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1 Introduction

The work-from-home (WFH) revolution has been slowly brewing for more than 30
years. Distinct technological advances have contributed to our ability to work ef-
fectively at home. In the early 1990s, affordable PCs running Microsoft Word and
Excel became widely available. In the mid 1990s, we embraced email as a useful way
to communicate and the Netscape IPO led a rush to explore the possibilities of the
World Wide Web. In the early 2000s, high-speed internet became widely available
and by 2010 cellphones turned to smartphones. Finally, between 2010 and 2020 video
conferencing technology became useable and cloud-computing became cheap and con-
venient, facilitating remote meetings and data sharing across the world.

A common theme of these technological innovations is that their impact on pro-
ductivity depends, at least in part, on the prevalence of adoption. There is no point to
writing an email if no one reads it, video conferencing is very difficult if the person on
the receiving end has slow internet, and so forth. While many WFH technologies have
been around for a while, the technologies became much more useful after widespread
adoption.

We postulate that the COVID pandemic accelerated the widespread adoption of
technologies that enabled households to work from home, which, in turn, permanently
raised the productivity of working from home relative to working at the office. We
investigate this change in relative productivity on incomes, where and how we work,
where we live, and the demand and price of office space and housing. To do so, we
specify a model where high-skill workers can freely allocate their time to working
from home or in the office. The model details the key tradeoffs to working from home:
There is no commute, saving time, but productivity of working from home may be
lower than at the office. High-skill workers also choose how much physical space to
rent at home and in the office. All workers choose where to live, how much to consume,
and how much housing to rent.

A key parameter in the model is the elasticity of substitution (EOS) between mar-
ket work created at home and market work created in the office. With a high EOS,
small changes in technology can lead to a large shift in behavior. For example, con-
sider a world in which working from home and at the office are perfect substitutes in
production. This can lead to “bang-bang” behavior, where little time is spent working
at home up to a certain level of WFH technology, after which a lot of time is spent
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working at home. Conversely, if working at the office and at home are not perfect sub-
stitutes, once the pandemic subsides workers will continue to work some in the office
and some at home, rather than choose a corner solution. Thus, our understanding of
how changes to WFH technology will affect outcomes is intimately related to the EOS
in production between work done at home and work in the office.

The first-order conditions of the model yield an exact relationship between time
spent commuting, the share of time households spend working at home as compared
to at the office, and the EOS between working at home and at the office. The intuition
for this relationship is simple: As commuting time rises, workers spend more time
working at home at a rate that depends on the EOS. We use this relationship to esti-
mate the EOS from a cross-section of data on high-skill workers from the 2017-2018
Leave and Job Flexibility (LJF) module of the American Time Use Survey (ATUS)
which includes information on the frequency of working from home. We use a GMM
procedure to correct for measurement error in reported commuting times.

We find that working from home and at the office are not perfect substitutes in pro-
duction. We consider a variety of identifying assumptions in estimation and bracket
our estimate of the EOS between 3 and 7, with our preferred estimate equal to 5. We
do not find any evidence that working from home and at the office are perfect substi-
tutes. In fact, data from prior to the pandemic suggests this cannot be the case: Prior
to the pandemic, people that worked from home rarely did so on a full-time basis.
Since working from home and at the office are not perfect substitutes implying some
commuting to the office will occur once the pandemic ends, workers and firms should
not move en masse to remote areas with low taxes and a low cost of living. Rather,
we expect, and our model predicts, that many workers will move farther out in their
current metro area, to places with longer (but feasible) commutes and lower housing
costs.

We simulate the model to understand the impact of the pandemic on WFH technol-
ogy and its implications. We first study a “before” period, call it 2019, where high-skill
workers work at home 10 percent of the time. Given the model structure, this pins
down the level of WFH technology prior to the onset of the pandemic. We then study
an “after” period, call it 2022, where high-skill workers spend 30 percent of their time
spent working at home. This tripling in time spent working from home is consistent
with survey evidence reported in Barrero, Bloom, and Davis (2020) and Mortensen
and Wetterling (2020) on worker and firm expectations about time spent working
from home once the COVID-19 pandemic ends. The assumed pre- to post-pandemic
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change in hours worked at home allows us to size the gain in WFH productivity that
occurred during the pandemic. Finally, we study the pandemic period itself, a period
in which we assume productivity at the office falls by 50 percent, reflecting the impact
of social distancing.

The model suggests the widespread adoption of WFH technology increased the
productivity of working from home relative to the productivity of working in the office
by 46 percent between the onset and the end of the pandemic. This change in rela-
tive productivity leads to an approximately 15 percent decline in office rents in the
central business district (CBD) if the supply of office space is constrained to not fall
below pre-pandemic levels. Residential rents rise in the short run, especially in the
outer suburbs, due to increased demand for home office space. Hours worked at home
increase even more in the long run after the supply of space in residential areas has
a chance to adjust. Since only high-skill workers can work at home in our model, the
large improvement in WFH technology widens income inequality. Finally, the model
forecasts a small decline in productivity in work at the office due to a decrease in
agglomeration economies.

We also simulate outcomes if the COVID pandemic had occurred in 1990, prior
to the existence of many WFH technologies. We assume that in 1989, relative home
productivity is 1/3 its 2019 value and that it does not change after the onset of the
pandemic in 1990. As with the 2020 pandemic, we characterize the 1990 pandemic
by a 50 percent drop in relative productivity in working at the office. During this
hypothetical 1990 pandemic, people continue to work at the office at the same rate
and do not substitute into working at home. Incomes and prices fall, but there is no
increased demand to work from home in the suburbs. According to this calibration of
the model, in 1990 working at home is not a practical alternative to working in the
office.

As this 1990 counterfactual simulation indicates, the long-term effects of COVID
depend critically on WFH technology being available but not yet fully adopted. Over-
all, our model suggests the COVID pandemic will lead to higher lifetime income for
the working population because it forced many households to work at home which
raised WFH productivity. While the measured gains to productivity we report of
working at home likely would have happened eventually, the pandemic accelerated
the process.
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Related Literature

Our paper relates to five distinct literatures. The first is how technological innova-
tions get adopted and diffuse. Comin and Mestieri (2014) discuss the diffusion process
in detail and several drivers of the pace of technological adoption. We postulate that
COVID radically accelerated the use of WFH technology due to a large positive exter-
nality in adoption. Katz and Shapiro (1986) and Brock and Durlauf (2010) theoreti-
cally study technology adoption in the presence of network externalities. A positive
externality in technology adoption in WFH technology is consistent with what Foster
and Rosenzweig (2010) posit for health innovations.

The second literature we speak to is the effect of technological adoption on house-
hold lifestyles. Greenwood, Seshadri, and Yorukoglu (2005) argue that the consumer
durable goods revolution, arising from the invention and diffusion of electricity, liber-
ated women from the more menial tasks associated with home production. A related
literature discusses how this home-production technology influences the use of time
spent working at the office and working on home production over the business cycle;
see, for example, McGrattan, Rogerson, and Wright (1997).

A more recent literature directly studies WFH. Bloom, Liang, Roberts, and Ying
(2014) and Emanuel and Harrington (2020) find that call “center” workers are more
productive when working from home. We study a broader class of workers whose
work is less routine on average such that working from home may be less productive.
Our focus, however, is on the substitutability between working at home and office
work. Understanding this substitutability is important for understanding the long-
term implications of changes to WFH technology. While Gaspar and Glaeser (1998)
present suggestive evidence that the telephone is a complement to face-to-face inter-
action, rather than a substitute, our estimates use more recent technologies and sug-
gest WFH is an imperfect substitute for face-to-face. Our findings also demonstrate
how the COVID shock could make us permanently more productive in aggregate. In-
stead of studying the productivity of WFH, Mas and Pallais (2017) study how workers
value it and find that prospective call “center” employees are willing to take an 8%
cut in pay to work from home. This finding suggests welfare benefits from the WFH
technology boon beyond higher consumption.

Our paper also relates to a more recent literature investigating the long-term ef-
fects of the COVID crisis on work and cities. Bick, Blandin, and Mertens (2021)
document increased WFH during the pandemic and present a model of work in which
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working from home and at the office are perfect substitutes. Consistent with our
findings, they argue that there was increased adoption of working from home during
the pandemic but do not specify the technological process nor does their model have
implications for rents.

One of the predictions of our model is that the improvement in WFH productivity
arising from both changes to technology as well as mass adoption will lead to a further
widening of income inequality. This occurs because the WFH technology is only avail-
able to high-skill workers in our model so any improvement to that technology directly
affects the productivity and wages of only high-skill workers. Our assumption, while
stark, is consistent with the evidence shown in Figure 1 of Dingel and Neiman (2020),
that demonstrates that the share of jobs that can be done at home, on average, rises
with median hourly wages. Our assumption is also consistent with evidence from
Krussel, Ohanian, Rios-Rull, and Violante (2000) that rising income inequality since
the 1970s is largely attributable to technological innovation that benefits high-skill
workers. Violante (2008) summarizes the evidence on skill-biased technical change.
Finally, our paper is related to Beaudry, Doms, and Lewis (2010) who study the impli-
cations on wages and income inequality of the endogenous adoption of a skill-biased
invention, the personal computer, within a model of urban economics.

The two papers that are most closely related to ours are Delventhal, Kwon, and
Parkhomenko (2020) and Delventhal and Parkhomenko (2021). Delventhal, Kwon,
and Parkhomenko (2020) and Delventhal and Parkhomenko (2021) model the geog-
raphy of a city and firm and worker location choices in considerable detail, but take
as exogenously pre-determined changes in WFH behavior. We consider a simpler
structure of a city, in the spirit of Favilukis and Van Nieuwerburgh (2021), but al-
low high-skill workers to optimally allocate their time between working at the office
and at home. In addition to modeling the driving engine of the increase in WFH,
our estimation of the EOS allows us to infer the relative change in WFH produc-
tivity required to generate an expected tripling of time worked from home once the
pandemic subsides. Delventhal, Kwon, and Parkhomenko (2020) and Delventhal and
Parkhomenko (2021) assume that working from home and at the office are perfect
substitutes in production.

Finally, our work relates to how cities respond to shocks in the short run and
the long run. Ouazad (forthcoming) surveys this literature. Our model predicts the
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trend towards suburbanization that Ouazad (forthcoming) finds will continue.1 The
evidence suggests that natural disasters tend to have only transitory effects on city
structure (Davis and Weinstein, 2002; Ouazad, forthcoming) but that factors that
influence productive capacity, such as transportation, tend to have permanent effects
(Bleakley and Lin, 2012; Brooks and Lutz, 2019). Our model predicts that the COVID-
induced shock to productivity at the office will have long lasting effects on city struc-
ture.

We present our model in the next section. Section 3 describes how we estimate the
elasticity of substitution of working at home and working at the office and calibrate
the other parameters of the model. In section 4 we run counterfactual experiments
of the model, showing how changes to WFH technology affect the allocation of time of
high-skill, incomes of high- and low-skill workers, and rents. Section 5 concludes.

2 Model

A measure 1 of households live in a metropolitan area that we call a city. A fraction π

of workers are high skill and 1 − π are low skill. Low-skill workers differ from high-
skill workers in along a number of dimensions. The most important difference is that
high-skill workers are assumed to optimally allocate their time between working at
the office and working at home, but low-skill workers only work at the office. This
difference is extreme but it highlights the fact that working from home is much more
common among college-educated workers.2 Unless otherwise specified, variables and
parameters specific to high-skill workers have a superscript of 1 and variables and
parameters specific to low-skill workers have a superscript of 0.

2.1 Low-Skill Workers

All low-skill workers work for firms operating in the CBD. Low-skill workers choose
where to live and how much labor to supply. Firms pay w0 per unit of low-skill labor
that is supplied, so low-skill workers living in location n working bn hours in the CBD

1Brueckner, Kahn, and Lin (2021), Gupta, Mittal, Peeters, and Van Nieuwerburgh (2021), Haslag
and Weagley (2021), and Liu and Su (2021) and also document an increased tendency toward subur-
banization.

2See, for example, Arbogast, Gascon, and Spewak (2019), Dingel and Neiman (2020), Mas and
Pallais (2020), and Papanikolaou and Schmidt (2020).
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earn annual income of w0bn.

Households receive utility from consumption, housing, leisure, and location-specific
amenities. Denote these variables for low-skill workers living in location n as n as c0

n,
h0
n, `0

n, and χ0
n, respectively. The utility of a low-skilled worker living in n is

ν0
[
logχ0

n +
(
1− α0

)
log c0

n + α0 log h0
n + ψ0 log `0

n

]
.

Non-housing consumption is equal to labor income less housing expenditures, c0
n =

w0bn− rnh0
n, where rn is the rental price of one unit of housing at location n. Leisure is

equal to time not spent commuting or working in the CBD, `0
n = 1− (1+ t0n)bn, where t0n

is the commuting time required for each unit of work in the CBD for low-skill workers.
We discuss ν0 later; for now it can be ignored. α0 captures the benefit of more housing
relative to non-housing consumption and ψ0 captures the benefit of more leisure.

The optimal quantities of housing and time spent working in the CBD solve

max
h0n,bn

ν0
[
logχ0

n +
(
1− α0

)
log
(
w0bn − rnh0

n

)
+ α0 log h0

n + ψ0 log
(
1− (1 + t0n)bn

)]
.

The first-order conditions are

bn =

(
1

1 + t0n

)(
1

1 + ψ0

)
h0
n = α0w0bn/rn

implying c0
n = (1− α0)w0bn. Optimized utility for low-skill workers living in location

n is thus

u0
n = ν0

[
logχ0

n − log(1 + t0n) − α0 log rn + ζ0
]

where ζ0 is a constant that depends on α0, ψ0, and w0. Utility is therefore increasing
in amenities χ0, decreasing in commute times t0n, and decreasing in rental prices rn.

We allow low-skill workers to vary in their preferences for living in location n. For
a particular low-skill worker i, the utility of living in n is

u0
ni = u0

n + eni.

eni is assumed to vary across households i and locations n. Since eni is additive, it does
not affect any decisions conditional on residing in location n. We assume that eni is
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drawn from the Type 1 Extreme Value distribution.

Household i chooses its optimal location of residence n∗i to satisfy

n∗i = arg max
n=1,...,N

{
u0
ni

}
where N is the number of locations in the city where the agent can live. Define the
variable U0, proportional to expected utility for low-skill workers, as

U0 = log
N∑
n=1

eu
0
n .

Due to the properties of the Type 1 Extreme Value distribution, the probability low-
skill worker i lives in specific location n′ is

f 0
n′ = eu

0
n′/eU

0

and log relative probabilities over location choice between locations n′ and n has the
simple expression

log
(
f 0
n′/f

0
n

)
= u0

n′ − u0
n

= ν0

[
log
(
χ0
n′/χ

0
n

)
− log

(
1 + t0n′

1 + t0n

)
− α0 log (rn′/rn)

]
.

The population of low-skill workers is decreasing in commuting costs, decreasing in
rental prices, and increasing in amenities. The parameter ν0 pins down the respon-
siveness of the low-skill population with respect to differences in amenities or com-
muting costs and, given this, α0 pins down the responsiveness of the population with
respect to rental prices.

2.2 High-Skill Workers

High-skill workers can work from home or in the office which is located in the CBD.
The total amount of effective labor that a high-skill worker living in location n sup-
plies to a firm, yn, is a CES aggregate of effective labor while working from home, yhn,
and effective labor while working at the office, ybn, specifically

yn =
[(
ybn
)ρ

+
(
yhn
)ρ]1/ρ

.(1)
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ρ ≤ 1 determines the elasticity of substitution of effective labor at home and at the
office in creating units of total effective labor. Firms pay w1 per unit of total effective
high-skill labor and total income to high-skill workers supplying yn units of effective
labor is w1yn.

Effective labor at home and in the CBD are generated using raw hours worked l

and space s according to

ybn = Ab
(
sbn
)θ (

lbn
)1−θ(2)

yhn = Ah
(
shn
)θ (

lhn
)1−θ(3)

where sbn and shn refer to space rented in the CBD and space rented at home that is
strictly dedicated to work (such as a home office), respectively, and lbn and lhn refer to
hours worked at the office in the CBD and hours worked at home. θ is the share
of space in the production process, which is identical for the home and the CBD. Ab

and Ah are total factor productivity for effective labor at the firm and at home for
high-skill workers. Households take the values of Ab and Ah as given.

Denote consumption, housing, leisure, and amenities in location n for high-skill
workers as c1

n, h1
n, `1

n, and χ1
n. Utility over these variables for high-skill workers is3

ν1
[
logχ1

n +
(
1− α1

)
log c1

n + α1 log h1
n + ψ1 log `1

n

]
.(4)

High-skill workers maximize utility by choosing consumption, housing, leisure, hours
to work in the CBD and at home, and office space to rent at the CBD and at home
given the production technologies listed in equations (1) -(3) and subject to the follow-
ing time and budget constraints (where we temporarily suppress location subscripts
(the n) and high-skill superscripts (the 1) to keep notation manageable)

1 = (1 + t) lb + lh + `

wy = c+ rbsb + r
(
sh + h

)
.

3In our calibration we set α0 > α1. This is an analytically tractable way to capture non-homothetic
preferences in housing consumption, i.e., that poor people spend a larger fraction of their income on
housing. Although Davis and Ortalo-Magné (2011) argue that the expenditure share on rent for the
median renter is constant across cities and over time, a large number of studies find that, in the cross-
section of people, a 1 percent increase in income results in a much less than 1 percent increase in
housing expenditure. See, for example, Rosen (1979), Green and Malpezzi (2003), Glaeser, Kahn, and
Rappaport (2008), and Rosenthal (2014).
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Appendix A contains the derivation of the optimal solution when households take
all wages and prices as given; here we list results. To start, the model predicts how
commuting time (t) maps to the allocation of time spent working at home and in the
office given relative productivity (Ab/Ah), relative rents (rb/r), the structures share of
output (θ) and the parameter that determines the elasticity of substitution between
working at home and at the office (ρ) as follows:

lb

lh
=

(
Ab

Ah

) ρ
1−ρ
(
rb

r

)−ρθ
1−ρ

(1 + t)
−(1−ρθ)

1−ρ .(5)

We use equation 5 to estimate the EOS in the next section. Additionally, the model
predicts leisure is a constant and independent of n.

` =
ψ

1 + ψ

These two equations completely determine the allocation of time (`, lb, and lh).

The model implies that the relationship between effective hours at the office and
at home is

yb

yh
=

(
Ab

Ah

) 1
1−ρθ

(
rb

r

) −θ
1−ρθ

(
lb

lh

) 1−θ
1−ρθ

.(6)

The model also implies that the ratio of structures used for working at the office and
at home is

sb

sh
=

(
yb

yh

)ρ(
rb

r

)−1

.(7)

Given lb/lh from equation (5), this determines yb/yh via equation (6) which then deter-
mines sb/sh from equation (7).

We solve for consumption, housing, and spending on office space in the CBD and
at home as a function of labor income:

c = (1− θ) (1− α)wy

rh = (1− θ)αwy

rbsb + rsh = θwy.(8)
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Rewrite (8) as

sh
[
rb
(
sb

sh

)
+ r

]
= θwy.

From the production function equations (1), (2) and (3), we can write

θwy = θw
(
sh
)θ [(

Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ

+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

.

Combining these last two equations gives an expression for sh that is a function of all
terms that are known,

sh =


θw

[(
Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ
+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

[
rb
(
sb

sh

)
+ r
]


1

1−θ

.

Once we know sh, we also know sb. Given knowledge of lb, sb, lh, and sh, we therefore
know income wy and the entire allocation and utility for high-skill workers at any
location n.

To continue, we reintroduce location subscripts and worker-skill superscripts. De-
note maximized utility for high-skill workers at location n as u1

n. Similar to low-skill
workers, each high-skill worker j has a specific additive preference for living in loca-
tion n, enj, such that utility of living in n for worker j is

u1
nj = u1

n + enj.

Since enj is an additive shock, it does not affect any decisions conditional on residing
in location n. As with low-skill workers, we assume that enj is drawn iid from the
Type 1 Extreme Value distribution. Worker j chooses his or her optimal location of
residence n∗j to satisfy

n∗j = arg max
n=1,...,N

{
u1
nj

}
.

Denote the probability a high-skill worker optimally chooses to live in location n as
f 1
n. The log relative probability high-skill workers choose location n′ as compared to n
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is equal to

log
(
f 1
n′/f

1
n

)
= u1

n′ − u1
n

which we cannot reduce further analytically.

2.3 Wage Rates per Effective Hour

Define the total hours of all low-skill workers as B =
∑
n

f 0
nbn and the total effective

hours of all high-skill workers as Y =
∑
n

f 1
nyn. A representative firm aggregates these

quantities and produces a final good according to

O = [Bω + λY ω]
1
ω .

The firm chooses B and Y to maximize profits according to

[Bω + λY ω]
1
ω − w0B − w1Y.

The first-order conditions of this problem yield an expression for payment per unit of
effective hours for both low- and high-skill workers

w0 = O1−ω (B)ω−1

w1 = O1−ωλ (Y )ω−1

implying
w1

w0
= λ

(
Y

B

)ω−1

. (9)

2.4 Technology and Commuting Processes

Although our model is static, in counterfactual experiments we solve for different
states of the world in which the variables governing the relative technology of working
at home and in the office, Ah and Ab, may differ from our baseline calibration. One
important consideration is whether we should expect the level of WFH technology, Ah,
to change in response to a surge in the quantity of people that have worked at home
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due to the pandemic. To accommodate this possibility, we specify

Ah = Āh (Lmaxh )δh(10)

where Lmaxh is the maximum amount of time in aggregate that high-skill workers
spent working at home in any previous year.4 This captures the idea that if sud-
denly many more people have had experience working at home, then all workers will
be more productive in the future at working at home. For example, a home fitness
equipment salesperson will find more value in adopting WFH technology if she ex-
pects to be able to exhibit her product via teleconference than if she only anticipates
other salespeople to have had experience with videoconference technology. Similarly,
a tax preparer may invest in WFH technology if he anticipates that most of his clients
will be willing to meet virtually and transmit documents electronically.

Additionally, high-skill worker productivity at the office, Ab, may be subject to
agglomeration externalities, such that the quantity of workers at the CBD directly
affects Ab.5 Define the aggregate quantity of hours of high-skill workers in the CBD
as Lb = π

∑
n

f 1
nl
n
b .6 We specify

Ab = ĀbLδbb (11)

with δb ≥ 0.

An equilibrium in this model is a set of prices – w0, w1, rb and rn for n = 1, . . . , N

– such that the market for office space clears, housing demand is equal to housing
supply in each location n, firms maximize profits and households maximize utility
taking all prices and wages as given, and wage rates for low- and high-skill work-
ers are equal to marginal products. Note that in the presence of externalities, the
equilibrium we compute is likely inefficient because the household does not consider
the impact of his or her decisions on the productivity of others. If agglomeration
economies are exclusively at the level of the firm, the firm can internalize the exter-
nality. However, if there are significant externalities at the city-level, such as the sort
documented by Atkin, Chen, and Popov (2020), there may be a role for public pol-
icy to improve expected utility. A large body of earlier work suggests agglomeration
economies operate across firms within the same industry and across industries, and

4Lmaxh is bounded below by 0 and above by π/
(
1 + ψ1

)
.

5Gould (2007), Rosenthal and Strange (2008), Bacolod, Blum, and Strange (2009), Roca and Puga
(2016), and Rossi-Hansberg, Sarte, and Schwartzman (2019) all find evidence supportive of the notion
that agglomeration economies exist primarily for high-skill workers.

6Similar to Lmaxh , Lb is bounded below by 0 and above by π/
(
1 + ψ1

)
.
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many of these agglomeration economies require face-to-face interaction. See Glaeser
(2012) and Combes and Gobillon (2015) for a review of this literature.

3 Parameterizing the Model

With the exception of δh, we estimate or calibrate the parameters of the model to data
prior to the onset of COVID.

3.1 Estimating the Elasticity of Substitution between Home
and Office Work

The parameter ρ determines the EOS between home and office work and is new to the
literature. Our estimation strategy for ρ builds on Equation (5), which implies that
for any given household the log-odds of commuting are linear in log-commuting costs,
log(1 + t),

log

(
lb

lh

)
=

ρ

1− ρ
log

(
Ab

Ah

)
+
−ρθ
1− ρ

log

(
rb

r

)
+
− (1− ρθ)

1− ρ
log
(
1 + t

)
(12)

with a slope coefficient (third term) of Ψ ≡ ∂ log(lb/lh)

∂ log(1 + t)
= −(1−ρθ)

1−ρ .

Conceptually, one can think of lb as typical days worked in the office per week
or month and lh as typical days worked at home over the same period. If we define
x = lb/lh, then the probability that a person works in the office on any given day is
equal to x/ (1 + x). This transformation allows us to use survey data on the fraction
of days spent working from home versus in the office to estimate ρ for reasons we
explain next.

Define Ci as the fraction of days individual i reports working in the office. Then,

14



we can write the estimating version of Equation (12) as

E(Ci) =
exp

(
log
(
lb

lh

))
1 + exp

(
log
(
lb

lh

))
E(Ci) = Λ

(
log
(
lb/lh

))
(13)

E(Ci) ≈ Λ
(
β0 +X ′iβ1 + Ψ log

(
1 + ti

))
where Λ(.) is the logistic function. The transformation is required because some indi-
viduals in our data report that they never work at home. Even if our theory predicts
everyone spends at least some time at home, when surveyed over a small enough time
window a respondent may not have worked at home at all. For these individuals, Ci
is well defined but log

(
lb/lh

)
is not.

The main regressor of interest is log(1 + ti), which must vary across households
(conditional on Xi) to identify Ψ. A key threat to identification arises if the value
of Ab/Ah varies unobservably in the population and people with unobservably high
values of Ab/Ah choose, all else equal, locations with short commute times. In this
scenario, the commute time is endogenous and correlated with an unobserved vari-
able.7

We imagine that variation in Ab/Ah is largely explained by differences in occu-
pation, industry, and demographic variables, consistent with the evidence in Dingel
and Neiman (2020). The observable characteristics (Xi) we include in (13) are age,
age2, a female indicator, age-female and age2-female interactions, race, marital sta-
tus, two-digit industry dummies, and two-digit occupation dummies. Our identifying
assumption is that variation in log(1 + t) is uncorrelated with Ab/Ah conditional on
these occupation, industry, and demographic variables. We show later that our esti-
mate of Ψ does not depend on the inclusion of these observable characteristics. This
suggests that for omitted variables to bias our estimate of Ψ, sorting for commute-
time reasons on any unobserved component of relative productivity would need to be
substantially more important than sorting on the component of relative productivity
explained by important observables (Altonji, Elder, and Taber, 2005).

7In the model, Ab/Ah is the same for all high-skill workers. That said, if the model were to include
groups of high-skill workers with different values of Ab/Ah, the presence of the enj terms implies the
groups would not perfectly sort into locations.
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3.1.1 Data

We estimate the parameters of (13) using data from the 2017-2018 Current Popula-
tion Survey (CPS), the American Time Use Survey (ATUS), and the Leave and Job
Flexibility (LJF) module of the CPS. The ATUS and LJF are both CPS submodules.
Respondents provide a time diary of activities on one randomly chosen day. The ATUS
data provide a record of commute duration for cases where a commute occurs on the
observation day. The LJF sample is a subsample of ATUS respondents. The LJF asks
questions focusing on workplace leave policies and job flexibility, including whether
respondents have the ability to work from home and the frequency of home work.
We restrict our sample to college-educated workers (i.e., those that have at least a
four-year college degree) that report working at least four days per week.

We merge ATUS and LJF records at the individual level to create a dataset con-
taining both commute times and frequencies of working from home. There are two
main challenges with using these data. First, following the merge, we restrict our
sample to individuals who were observed commuting on their randomly selected ATUS
observation day. This necessary restriction introduces non-representativeness to our
merged sample. Given that we exclude observations where people are not commut-
ing on the ATUS observation day, the probability of an individual i being represented
in our sample is increasing in the probability that i commutes on any given day; we
correct for this by reweighting the sample. The LJF survey collects information that
enables us to compute the fraction of days in each month that each survey respon-
dent works at the office; denote this fraction as Ci.8 Given the probability that the
respondent is included in our sample is (effectively) equal to the fraction of that in-
dividual’s days that involve a commute, we reweight to undo this selection by setting
sampling weights equal to the inverse of this fraction, IPWi = 1/Ci. After applying
these weights, the mean and standard deviation of Ci for our sample of 1,771 high-
skill, full-time workers are 0.913 and 0.209, respectively.

Second, there is likely significant measurement error in the reporting of commute
times. For example, over 90 percent of people report a commute time that is a multi-
ple of 5 minutes, and there is a large percentage of respondents reporting commutes
exactly equal to 15 or 30 minutes. We use two approaches to correct for any bias re-
sulting from measurement error. The first is an instrumental variables approach that
exploits the fact that we observe multiple reported commute times for the majority

8In Appendix B.1 we detail the mapping of the responses to survey questions to our estimate of Ci.
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of individuals in our sample. We compute the two measures of commuting cost using
ti1 = 2×commute timei1 (minutes)

8×60
and ti2 = 2×commute timei2(minutes)

8×60
defining the “commute times‘’

as the lengths of the two longest-duration activity intervals classified as “time spent
traveling for work” in the ATUS time diary. For individuals who report only one “time
spent traveling for work” interval, ti2 is missing. Using one measure as an IV for the
other is a common approach to addresses measurement errors under the assumption
that the measurement errors from the two measures are uncorrelated. Our use of
the other commute time as an instrument relates to the concept of Obviously Related
Instrumental Variables (ORIV) of Gillen, Snowberg, and Yariv (2019).

Two striking patterns in the commute-time data, shown in Figure 1, cause us to
suspect that the measurement errors may, in fact, be correlated. First, shown in the
top panel of the figure, 51 percent of individuals with two observed commutes report
the exact same commute time. Second, shown in the bottom panel, most commute
times appear to be rounded, with 91 percent being a multiple of 5 minutes (as men-
tioned earlier) and 46 percent being a multiple of 15 minutes. Based on this evidence,
the measurement error of two reported commutes is likely positively correlated. For
example, a person with realized commutes of 26 and 27 minutes might report 30
minutes for both commutes. Therefore, our second approach to addressing measure-
ment error involves correcting non-IV estimates of ψ using an analytically derived
adjustment that is based on an assumed value of the correlation of the measurement
errors of the two reported commutes. With this approach, we are able to assess the
sensitivity of our estimates of ψ to the correlation of the measurement errors.

3.1.2 Estimation Details

We use a GMM approach to estimate Ψ. We first compute estimates that do not correct
for measurement error in reported computing times. We then use a related IV version
of the estimator to compute measurement-error-corrected estimates. The moments
we target for estimation are based on the error term given by the difference between
each individual’s reported fraction of days spent in the office and the prediction given
by Equation (13). Under a given parameterization (Ψ, β) this prediction error can be
written

εi(Ψ, β) = Ci − Λ
(
β0 +X ′iβ1 + Ψ log

(
1 + ti1

))
.
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The GMM estimator with no measurement error correction is based on the moments

m̂0(Ψ, β) =
∑
i

εi(Ψ, β)

m̂1(Ψ, β) =
∑
i

Xi1εi(Ψ, β)

...(14)

m̂K(Ψ, β) =
∑
i

XiKεi(Ψ, β)

m̂K+1(Ψ, β) =
∑
i

log(1 + ti1)εi(Ψ, β)

whereK is the length ofXi. Estimation is based on the moment condition, E[m̂(Ψ, β)] =

0, where

m̂(Ψ, β) =


m̂0(Ψ, β)

m̂1(Ψ, β)
...

m̂K+1(Ψ, β)


and the GMM estimator is

(Ψ̂GMM , β̂GMM) = arg min
(Ψ,β)

m̂′(Ψ, β)W m̂(Ψ, β)(15)

whereW is an optimal weighting matrix.

This GMM framework also directly facilitates our IV strategy for accounting for
measurement error. We correct for measurement error using two approaches, both of
which rely on the bias due to measurement error in our logistic setting being similar
to that which arises in the linear regression framework. In Appendix B.2, we show
that over the relevant range of commute times and a high probability of commuting
similar to what we observe in the data, the logistic function is close to linear such
that a linear approximation is reasonable.

Both approaches exploit the fact that many people report more than one commute.
We use one commute for the same individual as an instrument for the other commute.
This corrects for the measurement error within an individual that is uncorrelated
across trips. For example, suppose an individual recalls that the afternoon commute
was 18 minutes while only recalling that the morning commute was approximately
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20 minutes. Alternatively, suppose an individual runs an errand on the way home
from work and thus misreports the afternoon commute time because of inclusion of
the errand. The morning commute is correlated with the true commute time but
uncorrelated with the extra errand time.

Our first approach to correcting for correcting for measurement error constructs
the GMM-IV estimator by replacing the orthogonality condition, moment K + 1, with
the IV analog,

m̂K+1(Ψ, β) =
∑
i

log(1 + ti2)εi(Ψ, β).(16)

That is, identification of Ψ is based on the orthogonality of the second commute time
IV log(1 + ti2) with the prediction error calculated using log(1 + ti1). To maximize ef-
ficiency, we allow each individual in our sample to contribute two observations for
the IV estimator. For one observation, we treat the first commute time measurement
as the regressor log(1 + ti1) and the second commute time measurement as the in-
strument log(1 + ti2), and for the second observation we reverse the roles of the two
measures.

Our second strategy to account for measurement error involves applying an an-
alytical correction to the estimate of Ψ from the GMM moments in Equation (14).
We derive the correction by applying the analytical expression for the magnitude of
attenuation bias in the linear regression framework,

E[Ψ̂GMM ] ≈ Ψ×

 var
(true value︷︸︸︷
x∗i
)

var
(
xi1︸︷︷︸

measured value

)
(17)

where, for compactness of notation, we have substituted x∗i = log(1 + ti) for the true
value of the mismeasured covariate and xi1 = log(1 + ti1) and xi2 = log(1 + ti2) for the
measurements. We write the measurements as

xi1 = x∗i + ei1

xi2 = x∗i + ei2

var

([
ei1

ei2

])
=

[
σ2
e ρeσ

2
e

ρeσ
2
e σ2

e

]
.
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The measurement errors ei1 and ei2 are uncorrelated with x∗i but are potentially cor-
related with one another with correlation coefficient ρe > 0.

We construct the bias-corrected estimator by multiplying the naive GMM estima-
tor by the inverse of an estimate of the attenuation bias

Ψ̂BC = Ψ̂GMM

(
v̂ar(x1)

v̂ar(x∗)

)
= Ψ̂GMM

(
v̂ar(x1)

v̂ar(x1)− v̂ar(e)

)
.

Finally, noting that

var(xi1) = σ2
x∗ + σ2

e

cov(xi1, xi2) = σ2
x∗ + ρeσ

2
e

which imply that

var(ei) =
var(xi1)− cov(xi1, xi2)

1− ρe

the bias-corrected estimator is

Ψ̂BC = Ψ̂GMM

 v̂ar(xi1)

v̂ar(xi1)−
(
v̂ar(xi1)− ĉov(xi1, xi2)

1− ρe

)
 .(18)

In Appendix B.3, we present evidence from Monte Carlo experiments showing that
the correction based on this approximation performs well in simulated datasets that
match key moments of the commute data and with a range of correlations between
the measurement errors in two reported commutes.

Before showing GMM results, we provide evidence that the WFH share rises with
commute times such that it is unlikely that working from home and at the office are
perfect substitutes. Figure 2 shows how the percentage of time spent working from
home varies with commute time in our sample. In this graph, we sort each worker in
our estimation sample into a bin based on reported commute time and then graph the
frequency with which workers in each commute-time bin work at home at least one
day per month (solid line), at least two days per month (dashed line), at least one day
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per week (dotted line) and at least three days per week (dot-dash line).9 Outcomes
are not mutually exclusive, for example a person that works from home at least three
days per week also works from home at least one day per month.

Two results emerge from this graph. First, abstracting from the impact of sam-
pling variability, the percentage of workers working from home in every category (at
least one day per month, at least two days per month, etc.) rises with commute times.
Ultimately, we use a GMM procedure to estimate the slope, but there is an obvious
relationship in the data.

Second, the graph strongly suggests working from home and at the office are not
perfect substitutes. In the case of perfect substitutes, we would expect workers to
either work 100 percent of the time at home or 100 percent of the time at the office.
In this case, the four lines shown in Figure 2 would overlap, as everyone that works
at home at least one day per month also works at home at least three days per week.
The gap between the solid line, at least one day per month, and the dot-dash line, at
least three days per week, shows the fraction of workers who work some from home
that choose an interior solution, i.e., some allocation of working from home less than
100 percent.

Table 1 reports GMM estimates of ψ, the value of ρ after imposing θ = 0.18 from
Valentinyi and Herrendorf (2008), and the implied EOS = 1/ (1− ρ) between working
at home and in the office. Columns 1 and 2 report GMM estimates without correct-
ing for measurement error excluding (column 1) and including demographic controls
and industry and occupation fixed effects (column 2). The sample in these columns is
anyone that reports at least one commute. For the 1,203 commuters that report two
commutes, we create two records, one for each commute time reported. We include
both these records in our estimation and allocate 50 percent of the IPW to each of
them. These columns show that when we do not correct estimates for measurement
error, the estimate of the EOS is about 3.0 and does not depend on the inclusion of
important demographic or occupation and industry controls. Following the logic of
Altonji, Elder, and Taber (2005), selection on unobservables would need to be sub-
stantially stronger than selection on important observables for our estimate of Ψ to
be significantly biased by selection.

Column 3 shows estimation results resulting from a simple attempt to remove
9We bin based on the average commute time of each worker in the event the worker reports multiple

commute times.
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observations that may obviously be contaminated with measurement error: We re-
move from the sample individuals who report two commutes that differ by at least 20
minutes. This removes 147 observations, 8.3 percent of the sample, and boosts the
estimate of the EOS to about 3.5.

Column 4 shows our GMM estimate when we restrict the sample to individuals
who report at least two commutes, 1,203 respondents, and column 5 shows our IV-
corrected GMM estimates from this sample based on the moment condition shown
in equation (16). The IV correction increases the coefficient estimate by a factor of
nearly 1.6, from -2.54 to -3.85, raising the EOS from 2.9 to 4.5.

Columns 6-9 show the results of the analytic correction for measurement error
shown in equation (18) when we use as a baseline the GMM estimates shown in
column 2. When we assume the two measurement errors are uncorrelated, column 6,
the estimate of ψ increases by a factor of 1.39, from -2.78 to -3.85, and the associated
EOS rises from 3.18 to 4.47. As the assumed correlation of the measurement error
rises, from 0.1 in column 7 to 0.25 in column 8 to 0.50 in column 9, the estimate of
ψ increases in absolute value and the EOS increases from 4.68 (column 7) to 5.16
(column 8) to 7.37 (column 9).

While our assumptions admit a range of possibilities for the EOS, the implication
of our estimates is that working from home is not a perfect substitute with work at
the office. In what follows, we set our baseline estimate of ρ = 0.80, implying an EOS
of 5, corresponding to a correlation of the two measurement error terms of about 0.2.
We explore the sensitivity of our results by considering alternative values for ρ of
0.667 and 0.857. This corresponds to elasticities of substitution between work at home
and in the office of 3, our estimate when we do not correct for measurement error, and
7, our estimate when the correlation of measurement errors is about 0.5.

3.2 Other Parameters

3.2.1 Parameters Set Outside of Model

Table 2 summarizes our parameterization of the model. We allow for two residential
zones. δb governs the extent of agglomeration returns in production for high-skill
workers working in the CBD. We set this to 0.04 based on Davis, Fisher, and Whited
(2014) but consider the sensitivity of our results to a higher level of δb in Section 4.6.
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We set ω = 0.33 such that the EOS between low-skill and high-skill workers is 1.5.
This is in the middle of the range reported by Autor, Katz, and Krueger (1998).

We set π, the fraction of workers that are high skill, to 0.33 which is the share of
US adults that are college educated as of 2019 according to data from the U.S. Census
Bureau. We set α0 = 0.33 and α1 = 0.20 to roughly match the relative size of housing
of college- and non-college-educated workers in the 2019 American Housing Survey.10

These values of α bracket the estimate of Davis and Ortalo-Magné (2011) of 0.24
for the median expenditure share on rents for all renting households in the United
States.11 The preference for leisure, ψ, does not impact our results since with log
separable preferences leisure is a constant, independent of wage and location. We set
the preference for leisure to 0.25 for both low- and high-skill workers (ψ0 = ψ1 = 0.25).

ν measures how sensitive location choice is to variation in utility. In many models
of urban economics, utility has to be the same everywhere. This is what emerges as
ν →∞. When ν is finite, people are willing to live in a place that provides lower utility
on average because they get a good random draw of household-specific preferences eni
or enj from living in that location. We set ν0 = ν1 = 3.3 based on the estimates in
Monte, Redding, and Rossi-Hansberg (2018).

In our benchmark calibration, we compute the quantity of space demanded in
each zone and in the CBD at specific rental prices that we calibrate from data. In our
counterfactual simulations, we either solve for new rental prices holding quantities
of space in each zone and the CBD as fixed, or solve for new quantities holding rental
prices fixed. We use data from the New York City CBSA in 2015 to compute rents per
square foot in the CBD and in zones 1 and 2 in the benchmark. According to Real
Capital Analytics Trends, average rents per year per square foot on office property in
Manhattan were $37.89 per year. We apply a 5 percent cap rate to the median price
per square foot residential prices by county in Galka (2016) to compute residential
rents per square foot in each zone. We consider the Bergen NJ, Bronx NY, Hudson
NJ, Kings NY, Richmond NY, Queens NY as Zone 1, $13.26 rent per square foot per
year, and all other counties as Zone 2, $9.09 per square foot per year. We normalize
rb to 1.0 giving us rents of rb = 1.0, r1 = 0.35 and r2 = 0.24.

10The average home sizes for non-college-educated and college-educated households are 1,582 and
2,025 square feet.

11As a check, we compute the median of the ratio of annual gross rent to household income using
data from the 2018 5-year American Community Survey, for non-college-educated and college-educated
household-head, with the household head aged 21-65 and with positive rent and household income.
These estimates are 0.31 and 0.23, respectively.
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3.2.2 Calibrated Parameters

We set t1 and t2 such that all workers commute 30 minutes per trip each way in
Zone 1 or 50 minutes per trip each way in Zone 2. We normalize Āb to 1 such that
Ah captures the relative productivity of WFH for high-skill workers. Similarly, the
model implicitly normalizes the labor productivity of low-skill workers to 1 such that
the parameter λ in Equation (9) determines relative wages.

χ0
1, χ1

1, χ0
2, and χ1

2 describe the relative average amenities low- and high-skill work-
ers receive when living in Zones 1 and 2. We normalize χ0

1 = χ1
1 = 1. We calibrate

the remaining free parameters of the model (χ0
2, χ1

2, λ, and Ah) to match the following
moments that we exactly match in our benchmark parameterization:

1. Share of low-skill workers living in Zone 2 (χ0
2): 35.8 percent

2. Share of high-skill workers living in Zone 2 (χ1
2): 40.4 percent

3. Total age-adjusted income of high-skill relative to low-skill (λ): 1.8. We measure
labor income for high-skill workers as wy−rbsb to account for the fact that in the
data, unlike in our model, firms pay for office space directly rather than workers.

4. Fraction of time spent working at home relative to time spent working in our
benchmark for high-skill workers (Ah): 10 percent

We include in parentheses the parameter that is most closely related to the moment
we are targeting although we estimate all parameters jointly.

We calculate the first three moments using the ATUS-CPS data for residents living
in New York City, Washington DC, Charlotte, Pittsburgh, St. Louis, Denver, Detroit,
Columbus OH, and Louisville metropolitan areas. We select these cities because they
are approximately monocentric and have sufficient population to identify the county
of residency in the ATUS data. We set Zone 1 to the counties that are adjacent to
the CBD and Zone 2 includes as counties not adjacent to the CBD but included in the
CBSA. We set moment (4) based on our estimates from the ATUS. In the sample from
the ATUS we use to estimate the EOS, on average 91.3 percent of worker time is spent
at the office and 8.7 percent at home. We round this up to 10 percent to account for the
fact that our sample does not include any workers that always work from home due
to the requirement for estimation that sample respondents have a reported commute.
Furthermore, the LJF questionnaire only asks about full days spent working at home.
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4 Counterfactuals

We use the model to understand how the pandemic affected the economy and to fore-
cast its long-term effects. At the onset of the pandemic, we assume productivity of
working at the office, Āb, falls significantly as workers require more space (and time)
to produce output due to social distancing and other precautionary responses. This
decline in office productivity leads to more work at home, which we assume increases
Ah via Equation (10). At this new, higher level of Ah much more work occurs at home
after the pandemic ends, even when productivity of working at the office returns to
its pre-pandemic value.

4.1 Effects During the Pandemic

Column 1 of Tables 3 and 4 show simulations of the benchmark economy prior to the
onset of the pandemic. We consider two counterfactual simulations for understanding
how the pandemic affected the economy. In the first, we hold Ah at its baseline level
but reduce Āb by 50 percent. This corresponds to the beginning of the pandemic when
office productivity declines markedly but workers have not significantly increased
their experience with working at home. Column 2 of Tables 3 and 4 displays the
results of this first counterfactual. The overall decrease in Ab, shown in row (1),
is slightly larger than the 50 percent decline in Āb. This occurs because high-skill
work at the office declines, reducing the contribution of agglomeration effects on office
productivity. Hours worked at home for high-skill workers rise from 10 percent to 52
percent of total hours, shown in row (25), and rent for office space in the CBD falls to
41 percent of its pre-pandemic level, row (37). Residential rents, rows (38) and (39),
fall: Households significantly increase their demand for home offices, rows (30) and
(34), but incomes fall substantially, rows (4) and (7). Low-skill workers move from
Zone 2 to Zone 1 (rows 12 and 13) and high-skill workers do the opposite, rows (15)
and (16). Note that we hold the stock of space fixed in the CBD (row 28) and both
zones (rows 29 and 33) in this counterfactual.

Next we consider a counterfactual simulation of the economy at the end of the
pandemic, column 3 of Tables 3 and 4. In this counterfactual, Āb is still depressed
due to social distancing but Ah (row 2) increases by 46 percent, from 0.371 to 0.542,
such that the percentage of high-skill work that occurs from home triples from 10
to 30 percent (row 25, column 4) once Āb returns to its pre-pandemic level. Row 25
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shows that hours worked at home rises to 77 percent (column 3), from 52 percent at
the start of the pandemic (column 2) and 10 percent prior to the pandemic, column 1.
Comparing columns 1 and 3 for rows (30) and (34), the model predicts a huge increase
in demand for home offices in both Zones 1 and 2. Since the supply of space in each
zone is assumed fixed in this counterfactual, the increase in the size of home offices
is accommodated by a decrease in space used for housing, rows (31) and (32) and (35)
and (36). Rents for office space in the CBD fall to just 25 percent of their pre-pandemic
level, row (37), and residential rents in both zones rise (rows 38 and 39). Shown in
row (7), measured income per high-skill worker falls by less than one-half percent,
from 5.52 to 5.50, as the increase in Ah mitigates the steep decline in the productivity
of work from the office and workers allocate a larger fraction of their incomes to rent
on their home offices.

4.2 Effects After the Pandemic

We consider three counterfactual experiments that bracket the possible changes to
city form and the use of space after the health-related impacts of the pandemic sub-
side such that people can start freely interacting again. In all three counterfactuals,
people can adjust where they live, how much they spend on housing, office space, and
home-office space, and how much they choose to work in the CBD or (for high skill)
in their home office. What varies across counterfactuals is the extent to which aggre-
gate quantities or prices of space, by zone, are allowed to vary from the pre-pandemic
baseline.

In the first post-COVID counterfactual, called SR in Tables 3 and 4, we hold fixed
the supply of office space in the CBD and the aggregate amount of available structures
for use in housing and home-office work in each of Zones 1 and 2 (separately) at the
baseline levels. In this counterfactual, we search for three market clearing prices, rb,
r1, and r2, such that the demand for space is equal to the supply in each zone. We
think of this as a short-run response, in the sense that populations can move and
the demand for space can immediately change but the supply for space has not yet
responded.

In this and our other two post-COVID experiments, we keep Ah = 0.542, its value
during the experiment for the end of the pandemic. As discussed earlier, this value
of Ah generates a tripling of the share of time high-skill workers spend working the
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CBD relative to the baseline, from 0.1 to 0.3. We believe this change in the share of
work done from home is consistent with expectations reported by Barrero, Bloom, and
Davis (2020) and Mortensen and Wetterling (2020).

Comparing columns 1 and 4 of Table 3 shows that, while incomes for both types
of workers rise (rows 4 and 7), the rise is more pronounced for high-skill workers
such that the ratio of high-skill to low-skill income rises by 6.7 percent, from 1.80
to 1.92 (row 3). Low-skill wages rise because low-skill and high-skill effective hours
are complementary in production: As high-skill effective hours rises, low-skill output
becomes more valuable. Although high-skill workers work in the office less, there
is only a slight increase in the share of high-skill workers living in Zone 2 in this
counterfactual (row 16) as space has not yet had a chance to adjust. Relative to the
pre-pandemic benchmark, rent for office space in the CBD falls by 15 percent (row
37) and residential rents rise in both zones with the increase larger in Zone 2 (12.5
percent, row 39) than in Zone 1 (8.6 percent, row 38). The change in residential
rents is driven by a large increase in demand for home offices (rows 30 and 34); the
quantity of housing not used for home offices modestly declines for both high- and
low-skill workers, rows (31) and (32) and (35) and (36).

In the second post-COVID counterfactual experiment, shown in column 5 as LR,
we hold rental prices in the CBD and in both zones fixed at their baseline levels and
allow the supply of space in each zone to flexibly accommodate any change in demand.
We think of this as a long-run response in most areas. Once the quantity of space
has adjusted, the share of high-skill hours worked from home rises even further, to
35 percent from 30 percent immediately after the pandemic (row 25). The demand
for office space in the CBD declines by about 20 percent, row (28); the demand for
space for all uses in Zone 1 increases by 7.7 percent, from 1.95 to 2.10 (row 29); and
the demand for space for all uses in Zone 2 increases by 19 percent, from 1.63 to
1.94 (row 33). Housing for both types of workers increases from the benchmark, as
both types earn more income, but high-skill workers build larger home offices in this
environment and this makes high-skill workers even more productive at home. With
this in mind, it is useful to compare the SR results, where the quantity of space in
each zone is fixed and the price is flexible, to the LR results, where the price of space
is fixed and quantity is flexible. In the SR, home office space approximately triples
from the pre-pandemic level, shown in rows (30) and (34). In the LR, space for home
offices increases by about a factor of four relative to pre-pandemic levels.

The predicted changes to the size of home offices in the SR and LR experiments
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are large. The model forecasts these changes because the quantity of hours worked
from home triples and because labor at home and home office space are complements
in production with constant factor shares. Evidence in Stanton and Tiwari (2021)
supports our model’s predictions for expenditures on home office. Stanton and Tiwari
(2021) estimate that the log expenditure share on housing for renting households
where at least one member is working remotely is 0.063 to 0.135 larger compared
to the log expenditure share of otherwise similar households where no one works
remotely. The equivalent calculation for high-skill residents living in Zones 1 and 2
in our baseline calibration is 0.076 and 0.117, respectively.12

In our final post-COVID counterfactual, we hold the quantity of office space in the
CBD fixed and find the rent rb such that demand is equal to supply, but fix rents in
Zones 1 and 2 at their baseline levels assuming that additional development in these
zones is feasible at current prices. Column 6 shows the results of this experiment, LR
Putty-Clay. This experiment recognizes that depreciation rates are sufficiently low
on structures that areas with a large decline in the rental price of office space may
not see a reduction in the total amount of rented space for quite some time. In this
experiment, rents on office space in the CBD fall to 83 percent of their pre-pandemic
level, row (37), and relative to the LR experiment, a smaller share of hours are worked
at home, row (25), because office space is cheap in the CBD. For related reasons, the
migration of high-skill workers to Zone 2 is a bit less pronounced in column 6 than in
column 5, row (16). The increase in income inequality, row (3), persists.

In all the experiments we have reported so far, consumption inequality (row 10) in-
creases by less than income inequality (row 3). We measure consumption as the sum
of expenditures on consumption and expenditures on housing not including home of-
fices. In the post-COVID counterfactuals, wy rises for high-skill workers because they
have become relatively more productive. The increase in productivity arises due to (i)
the increase in Ah as well as (ii) the expansion of home offices. Workers are compen-
sated for the increase in their productivity, but some of the gains in income directly
offset additional expenses incurred from renting larger home offices. To match the
model with data, we do not subtract expenditures on home offices from labor income
as typical survey questions measuring wage and salary income do not ask respon-

12In the case of high-skill residents in Zone 1, we compute this as the log of the sum of space for
home offices and other housing, rows 30 and 31 of column 1, less the log of space on other housing, row
31 of column 1. For Zone 2 high-skill residents, we do an equivalent calculation. These calculations
assume that high-skill workers that never work at home would have zero expenditures on home office
space.
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dents to net out expenditures on home offices. Measured consumption inequality does
not increase as much as income inequality because rent for these home offices reduces
income available for consumption for high-skill workers, and low-skill workers do not
rent home offices.

4.3 A 1990 Pandemic

In Table 5 we consider a counterfactual that corresponds to the effect of the COVID
pandemic if Ah is so low that working from home is not a viable alternative for high-
skill workers. This scenario corresponds to the effects of a pandemic had it happened
in, say, 1990 prior to current WFH technology being widely available. Indeed, despite
the 1918-1920 flu pandemic being an order of magnitude more lethal than that of
COVID, particularly for prime-age workers, there was much less social distancing
during the 1918-1920 pandemic.13 Column 1 shows simulated outcomes of our model
economy prior to the onset of the pandemic, call it 1989, and column 2 shows results
once the pandemic hits. In both columns 1 and 2 we set Ah to 0.11, about 30 percent
of its 2019 level, and then compare outcomes when we reduce Āb by 50 percent at the
onset of the pandemic, row 1 of Table 5.

Had the pandemic occurred in 1990, the model predicts hours worked at home
would have increased from 0 percent to 1 percent, row (6). Incomes for both low- and
high-skill workers (rows 7 and 8) would have declined by much more than implied
by the counterfactual experiments for the current (2020-2021) pandemic, shown in
columns 3 and 4, because workers in 1990 cannot offset the decline in productivity
at the CBD by working from home. In this scenario, office rents in the CBD (row 12)
and in both zones (rows 13 and 14) decline significantly due to the drop in income,
although the rental price of office space in the CBD in the 1990 pandemic does not
decline as sharply as in the 2020 pandemic. These simulations show that worker
behavior after the onset of a pandemic in 1990 would not have changed much, and
the virus would have been much more lethal and costly in terms of income.14

13See Barry (2004) for a discussion of the lethality and lack of social distancing during the 1918-1920
pandemic.

14Eichenbaum et al. (2020) find that approximately 17 percent of virus transmissions occur in work-
places.
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4.4 Quantifying the Impact of Experience on Ah

In Equation (10), we specify the level of Ah as equal to Āh (Lmaxh )δh. Denote the pre-
pandemic level of Ah as Ah0 and the (immediate) post-pandemic level of Ah as Ah1 .
Assuming that Āh is fixed during the COVID pandemic, which is reasonable given
the pandemic lasted about 12 months, we can use the simulated maximum number
of hours worked from home before and during the pandemic, row (22) of Table 4, to
solve for δh

Ah1
Ah0

=
0.542

0.371
=

(
0.59

0.07

)δh
This yields δh = 0.178, implying a 10 percent increase in aggregate hours (ever)
worked at home boosts productivity of working at home for all high-skill workers
by 1.78 percent.

4.5 The Role of the EOS between Home and Office Work

Table 6 shows how predictions of our model change depending on the EOS we choose:
3, 5, or 7. For each value of the EOS, we set Ah pre- and post-COVID such that
high-skill workers spend 10 percent of their time working at home pre-COVID and 30
percent of their time working at home after COVID in the SR counterfactual. In all
simulations, we assume that Āb declines by 50 percent during the pandemic.

Rows (2), (4), and (6) of Table 6 show the levels of Ah required to match the target
values of the share of work done at home. With a lower value of the EOS, such that
working from home and at the office are more complementary than we assume in our
benchmark, the relative productivity of working from home must be lower relative to
its benchmark value for the household to choose a small fraction of time to work from
home. When the EOS is 5, we find the pre-pandemic level of Ah is 0.37 but when the
EOS is 3 we have to set Ah = 0.21 to replicate that only 10 percent of high-skill hours
are worked from home. When the EOS is 5, Ah has to rise by 46 percent (from 0.37 to
0.54) to triple hours worked from home after the pandemic ends. When the EOS is 3
Ah has to double and when the EOS is 7, Ah must increase by 31 percent.

Given our method for setting Ah before and after the pandemic, Table 6 shows
that the long-run implications of the COVID shock are similar regardless of the value
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chosen for the EOS: 1) CBD rents fall by approximately 12-18 percent in both the SR
and LR Putty-Clay scenarios; 2) incomes rise for both types of workers but more for
high-skill workers such that income inequality increases; and 3) Ab declines due to
lower agglomeration economies.

4.6 Sensitivity to Agglomeration Economies in the CBD

Our benchmark parameterization sets δb = 0.04 based on the estimates in Davis,
Fisher, and Whited (2014). However, these estimates are based on data from entire
metropolitan areas. To the extent that agglomeration economies may be stronger in
a smaller location like a CBD, we compute counterfactuals when we set δb to a much
higher value of 0.10. Table 7 presents these results. As with the previous counter-
factual experiments, we set Ah pre- and post-COVID such that high-skill workers
spend 10 percent of their time working at home pre-COVID and 30 percent of their
time working at home after COVID in the SR counterfactual. Table 7 shows that this
change in δb does not materially affect any of our main results.

4.7 Long-term Trend for Office: The Effect of Upskilling

While COVID induced a permanent change in the productivity of working from home
that reduced the demand for office space in the CBD, the long-term rise in the share
of the workforce with a college degree has the opposite effect on demand for office
space as skilled workers demand more office space. To understand the effect of this
upskilling on rents, we conduct an additional experiment in which we hold the supply
of CBD office space fixed in the long run, as in our LR Putty-Clay counterfactual in
column 6 of Table 4, but increase the share of high-skill workers in the population
to 40 percent. In this scenario, we find that office rents fall to 90 percent of their
pre-pandemic level rather than 83 percent. Thus, we expect an increase in the share
of high-skill workers to offset less than half of the decline in CBD office rents that we
report in Table 4.
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5 Conclusions

We have investigated long-run changes to urban form, rents, and income inequality
resulting from an increase in WFH technology. Our model suggests the ability of high-
skill workers to work from home significantly cushioned the impact of the COVID-19
pandemic on incomes; expectations about future time spent working from home as
compared to the office have permanently changed as a result. Surveys suggest that
once the pandemic subsides, workers expect to approximately triple their time spent
working from home relative to pre-pandemic levels. We use the model to infer the
change in WFH productivity that occurred during the pandemic such that workers
will optimally choose to triple their time working from home once the pandemic ends.
At our estimated elasticity of substitution between working from home and at the
office in the production of output, we estimate WFH productivity increased by 46%
during the pandemic. We believe this increase in productivity is a direct consequence
of the pandemic, as quarantining and social distancing forced a large fraction of the
high-skill workforce to learn how to effectively work from home.
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Table 1: GMM Estimates of the Elasticity of Substitution

Drop with Analytic Bias Correction
|xi1 − xi2| ≥ 20 mins IV Sample IV ρe = 0 ρe = 0.1 ρe = 0.25 ρe = 0.50

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log(1+t) -2.63** -2.78** -3.06** -2.54* -3.85* -3.85** -4.02** -4.41** -6.22**

(1.21) (1.20) (1.53) (1.39) (2.11) (1.66) (1.74) (1.91) (2.69)
Implied ρ 0.67 0.69 0.72 0.65 0.78 0.78 0.79 0.81 0.86
EOS 2.99 3.18 3.51 2.87 4.47 4.47 4.68 5.16 7.37
Demog. controls no yes yes yes yes yes yes yes yes
Industry FEs no yes yes yes yes yes yes yes yes
Occupation FEs no yes yes yes yes yes yes yes yes
N 1,771 1,771 1,624 1,203 1,203 1,771 1,771 1,771 1,771
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Table 2: Parameterization

Param. Description Value Determined
Technology:
ρ EOS bw home and office work = 1

1−ρ 0.80 Midpoint estimate
θ Structures share in production 0.18 Fixed
ω EOS bw type 0 and 1 labor = 1

1−ω 0.33 Fixed
δb Agglomeration economies 0.04 Fixed
κ Relative commuting speed for type 0 1.0 Fixed
Āb Productivity of working at CBD for type 1 1 Normalized
Ah Relative productivity of work from home 0.371 Calibrated
λ Relative productivity of high-skill worker 1.33 Calibrated
t1 Commute from Zone 1 0.125 Calibrated
t2 Commute from Zone 2 0.208 Calibrated
Rents:
rb Office rent in CBD 1.0 Normalized
r1 Residential rent in Zone 1 0.35 Fixed
r2 Residential rent in Zone 2 0.24 Fixed
Demographics:
π Fraction high-skill 0.33 Fixed
Preferences:
α0 Housing exp. share for type 0 0.33 Fixed
α1 Housing exp. share for type 1 0.20 Fixed
ψ0 Pref. for leisure 0.25 Fixed
ψ1 Pref. for leisure 0.25 Fixed
ν0 Importance of Deterministic Utility for n 3.3 Fixed
ν1 Importance of Deterministic Utility for n 3.3 Fixed
χ0
1 Amenities in Zone 1 1.0 Normalized
χ1
1 Amenities in Zone 1 1.0 Normalized
χ0
2 Amenities in Zone 2 0.795 Calibrated
χ1
2 Amenities in Zone 2 0.876 Calibrated

Notes: 1) Superscript 0 denotes low-skill household, superscript 1 denotes high-skill (college
graduate) household.
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Table 3: Model Prediction for Distribution of Incomes and Population

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
Technology:

(1) Ab 0.940 0.459 0.447 0.931 0.929 0.930
(2) Ah 0.371 0.371 0.542 0.542 0.542 0.542

Incomes:
(3) Type 1/0 Ratio of Labor Income 1.80 1.67 1.92 1.92 1.93 1.94
(4) Type 0 Income per Worker 3.07 2.62 2.87 3.16 3.14 3.17
(5) Living in Zone 1 3.15 2.69 2.93 3.24 3.22 3.25
(6) Living in Zone 2 2.93 2.50 2.73 3.02 3.00 3.03
(7) Type 1 Income per worker 5.52 4.38 5.50 6.09 6.06 6.14
(8) Living in Zone 1 5.63 4.35 5.40 6.12 6.06 6.15
(9) Living in Zone 2 5.36 4.43 5.62 6.05 6.07 6.12

Consumption:
(10) Type 1/0 Ratio of Consumption 1.77 1.51 1.65 1.82 1.81 1.82

Population:
(11) Total Low Skill 67% 67% 67% 67% 67% 67%
(12) Living in Zone 1 64% 66% 67% 65% 64% 64%
(13) Living in Zone 2 36% 34% 33% 35% 36% 36%
(14) Total High Skill 33% 33% 33% 33% 33% 33%
(15) Living in Zone 1 59% 56% 54% 58% 56% 57%
(16) Living in Zone 2 41% 44% 46% 42% 44% 43%

Notes: 1) We parameterize the model to the pre-COVID world. 2) In columns (2)-(4), we cut Āb by 50% to capture social distancing from the
pandemic. 3) Columns (3)-(6) capture the improvement in work-from-home technology during the pandemic by increasing Ah to the level
required to triple the share of hours worked from home for type 1 in going from columns (1) to (4). 4) We hold the supply of space fixed at the
pre-COVID baseline in counterfactuals (2)-(4). In counterfactual (5), we adjust the supply of space such that rents are equal to their
pre-COVID benchmark in column (1). In column (6), we keep the stock of office space at the level in column (1) but adjust the stocks of
residential space such that residential rents return to the level in column (1).
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Table 4: Model Predictions for Work Location, Space, and Rents

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
Hours Worked:

(17) Type 0 Hours per Worker 0.69 0.69 0.69 0.69 0.69 0.69
(18) Type 1 Effective Hours per Worker 0.73 0.46 0.60 0.80 0.78 0.81
(19) Type 1 Hours Worked in CBD per Worker 0.63 0.36 0.18 0.50 0.47 0.49
(20) Living in Zone 1 0.66 0.40 0.21 0.55 0.52 0.54
(21) Living in Zone 2 0.59 0.30 0.14 0.45 0.41 0.43
(22) Type 1 Hours Worked at Home per Worker 0.07 0.39 0.59 0.22 0.25 0.23
(23) Living in Zone 1 0.06 0.35 0.56 0.18 0.21 0.19
(24) Living in Zone 2 0.09 0.44 0.63 0.26 0.30 0.28
(25) Ratio Hours Worked at Home to Total Hours 0.10 0.52 0.77 0.30 0.35 0.32
(26) Living in Zone 1 0.08 0.46 0.73 0.25 0.29 0.26
(27) Living in Zone 2 0.13 0.59 0.81 0.37 0.42 0.39

Demand for Space:
(28) Aggregate Office Space in CBD 0.36 0.36 0.36 0.36 0.29 0.36
(29) Aggregate Space in Zone 1 1.95 1.95 1.95 1.95 2.10 2.11
(30) Home Office per Type 1 0.25 1.21 1.92 0.77 0.96 0.88
(31) Per Type 1 Other Housing per Person 3.17 2.54 2.48 3.03 3.27 3.34
(32) Per Type 0 Other Housing per Person 2.97 2.83 2.57 2.79 3.04 3.07
(33) Aggregate Space in Zone 2 1.63 1.63 1.63 1.63 1.94 1.94
(34) Home Office per Type 1 0.54 2.07 2.86 1.47 1.93 1.80
(35) Per Type 1 Other Housing per Person 4.36 3.45 3.32 4.11 4.67 4.74
(36) Per Type 0 Other Housing per Person 4.03 3.59 3.12 3.63 4.12 4.16

Rent per Unit of Space:
(37) CBD 1.00 0.41 0.25 0.85 1.00 0.83
(38) Zone 1 0.35 0.31 0.38 0.38 0.35 0.35
(39) Zone 2 0.24 0.23 0.29 0.27 0.24 0.24

Notes: 1) See notes to Table 3.
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Table 5: The Effect of Availability of Technology: A Hypothetical 1990 Pandemic

Hypothetical 1990 Pandemic 2020 Pandemic
Pre-COVID COVID Start Pre-COVID COVID Start

Row (1) (2) (3) (4)
Technology:

(1) Ab 0.94 0.47 0.94 0.46
(2) Ah 0.11 0.11 0.37 0.37

Hours Worked:
(3) Type 0 Hours per Worker 0.69 0.69 0.69 0.69
(4) Type 1 Effective Hours per Worker 0.72 0.36 0.73 0.46
(5) Type 1 Hours Worked at Home per Worker 0.00 0.01 0.07 0.39
(6) Ratio Hours Worked at Home to Total Hours 0.00 0.01 0.10 0.52

Incomes:
(7) Type 0 Income per Worker 3.05 2.43 3.07 2.62
(8) Type 1 Income per worker 5.34 3.40 5.52 4.38

Demand for Space:
(9) Aggregate Office Space in CBD 0.39 0.39 0.36 0.36
(10) Aggregate Space in Zone 1 1.89 1.89 1.95 1.95
(11) Aggregate Space in Zone 2 1.52 1.52 1.63 1.63

Rent per Unit of Space:
(12) CBD 1.00 0.63 1.00 0.41
(13) Zone 1 0.35 0.26 0.35 0.31
(14) Zone 2 0.24 0.18 0.24 0.23
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Table 6: Sensitivity of Results to EOS Between Work at Home and Office

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
A. Technology

EOS = 5
(1) Ab 0.94 0.46 0.45 0.93 0.93 0.93
(2) Ah 0.37 0.37 0.54 0.54 0.54 0.54

EOS = 3
(3) Ab 0.94 0.47 0.46 0.93 0.93 0.93
(4) Ah 0.21 0.21 0.42 0.42 0.42 0.42

EOS = 7
(5) Ab 0.94 0.45 0.44 0.93 0.93 0.93
(6) Ah 0.45 0.45 0.59 0.59 0.59 0.59

B. Rents
EOS = 5

(7) CBD 1.00 0.41 0.25 0.85 1.00 0.83
(8) Zone 1 0.35 0.31 0.38 0.38 0.35 0.35
(9) Zone 2 0.24 0.23 0.29 0.27 0.24 0.24

EOS = 3
(10) CBD 1.00 0.56 0.42 0.88 1.00 0.87
(11) Zone 1 0.35 0.28 0.35 0.40 0.35 0.35
(12) Zone 2 0.24 0.20 0.26 0.28 0.24 0.24

EOS = 7
(13) CBD 1.00 0.29 0.16 0.84 1.00 0.82
(14) Zone 1 0.35 0.34 0.39 0.38 0.35 0.35
(15) Zone 2 0.24 0.26 0.31 0.27 0.24 0.24

C. Incomes
EOS = 5

(16) Type 1 / 0 Income 1.80 1.67 1.92 1.92 1.93 1.94
(17) Type 1 Income / Worker 5.52 4.38 5.50 6.09 6.06 6.14
(18) Type 0 Income / Worker 3.07 2.62 2.87 3.16 3.14 3.17

EOS = 3
(19) Type 1 / 0 Income 1.80 1.55 1.83 1.96 1.96 1.97
(20) Type 1 Income / Worker 5.52 3.94 5.16 6.33 6.30 6.37
(21) Type 0 Income / Worker 3.07 2.54 2.83 3.23 3.21 3.24

EOS = 7
(22) Type 1 / 0 Income 1.80 1.78 1.98 1.91 1.93 1.93
(23) Type 1 Income / Worker 5.52 4.78 5.75 6.02 6.01 6.07
(24) Type 0 Income / Worker 3.07 2.69 2.91 3.14 3.12 3.15
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Table 7: Greater Agglomeration Economies in the CBD

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

A. Technology
δb = 0.04 (benchmark)

(1) Ab 0.94 0.46 0.45 0.93 0.93 0.93
(2) Ah 0.37 0.37 0.54 0.54 0.54 0.54

δb = 0.10
(3) Ab 0.86 0.40 0.37 0.84 0.83 0.84
(4) Ah 0.34 0.34 0.49 0.49 0.49 0.49

B. Rents
δb = 0.04

(5) CBD 1.00 0.41 0.25 0.85 1.00 0.83
(6) Zone 1 0.35 0.31 0.38 0.38 0.35 0.35
(7) Zone 2 0.24 0.23 0.29 0.27 0.24 0.24

δb = 0.10
(8) CBD 1.00 0.39 0.21 0.84 1.00 0.83
(9) Zone 1 0.35 0.31 0.37 0.38 0.35 0.35
(10) Zone 2 0.24 0.23 0.29 0.27 0.24 0.24

C. Incomes
δb = 0.04

(11) Type 1 / 0 Income 1.80 1.67 1.92 1.92 1.93 1.94
(12) Type 1 Income / Worker 5.52 4.38 5.50 6.09 6.06 6.14
(13) Type 0 Income / Worker 3.07 2.62 2.87 3.16 3.14 3.17

δb = 0.10
(14) Type 1 / 0 Income 1.80 1.67 1.91 1.92 1.92 1.93
(15) Type 1 Income / Worker 5.52 4.36 5.43 6.03 5.99 6.08
(16) Type 0 Income / Worker 3.07 2.61 2.84 3.15 3.12 3.16
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Figure 1: Differences in and Levels of Reported Commute Times

(a) Absolute Value of Difference of Individual Reported Commutes
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(b) Raw Distribution of Individual Reported Commutes
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Figure 2: WFH Percentages versus Binned Commute Times
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Notes: Observations are binned by average reported commute times. The x-axis is the commute-time
bin and the y-axis reports the percentage of observations, conditional on the x-axis bin, sample
respondents work from home at least one day per month (solid line), two days per month (dashed),
one day per week (dotted), and three days per week (dash-dot). Outcomes are not mutually exclusive,
for example a respondent that works from home at least three days per week also works from home at
least one day per week, at least two days per month, and at least 1 day per month. Observations from
the entire estimation sample are included and every share is computed using the IPWs described in
the text.
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A High-Skill Worker Problem

Denote consumption, housing, leisure, and amenities in location n for high-skill work-
ers as c1

n, h1
n, `1

n, and χ1
n. Utility over these variables for high-skill workers is

ν1
[
logχ1

n +
(
1− α1

)
log c1

n + α1 log h1
n + ψ1 log `1

n

]
.(A.1)

High-skill workers maximize utility by choosing consumption, housing, leisure, hours
to work in the CBD and at home, and office space to rent at the CBD and at home.
Denote rb as the rent per unit of office space in the CBD. For the time being, we
suppress location subscripts (the n) and high-skill superscripts (the 1) to keep nota-
tion manageable. Thus, at any given location, high-skill workers maximize utility by
solving

max
y,yb,yh,lb,lh,sb,sh,c,h,`

ν [logχ + (1− α) log c + α log h + ψ log `]

subject to

0 = µc
[
wy − c− rbsb − r

(
sh + h

)]
0 = µy

{[(
yb
)ρ

+
(
yh
)ρ]1/ρ − y

}
0 = µb

[
Ab
(
sb
)θ (

lb
)1−θ − yb

]
0 = µh

[
Ah
(
sh
)θ (

lh
)1−θ − yh

]
0 = µ`

[
1 − (1 + t) lb − lh − `

]
where µc, µy, µb, µh, and µ` are Lagrange multipliers.
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The first-order conditions are

y : µy = wµc

yb : µb = µyy
1−ρ (yb)ρ−1

yh : µh = µyy
1−ρ (yh)ρ−1

lb : µ` (1 + t) = µb (1− θ)
(
yb/lb

)
lh : µ` = µh (1− θ)

(
yh/lh

)
sb : µcr

b = µbθ
(
yb/sb

)
sh : µcr = µhθ

(
yh/sh

)
c : µc = (1− α) ν/c

h : µcr = αν/h

` : µ` = ψν/`.

From the FOCs for yb and yh we get

µb
µh

=

(
yb

yh

)ρ−1

and the FOCs for sb and sh imply

sb

sh
=

(
µb
µh

)(
yb

yh

)(
rb

r

)−1

=

(
yb

yh

)ρ(
rb

r

)−1

.(A.2)

Now use the production function for yb and yh to determine

yb

yh
=

(
Ab

Ah

)(
sb

sh

)θ (
lb

lh

)1−θ

=

(
Ab

Ah

)(
yb

yh

)ρθ (
rb

r

)−θ (
lb

lh

)1−θ

(
yb

yh

)1−ρθ

=

(
Ab

Ah

)(
rb

r

)−θ (
lb

lh

)1−θ

→ yb

yh
=

(
Ab

Ah

) 1
1−ρθ

(
rb

r

) −θ
1−ρθ

(
lb

lh

) 1−θ
1−ρθ

.(A.3)
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Return to the FOCs for lb and lh

lb

lh
=

(
µb
µh

)(
yb

yh

)
(1 + t)−1

=

(
yb

yh

)ρ
(1 + t)−1

=

(
Ab

Ah

) ρ
1−ρθ

(
rb

r

) −ρθ
1−ρθ

(
lb

lh

) ρ(1−θ)
1−ρθ

(1 + t)−1

→
(
lb

lh

) 1−ρ
1−ρθ

=

(
Ab

Ah

) ρ
1−ρθ

(
rb

r

) −ρθ
1−ρθ

(1 + t)−1

which gives us

lb

lh
=

(
Ab

Ah

) ρ
1−ρ
(
rb

r

)−ρθ
1−ρ

(1 + t)
−(1−ρθ)

1−ρ .(A.4)

Equation (A.4) yields an expression for lb/lh, which we use with equation (A.3) to solve
for yb/yh given prices rb and r. Given yb/yh, rb, and r we use equation (A.2) to solve for
sb/sh.

Next, we combine the FOCs for lb, lh, and ` to show that leisure is a constant. Note
that

µ`
[
(1 + t) lb + lh + `

]
= ψν + (1− θ)

[
µby

b + µhy
h
]
.

Impose the time constraint and use the FOCs for yb and yh to get

µ` = ψν + (1− θ)µyy1−ρ [(yb)ρ +
(
yh
)ρ]

= ψν + (1− θ)µyy1−ρ [yρ]

= ψν + (1− θ)µyy

= ψν + (1− θ)µcwy.

Now consider the FOCs for c, h, sh and sb

µc
[
c+ r

(
sh + h

)
+ rbsb

]
= (1− α) ν + αν + θ

[
µby

b + µhy
h
]
.
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Impose the budget constraint to get

µcwy = ν + θ
[
µby

b + µhy
h
]

= ν + θµcwy

→ µcwy =
ν

1− θ
(A.5)

which implies µ` = ν (1 + ψ). Insert this into the first order condition for ` to uncover

` =
ψ

1 + ψ

yielding that leisure is constant and independent of n. Given a value of the parameter
ψ, equation (A.4) completely characterizes how the household uses time not spent
enjoying leisure.

The expression for µcwy in equation (A.5) allows us to directly solve for consump-
tion, housing, and spending on office space in the CBD and at home as a function of
labor income (from the first-order conditions):

c = (1− θ) (1− α)wy

rh = (1− θ)αwy

rbsb + rsh = θwy.(A.6)

Given a solution for sb/sh, and given solutions for lb and lh, equation (A.6) enables us
to solve for sb and sh separately. Rewrite (A.6) as

sh
[
rb
(
sb

sh

)
+ r

]
= θwy.

From the production function(s), we can then write

θwy = θw
(
sh
)θ [(

Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ

+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

.

Combining these last two equations gives an expression for sh that is a function of all
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terms that are known,

sh =


θw

[(
Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ
+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

[
rb
(
sb

sh

)
+ r
]


1

1−θ

.

Once we know sh, we also know sb. Given knowledge of lb, sb, lh, and sh, we therefore
know income wy and the entire allocation and utility for high-skill workers at any
location n.

B Using Commute Times to Estimate the EOS be-
tween Work from Home and the Office

B.1 Constructing Ci

A set of questions in the LJF allows us to to determine the fraction of time each month
that a respondent spends working at home. The first relevant question in the LJF is,
“Are there days when you work only at home?” If the answer to this question is “no,”
then we set the temporary variable τi = 0.0. If the answer is “yes,” then respondents
are asked the follow up question of “How often do you work only at home?” Rather
than give a continuous number, possible responses are listed below along with our
coding of τi:

Response τi calculation
5 or more days a week 21.25 5.0*4.25
3 to 4 days a week 14.875 3.5*4.25
1 to 2 days a week 6.375 1.5*4.25
at least once a week 4.25 1.0*4.25
once ever two weeks 2.125 0.5*4.25
once a month 1.0
less than once a month 0.5

We set Ci, the fraction of time spent at the office, equal to
21.25− τi

21.25
.
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B.2 The Linear Approximation of the Logistic Function

Define the logistic function in x as

f (x) =
ea+bx

1 + ea+bx

A first order approximation to f (x) around x̄ is

f (x) ≈ f (x̄) + f ′ (x̄) (x− x̄)

= f (x̄) + f (x̄) [1− f (x̄)] b (x− x̄)

= ã + f (x̄) [1− f (x̄)] bx

(A.7)

where ã = f (x̄)
{

1 − [1− f (x̄)] bx̄
}

.

In Table 1, we estimate the parameters of f(x) for x = ln (1 + t) using GMM and
observed data on the fraction of days individuals work at home. We can thus map the
approximation in Equation (A.7) to our strategy for estimating Ψ. We set b = −3.0

which is approximately equal to the estimate of Ψ in columns 1 and 2 of Table 1,
x̄ = 0.10 (its sample average), and a = 2.5 which yields f (x̄) = 0.9, roughly the sample
average of f (x) in our data.

Figure A.1 graphs f (x) and its linear approximation for this parameterization.
The figure shows f (x) and its approximation for all commutes in the data; the vertical
red lines bracket the middle 95 percent of commutes. The figure shows that for all
commutes, but especially the 95 percent of commutes between the vertical lines, the
linear approximation yields very close values to the actual function.

In the event that x is not measured with error, the near linearity of f (x) for ac-
tual commute times and fraction of days worked shown in Figure A.1 suggests that
if we were to run a linear regression of y on x, the regression coefficient would be
approximately equal to

γ̂OLS ≈ bf (x̄) [1− f (x̄)] .(A.8)

This near linearity also implies that an unbiased estimate of b from GMM, b̂GMM , has
the property

b̂GMM ≈ γ̂OLS

f (x̄) [1− f (x̄)]
.(A.9)
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We believe that x is measured with error, such that when y is regressed on mea-
sured x, the regression coefficient from OLS will be equal to the estimate in equation
(A.8) times ζ, where ζ is the attenuation bias due to the presence of measurement
error. In the next section, we derive ζ−1, the exact correction for attenuation bias
in the case of OLS. Equations (A.8) and (A.9) suggest this correction will also work
for our GMM estimate. The next section verifies this conjecture using a Monte Carlo
simulation.

B.3 Monte Carlo Simulation of Analytical Bias Correction

B.3.1 Commute Time Data Generating Process

We conduct Monte Carlo simulation experiments to assess the performance of our
proposed bias correction. The data generating process that we consider is,

i = 1, ..., N

x∗i ∼ N(µx∗ , σ
2
x∗)

yit =

1 with probability = Λ(a+ bx∗i )

0 with probability = 1− Λ(a+ bx∗i )
, for t = 1, ..., T

yi =
1

T

T∑
t=1

yit

There are N individuals. Each individual draws x∗i from a normal distribution. The
variable has a causal effect (logit parameter b) on the probability that a binary out-
come y equals one. Each individual realizes T = 5 Bernoulli draws yit, the average of
which is yit.

The econometrician does not observe x∗i , but does observe two measures

xi1 = x∗i + e1

xi2 = x∗i + e2

[
ei1

ei2

]
∼ N

([
0

0

]
,

[
σ2
e ρeσ

2
e

ρeσ
2
e σ2

e

])
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The measurement errors ei1 and ei2 are uncorrelated with x∗i but are potentially cor-
related with one another (correlation ρe).

Our experiments involve simulating R = 1, 000 datasets from this process for each
of value of ρe = 0, .1, .2, .3, .4, .5. In each dataset, we compute the naive (ignoring
measurement error) logit GMM estimator b̂GMM using the mis-measured variable x1

as the only right-hand side regressor, and our proposed bias-corrected estimator b̂BC .
The naive GMM estimator solves,

(âGMM , b̂GMM) = arg min
(a,b)

m̂′(a, b)W m̂(a, b)

where

εi(a, b) = yi − Λ(a+ bxi1)

m̂0(a, b) =
∑
i

εi(a, b)

m̂1(a, b) =
∑
i

xi1εi(a, b)

m̂(a, b) =

[
m̂0(a, b)

m̂1(a, b)

]

and W is an optimal weighting matrix. As described in the text, the bias-corrected
estimator is computed using

b̂BC = b̂GMM

(
v̂ar(x1)

v̂ar(x∗)

)
= b̂GMM

(
v̂ar(x1)

v̂ar(x1)− v̂ar(e)

)

= b̂GMM

 v̂ar(x1)

v̂ar(x1)−
(
v̂ar(x1)− ĉov(x1, x2)

1− ρe

)
(A.10)

where ρe is an assumed value, and v̂ar(x1), ĉov(x1, x2) are computed in the (simulated)
data.
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B.3.2 Parameter Values for Simulations

For each simulated dataset, we set N = 1700. We do separate experiments for each
value of ρe ρe = 0, .1, .2.3, .4 and .5. At each assumed ρe, we choose values for the other
parameters of the data generating process to match three moments from the actual
commute data.

• Data moment var(ln(1 + ti1)) = .07072 = .005 to set var(x1) = .005

• Data moment cov
(

ln(1 + ti1), ln(1 + ti2)
)

= .00348 to set cov(x1, x2) = .00348

• Naive estimator Ψ̂GMM ≈ −3 to set b (by targeting the attenuated b̂GMM )

To find the values of σ2
x∗ and σ2

e that are consistent with these moments, we note that

var(x1) = σ2
x∗ + σ2

e

cov(x1, x2) = σ2
x∗ + ρeσ

2
e

which imply

σ2
e =

var(x1)− cov
(
x1, x2

)
1− ρe

=
.005− .00348

1− ρe
σ2
x∗ = var(x1)− σ2

e = .005− σ2
e

Beginning with equation (A.10), we set

b = b̂GMM ×

 var(x1)

var(x1)−
(
var(x1)− cov(x1, x2)

1− ρe

)


= −3×

 .005

.005−
(
.005− .00348

1− ρe

)


We choose µx∗ = 0.1 and thus set a = 1.7 to approximately match the unconditional
fraction of days spent working in the office.
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B.3.3 Results

In each simulated dataset, we compute the naive GMM estimator b̂GMM and compute
the corresponding bias corrected estimator using equation (A.10). Table A.1 summa-
rizing the results. For each value of ρe, the bias corrected estimator has a sampling
mean that is close to the assumed value of b, which occurs because the naive GMM
estimator has a sampling mean that is close to -3, suggesting that, under a correct
assumptions of ρe, the bias-corrected GMM estimator provides unbiased estimates of
b with measurement error in x1 and x2 that mimics the properties of the measurement
error in our commute data.
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Table A.1: Monte Carlo Simulation Results

ρe Assumed b b̂BC b̂GMM

0.0 -4.31 -4.30 -2.99
0.1 -4.53 -4.51 -2.98
0.2 -4.84 -4.85 -3.00
0.3 -5.30 -5.26 -2.98
0.4 -6.08 -6.05 -2.98
0.5 -7.65 -7.56 -2.96
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Figure A.1: Logistic Function and First-Order Approximation
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Notes: 1) Recall that t = 2 ∗minutes/ (8 ∗ 60), where minutes refers to the time required for a one-way
commute to work.
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