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1 Introduction

The work-at-home revolution has been slowly brewing for more than 30 years. The

oldest of us (Davis) can recall distinct technological advances that have contributed

to our ability to work effectively at home. In the early 1990s, affordable PCs running

Microsoft Word and Excel became widely available. In the mid 1990s, work email

became pervasive and the Netscape IPO lead a rush to explore the possibilities of the

World Wide Web. In the early 2000s, high-speed-internet became widely available

and by 2010 cellphones turned to smartphones. Finally, between 2010 and 2020 video-

conferencing technology became useable and cloud-computing became cheap and con-

venient, facilitating remote meetings and data sharing across the world.

A common theme of each of these innovations is that their impact on the ability

to do work depends at least in part, on the prevalence of adoption. There is no point

to writing an email if no one reads it, video-conferencing becomes very difficult if the

person on the receiving end has slow internet, and so forth. While many home-office

technologies have been around for a while, the technologies become much more useful

after widespread adoption.

We study the impact of the COVID-19 pandemic on the change in the productivity

of working at home and document how this change will affect our incomes, where and

how we work, where we live, and the demand and price of office space and housing.

We postulate that the pandemic accelerated the widespread adoption of technologies

that enable households to produce market work at home which, in turn, permanently

raised the relative productivity of working at home.

To understand the consequences of this change in home productivity, we specify

a model where high-skill workers can freely allocate their time to working at home

or in the office. There is no commute to working at home and the productivity of
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working at home differs from that at the office. High-skill workers also choose how

much physical space to rent at home and in the office. All workers choose where to

live, how much to consume, and how much housing to rent.

A key parameter in the model is the elasticity of substitution between market

work done at home and market work done in the office. With a high elasticity, small

changes in technology can lead to a large shift in behavior. For example, imagine that

working at home and in the office are perfect substitutes. This can lead to “bang-

bang” behavior, where little time is spent working at home up to a certain level of

work-at-home technology, after which a lot of time is spent working at home. Thus,

our understanding of how changes to work-at-home technology will affect outcomes is

intimately related to the elasticity of substitution in production between work done

at home and work in the office.

We use the model to estimate this elasticity of substitution from a cross-section of

data on high-skill workers from the American Time Use Survey (ATUS). In partic-

ular, the 2017-2018 Leave and Job Flexibility (LJF) module includes information on

the frequency of work from home. Given an elasticity of substitution, the model pre-

dicts an exact relationship between the time spent commuting (which is a function of

location choice) and the time households spend working at home vs. at the office. As

the price of working in the office (commuting time) rises, people should spend more

time working at home, and at a rate that depends on the elasticity of substitution. We

use a GMM procedure to correct for measurement error in the commute-time data to

bracket the elasticity of substitution between working at home and working at the

office between 3 and 7.

After parameterizing the model, we simulate the model to understand the impact

of the pandemic on work-at-home technology and its implications. We first study a

“before” period, call it 2019, where high-skill workers work at home 20% of the time.
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Given the model structure, this pins down the level of work-at-home technology prior

to the onset of the pandemic. We then study an “after” period, call it 2022, where

high-skill workers double their time working at home, which is the lower bound on

estimates of the post-COVID increase in work-from-home. This expected doubling

in hours worked at home sizes the gain in work-at-home productivity that occurred

during the pandemic. Finally, we then study the pandemic period itself – a period in

which we cut office productivity by 50%, reflecting the impact of social distancing on

productivity at the office.

Our key result is that the widespread adoption of work-at-home technology in-

creased the productivity of working at home relative to the productivity of working in

the office by 34% between the onset and the end of the pandemic. The higher produc-

tivity of work from home leads to an approximately 20% decline in office rents in the

central business district (CBD) in the short-run and long-run if the supply of office

space cannot be reduced relative to pre-pandemic levels. Residential rents rise in the

short-run, especially in the outer suburbs, due to increased demand for home office

space. Hours worked at home increases even more in the long-run after the supply

of space in residential areas has a chance to adjust. Since only high-skill workers

can work at home in our model, the large gains to the technology from working at

home increases income inequality between low- and high-skill workers. Finally, there

is a small decline in productivity in the CBD due to a decrease in agglomeration

economies.

We also simulate what would have happened if the COVID pandemic had occurred

in 1990, prior to the existence of many work-at-home technologies. We assume that,

in 1989, relative home productivity is 1/3 its 2019 value and that it does not change

after the onset of the pandemic in 1990. As with the 2020 pandemic, we characterize

the 1990 pandemic by a 50% drop in relative productivity in working at the office.
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During this hypothetical 1990 pandemic, people continue to work at the office at the

same rate and do not substitute into working at home. Incomes and prices fall, but

there is no increased demand to work at home in the suburbs. According to our model,

in 1990 working at home is not a practical alternative to working in the office.

As this 1990 counterfactual simulation indicates, the long-term effects of the COVID

depend critically on work-from-home technology being available but not yet fully

adopted. Overall, our model suggests the COVID pandemic will lead to higher in-

come lifetime for the working population because it forced many households to work

at home which boosted work-at-home productivity. While the measured gains to pro-

ductivity we report of working at home likely would have happened eventually, the

pandemic accelerated the process.

The findings of the paper have implications for municipal finance and environmen-

tal sustainability. The model suggests high-skill workers will increasingly relocate to

more distant suburbs and CBD office rents (and therefore prices and property taxes)

will fall, suggesting the budgets of central cities will be strained. While workers

commuting less will reduce their carbon footprints, to the extent that home offices

are less energy efficient than offices in large, well-built buildings, the net effect on

sustainability is unclear.

Our paper relates to four distinct literatures. The first is how technological in-

novations get adopted and diffuse. Comin and Mestieri (2014) discuss the diffusion

process in detail and several drivers of the pace of technological adoption. We find that

COVID radically accelerated the use of work-from-home technology due to a large pos-

itive externality in adoption. Katz and Shapiro (1986) and Brock and Durlauf (2010)

theoretically study technology adoption in the presence of network externalities more

specifically. Our finding of a positive externality in technology adoption in work-from-

home technology is also consistent with what Foster and Rosenzweig (2010) posit for
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health innovations.

The second literature we speak to is the effect of technological adoption on house-

hold lifestyles. Greenwood, Seshadri, and Yorukoglu (2005) argue that the consumer

durable goods revolution, borne out of electricity, liberated women from the drudgery

of home production. A related literature discusses how this home production technol-

ogy influences the use of time spent working at the office and working on home pro-

duction over the business cycle; see, for example, McGrattan, Rogerson, and Wright

(1997).

A more recent literature studies work-from-home specifically. Bloom, Liang, Roberts,

and Ying (2014) and Emanuel and Harrington (2020) find that call center workers are

more productive when working from home. We study a broader class of workers whose

work is less routine on average such that work from home may be less productive.

Our focus, however, is on the substitutability between work-at-home and office work.

Understanding this substitutability is important for understanding the long-term im-

plications of changes to work-at-home technology. Our findings also demonstrate how

the COVID shock could make us permanently more productive in aggregate. Instead

of studying the productivity of working from home, Mas and Pallais (2017) study how

workers value it and find that prospective call centers employees are willing to take

an 8% cut in pay to work from home. This finding suggests additional welfare benefits

from the work-from-home technology boon than higher consumption.

Our paper also relates to a more recent literature investigating the long-term ef-

fects of the COVID crisis on work and cities. Our paper is perhaps most closely related

to Delventhal, Kwon, and Parkhomenko (2020). Delventhal, Kwon, and Parkhomenko

(2020) model the effect of an exogenous increase in the share of market work done

from home on city structure. In addition to modeling the driving engine of work from

home, our model captures heterogeneity in the skill level of workers that can work
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from home.

Finally, our work relates to how cities respond to shocks in the short-run and long-

run. Ouazad (forthcoming) surveys this literature. Our model predicts the trend

towards suburbanization Ouazad (forthcoming) finds. The evidence suggests that

natural disasters tend to have only transitory effects on city structure (Davis and We-

instein, 2002; Ouazad, forthcoming) but that factors that influence productive capac-

ity, such as transportation, tend to have permanent effects (Bleakley and Lin, 2012;

Brooks and Lutz, 2019). Our model predicts that the short-run shock to productivity

at the office will have long-lasting effects on city structure.

We present our model in the next section. Section 3 describes how we estimate the

elasticity of substitution of working at home and working at the office and calibrate

the other parameters of the model. In section 4 we run counterfactual experiments of

the model, showing how changes to work-at-home technology affect the allocation of

time of high-skill, incomes of high- and low-skill workers, and office and residential

rents. Section 5 concludes.

2 Model

A measure 1 of households live in a large metropolitan area that we call a city. A

fraction π of workers are high-skill and 1 − π are low-skill. Low-skill workers differ

from high-skill workers in the model along a number of dimensions. The most im-

portant difference is that we allow high-skill workers to optimally allocate their time

between working at the office and working at home, but low-skill workers only work

at the office. Although this difference is extreme, it highlights the fact that working
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from home is much more common among college-educated workers.1 Unless otherwise

specified, variables and parameters specific to high-skill workers have a superscript

of 1 and variables and parameters specific to low-skill workers have a superscript of

0.

2.1 Low-Skill Workers

We start by studying the decision problem of low-skill workers. All low-skill workers

work for firms operating in the CBD. Low-skill workers choose where to live and how

much labor to supply. Firms pay w0 per unit of low-skill labor that is supplied, so

low-skill households living in location n working bn hours in the CBD earn annual

income of w0bn.

Households receive utility from consumption, housing, leisure, and amenities spe-

cific to a location. Denote these variables for low-skill workers living in location n as

n as c0
n, h0

n, `0
n, and χ0

n. Low-skilled households living in n receive utility of

ν0
[
logχ0

n +
(
1− α0

)
log c0

n + α0 log h0
n + ψ0 log `0

n

]
.(1)

Non-housing consumption is is equal to labor income less housing expenditures, c0
n =

w0bn− rnh0
n, where rn is the rental price of one unit of housing at location n. Leisure is

equal to time not spent commuting or working in the CBD, `0
n = 1− (1+ t0n)bn, where t0n

is the commuting time required for each unit of work in the CBD for low-skill workers.

We discuss ν0 later; for now it can be ignored. α0 captures the benefit of more housing

relative to non-housing consumption and ψ0 captures the benefit of more leisure.
1See, for example, Arbogast, Gascon, and Spewak (2019), Dingel and Neiman (2020), Mas and

Pallais (2020), and Papanikolaou and Schmidt (2020).
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The optimal quantities of housing and time spent working in the CBD solve

max
h0n,bn

ν0
[
logχ0

n +
(
1− α0

)
log
(
w0bn − rnh0

n

)
+ α0 log h0

n + ψ0 log
(
1− (1 + t0n)bn

)]
.

The first-order conditions are

bn =

(
1

1 + t0n

)(
1

1 + ψ0

)
h0
n = α0w0bn/rn

implying c0
n = (1− α0)w0bn. Optimized utility for low-skill workers living in location

n is thus

u0
n = ν0

[
logχ0

n − log(1 + t0n) − α0 log rn + ζ0
]

where ζ0 is a constant that depends on α0, ψ0, and w0. Note that utility is increasing

in amenities χ0, decreasing in commute times t0n, and decreasing in rental prices rn.

We allow low-income households to vary in their preferences for living in location

n. For a particular low-income household i, the utility of living in n is

u0
ni = u0

n + eni

where eni is assumed to vary across households i and locations n. Since eni is additive,

it does not affect any decisions conditional on residing in location n. We assume that

eni is drawn from the Type 1 Extreme Value distribution.

Household i chooses its optimal location of residence n∗i to satisfy

n∗i = arg max
n=1,...,N

{
u0
ni

}
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where N is the number of locations in the city where the agent can live. Define the

variable U0, proportional to expected utility for low-skill households, as

U0 = log
∑
N

eu
0
n .

Due to the properties of the Type 1 Extreme Value distribution, the probability low-

skill household i lives in specific location n′ is

f 0
n′ = eu

0
n′/eU

0

and log relative probabilities over location choice between locations n′ and n has the

simple expression

log
(
f 0
n′/f

0
n

)
= u0

n′ − u0
n

= ν0

[
log
(
χ0
n′/χ

0
n

)
− log

(
1 + t0n′

1 + t0n

)
− α0 log (rn′/rn)

]
.

The population of low-skill workers is decreasing in commuting costs, decreasing in

rental prices, and increasing in amenities. The parameter ν0 pins down the respon-

siveness of the low-skill population with respect to differences in amenities or com-

muting costs and, given this, α0 pins down the responsiveness of the population with

respect to rental prices.

2.2 High-Skill Workers

High-skill workers can work at home or in the office which we assume (for conve-

nience) is located in the CBD. The total amount of effective labor that a high-skill

worker living in location n supplies to a firm, yn, is a CES aggregate of effective la-

bor while working from home, yhn, and effective labor while working at the office, ybn,
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specifically

yn =
[(
ybn
)ρ

+
(
yhn
)ρ]1/ρ(2)

ρ ≤ 1 determines the elasticity of substitution of effective labor at home and at the

office in creating units of total effective labor. Firms pay w1 per unit of total effective

high-skill labor and total income to high-skill workers supplying yn units of effective

labor is w1yn.

Effective labor at home and in the CBD are generated using raw hours worked l

and space s according to

ybn = Ab
(
sbn
)θ (

lbn
)1−θ(3)

yhn = Ah
(
shn
)θ (

lhn
)1−θ(4)

where sbn and shn refer to space rented in the CBD and space rented at home that is

strictly dedicated to work (such as a home office), respectively, and lbn and lhn refer to

hours worked at the office in the CBD and hours worked at home. θ is the share

of space in the production process, which is identical for the home and the CBD. Ab

and Ah are total factor productivity for effective labor at the firm and at home for

high-skill households. Households take the values of Ab and Ah as given.

Denote consumption, housing, leisure, and amenities in location n for high-skill
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households as c1
n, h1

n, `1
n, and χ1

n. Utility over these variables for high-skill workers is2

ν1
[
logχ1

n +
(
1− α1

)
log c1

n + α1 log h1
n + ψ1 log `1

n

]
.(5)

High-skill workers maximize utility by choosing consumption, housing, leisure, hours

to work in the CBD and at home, and office space to rent at the CBD and at home.

Denote rb as the rent per unit of office space in the CBD. For the time being, we sup-

press location subscripts (the n) and high-skill superscripts (the 1) to keep notation

manageable. Thus, at any given location, high-skill households maximize utility by

solving

max
y,yb,yh,lb,lh,sb,sh,c,h,`

ν [logχ + (1− α) log c + α log h + ψ log `]

subject to

0 = µc
[
wy − c− rbsb − r

(
sh + h

)]
0 = µy

{[(
yb
)ρ

+
(
yh
)ρ]1/ρ − y

}
0 = µb

[
Ab
(
sb
)θ (

lb
)1−θ − yb

]
0 = µh

[
Ah
(
sh
)θ (

lh
)1−θ − yh

]
0 = µ`

[
1 − (1 + t) lb − lh − `

]
where µc, µy, µb, µh, and µ` are Lagrange multipliers.

2In our calibration we set α0 > α1. This is an analytically tractable way to capture non-homothetic
preferences in housing consumption, i.e., that poor people spend a larger fraction of their income on
housing. Although Davis and Ortalo-Magné (2011) argue that the expenditure share on rent for the
median renter is constant across cities and over time, a large number of studies find that, in the
cross-section of people, a 1% increase in income results in a much less than 1% increase in housing ex-
penditure. See, for example, Rosen (1979), Green and Malpezzi (2003), Glaeser, Kahn, and Rappaport
(2008), and Rosenthal (2014).
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The first-order conditions are

y : µy = wµc

yb : µb = µyy
1−ρ (yb)ρ−1

yh : µh = µyy
1−ρ (yh)ρ−1

lb : µ` (1 + t) = µb (1− θ)
(
yb/lb

)
lh : µ` = µh (1− θ)

(
yh/lh

)
sb : µcr

b = µbθ
(
yb/sb

)
sh : µcr = µhθ

(
yh/sh

)
c : µc = (1− α) ν/c

h : µcr = αν/h

` : µ` = ψν/`.

From the FOCs for yb and yh we get

µb
µh

=

(
yb

yh

)ρ−1

and the FOCs for sb and sh imply

sb

sh
=

(
µb
µh

)(
yb

yh

)(
rb

r

)−1

=

(
yb

yh

)ρ(
rb

r

)−1

.(6)

Now use the production function for yb and yh to determine

yb

yh
=

(
Ab

Ah

)(
sb

sh

)θ (
lb

lh

)1−θ

=

(
Ab

Ah

)(
yb

yh

)ρθ (
rb

r

)−θ (
lb

lh

)1−θ

(
yb

yh

)1−ρθ

=

(
Ab

Ah

)(
rb

r

)−θ (
lb

lh

)1−θ

→ yb

yh
=

(
Ab

Ah

) 1
1−ρθ

(
rb

r

) −θ
1−ρθ

(
lb

lh

) 1−θ
1−ρθ

.(7)
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Return to the FOCs for lb and lh

lb

lh
=

(
µb
µh

)(
yb

yh

)
(1 + t)−1

=

(
yb

yh

)ρ
(1 + t)−1

=

(
Ab

Ah

) ρ
1−ρθ

(
rb

r

) −ρθ
1−ρθ

(
lb

lh

) ρ(1−θ)
1−ρθ

(1 + t)−1

→
(
lb

lh

) 1−ρ
1−ρθ

=

(
Ab

Ah

) ρ
1−ρθ

(
rb

r

) −ρθ
1−ρθ

(1 + t)−1

which gives us

lb

lh
=

(
Ab

Ah

) ρ
1−ρ
(
rb

r

)−ρθ
1−ρ

(1 + t)
−(1−ρθ)

1−ρ .(8)

Equation (8) yields an expression for lb/lh, which we use with equation (7) to solve for

yb/yh given prices rb and r. Given yb/yh, rb, and r we use equation (6) to solve for sb/sh.

Next, we combine the FOCs for lb, lh, and ` to show that leisure is a constant. Note

that

µ`
[
(1 + t) lb + lh + `

]
= ψν + (1− θ)

[
µby

b + µhy
h
]
.

Impose the time constraint and use the FOCs for yb and yh to get

µ` = ψν + (1− θ)µyy1−ρ [(yb)ρ +
(
yh
)ρ]

= ψν + (1− θ)µyy1−ρ [yρ]

= ψν + (1− θ)µyy

= ψν + (1− θ)µcwy.
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Now consider the FOCs for c, h, sh and sb

µc
[
c+ r

(
sh + h

)
+ rbsb

]
= (1− α) ν + αν + θ

[
µby

b + µhy
h
]
.

Impose the budget constraint to get

µcwy = ν + θ
[
µby

b + µhy
h
]

= ν + θµcwy

→ µcwy =
ν

1− θ
(9)

which implies µ` = ν (1 + ψ). Insert this into the first order condition for ` to uncover

` =
ψ

1 + ψ

yielding that leisure is constant and independent of n. Given a value of the param-

eter ψ, equation (8) completely characterizes how the household uses time not spent

enjoying leisure.

The expression for µcwy in equation (9) allows us to directly solve for consumption,

housing, and spending on office space in the CBD and at home as a function of labor

income (from the first-order conditions):

c = (1− θ) (1− α)wy

rh = (1− θ)αwy

rbsb + rsh = θwy.(10)

Given a solution for sb/sh, and given solutions for lb and lh, equation (10) enables us
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to solve for sb and sh separately. Rewrite (10) as

sh
[
rb
(
sb

sh

)
+ r

]
= θwy.

Note that all the terms in the brackets in the left-hand side are functions of the

parameters since we can insert equation (8) into equation (7) and in turn get sb/sh as a

function of the model parameters using equation (6). From the production function(s),

we can then write

θwy = θw
(
sh
)θ [(

Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ

+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

.

Combining these last two equations gives an expression for sh that is a function of all

terms that are known,

sh =


θw

[(
Ab
(
sb

sh

)θ (
lb
)1−θ

)ρ
+
(
Ah
(
lh
)1−θ

)ρ]1/ρ

[
rb
(
sb

sh

)
+ r
]


1

1−θ

.

Once we know sh, we also know sb. Given knowledge of lb, sb, lh, and sh, we therefore

know income wy and the entire allocation and utility for high-skill workers at any

location n.

To continue, we reintroduce location subscripts and worker-skill superscripts. De-

note maximized utility for high-skill workers at location n as u1
n. Similar to low-skill

workers, each high-skill household j has a specific additive preference for living in

location n, enj, such that utility of living in n for household j is

u1
nj = u1

n + enj.
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Since enj is an additive shock, it does not affect any decisions conditional on residing

in location n. As with low-skill workers, we assume that enj is drawn iid from the Type

1 Extreme Value distribution. Household j chooses its optimal location of residence

n∗j to satisfy

n∗j = arg max
n=1,...,N

{
u1
nj

}
.

Denote the probability a high-skill worker optimally chooses to live in location n as

f 1
n. The log relative probability high-skill workers choose location n′ as compared to n

is equal to

log
(
f 1
n′/f

1
n

)
= u1

n′ − u1
n

which we cannot reduce further analytically.

2.3 Wage Rates per Effective Hour

Define the total hours of all low-skill workers as B =
∑
n

f 0
nbn and the total effective

hours of all high-skill workers as Y =
∑
n

f 1
nyn. A representative firm aggregates these

quantities and produces a final good according to

O = [Bω + λY ω]
1
ω .

The firm chooses B and Y to maximize profits according to

[Bω + λY ω]
1
ω − w0B − w1Y.
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The first-order conditions of this problem yield an expression for payment per unit of

effective hours for both low- and high-skill

w0 = O1−ω (B)ω−1

w1 = O1−ωλ (Y )ω−1

implying
w1

w0
= λ

(
Y

B

)ω−1

. (11)

2.4 Technology and Commuting Processes

Although our model is static, in our counterfactual experiments we solve for different

steady states of the model in which the variables governing the relative technology of

working at home and in the office, Ah and Ab, may be different than in our baseline

calibration. One important consideration is whether we should expect the level of

work-at-home technology, Ah, to change in response to a surge in the quantity of

people that have worked at home (due to the pandemic). To allow for this possibility,

we specify

Ah = Āh (Lmaxh )δh(12)

where Lmaxh is the highest amount of time in aggregate that high-skill agents spent

working at home in any previous year.3 This captures the idea that if suddenly many

more people have had experience working at home, then all workers will be more

productive in the future at working at home.4

3Note that Lmaxh is bounded below by 0 and above by π/
(
1 + ψ1

)
.

4For example, a home fitness equipment salesperson will find more value in adopting work-from-
home technology if she expects to be able to exhibit her product via teleconference than if she only
anticipates other salespeople to have had experience with videoconference technology. Similarly, a tax
preparer may invest in work-from-home technology if he anticipates that most of his clients will be
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Additionally, high-skill worker productivity at the office, Ab, may be subject to

agglomeration externalities, such that the quantity of workers at the CBD directly

affects Ab. Define the aggregate quantity of hours of high-skill workers in the CBD as

Lb = π
∑
n

f 1
nl
n
b .5 We specify

Ab = ĀbLδbb (13)

with δb ≥ 0.

Finally, we allow for the possibility of congestion externalities in commuting, and

that low-skill workers may face longer commute times to the CBD than high skill at

each residential location n. We specify

t1n = t̄n (B + Lb)
γ

t0n = κ t1n with κ ≥ 1.

With this specification γ ≥ 0 captures congestion externalities and t̄n can vary with

location, but the percentage change in commuting costs due to the congestion exter-

nality is constant.

Note that in the presence of agglomeration and congestion externalities, the equi-

librium we compute is likely inefficient because the household does not consider the

impact of his or her decisions on the productivity and commuting times of others. If

agglomeration economies are exclusively at the level of the firm, the firm can inter-

nalize the externality. However, if there are significant externalities at the city-level,

such as the sort documented by Atkin, Chen, and Popov (2020), there may be a role

for public policy to improve expected utility. A large body of earlier work suggests

agglomeration economies operate across firms within the same industry and across

industries. Many of these agglomeration economies require face-to-face interaction

willing to meet virtually and transmit documents electronically.
5Like Lmaxh , Lb is bounded below by 0 and above by π/

(
1 + ψ1

)
.
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to achieve rather than proximity merely entailing a reduction in trade costs. Glaeser

(2012) and Combes and Gobillon (2015) review this literature.

3 Parameterizing the Model

With the exception of δh, we estimate or calibrate the parameters of the model to data

prior to the onset of COVID.

3.1 Estimating the Elasticity of Substitution between Home

and Office Work

The parameter ρ governs the elasticity of substitution (EOS) between home and office

work and is new to the literature. Our estimation strategy for ρ builds on Equation

(8), which implies that the log-odds of commuting are linear in log-commuting costs,

log(1 + t),

log

(
lb

lh

)
=

ρ

1− ρ
log

(
Ab

Ah

)
+
−ρθ
1− ρ

log

(
rb

r

)
+
− (1− ρθ)

1− ρ
log
(
1 + t

)
(14)

with a slope coefficient (third term) of Ψ ≡ ∂ log(lb/lh)

∂ log(1 + t)
= −(1−ρθ)

1−ρ .

Conceptually, one can think of lb as typical days worked in the office per week

or month and lh as typical days worked at home over the same period. If we define

x = lb/lh, then the probability that a person works in the office on any given day is

equal to x/ (1 + x). This transformation allows us to use survey data on the fraction of

days spent working at home versus in the office to estimate ρ for reasons we explain

next.

Define Ci as the fraction of days individual i reports working in the office. Then,
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we can write the estimating version of Equation (14) as

E(Ci) =
exp

(
log
(
lb

lh

))
1 + exp

(
log
(
lb

lh

))
E(Ci) = Λ

(
log
(
lb/lh

))
(15)

E(Ci) ≈ Λ
(
β0 +X ′iβ1 + Ψ log

(
1 + ti

))

where Λ(.) is the logistic function. The transformation is required because some in-

dividuals in our data report that they never work at home. Even if our theory pre-

dicts everyone spends at least some some time at home, when surveyed over a small-

enough time window a respondent may not have worked at home at all. For these

individuals, Ci is well defined but log
(
lb/lh

)
is not.

We account for unmodeled heterogeneity in the relative productivity of work from

home and work at the office across people by replacing the two leading terms in (14)

with a function of observable characteristics (Xi). We include age, age2, a female indi-

cator, age-female and age2-female interactions, race, marital status, two-digit indus-

try dummies, and two-digit occupation dummies in Xi. The main regressor of interest

is log(1 + ti), which must vary across households (conditional on Xi) to identify Ψ.

3.1.1 Data

We estimate the parameters of (15) using data from the 2017-2018 Current Popula-

tion Survey (CPS), the American Time Use Survey (ATUS), and the Leave and Job

Flexibility (LJF) module of the CPS. The ATUS and LJF are both CPS submodules.

Respondents provide time a diary of activities on one randomly chosen day. The ATUS

data provide a record of commute duration for cases where a commute occurs on the

observation day. The LJF sample is a subsample of ATUS respondents. LJF asks

questions focusing on workplace leave policies and job flexibility, including whether
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respondents have the ability to work from home and the frequency of home work.

We merge ATUS and JTW records at the individual level to create a dataset con-

taining both commute times and frequencies of work at home. There are two main

challenges with using these data. First, following the merge, we restrict to individu-

als who were observed commuting on their randomly selected ATUS observation day.

This necessary sample restriction introduces non-representativeness to our merged

sample. Given that we exclude from the sample observations where people are not

commuting on the ATUS observation day, the probability of an individual i being rep-

resented in our sample is increasing in the probability that i commutes on any given

day. We correct for this by reweighting the sample. The LJF survey collects infor-

mation on the fraction of days that each individual commutes; denote this fraction

Ci. Given the probability that the respondent is included in our sample is (effectively)

equal to the fraction of that individual’s days that involve a commute, we reweight to

undo this selection by setting sampling weights equal to the inverse of this fraction,

IPWi = 1/Ci.

Second, there is likely significant measurement error in the reporting of commute

times. For example, over 90% of people report a commute time that is a multiple of 5

minutes, and there are large masses at 15 and 30 minutes. We use two approaches to

correct for bias due to measurement error. The first is an instrumental variables ap-

proach that exploits the fact that we observe multiple reported commute times for the

majority of individuals in our sample. We compute the two measures of commuting

cost using ti1 = 2×commute timei1 (minutes)
8×60

and ti2 = 2×commute timei2 (minutes)
8×60

defining the “com-

mute times‘’ as the lengths of the two longest-duration activity intervals classified as

“time spent traveling for work” in the ATUS time diary. For individuals who report

only one “time spent traveling for work” interval, ti2 is missing. Using one measure as

an IV for the other is a common approach to addresses measurement errors under the
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assumption that the measurement errors from the two measures are uncorrelated.

Two striking patterns in the commute-time data, shown in Figure A.2 of the Ap-

pendix, cause us to suspect that the measurement errors may, in fact, be correlated.

First, shown in the top panel of the figure, 51% of individuals with two observed com-

mutes report the exact same commute time. Second, shown in the bottom panel, most

commute times appear to be rounded, with 91% being a multiple of 5 minutes and

46% being a multiple of 15 minutes. Based on this evidence, we believe it is likely the

measurement error of two reported commutes is positively correlated.6 Therefore,

our second approach to addressing measurement error involves correcting non-IV es-

timates of ψ using an analytically-derived adjustment that is based on an assumed

value of the correlation of the measurement errors of the two reported commutes.

With this approach, we are able to assess the sensitivity of our estimates of ψ to the

correlation of the measurement errors.

3.1.2 Estimation Details

We use a GMM estimator to compute estimates of Ψ. We first compute estimates

that do not correct for measurement error in reported computing times. We then

use a related IV version of the estimator to compute measurement-error-corrected

estimates. The moments we target for estimation are based on the error term given

by the difference between each individual’s reported fraction of days spent in the office

and the prediction given by Equation (15). Under a given parameterization (Ψ, β) this

prediction error can be written

εi(Ψ, β) = Ci − Λ
(
β0 +X ′iβ1 + Ψ log

(
1 + ti1

))
.

6For example, a person with two realized commutes of 26 minutes and 27 minutes might report 30
minutes for both commutes.
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The GMM estimator with no measurement error correction is based on the moments

m̂0(Ψ, β) =
∑
i

εi(Ψ, β)

m̂1(Ψ, β) =
∑
i

Xi1εi(Ψ, β)

...(16)

m̂K(Ψ, β) =
∑
i

XiKεi(Ψ, β)

m̂K+1(Ψ, β) =
∑
i

log(1 + ti1)εi(Ψ, β)

whereK is the length ofXi. Estimation is based on the moment condition, E[m̂(Ψ, β)] =

0, where

m̂(Ψ, β) =



m̂0(Ψ, β)

m̂1(Ψ, β)

...

m̂K+1(Ψ, β)


and the GMM estimator is

(Ψ̂GMM , β̂GMM) = arg min
(Ψ,β)

m̂′(Ψ, β)W m̂(Ψ, β)(17)

whereW is an optimal weighting matrix.

This GMM framework also directly facilitates our IV strategy for accounting for

measurement error. We correct for measurement error using two approaches, both of

which rely on the bias due to measurement error in our logistic setting being similar

to that which arises in the linear regression framework. In the appendix, we show

that over the relevant range of commute times and a high probability of commuting

similar to what we observe in the data, the logistic function is close to linear such
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that a linear approximation is reasonable.

Both approaches exploit the fact that many people report more than one commute.

We use one commute for the same individual as an instrument for the other commute.

This corrects for the measurement error within an individual that is uncorrelated

across trips. For example, suppose an individual recalls that the afternoon commute

was 18 minutes while only recalling that the morning commute was approximately

20 minutes. Alternatively, suppose an individual runs an errand on the way home

from work and thus misreports the afternoon commute time because of inclusion of

the errand. The morning commute is correlated with the true commute time but

uncorrelated with the extra errand time.

Our first approach to correcting for correcting for measurement error constructs

the GMM-IV estimator by replacing the orthogonality condition, moment K + 1, with

the IV analog,

m̂K+1(Ψ, β) =
∑
i

log(1 + ti2)εi(Ψ, β).(18)

That is, identification of Ψ is based on the orthogonality of the second-commute-time

IV log(1 + ti2) with the prediction error calculated using log(1 + ti1). To maximize ef-

ficiency, we allow each individual in our sample to contribute two observations for

the IV estimator. For one observation, we treat the first commute time measurement

as the regressor log(1 + ti1) and the second commute time measurement as the in-

strument log(1 + ti2), and for the second observation we reverse the roles of the two

measures.

Our second strategy to account for measurement error involves applying an an-

alytical correction to the estimate of Ψ from the GMM moments in Equation (16).

We derive the correction by applying the analytical expression for the magnitude of
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attenuation bias in the linear regression framework,

E[Ψ̂GMM ] ≈ Ψ×

 var
(true value︷︸︸︷
x∗i
)

var
(
xi1︸︷︷︸

measured value

)
(19)

where, for compactness of notation, we have substituted x∗i = log(1 + ti) for the true

value of the mismeasured covariate and xi1 = log(1 + ti1) and xi2 = log(1 + ti2) for the

measurements. We write the measurements as

xi1 = x∗i + ei1

xi2 = x∗i + ei2

var


ei1
ei2


 =

 σ2
e ρeσ

2
e

ρeσ
2
e σ2

e

 .
The measurement errors ei1 and ei2 are uncorrelated with x∗i but are potentially cor-

related with one another with correlation coefficient ρe > 0.

We construct the bias-corrected estimator by multiplying the naive GMM estima-

tor by the inverse of an estimate of the attenuation bias

Ψ̂BC = Ψ̂GMM

(
v̂ar(x1)

v̂ar(x∗)

)
= Ψ̂GMM

(
v̂ar(x1)

v̂ar(x1)− v̂ar(e)

)
.

Finally, noting that

var(xi1) = σ2
x∗ + σ2

e

cov(xi1, xi2) = σ2
x∗ + ρeσ

2
e
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which imply that

var(ei) =
var(xi1)− cov(xi1, xi2)

1− ρe

the bias-corrected estimator is

Ψ̂BC = Ψ̂GMM

 v̂ar(xi1)

v̂ar(xi1)−
(
v̂ar(xi1)− ĉov(xi1, xi2)

1− ρe

)
 .(20)

In the appendix, we present evidence from Monte Carlo experiments showing that

the correction based on this approximation performs well in simulated datasets that

match key moments of the commute data and with a range of correlations between

the measurement errors in two reported commutes.

In Table 1, we report GMM estimates of ψ, the value of ρ after imposing θ = 0.18,

and the implied elasticity of substitution (EOS) between working at home and in the

office. Columns 1 and 2 report GMM estimates without correcting for measurement

error without (column 1) and with (2) demographic controls and industry and occu-

pation fixed effects. The sample in these columns is anyone that reports at least one

commute. For the 1,203 commuters that report two commutes, we create two records,

one for each commute time reported. We include both these records in our estima-

tion and allocate 50% of the IPW to each of them. These columns show that when

we do not correct estimates for measurement error, the estimate of the EOS is about

3.0. Column (3) shows estimation results resulting from a simple attempt to remove

observations that may obviously be contaminated with measurement error: We re-

move from the sample individuals who report two commutes that differ by at least 20

minutes. This removes 147 observations, 8.3 percent of the sample, and boosts the

estimate of the EOS to about 3.5.
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Column 4 shows our GMM estimate when we restrict the sample to individuals

who report at least two commutes, 1,203 respondents, and column 5 shows our IV-

corrected GMM estimates from this sample based on the moment condition shown

in equation (18). The IV correction increases the coefficient estimate by a factor of

nearly 1.6, from -2.54 to -3.85, raising the EOS from 2.9 to 4.5.

Columns 6-9 show the results of the analytic correction for measurement error

shown in equation (20) when we use as a baseline the GMM estimates shown in

column 2. When we assume the two measurement errors are uncorrelated, column 6,

the estimate of ψ increases by a factor of 1.39, from -2.78 to -3.85, and the associated

EOS rises from 3.18 to 4.47. As the assumed correlation of the measurement error

rises, from 0.1 in column 7 to 0.25 in column 8 to 0.50 in column 9, the estimate of

ψ increases in absolute value and the EOS increases from 4.68 (column 7) to 5.16

(column 8) to 7.37 (column 9).

In what follows, we set our baseline estimate of ρ = 0.80, implying an EOS of 5,

corresponding to a correlation of the two measurement error terms of about 0.2. We

explore the sensitivity of our results by considering alternative values for ρ of 0.667

and 0.857. This corresponds to elasticities of substitution between work at home and

in the office of 3, our estimate when we do not correct for measurement error, and 7,

our estimate when the correlation of measurement errors is about 0.5.

3.2 Other Parameters

3.2.1 Parameters Set Outside of Model

Table 2 summarizes our parameterization of the model when we allow for two residen-

tial zones. δb governs the extent of agglomeration returns in production for high-skill

workers working in the CBD. We set this to 0.04 based on Davis, Fisher, and Whited

27



(2014) but consider the sensitivity of our results to a higher level of δb in Section 4.6.

We set ω = 0.33 such that the EOS between low-skill and high-skill labor is 1.5. This

is in the middle of the range reported by Autor, Katz, and Krueger (1998). We set θ,

the structure share in production, to 0.18 based on Valentinyi and Herrendorf (2008).

We set π, the fraction of workers that are high-skill, to 0.33 which is the share

of US adults that are college-educated as of 2019 according to data from the U.S.

Census Bureau. We set α0 = 0.33 and α1 = 0.20 to roughly match the relative size of

housing of college and non-college educated workers in the 2019 American Housing

Survey.7 These values of α bracket the estimate of Davis and Ortalo-Magné (2011)

of 0.24 for the median expenditure share on rents for all renting households in the

United States.8 The preference for leisure, ψ, does not impact our results since with

log separable preferences leisure is a constant, independent of wage and location.

For now, we set the preference for leisure to be the same for both low- and high-skill

workers, ψ0 = ψ1 = 0.25.

ν measures how sensitive location choice is to variation in utility. In many models

of urban economics, utility has to be the same everywhere. This is what emerges

as ν → ∞. When ν is a finite number, people are willing to live in a place that

provides lower utility on average because they get a good random draw of household-

specific preferences eni from living in that location. We set ν0 = ν1 = 3.3 based on the

estimates in Monte, Redding, and Rossi-Hansberg (2018).

In our benchmark calibration, we compute the quantity of space demanded in

each zone and in the CBD at specific rental prices that we calibrate from data. In our

counterfactual simulations, we either solve for new rental prices holding quantities
7The average home sizes for non-college-educated and college-educated households are 1,582 and

2,025 square feet.
8As a check, we compute the median of the ratio of annual gross rent to household income using

data from the 2018 5-year American Community Survey, for non-college-educated and college-educated
household-head, with the household head aged 21-65 and with positive rent and household income.
These estimates are 0.31 and 0.23, respectively.
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of space in each zone and the CBD as fixed, or solve for new quantities holding rental

prices fixed. We use data from the New York City CBSA in 2015 to compute rents per

square foot in the CBD and in zones 1 and 2 in the benchmark. According to Real

Capital Analytics Trends, average rents per year per square foot on office property

in Manhattan were $37.89 per year. We apply a 5% cap rate to the median price per

square foot residential prices by county in Galka (2016) to compute rents per square

foot in each zone. We consider the Bergen NJ, Bronx NY, Hudson NJ, Kings NY,

Richmond NY, Queens NY as Zone 1, $13.26 rent per square foot per year, and all

other counties as Zone 2, $9.09 per square foot per year. We normalize rb to 1.0 giving

us prices of rb = 1.0, r1 = 0.35 and r2 = 0.24.

3.2.2 Calibrated Parameters

We normalize Āb to 1 such that Ah captures the relative productivity of work from

home for high-skill workers. Similarly, the model implicitly normalizes the labor pro-

ductivity of low-skill workers to 1 such that the parameter λ in Equation (11) deter-

mines relative wages.

We set κ, the scale factor that determines relative commute times for low-skill

workers, equal to 1.0: According to data from the ATUS, conditional on county of res-

idence low-skill workers do not spend more time commuting than high-skill workers.

γ captures how commuting costs for all workers rise with the number of commuters.

For now, we set γ = 0.

χ0
1, χ1

1, χ0
2, and χ1

2 describe the relative average amenities low- and high-skill work-

ers receive when living in Zones 1 and 2. We normalize χ0
1 = χ1

1 = 1. We calibrate

the remaining free parameters of the model (χ0
2, χ1

2, λ, Ah, t̄1, and t̄2) to match the

following moments that we exactly match in our benchmark parameterization:

29



1. Share of low-skill workers living in Zone 2 (χ0
2): 35.8%

2. Share of high-skill workers living in Zone 2 (χ1
2): 40.4%

3. Total age-adjusted income of high-skill relative to low-skill (λ): 1.8. Note that

for the purposes of calibration, we measure labor income for high-skill workers

as wy− rbsb to account for the fact that, in the data, and unlike our model, firms

pay for office space directly rather than workers.

4. Fraction of time spent working at home relative to time spent working in our

benchmark for high-skill labor (Ah): 20%

5. High-skilled workers living in Zone 1 time spent commuting per work day (t̄1):

30 minutes per trip each way

6. High-skilled workers living in Zone 2 time spent commuting per work day (t̄2):

50 minutes per trip each way

We include in parentheses the parameter that is most closely related to the moment

we are targeting although all parameters are jointly estimated.

We calculate moments (1) - (3) using the ATUS-CPS data for residents living in

New York City, Washington DC, Charlotte, Pittsburgh, St. Louis, Denver, Detroit,

Columbus OH, and Louisville metropolitan areas. We select these cities because they

are monocentric and have sufficient population to identify the county of residency in

the ATUS data. We set Zone 1 to the counties that are adjacent to the CBD and

Zone 2 includes as counties not adjacent to the CBD but included in the CBSA. We

set moment (4) based on the estimates from the ATUS and Mortensen and Wetter-

ling (2020). The ATUS gives us a snapshot of a worker’s day and we find that, of all

employees with college-degrees, 17% of weekday work minutes are minutes worked

from home. Mortensen and Wetterling (2020) more directly asks companies in Nor-

way and Sweden “[H]ow much of the work done by the staff in your company/division
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was performed from remote locations/home offices 1) Pre-Covid-19, 2) During Covid-

19 lockdown, and 3) Expectations Post-Covid-19.” Figure 1 shows the respondents’

answers. The mean share of employed persons that usually or sometimes work from

home in the 15 EU countries surveyed 1995-2019 was approximately 19% in 2019

with the split being 6% “usually” working from home and 13% “sometimes” working

from home. The figure shows that the share of workers that sometimes and usually

work from home has trended upward in recent years, suggesting that COVID accel-

erated an existing trend. These data are not broken down by educational attainment

and are likely a lower bound on the share of work done from home of college-educated

workers.

4 Counterfactuals

We use the model to understand how the pandemic affected the economy and to fore-

cast its long-term effects. At the onset of the pandemic, we assume productivity of

working at the office, Āb, falls significantly as workers require more space (and time)

to produce output at the office due to social distancing and other precautionary re-

sponses. The model predicts this decline in office productivity leads to more work at

home, which then raises Ah via Equation (12). At this new, higher level of Ah much

more work occurs at home after the pandemic ends, even when productivity of work-

ing at the office returns to its pre-pandemic value.

4.1 Effects During the Pandemic

Column 1 of Tables 3 and 4 show simulations of the benchmark economy prior to the

onset of the pandemic. We consider two counterfactual simulations for understanding

how the pandemic affected the economy. In the first, we hold Ah at its baseline level
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but reduce Āb by 50%. This corresponds to the beginning of the pandemic when of-

fice productivity declines markedly but workers have not significantly increased their

experience with working at home. Column 2 of Tables 3 and 4 displays the results

of this first counterfactual. The overall decrease in Ab, shown in row (1), is slightly

larger than the 50% decline in Āb. This occurs because high-skill work at the office

declines, reducing the contribution of agglomeration effects on productivity at the of-

fice. Hours worked at home for high-skill workers rise from 20% to 68% of total hours,

shown in row (25), and rent for office space in the CBD falls to 34% of its pre-pandemic

level, row (37). Residential rents, rows (38) and (39), are essentially flat due to off-

setting forces: Households significantly increase their demand for home offices, rows

(30) and (34), but incomes fall substantially, rows (4) and (7). Low-skill workers move

from Zone 2 to Zone 1 (rows 12 and 13) and high-skill workers do the opposite, rows

(15) and (16). Note that we hold the stock of space in the CBD (row 28) and both

Zones (rows 29 and 33) in this counterfactual.

Next we consider a counterfactual simulation of the economy at the end of the

pandemic, column 3 of Tables 3 and 4. In this counterfactual, Āb is still depressed

due to social distancing but Ah (row 2) increases by 34%, from 0.453 to 0.607, such

that the percentage of high-skill work that occurs from home doubles from 0.2 to 0.4

(row 25, column 4) once Āb returns to its pre-pandemic level. Row 25 shows that

hours worked at home rises to 83% (column 3), from 68% at the start of the pandemic

(column 2) and 20% prior to the pandemic, column 1. Comparing columns 1 and 3 for

rows (30) and (34), the model predicts an increase in demand for home offices of four

times in Zone 1 and three times in Zone 2. Since we fix the supply of space in each

zone is assumed fixed in this counterfactual, the increase in the size of home offices

is accommodated by a decrease in space used for housing, rows (31) - (32) and (35)

- (36). Rents in the CBD fall to just 22% of their pre-pandemic level, row (37), and

residential rents in both zones rise (rows 38 and 39). Shown in row (7), measured
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income per high-skill worker actually increases by 4.1% from the benchmark, from

5.41 to 5.63, as the increase in Ah mitigates the steep decline in the productivity of

work from the office and workers pay more toward rent on their larger home offices.

4.2 Effects After the Pandemic

We consider three counterfactual experiments that bracket the possible changes to

city form and the use of space after the health-related impacts of the pandemic sub-

side such that people can start freely interacting again. In all three counterfactuals,

people can freely adjust where they live, how much they spend on housing or home-

office space, and how much they choose to work in the CBD or (for high-skill) in their

home office. What varies between counterfactuals is the extent to which aggregate

quantities or prices of space, by zone, are allowed to vary from the pre-pandemic

baseline.

In the first post-COVID counterfactual, called SR in the Tables 3 and 4, we hold

fixed the supply of office space in the CBD and the aggregate amount of available

structures for use in housing and home-office work in each of Zones 1 and 2 (sep-

arately) at the baseline levels. In this counterfactual, we search for three market

clearing prices: rb, r1, and r2 such that the demand for space is equal to the supply in

each zone. We think of this as a short-run response, in the sense that populations can

move and the demand for space can immediately change but the supply for space has

not yet responded.

In this and our other two post-COVID experiments, we keep Ah = 0.607, its value

during the experiment for the end of the pandemic. As discussed earlier, this value

of Ah generates a doubling of the share of time high-skill workers spend working the

CBD relative to the baseline, from 0.2 to 0.4, which we base on the estimates from
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firm surveys in Mortensen and Wetterling (2020). We believe this is conservative,

as Barrero, Bloom, and Davis (2020) predict a four-fold increase based on household

surveys.

Comparing columns 1 and 4 of Table 3 shows that, while incomes for both types of

workers rise (rows 4 and 7), the rise is more pronounced for high-skill workers such

that the ratio of high-skill to low-skill income rises by 7.2%, from 1.80 to 1.93 (row 3).

Low-skill wages rise because low-skill and high-skill effective hours are complemen-

tary in production: As high-skill effective hours rises, low-skill output becomes more

valuable. Although high-skill workers work in the office less, there is only a slight

increase in the share of high-skill workers living in Zone 2 in this counterfactual (row

16) as space has yet had a chance to adjust. Relative to the pre-pandemic benchmark,

rent for office space in the CBD falls by 17% (row 37) and residential rents rise in both

zones with the increase larger in Zone 2 (16.7%, row 39) than in Zone 1 (11.4%, row

38). The change in residential rents is driven by a large increase in demand for home

offices (rows 30 and 34); the quantity of housing not used for home offices modestly

declines for both high- and low-skill workers, rows (31) - (32) and (35) - (36).

In the second post-COVID counterfactual experiment, shown in column 5 as LR,

we hold rental prices in the CBD and in both zones fixed at their baseline levels and

allow the supply of space in each zone to flexibly accommodate any change in demand.

We think of this as a long-run response in most areas. Once the quantity of space has

adjusted, the share of high-skill hours worked from home rises even further, to 46%

from 40% immediately after the pandemic (row 25). The demand for office space in

the CBD declines by about 25 percent, row (28); the demand for space for all uses in

Zone 1 increases by 9 percent, from 1.94 to 2.11 (row 29); and, the demand for space

for all uses in Zone 2 increases by 20%, from 1.66 to 2.0 (row 33). Housing for both

types of workers increases from the benchmark, as both types earn more income, but
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high-skill workers build even larger home offices in this environment and this makes

high-skill workers even more productive at home. With this in mind, it is useful to

compare the SR results, where the quantity of space in each zone is fixed and the

price is flexible, to the LR results, where the price of space is fixed and quantity is

flexible. In the SR, home office space approximately doubles from the pre-pandemic

level, shown in rows (30) and (34). In the LR, space for home offices increases by a

factor of 2.5 relative to its pre-pandemic levels.9

In our final post-COVID counterfactual, we hold the quantity of office space in the

CBD fixed and find the rent rb such that demand is equal to supply, but fix rents in

Zones 1 and 2 at their baseline levels assuming that additional development in these

zones is feasible at current prices. Column 6 shows the results of this experiment, LR

Putty-Clay. This experiment recognizes that depreciation rates are sufficiently low

on structures that areas with a large decline in the rental price of office space may

not see a reduction in the total amount of rented space for quite some time. In this

experiment, rents on office space in the CBD fall to 81% of their pre-pandemic level,

row (37), and relative to the LR experiment, a smaller share of hours are worked at

home, row (25), because office space is cheap in the CBD. For related reasons, the

flight of high-skill workers to Zone 2 is less pronounced in column 6 than in column

5, row (16). The rise in income inequality, row (3), persists.

In all the experiments we have reported so far, consumption inequality (row 10) in-

creases by less than income inequality (row 3). We measure consumption as the sum

of expenditures on consumption and expenditures on housing not including home of-

fices. In the post-COVID counterfactuals, wy rises for high-skill workers because they

have become relatively more productive. The increase in productivity arises due to (i)
9We have in mind that some houses that currently do not have much of a home office will convert an

empty bedroom to a home office, or will add desks and computers to unused basement space; or, some
households will expand or renovate their existing home offices to make the space more productive. The
point is that not every house needs to increase its space dedicated to home offices by a factor of 2.5, but
rather that the space dedicated to home offices in the aggregate in the zone needs to increase.
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the increase in Ah as well as (ii) the expansion of home offices. Workers are compen-

sated for the increase in their productivity, but some of the gains in income directly

offset additional expenses incurred from renting larger home offices. To match the

model with data, we do not subtract expenditures on home offices from labor income

as typical survey questions measuring wage and salary income do not ask respon-

dents to net out expenditures on home offices. Measured consumption inequality does

not increase as much as income inequality because rent for these home offices reduces

income available for consumption for high-skill workers, and low-skill workers do not

rent home offices.

4.3 A 1990 Pandemic

In Table 5 we consider a counterfactual that would correspond to the effect of the

COVID pandemic if Ah was very low such that working from home was not a viable

alternative for high-skill workers. This scenario corresponds to the effects of the

pandemic had it happened in, say, 1990 prior to current work-at-home technology

being widely available. Indeed, despite the 1918-1920 flu pandemic being an order of

magnitude more lethal than that of COVID, particularly for prime-age workers, there

was much less social distancing during the 1918-1920 pandemic.10 Column 1 shows

simulated outcomes of our model economy prior to the onset of the pandemic, call it

1989, and column 2 shows results once the pandemic hits. In both columns 1 and 2

we set Ah to 0.14, about 30% of its 2019 level, and then compare outcomes when we

reduce Āb by 50% at the onset of the pandemic, row 1 of Table 5.

Had the pandemic occurred in 1990, the model predicts hours worked at home

would have risen from 0% of 2%, row (5). Incomes for both low- and high-skill house-
10See Barry (2004) for a discussion of the lethality and lack of social distancing during the 1918-1920

pandemic.
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holds (rows 7 and 8) would have declined by much more than implied by the counter-

factual experiments for the current (2020-2021) pandemic because workers in 1990

cannot offset the decline in productivity at the CBD by working from home. Office

rents in the CBD (row 12) and in both zones (rows 13 and 14) would have declined

significantly due to the drop in income. Essentially, these simulations suggest worker

behavior after the onset of the pandemic in 1990 would not have changed much, and

the virus may have been much more costly in terms of income and much more lethal.11

4.4 Quantifying the Impact of Experience on Ah

In Equation (12), we specified Ah as Āh (Lmaxh )δh. Denote the pre-pandemic level of Ah

as Ah0 and the (immediate) post-pandemic level of Ah as Ah1 . Assuming that Āh is fixed

during the COVID pandemic, which is reasonable given the pandemic lasted about

12 months, we can use the simulated maximum number of hours worked from home

before and during the pandemic, row (22) of Table 4, to solve for δh

Ah1
Ah0

=
0.607

0.453
=

(
0.64

0.14

)δh

This gives us an estimate of δh of 0.19, implying a 10 percent increase in aggregate

hours (ever) worked at home boosts productivity of working at home for all high-skill

workers by 1.9 percent.

4.5 The Role of the EOS between Home and Office Work

Figure 2 shows the sensitivity of the share of work that occurs at home, the y-axis,

given log relative TFP of working at home, the x-axis, for various values of the EOS.

The dashed and dotted lines correspond to EOS values of 3 and 7 and the solid line
11Eichenbaum et al. (2020) find that approximately 17% of virus transmissions occur in workplaces.
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shows our benchmark value of 5. The figure illustrates that for our benchmark es-

timate of the EOS and higher values, the increase in the share of hours worked at

home is nonlinear in growth of relative TFP of working from home. The nonlinearity

becomes more pronounced as the EOS rises. Thus, small changes in technology can

have a big impact on the location of work and urban form.

Table 6 shows how predictions of our model change depending on the EOS we

choose: 3, 5, or 7. For each value of the EOS, we set Ah pre- and post-COVID such

that high-skill workers spend 20% of their time working at home pre-COVID and

40% of their time working at home after COVID in the SR counterfactual. In all

simulations, we assume that Āb declines by 50% during the pandemic.

Rows (2), (4), and (6) of Table 6 show the levels of Ah required to match the target

values of the share of work done at home. As work from home gets more complemen-

tary with work at the office, its productivity needs to be much lower for the household

to choose a low fraction of time to work from home. When the EOS is 5, we find the

pre-pandemic level of Ah is 0.45 but when the EOS is 3 we have to set Ah = 0.31 to

replicate that only 20% of high-skill hours are worked from home. When the EOS is

5, Ah has to rise by 34% (from 0.45 to 0.61) to double the hours worked from home

after the pandemic ends when the EOS is 5. When the EOS is only 3, however, Ah has

to increase by more than 50% to generate the increase in hours worked.

Given our method for setting Ah, Table 6 shows that the long-run implications of

the COVID shock are similar regardless of the value of the EOS: 1) CBD rents fall by

approximately 15-20% in both the SR and LR Putty-Clay scenarios; 2) incomes rise

for both types of workers but more for high-skill workers such that income inequality

increases; and 3) Ab declines due to lower agglomeration economies. At the start of

COVID, column 2, residential rents actually fall in both zones when the EOS is equal

to 3. This occurs because the decline in income is more pronounced with the lower
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value of the EOS.

4.6 Sensitivity to Agglomeration Economies in the CBD

Our benchmark parameterization sets δb = 0.04 based on the estimates in Davis,

Fisher, and Whited (2014). However, these estimates are based on data from entire

metropolitan areas. To the extent that agglomeration economies may be stronger in

a smaller location like a CBD, we compute counterfactuals when we set δb to a much

higher value of 0.10. Table 7 presents these results. As with the previous counterfac-

tual experiments, we set Ah pre- and post-COVID such that high-skill workers spend

20% of their time working at home pre-COVID and 40% of their time working at home

after COVID in the SR counterfactual. Table 7 shows that this change in δb does not

materially affect any of our main results.

4.7 Long-term Trend for Office: The Effect of Upskilling

While COVID induced a permanent change in the productivity of working from home

that reduced the demand for office space in the CBD, the long-term rise in the share

of the workforce with a college degree has the opposite effect on demand for office

space as skilled workers demand more office space. To understand the effect of this

upskilling on rents, we conduct an additional experiment in which we hold the supply

of CBD office space fixed in the long run, as in our LR Putty-Clay counterfactual in

column 6 of Table 4, but increase the share of high-skill workers in the population to

40%. In this scenario, we find that office rents fall to 86% of their pre-pandemic level

rather than the 81% (shown in row 37 of column 6 of Table 4). Thus, an increase in

the share of high-skill workers is unlikely to undo the majority of the decline in CBD

office rents that we simulate in Table 4.
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5 Conclusions

To understand the short and long-run effects of the COVID-19 pandemic, we have

built a spatial equilibrium model that incorporates technology to work from home

and to work at the office. The model illustrates that the pandemic will have very

different effects in both the short-run and long-run on urban form, incomes, and rents

depending on the stage of adoption of work-from-home technology.
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Table 1: GMM Estimates of the Elasticity of Substitution

Drop with Analytic Bias Correction
|xi1 − xi2| ≥ 20 mins IV Sample IV ρe = 0 ρe = 0.1 ρe = 0.25 ρe = 0.50

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log(1+t) -2.63** -2.78** -3.06** -2.54* -3.85* -3.85** -4.02** -4.41** -6.22**

(1.21) (1.20) (1.53) (1.39) (2.11) (1.66) (1.74) (1.91) (2.69)
Implied ρ 0.67 0.69 0.72 0.65 0.78 0.78 0.79 0.81 0.86
EOS 2.99 3.18 3.51 2.87 4.47 4.47 4.68 5.16 7.37
Demog. controls no yes yes yes yes yes yes yes yes
Industry FEs no yes yes yes yes yes yes yes yes
Occupation FEs no yes yes yes yes yes yes yes yes
N 1,771 1,771 1,624 1,203 1,203 1,771 1,771 1,771 1,771
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Table 2: Parameterization

Param. Description Value Determined
Technology:
ρ EOS bw home and office work = 1

1−ρ 0.80 Midpoint estimate
θ Structures share in production 0.18 Fixed
ω EOS bw type 0 and 1 labor = 1

1−ω 0.33 Fixed
δb Agglomeration economies 0.04 Fixed
κ Relative commuting speed for type 0 1.0 Fixed
γ Congestion externality 0.0 Fixed
Āb Productivity of working at CBD for type 1 1 Normalized
Ah Relative productivity of work from home 0.453 Calibrated
λ Relative productivity of high-skill worker 1.30 Calibrated
t̄1 Commute from Zone 1 0.125 Calibrated
t̄2 Commute from Zone 2 0.208 Calibrated
Rents:
rb Office rent in CBD 1.0 Normalized
r1 Residential rent in Zone 1 0.35 Fixed
r2 Residential rent in Zone 2 0.24 Fixed
Demographics:
π Fraction high-skill 0.33 Fixed
Preferences:
α0 Housing exp. share for type 0 0.33 Fixed
α1 Housing exp. share for type 1 0.20 Fixed
ψ0 Pref. for leisure 0.25 Fixed
ψ1 Pref. for leisure 0.25 Fixed
ν0 Importance of Deterministic Utility for n 3.3 Fixed
ν1 Importance of Deterministic Utility for n 3.3 Fixed
χ0
1 Amenities in Zone 1 1.0 Normalized
χ1
1 Amenities in Zone 1 1.0 Normalized
χ0
2 Amenities in Zone 2 0.795 Calibrated
χ1
2 Amenities in Zone 2 0.863 Calibrated

Notes: 1) Superscript 0 denotes low-skill household, superscript 1 denotes high-skill (college
graduate) household.
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Table 3: Model Prediction for Distribution of Incomes and Population

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
Technology:

(1) Ab 0.936 0.452 0.442 0.926 0.923 0.925
(2) Ah 0.453 0.453 0.607 0.607 0.607 0.607

Incomes:
(3) Type 1/0 Ratio of Labor Income 1.80 1.75 1.95 1.93 1.95 1.95
(4) Type 0 Income per Worker 3.01 2.66 2.88 3.12 3.10 3.13
(5) Living in Zone 1 3.08 2.73 2.95 3.19 3.17 3.21
(6) Living in Zone 2 2.87 2.54 2.75 2.97 2.96 2.98
(7) Type 1 Income per Worker 5.41 4.67 5.63 6.03 6.03 6.10
(8) Living in Zone 1 5.47 4.59 5.50 6.01 5.98 6.06
(9) Living in Zone 2 5.33 4.77 5.77 6.05 6.10 6.14

Consumption:
(10) Type 1/0 Ratio of Consumption 1.73 1.54 1.66 1.79 1.78 1.80

Population:
(11) Total Low Skill 67% 67% 67% 67% 67% 67%
(12) Living in Zone 1 64% 66% 67% 65% 64% 64%
(13) Living in Zone 2 36% 34% 33% 35% 36% 36%
(14) Total High Skill 33% 33% 33% 33% 33% 33%
(15) Living in Zone 1 59% 56% 55% 58% 56% 57%
(16) Living in Zone 2 41% 44% 45% 42% 44% 43%

Notes: 1) We parameterize the model to the pre-COVID world. 2) In columns (2)-(4), we cut Āb by 50% to capture social distancing from the
pandemic. 3) Columns (3)-(6) capture the improvement in work-from-home technology during the pandemic by increasing Ah to the level
required to double the share of hours worked from home for type 1 in going from columns (1) to (4). 4) We hold the supply of space fixed at
the pre-COVID baseline in counterfactuals (2)-(4). In counterfactual (5), we adjust the supply of space such that rents are equal to their
pre-COVID benchmark in column (1). In column (6), we keep the stock of office space at the level in column (1) but adjust the stocks of
residential space such that residential rents return to the level in column (1).
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Table 4: Model Predictions for Work Location, Space, and Rents

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
Hours Worked:

(17) Type 0 Hours per Worker 0.69 0.69 0.69 0.69 0.69 0.69
(18) Type 1 Effective Hours per Worker 0.74 0.52 0.65 0.82 0.81 0.83
(19) Type 1 Hours Worked in CBD per Worker 0.57 0.25 0.13 0.44 0.40 0.43
(20) Living in Zone 1 0.61 0.28 0.16 0.48 0.45 0.47
(21) Living in Zone 2 0.51 0.20 0.10 0.38 0.34 0.36
(22) Type 1 Hours Worked at Home per Worker 0.14 0.52 0.64 0.29 0.34 0.31
(23) Living in Zone 1 0.12 0.48 0.62 0.26 0.30 0.27
(24) Living in Zone 2 0.18 0.56 0.67 0.34 0.39 0.36
(25) Ratio Hours Worked at Home to Total Hours 0.20 0.68 0.83 0.40 0.46 0.42
(26) Living in Zone 1 0.16 0.63 0.80 0.35 0.40 0.36
(27) Living in Zone 2 0.26 0.74 0.87 0.48 0.54 0.50

Demand for Space:
(28) Aggregate Office Space in CBD 0.31 0.31 0.31 0.31 0.23 0.31
(29) Aggregate Space in Zone 1 1.94 1.94 1.94 1.94 2.11 2.13
(30) Home Office per Type 1 0.49 1.61 2.07 1.02 1.28 1.18
(31) Per Type 1 Other Housing per Person 3.03 2.44 2.43 2.91 3.16 3.23
(32) Per Type 0 Housing per Person 2.91 2.71 2.52 2.72 2.99 3.02
(33) Aggregate Space in Zone 2 1.66 1.66 1.66 1.66 2.00 1.98
(34) Home Office per Type 1 1.03 2.59 3.07 1.89 2.48 2.31
(35) Per Type 1 Other Housing per Person 4.23 3.36 3.33 4.01 4.58 4.66
(36) Per Type 0 Other Housing per Person 3.95 3.41 3.09 3.56 4.06 4.10

Rent per Unit of Space:
(37) CBD 1.00 0.34 0.22 0.83 1.00 0.81
(38) Zone 1 0.35 0.33 0.39 0.39 0.35 0.35
(39) Zone 2 0.24 0.25 0.29 0.28 0.24 0.24

Notes: 1) See notes to Table 3.
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Table 5: The Effect of Availability of Technology: A Hypothetical 1990 Pandemic

Hypothetical 1990 Pandemic 2020 Pandemic
Pre-COVID COVID Start Pre-COVID COVID Start

Row (1) (2) (3) (4)
Technology:

(1) Ab 0.94 0.47 0.94 0.45
(2) Ah 0.14 0.14 0.45 0.45

Hours Worked:
(3) Type 0 Hours per Worker 0.69 0.69 0.69 0.69
(4) Type 1 Effective Hours per Worker 0.71 0.36 0.74 0.52
(5) Type 1 Hours Worked at Home per Worker 0.00 0.02 0.14 0.52
(6) Ratio Hours Worked at Home to Total Hours 0.00 0.03 0.20 0.68

Incomes:
(7) Type 0 Income per Worker 2.96 2.37 3.01 2.66
(8) Type 1 Income per Worker 5.06 3.25 5.41 4.67

Demand for Space:
(9) Aggregate Office Space in CBD 0.37 0.37 0.31 0.31
(10) Aggregate Space in Zone 1 1.83 1.83 1.94 1.94
(11) Aggregate Space in Zone 2 1.45 1.45 1.66 1.66

Rent per Unit of Space:
(12) CBD 1.00 0.63 1.00 0.34
(13) Zone 1 0.35 0.26 0.35 0.33
(14) Zone 2 0.24 0.18 0.24 0.25
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Table 6: Sensitivity of Results to EOS Between Work at Home and Office

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
A. Technology

(1) Ab 0.94 0.45 0.44 0.93 0.92 0.92
(2) Ah 0.45 0.45 0.61 0.61 0.61 0.61

EOS=3
(3) Ab 0.94 0.46 0.45 0.93 0.92 0.93
(4) Ah 0.31 0.31 0.53 0.53 0.53 0.53

EOS=7
(5) Ab 0.94 0.44 0.43 0.93 0.92 0.92
(6) Ah 0.51 0.51 0.64 0.64 0.64 0.64

B. Rents
EOS=5

(7) CBD 1.00 0.34 0.22 0.83 1.00 0.81
(8) Zone 1 0.35 0.33 0.39 0.39 0.35 0.35
(9) Zone 2 0.24 0.25 0.29 0.28 0.24 0.24

EOS=3
(10) CBD 1.00 0.51 0.39 0.86 1.00 0.85
(11) Zone 1 0.35 0.30 0.37 0.40 0.35 0.35
(12) Zone 2 0.24 0.21 0.27 0.28 0.24 0.24

EOS=7
(13) CBD 1.00 0.23 0.14 0.81 1.00 0.79
(14) Zone 1 0.35 0.35 0.40 0.38 0.35 0.35
(15) Zone 2 0.24 0.27 0.30 0.27 0.24 0.24

C. Incomes
EOS=5

(16) Type 1 / 0 Income 1.80 1.75 1.95 1.93 1.95 1.95
(17) Type 1 Income / Worker 5.41 4.67 5.63 6.03 6.03 6.10
(18) Type 0 Income / Worker 3.01 2.66 2.88 3.12 3.10 3.13

EOS=3
(19) Type 1 / 0 Income 1.80 1.62 1.88 1.98 1.98 1.99
(20) Type 1 Income / Worker 5.41 4.18 5.39 6.30 6.29 6.37
(21) Type 0 Income / Worker 3.01 2.58 2.86 3.19 3.18 3.20

EOS=7
(22) Type 1 / 0 Income 1.80 1.84 2.00 1.92 1.95 1.94
(23) Type 1 Income / Worker 5.41 5.01 5.81 5.94 5.97 6.02
(24) Type 0 Income / Worker 3.01 2.73 2.91 3.09 3.07 3.10
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Table 7: Greater Agglomeration Economies in the CBD

Pre-COVID COVID Scenarios Post-COVID Scenarios
Baseline Start End SR LR LR Putty-Clay

Row (1) (2) (3) (4) (5) (6)
A. Technology

δb = 0.04 (benchmark)
(1) Ab 0.94 0.45 0.44 0.93 0.92 0.92
(2) Ah 0.45 0.45 0.61 0.61 0.61 0.61

δb = 0.10
(3) Ab 0.85 0.39 0.36 0.83 0.82 0.82
(4) Ah 0.41 0.41 0.54 0.54 0.54 0.54

B. Rents
δb = 0.04

(5) CBD 1.00 0.34 0.22 0.83 1.00 0.81
(6) Zone 1 0.35 0.33 0.39 0.39 0.35 0.35
(7) Zone 2 0.24 0.25 0.29 0.28 0.24 0.24

δb = 0.10
(8) CBD 1.00 0.30 0.18 0.82 1.00 0.80
(9) Zone 1 0.35 0.33 0.38 0.38 0.35 0.35
(10) Zone 2 0.24 0.25 0.29 0.27 0.24 0.24

C. Incomes
δb = 0.04

(11) Type 1 / 0 Income 1.80 1.75 1.95 1.93 1.95 1.95
(12) Type 1 Income / Worker 5.41 4.67 5.63 6.03 6.03 6.10
(13) Type 0 Income / Worker 3.01 2.66 2.88 3.12 3.10 3.13

δb = 0.10
(14) Type 1 / 0 Income 1.80 1.76 1.95 1.92 1.94 1.94
(15) Type 1 Income / Worker 5.41 4.66 5.56 5.97 5.95 6.02
(16) Type 0 Income / Worker 3.01 2.65 2.85 3.10 3.07 3.11
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Figure 1: Share of EU15 Workers Working from Home, 1995-2019

Notes: 1) Includes all employed workers aged 25-64. 2) Source: Eurostat and authors’ calculations.
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Figure 2: The Sensitivity of Work-at-Home to Changes in Productivity

Notes: 1) The figure plots the share of work done at home for high-skill workers (y-axis) against log of
relative TFP of work at home log

(
Ah/Ab

)
for three different values of the EOS. The solid line

represents our benchmark parameterization of the EOS.
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A Using Commute Times to Estimate the EOS be-

tween Work at Home and the Office

A.1 The Linear Approximation of the Logistic Function

Define the logistic function in x as

f (x) =
ea+bx

1 + ea+bx

A first order approximation to f (x) around x̄ is

f (x) ≈ f (x̄) + f ′ (x̄) (x− x̄)

= f (x̄) + f (x̄) [1− f (x̄)] b (x− x̄)

= ã + f (x̄) [1− f (x̄)] bx

(A.1)

where ã = f (x̄)
{

1 − [1− f (x̄)] bx̄
}

.

In Table 1, we estimate the parameters of f(x) for x = ln (1 + t) using GMM and

observed data on the fraction of days individuals work at home. We can thus map the

approximation in Equation (A.1) to our strategy for estimating Ψ. We set b = −3.0

which is approximately equal to the estimate of Ψ in columns 1 and 2 of Table 1,

x̄ = 0.10 (its sample average), and a = 2.5 which yields f (x̄) = 0.9, roughly the sample

average of f (x) in our data.

Figure A.1 graphs f (x) and its linear approximation for this parameterization.

The figure shows f (x) and its approximation for all commutes in the data; the ver-

tical red lines bracket the middle 95% of commutes. The figure shows that for all

commutes, but especially the 95% of commutes between the vertical lines, the linear

approximation yields very close values to the actual function.
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In the event that x is not measured with error, the near linearity of f (x) for ac-

tual commute times and fraction of days worked shown in Figure A.1 suggests that

if we were to run a linear regression of y on x, the regression coefficient would be

approximately equal to

γ̂OLS ≈ bf (x̄) [1− f (x̄)] .(A.2)

This near linearity also implies that an unbiased estimate of b from GMM, b̂GMM , has

the property

b̂GMM ≈ γ̂OLS

f (x̄) [1− f (x̄)]
.(A.3)

We believe that x is measured with error, such that when y is regressed on mea-

sured x, the regression coefficient from OLS will be equal to the estimate in equation

(A.2) times ζ, where ζ is the attenuation bias due to the presence of measurement

error. In the next section, we derive ζ−1, the exact correction for attenuation bias

in the case of OLS. Equations (A.2) and (A.3) suggest this correction will also work

for our GMM estimate. The next section verifies this conjecture using a Monte Carlo

simulation.
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A.2 Monte Carlo Simulation of Analytical Bias Correction

A.2.1 Commute Time Data Generating Process

We conduct Monte Carlo simulation experiments to assess the performance of our

proposed bias correction. The data generating process that we consider is,

i = 1, ..., N

x∗i ∼ N(µx∗ , σ
2
x∗)

yit =


1 with probability = Λ(a+ bx∗i )

0 with probability = 1− Λ(a+ bx∗i )

, for t = 1, ..., T

yi =
1

T

T∑
t=1

yit

There are N individuals. Each individual draws x∗i from a normal distribution. The

variable has a causal effect (logit parameter b) on the probability that a binary out-

come y equals one. Each individual realizes T = 5 Bernoulli draws yit, the average of

which is yit.

The econometrician does not observe x∗i , but does observe two measures

xi1 = x∗i + e1

xi2 = x∗i + e2

ei1
ei2

 ∼ N


0

0

 ,
 σ2

e ρeσ
2
e

ρeσ
2
e σ2

e




The measurement errors ei1 and ei2 are uncorrelated with x∗i but are potentially cor-
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related with one another (correlation ρe).

Our experiments involve simulating R = 1, 000 datasets from this process for each

of value of ρe = 0, .1, .2, .3, .4, .5. In each dataset, we compute the naive (ignoring

measurement error) logit GMM estimator b̂GMM using the mis-measured variable x1

as the only right-hand side regressor, and our proposed bias-corrected estimator b̂BC .

The naive GMM estimator solves,

(âGMM , b̂GMM) = arg min
(a,b)

m̂′(a, b)W m̂(a, b)

where

εi(a, b) = yi − Λ(a+ bxi1)

m̂0(a, b) =
∑
i

εi(a, b)

m̂1(a, b) =
∑
i

xi1εi(a, b)

m̂(a, b) =

m̂0(a, b)

m̂1(a, b)


and W is an optimal weighting matrix. As described in the text, the bias-corrected

estimator is computed using

b̂BC = b̂GMM

(
v̂ar(x1)

v̂ar(x∗)

)
= b̂GMM

(
v̂ar(x1)

v̂ar(x1)− v̂ar(e)

)

= b̂GMM

 v̂ar(x1)

v̂ar(x1)−
(
v̂ar(x1)− ĉov(x1, x2)

1− ρe

)
(A.4)

where ρe is an assumed value, and v̂ar(x1), ĉov(x1, x2) are computed in the (simulated)
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data.

A.2.2 Parameter Values for Simulations

For each simulated dataset, we set N = 1700. We do separate experiments for each

value of ρe ρe = 0, .1, .2.3, .4 and .5. At each assumed ρe, we choose values for the other

parameters of the data generating process to match three moments from the actual

commute data.

• Data moment var(ln(1 + ti1)) = .07072 = .005 to set var(x1) = .005

• Data moment cov
(

ln(1 + ti1), ln(1 + ti2)
)

= .00348 to set cov(x1, x2) = .00348

• Naive estimator Ψ̂GMM ≈ −3 to set b (by targeting the attenuated b̂GMM )

To find the values of σ2
x∗ and σ2

e that are consistent with these moments, we note that

var(x1) = σ2
x∗ + σ2

e

cov(x1, x2) = σ2
x∗ + ρeσ

2
e

which imply

σ2
e =

var(x1)− cov
(
x1, x2

)
1− ρe

=
.005− .00348

1− ρe
σ2
x∗ = var(x1)− σ2

e = .005− σ2
e
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Beginning with equation (A.4), we set

b = b̂GMM ×

 var(x1)

var(x1)−
(
var(x1)− cov(x1, x2)

1− ρe

)


= −3×

 .005

.005−
(
.005− .00348

1− ρe

)


We choose µx∗ = 0.1 and thus set a = 1.7 to approximately match the unconditional

fraction of days spent working in the office.

A.2.3 Results

In each simulated dataset, we compute the naive GMM estimator b̂GMM and compute

the corresponding bias corrected estimator using equation (A.4). Table A.1 summa-

rizing the results. For each value of ρe, the bias corrected estimator has a sampling

mean that is close to the assumed value of b, which occurs because the naive GMM

estimator has a sampling mean that is close to -3, suggesting that, under a correct

assumptions of ρe, the bias-corrected GMM estimator provides unbiased estimates of

b with measurement error in x1 and x2 that mimics the properties of the measurement

error in our commute data.
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Table A.1: Monte Carlo Simulation Results

ρe Assumed b b̂BC b̂GMM

0.0 -4.31 -4.30 -2.99
0.1 -4.53 -4.51 -2.98
0.2 -4.84 -4.85 -3.00
0.3 -5.30 -5.26 -2.98
0.4 -6.08 -6.05 -2.98
0.5 -7.65 -7.56 -2.96
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Figure A.1: Logistic Function and First-Order Approximation
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Notes: 1) Recall that t = 2 ∗minutes/ (8 ∗ 60), where minutes refers to the time required for a one-way
commute to work.
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Figure A.2: Differences in and Levels of Reported Commute Times
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(b) Raw Distribution of Individual Reported Commutes
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