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ABSTRACT
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resulting in severe polarization. We find that news aggregators can curb polarization caused by 
news sharing. Our results hold without media bias or fake news, so eliminating these is not 
sufficient to reduce polarization. When fake news is included, it can lead to polarization but only 
through misperceived selective sharing. We apply our theory to shed light on the evolution of 
public opinions about climate change in the US.
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1 Introduction

Recent decades have witnessed rising polarization in politics, media, and public opinions—
especially in the US. In their review about this phenomenon, Fiorina and Abrams (2008)
stress the importance of focusing on polarization in opinions. Pew Research Center (2014)
notes that those at both the left and right ends of the political spectrum have a greater im-
pact on the democratic process than those with mixed views—by being the most likely to
vote, donate to campaigns, and participate directly in politics. Alesina et al. (2020) find
that “Americans are polarized not only in their views on policy issues and attitudes towards
government and society, but also about their perceptions of the same, factual reality.” So-
cial divisions, in general, have been linked to negative economic and political outcomes, such
as inequality, political gridlock, weak property rights, low investment or growth. As a con-
sequence, economists have devoted significant attention to its causes.1

The causes of belief polarization may seem obvious at first glance, but reality presents
several puzzles. Some have blamed misinformation or fake news. However, this explanation
is at odds with recent evidence that people are reasonably good at detecting real from fake
news (Angelucci and Prat (2021)). Others have blamed the ease of access to distorted
information through the Internet.2 However, the Internet has also brought an abundance of
information, which should lead people to learn quickly and beliefs to converge (not diverge)
according to standard economic models. The evidence on the effects of the Internet is
also mixed: Some papers find that social media increases polarization (e.g., Allcott et al.
(2020)), others find more polarization off line than on (e.g., Boxell et al. (2018); Zhuravskaya
et al. (2020)).3 Finally, some have blamed consumption of news from biased echo chambers.
This explanation is also incomplete: If people get some (even small) amounts of unbiased
informative news—which is often the case (Pew Research Center (2014))—they should still
learn the truth according to standard economic models.

To shed light on these issues and clarify possible drivers of belief polarization, this paper
offers a theoretical framework that focuses on how people learn from shared news. We ask if
polarization can result merely from how people consume and share information through social
connections, whether online or offline. If so, will technology-driven abundance and sharing
of information reduce or increase polarization? Our answers rely on a simple, yet flexible,
model that incorporates two key empirical findings. First, people often share information

1Papers about polarization in the US include Fiorina and Abrams (2008); Pew Research Center (2014,
2020b); Egan and Mullin (2017); Desmet and Wacziarg (2018); Bertrand and Kamenica (2018); Funk and
Tyson (2021). Papers about the consequences of polarization include Zak and Knack (2001); Keefer and
Knack (2002); Bartels (2008); Bishop (2009); McCarty et al. (2009); Gilens (2012); Barber and McCarty
(2015).

2For various discussions on the causes of polarization, see “Facebook Throws More Money at Wiping
Out Hate Speech and Bad Actors”, Wall Street Journal (May 15, 2018); “Should the Government Regulate
Social Media?”, Wall Street Journal (June 25, 2019); Periser (2011); Flaxman et al. (2016); Sunstein (2017);
Azzimonti and Fernandes (2018); Tucker et al. (2019); Zhuravskaya et al. (2020).

3For further discussion on the relationship between polarization and social media, see also Allcott and
Gentzkow (2017); Bursztyn et al. (2019); Mosquera et al. (2019); Levy (2021). For recent reviews of this
literature see Barberá (2020) and Zhuravskaya et al. (2020).
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selectively (for instance, by remaining silent when it is unfavorable), which causes their
listeners to consume unbalanced diets of second-hand news. Second, people tend to neglect
selection in their second-hand information and, thus, misperceive its content. Misperception
is akin to reading too little into the absence of news from friends, or more intuitively, reading
too little into their silence.4 We find that this misperception and the quality of information
play critical roles in causing some people to learn incorrectly while others learn correctly.
This causes their beliefs to polarize. Our theory requires neither preexisting differences in
people’s worldviews nor misinformation. We can explain why changes in people’s information
ecosystem triggered by the Internet may affect polarization.

In our model agents learn about a binary state of the world, A or B. In every period,
each agent receives first-hand information—an objective i.i.d. signal about the state—with
probability γ, and no signal otherwise. We refer to the signal’s informativeness—i.e., how
likely it is to match the true state—as its quality. In every period, each agent can stay silent
or share her signal with her social connections, called friends. We capture selective sharing
by assuming that some agents, called dogmatic, share only signals supporting one state; the
other agents, called normal, share every signal. For example, a dogmatic agent may be
someone who holds a particularly strong view on whether to vaccinate children and share
only articles in favor of that view; normal agents share any article on the topic. We refer to
an agent’s sources of second-hand signals as her echo chamber, because these constitute the
group of people she is connected to for the purpose of news sharing. As suggested by the
empirical literature, we capture selection neglect by assuming that agents have a misspecified
mental model of the signal process. That is, each agent believes that each of her friends gets
a signal with probability γ̂ < γ. Observationally, this is consistent with the agent excessively
attributing her friends’ silence to absence of news rather than suppression of news. Except
for this misspecification, our agents update beliefs using standard Bayes’ rule.

Our first contribution is to characterize how agents learn in this environment. Consis-
tent with the prevailing narrative, we find that echo chambers can lead people to learn in-
correctly, but this result comes with important qualifications—conceptually and practically.
Conceptually, selective sharing by itself cannot lead to incorrect learning, let alone polariza-
tion. This is because if an agent fully understands how her friends select what to share, she
will adjust for it and her beliefs will not be systematically distorted. People’s misperception
of selection in their news is necessary for echo chambers to distort beliefs. But this is still
not enough. Moreover, we show that information quality also needs to be sufficiently low for
distortions to occur, which has practical implications as we explain in the paper.

To be more specific, we analyze learning in the short and long run, i.e., after one round
of signals (scarce information) and after infinitely many rounds (abundant information).

4For evidence of selective sharing, see Shin and Thorson (2017); Weeks et al. (2017); Shin et al. (2018);
Pogorelskiy and Shum (2019); Levy (2021); Zhuravskaya et al. (2020). Unbalanced news diets appear in a
wealth of evidence on echo chambers and media bubbles (Levy and Razin, 2019; Zhuravskaya et al., 2020, for
a review). Bertrand and Kamenica (2018) also stress the importance of media diet driving social differences.
Evidence on selection neglect appears in Esponda and Vespa (2018), Pogorelskiy and Shum (2019) Enke
(2020), Esponda et al. (2021), and Jin et al. (2021), which we review in Section 3.
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In the short run, our agent’s expected posterior can differ from her prior. To see why,
suppose γ̂ ≈ 0. In this case, one can show that it is as if the agent takes signals at face
value and updates her belief towards the state supported by the majority of shared signals.
This creates two distorting forces, which potentially act in opposition. Suppose the agent
believes ex ante that state A is (objectively) more likely. Then, her friends tend to receive
more signals that support A on average, pushing the majority of shared signals towards A.
Thus, selective sharing and misperception create a form of confirmation bias distorting the
agent’s expected posterior in the direction of her prior. Note that this force distorts beliefs
even if the agent has a balanced echo chamber, namely the same number of B-leaning and
A-leaning dogmatic friends. To see the second force, suppose the agent has more B-leaning
than A-leaning dogmatic friends. This imbalance pushes the majority of shared signals
towards B. But for this force to dominate, information quality needs to be sufficiently low.
To see why, suppose to the contrary that information quality is very high. Given the prior,
the B-leaning dogmatists most likely get signals supporting A and stay silent, so on average
a majority of shared signals will still support A. In this case, if A is sufficiently more likely
ex ante, the agent’s posterior can be distorted towards A even if she has a majority of B-
leaning dogmatic friends.

In the long run, abundant information boosts the distorting power of echo chambers,
thereby exaggerating incorrect learning. But these distortions require unbalanced echo cham-
bers, unlike in the short run—distortions due purely to the confirmation bias are wiped out
as the effect of the prior goes away. For information quality below a specific threshold, the
agent’s posterior converges to a belief that assigns probability one to the state favored by
the majority of her dogmatic friends, irrespective of the truth. For higher quality, her belief
converges to the truth despite the effects of her echo chamber. These short- and long-run
properties hold even if the agent does not take shared signals at face value (i.e., not just for
γ̂ ≈ 0). They remain true when selection neglect is minimal, i.e., when γ̂ is very close to
the true γ. Thus, even minor misperceptions can distort learning.

Our second contribution is to show how these distorting forces at the individual level
can cause polarization at the social level. To begin, we emphasize the central role of infor-
mation quality. If some agents have unbalanced echo chambers towards different states and
information quality is sufficiently low, their beliefs will move apart on average in the short
run and almost surely in the long run. However, note that in our setting polarization does
not mean that all agents with echo chambers leaning towards a state polarize in the direc-
tion of that state. Indeed, for intermediate information quality, agents with echo chambers
leaning moderately against the true state can still learn it correctly. We find that raising in-
formation quality can increase polarization. Though perhaps unexpected, this has a simple
intuition. If sufficiently many agents learn incorrectly with low information quality, increas-
ing it causes some to start learning correctly. This shrinks the gap between the number of
correct and incorrect learners and, thus, creates a more divided society. Next, we analyze
how the expansion of social connections can be another driver of polarization, even though
more connections may provide additional information. Fixing its quality, we obtain empir-
ically testable conditions on how the internal structure of echo chambers has to change for
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polarization to fall. In short, this happens if agents’ normal friends grow sufficiently faster
than their dogmatic friends. Instead, a proportional growth of echo chambers that leaves
their shares of dogmatic friends unchanged can exacerbate polarization.

Our theory allows us to investigate what policies may reduce the effects of news sharing on
polarization. The central role of information quality suggests some solutions. An obvious one
is that news outlets provide higher-quality information, but this may be hard to incentivize.
Another is to exploit news aggregators. Although they may exist for other reasons, we
show how aggregators can provide higher-quality information even when they lose some
information by summarizing facts.

We illustrate our results through two quantitative exercises. The first simulates the evolu-
tion of beliefs with and without misperception of selective sharing in unbalanced echo cham-
bers. It shows that, even when misperceptions are small (i.e., γ̂ is close to γ), a large diver-
gence in beliefs can occur, and quickly. The second exercise uses our model to replicate qual-
itative features of climate-change opinions in the US over the last few decades. In particular,
Saad (2021) provides data between 1997 and 2021 on the views of Democrats and Republi-
cans on whether the effects of global warming have already begun. In 1997, 46% of each group
viewed those effects as already happening. By 2021, only 29% of Republican held this view, in
contrast to 82% of Democrats. Our simulations suggest that modest misperception and small
echo-chamber imbalance suffice to explain these patterns. Moreover, the observed polariza-
tion between Democrats and Republicans may not arise only from differences in their news
diets, but also requires consuming sufficiently low quality information. This may be the re-
sult of well-documented skepticism campaigns by interest groups beginning in the early 1990s
(Egan and Mullin (2017)). Finally, the data show an acceleration in polarization around 2011,
which we can replicate with an expansion of echo chambers that mimics the surge in social-
media use around that time. These simulations point to how the model can help disentangle
multiple factors related to news sharing that may contribute to polarization on various topics.

Finally, our analysis goes to the heart of how new communication channels and formats
on the Internet can affect polarization. They can lower information quality in some cases.
For instance, tweets and social-media posts tend to be short and few people read the linked
articles (Bakshy et al. (2015); Gabielkov et al. (2016)). People may also misperceive how
news-feed algorithms work on social media, which we model with alternative misspecifications
and show that they have similar implications to selection neglect (Section 7). All this can
lead to polarization, even without deliberate misinformation. Yet, the Internet has arguably
magnified the spread of fake news through social connections. As a byproduct of our analysis,
we find that selective sharing is one (and in a sense the only) channel through which fake
news can cause polarization. This could explain why fake news have become particularly
concerning in recent decades. However, the Internet can also curb polarization—for instance,
by helping people access high-quality information and form broader and more-balanced social
connections.
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Related Literature. The economics literature discusses at least three possible causes of
belief polarization. The one most closely related to our work is behavioral biases.5 We high-
light misperception of selective sharing, building on recent experimental evidence. Section 3
reviews this evidence in detail. We offer a tractable and flexible way to model this misper-
ception that uncovers its consequences for polarization. A second cause of polarization is
heterogeneity in preferences (Dixit and Weibull (2007); Pogorelskiy and Shum (2019)), which
would exacerbate the polarization we find. A third cause is biased or multidimensional in-
formation sources.6 We assume unbiased sources of first-hand information—which can be
interpreted as media outlets. This allows us to focus on selective sharing and show that re-
moving all media biases may not suffice to curb polarization.

Our paper fits into the growing literature on model misspecification and learning, start-
ing from the classic work of Berk (1966). We analyze short- and long-run learning in a more
specialized model and demonstrate the interaction with social information sharing to gen-
erate polarization. Bohren (2016), Bohren and Hauser (2018), and Frick et al. (2020) ana-
lyze social learning under model misspecification. In particular, Bohren and Hauser (2018)
study when agents with different models of the world have no limit beliefs (i.e., beliefs cy-
cle) or different limit beliefs (disagreement). Mailath and Samuelson (2020) also consider
agents with different models of the world. Although close in spirit, our disagreement results
are driven by a fundamentally different mechanism, as all our agents have the same model of
the world. We also emphasize the role of information quality and its implications for curb-
ing polarization. Molavi et al. (2018) study incorrect learning in social networks when non-
Bayesian agents exhibit imperfect recall. By contrast, our agents are Bayesian, which allows
us to leverage familiar methods for studying the effects of misperception of selective sharing
across a variety of environments and applications.7

The idea of an echo chamber as the group of friends from whom one gets information
is key in our model. This links our work to the literature on Bayesian and non-Bayesian
learning in networks.8 One closely related paper is Levy and Razin (2019), which shows that
an updating heuristic called “Bayesian Peer Influence” can cause beliefs to polarize. However,
their notion of polarization is that the entire society’s consensus shifts towards a common
extreme belief. By contrast, our notion is that agents’ beliefs diverge to different extremes.

The verifiability of shared information and the possibility of not receiving first-hand
information renders our model similar to Dye (1985). Allowing for this possibility is one
often-used way to give selective sharing a chance to be effective: Otherwise, silence can be
immediately interpreted as bad news (e.g., Ben-Porath et al., 2018; DeMarzo et al., 2019).

5See, e.g., Levy and Razin (2018); Hoffmann et al. (2019); Enke et al. (2020).
6See, e.g., Mullainathan and Shleifer (2005); Andreoni and Mylovanov (2012); Levendusky (2013); Conroy-

Krutz and Moehler (2015); Reeves et al. (2016); Perego and Yuksel (2022).
7A nonexhaustive list of other recent work on misspecified learning includes Nyarko (1991); Esponda and

Pouzo (2016); Fudenberg et al. (2017); He (2018); Heidhues et al. (2018); Jehiel (2018); Esponda et al. (2019);
Ba and Gindin (2020); Dasaratha and He (2020); He and Libgober (2020); Frick et al. (2020); Fudenberg
et al. (2020); Li and Pei (2020).

8See DeMarzo et al. (2003); Golub and Jackson (2010); Eyster and Rabin (2010a); Acemoglu et al. (2010);
Perego and Yuksel (2016); Azzimonti and Fernandes (2018); Pogorelskiy and Shum (2019); Spiegler (2020).
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2 Model

We study a stylized model of learning from information shared through social connections.
We provide the formal details here and discuss the main assumptions and supporting evidence
in Section 3.

Time t is discrete, where t = 0, 1, 2, . . .. A state of the world ω ∈ {A, B} realizes at t = 0.
For example, ω can represent whether the effects of global warming have already begun, or
whether vaccines can harm children. There is a fixed group of agents who seek to learn ω.

Information. Each agent receives first-hand information from original sources and second-
hand information shared by other agents. For each t ≥ 1, agent i receives first-hand infor-
mation with probability γ ∈ (0, 1] in the form of a private signal sit ∈ {a, b}; with proba-
bility 1− γ she receives no signal. Signals are partially informative:

P(sit = a|ω = A) = P(sit = b|ω = B) = q, (1)

where 1
2 < q < 1. We refer to q as the information quality. The events of receiving a signal

and its realization are i.i.d. across agents and time.9

Selective Sharing. Agents share their first-hand information with other agents with whom
they have a social connection. We call these connections friends. After receiving sit, agent i
can share it with all her friends or stay silent. If she receives no signal, she stays silent. Thus,
she can selectively suppress information, but cannot fabricate information. That is, sharing
signals takes the form of verifiable information. Concretely, an agent can share a newspaper
article, but cannot edit its content. We intentionally rule out tampering with or fabricating
information (e.g., fake news) to highlight the role of selective sharing.

We introduce three types of information-sharing behavior. An agent is normal if she
shares any sit, A-dogmatic if she shares only sit = a, and B-dogmatic if she shares only
sit = b. One interpretation is that some agents dogmatically believe in their conviction that
only one state is true and share only information that supports it. Each agent’s type is
exogenous and known to her friends.

Selective news sharing contributes to creating heterogeneous information diets (Pew Re-
search Center, 2014; Levy and Razin, 2019). Agent i’s diet depends on the composition
of friends she listens to, namely the number dAi of A-dogmatic friends, dBi of B-dogmatic
friends, and ni of normal friends. We refer to ei = (dAi, dBi, ni) as i’s echo chamber. If dAi 6=
dBi, we say that i’s echo chamber—hence, her information diet—is unbalanced and we refer to
dAi − dBi as its imbalance. Otherwise, we say that ei is balanced. In reality people may also
have heterogeneous news diets because they choose to listen to different first-hand sources
of information. We abstract from this aspect to focus on the effects of news sharing.10

9In reality, people receive correlated news. However, strong evidence suggests that they often neglect
correlation, especially in second-hand news (Enke and Zimmermann, 2017; Eyster et al., 2018; Pogorelskiy
and Shum, 2019). Under correlation neglect, we can allow for arbitrary correlation between the agents’
signals within each period and our main results are qualitatively unchanged.

10Section 7 discusses several richer models of news sharing. These include probabilistic selective sharing,
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Timing. Within each period the timing is as follows: (1) signals realize; (2) each agent i
receives sit with probability γ; (3) each agent i shares her signal (if any) with friends as
specified by her type; (4) agents update beliefs based on all received signals.

Beliefs. We are interested in the beliefs of normal agents. They have a common prior π ∈
(0, 1) that ω = A. Given a sequence st

i of information that agent i receives up to t (i.e., her
signals, her friends’ shared signals, and their silence), let µ(st

i) be her Bayesian posterior that

ω = A. To examine learning in the short run, we will consider µ(s1
i ); to examine learning in

the long run and so the effects of abundant information, we will consider the (probability)
limit of µ(sT

i ) as T → ∞, denoted by µ(s∞
i ) = plimT→∞ µ(sT). We will introduce a formal

measure of belief polarization in Section 5. However, intuitively, polarization requires that
agents’ beliefs move systematically apart. It is well known that µ(s1

i ) and µ(s1
j ) can differ in

completely standard Bayesian models simply because agents i and j observe different signal
realizations. Therefore, we adopt a more demanding condition for short-run polarization
that looks at differences between the expectations E[µ(s1

i )] and E[µ(s1
j )]. Another reason

for considering E[µ(s1
i )] is that we can view agent i as representative of a large group of

individuals that are similar within their group, but differ between groups. Then, by the
Law of Large Numbers E[µ(s1

i )] approximates the empirical average belief of the respective
group and may be used to study intra-group polarization.

One might think that selective sharing and unbalanced echo chambers should suffice to
give rise to belief polarization. This is not the case. Hereafter, let I{ω=A} equal 1 if ω = A
and 0 otherwise.

Remark 1. For any echo chamber ei and γ ∈ (0, 1], we have

E
[
µ(s1

i )
]

= π and µ(s∞
i ) = I{ω=A}.

If an agent precisely understands the effects of her echo chamber on her information diet,
selective sharing simply results in a specific information structure that is perhaps less infor-
mative than under full sharing. Nonetheless, her belief must satisfy standard properties of
Bayesian updating.

Misperception. To overcome the challenge posed by Remark 1, we assume that agents
misperceive their second-hand information by neglecting, at least partially, its selection. To
generate this in a tractable way, we assume that each agent perceives that the i.i.d. probability
of getting a signal is γ̂ ∈ (0, 1] where γ̂ < γ. The agent continues to use Bayes’ rule to
calculate µ(st), yet applied to this slightly misspecified model of the world. As a result, she
updates as if she excessively treats silence as absence of news and thus partially ignores news
selection. In other words, she reads too little into friends’ silence.

endogenizing selective sharing, news re-sharing, and more heterogeneity across agents in addition to their
echo chambers.
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3 Evidence on Selected News and Misperception

We discuss the supporting evidence for our main assumptions: selective news sharing and
misperception in the form of selection neglect. The analysis beginning in Section 4 does not
rely on anything mentioned here, so the reader may skip this section without confusion.

3.1 Selective News Sharing

Similar to previous literature (e.g., Acemoglu et al., 2010, 2013), our baseline model takes the
types of news-sharing behavior as given. One reason is that our focus is not understanding
why people tend to share some news more than others, but understanding the consequences of
this tendency for social learning. The types of selective sharing we assume are consistent with
the types observed in the empirical literature on information disclosure (e.g., Pogorelskiy
and Shum, 2019; Jin et al., 2021, and references therein). Moreover, a mounting body of
evidence about news sharing online suggests that individuals often share selectively (Bakshy
et al., 2015; Del Vicario et al., 2016; Flaxman et al., 2016; Halberstam and Knight, 2016a;
Quattrociocchi et al., 2016; Schmidt et al., 2018; Ookalkar et al., 2019). Section 7.3 discusses
selective sharing in more detail, including its possible endogeneity.

3.2 Misperception and Selection Neglect

In Enke (2020) (hereafter, simply Enke), selection neglect manifests itself in beliefs that take
selection too little into account and the received information too much at face value (what
Kahneman (2011) calls “what you see is all there is”). Qualitatively, this is what happens in
our model when γ̂ < γ, as explained above. A significant share of Enke’s subjects appears
to fully neglect selection, which is observationally consistent with γ̂ close to zero, but other
subjects seem to take selection into account, albeit partially (see Enke’s Figure 2). Partial
selection neglect is consistent with γ̂ far from zero and illustrates that degrees of selection
neglect are consistent with human behavior. Enke’s findings show that selection neglect can
be weakened, but not removed. Intermediate values of γ̂ allow us to capture varying degrees
of selection neglect, and simulations in Section 6 show that a value of γ̂ very close to γ is
sufficient to generate polarization seen in the data.

Evidence for partial selection neglect has been found in other papers. Jin et al. (2021)
study verifiable information disclosure through an experiment. One of their main findings
is that “receivers [...] are insufficiently skeptical about undisclosed information—the extent
to which no news is bad news;” but they do respond to non-disclosure to some extent. Jin
et al. (2021) also provide an extensive review of papers on voluntary disclosure with similar
evidence of insufficient, yet not zero, skepticism. Esponda and Vespa (2018) study learning
from evidence that involves sample selection due to unobservables. Unobservables can include
other agents’ private information that drives their choices (as selective sharing in our model).
They find that subjects do not understand selection and respond to the observed data but
not to the possibility that the data may be biased by selection. However, they also find that
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quantitatively subjects partially account for selection. Esponda et al. (2021) study base-rate
neglect: the phenomenon whereby people ignore information in their prior when updating,
in contrast to the Bayesian benchmark. Our model with 0 < γ̂ < γ can be interpreted as
consistent with base-rate neglect when it comes to responding to silence: One can show that
if an agent neglects, even partially, the prior probability that a friend is uninformed, she will
overestimate the likelihood of no signal arrival from observing silence and hence excessively
treat silence as absence of news. Finally, in an experiment on the effects of shared news on
voting outcomes, Pogorelskiy and Shum (2019) find that subjects share news selectively and
tend to be partially unresponsive to others’ selective sharing.

3.3 Incorrect Mental Models

The papers above discuss psychological mechanisms that may drive selection neglect. Enke
(2020) argues that neglect likely results from people having an incorrect mental model of
the data-generating process, whereby some key aspects (e.g., suppressed information) do
not come to mind or are only partially accounted for due to computational complexity and
cognitive overload. Such incorrect models may result from intuitive system-1 reasoning
(Kahneman (2011)), or from relying on a class of problems the agents know how to solve.
This explanation is also related to the idea of the “naive intuitive statistician” in cognitive
psychology (Fiedler and Juslin, 2006; Juslin et al., 2007). Jin et al. (2021) suggest that their
subjects use an incorrect model exhibiting naivete about strategic use of non-disclosure.
Esponda and Vespa (2018) view their findings as a failure by the agents to learn that their
mental model is incorrect. Esponda et al. (2021) also conclude that their findings “indicate
that an incorrect mental model [...] is the main driver behind [...] biased beliefs.”

Our assumption of γ̂ < γ is also consistent with a phenomenon called “illusory superi-
ority” or “better-than-average” heuristic in psychology (Cross, 1977; Svenson, 1981; Odean,
1998; Zuckerman and Jost, 2001). People often have unjustifiably favorable views of them-
selves relative to others on various characteristics, which may include how well informed they
are or how good they are at getting and understanding information. This can lead an agent
to incorrectly think that others are systematically less informed than they are. It is impor-
tant to note that in our model an agent’s belief about the arrival rate of her own signals is
irrelevant for how she learns. This is because if she does not get a signal, she knows it; if
she gets a signal, she knows its meaning by knowing (1). Therefore, our analysis extends
to settings where an agent is misspecified only about the news arrival rate of her sources of
second-hand information. Agents may know the true arrival rate of their own information,
but believe that friends get less news than they do.

These mechanisms are in line with our adoption of a misspecified model of learning.
Section 7 considers other model misspecifications and shows that they all lead agents to
neglect selection in ways similar to γ̂ < γ. These include misspecifications about the friends’
types, their news-sharing behavior, or the information quality. Section 7 also discusses the
case of γ̂ > γ. This misspecification can also lead to our main results on polarization,
but implies that an agent accounts for selectivity too much—as if she treated her friends
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as more informed than they actually are, or were excessively skeptical that information is
being withheld. This highlights that our main results obtain for many misspecifications
that distorts how agents treat absence of news. We maintain the simplest form of this
misspecification in the main text for ease of exposition.

3.4 Learning about Selection Neglect

Evidence strongly suggests that people do not learn to correctly take into account the se-
lection in their information. Enke (2020) finds that nudging subjects to remember selection
leads them to take it into account, but not entirely. This is a stark result because Enke’s
subjects are told from the outset exactly how their information is selected and they are re-
minded explicitly about it rather than having to “relearn” it from the data. Jin et al. (2021)
provide their subjects with several forms of feedback, yet conclude that their under-reaction
to bad news “is not easily eliminated, even if receivers are provided information about aggre-
gate disclosure behavior and have played as senders for many rounds.” Esponda et al. (2021)
estimate how their analog of γ̂ evolves over experiment rounds. They find that, even though
subjects receive abundant and precise feedback, γ̂ converges to a level significantly above 0
and below γ. Since in reality people are unlikely to receive as much feedback and face more
complex learning problems, we should not expect learning about γ to occur. Moreover, sev-
eral theoretical papers show how incorrect mental models can persist (e.g., Schwartzstein
(2014), Gagnon-Bartsch et al. (2018), and Fudenberg and Lanzani (2020)).

This evidence supports a key feature of our model: that the agent’s view of the world
rules out the true γ from the set of possibilities. Even if we allowed the agent to contem-
plate multiple possible γ̂ and learn about them, she would not converge to the true γ if it
is not among the possible options. To capture this absence of learning about the true signal
generating process in the simplest way, we assume a fixed degenerate prior about γ̂. Ruling
out the true signal process is a defining feature of the literature of models with misspecifi-
cation as listed in the Introduction. However, we should note that our results may not be
robust to the agents learning the true γ.

4 Single-Agent Learning

Before examining belief polarization, we study how a generic normal agent updates her belief
under the effects of selective sharing and misperception. Hence, we drop all i subscripts in
this section. Note that we, as the external observer, will calculate the distributions of the
agent’s belief using the correct model of the world (i.e., γ not γ̂).

4.1 Short Run

We begin with short-run learning. Recall that µ(s1) is the Bayesian posterior probability
that the agent assigns to state A given all the information she obtains after one period.
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We first show that, in the presence of misperception, selective news sharing can distort
learning even if it does not give rise to unbalanced news diets. Specifically, γ̂ < γ causes the
agent’s expected posterior to be distorted towards the state she deems more likely ex ante.
This is reminiscent of updating distortions usually called confirmatory bias (Rabin (1998)).

Proposition 1. Fix any agent with a balanced echo chamber e = (dA, dB, n) where dA =
dB > 0. Then, (

E[µ(s1)]− π
)(

π − 1
2

)
> 0.

To give some intuition, it is useful to write the agent’s posterior after one period (see
Appendix A for more details). Let aA be the number of a-signals her A-dogmatic friends
received and bB the number of b-signals her B-dogmatic friends received. The agent also
receives n signals from her normal friends plus her own signal. Among these, let aN and bN
be the number of a-signals and b-signals. By Bayes’s rule her posterior belief is

µ(s1) =
π

π + (1− π)QMΓ̂S
, (2)

where

Q ≡ 1− q
q

, M ≡ aA + aN − (bB + bN),

Γ̂ ≡ γ̂(1− q) + (1− γ̂)

γ̂q + (1− γ̂)
, S ≡ (dB − bB)− (dA − aA).

The term QM captures the agent’s interpretation of the received signals, which is always
correct: By verifiability of information, sharing a signal leaves no doubt that the signal was
actually received—hence, γ̂ is irrelevant. The term Γ̂S captures how the agent misperceives
the silence of her dogmatic friends, which happens for dA − aA of A-dogmatic friends and
dB − bB of B-dogmatic friends. According to the agent’s model, a silent friend got an unfa-
vorable signal with probability γ̂ or no signal with probability 1− γ̂. Since Γ̂ is decreasing
in γ̂, the misperception γ̂ < γ shrinks Γ̂S if S < 0 and inflates Γ̂S if S > 0, thereby distort-
ing the posterior upward or downward depending on S. It is therefore not immediate that
the average distortion goes in any specific direction. Misperception could inflate or deflate
updating, but have no effect on average.

The agent’s prior resolves this ambiguity. One way to see why is to consider γ̂ ≈ 0.11

In this case, the agent attributes silence almost entirely to lack of news and, therefore,
essentially takes every shared signal at face value. Formally, Γ̂ ≈ 1 and hence µ(s1) depends
entirely on QM. Since Q < 1, the agent updates her belief in the direction of the majority of
shared signals, namely towards A if aA + aN > bB + bN and towards B otherwise. As far as
normal friends are concerned, they share a and b signals with frequencies that are consistent
with the prior π, so they do not distort the expected posterior from π. But if state B is ex

11Note that γ̂ ≈ 0 is observationally consistent with full selection neglect as in Enke (2020) (see Section 3).
At the same time, it guarantees that Bayesian posteriors are well defined, which would not be true for γ̂ = 0.
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ante more likely (π < 1
2), for instance, B-dogmatic friends are more likely to share b signals

than A-dogmatic friends are to share a signals—for any q. Therefore, the majority of shared
signals is distorted in favor of B on average, which results in E[µ(s1)] < π. The result
shows that this distortion works similarly even if the agent treats silence only partially at
face value (i.e., for every γ̂ < γ).

Figure 1(a) illustrates Proposition 1. The graph shows the ratio E[µ(s1)]/π as a function
of q, which would be constant at 1 without misperception by Remark 1. The figure illustrates
that in spite of a balanced echo chamber (dA = dB = 10), after a single round of updating,
expected beliefs are always distorted away from state A because the prior favors state B (i.e.,
π < 1

2). The more the prior favors state B (lower π), the more distorted is the expected
posterior.

(a) n = 1, dA = 10, dB = 10

(b) n = 1, dA = 11, dB = 10 (c) n = 1, dA = 12, dB = 10

Figure 1: Distortion of expected posterior after one round of signals with γ = 0.8 and γ̂ = 0.5

We now include the effects of echo-chamber imbalance. We find that it can distort the
agent’s expected posterior towards the conviction of the majority of her dogmatic friends.
For this to happen, however, the information quality needs to be sufficiently low.

Proposition 2. Fix any agent with an unbalanced echo chamber e = (dA, dB, n). There
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exists qSR(e, γ, γ̂) ∈
(1

2 , 1
]

such that, if q < qSR(e, γ, γ̂), then(
E[µ(s1)]− π

)
(dA − dB) > 0.

Figures 1(b) and 1(c) illustrate this result. They also show the possibility that qSR(e, γ, γ̂) <
1 and that learning is distorted towards the agent’s dogmatic minority when q is sufficiently
high. Thus, it is not always true that an agent’s echo chamber distorts learning towards her
dogmatic majority, even if her under-reaction to silence favors that majority.

To see why simply listening to more A- than B-dogmatic friends does not guarantee that
the agent will systematically update her belief towards A, consider again γ̂ ≈ 0. As before,
the agent updates based on the majority of the signals she actually receives. Again, signals
from normal friends do not distort her belief, so let’s focus on dogmatic friends. If ω = A,
then on average qdA of A-dogmatic friends share an a signal, while (1− q)dB of B-dogmatic
friends share a b signal. Since q > 1

2 and dA > dB, a signals tend to have a majority on
average. If ω = B instead, then on average (1− q)dA of A-dogmatic friends share an a
signal, while qdB of B-dogmatic friends share a b signal. Thus, now b signals tend to have
a majority if q is sufficiently large. In this case, if state B is sufficiently likely (i.e., π is
small), the agent’s belief can be distorted toward B on average despite dA > dB, because
the confirmation-bias force behind Proposition 1 dominates. The result shows that this logic
extends for every γ̂ < γ. This is not obvious, as a lower q weakens the belief response to
both observed signals and silence (Q→ 1 and Γ̂→ 1 as q→ 1

2 in expression (2)).

Two intuitive sets of conditions lead the majority of dogmatic friends to prevail for all q
(i.e., qSR(e, γ, γ̂) = 1). First, if dA− dB is sufficiently large, the force that pushes the agent’s
belief in favor of A dominates for all q, even if the confirmation-bias force pushes her belief in
favor of B. Second, if both forces are aligned, clearly the effects of echo-chamber imbalances
prevail for all q. This second case is summarized in Corollary 1 below.

Corollary 1. Fix any agent with an unbalanced echo chamber e = (dA, dB, n). If (dA −
dB)(π − 1

2) ≥ 0, then
(
E[µ(s1)]− π

)
(dA − dB) > 0 for all q ∈

(1
2 , 1
)
.

4.2 Long Run – Abundant Information

We showed that with one round of signals echo chambers can distort beliefs. One may
expect these distortions to vanish when information becomes abundant (i.e., in the long
run after many signals). In fact, abundant information can instead exacerbate the effect
of misperceived selective sharing and cause beliefs to be almost certainly incorrect. With
probability 1 and irrespective of the true state, the agent’s posterior converges to a degenerate
belief on the state favored by her dogmatic majority. Unlike in the short run, these distortions
require information quality to be sufficiently low.

Proposition 3. Fix any agent with an unbalanced echo chamber e = (dA, dB, n). There

exists qLR(e, γ, γ̂) ∈
(

1
2 , 1
)

such that the following holds with probability 1:

1. If q < qLR(e, γ, γ̂), then
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(i) if dA > dB the agent is certain the state is A in the long run (i.e., µ(s∞) = 1);

(ii) if dB > dA the agent is certain the state is B in the long run (i.e., µ(s∞) = 0);

2. If q > qLR(e, γ, γ̂) or dA = dB, then the agent learns the true state in the long run
(i.e., µ(s∞) = I{ω=A}).

Balanced echo chambers always result in correct learning, so the distortion in Proposition 1
does not survive in the long run. This is because with abundant information the prior no
longer matters, as the received signals dominate the agent’s updating.

This result is the outcome of a non-trivial race between two kinds of information. First-
hand information provides an increasingly accurate estimate of the state, which would result
in perfect learning in a standard setting. Second-hand signals also provide more information,
but are selected in ways the agent does not correctly take into account. It turns out that
with low q the distortion in each step of updating unveiled in Proposition 2 accumulates over
time, leading the posterior astray. By contrast, high-q information eventually removes the
distortions caused by echo-chamber imbalance. While in the short run distortions may vanish
only at q = 1, in the long run they vanish for a range of q < 1. This will be important when
we consider ways to mitigate incorrect learning and the resulting polarization (Section 5.1).

For intuition, consider again γ̂ ≈ 0 so that the agent updates based on the majority of
shared signals. For q ≈ 1

2 and dA > dB, in every period it is more likely to have a majority
of a signals than of b signals shared by dogmatic friends, independent of the true state. This
eventually drives the agent’s belief towards A. By contrast, when q is large, the majority of
A-dogmatic friends will tend to induce a majority of a shared signals in every period only
if the state is actually A. If it is instead B, A-dogmatic friends will tend to get unfavorable
signals and stay silent, so the minority of B-dogmatic friends tends to induce a majority of b
signals in every period. This accumulates over time, even if q < 1. Thus, sufficiently high q
is enough to curtail the effect of misperception and results in correct learning.

The threshold qLR that separates correct and incorrect long-run learning has intuitive
comparative statics properties.

Proposition 4. qLR(e, γ, γ̂) strictly increases as |dA− dB| increases, or γ− γ̂ increases, or
n decreases.

The threshold increases in the echo-chamber imbalance and misperception, as both strengthen
the forces leading posteriors astray; it decreases in the number of normal friends, as they
provide more unselected information.

These results uncover some subtleties in how echo chambers can drive people’s beliefs.
Even if the underlying information is the same for all, people with many but moderately
unbalanced dogmatic friends can learn the truth, while others with few but severely unbal-
anced dogmatic friends can end up believing something false.
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4.3 Making and Losing Friends

Advances in technology—such as the rise of social media—have expanded the group of friends
from which many agents receive second-hand information. How do these changes affect
individual learning? This section addresses this, focusing on the long run.

Suppose the echo chamber of an agent changes as she makes or loses friends. When does
this shrink the range of information qualities for which she learns incorrectly?

Proposition 5. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB
and n ≥ 1. For any other echo chamber e′ = (λAdA, λBdB, λNn) with λN ≥ 0, λA ≥ 0 and
λB ≥ 0 that satisfy λAdA > λBdB, we have qLR(e′, γ, γ̂) < qLR(e, γ, γ̂) if

λN − 1 ≥
(

λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
(3)

+
dAdB

dA − dB
· 1

n
·max

{
(λA − λB)

2
2− γ̂

, (λA − λB)

}
.

To understand this condition, begin with the first term in parentheses, which is the net
growth rate of the echo-chamber imbalance. The first line of (3) requires this rate to be
sufficiently smaller than the growth rate of normal friends in order to lower qLR. The second
line of (3) takes into account what happens to each group—hence, the flow of selected
signals—of A- and B-dogmatic friends. If the A-group grows more, lowering qLR requires an
even larger growth of normal friends. If the B-group grows more, this partially compensates
the change in the imbalance, so it requires a smaller growth of normal friends. In short, an
increase in friends involves a trade-off between access to information and the scope for echo
chambers to distort beliefs. Interestingly, one can show that qLR always rises if all friends
grow at the same rate (λA = λB = λN). This provides more scope for polarization.12

We now ask a different question: Fixing information quality, what changes in an agent’s
echo chamber suffice to stop its power of distorting beliefs and re-establish correct learning?
Specifically, given q̂ < qLR and λA = λB = λ, what λN suffices to lower qLR below q̂?

Proposition 6. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB and

n ≥ 1 and any q̂ ∈
(

1
2 , qLR(e, γ, γ̂)

)
. For any other echo chamber e′ = (λdA, λdB, λNn)

with λ ≥ 0 and λN ≥ 0, we have that qLR(e′, γ, γ̂) < q̂ if

λN >
dA − q̂(dA + dB)

(2q̂− 1)n
λ− 1

n
.

Propositions 5 and 6 may have several practical implications. For instance, the growth
and types of an agent’s friends may be estimated using data from social-media platforms
about their news-sharing habits and composition. Given the desired λN, one can estimate
how long (if ever) it will take before her echo chamber stops distorting her beliefs (i.e., qLR
falls below q̂). Alternatively, social-media algorithms often control how people form new

12Appendix A.5 provides a more general version of Proposition 5 that also covers the case of λAdA < λBdB.
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connections. Knowing the effects of echo chambers’ composition on people’s learning can
inform how to design such algorithms so as to take into account the distortions of selective
news sharing.

5 Belief Polarization in Society

We now examine belief polarization, treating the set of normal agents N as our society of in-
terest. We exclude dogmatic agents based on the interpretation that they have degenerate—
hence, unchangeable—beliefs.

We begin by defining a measure of polarization. Polarization does not simply mean het-
erogeneous beliefs but rather the existence of groups with sharply different beliefs (Esteban
and Ray (1994)). Such sharp differences usually emerge over time. For this reason, we first
examine polarization in long-run beliefs. Denote the vector of echo chambers in N by

e = {(dAi, dBi, ni)}i∈N .

By Proposition 3, e induces a distribution of long-run beliefs across the agents in N , char-
acterized by which agents converge to having a degenerate belief on state ω ∈ {A, B}. Let

Nω(e) = {i ∈ N : µ(s∞
i ) = δω}.

Given echo chambers e, define long-run polarization Π(e) as the normalized sum of pairwise
differences between long-run beliefs of agents in N .13 That is,

Π(e) ≡ 2
|N |2 ∑

i,j∈N

∣∣∣µ(s∞
i )− µ(s∞

j )
∣∣∣ =

4|NA(e)||NB(e)|
|N |2 ,

which takes values in [0, 1] and attains its maximum when |NA(e)| = |NB(e)|. Given
the true ω, we call Nω(e) the set of “eventually correct” agents and N−ω(e) the set of
“eventually incorrect” agents. Because in our model beliefs are about some facts, in a
polarized society some agents must be “right” and some “wrong.” Therefore, depending on
the initial situation, we can move to higher polarization not only as the result of more agents
switching to the wrong side, but also as the result of more agents switching to the right side.14

Our previous results imply that selective information sharing can cause beliefs to polarize

13Note that by standard continuity arguments

Π(e) = plim
t→∞

2
|N |2 ∑

i,j∈N

∣∣∣µ(st
i)− µ(st

j)
∣∣∣ .

14The results in this section hold for more general measures of polarization, such as that axiomatized by
Esteban and Ray (1994). Applied to our long-run beliefs, their measure takes the form ν1+α(1− ν) + (1−
ν)1+αν, where ν = |NA(e)|/|N |, α ∈ (0, α∗], and α∗ ≈ 1.6. Other notions of polarization have been studied
in the literature, including polarization along some individual characteristics (like income, wealth, education,
racial segregation) and “affective polarization” (Mason, 2015; Rogowski and Sutherland, 2016; Mullinix,
2016; Iyengar and Krupenkin, 2018; Iyengar et al., 2019). These notions are beyond the scope of our theory.
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in the long run.

Corollary 2. Fix any society N with echo chambers e that satisfy dAi > dBi and dAj < dBj

for some i, j ∈ N . There always exists q > 1
2 such that Π(e) > 0 with probability 1.

This formalizes the common narrative that if echo chambers skew agents’ news diets in op-
posite directions—where the imbalances can be arbitrarily small—then their beliefs can po-
larize. People on the left and right of the political spectrum tend to have more like-minded
friends than not, a fact that is often cited as a possible cause of polarization (e.g., Pew
Research Center (2014)). However, our results qualify this narrative: Polarization requires
low q and misperception of the effects of echo chambers (recall Remark 1), but does not
require fake news nor that people look at the world through fundamentally incompatible
paradigms. It does not even require that echo chambers be unbalanced in opposite direc-
tions: By Propositions 3 and 4, if dAi ≥ dBi for all i ∈ N and dAj − dBj > dAk − dBk for

some j, k ∈ N , then there always exists q > 1
2 such that Π(e) > 0 if the true state is ω = B.

For such N , if q is intermediate, some agents will be eventually correct despite their echo
chamber, while others will be eventually incorrect.

These observations highlight the importance of information quality for echo chambers to
give rise to belief polarization. Intuition may suggest that as people receive better informa-
tion, disagreement should decline. In fact, the following result provides conditions for po-
larization to be non-monotonic in q. Let Dω be the set of agents who have a majority of
ω-dogmatic friends—hence, they can be eventually incorrect if the true state is not ω.

Proposition 7. Fix any society N that has echo chambers e which satisfy qLR(ei, γ, γ̂) 6=
qLR(ej, γ, γ̂) for all i, j and fix ω. Then, Π(e) decreases in q over

(
1
2 , 1
)

if and only if

|D−ω| ≤ 1
2 (|N |+ 1). Otherwise, Π(e) is single peaked in q.

To see the intuition, assume the true state is B. As q rises, more agents have correct long-run
beliefs because for more of them q exceeds their individual qLR. Thus, as q rises, one by one,
agents inNA(e) will switch toNB(e)—but not vice versa.15 If the eventually incorrect agents
outnumber the eventually correct agents initially when q ≈ 1

2 (i.e., |DA| > 1
2 (|N |+ 1)),

this gradual migration into the set of eventually correct agents will first increase polarization
and then decrease it towards zero. This point simply highlights that, although increasing
the quality of first-hand information can counteract the power of echo chambers to distort
beliefs, such increases may need to be significant to actually curb polarization.

If we now fix information quality, how do changes of the echo chambers in society affect
long-run polarization? Consider a societyN and values of λ ≥ 1 such that each agent i’s echo
chamber can be expressed as eλ

i = (λdAi, λdBi, λni). The parameter λ can be interpreted
as technological advances that increase all types of social connections uniformly. The next
result shows that polarization is increasing or single peaked in λ.

Proposition 8. Fix ω. Then, Π(eλ) increases in λ if |D−ω| ≤ 1
2 (|N |+ 1). Otherwise,

Π(eλ) is increasing or single peaked in λ.

15This is where we use the assumption that qLR(ei, γ, γ̂) 6= qLR(ej, γ, γ̂) for all i, j.
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In this result, the expansion of the echo chambers affects polarization by inducing agents to
switch from learning correctly to learning incorrectly (Proposition 5). However, the expan-
sion of echo chambers can also curb polarization by promoting correct learning. By Propo-
sition 6, this happens if technology changes cause normal friends to grow sufficiently faster
than echo-chamber imbalances. These points offer a new perspective on the evidence show-
ing that polarization seems more pronounced for demographic groups that are least likely to
use the Internet and social media (Zhuravskaya et al., 2020). Their echo chambers may be
smaller but also more unbalanced, while social media may give people access to a broader
pool of potential normal friends.

Finally, we consider belief polarization in the short run. To this end, we now interpret
each i ∈ N as a group of individuals who all have an echo chamber with the same composition
ei. Assume ei 6= ej if i 6= j. We can summarize the beliefs within each group with their
empirical average and use these statistics to quantify intra-group polarization. If group i
is large, its empirical average belief is well approximated by E[µ(s1

i )] by the Law of Large
Numbers. Thus, we can define short-run polarization as

ΠSR(e) =
2
|N |2 ∑

i,j∈N

∣∣∣E[µ(s1
i )]−E[µ(s1

j )]
∣∣∣ .

Standard Bayesian learning without misperceptions implies ΠSR(e) = 0 (Remark 1). By
contrast, selective news sharing with misperceptions can lead to ΠSR(e) > 0. For instance,
Proposition 2 implies the following.

Corollary 3. Fix any society N with echo chambers e that satisfies dAi > dBi and dAj < dBj

for some groups i, j. There always exists q > 1
2 such that ΠSR(e) > 0.

Thus, as long as some groups of people have echo chambers with opposite imbalances, our
model can also account for polarization in the short run. In contrast to the long run, where
this requires low q, short-run polarization can arise even for high q (Propositions 1 and 2
and Corollary 1). This could cause temporary polarization: Even if all agents eventually
learn correctly, their beliefs may polarize in the short run.

The consequences of polarization is beyond the scope of our analysis, but several strands
of research suggest that polarization leads to negative political and economic outcomes.16

One consequence that is often mentioned and extensively studied is gridlock. According to
Brady et al. (2008), political dissensus in the US —what they predict polarization leads to—
renders parties “less likely to be able to make policy coalitions with the requisite numbers to
beat filibusters or to override presidential vetoes.” They find evidence of this, especially for
energy and environmental policy (see Section 6.2 for an application to climate change). They
argue that polarization may make it harder to tackle other long-term reforms to entitlement
programs, Social Security, and health care. It is worth noting that gridlock refers to group
decision problems. For such problems, even if more people learn the truth, it may lead to

16In addition to the references in the Introduction, see, e.g., Layman et al. (2006); Epstein and Graham
(2007); Nivola and Brady (2007, 2008); McCarty (2019). Beinart (2008) also argues that polarization may
damage US foreign policy (e.g., its credibility, effectiveness, and responsiveness).
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a situation of “narrow majorities” and hence gridlock. Online Appendix D.1 develops an
extension of our model where Pareto-inefficient gridlock can arise as polarization occurs.

5.1 Mitigating Polarization

Ferejohn et al. (2020) note that challenges to shaping the character of democratic institutions
include “managing the development of media and information technologies to ensure they
enhance, rather than degrade, robust pluralism and civil political engagement.” This section
takes a step in that direction.

How could a social planner address polarization caused by shared news? Selective sharing,
misperceptions, and echo chambers of friends seem difficult to influence. It may be more
straightforward to influence the quality of their first-hand information. For instance, this
may involve incentivizing newspapers to spend more on reporters, data gathering, and fact
checking. But this direct way may be infeasible for technological or economic reasons. This
section suggests a feasible way to increase the quality of information that people ultimately
receive without changing q of the original sources.

The last decades have witnessed the rise of news aggregators, online platforms that sum-
marize news for their users (e.g., The Drudge Report, Apple News, Yahoo! News). The rea-
son may be that aggregators help people handle the overload of daily news, or pool news from
different sources into one convenient access point. By summarizing news, aggregators throw
away some information relative to the totality of the aggregated signals. Yet, this summary
can have higher quality than each aggregated signal individually, which is the key observation
for our purposes. Through the lens of our theory news aggregators can also serve another
function: undermine the distortions of selective news sharing and thus curb polarization.17

There are many ways to aggregate signals. To make our point we consider the following
simple form. Divide time into blocks of M periods, where M is an odd number. For every
t = 1, 2, . . ., define ŝi

Mt as a new signal that is sent to agent i at the end of each time block
and reports whether more a or b signals realized in that block:

ŝi
Mt =

{
0 if ∑tM

k=(t−1)M+1 I{sik=a} <
M
2

1 if ∑tM
k=(t−1)M+1 I{sik=a} >

M
2 .

Clearly, ŝi
Mt conveys less information than do the aggregated M signals together. However,

ŝi
Mt has higher quality than each sit. To see this, suppose M = 3 and ω = A:

P(ŝi
3 = 1|ω = A) = P

(
3

∑
k=1

I{sik=a} ≥ 2
∣∣∣∣ω = A

)
= q3 + 3q2(1− q) > q = P(sit = a|ω = A).

17Other papers studying news aggregators in an economic context include Athey et al. (2017) and Hu
et al. (2019). Athey et al. (2017) explore experimentally the impact of news aggregators on the consumption
of news from other outlets, while the focus of Hu et al. (2019) is differentiation between personalized news-
aggregation providers.
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Thus, substituting sit with ŝi
Mt worsens the quantity of information for the agents, but

improves its quality. Note that in standard models this substitution would be irrelevant for
long-run learning.

How much aggregation is enough to curb polarization? Let Π̂ be the long-run polarization
when signals sit are replaced with ŝi

Mt.
18

Proposition 9. Fix any society N with echo chambers e and information quality q such

that Π(e) > 0. Let q̄LR = maxi∈N qLR(ei, γ, γ̂). Then, Π̂(e) equals zero if

M > −2 ln (1− q̄LR)

(2q− 1)2 .

Partial news aggregation can suffice to curb polarization, because Proposition 3 showed
that undoing the effects of misperceived selective sharing in the long run does not require
perfect information quality. Note that each agent’s aggregator summarizes only her primitive
signals, but the level of aggregation required needs to take into account the agents with
whom she shares. This is because, through news sharing, how much agent i aggregates her
signals has learning externalities on her friends. Our common threshold for M internalizes
such externalities by taking into account those agents for whom the effects of misperceived
selective sharing are the hardest to overcome. This may call for institutional intermediaries
or platforms that aggregate news taking into account these externalities.

6 Quantitative Analysis and Applications

We now apply our theory in two directions. First, we develop simulations showing that, even
when misperceptions are small (i.e., γ and γ̂ are close), large divergence in beliefs can occur
and quickly. Thus, even small misperceptions can be of empirical importance. Second, we
show that the mechanisms we identified can explain the specific way in which opinions about
climate change have polarized in the US over the last few decades.

6.1 Simulations on the Speed of Belief Divergence

To better understand how the evolution of beliefs depends on misperception, we compare it
with how learning would occur if we turned misperception off. We do so through numerical
simulations. We set the true state to be A and consider two agents, Alice and Bob, whose
echo chambers have opposite imbalance. We use the parameter values found in Table 1.

Setting a high news arrival rate γ = 0.95 is without loss of generality, as it simply involves
interpreting a period as a sufficiently long length of time. We set γ̂ = 0.9γ to consider
small misperceptions. Since we set ω = A, Alice always learns correctly, but Bob can learn
incorrectly. The number of friends in Table 1 represents a relatively large echo chamber, with

18The threshold in Proposition 9 is a conservative condition based on tail bounds for Binomial cumulative
distributions, which do not have a closed form. Numerical methods may provide tighter conditions.
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News Arrival Rate γ 0.95

Misperception γ̂ 0.9γ

Echo Chambers

nAlice = nBob 16

dAlice
A = dBob

B 24

dAlice
B = dBob

A 16

Information Quality
q` 0.7× 1

2 + 0.3× qLR

qh 0.3× 1
2 + 0.7× qLR

Table 1: Simulation parameters

a relatively small imbalance given other parameters. In reality, there is wide variation in
echo chambers in society (see, e.g., Pew Research Center (2014); Bakshy et al. (2015); Cinelli
et al. (2021)). For this reason, Appendix B presents further simulations varying the echo
chambers’ size and imbalance for comparison and shows different patterns of polarization
with misperception. We vary the speed of learning by varying q. For our mechanism to be
active and generate incorrect learning, we need q < qLR ≡ qLR(e, γ, γ̂). We simulate two
“treatments” with q` < qh, where q` = 0.7× 0.5 + 0.3× qLR and qh = 0.3× 0.5 + 0.7× qLR.
Finally, we construct benchmark agents, Alice∗ and Bob∗, who are identical to Alice and
Bob respectively, except that they have no misperception: They use γ to update beliefs.

We simulate the evolution of beliefs as follows. We generate 10,000 histories of signals that
last for 300 periods. We then calculate four distributions of 10,000 belief trajectories starting
at π = 0.5, one for each of Alice, Bob, Alice∗, and Bob∗. We can interpret each distribution
as what can happen to the corresponding agent’s beliefs from an ex-ante viewpoint, or as
the cross-section of a specific group in society, of which one of our agents is a representative.
We plot these distributions in Figure 2. The blue lines capture the distributions of beliefs of
Alice and Alice∗, while the red lines represent Bob and Bob∗. The dark lines are the means
of the distributions and the light lines are the 10% and 90% quantiles.

Figures 2(a) and 2(c) illustrate that our mechanism need not take a very long time
to distort Bob’s learning relative to Alice’s and, consequently, generate polarization, even
for a minimal level of misperception. For q = q`, Alice’s and Bob’s beliefs diverge at
comparable speeds and learning is faster than it would be without misperceptions (Figures
2(b) and 2(d)). For q = qh, signals are more informative in each period; therefore, those
who learn correctly (Alice, Alice∗, Bob∗) will do so faster. For Bob, the higher qh weakens
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(a) Low q with misperception (b) Low q with no misperception

(c) High q with misperception (d) High q with no misperception

Figure 2: Belief paths for Alice and Bob (left), Alice∗ and Bob∗ (right)

the distorting power of his echo chamber, which causes his belief to move more slowly in the
wrong direction (Figure 2(c)). This introduces an asymmetry in the speed at which Alice’s
and Bob’s beliefs change. Alice becomes quickly convinced that the state is A, while Bob
drifts slowly towards B. The net effect is rapid polarization—faster than for q`.

Changing echo chambers has the following qualitative effects. Enlarging the echo-chamber
imbalance or its size increases the speed of divergence. For small echo chambers with small
imbalances belief divergence continues to occur, but is slower for all agents—as expected.
(See Figures 6 and 7 in Appendix B.)

6.2 Application: Opinions about Climate Change in the US

Climate change has become one of the most divisive issues of our time. Egan and Mullin
(2017) (henceforth EM) document that US public opinions on climate change showed little
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to no polarization until the early 1990s and, “over the course of a little more than 20 years,
the environment was transformed from the least to the most polarized issue” (EM, p. 219).
Similarly, Pew Research Center (2020a) finds that, by far, addressing climate change has
become the most polarizing issue in the US: 21% of Republicans consider it a top priority
as opposed to 78% of Democrats. Some argue that this polarization affects the US ability
to act on climate change, by miring policies in gridlock.19 In addition, some authors suggest
a connection between this gridlock and information acquisition on the Internet (e.g., see
Helmuth et al., 2016). We use our theory to shed light on polarization of climate change
opinions, its relationship to the Internet as a source of information, and its evolution.

Climate change is a multifaceted issue. In this application, we consider Gallup survey
data between 1997 and 2021 that reports Americans’ opinions about whether the effects of
global warming have already begun (Saad, 2021). We can think of this as a binary objective
state of the world as in our model, since the effects (sea level rise, ice caps loss, heat waves,
etc.) have either already begun (state A) or they have not (state B). Figure 3 illustrates the
shares of Republicans, Democrats, and Independents who agree with the statement that “the
effects of global warming have already begun.” Focusing on Democrats and Republicans,
initially about half of each political group agrees with the statement. For Republicans, this
share declines slightly at first, hovering in the mid 40’s for some time, and then accelerates
to finish at 29%. By contrast, the share of Democrats climbs strongly to finish at 82%.

Figure 3: US public opinion on climate change, 1997–2021 (source: Saad (2021)).

We argue that these patterns can be explained by selective news sharing in unbalanced
echo chambers combined with misperception and low quality of information. It is well-known
that Democrats and Republicans tend to have different echo chambers and news diets (Pew

19See, for example, “Political Tribalism and Climate Policy Gridlock”
(https://www.greentechmedia.com/articles/read/political-tribalism-and-climate-policy-gridlock) and Hel-
muth et al. (2016).
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Research Center (2014, 2020b)). In addition, EM note that people often do not experience
climate change directly and have difficulties handling its complex scientific content, so they
have to rely on information shared by others. EM also argue that people often rely on low-
quality information to form opinions about climate change (see also Boykoff (2008), Mayer
(2012), Moser (2014)).

It is important to note that Figure 3 does not report respondents’ beliefs directly, but
their agreement with options from a coarse set. To deal with this, we assume that there is a
threshold belief that the effects of global warming have already begun above which a person
states to agree with the corresponding option. Assuming this threshold is fairly stable, we
can use our model to simulate the cross section of Democrats’ and Republicans’ beliefs over
time and see whether the share above that threshold evolves similarly to Figure 3. To be
fully impartial, we assume that the relevant threshold belief is constant and equals 0.5 for
all agents.

We begin with a basic simulation that uses the following parameters. The common prior
is π = 0.5, which removes any initial bias and allows us to focus on the effects of echo
chambers and information quality. The arrival rate of information is γ = 0.95. As noted in
Section 6.1, this high γ simply involves adjusting the interpretation of a period accordingly.
We let γ̂ = 0.9γ, to test whether minor misperceptions can explain the evidence. The
echo chambers of Democrats and Republicans are symmetric: All have the same proportion
of dogmatic and normal friends, but the Democrats’ imbalance favors state A while the
Republicans’ favors B. Examining various simulations, we conclude that the general trends in
Figure 3 appear most consistent with small echo chambers, small imbalances, and q = qh (see
Figure 7(g) in Appendix B). Using this, we generate belief trajectories for 10,000 Democrats
and 10,000 Republicans conditional on A being the true state, as in the simulations of
Section 6.1. This conditioning is consistent with the scientific consensus, as recently reported
by the Intergovernmental Panel on Climate Change (Masson-Delmotte et al., 2021a,b, page
10). The simulation lasts 50 periods, so each corresponds to roughly half a year in Figure 3.

Figure 4 reports the share of Democrats and Republicans whose simulated beliefs are
above 0.5.20 Consistent with Figure 3, Democrats update beliefs towards state A and faster
than Republicans, who update towards state B. As time goes by, Republicans appear to
learn less and incorrectly. This is because the distorting force of their echo chambers and
the informative force of their signals almost balance each other when q = qh.

This simulation and our model with misperception offers a first insight into the possible
drivers of polarization in US opinions on climate change. This polarization cannot arise only
from different news diets between Democrats and Republicans (Remark 1). It also requires
that the quality of information about climate change be sufficiently low, otherwise both
Democrats and Republicans would learn correctly despite having opposite echo chambers.
Such a low q may be, in part, the result of skepticism campaigns started in the early 1990s.

20Given the common prior 0.5, the share of Republicans and Democrats with beliefs above 0.5 would be
mechanically 0% or 100% in the first period of the simulation, depending on the tie-breaking rule. Since this
is a technical artifact, we initiate the time series at 46% for each political group as in the data. Alternatively,
we could assume that, for each group, 46% (54%) of agents has a prior slightly above (below) 0.5.
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Figure 4: Basic simulation – small echo chambers.

As discussed in EM and Mann (2021), groups representing fossil-fuel interests organized
well-funded campaigns to undermine the credibility and informativeness of evidence about
climate change, arguably lowering the quality of the available information.

It is possible to modify our basic simulation to more closely match the data. One feature
that emerges from a closer look at Figure 3 is that Democrats’ and Republicans’ opinions
roughly track each other until about 2011, but seem to diverge more steadily thereafter.
One thing that happened in the years around 2011 is the surge in the use of social media,
such as Facebook, Youtube, and others (Samur, 2018; Ortiz-Ospina, 2019). Presumably, this
expanded people’s echo chambers, which can be easily replicated in the simulation of our
model. To do this as transparently as possible, we permanently increase the echo-chamber
size from small to large at period t = 25 (where large is obtained by scaling all types of
friends proportionally to the values used in Section 6.1).

Figure 5 reports this modified simulation. As expected, the expansion of echo chambers
speeds up learning for both Republicans and Democrats, but more so for Democrats. The
share of Democrats with belief above 0.5 reaches 80% at t = 50, which is closer to the actual
data. The share of Republicans declines somewhat more quickly after t = 25 to end around
40%. While it does not fall as far as 29% as in the data, this drop in 2021 seems significantly
larger than in previous years, indicating that additional forces may have played a role.

The modified simulation serves as an example of how the data can guide parameter
choices, but also provides a second insight. Growth in online networks and social media are
two often blamed culprits for polarization. Indeed, the growth of the Internet in the early
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Figure 5: Modified simulation – echo chambers expand at t = 25.

1990s expanded online social connections (i.e., more information sharing), and this may have
increased the quality threshold qLR for correct learning, thereby triggering the polarizing
mechanism (Propositions 5 and 8). This would explain little polarization up to the 1990s and
increasing polarization thereafter. The major growth in social-media use around 2011 likely
compounded the problem, accelerating polarization. Thus, the model helps identify pivotal
moments in the use of the Internet and social media that could have driven polarization in
views about climate change. These appear to be the late 1990s and the years around 2011.

Once again, these simulations highlight the role of information quality. Note that, while
we refer to “high” information quality (q = qh) as better explaining the data, this q is still
below the threshold qLR to generate correct learning. Thus, efforts to increase information
quality about climate change can be part of the solution to alleviate polarization and grid-
lock. However, Proposition 7 tells us that this increase in q needs to be sufficiently large.
Proposition 9 suggests that a way to do this is by aggregating various information sources.

In reality, some combination of the aforementioned forces have likely been at work in
shaping US opinions on climate change. Future research can further fine-tune the model
parameters through more detailed simulations and empirical estimation. Such fine-tuning
can determine which drivers are most important, to guide business practices and policy-
making.
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7 Discussion and Extensions

This section discusses other aspects of our baseline model in Section 2 as well as possible
extensions.

7.1 Other Forms of Model Misspecification

We consider other ways in which agents may have misspecified mental models of the world
that can lead them to misperceive information. This clarifies the main mechanism through
which selective news sharing can lead to polarization: the combination of unbalanced echo
chambers and incorrect response to absence of news. Throughout this section, the true
properties of first-hand information (i.e., (1)) as well as timing remain as in the baseline
model.

First, we explore what happens if the agents’ misspecified model involves over -estimating
the news arrival rate for friends: γ̂ > γ. This may capture an agent who treats her friends
as more informed than they actually are, or is excessively skeptical that information is being
withheld. In short, she reads too much into silence. This case may be an instance of the
so-called “below-average effect” in psychology (Erev et al. (1994); Kruger (1999)). Online
Appendix C.1 shows how our results change if γ̂ > γ. In a nutshell, now the agent updates
as if she excessively treats silence of a dogmatic friend as suppression of news and therefore
as bad news for the state that friend prefers. As a result, while for γ̂ < γ the distorting
power of echo chambers pushes the agent’s belief in the direction of the state preferred by
the majority of her dogmatic friends, for γ̂ > γ it pushes her belief in the opposite direction.
The case of γ̂ < γ seems more consistent with both the evidence on selection neglect in
Section 3 and the common understanding of the effects of echo chambers on beliefs.

Next, we consider misspecifications that do not involve the rate of news arrival. That is,
assume that all agents correctly assign probability γ to the arrival of first-hand information
in each period (i.e., γ̂ = γ). Instead, we analyze misspecifications of the following variables:

(I) Probabilities with which friends share signals. Suppose normal agents share any first-
hand signal sit with probability ν ∈ (0, 1] and stay silent with probability 1− ν. Each
A-dogmatic agent shares sit = b with probability f ∈ [0, 1] and sit = a with probability
g ∈ [0, 1], where 0 ≤ f < g ≤ 1; with the remaining probabilities, the agent stays
silent. Each B-dogmatic agent is like an A-dogmatic agent, except for swapping the
probabilities of sharing a and b signals. Our baseline model corresponds to ν = g = 1
and f = 0. Misspecification (I) means that each agent knows all her friends’ types,
but her mental model replaces the true sharing probabilities f , g, and ν with incorrect
ones f̂ , ĝ, and ν̂ where f̂ < ĝ.

(II) Friends’ types. Given three types as in the baseline model, there are many possible
ways in which an agent can misclassify her friends. For conciseness, we consider the
case where some dogmatic friends are misclassified as normal. The sharing behavior
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is deterministic (ν = g = 1 and f = 0). Let n̂A and n̂B be the number of A- and B-
dogmatic friends that an agent misclassifies as normal. That is, she treats these friends
as sharing all their signals, while in reality they share only signals favorable to one state.

(III) Quality of first-hand information. In each agent’s mental model, the probability with

which a signal matches the state is q̂ ∈
(

1
2 , 1
)

instead of the true q. Note that this

misspecification differs conceptually from all others considered in this paper, which are
about how friends share news.

Proposition 10. Each of misspecifications (I), (II), and (III) alone can cause belief polar-
ization as the result of incorrect learning. This happens if and only if the true information
quality q is sufficiently low and there are appropriate, real or perceived, imbalances in echo
chambers.

An echo-chamber imbalance means slightly different things depending on the misspecification
(see Online Appendix C for the details). For (I), it means a different number of A- and B-
dogmatic friends as well as a different gap in the probabilities of sharing signals ( f − g 6=
f̂ − ĝ). For (II), it means a disagreement between the real and perceived difference in the
number of dogmatic friends (dA − dB 6= d̂A − d̂B). For (III), it means a different number of
A- and B-dogmatic friends.

Despite these differences, all these misspecifications cause incorrect learning and polar-
ization through the same fundamental mechanism as in the baseline model. That is, the
agents respond to silence incorrectly by misperceiving how much of it depends on lack rather
than suppression of information. Moreover, information quality plays the same role in en-
abling and preventing polarization. This further supports our insights about mitigating po-
larization by aggregating news.

Misperceiving silence is the only mechanism through which (III) causes polarization in
our model. Indeed, if γ = 1 and hence silence must mean unfavorable first-hand information,
the agents always learn correctly in the long run despite q̂ 6= q. Moreover, for (III) to cause
polarization the agents must over-estimate the information quality, that is, q̂ > q. This case
is related to the idea of “fake news:” Such news are false or very uninformative (low q), yet
people mistakenly treat them as reliable and informative (high q̂). Our results then suggest
that fake news can cause incorrect learning and polarization, but only indirectly through
selective news sharing. This may explain why, even though fake news have always existed,
they have become especially dangerous in the age of social media. This also provides a
rationale for fact-checking as a way to realign q̂ with q.

7.2 Applicability to News Media Outlets and Social Media

The previous discussion of other misspecifications allows us to clarify how our insights relate
to settings such as news media outlets and social-media platforms like Facebook or Twitter.
First, our analysis applies unchanged if we interpret a friend as a news media outlet. In this
case, normal friends correspond to outlets that report news objectively; dogmatic friends
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instead correspond to outlets that report news selectively with some slant, which can be
modeled as in (I).

Second, unlike peer-to-peer news sharing that occurs off line at family gatherings, work,
or parties, online sharing on social media is often mediated by algorithms (for example, on
Facebook). These algorithms select what we see in our news feed, possibly using different
probabilities depending on the kind of news as in (I). As such, they play a similar role of
our dogmatic agents. Moreover, news-feed algorithms tend to be very complex and lack
transparency. It is then likely that most people may have misspecified models about how
these algorithms work as in (I), possibly adding to the causes of selection neglect discussed
in Section 3. In this case, news-feed algorithms can also trigger our main mechanism of
incorrect learning and lead to polarization.

Finally, our theory can also apply in settings like Twitter, where there are a small number
of “serial tweeters” and a mass of followers. In this context, examples of our dogmatic agents
are plentiful, and information suppression on an issue can take the form of tweeting about
other issues. Followers may misperceive the tweet selection of their followee, either by under-
estimating his news arrival rate as in the baseline model, or in one of the forms discussed
above ((I), (II), or (III)).

7.3 Selective News Sharing and Endogeneity

The selective sharing of our dogmatic agents can be interpreted in at least two ways. The
first is that dogmatic agents care about the state (i.e., it affects their underlying preferences),
but have extreme beliefs that are very hard to change—perhaps because they are stubborn,
narrow minded, or blindly follow and promote their conviction. Formally, they have a de-
generate prior belief that places probability 1 on either A or B, which does not change with
new information. Alternatively, dogmatic agents can change their views, yet much more
slowly than non-dogmatic agents.21 As a result, how they selectively share information is
very persistent. A second interpretation is that dogmatic agents do not care about the state
(their underlying preferences are state independent) and simply share information to pro-
mote their agenda. This is related to the framework in Jin et al.’s (2021) experiment—and,
of course, more general models of selective sharing of verifiable information starting in the
80s. In that experiment, “senders” face the same sharing decisions as in our model: disclose
the signal they have or stay silent, but nothing else. They also have monotonic preferences
in receivers’ belief about the state, while receivers want to learn correctly.

Future research may endogenize selective sharing in settings similar to ours. In Online
Appendix D, we take a first step in this direction by exploring an extension in which the
type of selective sharing we assume in the paper emerges endogenously. This extension uses
several standard assumptions to keep things simple. Generalizing these assumptions points
to future work.

21For studies on people’s reluctance to change worldview see, e.g., Edwards (1968), Nisbett and Ross
(1980), Evans (1989), Nickerson (1998), and Galperti (2019).
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7.4 News Re-Sharing

In reality, people can re-share news received from friends, and thus any agent may receive
third-, fourth-, or nth-hand information. Our model assumed no signal re-sharing, but we
can easily extend our analysis to allow this. For instance, Jane may receive a signal shared by
Tom through a friend of hers. The simplest case is when Jane knows the paths that a signal
travelled to reach her. This is similar to knowing the origin of a re-tweet on Twitter. In this
case, re-sharing is equivalent to adding Tom as a direct friend in Jane’s echo chamber. If
the paths allow all signals to reach Jane, it is equivalent to adding Tom as a friend of Tom’s
type; if the paths allow only signals favorable to state ω to reach Jane, it is equivalent to
adding Tom as an ω-dogmatic friend.

As it is well known from the literature on rational learning in networks (see, e.g., Mueller-
Frank (2013), Golub and Sadler (2016), Mueller-Frank and Neri (2021)), complications can
arise if Jane does not know the origin of a signal or the paths it travelled. Since our signals
are verifiable, if there is no more than one path, there is no confounding or correlation issue.
But if there are multiple paths, two re-shared signals may come from the same origin, which
introduces correlation. In this case, however, consistent evidence shows that people tend to
neglect correlation (Enke and Zimmermann (2019)), which has been previously assumed in
social-learning models (Eyster and Rabin (2010b))). Under this assumption, each path from
a source to Jane acts as a separate friend in her echo chamber. As long as correlation is
sufficiently weak, one can show that it does not matter for long-run beliefs.

Finally, we can capture re-sharing in a reduced form as increasing the news-arrival rate for
an agent’s friends (i.e., γ). This is because they can now share both a signal they got directly
from its source (e.g., a newspaper) and a signal they got from one of their friends. The
consequences can be easily seen through our results. If re-sharing increases γ but agents do
not take this into account fully, it effectively becomes another mechanism that leads to γ̂ < γ.

7.5 Agents’ Heterogeneity

A final comment is in order on the heterogeneity between normal agents that we allow. We
assumed that only the composition of echo chambers can differ between them. Otherwise,
they are identical and have the same model of the world: The prior π, the signal distribution
(γ and (1)), and the form of information misperception (γ̂, (I), (II), or (III)) are the same for
all. This setting helps to focus on the role of different information diets due to echo cham-
bers as a driver of belief polarization. It is intuitive that adding differences between agents
can introduce other drivers of polarization, which can be easily inferred from our results.

8 Concluding Remarks

We studied if and when learning from shared news can lead to belief polarization. Our
answer is consistent with some common narratives about news sharing, yet highlights several
qualifications. Selective sharing alone cannot lead to polarization, even if it gives rise to
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unbalanced news diets. It has to be combined with some misperception that causes people to
incorrectly respond to others’ selection of news, which has been documented in the literature
on selection neglect. Moreover, this key mechanism leads to polarization if (and only if) the
quality of first-hand information is sufficiently low. These results clarify the relationship
between information quality, selective sharing, and polarization.

Our analysis goes to the heart of why new communication channels and formats on the
Internet may contribute to or curb polarization. First, the dramatic expansion of commu-
nication between people may have increased the consumption of selected second-hand news
(e.g., on social media). Second, the quality of consumed information may have worsened:
Tweets and social-media posts tend to be short, imprecise, and absorbed only superficially.
Third, the Internet has offered bad actors a megaphone to spread fake news, and we found
that it is selective sharing—not fake news per se—that can distort beliefs. Bad actors may
also try to expand echo-chamber imbalances or, more subtly, release bits of true but low-
quality news with high frequency (like Tweets), which amplifies the power of misperceived
selective sharing. However, the Internet may also help people access higher-quality news and
form more balanced social connections, which can curb polarization.

Several directions remain for future research. For instance, the role of unbalanced echo
chambers in our analysis begs the question of what happens when social links form endoge-
nously. In this process, people may follow their demand for information or other socio-
economic forces (identity, class, race, ideology, work career, etc.). Some people may tend to
link with like-minded friends, creating a vicious cycle between belief polarization and echo
chambers’ imbalance. Others may tend to link with reliable sources of information, possibly
with opposite effects. Which tendency prevails is ultimately an empirical question. Recent
studies on homophily in social networks, which include Golub and Jackson (2012), Baccara
and Yariv (2013), and Halberstam and Knight (2016b), can guide analysis in this direction.
We hope our framework can prompt further theoretical investigations that expand on our first
step in studying endogenous selective sharing, belief polarization, and its consequences such
as gridlock. On the empirical side, future research could consider more detailed simulations
of our theory that examine the evolution of opinions about other social topics (such as the
use of vaccines or other public-health issues). Our approach to polarization and its drivers
may guide data collection efforts, for instance, by highlighting the usefulness of more survey
questions recording opinions about objective facts and people’s diets of second-hand news.

Renee Bowen, UC San Diego and NBER

Danil Dmitriev, UC San Diego

Simone Galperti, UC San Diego
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Appendix

A Proofs

A.1 Proof of Proposition 1

Consider an agent with n normal friends and d > 0 dogmatic friends of each type.

Without loss of generality, we can ignore the normal friends and assume that n = 0. The reason
is that, using the Law of Total Expectation, we can rewrite E[µ] as a sum over all possible signal
realizations of dogmatic friends, where in each term we have the expected posterior conditional
on a given signal realization. The remaining uncertainty in this conditional posterior are signal
realizations of normal friends. Since normal friends stay silent if and only if they truly receive no
signal, the agent’s misspecification plays no role and the expectation of that conditional posterior
must be equal to the “prior.” That is, it equals the posterior updated only on the signals of
dogmatic friends. Hence, we can focus on the dogmatic friends.

Let aA be the number of signals s = a that the A-dogmatic friends receive, and bB be the
number of s = b that the B-dogmatic friends receive. Denote s = {aA, bB}. Given the correct γ,
the posterior that ω = A is

µ∗(s) =
πP∗(s|A)

πP∗(s|A) + (1− π)P∗(s|B)
,

where

P∗(s|A) =
d!d!

aA!(d− aA)!bB!(d− bB)!
γaA+bB qaA (1− q)bB (γ(1− q) + (1− γ))d−aA (γq + (1− γ))d−bB ,

P∗(s|B) =
d!d!

aA!(d− aA)!bB!(d− bB)!
γaA+bB (1− q)aA qbB (γq + (1− γ))d−aA (γ(1− q) + (1− γ))d−bB .

Given the incorrect γ̂, the agent’s posterior belief given s will be

µ(s) =
πP(s|A)

πP(s|A) + (1− π)P(s|B)
, (4)

where P(s|A) and P(s|B) are calculated replacing γ with γ̂. To understand each term consider
P∗(s|A), which is the conditional probability of observing s given ω = A. Then, (γq)aA is the
probability of getting aA signals s = a from A-dogmatic friends; (γ(1− q))bB is the probability of
getting bB signals s = b from B-dogmatic friends; (γq + (1−γ))dB−bB is the probability of observing
dB − bB B-dogmatic friends staying silent, as it is either a genuine silence (with prob. 1− γ) or a
suppressed signal s = a (with prob. γq); (γ(1− q) + (1− γ))dA−aA is the probability of observing
dA − aA A-dogmatic friends staying silent, as it is either a genuine silence (with prob. 1− γ) or
a suppressed signal s = b (with prob. γ(1− q)). For P∗(s|B), the probabilities q and 1− q are
reversed because the true state is B.
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Consider the expectation of the difference between µ∗ and µ:

E[µ− µ∗] = ∑
s

(πP∗(s|A) + (1− π)P∗(s|B)) (µ(s)− µ∗(s))

= ∑
s

πP∗(s|A)

(
P(s|A)

P∗(s|A)
· πP∗(s|A) + (1− π)P∗(s|B)

πP(s|A) + (1− π)P(s|B)
− 1
)

= ∑
s

πP∗(s|A)

(
1 + ρQaA−bB ΓaA−bB

1 + ρQaA−bB Γ̂aA−bB
− 1
)

,

where

Q =
1− q

q
, Γ =

γ(1− q) + (1− γ)

γq + (1− γ)
, Γ̂ =

γ̂(1− q) + (1− γ̂)

γ̂q + (1− γ̂)
, ρ =

1− π

π
. (5)

Using the expression of P∗(s|A), we can write

E[µ− µ∗] = π ∑aA,bB

(
d!

aA !(d−aA)! ·
d!

bB !(d−bB)! γ
aA+bB qaA+bB (γ(1− q) + (1− γ))2d−aA−bB

)
×
(

1−q
q

)bB
(

γ(1−q)+(1−γ)
γq+(1−γ)

)bB−d ( 1+ρQaA−bB ΓaA−bB

1+ρQaA−bB Γ̂aA−bB
− 1
)

= π ∑aA,bB

(
d!

aA !(d−aA)! ·
d!

bB !(d−bB)! γ
aA+bB qaA+bB (γ(1− q) + (1− γ))2d−aA−bB

)
×Γ−d

(
QbB ΓbB +ρQaA ΓaA

QbB Γ̂bB +ρQaA Γ̂aA
QbB Γ̂bB −QbB ΓbB

)
= πΓ−d ∑0≤x≤y≤d

(
d!d!

x!(d−x)!y!(d−y)! γ
x+yqx+y(γ(1− q) + (1− γ))2d−x−y

)
(6)

×
(

QyΓy+ρQxΓx

Qy Γ̂y+ρQx Γ̂x QyΓ̂y −QyΓy + QxΓx+ρQyΓy

Qx Γ̂x+ρQy Γ̂y QxΓ̂x −QxΓx
)

.

The key is that while the original distribution P∗(s|A) is not symmetric between aA and bB, the
last line involves a symmetric distribution between x and y. We want to prove that the sum in (6)
is negative for ρ > 1, which will imply E[µ− µ∗] < 0 for π < 1

2 .

Consider the derivative with respect to ρ of the term in the second line of (6), denoted by ∆xy:

∂∆xy

∂ρ
=

Qx+y(ΓxΓ̂y − ΓyΓ̂x)

(QyΓ̂y + ρQxΓ̂x)2
QyΓ̂y +

Qx+y(ΓyΓ̂x − ΓxΓ̂y)

(QxΓ̂x + ρQyΓ̂y)2
QxΓ̂x,

which is negative if and only if

ΓxΓ̂y − ΓyΓ̂x

(QyΓ̂y + ρQxΓ̂x)2
QyΓ̂y <

ΓxΓ̂y − ΓyΓ̂x

(QxΓ̂x + ρQyΓ̂y)2
QxΓ̂x.

Recall that y ≥ x. Note that ΓxΓ̂y − ΓyΓ̂x > 0 if and only if Γ̂y−x > Γy−x. If y = x, this holds with
equality and the derivative above is 0. If y > x, Γ̂y−x > Γy−x is equivalent to Γ̂ > Γ, which in turn
is equivalent to γ̂ < γ. From here on, we assume y > x.

Then, the derivative of ∆xy is negative if and only if

QyΓ̂y

(QyΓ̂y + ρQxΓ̂x)2
<

QxΓ̂x

(QxΓ̂x + ρQyΓ̂y)2
.
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Note that QΓ̂ < 1, which implies (QΓ̂)y < (QΓ̂)x. Using this, we can obtain the equivalent
inequality

(2− (1 + ρ)2)(QΓ̂)x+y < ρ2((QΓ̂)2x + (QΓ̂)2y)

For ρ > 1, this inequality holds, as the left side is negative and the right side is positive. Given
that this holds for any x < y, it follows that the derivative of the entire sum in (6) is negative for
ρ > 1. Note that this sum is equal to 0 (term by term) at ρ = 1. This implies that the sum becomes
negative for all ρ > 1 as desired. In other words, given γ̂ < γ, moving the prior from 50-50 towards
a state will make the unconditional expected posterior of that state higher than the prior.

A.2 Proof of Proposition 2

The proof strategy is to first find the derivative of E [µ|ω] with respect to q at q = 1
2 and then show

how its sign depends on dA − dB. Using continuity of E [µ|ω] in q and the fact that E [µ|ω] = π
at q = 1

2 , we will obtain the desired conclusion.

Using (4) and (5), for a given realization s = (aA, bB, aN , bN), an agent’s posterior that ω = A
can be written as

µ(s) =
π

π + (1− π)QMΓ̂S
.

To compute E[µ|ω], it is useful to use iterated expectations and condition on the set of friends
who receive a signal. Let E [µ|ω, xA, xB, xN ] be the expected posterior conditional on the event
that the state is ω and that xA A-dogmatic friends, xB B-dogmatic friends, and xN normal friends
received a signal. For simplicity, xN includes the agent’s own signal. Abusing notation a bit, let
N = n + 1. We can then write

E [µ|ω] =
dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

·

· γxA+xB+xN (1− γ)dA+dB+N−xA−xB−xN E [µ|ω, xA, xB, xN ] .

The derivative of E[µ|ω] with respect to q is

∂

∂q
E [µ|ω] =

dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

·

· γxA+xB+xN (1− γ)dA+dB+N−xA−xB−xN
∂

∂q
E [µ|ω, xA, xB, xN ] .

(7)

We now find ∂
∂q E [µ|ω, xA, xB, xN ] and evaluate it at q = 1

2 .

Lemma 1.

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN ∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Proof. Letting H(q; A) = q and H(q; B) = 1− q, we can write

E [µ|ω, xA, xB, xN ] =
xN

∑
aN=0

xN !
aN !(xN − aN)!

H(q; ω)aN (1− H(q; ω))xN−aN E [µ|aN , ω, xA, xB, xN ] .
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The derivative of E [µ|ω, xA, xB, xN ] can thus be represented as

∂

∂q
E [µ|ω, xA, xB, xN ] = ∑xN

aN=0
xN !

aN !(xN−aN)!

[
aN H(q; ω)aN−1(1− H(q; , ω))xN−aN−

−(xN − aN)H(q; ω)aN (1− H(q; ω))xN−aN−1
]

Hq(q; ω)E [µ|aN , ω, xA, xB, xN ] +

+ ∑xN
aN=0

xN !
aN !(xN−aN)! H(q; ω)aN (1− H(q; ω))xN−aN ∂

∂q E [µ|aN , ω, xA, xB, xN ].

If q = 1
2 , then H(q; ω) = 1

2 for each ω. Also, the agent will not update her prior based on any
signals: E [µ|aN , ω, xA, xB, xN ] = π. The above expression thus simplifies to

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN−1
(2aN − xN) Hq

( 1
2 ; ω

)
π+

+ ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Note that
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN−1

(2aN − xN) = 0,

because for each positive term in the sum there is an identical term with a negative sign. We can
then write

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN ∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

�

It remains to evaluate ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

. The following is a first intermediate step.22

Lemma 2.

∂

∂q
E [µ|aN , ω, xA, xB, xN ] =

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

∂

∂q

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
,

where

f (k, q, aN) =
πH(q; ω)k(1− H(q; ω))xA+xB−k

π + (1− π)Qk−xB+2aN−xN Γ̂k−xB−(dA−dB)
.

Proof. Let aD ≤ xA + xB be the total number of s = a that A- and B-dogmatic friends have
received. Using aB = xB − bB and bN = xN − aN, we can write

µ =
π

π + (1− π)QaD−xB+2aN−xN Γ̂aD−xA−(dA−xA)+(dB−xB)

22The symbol bxc denotes the largest integer smaller than x.
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Note that µ includes the dogmatic friends who have not received a signal (dA − xA A-dogmatic
and dB − xB B-dogmatic), as the agent does not know whether they did not get a signal or they
suppressed it. Using this, we can obtain

E [µ|aN , ω, xA, xB, xN ] =
xA+xB

∑
aD=0

[
(xA + xB)!

aD!(xA + xB − aD)!
H(q; ω)aD (1− H(q; ω))xA+xB−aD

· π

π + (1− π)QaD−xB+2aN−xN Γ̂aD−xB−(dA−dB)

]
.

Using binomial symmetry, we get

E [µ|aN , ω, xA, xB, xN ] =

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
,

where f (k, q, aN) is as defined in the lemma. Taking the derivative with respect to q gives the
result. �

The next is a second intermediate step to evaluate ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Lemma 3. At q = 1
2 ,

∂

∂q

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
=

(
1
2

)xA+xB−1

2π(1− π)

[
2(2aN − xN) +

2
2− γ̂

(xA − xB)− 2γ̂

2− γ̂
(dA − dB)

]
.

Proof. To simplify subsequent algebra, define z(q, γ̂) = ln(Γ̂) [ln(Q)]−1
. Taking the derivative of

f (k, q, aN) with respect to q gives

∂

∂q
f (k, q, aN) =

π

π + (1− π)Qk−xB+2aN−xN+(k−xB−(dA−dB))z(q,γ̂)
·

·
(

(xA + xB − k)H(q; ω)k(1− H(q; ω))xA+xB−k−1 (−Hq(q; ω)
)

+ kH(q; ω)k−1(1− H(q; ω))xA+xB−k Hq(q; ω)
)

+H(q; ω)k(1− H(q; ω))xA+xB−kπ(1− π)·

·
[

(k−dB+2aN−xN)Qk−xB+2aN−xN−1+(k−xB−(dA−dB))z(q,γ̂) 1
q2

(π+(1−π)Qk−xB+2aN−xN Γk−xB−(dA−d−B))
2 +

+
(k− xB − (dA − d− B))Qk−xB+2aN−xN+(k−xB−1−(dA−dB))z(q,γ̂) (2−γ̂)γ̂

(γ̂q+(1−γ̂))2(
π + (1− π)Qk−xB+2aN−xN Γk−xB−(dA−dB)

)2

]
,

which evaluated at q = 1
2 equals(

1
2

)xA+xB−1

(2k− xA − xB)Hq(q; ω)
π

π + (1− π)
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+

(
1
2

)xA+xB

4π(1− π) ·
(k− xB + 2aN − xN) + (k− xB − (dA − dB)) γ̂

2−γ̂

(π + (1− π))2

=
( 1

2

)xA+xB−1 ·
[
(2k− xA − xB)Hq(q; ω)π

+2π(1− π)
(

(k− xB + 2aN − xN) + (k− xB − (dA − dB)) γ̂
2−γ̂

)]
.

Therefore, at q = 1
2 we have

∂
∂q ( f (aD, q, aN) + f (xA + xB − aD, q, aN)) =

( 1
2

)xA+xB−1
2π(1− π)

(
2(2aN − xN) + 2

2−γ̂ (xA − xB)− 2γ̂
2−γ̂ (dA − dB)

)
.

�

We now further simplify ∂
∂q E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Lemma 4.

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) .

Proof. From Lemma 2 and 3 we have

∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑

⌊
xA+xB−1

2

⌋
aD=0

(xA+xB)!
aD !(xA+xB−aD)!

( 1
2

)xA+xB−1
2π(1− π)·

·
(

2(2aN − xN) + (xA − xB) + (xA − xB − 2(dA − dB)) γ̂
2−γ̂

)
= 4π(1− π)(2aN − xN) +

4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) .

The second equality follows from observing that the sum

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

(
1
2

)xA+xB−1

is a binomial expansion of
( 1

2 + 1
2

)xA+xB = 1.

Using Lemma 2, we then have

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN
[
4π(1− π)(2aN − xN)

+ 4π(1−π)
2−γ̂ ((xA − xB)− γ̂(dA − dB))

]
=

4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) ,

where the equality follows from the symmetry of ∑xN
aN=0

xN !
aN !(xN−aN)! (2aN − xN) we used before. �
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Finally, we return to the derivative of E[µ|ω]. Using Lemma 4, equation (7) simplifies to

∂

∂q
E [µ|ω]

∣∣∣
q= 1

2

=
dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

γxA+xB+xN ·

· (1− γ)dA+dB+N−xA−xB−xN

(
4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB))

)
=

4π(1− π)

2− γ̂

[
dA

∑
xA=0

dA!
xA!(dA − xA)!

γxA (1− γ)dA−xA xA

−
dB

∑
xB=0

dB!
xB!(dB − xB)!

γxB (1− γ)dB−xB xB − γ̂(dA − dB)

]

=
4π(1− π)

2− γ̂
[E[xA]−E[xB]− γ̂(dA − dB)]

=
4π(1− π)

2− γ̂
(dA − dB)(γ− γ̂).

(8)

Given γ > γ̂, if dA > dB, then the derivative is positive, which means that E[µ|ω] is distorted
towards A for low q. The opposite is true if dA < dB.

A.3 Proof of Proposition 3

Recall that agent i has dA A-dogmatic, dB B-dogmatic, and n normal friends. Without loss of
generality, assume dA > dB.23

Given T periods, denote the number of signals s = a received by

• agent i as ai,

• A-dogmatic friend j of agent i as aA
j , j ∈ {1, 2, . . . , dA},

• B-dogmatic friend j of agent i as aB
j , j ∈ {1, 2, . . . , dB},

• normal friend j of agent i as aN
j , j ∈ {1, 2, . . . , n}.

Denote the number of signals s = b received by

• agent i as bi,

• A-dogmatic friend j of agent i as bA
j , j ∈ {1, 2, . . . , dA},

• B-dogmatic friend j of agent i as bB
j , j ∈ {1, 2, . . . , dB},

• normal friend j of agent i as bN
j , j ∈ {1, 2, . . . , n}.

Then, the number of no-signal arrivals for the same agents is given by

23Our argument relates to that in Berk’s (1966) main characterization result. We provide a direct proof,
as this helps us show the dependence of the limit beliefs on the parameters of interest in this paper.
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• (T − ai − bi) for agent i,

• (T − aA
j − bA

j ) for A-dogmatic friend j of agent i, j ∈ {1, 2, . . . , dA},

• (T − aB
j − bB

j ) for B-dogmatic friend j of agent i, j ∈ {1, 2, . . . , dB},

• (T − aN
j − bN

j ) for normal friend j of agent i, j ∈ {1, 2, . . . , n}.

Over the T periods, i’s A-dogmatic friend j stayed silent bA
j times, whereas her B-dogmatic friend k

stayed silent aB
k times.

Agent i’s posterior satisfies

µ(sT) =
π

π + (1− π)QMΓ̂S
,

where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j ).

Thus, plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if QMΓ̂S converges to zero
(resp. +∞) with probability 1 as T → ∞ or, equivalently, ln

(
QMΓ̂S) converges to −∞ (resp. +∞)

with probability 1 as T → ∞. Using z(q, γ̂) = ln(Γ̂)[ln(Q)]−1, we can write ln
(
QMΓ̂S) as

ln(Q)K(x, T; q, γ̂), where

K(x, T; q, γ̂) = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j

+

(
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j )

)
z(q, γ̂),

and
x = (ai, bi, (aN

j , bN
j )n

j=1, (aA
j , bA

j )dA
j=1, (aB

j , bB
j )dB

j=1).

Given ln(Q) < 0, we require that K(x, T; q, γ̂) converge to +∞ (resp. −∞) with probability 1 as
T → ∞. Note that

lim
T→∞

K(x, T; q, γ̂) = lim
T→∞

T
(

K(x, T; q, γ)

T

)
.

Using H(q; A) = q and H(q; B) = 1− q, by the Law of Large Numbers we have

plim
T→∞

K(x, T; q, γ̂)

T
= (γH(q; ω)− γ(1− H(q; ω))) +

n

∑
j=1

(γH(q; ω)− γ(1− H(q; ω)))

+
dA

∑
j=1

γH(q; ω)−
dB

∑
j=1

γ(1− H(q; ω)) +
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+

(
dB

∑
j=1

(1− γ(1− H(q; ω)))−
dA

∑
j=1

(1− γH(q; ω))

)
z(q, γ̂)

= −γ(1 + n + (1 + z(q, γ̂))dB)− (dA − dB)z(q, γ̂) +

+γ
(

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
)

H(q; ω).

Given this, plimT→∞ K(x, T; q, γ̂) = +∞ (resp. −∞) if and only if this last expression is positive
(resp. negative), which is equivalent to

H(q; ω) > (resp. <) τ(q) =
1
2

+
((2− γ)z(q, γ̂)− γ) (dA − dB)

2γ (2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
. (9)

Note that

lim
q→ 1

2

τ(q) =
1
2

+
(γ̂− γ) (dA − dB)

γ(2− γ̂)(2(2− γ̂)(1 + n) + 2(dA + dB))
,

lim
q→1

τ(q) =
1
2

+
−γ(dA − dB)

2γ (2(1 + n) + (dA + dB))
∈ (0, 1).

In Online Appendix E, we show that τ(q) is decreasing and concave for q ∈
( 1

2 , 1
)

and τ′
( 1

2

)
= 0.

There are two cases to consider. First, suppose ω = B and hence H(q; B) = 1− q. Given
γ̂ < γ, condition (9) holds with “>” at q = 1

2 and with “<” at q = 1. Given the aforementioned

properties of τ(q), there exists a unique qLR ∈
( 1

2 , 1
)

such that plimT→∞ µ(sT) = 1 if q < qLR and
plimT→∞ µ(sT) = 0 if q > qLR.24 Second, suppose ω = A and hence H(q; A) = q. Given γ̂ < γ,
condition (9) holds with “>” at q = 1

2 and hence at all q ∈
( 1

2 , 1
)

by the properties of τ(q). It

follows that plimT→∞ µ(sT) = 1 for all q ∈
( 1

2 , 1
)
.

A.4 Proof of Proposition 4

Assuming dA > dB, we prove that qLR is increasing in dA and γ and decreasing in dB, n and γ̂.
The case of dA < dB follows similarly.

Consider the case of ω = B, which is the case that can result in incorrect learning. The value
of qLR is the unique fixed point that satisfies

1− q =
1 + n + (1 + z(q, γ̂))dB + z(q,γ̂)

γ (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
,

or equivalently

q− 1
2

=
(γ− (2− γ)z(q, γ̂)) (dA − dB)

2γ (2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
(10)

The right-hand side of the latter condition is strictly decreasing in dB, n and γ̂, which implies that
qLR is also decreasing in these variables. Since the right-hand side is increasing in γ, so is qLR.

24For q = qLR, plimT→∞ µ(sT) may not be unique, consistent with Berk’s (1966) discussion of his asymp-
totic carrier set A0 when this contains more than one point.
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Finally, one can show that the derivative of the right-hand side of the former condition with respect
to dA equals (

(2− γ)z(q, γ̂)− γ(1 + z2(q, γ̂))
)

dB + (1 + n) ((1− γ)z(q, γ̂)− γ)

γ(2 + 2n + (dA + dB)(1 + z(q, γ̂)))2 < 0,

where the inequality follows from (2− γ)z(q, γ̂) < γ < γ(1 + z2(q, γ̂)) and (1− γ)z(q, γ̂) < γ.
This implies that qLR is increasing in dA.

A.5 General Statement of Proposition 5 and its Proof

While Proposition 5 focused on the case λAdA > λBdB, we state and prove a more general result
that also covers the case λAdA < λBdB.

Proposition 11. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB and
n ≥ 1. For any other echo chamber e′ = (λAdA, λBdB, λNn) with λN ≥ 0, λA ≥ 0 and λB ≥ 0, we
have qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if

λN ≥ 1 +

(
|λAdA − λBdB|

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
· J(dA, dB, γ̂, λA, λB), (11)

where

J(dA, dB, γ̂, λA, λB) =

max
{

(λA − λB) 2
2−γ̂ , (λA − λB)

}
, if λAdA > λBdB

max
{(

λB
dB
dA
− λA

dA
dB

)
2

2−γ̂ ,
(

λB
dB
dA
− λA

dA
dB

)}
, otherwise.

Proof. We need to consider the fixed-point condition that defines qLR, which depends on which
state results in incorrect learning.

Case 1: Suppose λAdA − λBdB > 0. Then incorrect learning can occur in state B under both
the original and the new echo chamber. A sufficient condition for qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) is the
following:25

(γ− (2− γ)z(q, γ̂)) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

(γ− (2− γ)z(q, γ̂)) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.

Given γ̂ < γ, one can show that γ− (2− γ)z(q, γ̂) > 0 for all q. Using this and rearranging, the
previous condition becomes

λN > 1 +

(
λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
+

(λA − λB)dAdB(1 + z(q, γ̂))

(dA − dB)
· 1

n
.

Since z(q, γ̂) takes values between 0 and γ̂
2−γ̂ , we obtain the sufficient condition

λN > 1 +

(
λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{
(λA − λB)

2
2− γ̂

, (λA − λB)

}
.

25Note that qLR(e, γ, γ̂) > qLR(e′, γ, γ̂) if the opposite inequality holds, which happens if λA = λB = λN
for instance.
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Case 2: Suppose λAdA − λBdB < 0. In this case, incorrect learning occurs in state B for the
original echo chamber and state A for the new echo chamber. Then, qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if
the following holds:

((2− γ)z(q, γ̂)− γ) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

(γ− (2− γ)z(q, γ̂)) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.

Dividing by (γ− (2− γ)z(q, γ̂)) and simplifying as before we obtain the sufficient condition

λN > 1 +

(
λBdB − λAdA

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{(
λB

dB

dA
− λA

dA

dB

)
2

2− γ̂
,
(

λB
dB

dA
− λA

dA

dB

)}
.

�

A.6 Proof of Proposition 6

We only have to consider the case of ω = B. In this case, qLR is defined by condition (10). Fix
dA, dB, n, λ and q̂, we need to find λN such that

q̂ >
1
2

+
(γ− (2− γ)z(qLR, γ̂)) (λdA − λdB)

2γ (2(1 + λNn) + (λdA + λdB)(1 + z(qLR, γ̂)))
.

Since the right-hand side is decreasing in z(q, γ̂), we obtain a sufficient condition by imposing the
inequality for the lowest value of z(q, γ̂), which is 0. Rearranging yields the following condition:

λN >
dA − q̂(dA + dB)

(2q̂− 1)n
λ− 1

n
.

A.7 Proof of Proposition 7

For this proof, we will use the notation Π(q; e), Nω(q; e), and N−ω(q; e) to explicitly account for
the dependence of Π and these sets on q. We start with the following Lemma 5.

Lemma 5. As q increases, the set Nω(q; e) weakly expands and the set N−ω(q; e) weakly shrinks,
both in the sense of set inclusion.

Proof. Fix any q̂ > 1
2 . Suppose i ∈ Nω(q̂; e). There are two possibilities. If qLR(ei, γ, γ̂) > q̂,

then i’s dogmatic majority must be towards the correct state ω. Increasing q beyond qLR(ei, γ, γ̂)
will lead the agent to learn correctly that the state is ω. Hence, i ∈ Nω(q; e) for all q > q̂. If
qLR(ei, γ, γ̂) < q̂ (for simplicity we omit the knife-edge case of equality), then i is already learning
correctly and increasing q will not change her asymptotic beliefs. Thus, i ∈ Nω(q; e) for all q > q̂.
We conclude that Nω(q; e) does not shrink as q increases.

Now consider j ∈ N−ω(q̂; e). This means that qLR(ei, γ, γ̂) > q̂. Increasing q beyond qLR(ei, γ, γ̂)
will lead j to learn correctly, which means she will leave N−ω(q; e).

�
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Without loss of generality, label the agents so that qLR(ei, γ, γ̂) < qLR(ej, γ, γ̂) if and only if

i < j. Suppose ω = A. Fix any q̂ > 1
2 and consider sets NA(q̂; e) and NB(q̂; e). Let i(q̂) be the

lowest i such that qLR(ei, γ, γ̂) > q̂. As q increases to any q′ that satisfy qLR(ei(q̂), γ, γ̂) < q′ <
qLR(ei(q̂)+1, γ, γ̂), agent i(q̂) will flip from NB(q; e) to NA(q; e). This implies

|NA(q′; e)| = |NA(q̂; e)|+ 1 and |NB(q′; e)| = |NB(q̂; e)| − 1.

Consider the long-run polarization:

Π(q̂; e) =
4
|N | · |NA(q̂; e)||NB(q̂; e)|

Π(q′; e) =
4
|N | · (|NA(q̂; e)|+ 1) (NB(q̂; e)− 1)

Note that Π(q̂; e) ≥ Π(q′; e) if and only if

|NB(q̂)| ≤ |NA(q̂)|+ 1.

Hence, Π(q; e) weakly decreases as q increases if and only if initially (i.e., at q = q̂) the set of
eventually incorrect agents is smaller than the set of eventually correct agents plus one. Since
NB(q; e) weakly shrinks in q, a necessary and sufficient condition for Π(q; e) to be weakly decreasing
in q is that |NB( 1

2 ; e)| = |DB| is weakly smaller than |N | − |DB|+ 1, that is, |DB| ≤ 1
2 (|N |+ 1).

A.8 Proof of Proposition 8

This result builds on Proposition 5, which implies that scaling all friends by the same factor λ
increases the threshold qLR below which incorrect learning occurs (see the proof).

Suppose that a minority of normal agents have an echo-chamber imbalance against ω (i.e.,
|D−ω| ≤ 1

2 (|N |+ 1)). Note that, for any q, the incorrect learners are always a minority, as they

start in the minority for q close to 1
2 and decrease in numbers as q increases. Now fix any q. If the

agents’ thresholds qLR increase, weakly more agents with echo-chamber imbalances against ω will
learn incorrectly. This expands the set of incorrect learners closer towards 50% of society, which
implies an increase in polarization.

Suppose instead that a majority of normal agents have an echo-chamber imbalance against ω
(i.e., |D−ω| > 1

2 (|N |+ 1)). If we start with q large enough so that a minority of agents learn
incorrectly (which is always possible), then increasing the thresholds qLR will cause more agents to
learn incorrectly. This will expand the set of incorrect learners closer towards 50% of society, and,
hence, increase polarization. Eventually, the set of incorrect learners may become the majority. At
that point, further increases in qLR will lead to the set becoming larger and farther from 50% of
society, thereby decreasing polarization. In this case, polarization will be single-peaked.

A.9 Proof of Proposition 9

Consider ω = A—the argument is the same for ω = B. We want to find M such that P(ŝi
M =

1|ω = A) > q̄LR. This ensures by Proposition 3 that all agents in N learn correctly and hence
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Π̂(e) = 0. Now, note that

P(ŝi
M = 0|ω = A) = P

(
M

∑
k=0

I{sik=a} <
M
2
|ω = A

)

=
bM

2 c
∑
k=0

M!
(M− k)!k!

qk(1− q)M−k

≤ exp

−2M

(
q−

⌊M
2

⌋
M

)2
 ,

where the last inequality follows from Hoeffding’s inequality (Hoeffding (1963)). Therefore, our
desired condition holds if

2M

(
q−

⌊M
2

⌋
M

)2

> − ln(1− q̄LR).

Recalling that M is an odd number by assumption (i.e., M = 2m + 1 for m ∈N), we have that

2M

(
q−

⌊M
2

⌋
M

)2

> 2M
(

q− 1
2

)2

.

Therefore, it suffices that

2M
(

q− 1
2

)2

> − ln(1− q̄LR).

B Further Simulations on the Speed of Belief Diver-

gence

This appendix presents additional simulations to those in Section 6.1. We generated the distribu-
tions of belief trajectories using the same procedure and the following parameters:

• γ = 0.95;

• γ̂ = 0.9γ;

• dAlice
A = dBob

B = dM and dAlice
B = dBob

A = dm, where

• Alice∗ and Bob∗ are again identical to Alice and Bob respectively, except that they use γ to
update beliefs;

• q` = 0.7× 0.5 + 0.3× qLR and qh = 0.3× 0.5 + 0.7× qLR.

Figures 6 and 7 represent

• solid blue line: mean of the belief distribution of Alice and Alice∗;

45



Imbalance
Small Large
n = 4 n = 4

Small dm = 4 dm = 1
Size dM = 6 dM = 9

n = 16 n = 16
Large dm = 16 dm = 4

dM = 24 dM = 36

Table 2: Simulation Echo Chamber Composition

• light blue lines: 10% and 90% quantile of the belief distribution of Alice and Alice∗;

• solid red line: mean of the belief distribution of Bob and Bob∗;

• light red lines: 10% and 90% quantile of the belief distribution of Bob and Bob∗.
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(a) Small echo chamber, large imbalance, mis-
perception.

(b) Small echo chamber, large imbalance, no mis-
perception.

(c) Large echo chamber, large imbalance, mis-
perception.

(d) Large echo chamber, large imbalance, no mis-
perception.

(e) Large echo chamber, small imbalance, mis-
perception.

(f) Large echo chamber, small imbalance, no mis-
perception.

(g) Small echo chamber, small imbalance, mis-
perception.

(h) Small echo chamber, small imbalance, no
misperception.

Figure 6: Belief paths for low quality of information (q`)
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(a) Small echo chamber, large imbalance, mis-
perception.

(b) Small echo chamber, large imbalance, no mis-
perception.

(c) Large echo chamber, large imbalance, mis-
perception.

(d) Large echo chamber, large imbalance, no mis-
perception.

(e) Large echo chamber, small imbalance, mis-
perception.

(f) Large echo chamber, small imbalance, no mis-
perception.

(g) Small echo chamber, small imbalance, mis-
perception.

(h) Small echo chamber, small imbalance, no
misperception.

Figure 7: Belief paths for high quality of information (qh)

48



References

Acemoglu, D., G. Como, F. Fagnani, and A. Ozdaglar (2013). Opinion fluctuations and
disagreement in social networks. Mathematics of Operations Research 38(1), 1–27.

Acemoglu, D., A. Ozdaglar, and A. ParadehGheibi (2010). Spread of (Mis)information in
Social Networks. Games and Economic Behavior 70, 194–227.

Acemoglu, D., A. Ozdaglar, and A. ParandehGheibi (2010). Spread of (mis) information in
social networks. Games and Economic Behavior 70(2), 194–227.

Alesina, A., A. Miano, and S. Stantcheva (2020). The Polarization of Reality. In AEA
Papers and Proceedings, Volume 110, pp. 324–28.

Allcott, H., L. Braghieri, S. Eichmeyer, and M. Gentzkow (2020). The welfare effects of
social media. American Economic Review 110(3), 629–76.

Allcott, H. and M. Gentzkow (2017). Social Media and Fake News in the 2016 Election.
Journal of Economic Perspectives 31(2), 211–36.

Andreoni, J. and T. Mylovanov (2012, February). Diverging Opinions. American Economic
Journal: Microeconomics 4(1), 209–32.

Anesi, V. and T. Bowen (2021). Policy Experimentation in Committees: A Case against Veto
Rights under Redistributive Constraints. American Economic Journal: Microeconomics.

Angelucci, C. and A. Prat (2021). Is journalistic truth dead? measuring how informed voters
are about political news. Technical report, mimeo, Columbia University.

Athey, S., M. M. Mobius, and J. Pál (2017). The Impact of Aggregators on Internet News
Consumption.

Austen-Smith, D. and J. S. Banks (1999). Positive Political Theory I: Collective Preference.
University of Michigan Press.

Azzimonti, M. and M. Fernandes (2018, March). Social media networks, fake news, and
polarization. Working Paper 24462, National Bureau of Economic Research.

Ba, C. and A. Gindin (2020). A Multi-Agent Model of Misspecified Learning with Overcon-
fidence. Available at SSRN 3691728.

Baccara, M. and L. Yariv (2013). Homophily in Peer Groups. American Economic Journal:
Microeconomics 5(3), 69–96.

Bakshy, E., S. Messing, and L. A. Adamic (2015). Exposure to Ideologically Diverse News
and Opinion on Facebook. Science 348, 1130–1132.

49



Barber, M. and N. McCarty (2015). Causes and Consequences of Polarization. Political
Negotiation: A Handbook 37, 39–43.
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Online Appendix: Supplementary Material
(For Online Publication Only)

C Other Misspecifications

In this appendix, Section C.1 states and proves Propositions 1, 2, and 3 for the case γ̂ > γ, i.e.,
when agents overestimate selective sharing done by their friends. Sections C.2, C.3, and C.4 state
and prove the formal results about long-run learning under each of misspecifications considered in
Section 7. Together, Sections C.2, C.3, and C.4 imply Proposition 10.

C.1 Propositions 1, 2, and 3 for γ̂ > γ

Proposition (Proposition 1). Fix any agent with a balanced echo chamber and suppose γ̂ > γ.
Then, (

E[µ(s1)]− π
)(

π − 1
2

)
< 0.

Proof sketch. The proof of Proposition 1 can be adopted here for the most part. The difference is
towards the end, where γ̂ > γ implies Γ > Γ̂, which in turn is equivalent to Γy−x > Γ̂y−x. Hence,
dividing the key inequality that determines the sign of ∆xy by ΓxΓ̂y − ΓyΓ̂x makes the subsequent
inequality signs in the proof flip. As a result, we get that the derivative is positive for ρ > 1 (rather
than negative). Intuitively, this implies that moving the prior from 50-50 towards a state will make
the unconditional expected posterior of that state lower than the prior. �

Proposition (Proposition 2). Fix any agent with an unbalanced echo chamber e = (dA, dB, n) and
suppose γ̂ > γ. Then there exists qSR(e, γ, γ̂) > 1

2 such that, if q < qSR(e, γ, γ̂), then(
E[µ(s1)]− π

)
(dA − dB) < 0.

Proof sketch. The proof of Proposition 2 can be adopted here in its entirety, since it does not use
γ̂ < γ until the last few lines. Recall the derivative of E[µ|ω] with respect to q at q = 1

2 from
equation (8):

∂

∂q
E[µ|ω]

∣∣∣∣
q= 1

2

=
4π(1− π)

2− γ̂
(dA − dB)(γ− γ̂).

For dA > dB and γ̂ > γ, the derivative is negative at q = 1
2 , which means that E[µ|ω] is distorted

towards B for low q. �

Proposition (Proposition 3). Fix any agent with an unbalanced echo chamber e = (dA, dB, n), and
suppose γ̂ > γ. There exists qLR(e, γ, γ̂) ∈

( 1
2 , 1
)

such that the following holds:

1. If q < qLR(e, γ, γ̂), then the agent’s belief converges with probability 1 to δB if dA > dB, and
to δA if dB > dA (i.e., µ(s∞) = 1dB>dA ).

2. If q > qLR(e, γ, γ̂), then the agent’s belief converges with probability 1 to δω, where ω is the
true state (i.e., µ(s∞) = 1ω=A.
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Proof sketch. The proof of Proposition 3 can be adopted here for the most part, up until arriving
at the definition of the function τ(q):

τ(q) =
1
2

+
((2− γ)z(q, γ̂)− γ)(dA − dB)

2γ(2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
.

Recall that the agent’s belief converges to δA if and only if H(q; ω) > τ(q), where H(q; ω) equals q
if ω = A, and equals 1− q if ω = B. Also recall that τ(q) is decreasing and concave for q ∈ ( 1

2 , 1),

and τ′( 1
2 ) = 0.

Consider the case ω = B, and hence H(q; ω) = 1− q. Given γ̂ > γ, H(q; ω) < τ(q) holds at
q = 1

2 and hence at all q > 1
2 by the properties of τ(q). If ω = A, on the other hand, we will have

H(q; ω) < τ(q) holding at q = 1
2 and H(q; ω) > τ(q) at q = 1. By the properties of τ(q), there

exists a unique qLR ∈ ( 1
2 , 1) such that plimT→∞ µ(sT) = 0 if q < qLR and plimT→∞ µ(sT) = 1 if

q > qLR. �

C.2 Misspecification (I): Random Selective Sharing

Proposition 12. Fix any agent with echo chamber e = (dA, dB, n), true probabilities of selective
sharing g and f , and perceived probabilities of selective sharing ĝ and f̂ .

• If dA > dB and g − f > ĝ − f̂ , there exists sufficiently small q > 1
2 such that the agent’s

belief converges to δA with probability 1 (i.e., µ(s∞) = 1).

• If dA > dB and g − f < ĝ − f̂ , there exists sufficiently small q > 1
2 such that the agent’s

belief converges to δB with probability 1 (i.e., µ(s∞) = 0).

• In either case, there exists sufficiently large q < 1 such that the agent’s belief converges to δω

with probability 1, where ω is the true state (i.e., µ(s∞) = I{ω=A}).

• If dA = dB, the agent’s belief converges to δω with probability 1, where ω is the true state
(i.e., µ(s∞) = I{ω=A}).

Proof. Adapt the terminology of Proposition 3’s proof as follows. Let ak
j be the number of signals

s = a that have been shared by agent i’s friend j of type k ∈ {A, B, N}. Define bk
j similarly for s = b.

Then, agent i’s posterior that ω = A is

µ(sT) =
π

π + (1− π) ·QM ·
(

(1−γ)+γ(q(1−ĝ)+(1−q)(1− f̂ ))

(1−γ)+γ((1−q)(1−ĝ)+q(1− f̂ ))

)S ,

where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

(aA
j − bA

j )−
dB

∑
j=1

(bB
j − aB

j ),

S =
dB

∑
j=1

(T − aB
j − bB

j )−
dA

∑
j=1

(T − aA
j − bA

j ).
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For p̂ = (ĝ, f̂ ), define the function

z(q, γ, p̂) = ln

(
(1− γ) + γ(q(1− ĝ) + (1− q)(1− f̂ ))

(1− γ) + γ((1− q)(1− ĝ) + q(1− f̂ ))

)
[ln Q]−1 .

Similarly to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only

if plimT→∞
K(x,T;q,γ,p,p̂)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, γ, p, p̂)

T
= γ(1 + νn)(2H(q; ω)− 1)

+ γdA(gH(q; ω)− f (1− H(q; ω)))− γdB(g(1− H(q; ω))− f H(q; ω))

+ dB(1− γ f H(q; ω)− γg(1− H(q; ω))z(q, γ, p̂)

− dA(1− γgH(q; ω)− γ f (1− H(q; ω))z(q, γ, p̂)

= −γ(1 + νn)− γ f dA − γgdB + ((1− γg)dB − (1− γ f )dA) z(q, γ, p̂)

+ γ
(

2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂))

+ f (dA + dB)(1− z(q, γ, p̂))
)

H(q; ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + νn) + γ f (1− z(q, γ, p̂)) dA + γg (1 + z(q, γ, p̂)) dB + (dA − dB)z(q, γ, p̂)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+

((
1− γ

2 ( f + g)
)

z(q, γ, p̂)− γ
2 (g− f )

)
(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
.

Fix state ω = B so that H(q; B) = 1− q. The inequality above takes form

q < (resp. >)
1
2

+

(γ
2 (g− f )−

(
1− γ

2 ( f + g)
)

z(q, γ, p̂)
)

(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
. (12)

This implies that if dA = dB, then plimT→∞ µ(sT) = 0.

It can be shown that

lim
q→1

z(q, γ, p̂) = 0 and lim
q→ 1

2

z(q, γ, p̂) =
γ
2 (ĝ− f̂ )

(1− γ) + γ
2 (2− ĝ− f̂ )

,

which increases in ĝ and decreases in f̂ . Using this limit, condition (12) at q = 1
2 becomes

1
2
< (resp. >)

1
2

+

1
2

(
(g− f )− (ĝ− f̂ )

)
(dA − dB)

2(1 + νn)(1− γ
2 (ĝ + f̂ )) + g(dA + dB)(1− γ(ĝ + f̂ ))

,
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and at q = 1 it becomes

1 < (resp. >)
(g− f )(dA − dB)

(2(1 + νn) + (g + f )(dA + dB))
.

Given dA > dB, the first condition holds with “<” whenever (g− f ) > (ĝ− f̂ ); the second holds
with “>”. By continuity, there exists q′ and q′′ that satisfy 1

2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1
if q < q′, and plimT→∞ µ(sT) = 0 if q > q′′.

Now suppose ω = A so that H(q; A) = q. The key inequality takes form

q > (resp. <)
1
2

+

((
1− γ

2 ( f + g)
)

z(q, γ, p̂)− γ
2 (g− f )

)
(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
. (13)

At q = 1
2 , it takes form

1
2
> (resp. <)

1
2
−

1
2

(
(g− f )− (ĝ− f̂ )

)
(dA − dB)

2(1 + νn)(1− γ
2 (ĝ + f̂ )) + g(dA + dB)(1− γ(ĝ + f̂ ))

and at q = 1, it takes the form

1 > (resp. <)− (g− f )(dA − dB)

2(1 + νn) + ( f + g)(dA + dB)
.

Given (g− f ) < (ĝ− f̂ ), the first condition holds with “<”; the second condition holds with “>”.
By continuity, there exists q′ and q′′ that satisfy 1

2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 0 if q < q′,
and plimT→∞ µ(sT) = 1 if q > q′′.

�

C.3 Misspecification (II): Friends’ Types

Proposition 13. Fix any agent with echo chamber e = (dA, dB, n) and misspecified number of
dogmatic friends d̂A ≤ dA and d̂B ≤ dB.

• If dA − dB > d̂A − d̂B, there exists sufficiently small q > 1
2 such that the agent’s belief

converges to δA with probability 1 (i.e., µ(s∞) = 1).

• If dA − dB < d̂A − d̂B, there exists sufficiently small q > 1
2 such that the agent’s belief

converges to δB with probability 1 (i.e., µ(s∞) = 0).

• In either case, there exists sufficiently large q < 1 such that the agent’s belief converges to δω

with probability 1, where ω is the true state (i.e., µ(s∞) = I{ω=A}).

• If dA − dB = d̂A − d̂B = 0, the agent’s belief converges to δω with probability 1, where ω is
the true state (i.e., µ(s∞) = I{ω=A}).
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Proof. Let the misspecified number of A-dogmatic and B-dogmatic friends be d̂A = dA − n̂A and
d̂B = dB − n̂B. Then agent’s i posterior belief is

µ(sT) =
π

π + (1− π) ·QM ·
(

(1−γ)+γ(1−q)
(1−γ)+γq

)S ,

where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
d̂B

∑
j=1

(T − bB
j )−

d̂A

∑
j=1

(T − aA
j ).

Define the function

z(q, γ) = ln
(

(1− γ) + γ(1− q)

(1− γ) + γq

)
[ln Q]−1.

Similar to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if

plimT→∞
K(x,T;q,γ)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, γ)

T
= γ(1 + n)(2H(q, ω)− 1) + γdAH(q, ω)− γdB(1− H(q, ω))+

+
(

d̂B(1− γ(1− H(q, ω)))− d̂A(1− γH(q, ω))
)

z(q, γ)

= −γ(1 + n)− γdB + d̂B(1− γ)z(q, γ)− d̂Az(q, γ)+

+ γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
)

H(q, ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + n) + γdB + γd̂Bz(q, γ) + (d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) ,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+
−γ

2 (dA − dB) +
(
1− γ

2

)
(d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) .

Note that if d̂A − d̂B = dA − dB = 0, this inequality holds with “>” when ω = A and “<” when
ω = B, implying plimT→∞ µ(sT) = I{ω=A}.

Fix state ω = B so that H(q; B) = 1− q. Then the inequality above takes form

q < (resp. >)
1
2

+
γ(dA − dB)− (2− γ)(d̂A − d̂B)z(q, γ)

2γ(2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ))
. (14)
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It can be shown that

lim
q→1

z(q, γ) = 0 and lim
q→ 1

2

z(q, γ) =
γ

2− γ
.

Using this limit, condition (14) at q = 1
2 becomes

1
2
< (resp. >)

1
2

+
γ
(

(dA − dB)− (d̂A − d̂B)
)

2γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B) γ
2−γ

) ,

and at q = 1 it becomes

1 < (resp. >)
1
2

+
γ(dA − dB)

2γ(2(1 + n) + (dA + dB))
.

The first inequality holds with “<” if and only if d̂A − d̂B < dA − dB; the second holds with “>”.
By continuity, there exists q′ and q′′ that satisfy 1

2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1 if q < q′

and plimT→∞ µ(sT) = 0 if q > q′′.
Now suppose ω = A so that H(q; A) = q. The key inequality takes form

q > (resp. <)
1
2

+
−γ

2 (dA − dB) +
(
1− γ

2

)
(d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) . (15)

At q = 1
2 , it takes form

1
2
> (resp. <)

1
2
−

γ
(

(dA − dB)− (d̂A − d̂B)
)

2γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B) γ
2−γ

) ,

and at q = 1, it takes form

1 > (resp. <)
1
2
− γ(dA − dB)

2γ(2(1 + n) + (dA + dB))
.

The first inequality holds with “<” whenever d̂A − d̂B > dA − dB; the second holds with “>”. By
continuity, there exists q′ and q′′ that satisfy 1

2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 0 if q < q′ and
plimT→∞ µ(sT) = 1 if q > q′′.

�

C.4 Misspecification (III): Information Quality

Proposition 14. Fix any agent with echo chamber e = (dA, dB, n) and any misspecified information
quality q̂ > 1

2 .

• If dA > dB and γ < 1, there exists sufficiently small q ∈
( 1

2 , q̂
)

such that the agent’s belief
converges to δA with probability 1 (i.e., µ(s∞) = 1) and sufficiently large q < 1 such that
the agent’s belief converges to δω with probability 1, where ω is the true state (i.e., µ(s∞) =
I{ω=A}).
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• If either dA = dB or γ = 1, the agent’s belief converges to δω with probability 1, where ω is
the true state (i.e., µ(s∞) = I{ω=A}).

Proof. Fix echo chamber e = (dA, dB, n). Keep notations the same as in the proof of Proposition 3.
After T periods, the agent’s posterior in state A is

µ(sT) =
π

π + (1− π) ·
(

1−q̂
q̂

)M
·
(

γ(1−q̂)+(1−γ)
γq̂+(1−γ)

)S ,

where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j ).

Define the function

z(q̂, γ) = ln
(

(1− γ) + γ(1− q̂)

(1− γ) + γq̂

) [
ln
(

1− q̂
q̂

)]−1

.

Similar to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if

plimT→∞
K(x,T;q,q̂,γ)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, q̂, γ)

T
= −γ(1 + n + (1 + z(q̂, γ))dB)− (dA − dB)z(q̂, γ)+

+ γ(2(1 + n) + (dA + dB)(1 + z(q̂, γ)))H(q; ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + n) + γ(1 + z(q̂, γ))dB + (dA − d− B)z(q̂, γ)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

Note that if dA = dB or γ = 1 (which implies z(q̂, γ) = 1), then the inequality holds with “>”
when ω = A and “<” when ω = B, implying plimT→∞ µ(sT) = I{ω=A}.

Fix state ω = B so that H(q; B) = 1− q. Then the inequality above takes form

q < (resp. >)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

At q = 1
2 , it takes form

1
2
< (resp. >)

1
2

+
(γ− (2− γ)z(q̂, γ))(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,
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and at q = 1, it takes form

1 < (resp. >)
1
2

+
(γ− (2− γ)z(q̂, γ))(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

As shown in the Online Appendix E, z(q̂, γ) is a (weakly) decreasing function that achieves max-
imum at q̂ = 1

2 , with value of γ
2−γ . Thus, γ− (2− γ)z(q̂, γ) > 0 for any q̂ > 1

2 . Given this and
dA > dB, the first inequality above holds with “<”; the second holds with “>”. By continuity, there
exist q′ and q′′ that satisfy 1

2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1 if q < q′ and plimT→∞ µ(sT) = 0
if q > q′′.

Now suppose ω = A so that H(q; A) = q. The key inequality then is

q > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

At q = 1
2 , this inequality takes form

1
2
> (resp. <)

1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,

and at q = 1, it takes form

1 > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

Given (2− γ)z(q̂, γ)− γ < 0 and dA > dB, both inequalities hold with “>”. Therefore, for any
q > 1

2 , plimT→∞ µ(sT) = 1.

�

D A Model of Endogenous Selective Sharing

We consider a simple model in which information is strategically shared to influence the outcome
of a policy-making process. Agents are connected in a fixed network, and learning occurs with
misperception, i.e. γ̂ < γ. We use the model to explore implications for polarization and gridlock.

Time t is discrete, where t = 0, . . . , ∞. A payoff-relevant state of the world ω ∈ {A, B} realizes
at t = 0. A group of normal agents N must make a public policy decision x ∈ {xA, xB} in the long-
run. By “long-run” we simply mean that the decision (and hence payoffs) need not be immediate
and beliefs have sufficient time to converge before the decision is taken.26 An example is whether
to spend on climate mitigation or adaptation: An agent’s preference for this policy may depend on
whether or not she believes the effects of global warming have already begun (see Section 6).

26A one period, single receiver version of the endogenous sharing model presented in this section is closely
related to Jin et al. (2021).
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Payoffs As in the baseline model, normal agent i ∈ N has a set of A-dogmatic friends, B-
dogmatic friends, and normal friends. For notational convenience, we denote these as DAi, DBi
and Ni respectively. Normal agents receive standard quadratic loss utility ui(x) = −(x− y(ω))2

when policy x is implemented, where xA = 1, xB = 0, y(A) = 1, and y(B) = 0. Dogmatic agents
have state-independent preferences; they receive payoff 0 if their preferred policy is implemented
and -1 if their least preferred is implemented.27 A status quo policy x0 exists and all agents receive
ui(x0) = −3/4 if the status quo prevails. With reference to our application, the status quo can be
thought of as doing nothing about climate change.

Policymaking Policy x is decided in the long run by a decisive coalition of normal agents C.
We make standard assumptions on C (Austen-Smith and Banks, 1999): 1) The set of decisive
coalitions is proper, i.e., every pair of decisive coalitions has a nonempty intersection—C1, C2 ∈ C
implies C1 ∩ C2 6= ∅; 2) C is monotonic, i.e., any superset of a decisive coalition is itself decisive—
C1 ∈ C and C1 ⊆ C2 imply C2 ∈ C. These assumptions admit common decision rules such as simple
majority, all super majority rules, unanimity, and decision rules with veto players.

Information As before, in each period t ≥ 1 agent i receives first-hand information about ω
in the form of a private signal sit ∈ {a, b} with probability γ ∈ (0, 1]. With probability 1− γ she
receives no signal, which we denote by sit = 0. Signals are partially informative, with information
quality q as in the baseline model. The events of receiving a signal and its realization are i.i.d. across
agents and time.

Sharing The set of agents in i’s echo chamber is Ei = DAi ∪DBi ∪ Ni. After receiving signal sit,
agent i sends a costless message mjit to all friends j ∈ Ei. Consequently, i also receives message
mijt from all friends j ∈ Ei.

28 Denote the message space as M = {−1, 0, 1}. Message −1 means
that an a signal was shared, message 1 means that a b signal was shared and message 0 means
that no signal was shared. Message mijt is verifiable, so signals cannot be fabricated, only omitted.
Message mijt = 0 can be received from friend j either because j received no signal, or j received
a signal, but decided not to share. Agent i cannot distinguish between these two events. Let mit
be the entire profile of messages that agent i receives in period t, inclusive of her own signal. To
focus on selective sharing of dogmatic agents, we assume that normal agents are not strategic in
signal sharing and share all signals they receive. Dogmatic agents share strategically. As a result
of sharing, all agents receive information about ω from second-hand information shared by other
agents, in addition to their own signal received from original sources.

Learning As in our baseline model, each normal agent assigns prior probability π to the state
of the world being A. The beliefs of dogmatic agents do not affect decision-making given that their
preferences are state-independent so we focus on the beliefs of normal agents. Both dogmatic and
normal agents have the misperception that signals arrive at rate γ̂ < γ and use this in calculating
their own posteriors and posteriors of other agents.

27Preferences for dogmatic agents can also be interpreted as state-dependent with degenerate beliefs.
28As in the baseline model, there is no choice of who receives signals in an agent’s network. This is similar

to posts in Facebook or Twitter.
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After one round of sharing, agent i has posterior belief µi1 that depends on messages mi1 received
in period 1. We drop i and t subscripts in what follows as we are considering a single normal agent
after one round of sharing. From equation (2) in the main text, agent i’s posterior belief is:

µ(m) =
π

π + (1− π)QMΓ̂S
,

where Q and Γ̂ are as before. Adapting notation to strategic messages, we have

M ≡ − ∑
j∈E∪i

mj, and S ≡
(

dB − ∑
j∈DB

|mj|
)
−
(

dA − ∑
j∈DA

|mj|
)

.

Timing Each period messages are received, sharing occurs and beliefs are updated. We assume
normal agents vote once and at the end of a sufficiently long horizon of learning such that only
their long-run beliefs matter for sharing strategies. Payoffs occur after voting by normal agents.

Strategies and Equilibrium A sharing (message) strategy for dogmatic agent j is σj :
{a, 0, b} → {−1, 0, 1} and a profile of messages of all dogmatic agents in society is σ. For simplic-
ity we focus on symmetric strategies such that all A dogmatic agents use the same sharing strat-
egy. Similarly, all B dogmatic agents use the same strategies. These strategies condition on the set
of echo chambers in the network e. Strategies may also condition on beliefs of normal agents, how-
ever, we consider long-run outcomes for which limit beliefs are entirely determined by the structure
of the echo chamber, quality of information and misperception. Assume that normal agent i votes
sincerely in the sense that if µi(s∞) = 0, then agent i votes for xB, and if µi(s∞) = 1, then agent i
votes for xA. We consider Symmetric Bayes’ Perfect Equilibrium, such that dogmatic agents’ shar-
ing strategies each period are best responses, and beliefs obey Bayes’ rule when possible, with re-
spect to agents’ misspecified model. We refer to this as an equilibrium.

Proposition 15 (Equilibrium). A-dogmatic agents share only if an a signal is received, and B-
dogmatic agents share only if a b signal is received.

Proof. Consider an A-dogmatic agent—the argument is similar for B-dogmatic agents. Sincere
voting by normal agents implies that an A-dogmatic agent wishes to convince as many normal
agents as possible that the state is A. Recall that the A-dogmatic agent prefers the status quo to xB
so there is never an incentive to convince agents to vote for B. Given this, suppose this A-dogmatic
agent receives a b signal. In this case, it is weakly dominant for him to share message m = 0, that
is, to stay silent. Given any sharing strategy of the other dogmatic agents, sharing m = 0 rather
than m = b either does not change the long-run beliefs of the receiving normal agents, or changes
it from believing that the state is B to believing that the state is A, because m = 0 suppresses
evidence in favor of ω = B. This leads to weakly more agents voting for A, and weakly less voting
for B. This may change nothing in the outcome or transition it from policy B to status quo, or
from status quo to policy A, both of which the agent prefers. Suppose instead that the A-dogmatic
agent receives an a signal. In this case, it is weakly dominant to share message m = a rather than
m = 0. Given all others’ sharing strategies, sharing m = a (weakly) increases the chances that in
the long run the receiving agents believe that the state is A rather than B. Similarly, this will lead
to the outcome changes that the agent prefers.

�
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D.1 Polarization and Gridlock

As in the main model, for each agent i there exists an information quality threshold qLRi(ei, γ, γ̂)
such that agent i learns correctly in the long run. Denote ∆i = sign(dAi − dBi)qLRi. Note that by
this definition, ∆i /∈ (−1/2, 1/2) for any i because q > 1/2. Then

i ∈


NB if ∆i < −q,
Nω if − q < ∆i < q,
NA if ∆i > q,

where Nω is the set of normal agents whose long-run belief puts probability 1 on state ω.

Pivotal Agents Order normal agents such that i < j if ∆i ≤ ∆j. Following Anesi and Bowen
(2021), we identify two key members of the society called the A- and B- pivots.

Definition 1 (Anesi and Bowen (2021)). Agent i ∈ N is a pivot for decisive coalition C if {j ∈
N : ∆j < ∆i} /∈ C and {j ∈ N : ∆j > ∆i} /∈ C. The set of pivots for C is denoted P(C), and we refer
to A ≡ min P(C) and B ≡ max P(C) as the A- and B- pivots, respectively.

Observe that A ≤ B, and coalitions {1, . . . ,B} and {A, . . . , n} must be decisive. So A is pivotal
for implementing policy xA and B is pivotal for implementing policy xB. This leads to the following
immediate result that relates the quality of information q to the implemented policy.

Proposition 16 (Gridlock). Suppose the state is B, then

x =


xB if ∆B < q
xA if ∆A > q
x0 if ∆A < q < ∆B

Suppose the state is A, then

x =


xB if ∆B < −q
xA if ∆A > −q
x0 if ∆A < −q < ∆B

Thus, gridlock (i.e., x = x0) occurs if ∆A < q < ∆B and ω = B, or if ∆A < −q < ∆B and ω = A.

In the result below, we consider the reasonable case of A < |N |/2 and B > |N |/2, i.e., more
than half the population of normal agents is to the right of the A-pivot and more than half the
population is to the left of the B-pivot. Note that this holds for most decision rules commonly used
in policy making, such as super majority rules (including a filibuster rule), presidential veto, or
veto rules such as what is used in the UN. The cases of simple-majority and dictatorship are ruled
out, because these imply A = B. In these cases, gridlock never happens by Proposition 16.

Proposition 17 (Polarization and Gridlock). Fix a society of N normal agents and their echo
chambers. Suppose A < |N |/2 and B > |N |/2. There exist a threshold Π such that below Π
gridlock does not occur, but above Π gridlock occurs.
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Proof. Recall that Π ∈ [0, 1] according to our definition, where Π = 1 if |NA| = |NB| and Π = 0
if |NA| ∈ {0, |N |}.

Fix any state ω and suppose that there is no polarization (i.e., Π = 0), then clearly gridlock
does not occur. More formally, if |Nω| = |N |, it means that all normal agents correctly learn that
the state is ω and implement the policy xω. This implies that ∆A > −q if ω = A and ∆B < q if
ω = B. If |Nω| = 0, it means that all normal agents incorrectly learn that the state is −ω and
implement the policy x−ω. This implies that ∆A > q if ω = B and ∆B < −q if ω = A. Either
way, gridlock does not happen.

Fix any state ω and suppose that Π = 1, then gridlock does occur. Indeed, if ω = A, we
must have |NB| = |N |/2 agents with ∆i < −q and |NA| = |N |/2 agents with ∆i > −q. Since
we ordered the normal agents by their ∆i and we assumed A < |N |/2 and B > |N |/2, we must
have that ∆A < −q < ∆B, which implies gridlock. If instead ω = B, we must have |NB| = |N |/2
agents with ∆i < q and |NA| = |N |/2 agents with ∆i > q. For the same reasons as before, we
must have that ∆A < q < ∆B, which implies gridlock.

Given this, we only need to show that (i) if gridlock occurs at polarization level Π < 1, it will
also happen at any Π′ > Π, and (ii) if gridlock does not occur at polarization level Π > 0, it
will also not happen at any Π′ < Π. We prove (i) first. Suppose ω = A, polarization is Π < 1,
and ∆A < −q < ∆B, which means that the A-pivot is in NB and the B-pivot is in NA. Suppose
|NA| > |NB| > 0. Since Π′ > Π requires |NA| > |N ′A| ≥ |N ′B| > |NB|, we must have NB ⊂ N ′B, so
we still have that the A-pivot is in N ′B. For the B-pivot to be in N ′B, we would need |N ′B| > |NA|,
which would imply Π′ < Π in contrast to our assumption that Π′ > Π. Therefore, we still have
the B-pivot is in N ′A, so we still have gridlock. The other cases follow similarly.

We now prove (ii). Suppose ω = A, polarization is Π > 0, and either ∆A > −q or ∆B < −q,
which means that the A-pivot is in NA or the B-pivot is in NB. If the A-pivot is in NA, it means
that |NA| > |N |/2 > |NB|. Then, for Π′ < Π we must have either |N ′A| > |NA| (in which case
the A-pivot is in N ′A) or |N ′B| > |NA| (in which case the B-pivot is in N ′B). Either way, there is
no gridlock. The case in which we start with the B-pivot is in NB works similarly. The other cases
follow similarly. �

This last result implies that if polarization is non-monotonic in information quality q (as we
point out in the paper), then gridlock also depends on q in a non-monotonic way: Gridlock may
not occur for low and high q, but it may occur for intermediate q.

E Properties of τ(q)

We will prove that τ(q) in condition (9) is concave for q ∈
( 1

2 , 1
)

and that τ′
( 1

2

)
= 0. Recall that

we assume dA > dB. We can write

τ(q) =
1 + n + (1 + z(q, γ̂))dB + z(q,γ̂)

γ (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
=

A + Bz(q, γ̂)

C + Dz(q, γ̂)
=

B
D

+
AD− BC

D(C + Dz(q, γ̂))
,

where

A = 1 + n + dB, B = dB +
dA − dB

γ̂
, C = 2 + 2n + dA + dB, D = dA + dB.
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Also, we have that

AD− BC = −
(

dA + dB

γ̂
+

(2− γ̂)(1 + n)

γ̂

)
(dA − dB) ,

which is strictly negative. Therefore, τ(q) is concave if and only if g(q) is convex, where

g(q) =
1

C + Dz(q, γ̂)
.

We will prove this in steps.

Lemma 6. zq(q, γ̂) ≤ 0 for q ∈
( 1

2 , 1
)

and limq→ 1
2

zq(q, γ̂) = 0.

Proof. Consider the derivative of z(q, γ̂) with respect to q:

∂

∂q

ln
(

γ̂(1−q)+(1−γ̂)
γ̂q+(1−γ̂)

)
ln
(

1−q
q

) =
− γ̂(2−γ̂)

γ̂2q(1−q)+(1−γ̂)
· ln
(

1−q
q

)
+ ln

(
γ̂(1−q)+(1−γ̂)

γ̂q+(1−γ̂)

)
· 1

q(1−q)

ln2
(

1−q
q

)
=
− γ̂(2−γ̂)

γ̂2q(1−q)+(1−γ̂)
· ln
(

1−q
q

)
+ ln

(
1−q

q

)
· z(q,γ̂)

q(1−q)

ln2
(

1−q
q

)
=

(
1−γ̂

q(1−q)
+ γ̂2

)
z(q, γ̂)− (2− γ̂)γ̂

ln
(

1−q
q

)
· (γ̂2q(1− q) + (1− γ̂))

.

(16)

Note that limq→ 1
2

z (q, γ̂) = γ̂
2−γ̂ > 0 = z(1, γ̂). This immediately implies that limq→ 1

2
zq(q, γ̂) = 0.

As z(q, γ̂) is continuously differentiable for q ∈
( 1

2 , 1
)
, it is enough to prove that there are

no local maximum on
( 1

2 , 1
)

in order to show that zq(q, γ̂) ≤ 0 holds on this interval. At an
intermediate local maximum, zq(q, γ̂) = 0 must hold. This requires that(

1− γ̂

q(1− q)
+ γ̂2

)
z(q, γ̂)− (2− γ̂)γ̂ = 0

and hence

z(q, γ̂) =
γ̂(2− γ̂)

γ̂2 + 1−γ̂
q(1−q)

(17)

≤ γ̂(2− γ̂)

γ̂2 + 1−γ̂
1
4

=
γ̂

2− γ̂
.

This rules out that z(q, γ̂) is increasing at q = 1
2 , since it would need to achieve a local maximum

with value above γ̂
2−γ̂ . Now note that the right-hand side of (17) is strictly decreasing in q over( 1

2 , 1
)
. If z(q, γ̂) was to decrease at first (as q rises from 1

2) and then increase before going down to 0,
the value of z(q, γ̂) at the corresponding local maximum would be necessarily above the right-hand
side of (17), which is a contradiction. One final case is that z(q, γ̂) is decreasing at first, passing
through a local minimum, and then is increasing until q = 1. This would mean that the value at
the local minimum is less than z(1, γ̂), which is equal to 0. Since z(q, γ̂) > 0 for q ∈ ( 1

2 , 1) and

γ̂ ∈ (0, 1), this case is also impossible. We conclude that z(q, γ̂) is weakly decreasing over
( 1

2 , 1
)
. �
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This implies that limq→ 1
1

g′ (q) = 0 because

g′(q) = −
Dzq(q, γ̂)

(C + Dz(q, γ̂))2 .

Lemma 7. g(q) is convex.

Proof. Since

g′′(q) =
2D2 (zq(q, γ̂)

)2 − D(C + Dz(q, γ̂))zqq(q, γ̂)

(C + Dz(q, γ̂))3 ,

the result follows if we can prove that zqq(q, γ̂) < 0 for all q ∈
( 1

2 , 1
)
.

Using (16) and letting K(q) = 1[
ln
(

1−q
q

)]2
(γ̂2q(1−q)+(1−γ̂))

2
, we have

zqq(q, γ̂) = K(q)

[(
− (1−γ̂)(1−2q)

q2(1−q)2 +
(

1−γ̂
q(1−q)

+ γ̂2
)

zq(q, γ̂)
)

ln
(

1−q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
−
((

1−γ̂
q(1−q)

+ γ̂2
)

z(q, γ̂)− γ̂(2− γ̂)
) (

−1
q(1−q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(1− 2q)

)]

= K(q)

[(
(1−γ̂)(2q−1)

q2(1−q)2 +
(

1−γ̂
q(1−q)

+ γ̂2
)

zq(q, γ̂)
)

ln
(

1−q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
+

+
((

1−γ̂
q(1−q)

+ γ̂2
)

z(q, γ̂)− γ̂(2− γ̂)
) (

1
q(1−q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(2q− 1)

)]
.

Let

C1(q) =
(1− γ̂)(2q− 1)

q2(1− q)2 +

(
1− γ̂

q(1− q)
+ γ̂2

)
zq(q, γ̂),

C2(q) =

(
1− γ̂

q(1− q)
+ γ̂2

)
z(q, γ̂)− γ̂(2− γ̂),

C3(q) =
1

q(1− q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1− q

q

)
γ̂2(2q− 1).

Then we can write

zqq(q, γ̂) = K(q)

[
C1(q) ln

(
1− q

q

) (
γ̂2q(1− q) + (1− γ̂)

)
+ C2(q)C3(q)

]
Using the expression of zq(q, γ̂), we can write C1(q) as

C1(q) =
(1− γ̂)(2q− 1)

q2(1− q)2 +
γ̂2q(1− q) + (1− γ̂)

q(1− q)
·

(
1−γ̂

q(1−q)
+ γ̂2

)
z(q, γ̂)− γ̂(2− γ̂)

ln
(

1−q
q

)
(γ̂2q(1− q) + (1− γ̂))

=
(1− γ̂)(2q− 1) ln

(
q

1−q

)
+ γ̂(2− γ̂)q(1− q)−

(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

q2(1− q)2 ln
(

q
1−q

)
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and therefore

C1(q) ln
(

1− q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
= −

(
γ̂2q(1− q) + (1− γ̂)

)
·

·
(1− γ̂)(2q− 1) ln

(
q

1−q

)
+ γ̂(2− γ̂)q(1− q)−

(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

q2(1− q)2

Using

C2(q)C3(q) =
(γ̂2q(1−q)+(1−γ̂))z(q,γ̂)·

[
(γ̂2q(1−q)+(1−γ̂))+ln

(
1−q

q

)
γ̂2(2q−1)q(1−q)

]
q2(1−q)2

−γ̂(2− γ̂)
(γ̂2q(1−q)+(1−γ̂))q(1−q)+ln

(
1−q

q

)
γ̂2(2q−1)q2(1−q)2

q2(1−q)2 ,

we can write

zqq(q, γ̂)q2(1− q)2

K(q)
=
(

2
(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(2q− 1)(1− q)

)
·

·
(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

+
(
γ̂2q(1− q) + (1− γ̂)

) [
(1− γ̂)(2q− 1) ln

(
1−q

q

)
− 2γ̂(2− γ̂)q(1− q)

]
+ ln

(
q

1−q

)
γ̂3(2− γ̂)(2q− 1)q2(1− q)2

= 2
(
γ̂2q(1− q) + (1− γ̂)

)2 z(q, γ̂) + ln
(

q
1−q

)
γ̂3(2− γ̂)(2q− 1)q2(1− q)2

−
(
γ̂2q(1− q) + (1− γ̂)

)
ln
(

q
1−q

)
(2q− 1)

[
γ̂2(1− q)z(q, γ̂) + (1− z(q, γ̂))

]
−2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)(2− z(q, γ̂))q(1− q).

Let

D1(q) = 2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))q(1− q)

and

D2(q) = z(q, γ̂)3(2− z(q, γ̂))q2(1− q)2

−
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)2(1− q)z(q, γ̂)

Then we have

zqq(q, z(q, γ̂))q2(1− q)2

K(q)
=
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
D1(q) + ln

(
q

1− q

)
(2q− 1)D2(q).

(18)
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Note that

D1(q) ≤ 2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

) z(q,γ̂)
2−z(q,γ̂)

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))q(1− q)

= 1
2−z(q,γ̂)

[
2z(q, γ̂)3q(1− q) + 2z(q, γ̂)(1− z(q, γ̂))

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))(2− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))2q(1− q)

]
=

1− z(q, γ̂)

2− z(q, γ̂)
E(q),

where E(q) = 2z(q, γ̂)(1− 4q(1− q))− ln
(

q
1−q

)
(2q− 1)(2− z(q, γ̂)). Differentiating this expres-

sion with respect to q, we get

E′(q) = 2z(q, γ̂) · 4(2q− 1)− 1
q(1− q)

(2q− 1)(2− z(q, γ̂))− 2 ln
(

q
1− q

)
(2− z(q, γ̂))

= (2q− 1)

(
4z(q, γ̂)− 2− z(q, γ̂)

q(1− q)

)
− 2 ln

(
q

1− q

)
(2− z(q, γ̂))

< (2q− 1) (4z(q, γ̂)− 4(2− z(q, γ̂)))− 2 ln
(

q
1− q

)
(2− z(q, γ̂)) < 0

for q ∈
( 1

2 , 1
)
. Therefore, E(q) < E

( 1
2

)
for any q ∈

( 1
2 , 1
)
, where

E
(

1
2

)
= 2z(q, γ̂)

(
1− 4 · 1

4

)
− ln(1)

(
2 · 1

2
− 1
)

(2− z(q, γ̂)) = 0.

Therefore, we can conclude that D1(q) < 0 for q ∈
( 1

2 , 1
)
.

Returning to D2(q), note that

D2(q) = z(q, γ̂)2(1− q)
[
z(q, γ̂)(2− z(q, γ̂))q2(1− q)−

(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

]
< z(q, γ̂)2(1− q)

[
z(q, γ̂)(2− z(q, γ̂))q(1− q)−

(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

]
The expression in the brackets is the negative of the numerator in zq(q, z(q, γ̂)). Given that

zq(q, z(q, γ̂)) is negative and its expression includes ln
(

1−q
q

)
, it follows that the numerator has to

be positive. This implies that the expression above is negative, and therefore, D2(q) must be neg-
ative as well.

Using D1(q) < 0 and D2(q) < 0 for q ∈
( 1

2 , 1
)

and (18), we can conclude that zqq(q, z(q, γ̂)) < 0
for q ∈

( 1
2 , 1
)
.
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