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ABSTRACT

The decade from 2010 to 2019 marked a significant turning point in China’s history of 
environmental regulation and pollution. This article describes the recent trends in air and water 
quality, with a focus on the five years since China declared a “war on pollution” in 2014. It 
summarizes the emerging literature that has taken advantage of accompanying improvements in 
data availability and accuracy to document sharp improvements in environmental quality, 
especially local air pollution, and understand their social, economic, and health consequences.
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1. Introductions 

China’s unprecedented economic growth, heavy reliance on fossil fuel, and lax environmental 
regulations have significantly degraded the country’s environmental quality. By the end of the 
first decade of the 2000s, China had become the world’s largest consumer of energy and coal, the 
largest automobile market, and the largest emitter of CO2 and SO2. Dubbed “airpocalypse” by 
international news media, severe smog episodes in large urban centers such as Beijing outraged 
the Chinese public. Outcry emerged over the lack of basic, public provision of pollution 
information and the absence of effective government responses to address the situation. 

Against such a backdrop, China began to shift away from its long-standing strategy of 
prioritizing economic growth over environmental concerns. In March 2014, Premier Li Keqiang 
declared a “war on pollution” at the opening of the annual meeting of People’s Congress 2014, 
denouncing smog as “nature’s warning against inefficient and blind development.” In response, 
the government undertook unprecedented regulatory changes on multiple fronts. These changes 
included: (1) recognizing PM2.5 as a primary pollutant and establishing national maximum 
standards for PM2.5 for the first time; (2) setting pollution reduction as one of the bureaucratic 
hard targets in government officials’ evaluation and promotion; (3) launching a nationwide, real-
time air quality monitoring and disclosure program; and (4) implementing a range of 
environmental policies, including piloting seven regional CO2 cap-and-trade programs and 
promoting the electrification of the passenger transportation system. 

Since 2014, China has been making significant progress in improving air quality. Local air 
pollution levels have fallen significantly: five years after the peak in 2013, national-level PM2.5 
levels declined by about 40 percent, and SO2 and CO concentrations fell by 65 percent and 33 
percent, respectively. In comparison, the United States took at least a decade and two significant 
recessions to achieve comparable percentage reductions in air pollution following the Clean Air 
Act’s passage.2  That being said, the air pollution levels in China remain high, suggesting further 
efforts are necessary to bring the country’s environmental quality in line with international 
recommendations. The national average PM2.5 concentration in 2018, for example, was 40.1 
µg/m3, which is still more than 4 times higher than what is considered safe by the World Health 
Organization (WHO) (10 µg/m3 for the annual mean).  

This paper summarizes the emerging literature that has taken advantage of the improvements in 
data availability and accuracy to understand the economic, social, and health consequences of 
China’s “war on pollution.” We start by describing recent trends in local air (i.e., criteria 
pollutants, not CO2) and water pollution in China, then review empirical evidence on the 
pollution impact in the past decade and conclude with a discussion of future research.3  Two 
recent articles by Karplus et al. (2020), and Auffhammer et al. (2020) offer complementary 
reviews on the role of environmental regulations and the development of renewable energy in 
China to address the pressing environmental and energy challenges.  

 
2 For pollution reduction in the US under the Clean Air Act, see https://www.epa.gov/air-trends.  
3 Vennemo et al. (2009) and Zheng and Kahn (2013) provide earlier reviews of research on the causes and 
consequences of China’s environmental challenges, with the former focusing on the status and trends, and the latter 
focusing on the role of urbanization and the regulatory environment.   
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2. Recent Trends on Environmental Quality 

2.1. Air Quality 

Data. We use publicly available air quality data from the real-time monitoring and reporting 
system of China’s Ministry of Ecology and Environment (MEE, formerly the Ministry of 
Environmental Protection). From 2013 to 2015, China rolled out a new, nationwide air pollution 
program in three waves across cities to provide real-time monitoring and reporting of six air 
pollutants, including PM2.5, PM10, O3, CO, NO2, and SO2. Hourly real-time pollution readings 
are available from about 1,600 monitoring sites spread across almost every city, covering 98% of 
the total population. Due to concerns on the accuracy and reliability of the prior monitoring 
system (see discussion below), we restrict the analysis to this more recent data. To accurately 
illustrate trends, we adjust the unbalanced city-level panel data sets for differences in average 
pollution levels across cities that began monitoring at different times. Because the government 
monitoring data are available only for recent years, we complement these data with satellite-
based PM2.5 estimates from 1998 to 2018 (van Donkelaar et al., 2019).  

Trends. We begin with city-day-level air pollution data, and we use the following equation to 
estimate year-to-year changes in air quality: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛!"# = ∑ 𝛽!$%&'(
$)%&'* 1(𝑦 = 𝜏) + 𝛼!" + 𝜀!"#           (1) 

where the dependent variable is the concentration of air pollutant i in city c on date t.4 Because 
the initiation of real-time monitoring varies across cities, we include pollutant by city fixed 
effects (𝛼!") to account for level differences in average pollution levels across cities in the 
unbalanced panel. Intuitively, the 𝛽!$’s reveal the changes in annual levels in each pollutant 
using variation within city and over time. As the i subscript indicates, equation (1) is estimated 
separately for each air pollutant.  

Panel (a) in Figure 1 plots the year-by-year coefficient estimates (𝛽$′𝑠) for six pollutants. For 
comparison, we scale the concentration of each pollutant so that it equals 100 in 2013.5 All of the 
air pollutant concentrations dropped sharply since 2013, except for O3, which saw a modest 
increase. PM2.5 levels dropped by 27.7 µg/m3, or about 41 percent from the 2013 level. SO2 
concentrations fell the most, declining by over 65 percent. O3 concentration increased by 8.5 
percent from 2013 to 2018, highlighting the complex nature of O3 formation and the resulting 
challenge to contain it in the face of continued urbanization and motorization.6 Appendix Figure 

 
4 When there are multiple monitors operating in the city-day, we take the average across the readings from these 
monitors. We have confirmed that the trend estimates are similar if we conduct analysis using monitor-level data 
(and controlling for monitor fixed effects). 
5 We pick 2013 as it was the first year when real-time monitoring became available in China. Our satellite data 
(Figure A.1 and Figure A.3) suggest the average PM2.5 concentration in 2013 is similar to the levels in 2010-2012. 
6 O3 is not directly emitted; it is produced by photochemical reactions between NOx and volatile organic compounds 
(VOCs) via a nonlinear and non-monotonic relationship in the presence of sunlight (Sillman 1999). Thus, when 
VOCs are limited, a decrease in NOx emissions could increase O3, as empirically documented by Salvo and Geiger 
(2014), and Zhang et al. (2017) in São Paulo and Bogotá, respectively. The VOC-limited photochemical regime 
could be caused by the larger reductions in VOCs than in NOx during our sample period. 
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1 shows the national annual average concentration levels of each of the six pollutants. Overall, 
the evidence suggests that China achieved large reductions in air pollution in just five years. 

Earlier studies suggest that China’s official air quality data was manipulated in some instances 
(e.g., Andrews, 2008; Chen et al., 2012; Ghanem and Zhang, 2014). The more recent data is less 
likely to be manipulated due to the upgraded monitoring system that automates the sampling and 
reporting process, greatly reducing the scope for tampering (Greenstone et al., 2020). 
Importantly, we examine satellite-based pollution estimates in Appendix Figure 1 and find that 
air pollution levels in China have substantially declined in these data too. Besides, Appendix 
Figure 3 suggests that the real-time PM2.5 data from MEE are consistent with those from 
independent monitoring by the U.S. embassy and consulates in Beijing, Chengdu, Guangzhou, 
Shanghai, and Shenyang. The satellite PM2.5 data are calibrated using ground monitor data and 
the measure is thus not an entirely independent benchmark. In Appendix Figure 4, we report that 
direct satellite observations of aerosol optical depth – a key impute of satellite-derived PM2.5 
measure – also show a consistently downward trend since 2010. Overall, the readings from the 
new monitoring system correspond well with independent measures, confirming the 
improvement in air quality. 

To quantify the mortality benefit of the observed reduction in PM2.5 concentration, we use the 
Air Quality Life Index (AQLI), which measures the potential gain in life expectancy from 
pollution reduction.7 The index is based on work by Ebenstein et al. (2017), who estimate the 
causal effect of sustained exposure to particulate pollution on life expectancy in China. Holding 
everything else equal, the AQLI predicts that a permanent reduction of PM2.5 from the 2013 to 
2018 level would generate a remarkable gain in average life expectancy of 2.7 years per person.  

Spatial Heterogeneity. We examine regional heterogeneity in air quality trends by estimating 
equation (1) separately for each of the six regions of China. Panel (b) in Figure 2 shows that, 
although the speed of the initial clean up differed across regions, all six regions experienced 
similar PM2.5 reduction in percentage terms by the end of 2018.  

To further explore regional differences in PM2.5 reductions, we estimate a linear trend in PM2.5 
for each city using the monitoring data from 2015 when all cities had begun real-time air quality 
monitoring. We plot the city-specific coefficient estimates in Appendix Figure 5. Panel (a) shows 
the average annual changes between 2015 and 2018 in PM2.5 by city, and panel (b) shows the 
percentage changes. We observe a striking PM2.5 decline in many cities of the country, including 
the area around Beijing, parts of the northeast, and parts of the west. Notably, the area around 
Beijing, one of the focal points of China’s cleaning-up efforts, experienced a reduction of over 
12 µg/m3 per year during 2015-2018. We predict that, back in 2013, only 20 percent of Chinese 
cities (13 percent of the population) were in compliance with the government’s 2012 ambient 
PM2.5 annual standard of 35 µg/m3. In 2018, about 41 percent of the cities (29 percent of the 
population) met the standard. There is substantial heterogeneity in the magnitude of air quality 
improvements across different cities. While air quality improvement occurred almost across the 
entire nation, a handful of places, such as Linfen in Shanxi Province and Chizhou in Anhui 
province, experienced consistent increases in PM2.5.  

 
7 AQLI  is developed to measure and communicate the health risks posed by particulate matter air pollution around 
the world. More information can be found at: https://aqli.epic.uchicago.edu.  
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The rich spatial pattern shown in Appendix Figure 5 raises the question of why air quality 
improved much faster in certain cities than in others. While it is beyond the scope of this paper to 
examine the causes underlying the spatial heterogeneity, we document several correlates of air 
quality improvement. Appendix Figures 6 and 7 report coefficient estimates from a cross-
sectional regression of the PM2.5 reduction per year in level and in percentage, respectively, on 
city-level demographic and industrial characteristics during the 2011–2012 (baseline) period. We 
find that air quality improved more quickly during the 2015–2018 period in cities that were 
larger in population size and wealthier, as measured by GDP per capita. In addition, cities that 
had high concentrations of certain industries – such as the stone, clay, and glass-product 
manufacturing sectors – showed significantly larger pollution reductions. Cities with more coal 
mining activities and the waste recycling industry were less likely to experience such reductions.  

These correlations are not necessarily causal, and understanding the precise causes of the 
pollution reductions warrants further research. We only note that there have been a wide variety 
of policies that target air pollution and energy consumption, and sorting out the causal impacts of 
individual ones would be of great academic and policy interest. The impacts and effectiveness of 
these policies are the focus of Karplus et al. (2020) and Auffhammer et al. (2020) in the 
symposium.  

2.2. Water Quality 

Data. We use publicly available data from the MEE’s Major River Basins Water Quality Reports, 
which contain weekly surface water quality data from about 110 monitoring stations. Panel (a) of 
Appendix Figure 8 shows the location of the monitors. These monitors cover major river basins 
in China and reflect surface water quality in river segments that are deemed important by the 
MEE.8 We use water quality data from 2008 to 2018. Prior to 2008, there was no systematic real-
time water quality reporting.   

Trends. Due to the small number of monitoring sites in the reports, we summarize water quality 
for monitors in river basins, including those of the Yellow, Yangtze, Huai rivers. We aggregate 
the original station-weekly-level data to compute year-to-year changes. Figure 2 shows two 
measures of water quality: dissolved oxygen (DO in mg/L) concentration – the degree of the 
water’s oxygen saturation, and thus a measure of suitability for aquatic lives; and chemical 
oxygen demand (COD in mg/L) – the degree of oxygen depletion in the water as a result of 
bacteria actions, and thus a measure of water pollution. Appendix Figure 8, Panel (b) plots the 
third measure of water quality: the fraction of Grade I, II, and III water– “swimmable” water.9  

 
8 Admittedly, the water quality data we collect are not representative to the entire country’s water pollution, as 
smaller rivers and lakes are generally more polluted. Unfortunately, water quality data from these less important 
monitoring stations are not systematically published by the MEE. This partially explains why there are fewer studies 
on water pollution. Over the past three decades, the MEE has significantly expanded the national water quality 
monitoring system: by 2015, there were 972 national water quality monitoring stations across China, and the number 
is expected to increase to more than 2,700 stations by 2020.  
9 These measures have been used in previous research of water quality both in China and in the US (e.g., Greenstone 
and Hanna, 2014; Kahn et al., 2015; Keiser, et al., 2019; Keiser and Shapiro, 2019; He et al., 2020).  
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These figures reveal two key patterns. First, water quality steadily improved from 2008 to 2018 
in all regions except the Yangtze River Basin, which has the best initial water quality.10 Second, 
there is a visible trend of convergence that water quality in all rivers becomes similar. The water 
quality improvement is the largest in the Huai River Yellow River basins, which initially had the 
worst water quality.  

Publicly available data on drinking water and groundwater quality (which are distinct from 
surface water quality) are too limited to allow for similar analyses. However, based on the 
various annual reports of the MEE, we plot groundwater quality in Appendix Figure 9 and find 
that it deteriorated from 2010 to 2017.11 The striking difference between the surface water and 
groundwater is likely due to the weaker regulations on groundwater. Groundwater pollution is 
less visible than surface water pollution and technically more challenging to address.  

3. The Impacts of Pollution on Human Well-Being  

Given the magnitude of its pollution challenges, the rapidly changing policy environment, and 
the rich set of environmental measures deployed, China provides a unique and rich setting for 
studying pollution’s impacts on human well-being. Here, we review this emerging literature, 
which can complement the rich literature from developed countries. Because developing 
countries differ from developed countries along many dimensions (including regulatory 
environments, access to health care, and initial levels of pollution and population health), it is 
possible that the pollution impacts in developing countries are also different (Arceo et al. 2016; 
Greenstone and Jack 2015).12 This review focuses primarily on the more mature literature on air 
pollution, but we also include a section summarizing the findings on water pollution.  

3.1 Empirical Framework and Identification Strategy 

We first discuss the empirical framework and the key identification strategies commonly used in 
the literature. A linear equation in a panel-data setting is often used, with the dependent variable 
being the outcome of interest (e.g., mortality rate) and the key variable of interest being a 
measure of ambient pollution level: 

yit = 𝑥!#𝛽 + 𝛼	𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛!# + 𝜖!#        (2) 

where i denotes a region and t denotes time. The key challenge in estimating the causal impact of 
pollution on health (and on many other outcomes) is that variation in pollution could be 
endogenous. Take air pollution as an example. Air pollution levels are often influenced by 
complex meteorological processes that can directly affect human health, yet it is difficult to 

 
10 The average DO levels at the monitored locations are around 7.5 mg/L. This exceeds the U.S. EPA’s 
recommended 30-day minimum concentration of 6.5 mg/L for aquatic life. 
11 The reports can be accessed via http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/. Note that the groundwater 
quality standards are different from surface water quality standards, even though both use a grade system to define 
different levels of water pollution. 
12 Please refer to Graff Zivin and Neidell (2013) and Currie et al. (2014) for reviews on studies focusing on U.S. and 
other countries.  
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control for all these factors in the research. In addition, other unobservable social and economic 
factors (e.g., income) could be correlated with both air pollution and the outcome variables.  

The economic literature has mostly relied on quasi-experimental designs to credibly estimate the 
causal impact of air pollution (Greenstone and Gayer, 2009). In these designs, researchers 
typically leverage changes in meteorological conditions, regulations, and specific events/shocks 
to isolate the pollution impacts from the confounding factors.  

Several studies explore changes in meteorological conditions (wind, thermal inversion, etc.) to 
estimate the impact of air pollution. For example, wind can disperse pollutants and exogenously 
change local air pollution levels. Under the assumption that unobservables from upwind areas (of 
a certain distance) from a given location are not correlated with local unobservable determinants 
of the outcome, wind direction is often used to generate valid instrumental variables (IVs).  
Thermal inversion is another common IV in the literature (e.g., Arceo et al., 2016). Thermal 
inversion occurs when warm air settles over cooler air. When it occurs, air pollutants will be 
trapped from rising and dispersing. It is like putting a lid on a pot and can significantly increase 
ground-level air pollution concentrations.  

Another source for identification comes from policy changes that in principle affect the outcome 
variables only through their impacts on air pollution. Notable examples include those on the 
impacts of the Clean Air Act in the U.S. (e.g., Chay and Greenstone, 2005; Deschenes et al., 
2017; Isen et al., 2017) and those studying the winter heating system in China (e.g., Chen et al., 
2013; Ebenstein et al., 2017; Ito and Zhang, 2020).  

Researchers also explore various events and economic shocks (that affect local pollution but are 
plausibly uncorrelated with unobservable determinants of the outcome) to identify the pollution 
impact. For example, Schlenker and Walker (2016) use airplane network delays to instrument air 
pollution levels in the U.S.  In the Chinese context, He et al. (2016) leverage changes in air 
pollution induced by the 2008 Beijing Olympic Games for identifications. The literature has also 
used economic cycles and trade shocks (e.g., Chay and Greenstone 2003) to generate exogenous 
variation in local air pollution.  

3.2 Air Pollution and Physical Health 

The impact of air pollution on human health has been widely recognized, with some estimates 
suggesting that seven million deaths around the world can be attributed to air pollution each year. 
Indeed, around 90 percent of the people worldwide are breathing air that is deemed harmful to 
human health.13 The majority of them live in countries such as China and India, where 
particulate pollution can be five to ten times higher than what the World Health Organization 
(WHO) considers safe.  

Mortality Impact from Short-term Exposure. Mortality is arguably the most important health 
outcome. In the literature, several studies, while focusing on different empirical settings, 
consistently show that air pollution can significantly increase premature deaths in China. 

 
13 https://www.who.int/phe/publications/en/ 
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In an investigation of China’s acid rain policies, Tanaka (2015) finds that infant mortality 
significantly decreased in regions where SO2 emissions are tightly controlled. Focusing on 
pollution changes during the 2008 Beijing Olympic Games, He et al. (2016) estimate that a 10 
percent decrease in PM10 concentrations reduces the monthly standardized all-cause mortality 
rate by 8 percent. Bombardini and Li (2020) focus on trade-induced pollution and find that 
China’s export expansion affects infant mortality through pollution concentrations, with a one 
standard deviation increase in the pollution content of export shock increasing infant mortality 
by 4.1 deaths per thousand live births.  

More recently, as better air quality data have become available, more studies focus on finer 
measures of air pollution, such as PM2.5 and Air Quality Index (AQI). Fan et al. (2020) exploit 
the variation in the exact dates when the coal-fired winter heating system is turned on across 
cities and estimate that a 10-point increase in the AQI as a result of the winter heating leads to a 
2.2 percent increase in mortality. He et al. (2020) examine farmers’ straw burning practices and 
find that agricultural fires increase pollution and lead people to die prematurely from cardio-
respiratory diseases. They estimate that a 10 µg/m3 increase in straw-fire-induced PM2.5 
increases the mortality rate by 3.25 percent. The estimated effect in Fan et al. (2020) is similar in 
magnitude to that in He et al. (2020), but substantially smaller than the estimate in He et al. 
(2016). A plausible explanation for this difference is that He et al. (2016) use air pollution data 
from 2006 to 2010, which is a period when reported air pollution concentrations were 
manipulated such that they were lower than the true concentrations (Greenstone et al., 2020).  

Mortality Impact from Sustained Exposure. The aforementioned studies all investigate the 
pollution effect for a relatively short period of time (e.g., weekly, monthly, or at most annually). 
Sustained pollution exposure is believed to cause greater damage to human health and is 
generally the focus of regulation. However, credible evidence on air pollution’s long-term 
impacts is limited both in China and elsewhere.  

Estimating the long-term impacts requires researchers to address several empirical challenges, 
including identifying exogenous long-run variation in air pollution, collecting data on individuals’ 
lifetime exposure to pollution, and finding a strategy to limit compensatory migration in response 
to air pollution differences. For example, richer people may move into areas with better air 
quality. Because these people may also have healthier lifestyles and better access to quality 
medical services, it is difficult to isolate the impact of air pollution from other factors. 
Oppositely, it is also possible that sicker people are more likely to move to areas with lower air 
pollution, leading to selection in another direction.  

To the best of our knowledge, the first quasi-experimental evidence on the impacts of sustained 
exposure to air pollution focuses on China. It is characterized by two unique features. First, 
China’s central winter heating system, which dates to China’s planning period, provided free 
winter heating for decades to people living north of the Huai River and forbade winter heating to 
the south.14 Since the winter heating was generated from small coal boilers with few 
environmental controls, it significantly raised air pollution levels in northern China. Second, 
China’s household registration (Hukou) system has historically controlled migration across cities. 

 
14 Specifically, the Chinese government limited the implementation of the policy started from 1950’s to those living 
north of the Huai River and the Qin Mountains.  
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The migration restriction means that before internal migration began in earnest, it is possible to 
know individuals’ lifetime exposure to pollution from their current residence. Further, the Hukou 
system, particularly prior to the 2000s, prevented most people from engaging in compensatory 
migration in response to local environmental quality.15  

Exploiting a regression discontinuity design based on the distance to the Huai River, Chen et al. 
(2013) and Ebenstein et al. (2017) examine the impact of sustained pollution exposure on life 
expectancy. The main difference between the two is that Chen et al. (2013) use mortality and 
pollution data from the 1990s while Ebenstein et al. (2017) use more recent and comprehensive 
data covering the 2004-2012 period. Both studies find that sustained exposure to air pollution 
significantly reduced life expectancy. In particular, Ebenstein et al. (2017) estimate that the 
winter heating policy raised PM10 levels by 46 percent in the region north of the Huai River, 
which caused a loss of life expectancy of 3.4 years. That implies a 10 µg/m3 increase in PM10 
levels shortens people’s life by 0.64 years. 

Morbidity Impact. In addition to the consequence of air pollution on mortality and life 
expectancy, air pollution is also found to significantly increase morbidity. Different from 
epidemiological studies that generally focus on the correlation of pollution with the incidence of 
specific diseases, economic studies give greater emphasis on causality and measuring economic 
costs associated with morbidity. Barwick et al. (2018) offer perhaps the most comprehensive 
analysis of the morbidity costs of air pollution. Leveraging air pollution variation caused by wind 
patterns to examine PM2.5 concentrations, the authors find that annual reduction in national 
healthcare spending from complying with the WHO’s annual standard of 10 µg/m3 would 
amount to $42 billion, or nearly 7 percent of China’s total healthcare spending in 2015.  

Several other studies assess the morbidity impact of air pollution in a particular region, or for a 
subpopulation in China. Zhong et al. (2017) leverage Beijing’s driving restrictions that affect the 
number of vehicles on the road to estimate the impact of pollution on morbidity. They find that 
traffic congestion caused by driving restrictions lead to worse air pollution and a higher demand 
for ambulance services. Chen et al. (2018) use thermal inversion as the instrument and examine 
the effects of air pollution on the health status of students in Guangzhou city. They collect 
detailed records of school attendance and disease records from more than 3,000 schools and 
detect a sizable effect of air pollution on school attendance caused by respiratory diseases. Using 
data from international schools in north China, Liu and Salvo (2018) also find air pollution 
significantly increases student absences.  

Pollution Spillovers. A related line of research examines the spillover effect of China’s 
pollution on neighboring regions. Jia and Ku (2019) find that South Korea would have had 2,400 
fewer cardiorespiratory deaths if China’s AQI had been 12 points lower during 2001–2010. The 
identification is based on Asian dust, a meteorological phenomenon whereby yellow dust clouds 
(and pollutants) pass from China to South Korea by westerly winds. Cheung et al. (2020) show 
transboundary air pollution from mainland China’s manufacturing hub increases air pollution in 
Hong Kong, which further causes more people to die from cardiorespiratory diseases.   

 
15 The policy has been loosened in recent years. Ebenstein et al. (2017) assessed migration patterns, and they 
discovered that migration did not appreciably alter people’s lifetime exposure to air pollution.  
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3.3 Air Pollution, Mental Health, Happiness, and Cognitive Ability 

Mental disorders are the second leading contributors to the global disease burden, accounting for 
7 to 13 percent of disability-adjusted life-years (Vigo et al., 2016). Medical and epidemiological 
research has also documented that air pollutants (particularly particulate matter) can lead to brain 
base oxidative stress and inflammation, impairing brain function, and exacerbating depression 
and anxiety (e.g., Sørensen et al., 2003).  

Chen et al. (2018), Xue et al. (2019), and Zheng et al. (2019) are among the first to assess how 
air pollution affects mental health and happiness in China.16 Both Chen et al. (2018) and Xue et 
al. (2019) use nationally representative data from the China Family Panel Studies (CFPS), in 
which individuals self-report their mental health along many dimensions. Chen et al. (2018) use 
data from 2014 to 2015 and leverage thermal inversions to instrument local air quality; Xue et al. 
(2019) use data from 2010 to 2014 and rely on fixed effects models to identify the pollution 
impact. Both studies find that exposure to higher levels of PM2.5 increases the probability of a 
self-reported mental illness, confirming the epidemiological link between air pollution and 
mental health. However, the estimated effects of the two studies differ in size, with the estimates 
of Chen et al. (2018) substantially larger than those of Xue et al. (2019). Zheng et al.  (2019) 
analyze the sentiment in the contents of 210 million geotagged tweets on Chinese social media 
and find that air pollution is negatively associated with happiness in urban China.  

Studies also show that air pollution can affect people’s cognition and decision-making processes. 
Zhang et al. (2018) analyze the relationship between air pollution and individuals’ cognitive 
performance in verbal and math tests using the CFPS data. They find that long-term exposure to 
air pollution impedes people’s cognitive performance, and the effects can be more pronounced as 
people age. Chang et al. (2018) examine individuals’ decisions to purchase and cancel health 
insurance in China. They find that elevated pollution increases the number of health insurance 
contracts sold on that day, but conditional on purchase and better air quality during the cooling-
off period (i.e., cost-free cancellation) induces more cancellations of the insurance contracts. 
Chew et al. (2019) conduct lab experiments in 2012 and find that high PM2.5 levels lead to 
increased risk aversion to gains, risk tolerance over losses, and ambiguity aversion over gains; 
and to greater impatience in temporal discounting.  

Relatedly, using data from the financial market, two recent studies show that air pollution affects 
financial decision-making. Specifically, Li et al. (2019) show that air pollution (measured using 
city-level air quality index) significantly increases the disposition effects of investors and argues 
that mood regulation provides a potential mechanism. Rui et al. (2019) find that poor air quality 
during corporate site visits by investment analysts is associated with lower earning forecast 
relative to realized earning. The authors attribute this finding to pollution-induced pessimism. 

3.4 Air Pollution and Productivity 

 
16 We focus on research that uses nationally representative data from China because studies that use data from local 
areas tend to generate mixed results.  
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Thanks to the availability of high-frequency production data in the past few years, a growing 
literature examines the impact of air pollution on the productivity of Chinese workers.  
Manufacturing jobs are usually labor-intensive and require workers to be physically healthy. To 
study the manufacturing workers’ productivity loss due to air pollution, He et al. (2019) 
assemble daily worker-level output data from two Chinese firms in the textile industry. 
Exploiting day-to-day changes in air quality, they show that the current-day impact of air 
pollution on worker productivity is largely negligible, while prolonged exposure to air pollution 
has a modest impact on output. Specifically, a 10 μg/m3 increase in PM2.5 concentrations 
sustained over 25 days would only reduce daily output by one percent.  

Chang et al. (2019) investigate workers in the service sector. Compared with manufacturing jobs, 
service-oriented positions are more cognitively demanding; this kind of work reflects the nature 
of employment for a larger share of workers in modern economies. Using daily performance data 
of workers in two call centers in China, the authors estimate that a 10-unit increase in the Air 
Pollution Index (API) decreases the number of daily calls handled by a worker by 0.35 percent. 
The negative impact of air pollution on the number of calls is primarily driven by workers taking 
longer breaks between calls, not by them spending more time in answering calls. The estimated 
effect in Chang et al. (2019) is similar in magnitude to that found by He et al. (2019).  

Though call center work relies largely on mental rather than physical skills, such work is not 
particularly difficult to master. Kahn and Li (2020) focus on elite workers – judges working in 
the government – and examine how air pollution affects their productivity. The authors find that 
increases in PM2.5 could significantly prolong the “decision time” to rule on a given case (i.e., 
how much time a judge takes to adjudicate a case after it has been assigned), an important metric 
of judges’ productivity.  

Graff Zivin et al. (2019) study the performance of high school students during high-stakes exams. 
The identification relies on pollution variation caused by straw burning and wind. Using data 
from the National College Entrance Examination during the period from 2005 to 2011, they find 
that straw burning leads to worse exam performance; a one-standard-deviation increase in the 
difference between upwind and downwind straw burning during the exam decreases the total 
exam score by 1.42 percent of a standard deviation (or 0.6 of a point).  

While the studies discussed above shed light on the relationship between air pollution and 
contemporaneous productivity, their representativeness and long-term validity is less clear 
because they focus on specific lines of work and specific sectors. Using a nationally 
representative sample of all Chinese manufacturing firms from 1998 to 2007, Fu et al. (2019) 
estimates the effect of air pollution effect on productivity. Their identification strategy relies on 
short-run variation in air pollution due to thermal inversions and estimates that a 10 μg/m3 
decrease in PM2.5 increases productivity by 8.2 percent. This estimate is an order of magnitude 
larger than previous estimates from Chang et al. (2019) and He et al. (2019) that rely on short-
term changes in air pollution. Using the Huai River winter heating regression discontinuity 
design, Ebenstein and Greenstone (2020) find that childhood exposure to air pollution leads to 
reduced educational attainment and lower wages as an adult. 
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Overall, recent studies using data from China point to the negative impact of air pollution on 
labor productivity. Yet, the magnitude of the impact of the effect size varies greatly across 
different studies. Given the important implications of these findings in evaluating the benefits 
and costs of air quality improvements, further research is needed to better understand the impact 
heterogeneity. That being said, the accumulating evidence suggests that if we only focus on 
health outcomes, the full costs of air pollution can be potentially greatly understated.  

3.5 Impacts of Water Pollution 

Most studies of environmental pollution focus on air pollution, partly because air quality data are 
readily available in many places. In comparison, relatively few studies examine water pollution 
because systematic data on water pollution are rare. As for China, even though its surface water 
system was severely degraded, many people in rural areas still rely on surface water for daily use, 
including drinking.  

Ebenstein (2012) is among the first to estimate the impact of surface water pollution on health. 
Using rainfall as the instrument, he finds that a one-grade decrease (on a six-grade scale) in 
surface water pollution increases the digestive cancer death rate by 9.7 percent. He and Perloff 
(2016) also focus on the omnibus water grade as the water quality measure to examine the 
impact of surface water pollution on infant mortality. They find that surface water pollution has a 
non-monotonic effect on infant mortality: as water quality degrades, infant mortality first goes up 
and then goes down.  

Lai (2017) studies the impacts of exposure to pollution in drinking water by comparing the 
outcomes for people who drink surface water and groundwater in regions with different 
intensities of rice pesticide use. The study takes advantage of changes in the intensity of pesticide 
use that occurred in 2004, starting from which China shifted from taxing agriculture to 
subsidizing agricultural programs. Using a disability index as a measure of health, he finds that 
increased use of pesticides adversely affects health outcomes of rural residents 65 and older.  

A parallel line of research focuses on the impacts of clean drinking water. While these studies do 
not directly measure the degree of water pollution, they all suggest that clean drinking water 
brings about massive health benefits. Using village-level data, Zhang (2012) shows that 
introducing piped water into villages improves the health status for both adults and children. In a 
similar setting, Zhang and Xu (2016) investigate China’s rural drinking water program and find 
that providing clean drinking water to children will increase their educational attainment in the 
long run. Fan and He (2019) examine the impact of piped water connection on infant mortality. 
They instrument piped water coverage using the minimum-cost paths between water sources and 
different counties and show that piped water provision significantly reduced infant mortality.  

4. Compensatory Responses to Pollution 

Facing high levels of pollution, individuals can take preventive measures to reduce exposure and 
mitigate the impact. These risk-compensating behaviors include avoidance actions and defensive 
spending in the short run, and household sorting in the long run. Initial empirical evidence on 
avoidance behavior has been based on data from the U.S. (e.g., Neidell 2009). Research on 
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avoidance behavior using data from China is only a recent effort. As the compensatory responses 
are costly, they are part of air pollution’s social costs. In this section, we first discuss the role of 
pollution information in fostering behavioral changes, then summarize findings on how people 
protect themselves against pollution in China. 

4.1 Pollution Information 

Avoidance behaviors rely critically on whether people have access to accurate pollution 
information and their awareness of the potential health impacts. The lack of high-quality 
pollution information and low awareness of the air pollution impact may hinder effective 
defensive behavior, especially among the poor and less educated (Greenstone and Jack 2015; 
Hausman and Stolper 2020). Before 2013, public access to real-time pollution measures was 
absent in most Chinese cities. The MEE (formally the MEP, Ministry of Environmental 
Protection) began compiling the Air Pollution Index (API) for major cities in 2000 and gradually 
expanded the network. The MEE initially did not control the monitoring stations. Instead, local 
environmental bureaus, whose leaders were appointed by local governments, gathered and 
reported the data.  Research has found evidence of manipulation of the API data in many cities 
(e.g., Andrews, 2008; Ghanem and Zhang, 2014; Greenstone et al., 2020). 

The real-time pollution monitoring and disclosure program (henceforth, the information program) 
was launched in 2013. It marked a turning point in pollution information access and awareness. 
The central government installed more than 1,600 U.S. EPA-grade monitoring stations, each 
equipped with automated, real-time monitoring devices that track concentrations for six criteria 
pollutants. In about two years, the monitoring network had managed to cover the entire nation. 
The central government also established a parallel data streaming system – one in which in situ 
monitoring results stream in real time to city-, province- and central-level governments.  

Greenstone et al. (2020) argue that the nature of the automation of the information program has 
the potential to address the principal-agent problem in China’s environmental monitoring, where 
the central government is the principal who wants accurate information and pollution reduction, 
and local officials are the agents who tend to hide such information because they place a greater 
emphasis on economic growth. The authors find that automated monitoring significantly 
improved the quality of China’s air pollution data and that the post-automation trends from the 
real-time monitoring data are close to those from satellite-derived pollution measures. The study 
also finds that the availability of accurate pollution information in the wake of the new 
information program has led to more avoidance behaviors, as measured by online searches for air 
filters and face masks.  

Barwick et al. (2019) document the profound impacts of the information program by exploiting 
rich data on a wide array of outcomes – including pollution awareness, short- and long-run 
economic activities, and health outcomes. Using an event-study design based on the staggered 
introduction of the information program, the authors show that the program transformed the 
landscape of public access to pollution information and dramatically increased households’ 
awareness about pollution issues. These changes triggered a cascade of short-run and long-run 
behavioral changes in household activities, including increases in online searches for pollution-
related topics, adjustments in day-to-day consumption patterns to avoid pollution exposure, and 
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higher WTP for housing in less polluted areas. As a result of both short- and long-term 
behavioral changes, the program reduced the mortality cost of air pollution by flattening out the 
dose-response function of pollution on mortality. 

Improved information access and awareness of the issue could change household WTP for clear 
air. For example, Ito and Zhang (2020) find that the WTP estimate based on air purifier sales is 
much larger after 2013 when the information program started to roll out. Tu et al. (2020) 
examine the impact of “Under the Dome,” a high-profile documentary about China’s air 
pollution released in February 2015. Using a longitudinal survey conducted in the city of 
Nanjing and exploiting a regression discontinuity (in time) design, the study shows that 
household WTP for clean air increased among those who had viewed the documentary. 

4.2 Avoidance Behavior and Defensive Investments 

In addition to the aforementioned studies that explicitly examine the consequences of pollution 
information provision, many studies also examine how changes in pollution levels affect 
avoidance behaviors.  

Sun et al. (2017) analyse the relationship between daily air pollution and the sales of face masks 
and air purifiers. Using sales indices for face masks and air purifiers from China’s largest e-
comment platform, Taobao, the authors show that people buy more face masks and air purifiers 
when ambient pollution levels exceed key alert thresholds; the response is significantly larger 
among the high-income group. Zhang and Mu (2018) quantify the monetary values of people’s 
investment in face masks by using online sales data from Taobao and exploiting day-to-day 
changes in air quality across cities. They estimate that a 10-point increase in the AQI increases 
the consumption of all masks by 5. 5 percent,  and the consumption of anti-PM2.5 masks by 7.1 
percent. The findings imply that if China could eliminate 10 percent of heavy pollution days, the 
total savings on face masks alone would be approximately $187 million in China. Relatedly, 
Barwick et al. (2018) show that elevated PM2.5 levels are positively associated with increased 
spending on healthcare but reduce spending in supermarkets. Barwick et al. (2019) show that the 
reduction in consumption is stronger in deferrable categories (such as purchasing daily 
necessities and eating at restaurants), and weaker for scheduled or less-deferrable categories 
(such as paying bills, business-to-business transactions, and appointments at cancer treatment 
centers). Sun et al. (2019) find similar results in that they document a positive correlation 
between air quality and daily consumption activities in restaurants and shopping malls, based on 
information from a consumer review platform for restaurants and mobile phone positioning data 
in Beijing. 

Ito and Zhang (2020) made an important contribution to this literature by developing a 
framework to estimate Willingness to Pay (WTP) for clean air using market sales data of air 
filters. Leveraging long-run pollution variation caused by China’s Huai River central winter 
heating policy, the authors estimate that a household is willing to pay $13.4 annually to remove 
10 µg/m3 of PM10 and $32.7 annually to eliminate the increased pollution caused by China’s 
winter heating policy. The authors discuss several reasons why this estimate could be a lower 
bound estimate of true WTP, including the limited information on pollution levels and consumer 
awareness on the health impact of air pollution, especially before 2013.  
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Several recent studies document intercity trips as a short-term strategy for pollution avoidance in 
China based on daily data. Chen et al. (2018) use cell phone data to track consumer movement 
across cities and Cui et al. (2019) use smartphone-cased location data to show that consumers 
travel from polluted cities to cleaner cities to avoid pollution. By tracing consumer locations 
based on credit and debit transactions, Barwick et al. (2020) find that improved transportation 
infrastructure such as high-speed rail and air connections facilitates pollution avoidance through 
intercity travel. The ability to avoid pollution through behavioral changes has important 
implications in understanding the social costs of air pollution.  

Multiple studies document that income levels are important determinants of people’s WTP for 
clean air (e.g., Sun et al., 2017; Ito and Zhang, 2020). Because richer people can better protect 
themselves against pollution, it is possible that they can partially mitigate the air pollution effect. 
In fact, both Fan et al. (2020) and He et al. (2020) find that the impact of air pollution on 
mortality is greater in low-income areas than that in high-income areas. Relatedly, Cheung et al. 
(2020) show that the air pollution effect in Hong Kong has significantly decreased in the past 
two decades, and attribute the reduction to the improvement in the city’s medical system. Liu 
and Salvo (2018) find that air pollution has a small impact on school attendance among high-
income children, whose parents and principals are better informed.  

In the context of water pollution, He and Perloff (2016) highlight the critical role of avoidance 
behaviors in mitigating the health damages from consuming dirty water. They argue that when 
surface water becomes slightly degraded, people do not notice the pollution and continue 
consuming it; however, as the pollution gets further worse, people notice the pollution, and thus 
reduce their consumption of surface water. The avoidance behavior helps to explain the non-
monotonic relationship between water pollution and infant mortality in China.  

4.3 Household Sorting 

Households choose where to live (i.e., vote with their feet) either within a city or across different 
cities based on housing prices and the provision of local amenities such as public goods and 
environmental quality (Tiebout 1956). There are two common approaches to study the Tiebout 
sorting with respect to environmental quality. The first one is based on neighborhood-level data 
(such as census tract). This approach examines the relationship between the changes in 
population size and changes in environmental quality in a linear regression framework. The 
second approach examines how households sort across different locations using a discrete choice 
framework. Both approaches need to address the same identification challenge: unobservables 
correlated with both household location choices and environmental quality. Unobservables could 
include spatially delineated amenities and public goods such as school quality, crime rates, 
access to public transit, and other neighborhood quality measures. 

Empirical literature using U.S. data has generally confirmed that households indeed vote with 
their feet to seek better environmental quality (e.g., Kahn, 2000; Chay and Greenstone 2005; 
Banzhaf and Walsh, 2008; Greenstone and Gallagher 2008; Sieg et al., 2010; Bayer et al., 
2009).17 A small but emerging literature also documents household sorting with respect to 

 
17 In addition, a vast literature applies the hedonic framework in the housing market to estimate household 
willingness to pay for environmental quality improvements (Chay and Greenstone 2005; Greenstone and Gallagher, 
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environmental quality in China. Chen et al. (2017) examine the impacts of air pollution on cross-
city migration in China using the first approach based on population changes measured with the 
population census. They use thermal inversion as the instrument and find that air pollution 
significantly affects migration in China, and the effect is driven mostly by well-educated people 
and young professionals. 

Freeman et al. (2019) take the second approach by employing a household-sorting model similar 
to Bayer et al. (2009). They study household location choices across cities while accounting for 
moving costs and the potential endogeneity in air quality. Wind directions and large-scale 
thermal power plants outside the city are used to generate exogenous variation in local air 
pollution. Their analysis shows that Chinese households take air quality into account in their 
location decisions, and on average, they would pay about 22 USD for a one-unit reduction in 
annual PM2.5 concentrations. This estimate is nearly an order of magnitude larger than that from 
Ito and Zhang (2020). Although both studies use revealed preference approaches, the choices 
considered and the identification strategies are different, making it difficult to understand the 
sources of the large difference in these estimates of WTP for air quality. 

Households could take more extreme measures, such as migrating to other countries, to avoid 
persistent and severe pollution, leading to brain drain. Severe air pollution could also hinder 
foreign direct investment by deterring foreign managers from relocating to China. Qin and Zhu 
(2018) provide a correlation analysis of China’s air pollution and citizens’ interest in emigration. 
Based on a city-by-day online search index as a measure of people’s emigration sentiments, they 
find that if a given day’s AQI increases by 100 points, searches on “emigration” grow by 
anywhere from 2 percent to 5 percent the next day. The effect is more pronounced at higher 
pollution levels.  

Household location choices based on air quality could have important implications on firm 
productivity and performance, because firms located in more polluted areas may be less able to 
recruit and retain high-skilled workers. Using thermal inversion as the instrument, Khanna et al. 
(2019) confirm that pollution affects the spatial distribution of skilled workers and that sorting on 
pollution leads to productivity loss in polluted cities. Exploiting the exogenous variation in air 
pollution from China’s central heating policy, Xue et al. (2019) find that firms in more polluted 
areas have less non-locally born executives and that the education level of their top executives 
and employees is lower on average. They show that this negatively affects firm performance, 
with stronger negative impacts evident among firms that more heavily rely on human capital in 
their production. 

5. Concluding Remarks and Future Research 

Developing countries, especially the fast-growing economies that rely heavily on manufacturing 
and fossil fuels, face the world’s most severe pollution challenges. China’s recent experiences 
are without historical precedent, both in terms of the speed with which the quality and 
availability of information on pollution have increased and the rapidity of the decline in air 
pollution concentrations. Further, China’s ambition to lower air pollution has only become more 

 
2008; Currie et al., 2015; Muehlenbachs et al., 2015). Household location choices based on environmental quality is 
a key underlying channel of the hedonic framework.  
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intense in recent years.18 Given the rich spatial and temporal variation in pollution and 
environmental policies in the country, and the increased availability of fine-scale data on social 
and economic activities, we believe there is much to learn from China’s experiences. 

This review provides a summary of the existing scholarly work that looks into the consequences 
of environmental pollution and this literature is poised to become even richer in the future. These 
studies have already deepened our understanding of environmental issues in China, which will be 
important for other developing countries as well. Some of the research findings have started to 
generate policy impacts. For example, after the Chinese government learned that the coal-fired 
winter heating system had brought about disastrous health consequences, it launched a large-
scale clean energy programs that is replacing coal with natural gas as the heating fuel.19 As 
China continues to combat pollution, we expect that research in this area has a high potential to 
contribute to the adoption of evidence-based environmental policymaking in China. 

We conclude this review by pointing out several important directions for future research. First, 
we believe that understanding the consequences of sustained pollution exposure remains the 
most important question both for research and policy. However, most existing studies focus on 
the short and medium run variation in pollution for opportunistic reasons. Future research should 
prioritize identifying long-run quasi-experimental, or even experimental variation in pollution.  

Second, existing studies show that the negative impacts of pollution extend beyond the direct 
health consequences, and there is an urgent need for research on how air pollution influences 
long-run human capital acquisition, human cognition, and productivity. The knowledge 
accumulated so far has suggested that the present health-focused enumerations of pollution costs 
may significantly underestimate the true costs of pollution (e.g., Ebenstein and Greenstone 2020). 
Besides, the extent to which compensatory behavior (e.g., avoidance expenditure, sorting, etc.) 
can mitigate the negative impact of pollution remains largely under-explored.  

Third, the estimated impacts of pollution on some key outcomes can vary greatly across different 
studies, likely driven by differences in the sample coverage, identification strategies, and time 
horizons, etc. However, we know very little about what factors are more important in explaining 
the discrepancies and which estimates should be regarded as more credible. This inconsistency 
imposes a challenge for the research community in their communications with policymakers and 
the public. Future research is warranted to try to understand the source of these differences. 

Fourth, research on the causes and consequences of water pollution, and the available policy 
options, is less advanced than work on air pollution. The impact of water quality matters a great 
deal not only to human health but also to ecosystem services. Water pollution has different 
dynamics and spatial patterns from air pollution due to the differences in pollution sources and 
the nature of spillovers. Despite the improvement in air quality and surface water quality, 
groundwater quality has degraded in the past decade, which is concerning given that 
groundwater is the primary drinking water source in many parts of the country. 

 
18 According to the Atmospheric Pollution Prevention and Control Law (2018 Amendment), all the governments at 
and above the county level should include air pollution prevention and control in their economic and social 
development planning and design concrete plans to reach the environmental quality standards by 2025. 
19 See for example: https://www.chinadialogue.net/article/show/single/ch/10285-Three-year-cut-to-life-expectancy-
from-coal-heating- 
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Fifth, practically no economic research addresses soil pollution in China.  Soil pollution, 
primarily from industrial factories and farming practices, could pose dangers to human health, 
not only to local residents but to consumers of food products from the affected area. Anecdotal 
evidence suggests that soil pollution could be a widespread issue in China (Sun et al., 2019), yet 
public discussion has largely neglected this threat. Systematic data collection in this area would 
be an essential first step to understand and address this challenge. Similarly, plastic pollution is 
an increasing concern for wildlife as plastic production and usage increase over time and plastic 
waste flows into the ocean and enters natural habitats (Chu et al., 2020).  
 
As China’s environmental policies evolve and data access expands, there is a continuing 
opportunity for the world to learn from China’s practices. We have little doubt that when the 
next literature review is written, we will have a much deeper understanding of the complex 
linkages between human well-being and environmental quality and how government policies can 
influence these relationships. 
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Figure 1. Trends in Air Pollutants
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(b) PM2.5 by Region
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Notes: Panel (a) reports annual concentration of six criteria pollutants. The estimates are obtained from separate OLS
regressions of city×daily pollution concentration on calendar year indicators (omitting 2013) and city fixed effects for each
pollutant. Annual values are obtained by adding the regression constant back to the coefficients on the year indicators. Values
are normalized to 100 in 2013. Panel (b) reports annual PM2.5 concentration by region. The estimates are obtained from 6
separate OLS regressions (one for each region) of city×daily PM2.5 concentration on calendar year indicators (omitting 2013)
and city fixed effects. Annual values are then obtained by adding the regression constant back to the coefficients on the year
indicators.

Figure 2. Trends in Surface Water Quality at Major River Basins, 2010-2018
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Notes: Panel (a) shows annual average dissolved oxygen concentration (higher is better). The “U.S. Aquatic Life Criteria” (6.5
mg/L) refers to the U.S. EPA Quality Criteria for Water’s (1986) recommended 30-day minimum dissolved oxygen concentration
criteria for cold water, non-early life stages aquatic lives. Panel (b) shows annual average chemical oxygen demand (lower is
better). We excluded the site in Yuncheng (Shanxi Province) where the COD level dropped from 110 to below 20 during the
sample period.
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China’s War on Pollution: Evidence from the First Five Years
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Figure A.1. Concentration of Six Pollutants from Monitoring Stations
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Notes: These graphs report annual concentrations for 6 pollutants average across all monitoring stations.
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Pollution Trends Using Satellite-based Measures Appendix Figure A.2 compares the trends using the
PM2.5 data from the real-time pollution monitoring system by China’s Ministry of Ecology and Environment
(MEE), and the satellite-based estimates based on van Donkelaar et al. (2016). Between 2013 and 2018, PM2.5
levels dropped by 27.7 µg/m3, or about 41 percent from 2013 levels. The satellite-based estimates indicate a
rise in PM2.5 from 2000 onward, followed by a remarkable drop-off beginning in 2013. Our calculation shows
higher levels of PM2.5 from the monitoring data than the satellite-based estimates. We note this could be
due to the remaining difference in spatial coverage between the two datasets, and/or uncertainties in both
the satellite estimates and ground monitoring data, among other potential explanations. The van Donkelaar
et al. (2016) estimates come at a spatial resolution of 10-by-10-km; thus, we cannot calculate levels of PM2.5
at the exact location of the monitors.

A potential concern with government-provided air quality data in China is manipulation (e.g. Ghanem
and Zhang 2014). Appendix Figure A.3 presents a week-to-week comparison of the real-time PM2.5 data with
independent monitoring by the United States in five major cities: Beijing, Chengdu, Guangzhou, Shanghai,
and Shenyang. For all five cities, data provided by the MEE and the U.S. Embassy and consulates match
quite well, both for absolute levels and the seasonal patterns of PM2.5. Starting in 2013, both data sources
show a clear decline in PM2.5 levels. In Appendix Figure A.4, we have also confirmed that MODIS column
Aerosol Optical Depth values - one of the key inputs for measuring particulate pollution in van Donkelaar et
al. (2019) - also show a downward trend starting 2013.

Figure A.2. Trends in PM2.5 from Satellite and Motoring Stations
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Notes: This graph reports annual PM2.5 concentration. The connected line is PM2.5 trend using the government monitoring data.
Estimates are obtained from an OLS regression of city×daily PM2.5 concentration on calendar year indicators (omitting y2013)
and city fixed effects. The values in the graph equal the coefficients on the year indicators plus the regression constant term. The
dashed line is PM2.5 trend using satellite-based PM2.5 estimates from Van Donkelaar et al. (2019). In computing this trend, we
restrict to a fixed set of grid cells that contain the location of ground monitoring stations as of 2018. “China 2012 standard” refers
to The Ambient Air Quality Standards GB 3095-2012 Class-II region standard (residential, industrial, mixed-use, and rural areas).
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Figure A.3. U.S. Embassy versus Government PM2.5 Data
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(d) Shanghai
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Notes: This graph reports monthly PM2.5 concentrations for 5 cities where PM2.5 monitoring is independently carried out by the
U.S. Embassy & Consulates.
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Figure A.4. Trends in AOD and Satellite-based PM2.5
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Notes: This graph reports trends in annual AOD measures and satellite-based PM2.5 estimates from Van Donkelaar et al. (2019).
The AOD measures are from MERRA-2 and MODIS separately. The trends are based on OLS regression of city× pollution
measures on calendar year indicators (omitting y2013) and city fixed effects. The values in the graph equal the coefficients on
the year indicators plus the regression constant term. The figure shows the changes in MERRA-2 and MODIS AOD over time
- both based solely on satellite observations - compared with derived PM2.5 which is calibrated to ground monitoring. All three
measurements suggest over 23% reduction in particulates pollution since 2010.
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Figure A.5. Changes in PM2.5 by City, 2015-2018

(a) Level Change

(b) Percentage Change

Notes: This maps plot the amount (top) and percentage changes (bottom) of PM2.5 per year for each city between 2015 and
2018. The estimates are obtained from separate OLS regressions (one for each city) of city×daily PM2.5 concentration on a linear
year trend.
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Figure A.6. Correlates of City-Level PM2.5 Reductions
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Notes: This graph reports correlates of city-level PM2.5 reduction between 2015 to 2018. To facilitate comparisons, all explanatory
variables are normalized to have zero mean and unit standard deviation. Coefficient estimates from a single cross-sectional
regression of city-level PM2.5 reduction per year on z-scores of baseline economic and industrial characteristics . For each 2-digit
industry, the industry concentration is measured by the city’s y2011-y2012 average industry revenue as a fraction of city’s GDP.
Solid dots in the graph indicate coefficient estimates that are individually statistically significant at the 5% level.
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Figure A.7. Correlates of City-Level PM2.5 Reductions in Percentages
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Notes: This graph reports correlates of city-level PM2.5 reduction in pecentages between 2015 to 2018. To facilitate comparisons,
all explanatory variables are normalized to have zero mean and unit standard deviation. Coefficient estimates from a single cross-
sectional regression of city-level PM2.5 reduction per year on z-scores of baseline economic and industrial characteristics . For each
2-digit industry, the industry concentration is measured by the city’s y2011-y2012 average industry revenue as a fraction of city’s
GDP. Solid dots in the graph indicate coefficient estimates that are individually statistically significant at the 5% level.
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Figure A.8. Trends in Surface Water Quality at Major River Basins, 2010-2018
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Notes: The map shows the location of the Yellow River basin, the Yangtze River basin, the Huai River basin, and other major
rivers. Triangles represent water quality monitoring sites contained in the MEE’s Major River Basins Water Quality Weekly Report.
The right panel shows fraction of weeks in the year the water quality falls in the GB3838-2020 Grade I, II, and III categories (i.e.,
better than “swimmable”), averaged across monitors in the corresponding river basin.

Figure A.9. Trends in Ground Water Quality, 2010-2017
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Notes: These statistics are from annual China Water Resources Bulletin. Underlying data are ground water quality sampled from
5,000 wells each year. The graph reports fraction of water samples that falls in the GB/T 14848-2017 Grade I-III (“residential
use”), Grade IV (“residential use after treatment”), and Grade V categories (“not for residential use”).
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