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ABSTRACT

Solar geoengineering (SGE) can combat climate change by directly reducing temperatures. Both 
SGE and the climate itself are surrounded by great uncertainties. Implementing SGE affects 
learning about these uncertainties. We model endogenous learning over two uncertainties: the 
sensitivity of temperatures to carbon concentrations (the climate sensitivity), and the 
effectiveness of SGE in lowering temperatures. We present both theoretical and simulation results 
from an integrated assessment model, focusing on the informational value of SGE 
experimentation. Surprisingly, under current calibrated conditions, SGE deployment slows 
learning, causing a less informed decision. For any reasonably sized experimental SGE 
deployment, the temperature change becomes closer to zero, and thus more obscured by noisy 
weather shocks. Still, some SGE use is optimal despite, not because of, its informational value. 
The optimal amount of SGE is very sensitive to beliefs about both uncertainties.
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1 Introduction

Under current trajectories of greenhouse gas emissions, there exists only about a 5% chance of

achieving the Paris Agreement’s goal of limiting the global mean surface temperature increase to

“well below” 2◦C above pre-industrial levels by 2100 (Raftery et al., 2017). The inertia of the

climate system makes achieving this goal through emissions abatement alone a formidable challenge

(Fitzpatrick and Kelly, 2017; Brown et al., 2019). Hence solar geoengineering (SGE), which has

the potential to slow global warming relatively quickly, has gained popularity among some policy

makers and researchers. Some SGE techniques mimic the climate impact of major volcanic eruptions

by injecting reflective particles into the upper atmosphere to block and reflect solar radiation back

into the space (Ramaswamy et al., 2018). SGE presents a number of difficulties.1 Nonetheless,

SGE is inexpensive and conceptually attractive, and a significant part of the optimal policy in many

integrated assessment models.2

Here we consider an aspect of SGE not previously studied in integrated assessment modeling: the

potential for endogenous learning over uncertainties surrounding SGE and the climate. We focus on

two sources of uncertainty. The first is uncertainty about SGE effectiveness, which determines the

temperature reduction from a given amount of SGE. The second is uncertainty about climate sensi-

tivity, which is the equilibrium temperature increase resulting from a doubling of atmospheric carbon

concentration. Both of these uncertainties are endogenous, so active learning or experimentation

is possible. We study optimal experimentation with SGE, both theoretically and computationally

with an integrated assessment model.

Intuition suggests that implementing SGE can increase our knowledge about it, since imple-

mentation is a type of field experiment. However, given the calibrated current initial conditions,

we find a surprising result: implementing SGE actually slows learning about both SGE effective-

ness and climate sensitivity, resulting in a less-informed decision. We decompose SGE’s impact on

learning into two effects. A signal strength effect comes from the effect of SGE on the temperature

signal. If the signal strength effect is positive, then SGE makes the temperature change larger in

magnitude and thus more visible amidst the noisy weather shocks, speeding learning. However, a

1For example, SGE performed via injecting sulfur particles causes harmful side effects (Keller et al., 2014; Proctor
et al., 2018; Abatayo et al., 2020), does not reduce impacts like ocean acidification that are caused directly by CO2,
and has a relatively short half life, necessitating frequent injections. See Klepper and Rickels (2014) and Heutel et al.
(2016a) for reviews of the economics of solar geoengineering. For a review of the science of SGE, see National Research
Council, et. al. (2015). For a broader review of the social science of SGE, see Flegal et al. (2019).

2For example, Heutel et al. (2018) shows that optimal SGE policy reduces up to 50% of the radiative forcing
(instantaneous warming effect) from CO2.
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small or medium-scale SGE deployment moves the temperature change closer to zero, and so the

signal strength effect is negative, slowing learning about both SGE effectiveness and climate sen-

sitivity. Only an unrealistically large SGE deployment causes a temperature change large enough

in absolute value to create a positive signal strength effect which speeds learning. Second, a noise

amplification effect causes the climate system to be more variable and slows learning about climate

sensitivity (though does not affect learning about SGE effectiveness). Because the effectiveness of

SGE deployment in reducing the temperature is uncertain, SGE causes the climate system to be

more subjectively variable, slowing learning.

We then compute optimal SGE and abatement policies in an integrated assessment model (IAM)

with endogenous learning. By “optimal,” we mean the policy path that maximizes the sum of

discounted utility, given the costs and benefits of SGE, abatement, and climate change. Our IAM

extends the well-known DICE model (Nordhaus, 2016) in several ways. First, in our model SGE is

available as an additional policy tool. Second, we model uncertainty over two features of the model:

climate sensitivity and SGE effectiveness. We calibrate SGE effectiveness and its uncertainty using

volcano eruption data. Third, the planner learns endogenously and updates beliefs over time as

a result of SGE deployment and greenhouse gas (GHG) abatement.3 The computational results

show that optimal SGE deployment is never large enough to produce informational gains, and in

fact the information loss acts as a disincentive to using SGE. Some SGE is still optimal because

of its other benefits. Thus, SGE is used despite of, not because of, its effect on learning. Optimal

SGE is highly sensitive to beliefs about climate sensitivity and SGE effectiveness. In the median

optimal simulation, SGE usage offsets at most 4% of the radiative forcing from CO2. However,

when beliefs are that climate change is severe and can be effectively reduced via SGE, deployment

increases to 14%. This is consistent with the idea of using SGE as a last resort if climate change

becomes severe, although the planner still uses a small amount of SGE even when beliefs are that

the climate sensitivity is low.

The type of SGE experiment we consider is a planet-wide implementation. Our results show that

a large-scale, planet-wide implementation experiment speeds learning but is not optimal because of

the deployment costs and harmful side effects. Our results also show that a small-scale, planet-wide

implementation experiment slows learning but is nonetheless optimal. Other types of experiments

3In the terminology of LaRiviere et al. (2018), we model active adaptive management, since learning is taken into
account when making decisions.
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are also possible. For example, researchers may glean information from laboratory and/or localized,

rather than planet-wide, field experiments of the kind suggested by Keith et al. (2014). Our model

does not consider such experiments and thus reaches no conclusions about their optimality or effect

on learning.4

A large body of literature examines optimal GHG abatement policy when climate processes

are uncertain and learning reduces uncertainty over time.5 Lemoine and Rudik (2017) provide an

overview of the literature and methods used in dealing with uncertainty and learning in IAMs.

For example, Kelly and Kolstad (1999) model Bayesian learning about climate sensitivity and find

that learning takes up to 100 years to become informative. Leach (2007) considers uncertainty

over a parameter governing the persistence of temperature, also finding that learning is very slow.

Jensen and Traeger (2013) incorporate Bayesian learning in the DICE model, and Lemoine and

Traeger (2014) add climate tipping points and allow for learning about the tipping point temperature

threshold. Other studies have extended the model to include fat-tailed uncertainty (Kelly and Tan,

2015; Shayegh and Thomas, 2015; Hwang et al., 2017).

In general, the literature finds learning is relatively slow.6 Therefore, near-term abatement policy

with learning is similar to policy without learning. Our paper builds upon this literature by showing

that, in an environment with multiple uncertainties, SGE experimentation can actually slow learning

by magnifying uncertainty in the climate system. Overall learning about SGE effectiveness is slow,

because optimal SGE levels are relatively small.

Several studies introduce SGE into IAMs. Bickel and Lane (2009), Gramstad and Tjøotta (2010),

Goes et al. (2011), and Bickel and Agrawal (2013) modify the DICE model to incorporate SGE, but

without allowing for epistemic uncertainty. Emmerling and Tavoni (2018) use a different IAM,

WITCH, and incorporate SGE, with uncertainty modeled as a binary probability outcome.7 Heutel

et al. (2016b) analyze the use of SGE with a risk of tipping points, and Helwegen et al. (2019)

add the possibility of solar radiation management failure in their analysis. Most closely related to

this paper, Heutel et al. (2018) modify the DICE model and allow for general forms of epistemic

uncertainty. They demonstrate how uncertainty over climate sensitivity and SGE damages affects

4Both types of learning are necessary. Laboratory experiments generate important predictions, that ultimately
must be tested in the uncontrolled, planet-wide environment.

5See Pastor et al. (2020); LaRiviere et al. (2018)for literature reviews of uncertainty in climate economic modeling.
6Hwang et al. (2019) shows that active learning through knowledge acquisition (e.g. investment in more accurate

climatic observations) can reduce uncertainty more rapidly than passive learning.
7Other papers study uncertainty over SGE but not in the framework of IAMs. Moreno-Cruz and Keith (2013)

model uncertainty with a binary outcome using an analytical model. See Kravitz and MacMartin (2020) for a review
of key uncertainties in SGE.
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optimal policy. Our paper advances this literature by (1) considering a previously unexplored un-

certainty, SGE effectiveness, in addition to climate sensitivity, (2) calibrating SGE effectiveness and

uncertainty using volcano data, (3) considering the effect of endogenous learning on SGE policy,

and (4) considering SGE when the climate sensitivity is uncertain. Under these extensions, optimal

SGE deployment falls considerably relative to the prior literature, from a maximum of about 50%

of radiative forcing to a maximum of less than 4%.

2 Model

Our IAM is based on the Dynamic Integrated Climate-Economy (DICE) model (Nordhaus, 2016).

Heutel et al. (2018) modified DICE to include SGE; here we extend that modification of DICE to

also include endogenous learning about climate sensitivity and SGE effectiveness. We adopt the

methodology of Traeger (2014), which reduces the dimension of the state space. In particular, we

update the parameters given in Traeger (2014) to match the 2016 version of DICE. More details

about the original DICE model and its modification to include SGE are included in the above-cited

papers. The full model is detailed in Appendix A. In this section we focus on the introduction of

endogenous learning to the model.

2.1 Overview

DICE is a representative agent model of the global economy and climate. The economic portion of

the model is a standard aggregate growth model, with an evolving capital stock, exogenous growth

in total factor productivity and in population, and an endogenous choice of the optimal amount of

consumption and investment to maximize the net present value of the sum of utility based on per-

capita consumption. This economic portion is integrated with a climate model, in which the carbon

emissions generated from economic production affect the carbon stock of the atmosphere and oceans,

and the atmospheric carbon stock in turn affects average temperatures. Finally, temperature affects

the economy through a damage function, in which net output deviates from gross output based on

the loss from temperature impacts.

The climate policy choice variable in the original DICE model is abatement α, which is a number

between 0 and 1 representing the fraction of total carbon emissions abated.8

8In DICE, α may eventually be greater than one, reflecting carbon capture technologies. Here we impose α ≤ 1 to
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The extension of DICE to allow SGE adds a second policy variable, solar geoengineering g.

This policy variable is normalized so that g corresponds to the fraction of the radiative forcing F

that is reduced by SGE. Radiative forcing is the difference between the incoming solar heat energy

and outgoing energy radiated from Earth. When radiative forcing is positive, the planet will warm

because more energy is entering than is leaving. When g = 0, the radiative forcing is unchanged

by SGE. When g = 1, radiative forcing is reduced by a fraction 1 − φ, where φ measures how

effective SGE is at reducing radiative forcing. Unlike the abatement policy variable α which must

be between 0 and 1, SGE g can take any value greater than 0. If g > 1/φ, then SGE more than

offsets the warming effect caused by greenhouse gases, and the planet will cool even faster than if

GHG concentrations immediately return to pre-industrial levels.

2.2 SGE Costs and Damages

Following Heutel et al. (2018), we posit the following model of costs and damages:

Y = (1− Λ−D)Q, (1)

Λ = θ1 (t)αθ2 + θGEg
θ3 , (2)

D = πTT
2
AT + πm (M −M1750)

2
+ πgg

2, (3)

where Q is gross world output, Y is world output net of damages, D, and spending on emissions

abatement and SGE, Λ. The cost function Λ gives the percentage of output spent on emissions

abatement and SGE. The cost of a backstop technology which eliminates all carbon emissions,

α = 1, is θ1 (t), which falls exogenously over time. In our notation, functions of time are variables

that evolve exogenously over time. We suppress the time dependence of endogenous variables, and

use primes to denote next-period values.

Nordhaus (2016) combines damages associated with higher carbon stocks and temperatures into

a single function of atmospheric temperature. However, since SGE directly affects temperature

while abatement directly affects the carbon stock, we use the damage function (3), which is a

function of both the deviation of atmospheric temperature from recent averages, TAT , and the stock

avoid having too many speculative technologies.
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of atmospheric carbon M above preindustrial levels M1750.9 Following Heutel et al. (2018), we also

include damages caused directly by SGE g in the damage function (for example, warming of the

tropical cold-point tropopause leading to the depletion of the ozone layer Heckendorn et al., 2009).

2.3 Carbon Cycle, Radiative Forcing, and Temperature

Following Traeger (2014), the carbon cycle evolves according to:

E = σ (t) (1− α)Q+ ELAND (t) , (4)

M ′ = M1750 + (1− δm (t)) (M −M1750) + E, (5)

Here E is carbon emissions, σ (t) is the emissions intensity of output, and ELAND (t) are exogenous

emissions from land use changes. In equation (5), δm (t) is the fraction of atmospheric carbon

absorbed by the biosphere and deep ocean. The exogenous absorption rate declines over time as the

oceans become more saturated with carbon.

Radiative forcing F is given by:

F ′ =

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(1− φg) , (6)

Here η is the forcing coefficient for carbon and FEX (t) is exogenous forcing from other greenhouse

gasses and aerosols. Let φ ∈ [0, 1] denote the parameter which determines how effective SGE is at

reducing radiative forcing.10

Atmospheric temperature evolves according to:

T ′AT = TAT + ξ1

{
F ′ − ξ2TAT − ξ3 [TAT − TLO] (t)

}
+ ε′. (7)

Here ξ1 governs the speed at which the temperature adjusts to changes in radiative forcing. The tem-

perature differential between the ocean and atmosphere, [TAT − TLO] (t) is exogenous as in Traeger

(2014). The parameter ξ2 measures the magnitude of feedback effects. For example, as the tem-

9Traeger (2014) replaces the endogenous stock of carbon in the ocean with an exogenous function that determines
carbon absorption by the ocean and biosphere. Hence, we combine the damages from ocean and atmospheric carbon
into just a function of atmospheric carbon.

10Here SGE affects radiative forcing through a multiplicative effect, as modeled in Heutel et al. (2018). Other
papers instead model SGE as affecting radiative forcing through an additive term. Heutel et al. (2018) demonstrate
that this modeling choice has little effect on optimal policy outcomes (see their Figure 6 and Appendix Figure A12).
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perature rises, ice melts, reducing the albedo effect, causing still higher temperatures (a positive

feedback). We thus call ξ2 the feedback parameter. Finally, ε is a random weather shock.

The climate sensitivity ∆T2× is defined as the equilibrium increase in temperature that would

arise from a doubling of the pre-industrial carbon stock, without any SGE. Combining equations (6)

and (7) at the steady state implies the climate sensitivity is ∆T2× = η/ξ2. As described below, we

model uncertainty in the climate sensitivity through uncertainty in the feedback parameter.

The timing is such that both CO2 and SGE affect radiative forcing in t + 1, and therefore the

temperature in t+ 1.

2.4 Uncertainty

We model two sources of uncertainty, one over SGE and one over the climate system. First, we allow

the SGE effectiveness parameter, φ, to be uncertain. The planner treats φ as a random variable φ̃.

A given quantity of SGE g has an uncertain effect on forcing due to uncertainties in how long the

sulfur particles will remain in the stratosphere, how well sulfur particles mix across the globe, and

effects on cloud formation.11

Second, we model uncertainty in the climate sensitivity by allowing the feedback parameter, ξ2,

to be uncertain. The planner treats ξ2 as a random variable ξ̃2. Because climate sensitivity ∆T2× is

η/ξ2, which is a function of ξ2, treating the feedback parameter ξ2 as uncertain implies that climate

sensitivity ∆T2× is also uncertain.12

We assume that radiative forcing net of SGE, F ′

(1−φg) , is not observed, which prevents the planner

from instantly learning the effectiveness of SGE by inverting the forcing equation (6). Furthermore,

the random weather shock prevents the planner from immediately learning the true feedback pa-

rameter by inverting the temperature equation (7).

A change of variables simplifies the above equations. Let H ′ denote the residual after removing

11We do not explicitly model uncertainty in the parameter representing damages from SGE, πg . This is analogous
to the choice of learning over the climate sensitivity rather than over the climate damages. See the 2013 IPCC report
for a discussion of the extensive uncertainty with respect to SGE effectiveness. To our knowledge, this paper is the
first to analyze uncertainty over SGE effectiveness.

12While most of the literature models climate sensitivity uncertainty through uncertain feedbacks (e.g. Roe and
Baker, 2007; Kelly and Tan, 2015), this is not the only way to model uncertainty in climate sensitivity. Kelly and
Kolstad (1999) and Heutel et al. (2018) model climate sensitivity uncertainty by assuming that the forcing parameter
η is uncertain, not the feedback parameter ξ2.
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the known influences on next-period temperature T ′AT .

H ′ ≡ T ′AT − ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
+ ξ1ξ3 [TAT − TLO] (t) .

= −ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
gφ̃+

(
1− ξ1ξ̃2

)
TAT + ε′. (8)

Let F̂ ′ denote gross forcing before SGE

F̂ ′ ≡ ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(9)

and β̃ denote the inertia of the temperature, which we call the net feedback parameter :

β̃ ≡ 1− ξ1ξ̃2. (10)

Equation (7) then simplifies to:

H ′ = β̃TAT − φ̃F̂ ′g + ε′. (11)

This implies that

∆T2× =
ηξ1

1− β̃
. (12)

Equation (11) is a linear regression equation in which the planner tries to determine for example,

whether an unusually high temperature (relative to the known underlying carbon forcing and ocean

effects) occurs because the feedback effects are stronger than expected, SGE is less effective than

expected, or the weather shock was unusually high.

2.5 Learning

The weather shock is normally distributed, ε′ ∼ N
(
0, ρ−1

ε

)
, where ρε is the precision (inverse of

the variance). The planner has prior beliefs that the true net feedback parameter is drawn from a

normal distribution (Roe and Baker, 2007), and the same for the SGE effectiveness parameter:

 β̃

φ̃

 ∼ N [µ, P−1
]
, µ ≡

 β

φ

 , P ≡

 P1 P2

P2 P3

 . (13)
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Here β and φ are the means of the prior distributions and P is the precision of the prior beliefs. We

assume P is positive definite, which is the case if the priors are formed using a variance-covariance

matrix.

Bayes’ theorem implies that, after observing H ′, the posterior distribution remains bivariate

normal, with mean and precision:

P ′ = P + ρεX ·Xtr, (14)

µ′ = (P ′)
−1

(Pµ+ ρεXH
′) (15)

X ≡

 TAT

−F̂ ′g

 (16)

Here tr denotes the transpose operator. The planner can manipulate the second element of X

directly through the SGE policy choice, g and indirectly through the abatement policy choice, α.13

Thus, learning is endogenous. However, the first element of X, TAT , is already determined at the

start of period t and thus unaffected by the choice of SGE and abatement in period t. It is natural

to assume P1 > 0, P3 > 0, and P2 ≤ 0 given that P2 evolves over time as the sum of observations

on −TAT F̂ g, which is negative.

Finally, a critical feature of the model is that T ′AT and H ′ are sums of normal random variables

and are therefore also normally distributed.

H ′ ∼ N
[
µH , P

−1
H

]
(17)

µH = Xtr · µ (18)

P−1
H = Xtr · P−1 ·X + ρ−1

ε (19)

Therefore, a single numerical integration with respect to the normal random variable H is sufficient

for computing the expectation of the value function. More importantly, the variability of the climate

as perceived by the planner (i.e. considering both stochasticity and uncertainty) is a function of SGE

deployment. We will show that this magnification of variability caused by SGE can slow learning.

13F̂ ′ is a function of M ′ via equation (6) which is a function of emissions E via equation (5) and abatement α via
equation (4).
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3 Theoretical Predictions

Before presenting the numerical simulation results, we present some theoretical propositions about

learning that illuminate the model’s predictions. Proofs of all propositions are in Appendix B.

It will sometimes be more convenient to work with the prior variance-covariance W rather than

the precision P . Let:

W = P−1 ≡

 W1 W2

W2 W3

 . (20)

Evaluating the posterior variance-covariance, W ′, of the belief distribution over the uncertain vari-

ables β̃ and φ̃ after observing H ′ reveals that:14

W ′ =
1

1 + ρεXtrWX

 W1 + ρε |W |X2
2 W2 − ρε |W |X1X2

W2 − ρε |W |X1X2 W3 + ρε |W |X2
1

 . (21)

SGE, g, directly affects X2 = −F̂ ′g, and abatement, α, indirectly affects X2. Therefore equation

(21) shows both current-period policy variables affect the posterior variance of the estimates for both

β̃ and φ̃ through their effect on X2. By contrast, the policy choices g and α do not affect X1 = TAT ,

which is already determined at the start of the period.

We want to identify conditions under which SGE use unambiguously increases information, and

likewise for the use of abatement. To do so, we first establish conditions under which the terms

in the variance-covariance matrix (21) are decreasing over time. This result also creates natural

bounds for the variance states in the computational algorithm and signs the elements of P and W

for the later propositions. Replace the prime notation with t subscripts, where Wt represents the

variance-covariance matrix of beliefs at time t, and W0 represents it at the initial period. Let Wi,t

represent the value of the ith element of Wt. We restrict the prior variance-covariance matrix W0

to be positive-definite. Starting from a diffuse prior, P0 = 0, (as would be the case in an OLS

regression), equation (14) implies that Pt and therefore Wt are positive-definite for all t. Without

this restriction, it is possible to construct examples where the variances can become negative or

unbounded. With this assumption, we can show:

PROPOSITION 1 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then: 0 ≤ W1,t ≤ W1,0,

0 ≤ W3,t ≤ W3,0, 0 ≤ W2,t ≤ (W1,0W3,0)
1
2 and |Wt| > 0 for all finite t. Further, Wi,t+1 ≤ Wi,t for

14See equation (A.49) in the appendix.
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i = 1, 3. That is, the planner gains information after each observation.

Proposition 1 shows the variance-covariance matrix terms remain on finite intervals, which is nec-

essary for convergence of the computational algorithm. More importantly, Proposition 1 shows

that, regardless of the decisions, the planner gains information each period (W1,t+1 < W1,t and

W3,t+1 < W3,t).

3.1 Learning from SGE

Although the planner gains information with each observation over time, the policy decisions affect

the amount of information gained. In fact, whether an increase in SGE speeds or slows learning

about either of the two unknown variables β̃ and φ̃ depends on the level of SGE relative to the

current information state. We will show below that there are two threshold values of SGE, defined

as I1 and I2, that determine the direction of the effect on SGE on learning.

First, consider the effect of SGE on the posterior variance of belief over the SGE effectiveness

parameter φ. This variance in period t+ 1 is W3,t+1, which we will now denote as W ′3. An increase

in SGE speeds learning about SGE effectiveness if the partial derivative of W ′3 with respect to g is

negative. We show in Appendix B.2 that:

∂W ′3
∂g

=
F̂ ρε2W

′
3

1 + ρεXtrWX
(W2TAT −W3F̂ ′g) (22)

∂W ′3
∂g

< 0, ⇔ g > I1 ≡
W2

W3
· TAT

F̂ ′
. (23)

SGE g increases learning about SGE effectiveness if and only if the level of SGE exceeds the

threshold value I1. To understand the intuition, it is helpful to view (11) as an OLS regression

equation.15 Suppose a given set of past decisions results in a data set which is used to estimate

β and φ using (11), with associated variance-covariance matrix (20). Now the planner has the

opportunity to alter the current SGE and thus the current X2, and then re-run the regression with

the past and current data. How does changing g affect the variance of the parameter estimates?

Suppose SGE is increased from a low baseline close to zero. The increase in SGE has a negative

effect on temperature which cancels with the positive feedback effect (βX1). The resulting signal H ′

is smaller relative to the noisy weather shock. The planner has low confidence that the temperature

15In fact, it is straightforward to show that (21) is identical to the variance-covariance matrix of the OLS parameter
estimates with known σ2

ε , for appropriately chosen priors P1 = σ2
ε

∑t−1
i=0 X1,i and analogously for P2 and P3.
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change resulted from SGE. Hence, as SGE increases, the signal becomes smaller, the new information

is less informative, and W ′3 changes less.

Suppose instead that SGE is increased from a high baseline. In this case, the planner expects

a large temperature reduction due to SGE, and further increases in SGE start to make the tem-

perature signal H ′ larger in magnitude (more negative). It is then increasingly unlikely that the

temperature change is the result of a large negative weather shock. The planner attributes the

change in temperature to SGE with high confidence, and thus the data point is highly informative,

and the variance falls as SGE rises.

We denote the nonlinear effect of SGE on H ′ as the signal strength effect. The signal strength

effect is quadratic in g: an increase in g from a small baseline cancels with the feedback effects

weakening the signal. Increasing g from a large baseline more than the threshold I1 swamps the

feedback effect, strengthening the signal.16 Equation (22) shows that increasing SGE stengthens

the signal for a baseline g > I1. The cutoff I1 depends on temperature since if the temperature

is larger, so is the feedback effect which must be overcome. Conversely, if forcing is large, then

SGE has a large effect on temperature which more easily swamps the feedback effect. The cutoff

I1 also depends on the pre-existing uncertainty, for example, if W2 is small it is easier to separate

the feedback and SGE effects, and so a smaller temperature change is more easily attributed to the

change in SGE.

Next, consider the effect of SGE on the posterior variance W ′1, which is the variance of beliefs

about the net feedback parameter β. We show in Appendix B.2 that:

∂W ′1
∂g

=
F̂ ρε2W

′
2

1 + ρεXtrWX
(W1TAT −W2F̂ ′g), (24)

∂W ′1
∂g

< 0, ⇔ g > I2 ≡
W1

W2
· TAT
F̂ ′

. (25)

SGE g increases learning about the net feedback parameter if and only if the level of SGE exceeds

the threshold value I2. SGE affects the signal strength H ′ in an identical, quadratic way. The signal

strength effect on learning about feedbacks is proportional to the signal strength effect on learning

about SGE effectiveness. However, SGE has an additional effect on learning about feedbacks, which

we call the noise ampliflication effect. Increasing SGE from any baseline increases the subjective

noise in the climate system when trying to estimate the feedback effect. In particular, the effect

16Mathematically, in (21), 1 + ρεXtrWX is quadratic in g, and so g has a quadratic effect on W ′.
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of feedbacks on temperature is now obscured not only by the noisy weather shock, but also by an

uncertain SGE effect. The planner is now uncertain if (say) a warm year was caused by stronger

than expected feedbacks, weather noise, or SGE being less effective than expected. This noise

ampliflication effect slows learning about feedback effects, all other things equal.17

Appendix B.2 shows I2 > I1. That is, the noise amplification effect implies the baseline g must

be larger for SGE to speed learning about feedbacks relative to SGE effectiveness, as the signal

strength effect must not only be positive, but also overcome the noise amplification effect.

The following proposition summarizes the above discussion on the role of SGE on learning:

PROPOSITION 2 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then I1 ≤ I2 for all finite

t ≥ 0 and up to three regions exist:

• Region 1: g < I1. In this region an increase in SGE increases posterior uncertainty for both β̃

and φ̃.

• Region 2: I1 ≤ g < I2. In this region an increase in SGE decreases uncertainty over φ̃ but

increases uncertainty over β̃.18

• Region 3: g ≥ I2. In this region an increase in SGE decreases uncertainty for both β̃ and φ̃.

Proposition 2 shows that sufficiently small SGE experiments slow learning, whereas sufficiently

large SGE experiments speed learning. To understand the magnitude of the SGE experiment re-

quired to speed learning, we can use the calibrated initial values to recover the current period I1

and I2. Details on the calibration of the initial conditions of the model are presented in Appendix

D. Given those calibrated parameters, we calculate the initial values of the variables defining the

cutoff regions: I1 = 7.34, and I2 = 114.1.19 Hence only for g > I1 = 7.34 will experimentation

with SGE speed learning about the net feedback parameter. Since g is normalized so that g = 1

corresponds to about 5MT of sulfur, to speed learning would require a massive experiment of about

36.7MT of sulfur.20 Thus, for any reasonably-sized implementation of SGE experiment, on the scale

of what is being proposed by policy makers and IAMs, SGE will slow learning about both the net

17Mathematically, the noise amplification effect is the second term in the numerator of W ′1 given in equation (22).
18Region 2 can be further decomposed into two subregions where SGE has differential effects on the covariance W ′2.

See Appendix B.2.
19This comes from the fact that T

F̂ ′
= 0.85

0.54
= 1.57, and W1 = 0.132, W2 = 0.01532, and W3 = 0.0072. Thus

W2
W3

= 4.67 and W1
W2

= 72.6.
20For reference, the Mount Pinatubo eruption in 1982 injected an estimated 20MT of sulfur and significantly cooled

global temperatures.
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feedback parameter, β̃, and the effectiveness of SGE, φ. There is no justification for small-scale,

planet-wide SGE experimentation based on reducing uncertainties, at least at the current calibrated

conditions. Later, in the numerical simulation results, we explore whether this result holds over time

as conditions change.

3.2 Learning from Abatement

Consider now the effect of abatement on learning. The next proposition shows that abatement policy,

α and SGE policy, g have opposite effects on information gain – whenever more SGE decreases

posterior uncertainty over an unknown variable, more abatement increases uncertainty over that

variable. That is, whenever
∂W ′i
∂g < 0, we will have

∂W ′i
∂α > 0.

PROPOSITION 3 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then

• Region 1: g < I1. In this region an increase in abatement decreases uncertainty for both β̃ and

φ̃.

• Region 2: I1 ≤ g < I2. In this region an increase in abatement decreases uncertainty over β̃

but increases uncertainty over φ̃.

• Region 3: g ≥ I2. In this region an increase in abatement increases uncertainty for both β̃ and

φ̃.

Increasing SGE decreases X2 (makes it more negative), while increasing abatement increases X2

(brings it closer to zero).

Increasing abatement reduces the amount of forcing available for a given level of SGE to act on.

SGE becomes less efficient in this sense. Therefore, if SGE is in a region where SGE speeds learning

(g > I1), then abatement weakens the positive signal strength effect of SGE, slowing learning.

Conversely, if SGE is in a region where SGE slows learning (g < I1), the abatement weakens the

negative signal strength effect of SGE, speeding learning.21

21It is useful to contrast Proposition 3 with the results of Kelly and Kolstad (1999). That paper had only one
uncertainty, the forcing parameter, ξ1η. From equations (9), (11), and (16), uncertainty about the forcing parameter
and uncertainty about SGE effectiveness are both equivalent to uncertainty about the net forcing X2. (More gross
forcing is equivalent to more net forcing after SGE.) In Kelly and Kolstad (1999), abatement always slowed learning.
Here, we have uncertainty about the net feedback parameter in addition to uncertainty about forcing through SGE.
Suppose W1 = W2 = 0, so that only net forcing is uncertain. Then it is straightforward to show that W ′1 = W ′2 = 0.
Since the feedback effect is certain, no further learning takes place about it regardless of abatement. Further, I1 = 0,
so region 2 holds for all g. In this region, an increase in abatement α slows learning about SGE effectiveness or
equivalently net forcing. Thus, the result of Kelly and Kolstad (1999) emerges as a special case when the prior
uncertainty over the net feedback parameter is sufficiently small. When the net feedback parameter uncertainty is
large, abatement may speed learning.
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Quantitatively, experimentation with abatement is less fruitful than experimentation with SGE.

Changes in abatement have only small effects on the current stock of CO2, which has built up over

centuries. Therefore, changes in abatement have little effect on X2. Consider again the calibrated

initial condition described in the previous section. If α = 0, then, from equation (9), F̂ ′ = 0.5466,

and if α = 1, F̂ ′ = 0.5302. Thus, I1 varies between 7.26 and 7.48, so the planner does not create

additional regions by changing α. Consider the effect of increasing abatement α from 0 to 1 for a

given value of g. For example, when g = 0.1:

W ′ (g = 0.1, α = 1)−W ′ (g = 0.1, α = 0)

W ′ (g = 0.1, α = 0)
=

 −0.006% −0.08%

−0.08% −0.005%

 , (26)

With g in region 1, moving from α = 0 to α = 1 speeds learning as indicated by Proposition 3, but

the effect is small: the variance terms decrease by less than one hundredth of one percent despite

the large increase in abatement.

Thus, the justification for experimentation with abatement to reduce uncertainties is quanti-

tatively small, though of course abatement yields other benefits. The numerical simulations below

determine optimal abatement and SGE including all costs and benefits, informational and otherwise.

3.3 Trade-off Between Information Gains and Losses

In region 2, SGE increases information over SGE effectiveness φ̃ but decreases information over the

net feedback parameter β̃. Ignore for the moment all of the other costs and benefits associated with

an SGE experiment, and consider only the effect on uncertainty. Is the information gain worth the

information loss? That is, does SGE experimentation result in more accurate decision making and

higher utility?

The concept of Blackwell informativeness answers this question. If an SGE experiment results in

an uncertainty distribution such that temperature can be predicted more accurately than without

such an experiment, then the more accurate prediction leads to higher utility. In this case, the SGE

experiment is said to be more Blackwell informative.

The next proposition demonstrates that for g > I1, the information gain about SGE effectiveness

is worth the information loss about the net feedback parameter, or that Blackwell informativeness

is increasing in g.
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PROPOSITION 4 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0.

1. Consider two posterior distributions Φ1 = N [µ′ (g1) ,W ′ (g1)] and Φ2 = N [µ′ (g2) ,W ′ (g2)],

produced from experiments g1 and g2, with g2 > g1. Then experiment 2 is more Blackwell

informative than experiment 1 for a given X if:

(
µ′ (g2)

tr
X
)2

XtrW ′ (g2)X + ρ−1
ε

>

(
µ′ (g1)

tr
X
)2

XtrW ′ (g1)X + ρ−1
ε

. (27)

2. Consider two posterior distributions Φ1 = N [µ′,W ′ (g)] and Φ2 = N [µ′,W ′ (g + ∆g)], where

∆g > 0. Then for ∆g sufficiently small, experiment 2 is more Blackwell informative than

experiment 1 for a given X if g > I1.

Consider an experiment of increasing SGE policy, g. Given the normally-distributed prior uncer-

tainty and weather shocks, the problem can be condensed into a single random variable (H ′ or

T ′AT ).22 Thus, the posterior distribution is more Blackwell informative if it produces a more accu-

rate prediction of T ′′ in the next period. Further, a more accurate prediction necessarily results in

a more informed decision and therefore higher utility. An increase in SGE makes X2 more negative,

which affects W ′ through equation (21). Considering this effect only, the second part of Proposition

4 shows that the information gain regarding φ̃ is more valuable than the information loss regard-

ing β̃ in region 2. Therefore, in regions 2 and 3, SGE experimentation on net produces valuable

information that leads to more informed decisions.23

A change in SGE also affects the mean of the posterior distribution.24 The first part of Proposi-

tion 4 shows that the overall effect on information depends on how SGE affects both the mean and

variance of the prior. We can rewrite equation (27) as:25

µH (g2)
2

varH (g2)
>

µH (g1)
2

varH (g1)
. (28)

Hence, increasing SGE is more Blackwell informative if doing so increases the signal-to-noise ratio.

SGE experimentation can produce a stronger or a weaker signal. Indeed, since µ′ depends on the

22See equation (17).
23The information value of SGE experimentation must be weighed against the cost and damage of implementing

SGE, and the benefit in terms of less forcing. This is addressed in the next section.
24See equation (15)
25From equations (A.48) and (A.55), the signal for T ′ is E [T ′] = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) + µtrX, of which only

the last term matters since only the last term depends on g. Further, equation (A.56) indicates the noise with respect
to T ′ is varH .
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random variable ε′, the effect of experimentation on the signal varies across periods. Nonetheless,

from Bayes’ theorem, E [µ′] = µ regardless of X, so in expectation experimentation has no effect

on the signal. Thus, the effect of experimentation on the noise shown in part 2 of Proposition 4 is

likely to be quantitatively more important. Finally, the value of X matters and the informativeness

of experimentation varies over time.

4 Simulation Results

Propositions 2 and 3 in Section 3 give conditions under which deployment of either SGE or abatement

increases the speed of learning over climate sensitivity and/or SGE effectiveness. Given initial

conditions, we can say whether there is information value in experimentation with either policy

instrument. The theoretical results, however, do not give the optimal paths for both policies, taking

into account their informational values as well as all other costs and benefits. To answer that

question, we turn to a numerical simulation.

We describe the details of our computational solution method in Appendix C and our calibration

in Appendix D. Notably, we use a novel strategy to calibrate SGE effectiveness and uncertainty

using data from historical volcanic eruptions. We then run 10,000 simulations of the solved model,

each simulation lasting 185 years. We choose 185 years since by the end of that period (the year

2200), all policy values have roughly leveled off for all simulations. All of the certain parameter

values are of course identical across each of the 10,000 simulations, and each simulation has the

same prior distribution of beliefs about the two uncertain parameters in the initial year. For each

simulation, we draw a new true value of β̃ and a new true value of φ̃ from that prior distribution.

These true values are unknown to the planner, though the planner learns endogenously over time.

We also draw a new weather shock εit for each simulation i in each year t. We report the median

value of the policy variables across the 10,000 simulations. These results are the medians conditional

on the identical initial (period zero) prior across simulations. These median values will differ from

assuming β̃ = β0 and φ̃ = φ0, which would give only the values conditional on the unlikely event

that the initial mean belief was exactly correct.
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4.1 Optimal Policy

Figure 1 plots the median optimal SGE for each period over the 10,000 simulations (red plus symbol).

We also plot the median SGE across just the simulations where the planner’s current beliefs about the

values of the uncertain parameters βit and φit are in the top ten percentiles of the belief distribution

(green circles), and the median SGE across just the simulations where the planner’s current beliefs βit

and φit are in the bottom ten percentiles (blue squares).26 The green curve thus represents optimal

SGE policy conditional on the planner believing that SGE is very effective and climate sensitivity is

very high, while the blue curve represents optimal SGE policy conditional on the planner believing

that SGE is very ineffective and climate sensitivity is very low.
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Figure 1: SGE policy, gt, 10,000 simulations. Markers are every 5 years for clarity, but the data are
annual in all figures.

For the overall median, in 2015 the geoengineering rate g is 0.088 (offsetting 8.8% of radiative

26We require that both βit and φit are in the top ten percentiles of their respective distributions. By definition,
1,000 of the 10,000 simulations have βit in its top ten percentile, and likewise for φit. But only about 300 simulations
have both βit and φit in their top ten percentiles. Similarly for the simulations of the bottom ten percentiles.
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forcing) and then falls over the next nine years. We will show that initially the planner is concerned

about the possibility that the climate sensitivity might be much higher than the initial prior. In

most simulations, the planner is able to rule out these worst-case scenarios relatively quickly, and

so SGE declines. Hence, initially, a moderate amount of SGE is optimal for precautionary reasons.

The upper and lower quantiles also begin in 2015 at g = 0.088, since all simulations start with the

same initial beliefs and thus the same SGE policy. However, when beliefs are that climate sensitivity

and SGE effectiveness are high, optimal SGE rises, peaking at g = 0.14 (offsetting 14% of radiative

forcing). Conversely, when beliefs indicate SGE effectiveness and the climate sensitivity are likely to

be low, the optimal SGE plummets to 0.01. Optimal SGE is thus highly sensitive to beliefs about

the SGE effectiveness and climate sensitivity. SGE is largely a policy used quite sparingly, and only

under extraordinary beliefs is SGE deployed at anything more than about g = 0.03. However, for

most beliefs in the first few years there is some SGE for precautionary purposes.

Eventually, the median SGE begins to increase as rising carbon concentrations and wealth makes

SGE more attractive, rising to about 0.035, before falling as the substitute policy of abatement

becomes increasingly attractive due to its exogenously declining cost. The median optimal SGE is

closer to the 10% quantile than the 90% quantile. The climate sensitivity distribution is bounded

below by zero but is unbounded above, and the prior distribution is asymmetric and fat-tailed (Kelly

and Tan, 2015).

We next compare our results on optimal SGE policy with those of Heutel et al. (2018) (see

their Figure 4f). In our model, the initial beliefs (prior mean) of the net feedback parameter and

SGE effectiveness are β0 = 0.65 and φ0 = 0.092, respectively. In their model, the mean value of

the net feedback parameter is β0 = 0.87 and SGE effectiveness is fixed at φ0 = 0.5. As a result,

although in their model optimal geoengineering has the same shape as in our model, SGE rises to

about g = 0.32 before declining. In our model in contrast, SGE rises to only g = 0.035. SGE

is used less here relative to the prior literature for three reasons. First, our calibration has an

initial belief that effectiveness is only 0.092. Our calibration is very conservative in that we assume

SGE effectiveness in reducing temperatures is similar to volcanic eruptions. However, some research

indicates careful choice of the location and timing of deployment can increase SGE effectiveness

tenfold (e.g. Kravitz et al., 2019). Second, SGE effectiveness is uncertain in our model. Third,

SGE at these levels slows learning, leading to less informed decision-making. Even if we solve our

model assuming the mean of the prior beliefs of SGE effectiveness is 0.5, SGE peaks at g = 0.188.
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Therefore, uncertain effectiveness and slower learning are quantitatively significant deterrents for

SGE deployment, reducing the optimal SGE by about 41% relative to Heutel et al. (2018).

Figure 2 plots the median optimal abatement policy α, as well as the median abatement policy

when beliefs about the net feedback parameter and SGE effectiveness are in the 10th and 90th

quantiles.
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Figure 2: Abatement policy αt, 10,000 simulations.

The initial abatement rate is about 37% in 2015. Median optimal abatement subsequently falls

to about 26% as learning rules out some of the worst climate sensitivity cases. Then abatement

begins to rise again, as the cost of abatement falls to near zero and growth in capital, population,

and productivity quickly raise emissions gross of abatement. Eventually abatement is so inexpensive

that 100% abatement becomes optimal. This result is consistent with the prior DICE literature.27

When beliefs about the climate sensitivity and SGE effectiveness are in the 90th percentile,

27Nordhaus (2016) constrains abatement to be less than or equal to 120%, to accommodate modeling carbon dioxide
removal (negative emissions), whereas we do not allow for that policy and so set the maximum abatement at 100%.
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abatement rises more quickly. Because beliefs are that the climate is very sensitive to carbon,

emissions cause higher temperatures and more damage, so higher abatement is optimal. Thus, when

beliefs about the climate sensitivity rise, the planner uses more of both SGE and abatement. Because

costs are convex, it is less expensive to use some of each rather than one or the other exclusively.

Nonetheless, the optimal decision favors abatement, in the sense that the planner is at the margin

spending more on abatement for the same temperature reduction as SGE. This is because SGE does

not directly reduce damages from CO2, creates damages itself, and slows learning. Thus, SGE does

not eliminate the need for abatement, a concern expressed in some of the prior literature.

In Appendix E, we show how the forecast errors over the uncertain variables evolve, which

illuminates how the speed of learning differs across the variables.

4.2 Effect of Learning on Optimal Policy

We explore how uncertainty and learning affect policy by comparing three sets of simulations. First,

in the learning case, we present the optimal policy simulations under our full model where there

is both uncertainty and endogenous learning over two parameters (these are the results presented

earlier in Figures 1 and 2). Second, in the certainty case, we present analogous optimal policy

simulations without uncertainty. That is, we again simulate optimal policy for 10,000 simulations,

each of which lasting 185 years, where at the start of each simulation we draw a true value of

each uncertain parameter β and φ from the prior distribution. But, the prior mean belief is set

equal to this true value and the variance of the prior is set equal to zero, so that there is certainty

over these values at the start and thus no learning.28 Third, in the no-learning case, we present

analogous optimal policy simulations under uncertainty but without learning. To do this, we solve

the model such that the planner knows no learning will take place in the future (W is no longer a

state, and beliefs over β and φ are fixed at the prior distribution). We again simulate the optimal

policy for 10,000 simulations, where at the start of each simulation we draw a true value for β and

φ, unobserved by the planner. We average 10,000 such paths without learning, to get the expected

path conditional on the prior information and no learning.

Figures 3 and 4 present the simulation results for optimal SGE policy. Figure 3 contrasts the

certainty and learning simulations, and Figure 4 contrasts the learning and no-learning simulations.

28However, a random weather shock is drawn in each period of each simulation, so that even in the certainty case
future weather shocks are unknown.
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In each figure, we present the median optimal policy, and the median optimal policy when the

feedback and SGE effectiveness beliefs are in the 10th and 90th percentile, both for the simulations

with learning (circle markers, replicating Figure 1) and for the simulations under either certainty or

no-learning (plus markers).
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Figure 3: SGE policy, gt, 10,000 simulations, learning and certainty cases.

Figure 3 shows that uncertainty matters initially. In 2015 the median SGE policy is g = 0.088,

yet if the planner knew the climate sensitivity and SGE effectiveness were in the 90% quantile, mean

SGE policy would be g = 0.128 and if the planner knew the climate sensitivity and SGE effectiveness

were in the 10% quantile, median optimal SGE would be near zero (g = 0.004). Although the learning

policies generally approach the certainty policies as learning resolves, some differences persist since

uncertainty regarding SGE effectiveness is slow to resolve. In particular, when SGE is very effective,

beliefs are slow to increase, resulting in the learning policy using less SGE than is optimal given

certainty, as the planner believes SGE is not as effective as it actually is. Conversely, when SGE is
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not very effective, beliefs are slow to decline, and the learning policy uses more SGE than is optimal

under certainty as the planner believes SGE is more effective than it actually is.

Figure 3 also shows that the median SGE policy under learning is initially much greater than

the certainty policy, as SGE is used initially as a precaution against the possibility that the climate

sensitivity is very high. Since learning quickly rules out this case in most simulations, SGE policy

becomes similar under the two simulations.29

Figure 4 contrasts optimal SGE policy under learning with optimal policy under uncertainty but

no learning.
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Figure 4: SGE policy, gt, 10,000 simulations, learning and no learning.

Because the planner knows that no learning will take place, the initial-period policies differ even

though initial beliefs are identical. Initial use of SGE is lower without learning.

As the simulations progress, learning allows the planner to tailor SGE policy, substantially in-

29These results are consistent with Kelly and Tan (2015), who also find that mean certainty and uncertainty policies
are similar after the first decade.
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creasing SGE when beliefs indicate climate change is severe and SGE is effective. Even without

learning, there is some difference across the three median policies despite no difference in beliefs.

This is because temperature differs across the simulations due to the different true parameter values,

and policies respond to that difference. If the temperature rises unexpectedly (due to the true value

of the climate sensitivity being higher than the believed value), and no learning takes place, the

planner attributes this only to higher weather shocks while anticipating lower future temperatures

based on the initial beliefs. Therefore, the planner increases SGE by a relatively small amount. In

contrast, under learning, when the temperature rises beliefs also rise, signalling to the planner that

future temperatures will also rise. Therefore, the planner increases SGE by a larger amount with

learning. The planner under learning bases SGE policy largely on beliefs because beliefs indicate

likely paths of future temperatures. A similar argument holds for SGE effectiveness. When beliefs

about SGE effectiveness rise, the planner increases SGE. However, without learning, even if SGE

is effective the planner keeps the prior belief and does not increase SGE usage. Conversely, when

the climate feedbacks are small and the temperature remains low, the planner without learning uses

more SGE, anticipating future temperatures will evolve according to the prior distribution with a

higher mean.
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Figure 5: Abatement policy, αt, 10,000 simulations, learning and certainty.

Figure 5 compares optimal abatement policy under learning and under certainty. Like SGE, the

initial median abatement policy is higher under learning, as a precaution against an potentially high

climate sensitivity. Optimal abatement under learning is initially below the level that would occur if

the climate sensitivity was known to be high for certain, however. The optimal policy under learning

quickly converges to the certainty policy under all cases, since the residual uncertainty about SGE

effectiveness is not as important for abatement policy as it is for SGE policy.

Figure 6 contrasts optimal abatement policy under learning with optimal abatement policy under

uncertainty but no learning.
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Figure 6: Abatement policy, αt, 10,000 simulations, learning and no learning.

In the case without learning, the planner’s beliefs about the net feedback parameter and SGE

effectiveness are unchanged through time and therefore, the policy response in both cases of high

and low climate sensitivity hovers around the case with median climate sensitivity. In contrast,

under learning the planner increases abatement when learning indicates the climate sensitivity is

relatively high and the reverse.

Section 3 showed that experimentation with SGE slowed learning about both SGE effectiveness

and climate sensitivity, given the 2015 initial conditions. However, the thresholds I1 and I2, which

determine whether or not SGE speeds learning, evolve over time. A natural question is whether

or not optimal SGE ever exceeds I1 or I2. If so, for these time periods SGE would speed learning

about SGE effectiveness and the climate sensitivity, respectively. Optimal SGE would then have an

information benefit from experimentation, rather than an information cost. Figure 7 investigates

this issue by comparing the mean of I1 over time (the mean of I2 remains far above one for all t) with

the mean of optimal SGE. Though I1 declines over time, it is always greater than SGE deployment g.
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The slowing of learning caused by SGE creates a disincentive for SGE use throughout the simulations,

not just at the initial conditions.
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Figure 7: Threshold for SGE to speed learning about SGE effectiveness, I1t, mean 10,000 simulations.

5 Conclusion

We present a model of optimal climate policy that includes the possibility of using solar geoengi-

neering (SGE) to reduce temperatures. The model allows for uncertainty and endogenous learning

over both climate sensitivity (the effect of carbon on temperature) and the effectiveness of SGE (the

effect of SGE deployment on temperature). It allows for two policy variables – abatement and SGE

– both of which affect the rate of learning about those uncertain parameters, creating a potential

motivation to experiment with either policy to reduce uncertainty. However, we find that any rea-

sonable level of SGE implementation actually slows learning. Since SGE has an uncertain effect on

the climate, use of SGE essentially adds noise to the climate system. With SGE, the planner must
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consider whether a warmer-than-expected year was the result of a random weather shock, a higher

than expected climate sensitivity, or a lower than expected SGE effectiveness. Without SGE, only

the first two of these possibilities exist and so learning evolves more quickly. Hence, given current

conditions, no information justification exists for experimentation with SGE. Further, over time the

information loss of using SGE continues, consistently reducing SGE usage.

Theoretically, we decompose the effect of SGE on learning into a signal strength effect and a

noise amplification effect. The signal strength effect shows that small-scale SGE implementation

reduces the magnitude of the temperature change and thus makes the temperature signal harder

to observe amidst the noisy weather shocks. However, with large-scale SGE implementation, the

planner expects to see a large change in temperature. Since a weather shock is unlikely to cause a

large change in temperature, more information will be gained. Furthermore, any use of an uncertain

SGE technology adds noise to the climate system, making learning over climate sensitivity more

difficult; we call this the noise amplification effect.

Our numerical results show that SGE deployment is highly sensitive to beliefs about climate

sensitivity and SGE effectiveness. Although SGE usage is generally low, it is substantially higher

when beliefs indicate that climate change is likely to be severe and that SGE is effective at reducing

temperature. Because the costs of both abatement and SGE are convex, some small amount of SGE

is always optimal, as it is less costly than using only abatement.

Our model contains several simplifying assumptions that can be relaxed in extensions. We use

the simplified version of DICE from Traeger (2014), and DICE itself is a relatively parsimonious

integrated assessment model. Optimal policy is defined solely based on net discounted utility for

the aggregate representative economy; our model does not incorporate any heterogeneity (e.g. by

income, region) and does not consider equity criteria. Our model has endogenous learning over two

uncertainties, but other parameters could also be modeled as uncertain, for example, SGE damages.

The findings are relevant for policymakers who may seek to deploy SGE both to immediately re-

duce temperatures and to learn more about SGE and the climate system. Our calibrated parameters

based on volcanic eruptions, uncertain effectiveness, and loss of information suggest that SGE is less

useful than previously thought, although some SGE is part of the optimal policy toolkit, especially

if the planner learns the climate sensitivity is higher than expected.
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Appendix

A Details of Numerical Model

A.1 Optimization Problem

The full model is the optimization problem, plus the equations governing the evolution of the ex-

ogenous variables. Exogenous variables depend only on the time state and are denoted as functions

of t. All endogenous state and control variables vary over time. We suppress the t subscript on all

current state and control variables, and primes denote next-period values. The objective is:

v (S) = max
K′,g,α

L (t)

(
C

L(t)

)1−ω
− 1

1− ω
+ exp (−δut)

∫ ∞
−∞

v (S′ (H ′)) Φ
[
H ′, µH , P

−1
H

]
dH ′

 . (A.1)

The planner chooses g and α along with savings, defining next period’s capital stock K ′. Here L(t)

is the exogenously-determined population, ω is the utility curvature parameter, and δu is the pure

rate of time preference. Here also Φ is the normal density and S is a vector of state variables:

S = [K,TAT ,M, t, µ, P ] , (A.2)

In equation (A.2), the state vector consists of the stock of capital, K; the atmospheric temperature,

TAT ; the atmospheric stock of carbon, M ; and the time state t. The state vector also consists of five

learning states: µ is a 2-dimensional vector (β, φ) and P is a matrix with 3 independent elements

(P1, P2, and P3). Thus the state vector has 9 total dimensions.

The maximization is subject to the following equations:

Q = Kγ (A (t)L (t))
1−γ

, (A.3)

Y = (1− Λ−D)Q, (A.4)

C = Y + (1− δk)K −K ′. (A.5)

Here equation (A.3) defines gross output. Equation (A.4) gives net output equal to gross output

less total climate damages and abatement and SGE costs. Here D is damages as a fraction of
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gross output and Λ are abatement and SGE costs as a fraction of gross output. Equation (A.5)

defines consumption as net output less savings. Savings is next period’s capital K ′ less capital net

of depreciation, (1− δk)K. Damages are:

D = πTT
2
AT + πm (M −M1750)

2
+ πgg

2. (A.6)

Climate change damages D are a function of atmospheric temperature TAT , as in the original DICE

model, but also of carbon M , reflecting the fact that SGE reduces temperature without reducing

carbon stocks. Use of SGE also causes damage directly through the term πgg
2.

Costs from abatement and SGE are both modeled as power functions of abatement and SGE

intensities, respectively.

Λ = θ1 (t)αθ2 + θGEg
θ3 , (A.7)

Emissions E are

E = σ (t) (1− α) (A (t)L (t))
1−γ

+ ELAND (t) . (A.8)

Emissions are a function of industrial emissions (σ (t)Kγ (A (t)L (t))
1−γ

) minus abatement, plus

exogenous emissions from land use changes denoted by ELAND.

The carbon cycle, radiative forcing, and temperature, and learning variables evolve as defined in

Section 2. For completeness, the equations are repeated here:

M ′ = M1750 + (1− δm (t)) (M −M1750) + E. (A.9)

F ′ =

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(1− φg) , (A.10)

T ′AT = TAT + ξ1

{
F ′ − ξ2TAT − ξ3 [TAT − TLO] (t)

}
+ ε′. (A.11)

P ′ = P + ρεXX
tr, (A.12)

X =

 TAT

−F̂ ′g

 , (A.13)

µ′ = (P ′)
−1

(Pµ+ ρεXH
′) , (A.14)
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µ =

 β

φ

 , (A.15)

t′ = t+ 1. (A.16)

µH = Xtrµ, (A.17)

varH = XtrP−1X + ρ−1
ε (A.18)

The exogenous variables evolve according to:

L (t) = L (0) + (L (∞)− L (0)) (1− exp (−gLt)) (A.19)

A (t) = A (0) exp

[
gA (0)

(1− exp (−δA))

δA

]
(A.20)

gA (t) = log

[
A (t+ 1)

A (t)

]
(A.21)

gL (t) = log

[
L (t+ 1)

L (t)

]
(A.22)

σ (t) = σ (0) exp

[
gσ (0)

(1− exp (−δσ))

δσ

]
(A.23)

θ1 (t) = σ (t)
θp
θ2

exp [−δpt] (A.24)

ELAND (t) = ELAND (0) exp (−δLANDt) (A.25)

δm (t) = δm (∞) + (δm (0)− δm (∞)) exp (−δ∗mt) , (A.26)

EF (t) = EF (0) + (EF (∞)− EF (0)) min

(
t

85
, 1

)
(A.27)

[TAT − TLO] (t) = max
{
δT,1 + δT,2t+ δT,3t

2, 0
}

(A.28)

Equations (A.19)-(A.28) are continuous-time approximations of the exogenous equations in DICE

provided by Traeger (2014).
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A.2 Normalization

We next normalize the model and introduce several changes of variables that make the analysis more

convenient. Let k ≡ K
AL

denote capital per productivity-adjusted person and the same for c, and let

m ≡ M
M1750

. In addition, let:

grAL (t) =
L (t+ 1)A (t+ 1)

L (t)A (t)
, (A.29)

grA (t) =
A (t+ 1)

A (t)
, grL (t) =

L (t+ 1)

L (t)
, (A.30)

r (t) = exp
[
−δu + log

(
grA (t)

1−ω
)

+ log (grL (t))
]
, (A.31)

where gr denotes the gross growth rates and the levels of the exogenous variables are defined in

equations (A.19)-(A.28). Let π̂m = πmM
2
1750, σAL (t) = σ (t)A (t)L (t), and ψ = 1/M1750.

Next, we replace H ′ by a standard normal random variable. Let:

z′ =
H ′ − µH

var
1
2

H

, (A.32)

H ′ = µH + var
1
2

Hz
′, (A.33)

dH ′ = var
1
2

Hdz
′. (A.34)

In the above set up, the time state and the precision variables are unbounded (see equation

A.12). The computational algorithm requires each state variable to be on a bounded domain. We

can replace the time state with a bounded function:

t̂ = 1− exp (−τt) . (A.35)

Further, we can replace the precision P with the variance:

W = P−1 ≡

 W1 W2

W2 W3

 . (A.36)
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To simplify the model, we first integrate via substitution using (A.32):

∫ ∞
−∞

v (S′ (H ′)) Φ [H ′, µH , varH ] dH ′

=

∫ ∞
−∞

v
(
S′
(
µH + var

1
2
Hz
′
))

Φ
[
µH + var

1
2
Hz
′, µH , varH

]
var

1
2
Hdz

′

=

∫ ∞
−∞

v
(
S′
(
µH + var

1
2
Hz
′
))

Φ [z′, 0, 1] dz′,

(A.37)

where the last equality follows from the definition of the normal distribution. Hence the maximization

problem is unchanged by replacing H ′ with µH + var
1
2

Hz
′ in the constraints and integrating using

the standard normal distribution.

Next, since by definition, W = P−1, (P ′)
−1

= W ′. Thus (A.12) becomes:

(W ′)
−1

= W−1 + ρεXX
tr, (A.38)

W ′ =
(
W−1 + ρεXX

tr
)−1

, (A.39)

and similarly for the other constraints which are functions of the precision.

Finally, the normalization replacing the aggregate economic variables with per-productivity unit

variables is identical to Traeger (2014). After replacing M with m/ψ, the model reduces to:

v (s) = max
k′,g,α

{
c1−ω − 1

1− ω
+ r (t)

∫ ∞
−∞

v (s′ (z′)) Φ [z′, 0, 1] dz′
}
. (A.40)

Subject to:

s =
[
k, TAT ,m, t̂, µ,W

]
, (A.41)

c = (1− Λ−D) kγ + (1− δk) k − grAL (t) k′, (A.42)

D = πTT
2
AT + π̂m (m− 1)

2
+ πgg

2, (A.43)

Λ = θ1 (t)αθ2 + θGEg
θ3 , (A.44)

E = σAL (t) (1− α) kγ + ELAND (t) , (A.45)

m′ = 1 + (1− δm (t)) (m− 1) + ψE, (A.46)

F̂ ′ = ξ1 (η log2 [m′] + FEX (t′)) , (A.47)
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T ′AT = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) + µH + var
1
2

Hz
′, (A.48)

W ′ =
(
W−1 + ρεXX

tr
)−1

, (A.49)

X =

 TAT

−F̂ ′g

 , (A.50)

µ′ = W ′
(
W−1µ+ ρεX

(
µH + var

1
2

Hz
′
))

, (A.51)

µ =

 β

φ

 , (A.52)

t = −1

τ
log
(
1− t̂

)
(A.53)

t̂′ = 1−
(
1− t̂

)
exp (−τ) , (A.54)

µH = Xtrµ, (A.55)

varH = XtrWX + ρ−1
ε , (A.56)

plus the exogenous equations (A.19)-(A.28).

Note that uncertainty enters into the original model through the distribution for H ′, in equation

(17). In the normalized model, uncertainty enters directly into the temperature equation (A.48).

B Proofs

B.1 Proof of Proposition 1

We first show that each element of W ′ is positive. Let W satisfy the assumptions of the proposition,

so that W is positive definite, W1W3 > W 2
2 . Then:

XtrWX > X2
1W1 + 2X1X2W2 +X2

2

W 2
2

W1
=

1

W1
(X1W2 +X2W1)

2
> 0, (B.1)

where the first inequality follows from W being positive definite, and the second from W3 > 0 by

assumption. Thus, from equation (21), W ′1 > 0, W ′3 > 0 and since X2 < 0, W ′2 > 0.
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Next, we show that W ′ is positive definite. Note that:

|W ′| =
(

1

1 + ρεXtrWX

)2
[ (
W1 + ρε |W |X2

2

) (
W3 + ρε |W |X2

1

)
− (W2 − ρε |W |X1X2)

2

]

=
|W |

1 + ρεXtrWX
, (B.2)

which is positive as shown in (B.1). Therefore, by induction the elements of W remain non-negative

and W remains positive definite for all t.

Next, we bound W ′ from above. Consider first W1. We have W ′1 < W1 if and only if:

W1 + ρε |W |X2
2

1 + ρεXtrWX
< W1, (B.3)

which simplifies to:

0 < (W1X1 +W2X2)
2
. (B.4)

Thus, W ′1 < W1 and by induction W1,t < W1,0 for all t. The same result holds for W3 by an

analogous argument. For W2, since W remains positive definite, we have:

W 2
2 < W1W3. (B.5)

Since, as shown above, W1 and W3 are bounded by their initial values:

W2 < (W1W3)
1
2 < (W1,0W3,0)

1
2 ∀t. (B.6)

Hence W2,t is also bounded for all t.

B.2 Proof of Proposition 2

First we show I1 < I ′ < I2. By definition, I ′ < I2 if and only if:

I ′ ≡ T

F̂ ′
W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
< I2 ≡

T

F̂ ′
W1

W2
. (B.7)

Multiplying out the terms yields:

0 < W ′2 |W | , (B.8)
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which is satisfied for all t from Proposition 1. Further, I1 < I ′ if and only if:

I1 ≡
T

F̂ ′
W2

W3
< I ′ ≡ T

F̂ ′
W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
. (B.9)

Multiplying out the terms results in:

0 < W ′3 |W | , (B.10)

which is satisfied for all t from Proposition 1.

Next, we want to find the effect of SGE g in the current period on uncertainty W ′ next period:

∂W ′

∂g . Since W ′ is a function of both X1 = TAT and X2 = −F̂ ′g,

∂W ′

∂g
=
∂W ′

∂X1

∂X1

∂g
+
∂W ′

∂X2

∂X2

∂g
(B.11)

Since both current period X1 = TAT and F̂ ′ are unaffected by current-period SGE g, ∂X1

∂g = 0 and

∂X2

∂g = −F̂ ′. So,

∂W ′

∂g
=
∂W ′

∂X2
·
(
−F̂ ′

)
. (B.12)

It follows that ∂W ′

∂g < 0 if and only if ∂W ′

∂X2
> 0.

The derivative of W ′ with respect to X2 from equation (21) is:

∂W ′

∂X2
=
−2ρε (W2X1 +W3X2)

(1 + ρεXtrWX)
2

 W1 + ρε |W |X2
2 W2 − ρε |W |X1X2

W2 − ρε |W |X1X2 W3 + ρε |W |X2
1


+

ρε |W |
(1 + ρεXtrWX)

 2X2 −X1

−X1 0

 (B.13)

=
−ρε

(1 + ρεXtrWX)
2

 Aw Bw

Bw Cw

 , (B.14)

where:

Aw = 2 (W2X1 +W3X2)
(
W1 + ρε |W |X2

2

)
− 2 |W |X2

(
1 + ρεX

trWX
)
, (B.15)

= 2
{
W1W2X1 +W 2

2X2 − ρε |W |X2X1 (W1X1 +W2X2)
}
, (B.16)

= 2 (W2 − ρε |W |X2X1) (W1X1 +W2X2) , (B.17)
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Aw = 2W ′2
(
1 + ρεX

trWX
)

(W1X1 +W2X2) , (B.18)

Bw = 2 (W2X1 +W3X2) (W2 − ρε |W |X1X2) + |W |X1

(
1 + ρεX

trWX
)
, (B.19)

= W 2
2X1 + 2W2W3X2 +W1W3X1 + ρε |W |X1

(
X2

1W1 −X2W3

)
, (B.20)

=W2 (W2X1 +W3X2) +W3 (W1X1 +W2X2) +

ρε |W |X1 (−X2 (W2X1 +W3X2) +X1 (W1X1 +W2X2)) , (B.21)

Bw =

[
W ′2 (W2X1 +W3X2) +W ′3 (W1X1 +W2X2)

] (
1 + ρεX

trWX
)
, (B.22)

Cw = 2 (W2X1 +W3X2)
(
W3 + ρε |W |X2

1

)
(B.23)

Cw = 2 (W2X1 +W3X2)W ′3
(
1 + ρεX

trWX
)
. (B.24)

Combining equations (B.14), (B.18), (B.22), and (B.24) reveals that:

∂W ′

∂X2
=

−ρε
(1 + ρεXtrWX)

 2ŴAW
′
2 ŴAW

′
3 + ŴBW

′
2

ŴAW
′
3 + ŴBW

′
2 2ŴBW

′
3

 (B.25)

ŴA ≡W1X1 +W2X2

ŴB ≡W2X1 +W3X2

Next, Proposition 1 shows that W ′i > 0 for i = 1, 2, 3 and all t. Hence:

∂W ′1
∂X2

> 0 ⇐⇒ ŴA < 0 ⇐⇒ g >
W1

W2
· T
F̂ ′

= I2. (B.26)

∂W ′2
∂X2

> 0 ⇐⇒ ŴAW
′
3 + ŴBW

′
2 < 0 ⇐⇒ g >

W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
· T
F̂ ′

= I ′. (B.27)

∂W ′3
∂X2

> 0 ⇐⇒ ŴB < 0 ⇐⇒ g >
W2

W3
· T
F̂ ′

= I1. (B.28)

Given (B.26)-(B.28) and I1 < I ′ < I2, and the fact that ∂W ′

∂g < 0 if and only if ∂W ′

∂X2
> 0, the

sign of the derivatives in each region is immediate.30

30Strictly speaking, Bw is a quadratic function of X2 since W ′2 depends on X2. However, one can show that exactly
one root exists for Bw over the domain X2 < 0. Therefore, the given condition (B.27) remains valid.
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B.3 Proof of Proposition 3

To evaluate the derivative of W ′ with respect to α, note that

∂W ′

∂α
=
∂W ′

∂X1

∂X1

∂α
+
∂W ′

∂X2

∂X2

∂α
(B.29)

Note that X1 = TAT is unaffected by current abatement α. Further, X2 = −F̂ ′g, and though

g is unaffected by α, F̂ ′ is. In fact, since F̂ ′ = ξ1

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
, it follows that

∂F̂ ′

∂α = ξ1η
1

M ′ ln 2
∂M ′

∂α < 0, since ∂M ′

∂α = −σ(t)Q. Thus, ∂X2

∂α < 0, so ∂W ′

∂α has the same sign of ∂W ′

∂X2
.

Then, all the steps of the proof of Proposition 2 follow, generating the same conditions but with

opposite sign as Proposition 2 (whenever ∂W ′

∂g < 0, ∂W ′

∂α > 0).

B.4 Proof of Proposition 4

For Blackwell Informativeness, we first note that problem (A.40) can be written with T ′ as the

random variable:

v (s) = max
k′,g,α

{
c1−ω − 1

1− ω
+ r (t)

∫ ∞
−∞

v (s′ (T ′)) Φ [T ′, bT + µH , varH ] dT ′
}
. (B.30)

Here:

bT = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) , (B.31)

and all other constraints are the same except (A.51), which becomes:

µ′ = W ′
(
W−1µ+ ρεX (T ′ − bT )

)
, (B.32)

From Blackwell’s theorem, experiment g2 produces a distribution over T ′ which is more infor-

mative than experiment g1 if the signal of T ′ from experiment g1 can be found by garbling the

signal from experiment g2.31 That is, experiment g2 is more Blackwell informative if there exists a

31See, for example, de Oliveira (2018).
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distribution Ψ such that:32

Φ (T ′1;µ1, var1) =

∫ ∞
−∞

Ψ (T ′1|T ′2) Φ (T ′2;µ2, var2) dT ′2,

µi = bT + µ′ (gi)
tr
X, i = 1, 2,

vari = XtrW ′ (gi)X + ρ−1
ε , i = 1, 2. (B.33)

That is, the experiment g2 is more informative if one can add additional randomness to (garble) the

signal produced by experiment g2 and get the signal produced by experiment g1. From Blackwell’s

theorem, if such a distribution Ψ can be found, then experiment two is a more accurate signal and

produces higher utility, all other things equal.

We hypothesize that Ψ is a normal distribution:

Ψ (T ′1|T ′2) = Φ (T ′1;A+BT ′2, varψ) . (B.34)

Here A, B, and varψ are undetermined coefficients.

Given the guess, the right hand side of equation (B.33) integrates to:

r.h.s. = (2π)
− 1

2 (var∗)
− 1

2 exp

{
−1

2
var∗ (T ′1 − µ∗)

2
}
,

var∗ = A2var2 + varψ

µ∗ = B + µ2A (B.35)

Hence, given the guess, the right hand side integrates to the normal density:

r.h.s. = Φ (T ′1;µ∗, var∗) (B.36)

Hence, the guess is verified by equating the mean and variance of the right hand side and left hand

side of (B.33).

bT + µ′ (g1)
tr
X = µ∗ = B +

(
bT + µ′ (g2)

tr
X
)
A (B.37)

32Here we essentially extend the argument of Krzysztofowicz (Krzysztofowicz, 1987)to multiple dimensions.



Learning and Geoengineering 44

The undetermined coefficients are then set so that the means are equal for all X:

A =
µ′ (g1)

tr
X

µ′ (g2)
tr
X

B = bT

(
1− µ′ (g1)

tr
X

µ′ (g2)
tr
X

)
. (B.38)

Equating the variances results in:

var1 = var∗ = A2var2 + varψ, (B.39)

varψ = XtrW ′ (g1)X + ρ−1
ε −

(
XtrW ′ (g2)X + ρ−1

ε

)(µ′ (g1)
tr
X

µ′ (g2)
tr
X

)2

. (B.40)

For Ψ to be a valid distribution, the variance must be positive. Therefore:

XtrW ′ (g1)X + ρ−1
ε −

(
XtrW ′ (g2)X + ρ−1

ε

)(µ′ (g1)
tr
X

µ′ (g2)
tr
X

)2

> 0 (B.41)

The above condition reduces to equation (27) in the text.

For part 2 of the proposition, we simply impose that µ′1 = µ′2. In this case, B = bT , A = 1, and

(B.40) reduces to:

varψ = −Xtr (W ′ (g + ∆g)−W ′ (g))X, (B.42)

For ∆g small, varψ > 0 if:

−Xtr ∂W
′

∂g
∆gX > 0,

Xtr ∂W
′

∂g
X < 0,

Xtr ∂W
′

∂X2

∂X2

∂g
X < 0,

Xtr ∂W
′

∂X2
X > 0. (B.43)

Using (B.25), the above condition reduces to:

−ρε
(
X1ŴA +X2ŴB

)
(X1W

′
2 +X2W

′
3)

(1 + ρεXtrWX)
> 0 (B.44)
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Using equations (A.49) and (B.25), the above condition reduces to:

−ρεXtrWXŴB

(1 + ρεXtrWX)
2 > 0 (B.45)

Since XtrWX > 0 from Proposition 1, the condition reduces to ŴB < 0, which holds if and only if

g > I1.

C Computational Details

Here we provide a short overview of the computational solution method. See Kelly and Tan (2015),

Appendix B and Fitzpatrick and Kelly (2017) for full details on the solution method used here. We

use a multidimensional spline approximation of the value function and value function iteration to

solve the dynamic program. That is, we replace the value function on the right hand side of the

Bellman equation with a spline approximation v̂ (s; pm) where pm denotes the vector of parameters

of the spline at iteration m. We use Gaussian quadrature to approximate the integral in (A.40). Let

{bij}j=1...J denote the base points and {wij}j=1...J the weights. The approximation to the Bellman’s

equation is then:

vm+1 (si) = max
k′,α,g

 c1−ω

1− ω
+ r (t)

J∑
j=1

v̂ (s′i (si, k
′, α, g, bij) ; pm) Φ (bij , 0, 1)wij

 , (C.1)

subject to the model’s constraints.

C.1 Algorithm Summary

1. Initialization. We form a grid s̃ = {si}Ii=1 of feasible state variables. Table A1 gives the

collocation nodes that form the grid. The curse of dimensionality limits the number of grid

points such that the model solves within a reasonable amount of time. Therefore, the selection

of collocation nodes cannot be arbitrary. We use a relatively large number of collocation nodes

for T and µ since uncertainty over the climate sensitivity with fat tails implies that a very wide

range of values for T and µ are possible outcomes. In contrast, the range of W is small and

decreases monotonically after each time period and therefore requires the fewest grid points.

In addition, the value function has significant curvature in the k, T , and µ dimensions, which
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requires additional grid points to estimate accurately. It is also important to allocate grid

points near the initial condition, s0.

2. Spline Initialization. We use a cubic spline approximation of the value function. The cubic

spline has 3 parameters for each collocation node, except in the W dimensions, which have

2. The parameters ensure that the spline fits the value function exactly at each grid point,

and that the spline is twice continuously differentiable. We choose the initial approximation

parameters to fit a function satisfying known properties of the true value function such as

concavity in k and decreasing in T , µ, and W .

3. Maximization. For each grid point si, we use v̂ (s′i (si, k
′, α, g, bij) ; pm) to find α, g, and k′

and therefore vm+1 (si) using the approximate Bellman equation (C.1).

4. Numerical Integration. Each numerical integration uses J = 5 base points, and the upper

and lower bounds of integration are set to the mean of z′ ±3 standard deviations. Note that

z is a standard normal obtained by summing the three normally distributed random variables

in the model and transforming the result to a standard normal, so the implied bounds for H ′

and therefore ε′, β̃ and φ̃ will be different.

5. Approximation. The approximation parameters pm+1 are set to match vm+1 (si), and main-

tain twice differentiability.

6. Termination. The algorithm stops if ‖ vm+1 (si)− vm (si) ‖6 0.001, otherwise we increment

m by one and return to step 3.
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State Grid Points

k 0.46,0.7447,0.85,0.95,1.00,1.05,1.15,1.30

T 0.4,0.85,1.5,2,2.5,4,6,10,15

m 1,1.4473,2.25,3.5

t̂ 0,0.1,0.2,0.5,0.8,0.9,0.95,0.99,1

µ 0.25,0.65,0.75,0.97

φ 0.02,0.5,0.98

W1 0,0.017

W3 0,0.1

W2 0,0.04

Total grid points: 248,832

Table A1: Collocation points. k: capital stock per productivity adjusted person, further normalized
so that the steady state is one. TAT : atmospheric temperature in ◦C above preindustrial, m:
greenhouse gas concentrations as a fraction of preindustrial levels. t̂: equal to 1−exp (−0.02t), where
t is years after 2015. µ: mean of the prior distribution of the net feedback parameter (unit free). φ:
mean of the prior distribution of the SGE effectiveness. W1: variance of the prior distribution for the
net feedback parameter, unit free. W3: variance of the prior distribution for the SGE effectiveness
parameter, unit free. W2: covariance of the prior distribution, unit free.

C.2 Further Bounds on the State Space

The computational algorithm requires s′ to remain on the grid, otherwise v̂ (s′) must be extrapolated

in an arbitrary way (without data). In particular, the elements of s′ cannot fall outside the intervals

given by the maximum and minimum values given in Table A1. Using the variance instead of the

precision and mapping the time state into a bounded function means that W ′ and t̂′ will remain on

the grid. For k and m, the minimum and maximum values in Table A1 are such that the planner

optimally remains in the given interval.

However, keeping T ′, φ′, and µ′ on the grid is less straightforward. Consider, for example, a grid

point such that T , φ, or µ equals its maximum value. Then evaluating s′ on the right side of the

distribution in the numerical integration must yield still higher values which are off the grid. For

this reason, we manually impose upper bounds equal to the maximum values given in Table A1.
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D Calibration and Parameter Values

All of the parameter values, and the sources of their calibration, are listed in Tables A3 and A4.

The parameters are taken from Nordhaus (2016) and Heutel et al. (2018), except as detailed below.

First, we use the calibration in Heutel et al. (2018) for SGE control costs and damage parameters.

The DICE model combines damages from increased temperatures and increased CO2 concentrations

into a single function of temperature. Heutel et al. (2018) assume a decomposition of these damages

into 80% from temperature, 10% from atmospheric CO2 concentrations, and 10% from deep ocean

concentrations. Since our model does not include a deep ocean concentration state, we assume that

20% of damages are due to the atmospheric concentration of CO2 and 80% are due to temperature.

This calibration yields the values for πT and πm which yields π̂m = πmM
2
1750.

Next, the calibration of ξ1 uses results from Roe and Baker (2007). Assume a steady state where

the carbon stock is twice preindustrial, m = 2. Then, assuming non-CO2 forcing FEX and SGE g

are zero, in the steady-state F̂ = ξ1η from (A.47). Let [TAT − TLO] (∞) = 0, since in the steady

state heat transfer between the ocean and atmosphere is in equilibrium. Then from equations (A.48),

(A.50), and (A.55), the climate sensitivity, or steady-state atmospheric temperature from a doubling

of CO2, is:

∆T̄2× = TAT =
ξ1η

1− β̃
(D.1)

Now Roe and Baker (2007) estimate an average feedback effect from various climate models as

β̄ = 0.65 and an average climate sensitivity of ∆T̄2× = 3.41. Given η = 3.6813 from Nordhaus

(2016), one can calibrate ξ1 as:

ξ1 =
(
1− β̄

) ∆T̄2×

η
= 0.3242. (D.2)

However, this value substantially exceeds the value given in Nordhaus (2016) of ξ1 = 0.1005. In

addition, such a large value of ξ1 is inconsistent with recent temperature fluctuations in the sense

that imposing ξ1 = 0.3242 causes the temperature to increase discretely in the first period (see

equations A.47 and A.48). To get a more realistic estimate of ξ1, either the mean feedback effect

β̄ must be larger or the climate sensitivity assuming the mean feedback ∆T̄2× must be smaller.

Following Kelly and Tan (2015), we set ∆T̄2× = 2.76 which implies ξ1 = 0.2624. Note that ∆T̄2× is

the climate sensitivity when β is evaluated at its mean value. It is not the mean climate sensitivity,
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which is actually infinite, due to the fat tail in the climate sensitivity distribution Kelly and Tan

(2015).33

Notice that the net feedback parameter is uncertain but the forcing effect of CO2 (ηξ1) is known

with certainty. This follows the argument of Weitzman (2009) and Roe and Baker (2007) that only

the feedback effects are uncertain.

For the initial uncertainty, Roe and Baker (2007) find that a normal prior distribution of β̃ with

prior mean β0 = 0.65 and variance W1,0 = 0.0169 implies a climate sensitivity distribution which

matches the distribution of climate sensitivities from various global circulation models (GCMs). We

adopt these priors as initial conditions.

The remaining initial conditions are from Nordhaus (2016), except the prior distribution for SGE

effectiveness. To calibrate the effectiveness of SGE, we use the effects of volcano explosions large

enough to have climatic effects. In Table A2 we list the volcanoes we use in our calibration and the

required information as presented in Driscoll et al. (2012).

Table A2: Volcanoes

Volcano Eruption Date SO2 Mass [TgS]
Krakatau Aug 27, 1883 44
Tarawera Jun 10, 1886 4.5
Bandai Jul 15, 1888 3.5
Santa Maria Oct 24, 1902 30
Quizapu Apr 10, 1932 3
Agung Mar 17, 1963 20
Fuego October 10, 1974 4
El Chichon April 4, 1982 7
Pinatubo June 15, 1991 20

We then collect data on Aerosol Optical Depth (AOD) from NASA. Top panel of Figure A1

shows these data.

33An alternative (Traeger, 2014; Nordhaus, 2016) is to assume an autoregressive coefficient close to one and a larger
climate sensitivity. However, an OLS regression of the temperature equation yields a similar autoregressive coefficient
and a relatively low climate sensitivity. The calibration thus trades off errors in short run temperature data and the
long run results of complex global circulation models.

https://data.giss.nasa.gov/modelforce/strataer/
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Figure A1: Sulfur and AOD

The green lines show the date of each of the volcano eruption. After each eruption there is a

clear increase in AOD, which we assign the amount of sulfur associated to each volcano to the whole

year following the explosion. To calculate the effect of sulfur on radiative forcing we regress:

AOD = ζ1 + ζ2sulfurt + εt (D.3)

The result is ζ2 = 0.0027± 0.00021. Following Ricke (2011), we assume a change of 0.1 AOD is

equivalent to a reduction in radiative forcing of 2.5 Wm−2. This implies based on our results that 1

TgS reduces radiative forcing by 0.0675± 0.0052Wm−2. When we increase the “window of cooling”

from one year to two, the results are very similar ζ2 = 0.0025± .00013.

Finally, recall the g = 1 is normalized such that 5MT sulfur causes a decrease in radiative forcing

of φηf when carbon concentrations are twice preindustrial. Since ζ2 = 0.0675 has units of forcing

per MT of sulfur, we multiply by 5/ηf to get φ = 0.0917± 0.0071.

Our calibration suggests 20TgS (Pinatubo) are equivalent to around 1.35Wm−2. This is smaller

than the usually assigned value of 2 Wm−2.

Finally, we consider the calibration of the initial covariance, W2,0. The covariance comes from
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the passive learning model, in which x1,t, x2,t and Ht+1 are observed, generating new information to

update the parameter estimates (see equations 11 and 21). However, the priors are actually formed

from two different sources. The feedback prior comes from GCMs (Roe and Baker, 2007) and the

effectiveness prior comes from the volcano/optical depth regressions above. One way to resolve this

is to generate a prior for the covariance as if the other priors were generated from a regression using

historical data on x1 and x2 via equation (11). If so, then:

W0 = ρ

 ∑2015
t=0 x2

1,t

∑2015
t=0 x1,tx2,t∑2015

t=0 x1,tx2,t

∑2015
t=0 x2

2,t

 = ρ

 0.132 W2,0

W2,0 0.00712

 . (D.4)

Note that x2,t = 0 except for the m = 9 years with volcanic eruptions noted above and x1,t is the

n = 140 year temperature record. Under the further simplifying assumption that x1 and x2 are

constant when not zero,34 it follows that:

W2,0 =
√

(m/n)W1,0W3,0 = 0.01532. (D.5)

Hence if W1,0 and W3,0 were generated from historical data consisting of a small number of years

with volcanic eruptions and a larger number of years, without an eruption, then W2,0 = 0.01532.

Table A4 gives the exogenous variable parameters. The calibration of the exogenous variables

follows Traeger (2014), updated to the 2016 version of DICE.

The emissions intensity decline rate, δσ is calibrated to match the 2025 emissions intensity in

DICE. At this value, the emissions intensity is a close match to the one in DICE for all periods.

An identical procedure was used to calibrate the parameters governing the decline in the cost of the

backstop technology, δp and θ4, and the decline rate in labor productivity δA. When calibrated so

that backstop cost and labor productivity match the 2025 DICE values, the processes over time are

a close match to DICE.

Following Traeger (2014), we assume the rate of absorption of carbon into the biosphere and

deep ocean is an exogenous process given in equation (A.26), with parameters δm (0), δm (∞), and

δ∗m. We choose the parameters of the absorption process so that the same DICE emissions produce

similar atmospheric carbon concentrations as in the DICE model. The resulting parameters are

34This assumption can be relaxed and the result is quantitatively similar in that I1 will still be well above one and
the optimal policy is largely independent of W2,0 in any event.
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similar to Traeger (2014), except for the limiting absorption rate. In DICE, carbon is no longer

absorbed after 2165 and carbon stocks fall only because sequestration is allowed at this point. To

match this requires a very low limiting absorption rate.

The exogenous atmosphere-ocean temperature differential parameters δT,i, i = 1, 2, 3, are cali-

brated to match the differential in DICE. In particular, we choose the three parameters to match

the initial (2015) differential, the peak differential, and so that the peak differential occurs in an

identical year as in DICE.
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Economic Parameters

Parameter Value Source

Capital Share γ 0.3 Nordhaus (2016)

Depreciation Rate δk 0.1 Nordhaus (2016)

Coefficient of Relative Risk Aversion ω 1.45 Nordhaus (2016)

Pure rate of time preference δu 0.015 Nordhaus (2016)

Cost and Damage Parameters

Abatement Control Cost Exponent θ2 2.6 Nordhaus (2016)

SGE Control Cost parameter θGE 0.0027 Heutel et. al. (2018)

SGE Control Cost exponent θ3 2 Heutel et. al. (2018)

Temperature Damage Coefficient πT 0.0019 calibrated

Carbon Damage Coefficient π̂m 0.0017 calibrated

SGE Damage Coefficient πg 0.03 Heutel et. al. (2018)

Climate Parameters

Preindustrial GHG concentrations 1/ψ 588 GTC Nordhaus (2016)

Radiative Forcing Parameter η 3.6813 Nordhaus (2016)

Ocean Heat Uptake Parameter ξ3 0.088 Nordhaus (2016)

Ocean Heat Capacity ξ1 0.2624 calibrated

Initial Conditions

Initial Capital Stock K0 $223 Trillion Nordhaus (2016)

Initial Carbon Stock/Preindustrial m0 1.4473 Nordhaus (2016)

Initial Temperature T0 0.85◦C above 1920-40 Nordhaus (2016)

Initial mean of Prior Feedback Distribution β0 0.65 Roe and Baker (2007)

Initial Mean of Prior SGE Effectiveness φ0 0.0917 calibrated

Initial Variance of Prior Feedback Distribution W1,0 0.132 Roe and Baker (2007)

Initial Variance of Prior SGE Effectiveness Distribution W3,0 0.00712 calibrated

Initial Covariance of Prior Distribution W2,0 0.01532 calibrated

Table A3: Parameter Values for endogenous equations. Values without units are unit free parame-
ters. Units are per annum unless otherwise noted.
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Economic Parameters

Initial Population L (0) 7.403B people Nordhaus (2016)

Asymptotic Population L (∞) 11.5B people Nordhaus (2016)

Decline Population Growth δL 0.0236 Nordhaus (2016)

Initial Labor Productivity A (0) 10.2952 1000$/person Nordhaus (2016)

Initial Labor Productivity Growth gA (0) 0.0211 Nordhaus (2016)

Decline Labor Productivity Growth δA 0.0049 calibrated

Initial Emissions Intensity σ (0) 0.0955 tC/1000$ Nordhaus (2016)

Initial Emissions Intensity Growth gσ (0) -0.0152 Nordhaus (2016)

Decline Emissions Intensity Growth δσ 0.001 calibrated

Initial Backstop Cost θp 2.0163 $M/tC Nordhaus (2016)

Decline Backstop Cost Growth δp 0.0051 calibrated

Backstop Cost Parameter θ4 1 calibrated

Climate Parameters

Initial Land Emissions ELAND (0) 0.7092 GtC Nordhaus (2016)

Growth Rate Land Emissions δLAND 0.0223 Nordhaus (2016)

Initial Ocean Carbon Uptake δm (0) 0.014 calibrated

Asymptotic Ocean Uptake δm (∞) 1e-6 calibrated

Decline in Ocean Carbon Uptake δ∗m 0.016 calibrated

Initial Exogenous Forcing EF (0) 0.5 w/m2 Nordhaus (2016)

Asymptotic Exogenous Forcing EF (∞) 1.00 w/m2 Nordhaus (2016)

Temperature Difference Parameter δT,1 0.8064 calibrated

Temperature Difference Parameter δT,2 0.0370 calibrated

Temperature Difference Parameter δT,3 -0.000176 calibrated

Variance of Weather Shocks ρ−1
ε 0.0121 Kelly and Tan (2015)

Table A4: Parameter Values for exogenous equations. Values without units are unit free parameters.
Units are per annum unless otherwise noted.

E Learning and Forecast Errors

The rate of learning is best viewed by observing the mean absolute forecast errors over time, given

the optimal decisions presented in the simulation results. For each simulation i, the forecast errors

of each uncertain parameter are:

Forecast Errorβ,it = abs
(
β̃i − βit

)
, (E.1)
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Forecast Errorφ,it = abs
(
φ̃i − φit

)
, (E.2)

Here β̃i and φ̃i are the true values drawn from the prior distribution for simulation i, and βit and φit

are the means of the current beliefs each period. We similarly compute the absolute forecast errors

for the climate sensitivity ∆T2×.35

Forecast Error∆T2×,it = abs
(

∆̃T 2×,i −∆T2×,it

)
, (E.3)

Figure A2 plots the mean absolute forecast error for these three parameters.
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Figure A2: Mean absolute forecast errors for φ̃, β̃ and ∆T̃2×. Mean of 10,000 simulations.

The climate sensitivity distribution is fat-tailed. As shown in Kelly and Tan (2015), for most

realizations of the climate sensitivity, the planner can rule out very large values quickly, reducing

forecast error. However, forecast errors are difficult to reduce much beyond the initial few periods.

35Again, climate sensitivity ∆T2× is a function of the uncertain net feedback parameter and so is itself uncertain.
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Most of the remaining forecast error is driven by values of β̃ near one (consult equation 12). Even

small errors in the estimate of β̃ generate large forecast errors in ∆T̃2× in this case. As for SGE

effectiveness, the percent forecast errors barely fall over time. The size of the SGE deployment is

far too small to result in much learning. As shown in the theoretical section, SGE levels way above

one are required to speed learning about SGE. Modest deployment of SGE (less than 0.1) is optimal

given total costs and benefits, though it contains very little informational value.

Plotting the quantiles of forecast errors is also useful. Figure A3 plots the forecast error quantiles

for the SGE effectiveness parameter φ̃, without taking the absolute value.
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Figure A3: Forecast error quantiles for φ̃, 10,000 simulations.

From Bayes’ rule, the mean forecast errors for β̃ and φ̃ should be zero, since Bayes’ rule makes

unbiased estimates. Figure A3 shows the median, which is still close to zero because the distribution

for φ̃ is the symmetric normal. The 90% and 10% quantiles indicate that forecast errors remain even

well past 2100 for some simulations. As a percentage of the true value, forecast errors in the lowest
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10% represent average forecast errors of about -9%, whereas forecast errors in the top 10% represent

average forecast errors of 10-11%.36 Optimal SGE deployment is not a large enough experiment to

significantly reduce these forecast errors.

Figure A4 plots the forecast error quantiles for the climate sensitivity ∆T̃2×.
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Figure A4: Forecast error quantiles for ∆T̃2×, 10,000 simulations.

Although the error reduces to plus or minus 0.1 by 2100, learning does not improve forecasts

further beyond that point, as noted above. For climate sensitivity, some learning quickly occurs

initially, followed by a long period of relatively little improvement in forecast errors. Learning about

both SGE effectiveness and the climate sensitivity is relatively slow, but the reasons are different.

Slow learning about climate sensitivity occurs since the climate sensitivity is the weighted sum of all

previous feedback effects. Thus small feedback uncertainties are magnified in the climate sensitivity.

In contrast, slow learning about SGE effectiveness occurs because fast learning requires significant

36Note that the largest/smallest forecast errors result from a sequence of weather shocks in the opposite direction
of the true value, not the largest/smallest true values of β and φ. Therefore, the set of simulations in the top/bottom
10% in Figure A3 differ from the set of simulations in the top/bottom 10% in Figures 1-2.
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use of SGE, which is not optimal.
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