$ is initial labor earnings at birth, and μ_{S_t} and σ_{S_t} are stage-S_t-dependent growth rates and volatilities of labor earnings, respectively. Process (3) asserts that within each life stage S_t, the growth rate of labor earnings, dY_t/Y_t, is independently and identically distributed. Therefore, shocks to labor earnings are permanent in levels. Specification (3) lets labor earnings growth and volatility both depend on stage of life S_t, a random variable that is correlated with age and that lets us approximate plausible age-earnings profiles. Although details differ, our labor-earnings process has both permanent shocks and some life-cycle features similar to those used by Zeldes (1989), Deaton (1991), Carroll (1997), and Gourinchas and Parker (2002).

Random earnings growth models with adjustments to ensure stationarity generate Pareto distributions with fat tails as demonstrated by Gabaix (1999), Luttmer (2007), Gabaix, Lasry, Lions, and Moll (2016), and Jones and Kim (2018). We recognize that there is persuasive evidence that the earnings process has other interesting features such as skewness (see Guvenen, Ozkan, and Song (2014) and De Nardi, Fella, and Paz-Pardo (2020)). We choose a simple earnings model in order to focus on the channel through which we generate a fatter tailed distribution for wealth than for earnings while acknowledging that our simple random growth model neglects how labor earnings respond to transient shocks.

Applying Ito’s formula to equation (3) verifies that the dynamics of $\ln Y$ during life stage n are:

\[d\ln Y_t = g_n \, dt + \sigma_n \, dB_t, \]

where the expected change of log income during life stage n, i.e., the drift in (4), equals

\[g_n = \mu_n - \frac{\sigma_n^2}{2}. \]

10. We can generalize our earnings model to allow for jumps as in Gabaix, Lasry, Lions, and Moll (2016) and Section 9 in Wang, Wang, and Yang (2016), but we omit jumps because our diffusion model is sufficient to deliver our key results that cross-section wealth is more skewed and fat tailed than earnings.
where \(\sigma_n^2/2 \) is a Jensen’s inequality correction term at stage \(n \).

The arithmetic Brownian motion \(\text{(4)} \) implies the following discrete-time process:

\[
\ln Y_{t+1} - \ln Y_t = g_n + \sigma_n \epsilon_{t+1},
\]

where the time-\(t \) conditional distribution of \(\epsilon_{t+1} \) is a standard normal random variable. Thus, during life stage \(n \), \(\ln Y_t \), is a unit-root process whose first difference is independently and normally distributed with mean \(g_n \) and volatility \(\sigma_n \). The Ito correction term can make the expected labor earnings growth rate in logarithms \(g_n \) differ substantially from the growth rate of labor earnings \(Y \) in levels, \(\mu_n \). For example, at an annual frequency, with \(\mu_n = 1.5\% \) and \(\sigma_n = 10\% \), we have \(g_n = 1\% \), which is one third lower than the growth rate \(\mu_n = 1.5\% \) due to the Jensen’s inequality term, \(\sigma_n^2/2 = 0.5\% \). Because labor earnings growth shocks are i.i.d., shocks to levels of \(Y \) are permanent.

Let \(X \) denote an agent’s wealth process and set initial wealth \(X_0 \) to zero. During each stage of life, an agent can trade a risk-free financial asset that offers a constant rate of return \(r \). At age \(t \) and life stage \(S_t < N \), over a small increment \((t, t + dt) \), the agent faces zero mortality risk. Therefore, whenever \(S_t < N \), or equivalently when \(0 \leq t < \tau_N \), where \(\tau_N = \inf\{u : S_u = N\} \), wealth evolves as:

\[
dX_t = (rX_t + Y_t - C_t)dt, \quad 0 \leq t < \tau_N.
\]

During end-of-life stage \(N \) an agent purchases an actuarially fair “reverse-life-insurance” contract that provides a flow of life-time payments in exchange for having agreed to transfer end-of-life wealth \(X_{\tau_{N+1}} \) to the insurance company. Preferences of an agent in life stage \(N \) are the same as those of a perpetual youth with a discount rate \(\rho \) that is augmented by a mortality hazard rate \(\lambda_N > 0 \) to become an effective discount rate \(\rho + \lambda_N \). When \(\tau_N < t < \tau_{N+1} \), an agent is in life stage \(N \) and her wealth evolves as:

\[
dX_t = (rX_t + \lambda_N X_t - Y_t - C_t)dt - X_{t-}dS_t, \quad \tau_N < t < \tau_{N+1}.
\]

Thus, during life stage \(N \) two new terms augment the saving rates \(rX_t + Y_t - C_t \) during life stages \(n < N \): (a) an actuarially fair payment rate \(\lambda_N X_t \) from the insurance...
company to the agent; and (b) a one-time transfer of wealth $X_{\tau_{N+1}}$ from the agent to the insurance company at the stochastic death moment $t = \tau_{N+1}$ when $dS_t = dS_{\tau_{N+1}} = 1$.

An agent cannot borrow against future labor earnings, i.e.,

$$X_t \geq 0, \quad \text{for all} \quad t \geq 0,$$

but she can dissave when her assets are positive. Financial income consists of interest income rX_t and also, but only during end-of-life stage N, reverse life insurance payments $\lambda_N X_t$. Non-financial income equals labor earnings Y_t.

A representative firm operates a production function $F(K, L) = AK^\alpha L^{1-\alpha}$, where $A > 0$, $\alpha \in (0, 1)$, K is the aggregate capital stock, and L is the aggregate labor stock. Physical capital depreciates at a constant rate δ. The firm rents capital and labor in competitive markets.

III. Saving

We compute optimal decision rules and an object that we call “certainty equivalent wealth” as functions of wealth, labor earnings, and life stage in closed forms up to some interconnected ordinary differential equations with economically interpretable boundary conditions for each life stage.

III.A Recursions

We work backwards from stage N to stage 1. An agent in the final stage N acts as a perpetual Yaari-Blanchard youth so her value function satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

$$(\rho + \lambda_N) V_N(X, Y) = \max_{C > 0} U(C) + ((r + \lambda_N)X + Y - C)V_{N,X}(X, Y)$$

$$+ \mu_N Y V_{N,Y}(X, Y) + \frac{\sigma_N^2 Y^2}{2} V_{N,YY}(X, Y).$$

(10)

The left side of HJB equation (10) multiplies value function by the rate of $(\rho + \lambda_N)$ in order to account for the probability of death per unit of time. The coefficient on $V_{N,X}$ on
the right side of (10) sets the rate of return on savings at \(r + \lambda_N \); \(r \) is contributed by the risk-free rate while \(\lambda_N \) is a revenue flow from reverse life insurance. The insurance company collects an agent’s entire wealth \(X \) at the instance of death. The agent optimally sets \(C \) to equate the two sides of (10).

Value functions for life stages \(n \in (1, N - 1) \) satisfy HJB equations:

\[
\rho V_n = \max_{C > 0} U(C) + (rX + Y - C)V_{n,X}(X,Y) + \mu_n Y V_{n,Y}(X,Y) + \frac{\sigma_n^2 Y^2}{2} V_{n,YY}(X,Y) \\
+ \lambda_n (V_{n+1}(X,Y) - V_n(X,Y)) .
\]

(11)

When life-stage \(S_t = n \leq N - 1 \), an agent’s death probability is zero over every infinitesimal time interval. A reverse annuity is purchased only in life stage \(N \), so the rate of return on savings \(X \) equals the risk-free rate \(r \) in stages \(n < N \). The last term in (11) comes from the stochastic transition from stage \(n \) to stage \((n + 1) \).

Value functions have a homogeneity property that lets us write them as

\[
V_n(X, Y) = \frac{(b_n P_n(X,Y))^{1-\gamma}}{1-\gamma} \quad 1 \leq n \leq N ,
\]

(12)

where \(P_n(X, Y) \) is an agent’s “certainty equivalent wealth” at life stage \(n \), an object interpretable as a welfare measure expressed in units of the consumption good. Thus, imagine that at some stage of life, an agent has two options: either (1) adhering to the saving plan prescribed by the model; or (2) surrendering both her savings \(X \) and her continuation life-stage-dependent labor earnings processes \(Y \) in exchange for retiring immediately with wealth level \(\Omega \), from which she can either consume or else save and earn the risk-free rate \(r \) for the rest of life. Wealth \(\Omega = P_n(X,Y) \) makes the agent indifferent between these two options. From knowing \(P_n(X,Y) \), we can uniquely pin down \(b_n \).

The coefficient \(b_n \) in the value function (12) is

\[
b_n = m_n^{\gamma/(\gamma-1)} .
\]

(13)

To compute the \(\{m_n; 1 \leq n < N\} \) sequence, start from the following formula for the

11. The probability attached to two consecutive jumps over an infinitesimal time interval \(dt \) is zero.
coefficient m_N at stage N,

$$m_N = r + \frac{1}{\gamma} (\rho - r) + \lambda_N ,$$ \hspace{1cm} (14)

and work backwards to compute the coefficient m_n for stage n via the recursion:

$$m_n = r + \frac{1}{\gamma} (\rho - r) + \frac{\lambda_n}{\gamma} \left[1 - \left(\frac{m_{n+1}}{m_n} \right)^{-\gamma} \right].$$ \hspace{1cm} (15)

We restrict parameters to make economic sense. For example, we impose parameter restrictions that make the right side of equation (14) be positive.

The $P_n(X,Y)$ functions allow us to characterize optimal consumption rules. The homogeneity property of $V_n(X,Y)$ depicted in equation (12) generates policy functions and other important objects that scale by labor earnings. The wealth-earnings ratio $x = X/Y$ becomes a state variable that lets us express optimized utility in terms of a function $p_n(x) = P_n(X,Y)/Y$ and the optimal consumption rule in terms of a function $c_n(x) = C_n(X,Y)/Y$.

First-order conditions for consumption associated with HJB equations (10) and (11) imply

$$c_n(x) = m_n p_n(x) \left(p_n'(x) \right)^{-1/\gamma}.$$ \hspace{1cm} (16)

An important result is that incomplete markets make $p'(x) > 1$ for all finite values of x, which means that financial wealth is valuable beyond its pure purchasing value. Certainty-equivalent wealth scaled by labor earnings Y for life stage $n = N$, $p_n(x)$, satisfies the ODE:

$$0 = \left(\frac{\gamma m_N p_n'(x)^{1-1/\gamma} - (\rho + \lambda_N)}{1 - \gamma} + \mu_N - \frac{\gamma \sigma_N^2}{2} \right) p_N(x) + p_N'(x)
$$
$$+ (r + \lambda_N - \mu_N + \gamma \sigma_N^2) x p_N'(x) + \frac{\sigma_N^2 x^2}{2} \left(p_N''(x) - \frac{(p_N'(x))^2}{p_N(x)} \right).$$ \hspace{1cm} (17)
For earlier life stages $S_t = n \leq N - 1$, $p_n(x)$ satisfies the ODE:

$$
0 = \left(\frac{\gamma m_n p'_n(x)^{1-1/\gamma} - \rho}{1 - \gamma} + \mu_n - \frac{\gamma \sigma_n^2}{2} \right) p_n(x) + p'_n(x) + (r - \mu_n + \gamma \sigma_n^2) x p'_n(x) \\
+ \frac{\sigma_n^2 x^2}{2} \left(p''_n(x) - \gamma \frac{(p'_n(x))^2}{p_n(x)} \right) + \lambda_n p_n(x) \left[\frac{m_{n+1}^{-\gamma}}{m_n^{-\gamma}} \left(\frac{p_{n+1}(x)}{p_n(x)} \right)^{1-\gamma} - 1 \right].
$$

When wealth $X = 0$, the no-borrowing constraint \(9\) implies that consumption C cannot exceed labor earnings ($C \leq Y$). We can express \(9\) in terms of scaled variables as:

$$
c_n(0) \leq 1, \quad \text{for } 1 \leq n \leq N,
$$

a constraint that may or may not bind. If $c_n(0) < 1$, the agent’s saving motive is strong enough to keep wealth X always strictly positive. In this case, relaxing constraint \(19\) has no value, so a Lagrange multiplier on constraint $X \geq 0$ is zero.

If $c_n(0) = 1$ and constraint \(19\) binds, then zero wealth $X = 0$ is an absorbing state. \textcite{Campbell1990} and \textcite{Kaplan2014} refer to consumers with zero wealth who set $C = Y$ as hand-to-mouth consumers and document that they constitute a sizable proportion of consumers. For such consumers, $c_n(0) = 1$. This condition and the optimal consumption rule \(16\) jointly imply that certainty equivalent wealth $p_n(0)$ and its first derivative $p'_n(0)$ are linked via $m_n p_n(0) (p'_n(0))^{-1/\gamma} = 1$, a boundary condition on the function p_n at $x = 0$.

To find another boundary condition for $p_n(x)$, we note that as x approaches infinity the agent uses holdings of the single risk-free asset completely to buffer all idiosyncratic labor-earnings shocks, but stage-of-life shocks remain uninsurable. We can show that as $x \to \infty$, $p_n(x)$ satisfies the condition:

$$
\lim_{x \to \infty} p_n(x) = x + q_n, \quad \text{for } 1 \leq n \leq N,
$$

where scaled certainty-equivalent values of labor earnings defined as $\{q_n : 1 \leq n \leq N\}$ satisfy

$$
q_n = \frac{m_n^{-\gamma} + \lambda_n m_{n+1}^{-\gamma} q_{n+1}}{m_n^{-\gamma}(r - \mu_n) + \lambda_n m_{n+1}^{-\gamma}}, \quad 1 \leq n < N,
$$

13
and

$$q_N = \frac{1}{r + \lambda_N - \mu_N}. \quad (22)$$

Having computed the sequence of \(\{m_n : 1 \leq n \leq N\} \) from the recursion defined by (14) and (15), we can solve (21) recursively for \(\{q_n\} \) by starting from (22) at stage \(N \).

We have thus established that an agent’s optimal consumption rule is (16) and that the scaled certainty equivalent wealth \(p_n(x) \) satisfies (18) at life stages \(n \leq N - 1 \) and (17) at life stage \(N \), subject to boundary conditions (19) and (20).

Dynamics of Scaled Wealth \(x \). By using Ito’s Lemma, we express the dynamics for agent’s scaled wealth \(x_t \) when \(0 \leq t < \tau_N \):

$$dx_t = \left[1 + \left(r - \mu_n + \sigma_n^2\right) x_t - c_n(x_t)\right] dt - \sigma_n x_t dB_t, \quad 0 \leq t < \tau_N. \quad (23)$$

During life’s final stage \(N \), scaled wealth evolves as

$$dx_t = \left[1 + \left(r + \lambda_N - \mu_N + \sigma_N^2\right) x_{t-} - c_N(x_{t-})\right] dt - \sigma_N x_{t-} dB_t - x_{t-} dS_t. \quad (24)$$

III.B Optimal Value Functions and Decision Rules

For parameter values described in Section IV, Figures II and III portray scaled certainty equivalent wealth \(p_n(x) \) and the optimal consumption-earnings ratios \(c_n(x) \) at stages \(n \) for our \(N = 1 \) and the \(N = 2 \) models.

III.B.1 The \(N = 1 \) Model

Figure II plots \(N = 1 \) objects. Panels A and B show that net scaled certainty-equivalent wealth, \(p(x) - x \), is increasing and concave in the wealth-earnings ratio \(x \) and that \(p'(x) - 1 \geq 0 \). The dashed lines in Panels A and B depict \(p(x) - x = q = 15.24 \) and \(p'(x) = 1 \), the solution under a complete markets in which earnings and life-stage shocks are both insurable. The wedge between \(p(x) - x \) and \(q = 15.24 \) captures the loss of the certainty equivalent wealth that comes from incomplete markets. For a penniless agent, certainty equivalent wealth \(p(0) = 13.37 \) of labor earnings is 12.3% lower than \(q = 15.24 \) under complete markets. Thus, an agent values a marginal unit of wealth at a premium of about
12%, i.e., \(p'(0) = 1.12 \). Even when \(x = 10 \), \(p(10) - 10 = 14 \), which is still 8% lower than \(q = 15.24 \). Thus, the wedge between \(p(x) - x \) and \(q \) remains substantial even for very large values of \(x \). Evidently, incomplete-markets have first-order effects on an agent’s welfare as measured by certainty equivalent wealth.

Panels C and D of Figure II show that an agent’s consumption-earnings ratio, \(c(x) \), is increasing and concave in the wealth-earnings ratio \(x \). The MPC \(c'(x) \) starts at \(c'(0) = 8.4\% \) and slowly decreases towards the CM benchmark value, \(m = 7.2\% \) as \(x \to \infty \), indicating that the rich want to save much more than the poor, as they indeed do in US data. With
Figure III

Net scaled certainty-equivalent wealth $p(x) - x$, marginal certainty-equivalent value of wealth $p'(x) - 1$, consumption-earnings ratio $c(x)$, and the MPC $c'(x)$ for the $N = 2$ model. Scaled certainty-equivalent values of labor earnings are $q_1 = 18.70$ and $q_2 = 12.35$, for stages 1 and 2, respectively, while $m_1 = 6.31\%$ and $m_2 = 8.83\%$. Parameter values are reported in Table I.

complete markets, $c(x) = m(x + q)$. As measured by reduced consumption, the wedge between the two lines in Panel C describes the loss of utility that comes from markets being incomplete.

III.B.2 The $N = 2$ Model

Figure III plots features of our $N = 2$ model. Panels A and B again show that net scaled certainty-equivalent wealth, $p(x) - x$, is increasing and concave in the wealth-earnings ratio x, as it also is in Figure II for the $N = 1$ model. Evidently, $p(x) - x$ and its derivative
$p'(x) - 1$ are both higher in life stage 1 than in life stage 2. This makes sense because an agent with the same levels of X and Y in her earlier life stage is relatively wealthier in terms of certainty equivalent wealth, $p_1(x) > p_2(x)$, and therefore is relatively poor in terms of liquid financial wealth, i.e., is more “liquidity constrained”, which leads to a higher marginal valuation for a unit increase of wealth X, i.e., $p'_1(x) > p'_2(x)$. For example, a penniless agent values a dollar windfall at a 14.4% premium in stage 2 ($p'_2(0) - 1 = 0.144$), while she would assign a 20.3% premium to the same windfall in life stage 1 ($p'_1(0) - 1 = 0.203$).

Panels C and D show that an agent’s consumption is increasing and concave in the wealth-earnings ratio x in both stages due to incomplete markets as also occurs for the $N = 1$ model in Figure III. The results for consumption are less obvious than for $p(x)$. Why does an agent consume more in stage 2 than in stage 1 at a given level of x, as Panel C shows? This outcome might seem peculiar because certainty-equivalent wealth is lower in stage 2 than in stage 1 for a fixed level of (X, Y), i.e., $p_1(x) > p_2(x)$ as depicted in Panel A. We call this outcome a “certainty-equivalent wealth” effect and impute it to forces that end up causing $c_2(x)$ to exceed $c_1(x)$ and that we now turn to explain.

First, because there is no bequest motive, the consumption motive is stronger in later life stages. Second, in our model the agent uses the reverse annuity market in the final life stage, stage 2 in this case, to exchange her end-of-life wealth for higher consumption. Indeed, that the MPC in stage 2 in the limit as $x \to \infty$, m_2, exceeds the MPC m_1 in stage 1, i.e., $m_2 = 8.83\% > m_1 = 6.31\%$, reflects these two forces. Third, uninsurable labor-earnings shocks induce smaller distortions to an agent’s consumption in her last life stage because her shorter expected life span weakens her precautionary saving motive. For that reason, $p'_n(x)$ falls with advancing life stage n, as we see in Panel B. These three forces encourage an agent to consume more in stage 2 than in stage 1. Together, these three forces induce a (highly nonlinear) intertemporal substitution that, since both $m_2 > m_1$ and $p'_2(x) < p'_1(x)$, make $c_2(x)$ exceed $c_1(x)$. Thus, the optimal consumption rule (16) teaches us that the “intertemporal substitution” effect dominates the “certainty-equivalent wealth” effect and causes an agent to consume more at a given x when in stage 2 than when in stage 1.

An agent’s consumption increases as she moves into later stages of life, a force that weakens our model’s ability to generate high wealth accumulation for the rich. Nevertheless,
our model can still generate a large wealth concentration, as we show in Section V.

We note that the MPC increases with stage \(n \). For example, the MPC for a penniless \((x = 0)\) agent is 10.63\% in life stage 2, which is larger than 8.11\%, her MPC in life stage 1.

MPC out of (permanent) earnings. Although earnings grow \((\mu > 0)\) and earnings shocks are permanent, a precautionary savings motive often causes \(C_Y(X, Y) \), the MPC out of earnings, to be below one (especially in an empirically plausible range). The homogeneity property implies \(C_Y(X, Y) = c(x) - c'(x)x \) and hence \(C_Y \) equals \(c(0) \) in all stages when \(x = 0 \). For the \(N = 1 \) model, when \(x = 0 \), \(C_Y = 0.91 \) and in the limit as \(x \to \infty \), \(C_Y \) approaches the complete-markets level: \(mq = 1.1 \) (recall that \(m = \rho + \lambda + (1 - 1/\gamma)(r - \rho) = 7.2\% \) is \(q = 1/(r + \lambda - \mu) = 15.24 \)). For the \(N = 2 \) model, when \(x = 0 \), \(C_Y = c(0) = 0.85 \) in stage 1 and 0.87 in stage 2, respectively.\(^{12}\)

In Figure IV, we plot the MPC \(C_Y = c(x) - xc'(x) \) as a function of \(x \) for the \(N = 1 \) and \(N = 2 \) models (both stages for the latter.) We see that the MPC out of earnings increases with \(x \). This follows from \(C_{Yx} = xc''(x)X/Y^2 = x^2c''(x)/Y < 0 \), as optimal consumption \(c(x) \) is concave in \(x \). An agent can self-insure better the higher is the value of \(x \). Accordingly, for a given level of wealth \(X \), an agent who has a higher level of \(Y \) or receives a positive earnings shock is less self-insured than desired, fostering higher saving. This generates a force that contributes to fattening the tail of the distribution of wealth relative to the distribution of earnings. Also, note that \(C_Y \) is higher in stage 2 than in stage 1 since a stage-2 agent has a shorter life horizon and is able to hedge mortality risk.

IV. Stationary Equilibrium

By assuming no aggregate shocks and a continuum of agents, we follow Aiyagari (1994) \(^{13}\) and focus on steady-state equilibria. Agents have identical but statistically independent labor-earnings processes.\(^{12}\)

12. That the MPC out of earnings is lower than one at \(x = 0 \) follows from \(C_Y(0, Y) = c(0) - c'(0) \times 0 = c(0) \leq 1 \), which follows from the no-borrowing constraint, \(c(0) \leq 1 \). In equilibrium, \(c(0) < 1 \). This is because if \(c(0) = 1 \), there could be not be a positive aggregate capital stock.

Stationary demographics. Let Π_n denote the measure of agents in life stage n and normalize the measure of the living agents (in all stages) to unity so that $\sum_{n=1}^{N} \Pi_n = 1$. Stationarity requires that measures of agents in each stage are constant over time and that flows into stage $(n + 1)$ from stage n occur at the same rates as flows into stage n from stage $(n - 1)$, so that

$$\Pi_n \lambda_n = \Pi_{n-1} \lambda_{n-1}. \tag{25}$$

Because $\sum_{n=1}^{N} \Pi_n = 1$ and equation (25) holds for $n = 2, \ldots, N$, we obtain

$$\Pi_n = \frac{\lambda_n^{-1}}{\sum_{n=1}^{N} \lambda_n^{-1}}. \tag{26}$$

Market clearing for capital and labor. Equality of aggregate demand and supply of capital requires:

$$K = \mathbb{E}(X) \equiv \int_{0}^{\infty} X \phi_X(X) dX, \tag{27}$$
where $\phi_X(X)$ is the cross-section stationary probability density of wealth X.

Let H denote an agent’s endowed labor units (e.g., hours). Each agent supplies labor inelastically. In equilibrium labor demand equals labor supply: $L = H$. Let $w = \mathbb{E}(Y)/H$ denote the average wage rate across all agents. Because aggregate labor cost for production wL equals aggregate labor earnings for all agents, using a law of large numbers\footnote{See Sun (2006) for technical conditions under which we can construct the associated probability and agent measures that allow invoking a law of large numbers.} we have

$$wL = wH = \mathbb{E}(Y) \equiv \int_0^\infty Y \phi_Y(Y) dY,$$

where $\phi_Y(Y)$ is the cross-section stationary distribution of labor earnings across all ages: $\phi_Y(Y) = \sum_{n=1}^N \Pi_n \phi_{n,Y}(Y)$ and $\phi_{n,Y}(Y)$ is the cross-section stationary distribution of labor earnings Y for agents in life stage n. Therefore, an agent’s labor earnings Y_t exceeds the average level $\mathbb{E}(Y)$ if and only if her wage rate Y_t/H at t exceeds w.

The steady-state equilibrium interest rate r and average wage rate (which is also the wage rate received by an agent with average labor efficiency) satisfy

$$r = F_K(K, L) - \delta = A\alpha(K/L)^{\alpha-1} - \delta = \frac{\alpha}{1-\alpha} \frac{wH}{K} - \delta = \frac{\alpha}{1-\alpha} \frac{\mathbb{E}(Y)}{\mathbb{E}(X)} - \delta, \quad (29)$$

$$w = F_L(K, L) = A(1-\alpha)(K/L)^\alpha = A(1-\alpha) \left(\frac{\mathbb{E}(X)}{H} \right)^\alpha. \quad (30)$$

Stationary distribution of earnings and wealth. To calculate the cross-section stationary distribution of labor earnings, starting from stage 1, we recursively solve the following Kolmogorov Forward (Fokker-Planck) equations:

$$0 = -\frac{\partial(\mu_n Y \phi_{n,Y}(Y))}{\partial Y} + \frac{1}{2} \frac{\sigma_n^2 Y^2 \phi_{n,Y}(Y)}{\partial Y^2} - \lambda_n \phi_{n,Y}(Y) + \lambda_{n-1} \phi_{n-1,Y}(Y) \quad (31)$$

for stages $2 \leq n \leq N$ and

$$0 = -\frac{\partial(\mu_1 Y \phi_{1,Y}(Y))}{\partial Y} + \frac{1}{2} \frac{\sigma_1^2 Y^2 \phi_{1,Y}(Y)}{\partial Y^2} - \lambda_1 \phi_{1,Y}(Y) \quad (32)$$

for stage 1. For any stage n, computing $\phi_{n,Y}(Y)$ involves solving a one-dimensional ordinary differential equation.
We can calculate the cross-section stationary distribution of wealth by first computing the cross-section joint distribution of wealth and earnings. Let $\phi_{n,XY}(X,Y)$ denote this cross-section joint distribution in stage n. The following Kolmogorov Forward (Fokker-Planck) equations hold:

\[
\lambda_1 \phi_{1,XY} = -\frac{\partial}{\partial X}\left(\mu_{1,X} \phi_{1,XY} \right) - \frac{\partial}{\partial Y}\left(\mu_{1,Y} \phi_{1,XY} \right) + \frac{1}{2} \frac{\partial^2}{\partial Y^2} \left(\sigma_Y^2 \phi_{1,XY} \right),
\]

\[
\lambda_n \phi_{n,XY} = -\frac{\partial}{\partial X}\left(\mu_{n,X} \phi_{n,XY} \right) - \frac{\partial}{\partial Y}\left(\mu_{n,Y} \phi_{n,XY} \right) + \frac{1}{2} \frac{\partial^2}{\partial Y^2} \left(\sigma_Y^2 \phi_{n,XY} \right) + \lambda_{n-1} \phi_{n-1,XY},
\]

where $\mu_{n,X}(X,Y)$ is the drift of wealth X is given by

\[
\mu_{n,X}(X,Y) = rX + Y - C_n(X,Y), \quad 1 \leq n \leq N - 1,
\]

in stage $n \leq N - 1$ and by

\[
\mu_{N,X}(X,Y) = (r + \lambda_N)X + Y - C_N(X,Y)
\]

in stage N. After obtaining $\phi_{n,XY}(X,Y)$, we can compute the cross-section stationary distribution of wealth by integrating over Y: $\phi_{n,X}(X) = \int_0^\infty \phi_{n,XY}(X,Y) dY$.

Our model’s homogeneity property simplifies computing the cross-section equilibrium wealth distribution. It can be accomplished as follows. First, we simulate a path of the standard Brownian motion B_t starting with $B_0 = 0$. Second, we obtain the corresponding sample path for Y by substituting the simulated path of B_t into the dynamics (3) for Y with the initial condition $Y_0 = 1$. Third, we use the process for x_t given in (23) for stage $n < N$ and (24) for stage N together with the optimal scaled-consumption rule $c(x_t)$ given in (16) to obtain the paths for x_t and c_t starting with $x_0 = X_0/Y_0 = 0$. Finally, we obtain X_t by multiplying the two paths x_t and Y_t at each t. When an agent dies, we bring in a new agent with no wealth and Y_0. We continue this process until we reach a very high number of years, e.g., $t = 10^8$.

Next, we introduce widely used measures of inequality.
Lorenz curve, Gini coefficient, and fractal inequality. For a nonnegative random variable W with cumulative distribution function $G_W(\cdot)$, the Lorenz curve $\mathcal{L}_W(z)$ is defined on $0 \leq z \leq 1$ as:

$$\mathcal{L}_W(z) = \frac{\int_0^z G_W^{-1}(u)du}{\int_0^1 G_W^{-1}(u)du},$$

(37)

where $G_W^{-1}(\cdot)$ denotes the inverse of $G_W(\cdot)$. Evidently, $\mathcal{L}_W(z)$ is the proportion of total W owned by the bottom z percent of people. The Gini coefficient for W is a widely used measure of wealth inequality. It equals twice the area between the 45% line of equality and the Lorenz curve $\mathcal{L}_W(z)$:

$$\Gamma_W = 2 \int_0^1 (z - \mathcal{L}_W(z))dz.$$

(38)

To describe fat right tails, we use both power-law exponents and “fractal inequality” (FI) as in Jones and Kim (2018). For a given random variable W, fractal inequality $FI_W(u)$ is defined as the fraction of W that goes to the top $(10 \times u)$ percent of agents divided by the fraction of W that goes to the top u percent:

$$FI_W(u) = \frac{1 - \mathcal{L}_W(1 - 0.01 \times u)}{1 - \mathcal{L}_W(1 - 0.1 \times u)}.$$

(39)

Stationary Equilibrium. A competitive equilibrium consists of value functions (or, alternatively, certainty equivalent wealth functions) and optimal saving functions at all stages n; the interest rate r, the wage rate w for an agent with average productivity, stationary population demographics, and a stationary distribution for the cross-section distribution for wealth and earnings (X, Y) that satisfy

1. Given r and the stochastic labor-earnings process $\{Y_s : s \geq 0\}$ and X_0, value functions and optimal policies satisfy and attain, respectively, the HJB equations described in Section III.

2. The interest rate r and w satisfy (29) and (30), respectively.

3. Equations (27) and (28) hold so that markets for capital and labor clear.
4. The cross-section distribution of wealth and earnings \((X,Y)\) is invariant over time and characterized by (33) and (34).

V. Quantities

After setting parameter values, we describe properties of an equilibrium cross-section wealth distribution as manifested in Lorenz curves, Gini coefficients, and power-law exponents.

V.A Imported and Newly Calibrated Parameters

Table I describes parameter values that we shall use to compute equilibria for \(N = 1\) and \(N = 2\) instances of our model. Panel A.1 reports parameters that we intentionally import from prominent BAH papers. Panel A.2 reports parameters that we set to hit expected life length targets of 60 years for both the \(N = 1\) and \(N = 2\) models. Panel B reports parameters calibrated specifically for this study, namely, drifts and volatilities governing labor-earnings processes.

Panel A.1 describes a suite of parameters set at consensus values in BAH papers. We adopted these consensus values purposefully in order to help us isolate sources of new findings about the equilibrium wealth distribution that our model brings. We set preference and production function parameters to values used by Huggett (1996) and De Nardi (2004). Following Prescott (1986) and Cooley and Prescott (1995), we set the capital share of income, \(\alpha\), to 0.36. We set an annual depreciation rate of capital, \(\delta\), to 6% to match an estimate of the US depreciation-output ratio reported by Stokey and Rebelo (1995). We want an aggregate capital-output ratio to 3 as in Castañeda, Díaz-Giménez, and Ríos-Rull (2003) and De Nardi (2004), which in light of equation (29) leads to an equilibrium interest rate \(r\) equals 6% per annum as in Huggett (1996) and De Nardi (2004). We set the productivity parameter \(A\) to 0.9, so that the wage rate \(w\) for an agent with the average labor efficiency equals unity. We set the coefficient of relative risk aversion at \(\gamma = 2\), a commonly used value.

Panel A.2 of Table I reports how we set parameters that governing life-stage transitions to make life expectancies under the \(N = 1\) and \(N = 2\) versions of the model be equal.\(^{15}\)

\(^{15}\) Our model with \(N = 2\) corresponds to the discrete-time version of the stochastic life-cycle model.
TABLE I
PARAMETER SETTINGS AND CALIBRATION

<table>
<thead>
<tr>
<th>Panel A.1</th>
<th>Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Symbol</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>Subjective discount rate</td>
<td>(\rho)</td>
</tr>
<tr>
<td>Capital share</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>Capital depreciation rate</td>
<td>(\delta)</td>
</tr>
<tr>
<td>Productivity</td>
<td>(A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel A.2</th>
<th>Life-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Symbol</td>
</tr>
<tr>
<td>Transition intensity</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Symbol</td>
</tr>
<tr>
<td>Earnings growth volatility</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>Expected earnings growth</td>
<td>(\mu)</td>
</tr>
</tbody>
</table>

Targets: (labor-earnings Gini \(\Gamma_Y \), capital-output ratio \(K/F(K, L) \)) = (0.63, 3)

For our \(N = 1 \) model, we set the hazard parameter \(\lambda_1 = 0.0167 \) in order to target an agent’s expected lifetime at \(1/\lambda_N = 60 \) years, as in Castañeda, Díaz-Giménez, and Ríos-Rull (2003). For our \(N = 2 \) model, we set \(\lambda_2 = \lambda_1 \) and target expected durations of \(1/\lambda_1 = 30 \) years for both life-stages so that we obtain the same expected total lifetime of 60 = 30 + 30 years as for our \(N = 1 \) model. In this way, we approximate a setting in which mortality risk is lower for most younger people and higher for most older people.

Panel B of Table I reports outcomes from jointly calibrating the expected labor earnings growth \(\mu \) and labor earnings growth volatility \(\sigma \) by targeting a pair of quantities: a Gini coefficient for the cross-section labor earnings of 0.63 and a capital-output ratio of 3, as in Castañeda, Díaz-Giménez, and Ríos-Rull (2003). Similarly, De Nardi (2004) uses labor used by Castañeda, Díaz-Giménez, and Ríos-Rull (2003), Gertler (1999) used a discrete-time version of an \(N = 2 \) version of our model to study social security. Heathcote, Storesletten, and Violante (2017) use an \(N = 1 \) model in their study of optimal tax progressivity.
TABLE II

CROSS-SECTION DISTRIBUTIONS OF EARNINGS AND WEALTH. THE PARAMETER VALUES FOR BOTH THE $N = 1$ AND $N = 2$ MODELS ARE REPORTED IN TABLE I

<table>
<thead>
<tr>
<th>Panel A. Percentage earnings in the top</th>
<th>Gini</th>
<th>1%</th>
<th>5%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. data</td>
<td>0.63</td>
<td>15</td>
<td>31</td>
<td>61</td>
<td>84</td>
<td>97</td>
</tr>
<tr>
<td>$N = 1$</td>
<td>0.63</td>
<td>33</td>
<td>49</td>
<td>69</td>
<td>81</td>
<td>89</td>
</tr>
<tr>
<td>$N = 2$</td>
<td>0.63</td>
<td>29</td>
<td>46</td>
<td>67</td>
<td>81</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B. Percentage wealth in the top</th>
<th>Gini</th>
<th>1%</th>
<th>5%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. data</td>
<td>0.78</td>
<td>30</td>
<td>54</td>
<td>79</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>$N = 1$</td>
<td>0.77</td>
<td>39</td>
<td>58</td>
<td>79</td>
<td>91</td>
<td>96</td>
</tr>
<tr>
<td>$N = 2$</td>
<td>0.72</td>
<td>34</td>
<td>53</td>
<td>75</td>
<td>88</td>
<td>95</td>
</tr>
</tbody>
</table>

earnings growth volatility to match the Gini coefficient of labor earnings. The calibrated values are $\mu = 1.11\%$ and $\sigma = 9.9\%$ for the $N = 1$ model and are $\mu = 1.26\%$ and $\sigma = 12.7\%$ for the $N = 2$ model. While we have calibrated earnings expected growth rate μ and growth volatility σ to target two macro moments, these values are broadly in line with micro estimates reported in the literature (see Meghir and Pistaferri (2011) for a survey.)

V.B Implications for Cross-Section Earnings and Wealth Distributions

Table II reports the model-implied Lorenz curves for exogenous labor earnings and endogenous wealth in Panels A and B, respectively, for both the $N = 1$ and $N = 2$ models in addition to the empirical distributions of earnings and wealth in the U.S.\(^{16}\) For the $N = 1$ and $N = 2$ models separately, we calibrate λ to a Gini coefficient target of 0.63 for

\[^{16}\] Data for distributions of earnings and wealth in the U.S. Economy are borrowed from Castañeda, Díaz-Giménez, and Ríos-Rull (2003).
cross-section earnings that characterizes the data.

Let’s look at exogenous labor earnings first. In Appendix B, we report that the cross-section labor earnings \(Y \) follows a double Pareto distribution, also used in Luttmer (2007), Gabaix (2009), and Toda and Walsh (2015).

The \(N = 1 \) model. Although our simple model of labor earnings model neglects responses to transient shocks, the implied earnings distribution is able to capture key features of the empirical Lorenz curve. In the \(N = 1 \) model, the top 1% receive 33% of the total earnings while in the data they receive 15% of the total earnings. This aspect of our model contrasts with properties of classic BAH models that generate too little earnings concentration at the top. For example, the model-implied Gini coefficient for cross-section earnings in Aiyagari (1994) is 0.1 and the top 1% earnings-rich receive only 6.8% of total earnings.

Next, we turn to the endogenous wealth distribution reported in Panel B for our \(N = 1 \) model. Our \(N = 1 \) model delivers a Gini coefficient for cross-section wealth of 0.77 that closely approximates the wealth Gini coefficient 0.78 in the US data.

A successful feature of our model is that it predicts that the Gini coefficient for wealth is larger than that for earnings (0.63). The model generates an endogenous wealth distribution that has a fatter tail than exogenous earnings distribution, something that classic BAH with stationary exogenous labor earnings processes don’t do.

Our model is too stingy with free parameters to approximate the entire wealth Lorenz curve well. Compared with observed wealth concentration, our model generates more concentrated wealth holdings for the rich. For example, the top 1% wealth-rich owns about 39% of the total wealth, while the top 1% earnings-rich makes about 33% of the total earnings in the model. As they were also for the earnings distribution, our models predictions here differ qualitatively from those of classic BAH models with stationary labor earning processes in which model-implied wealth concentration at the top is much lower.

17. Sargent, Wang, and Yang (2020) analyze a special \(N = 1, \sigma = 0 \) model with nonrandom labor earnings. That simplified setting lets us derive explicit formulas for Lorenz curves, Gini coefficients, fractal inequalities, and power law exponents for equilibrium distributions of wealth and earnings. But the strong precautionary savings motives and resulting concave consumption functions that play such important roles here are absent, as is the more realistic life/dynasty cycle structure that we include here when \(N > 1 \).
than what is observed. For example, in [Aiyagari (1994)], the Gini coefficient for cross-section wealth is 0.38 and the top 1% only owns about 3.2% of the aggregate wealth as opposed to about 30% in the data. Thus, relative to the data, our model with non-stationary labor earnings generates too much wealth concentration at the top, reversing a salient finding from BAH models with stationary labor earnings. To help our model match the observed upper tail of the wealth distribution, we would somehow have to attenuate forces that push wealth toward the wealthiest, not strengthen them as has been done in BAH models with stationary labor earnings processes.

What happens when we move from the $N = 1$ model to the $N = 2$ model? We shall see that qualitative features of key predictions (e.g., fatter tailed distribution for wealth than earnings) continue to hold while fits improve.

The $N = 2$ model. Evidently, calibrating our $N = 2$ earnings model by setting the model-implied Gini coefficient at 0.63 as we do for the $N = 1$ model yields a better fit with the empirical Lorenz curve. While the $N = 2$ model still generates too much earnings concentration at the top, it gets closer to the observations than does the $N = 1$ model.

The Gini coefficient for cross-section wealth equals 0.72, which is further away from the 0.78 in the data than is the $N = 1$ model. But the Lorenz curve for the $N = 2$ model is closer to the data than is the $N = 1$ model. For example, the top 1% wealth-rich owns about 34% of total wealth compared to 30% in the data, and the top 5% wealth-rich owns 53% of aggregate wealth, which agrees with the data. Overall, our $N = 2$ model generates a cross-section wealth distribution that is reasonably close to the empirical distribution.

In summary, with the caveat that our earnings model generates too much concentration of earnings at the top, our $N = 1$ and $N = 2$ models both generate cross-section wealth distributions with large wealth concentrations at the top, broadly consistent with U.S data.

VI. Concluding Remarks

Putting multi-stage stochastic life cycles and permanent labor-earnings shocks into an otherwise standard BAH model unleashes forces that create substantial wealth inequality as measured by Lorenz curves, Gini coefficients, fat tail (power law) exponents, and fractal
inequality. We have kept our model ruthlessly parsimonious in terms of parameters because we want to isolate what drives our results. We could extend the model to do more by being less stingy with parameters. We anticipate that we can apply similar analytical techniques to the ones we have deployed here to capture features that we have ignored, for example, transients shocks to labor earnings.

Our model generates a distribution of marginal propensities to consume (MPCs), an object of interest for a number of topics. To take an example of substantial contemporary interest, in our model taxing wealth and transferring it to the very young can have substantial effects on social welfare as measured by a utilitarian welfare criterion as well as on wealth and the interest rate. A subsection of the concave consumption function would activate such effects. We anticipate using our model soon to study this and other policy experiments in future research.

We have excluded aggregate shocks and focused on a stochastic steady state. By deploying techniques from mean field game theory, we hope to adapt the model to incorporate aggregate shocks and follow in the steps of Gabaix, Lasry, Lions, and Moll (2016) who use mean field games to analyze the dynamics of inequality. They show that standard random-growth-based models generate transition dynamics that are too slow relative to those observed in the data. Guvenen, Karahan, Ozkan, and Song (2015) and De Nardi, Fella, and Paz-Pardo (2020) document that logarithmic earnings innovations are very fat-tailed. We aspire to include richer earnings processes and aggregate transition dynamics in future work.

18. Kaplan and Violante (2014) study consequences of fiscal stimuli. Other papers study transition mechanisms of monetary policy (Kaplan, Moll, and Violante (2018), Auclert (2019)), effects of a credit crunch or house price movements on consumer spending (e.g., Guerrieri and Lorenzoni (2017)); and how inequality affects aggregate demand, e.g., Auclert and Rognlie (2018).

Appendices

Appendix A sketches proofs of main results in Section III. Appendix B summarizes the cross-section earnings distribution and provides proofs for the \(N = 1 \) model. Appendix C provides additional details about how we calculate aggregate variables.

A Proofs for Solutions in Section III

First, by using the HJB equations given in (10) and (11), we obtain the following FOC for consumption:

\[
U'(C_n) = V_{n,X}(X,Y), \tag{A.1}
\]

which equates the marginal benefit of consumption \(U'(C_n) \) with the marginal utility of savings \(V_{n,X}(X,Y) \). Using the value function given in (12) and the homogeneity property \(P_n(X,Y) = p_n(x)Y \), we obtain the optimal scaled consumption rule \(c_n(x) \) given in (16).

Substituting (12), \(P_n(X,Y) = p_n(x)Y \), and (16) into the HJB equations (10) and (11), we obtain the ODE (17) for \(p_N(x) \) and the ODE (18) for \(p_n(x) \) where \(n \leq N - 1 \).

Substituting \(p_N(x) = x + q_N \) into (17), letting \(x \to \infty \), and using (13), we obtain

\[
0 = \left(\frac{\gamma b_n^{1 - \gamma} - (\rho + \lambda_n)}{1 - \gamma} + \mu N \right) (x + q_N) + 1 + (r + \lambda_n - \mu N)x
= \left(\frac{\gamma m_N - (\rho + \lambda_n)}{1 - \gamma} + r + \lambda_n \right) x + \left(\frac{\gamma m_N - (\rho + \lambda_n)}{1 - \gamma} + \mu N \right) q_N + 1. \tag{A.2}
\]

As (A.2) must hold for all \(x \), we obtain the explicit formula (14) for \(m_N \). And then substituting (14) into (A.2), we obtain (22) for \(q_N \). Similarly, substituting \(p_n(x) = x + q_n \) into (18) and letting \(x \to \infty \), we obtain

\[
0 = \left(\frac{\gamma b_n^{1 - \gamma} - \rho}{1 - \gamma} + \frac{\lambda_n}{1 - \gamma} \left[\left(\frac{b_{n+1}}{b_n} \right)^{1 - \gamma} - 1 \right] + \mu_n \right) (x + q_n) + 1 + (r - \mu_n)x
+ \lambda_n \left(\frac{b_{n+1}}{b_n} \right)^{1 - \gamma} (q_{n+1} - q_n)
= \left(\frac{\gamma m_n - \rho}{1 - \gamma} + \frac{\lambda_n}{1 - \gamma} \left[\left(\frac{m_{n+1}}{m_n} \right)^{-\gamma} - 1 \right] + r \right) x + 1
\]
\[+ \left(\gamma m_n - \rho \frac{\lambda_n}{1 - \gamma} - \mu_n \right) q_n + \lambda_n \left(\frac{m_n + 1}{m_n} \right)^{-\gamma} q_{n+1}. \]

(A.3)

Since (A.3) must hold for all \(x\), we obtain \(m_n\) as given by (15). Finally, substituting (15) into (A.3) gives (21) for \(q_n\).

B Cross-section Earnings Distribution for the \(N = 1\) Model

Closed-Form Solutions

Proposition B.1. The cumulative distribution function of labor earnings \(Y\) is given by:

\[
\Phi_Y(Y) = \begin{cases}
\frac{\beta_2}{\beta_2 - \beta_1} \left(\frac{Y}{Y_0} \right)^{\beta_1}, & Y < Y_0, \\
1 - \frac{\beta_1}{\beta_1 - \beta_2} \left(\frac{Y}{Y_0} \right)^{\beta_2}, & Y \geq Y_0.
\end{cases}
\]

(B.1)

where \(\beta_1 > 0\) and \(\beta_2 < -1\) are the two roots of following the quadratic equation for \(\beta\)

\[
0 = \lambda + \left(\mu - \frac{\sigma^2}{2} \right) \beta - \frac{\sigma^2 \beta^2}{2}.
\]

(B.2)

The distribution function \(\Phi_Y(Y)\) in (B.1) is known as the double Pareto distribution and has been studied in Luttmer (2007), Gabaix (2009), and Toda and Walsh (2015). The right tail is governed by a power law: for large \(Y\), \(\Pr[Y \geq \hat{Y}] = \frac{\beta_1}{\beta_1 - \beta_2} \left(\frac{\hat{Y}}{Y_0} \right)^{1/\xi_Y}\) where \(\xi_Y\) is the power-law exponent

\[
\xi_Y = -\beta_2 > 1 > 0,
\]

(B.3)

where \(\beta_2 < -1\) is the negative root for (B.2).

The cross-section average of labor earnings is

\[
\mathbb{E}(Y) = \frac{\beta_1 \beta_2}{(\beta_1 + 1)(\beta_2 + 1)} Y_0 = \frac{\lambda}{\lambda - \mu} Y_0.
\]

(B.4)

19. When \(\sigma \neq 0\), equation (B.2) has two roots, \(\beta_1 > 0\) and \(\beta_2 < -1\), as \(\lambda > 0\) and \(\lambda - \mu > 0\). When the earnings process is deterministic (\(\sigma = 0\)), an important special case, equation (B.2) is linear with only one root: \(\beta_2 = -\lambda/\mu\).
The Lorenz curve $L_Y(z)$ of labor earnings Y is:

$$L_Y(z) = \begin{cases} \frac{\beta_2+1}{\beta_2} \left(\frac{\beta_2-\beta_1}{\beta_2} \right) \frac{1}{z} \left(\frac{\beta_1+1}{\beta_1} \right), & 0 \leq z < \frac{\beta_2}{\beta_2-\beta_1}, \\ 1 - \frac{\beta_1+1}{\beta_1} \left(\frac{\beta_1-\beta_2}{\beta_1} \right) \frac{1}{\beta_2} (1-z) \left(\frac{\beta_2+1}{\beta_2} \right), & \frac{\beta_2}{\beta_2-\beta_1} \leq z \leq 1. \end{cases} \tag{B.5}$$

Using the definition of the Gini coefficient Γ_Y in (38), we find that the Gini coefficient of labor earnings is

$$\Gamma_Y = \frac{2\beta_2^2 + 2\beta_1^2 - \beta_1 \beta_2 + \beta_2 + \beta_1}{(\beta_2 - \beta_1)(2\beta_1 + 1)(2\beta_2 + 1)}. \tag{B.6}$$

The “fractal inequality” $FI_Y(z)$ for earnings is

$$FI_Y(z) = \frac{1 - L_{1,Y}(1-z)}{1 - L_{1,Y}(1 - 10 \times z)} = \left(\frac{1}{10} \right)^{\frac{\beta_2+1}{\beta_2}}, \tag{B.7}$$

provided that $z \leq \frac{\beta_2}{\beta_2-\beta_1}$.

Proofs

Using the Kolmogorov Forward equation (32) for the case with $N = 1$ we obtain

$$0 = (\sigma^2 - \mu)\phi_Y(Y) + (2\sigma^2 - \mu)Y\phi_Y'(Y) + \frac{\sigma^2 Y^2}{2}\phi''_Y(Y) - \lambda\phi_Y(Y). \tag{B.8}$$

The density function $\phi_Y(Y)$ takes the form of a double Pareto (power law) distribution:

$$\phi_Y(Y) = \begin{cases} \kappa_1 Y^{\beta_1-1}, & Y < Y_0, \\ \kappa_2 Y^{\beta_2-1}, & Y \geq Y_0, \end{cases} \tag{B.9}$$

where $\beta_1 > 1$ and $\beta_2 < -1$ are roots of the quadratic equation

$$0 = (\lambda + \mu - \sigma^2) + (\mu - 2\sigma^2)(\beta - 1) - \frac{\sigma^2(\beta - 1)(\beta - 2)}{2}, \tag{B.10}$$

which implies (B.2).
Because $\phi_Y(Y)$ must be continuous at Y_0, we have

$$
\kappa_1 Y_0^{\beta_1-1} = \kappa_2 Y_0^{\beta_2-1}.
$$

(B.11)

By integrating the density, we obtain:

$$
1 = \int_0^{Y_0} (\kappa_1 Y^{\beta_1-1})dY + \int_{Y_0}^{\infty} (\kappa_2 Y^{\beta_2-1})dY = \frac{\kappa_1 Y_0^{\beta_1}}{\beta_1} - \frac{\kappa_2 Y_0^{\beta_2}}{\beta_2}.
$$

(B.12)

Jointly solving (B.11) and (B.12), we obtain:

$$
\kappa_1 = \frac{\beta_1 \beta_2}{\beta_2 - \beta_1} Y_0^{-\beta_1} = \frac{\lambda}{\sqrt{(\mu - \sigma^2/2)^2 + 2\lambda \sigma^2}} Y_0^{-\beta_1},
$$

(B.13)

$$
\kappa_2 = \frac{\beta_1 \beta_2}{\beta_2 - \beta_1} Y_0^{-\beta_2} = \frac{\lambda}{\sqrt{(\mu - \sigma^2/2)^2 + 2\lambda \sigma^2}} Y_0^{-\beta_2}.
$$

(B.14)

Substituting (B.13) for κ_1 and (B.14) for κ_2 into (B.9), we obtain the cross-section stationary distribution of earnings $\phi_Y(Y)$

$$
\phi_Y(Y) = \begin{cases}
\frac{\lambda}{\sqrt{(\mu - \sigma^2/2)^2 + 2\lambda \sigma^2}} Y_0^{-\beta_1} Y^{\beta_1-1}, & Y < Y_0, \\
\frac{\lambda}{\sqrt{(\mu - \sigma^2/2)^2 + 2\lambda \sigma^2}} Y_0^{-\beta_2} Y^{\beta_2-1}, & Y \geq Y_0,
\end{cases}
$$

(B.15)

By integrating $\phi_Y(Y)$, we obtain $\Phi_Y(Y)$ is given by (B.15). Let $\Phi_Y^{-1}(\cdot)$ denote the inverse distribution function of Y. We can show that

$$
\Phi_Y^{-1}(u) = \begin{cases}
\left(\frac{\beta_2 - \beta_1}{\beta_2 - \beta_1} u\right)^{\frac{1}{\beta_1}} Y_0, & 0 \leq u < \frac{\beta_2}{\beta_2 - \beta_1}, \\
\left(\frac{\beta_1 - \beta_2}{\beta_1} (1 - u)\right)^{\frac{1}{\beta_2}} Y_0, & \frac{\beta_2}{\beta_2 - \beta_1} \leq u \leq 1.
\end{cases}
$$

(B.16)

By integrating $\Phi_Y^{-1}(\cdot)$, we obtain

$$
\int_0^z \Phi_Y^{-1}(u)du
$$

(B.17)
Finally, by using $L_Y(\cdot) = \frac{\int_0^1 \Phi_Y^{-1}(u) du}{\int_0^1 \Phi_Y^{-1}(u) du}$, we obtain the Lorenz curve (B.5) for earnings.

C Computing Aggregates

We compute equilibrium objects by iterating over candidate interest rates. First, for a given r, we compute total savings $E(X)$ by aggregating over individual’s optimal savings demand. Second, equations (30) and (29) imply that the wage rate w can be deduced from the factor price frontier

$$w = A(1 - \alpha) \left(\frac{r + \delta}{A\alpha} \right)^{\frac{\alpha}{\alpha - 1}}. \quad (C.1)$$

Third, endowed labor units H are exogenous and the agent does not value leisure. Thus, the total wage payment to labor equals total labor earnings: $wH = E(Y)$. Since we fix μ and σ when we perform comparative static analyses, we infer the value of Y_0 from $wH = E(Y)$.

Fourth, we solve for the aggregate capital stock K by using the equilibrium increasing relation between K and w given in (30). Finally, we check whether the aggregate K obtained in step 4 equals the aggregate savings $E(X)$ obtained in step 1. If so, we have found a fixed point. Otherwise, we continue the iteration process until we find one. From a fixed point, we obtain equilibrium objects, r, w, Y_0, K, with the implied aggregate capital-output ratio $K/F(K, L) = \frac{(K/H)^{1-\alpha}}{A}$.

37