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Introduction

Over the past forty years, economic growth in many advanced economies has been unevenly

distributed. In the United States, while the aggregate economy has grown at roughly two

percent per year, income percentiles corresponding to the lower half of the distribution have

stagnated. At the same time, incomes at the 95th percentile have roughly doubled and top

1 percent incomes have roughly tripled.1

One potential driver of these trends that is often cited by pundits and policy makers

alike is technical change, and in particular the automation of tasks performed by labor. A

large literature in macro and labor economics has studied how technology and automation

affect the distribution of labor incomes.2 But not all income is labor income and capital is

an important income source, particularly at the top of the distribution where incomes have

increased the most. Existing theories therefore paint an incomplete picture of technology’s

implications for overall income inequality. This shortcoming is particularly acute when

it comes to automation, technical change that substitutes labor with capital, and which

therefore increases the importance of capital in the economy.

We argue that the benefits of new technologies—and in particular automation technologies—

accrue not only to high-skilled labor but also to owners of capital in the form of higher capital

incomes. This increases inequality. To make this argument, we develop a tractable framework

that allows us to study the impact of technology on factor prices and the personal income

and wealth distributions—and not just that of wages—and use it to study the distributional

effects of automation.

Our framework provides a complete characterization of how technology and, more gen-

erally, changes in the economy’s production and market structure affect the personal distri-

bution of income, wages, and capital ownership, as well as macroeconomic aggregates.3 We

achieve this by assuming that households differ in their skills and household wealth accumu-

lation is subject to random dissipation shocks which leave them with zero assets and only

their labor income, thereby capturing the hazards of accumulating and maintaining a for-

tune. Dissipation shocks allow us to deviate in a tractable fashion from models that admit

a representative household (like variants of the neoclassical growth model) and introduce

two key features relative to such models that are crucial for understanding how automation

affects inequality and aggregates.4 First, our theory generates well-defined and tractable

steady-state distributions for wealth and income. Second, the long-run supply of capital

1See for example Census Bureau (2015) and Piketty, Saez and Zucman (2018).
2See for example Katz and Murphy (1992), Krusell et al. (2000) and Autor, Katz and Kearney (2006)
3Importantly, ours is a theory of the personal income distribution and not just of the factor income

distribution. The latter type of theory – for example “two class models” with capitalists and workers –
cannot speak to a number of empirical regularities in developed countries, for example that individuals at
the top of the labor income distribution typically also earn substantial capital incomes (and vice versa).

4Our notion of “models that admit a representative household” allows for skill heterogeneity and includes
models that assume there are different skill types but these are all members of the same representative
household, and models where Gorman aggregation holds (see Theorem 5.2 in Acemoglu, 2009).
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is less than perfectly elastic and therefore determines the long-run effect of technology on

returns to wealth (prices) and the amount of capital used in production (quantities).

The framework underscores two key and novel channels through which technology affects

income inequality and contributes to the pattern of uneven growth described above. First,

automation increases wealth and capital income inequality by raising returns to wealth.

Second, relative to theories in which returns are unaffected, automation is more likely to lead

to stagnant wages and, therefore, stagnant incomes at the bottom of the income distribution.

The key to understanding both results is that the long-run capital supply in our model is

upward-sloping. Automation increases the demand for capital relative to labor and, because

supply is upward-sloping, this demand shift permanently increases returns to wealth. The

first part, that automation directly increases wealth and income inequality, then follows

because some households receive a higher return on their assets and grow their fortunes

more rapidly. The second part—that wages are more likely to stagnate—follows because

some of the productivity gains from automation do not accrue to workers but rather to

owners of capital in the form of a higher return to their wealth. Neither of these mechanisms

would be operational in textbook representative household models, in which the long-run

capital supply is perfectly elastic and therefore returns are unaffected by technology.

We first illustrate these mechanisms using a simple baseline model and later extend this

model in a number of directions. In the baseline model, capital is the only asset in the

economy and all households earn the same return on their wealth. We obtain two main

analytical results that illuminate how automation affects inequality.

First, the steady-state return exceeds the discount rate by a premium p×σ×αnet, where

p is the arrival rate of dissipation shocks, σ is the inverse of the intertemporal elasticity

of substitution, and αnet is the net capital share – an object that rises with automation.

Therefore, in contrast to textbook representative household models in which this return

equals the (fixed) discount rate, the return in our model increases with automation.

Second, the steady-state wealth accumulation process of individual households generates

an exact Pareto distribution for both effective wealth (the sum of financial and human

wealth) and income conditional on wages.5 In equilibrium, tail inequality – as measured

by the inverse of the Pareto shape parameter – simply equals the net capital share αnet,

meaning that both top income and wealth inequality increase with automation.6 Intuitively,

the gap between the return to wealth and the discount rate determines the speed at which

individual households accumulate wealth in the absence of a dissipation shock, which in

turn determines the thickness of the wealth distribution. In equilibrium, this gap equals the

premium p×σ×αnet and therefore the net capital share αnet shows up in the tail index of these

distributions. This result illustrates in a transparent fashion the new mechanism emphasized

above that automation contributes to income inequality by permanently increasing returns

5Because of dissipation shocks, there is churn at the individual level even though aggregate capital is
constant in steady state: households accumulate wealth over time but lose it with some probability.

6We also show that the scale parameter of these Pareto distributions is determined by wages which is
another channel through which automation affects income and wealth inequality.
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to wealth and the concentration of capital ownership.7

The flip side of the finding that the return to wealth rises with automation is that

wages of displaced workers are more likely to fall, not only relative to other skill types

(as commonly emphasized in the literature), but also in levels. In our theory, automation

generates productivity gains but some of these productivity gains accrue to capital owners

in the form of a higher return to their wealth. The higher cost of capital permanently limits

the expansion of investment and output in response to this technological improvement. As a

result, automation can lead to stagnant or falling real wages even in the long run, especially

for workers whose skills are more susceptible to automation. This is in contrast to models

that admit a representative household. In those models, the supply of capital is perfectly

elastic, and automation leads to a substantial increase in capital accumulation and higher

average wages in the long run (Acemoglu and Restrepo, 2018; Caselli and Manning, 2018).

Although our baseline model is intentionally stylized, and some of the assumptions are

stark, the mechanisms underlying our results are considerably more general. The two key

ingredients behind our results are an upward-sloping long-run supply of capital—so that

technology persistently affects asset returns—and a nexus between returns to wealth and

inequality. The first ingredient, an upward-sloping capital supply, seems to us a more natural

and less extreme starting point than the perfectly-elastic capital supply of the textbook

growth model and its relatives. It is also a feature of overlapping generations (OLG) models,

models with a life-cycle component, and models with labor income risk and precautionary

savings (as in Aiyagari-Bewley-Huggett models). The second ingredient, a return-inequality

nexus, emerges naturally in models in which stochastic wealth accumulation at the individual

level generates a fat-tailed wealth distribution. This includes models with stochastic returns

or discount rates (Krusell and Smith, 1998; Benhabib, Bisin and Zhu, 2011, 2015) and

models with explosive growth coupled with a birth and death process (Wold and Whittle,

1957; Steindl, 1965; Benhabib and Bisin, 2007; Jones, 2015; Sargent, Wang and Yang, 2020).8

Also the argument of Piketty (2014, 2015) that top wealth inequality depends on “r − g”

highlights precisely this nexus.

In our baseline model, automation has important distributional consequences because it

raises the return to wealth. One of the main challenges in applying this theory to the data

is that returns on different assets have displayed divergent empirical trends, in particular

treasury rates have declined over time (e.g. Rachel and Summers, 2019) while the return to

other assets, including US business capital and equity have increased (e.g. Caballero, Farhi

7This new channel differs from the common argument that a rise in the capital share leads to higher
inequality because capital income is more unequally distributed than labor income (Meade, 1964; Piketty,
2014). As we discuss in detail, such compositional effects are small relative to the data and to the changes
in capital ownership generated by our model.

8See Benhabib and Bisin (2018) for a review of models capable of generating fat-tailed wealth distributions.
Among the models surveyed, only models where the tail of the wealth distribution is induced by the tail of
the distribution of labor earnings (“models with skewed earnings”) lack a return inequality nexus. These
include models with finite lives and no inheritances, and simple versions of Aiyagari-Bewley-Huggett models
(Stachurski and Toda, 2018).
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and Gourinchas, 2017; Gomme, Ravikumar and Rupert, 2011; Reis, 2020). What is then

the relevant return to evaluate our theory? And how should we account for changes in the

growth rate of the economy and other forces affecting returns?

To answer these questions, we extend our model to feature multiple assets with different

returns, richer capital income risk, markups, taxation and long-run growth. Despite the

added complexity, the model remains tractable, demonstrating the potential of our baseline

model to form the core of a more elaborate and realistic framework. In our extended model,

the return to risky capital exceeds the return to safe bonds because of compensation for

risk or financial frictions that prevent arbitrage.9 We show that the key return measure

determining wealth inequality is the overall return to investors’ wealth, rW , which depends

on investors’ portfolio allocation. The safe rate is not necessarily informative about this

return. In fact, there are equilibria in which investors are leveraged, and lower safe rates

increase this return and hence wealth inequality. Moreover, automation leads to a higher

return on investors’ wealth and a widening spread between risky and safe returns, with

ambiguous implications for the level of the safe rate. Finally, the model also shows that,

when there are changes in the growth rate of the economy, wealth inequality depends on

rW −σ×g, which determines how fast successful investors accumulate wealth relative to the

growth rate of the economy, and that this gap always rises with automation.

These results show that, when assessing the validity of our mechanism, one should focus

on the return to investors’ wealth and the gap between this return and σ × g. The level of

safe rates offers little information on the extent to which technology is increasing the demand

for capital and how this might be contributing to rising wealth inequality. Building on this

insight, we provide a series of estimates for the return to investors’ wealth rW , both in levels

and relative to σ × g. Our estimates suggest that, contrary to the observed trend in safe

rates and in line with our theory, the relevant return to wealth rW rose over the 1980–2007

period, and rW − σ × g increased by 0.7–2 percentage points.

The addition of risky capital in the extended model also generates higher levels of inequal-

ity and churn at the top of the wealth distribution. In our baseline model with dissipation

shocks only, top wealth inequality as measured by the inverse of the Pareto shape parameter

equals α∗net ≈ 0.2 which is much lower than the corresponding empirical values of around

0.7. In contrast, the extended model with capital income risk can generate the higher tail

inequality that we see in the data. Moreover, the thicker tail also exhibits more frequent

and sizable churn, with investors rapidly reaching the top of the wealth distribution after

receiving a series of high returns (or leaving it after a low-return spell).

After presenting our main analytical results, we turn to a numerical evaluation of the

model. Our objective here is not to conduct a full quantitative exercise, but to explore the

range of implications of this class of models for aggregates and distributions under plausible

9The observed divergence between real risk-free interest rates and the returns to capital has been pre-
viously emphasized by Caballero, Farhi and Gourinchas (2017) and Farhi and Gourio (2018) who propose
various candidate explanations ranging from rising market power to rising discounts on safe assets.
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parameterizations, and to contrast these implications with salient empirical trends. In our

numerical exercise, we study how the automation of routine jobs contributed to overall

income inequality. To do so, we infer changes in automation by percentile of the wage

distribution using exposure to routine jobs, which the literature singles out as jobs that

can be easily automated using computer software or other equipment (see Autor, Levy and

Murnane, 2003; Autor, Katz and Kearney, 2006). To benchmark the extent to which these

jobs have been automated, we calibrate the automation of routine jobs since 1980 to match

the declining share of labor in GDP during this period.

The automation of routine jobs generates a pattern of uneven growth reminiscent of that

observed in the US over the last forty years. Two features combine to produce this pattern.

First, our model generates a decline in real wages at the bottom and middle of the income

distribution, which accounts for part of the income stagnation observed at these percentiles.

Second, it generates a rising concentration of capital income at the top of the distribution,

which accounts for the sharp rise of incomes at the top. In particular, automation generates

an increase in tail income inequality (measured by the inverse of the Pareto index) from 0.54

to 0.65, about 75% of the increase estimated by Piketty, Saez and Zucman (2018).

The first contribution of our paper is to the literature on technological change and au-

tomation. Like most theoretical papers in this area, we use a task-based framework to model

automation (Zeira, 1998; Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018). Pa-

pers in this literature focus on wage inequality (Autor, Levy and Murnane, 2003; Autor,

Katz and Kearney, 2006; Acemoglu and Autor, 2011; Hémous and Olsen, 2018), or study

the effect of automation on aggregates and wages using a representative household frame-

work (Acemoglu and Restrepo, 2018; Caselli and Manning, 2018). One exception is Sachs

and Kotlikoff (2012), who study the possibility of immiserizing growth in an OLG model.

We contribute to this literature by moving beyond representative-household models and ex-

ploring the implications of automation for inequality of total incomes across households.

By doing so, we show that automation might contribute to rising incomes at the top and

stagnant or declining wages at the bottom of the income distribution.

Our second contribution is to the literature exploring the determinants of wealth in-

equality. Several papers explore this question quantitatively in general equilibrium models,

including Krusell and Smith (1998); Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003); Kay-

mak and Poschke (2016); Hubmer, Krusell and Smith (2016); Straub (2019). Relative to

this literature, we isolate a new theoretical mechanism: technical change affects income and

wealth distribution via returns to wealth. In contrast, other papers studying how technol-

ogy affects wealth distribution focus on a more mechanical effect through wage dispersion

(which is also present in our paper). Our model is deliberately simple and abstracts from

labor income risk and a realistic treatment of life-cycle and bequests—important elements in

quantitative theories of the wealth distribution. In exchange, we obtain analytical solutions

for the steady-state distributions of wages, incomes and wealth.10 Furthermore, the economy

10The mechanism generating a Pareto tail in our model is a common feature of random growth processes
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aggregates, and solving for its transition dynamics is as easy as in the neoclassical growth

model. Thus, our model is closer in spirit to models of the Gorman class (see Chatterjee,

1994; Caselli and Ventura, 2000) in which policy functions are linear and aggregates do

not depend on the wealth distribution.11 However, in contrast to these models, dissipation

shocks generate a determinate steady-state wealth distribution and imply that our model

does not admit a representative household.

Section 1 lays out our baseline theory of uneven growth. Section 2 presents the extended

model and a measurement exercise showing that the relevant return measures have increased

in line with our theory. In Section 3 we take the extended model to the data with a calibration

of changes in automation across the wage distribution, and in Section 4 we show that this

generates a pattern of uneven growth like that observed in the data. Section 5 concludes.

1 Benchmark Model of Uneven Growth

The model is cast in continuous time. For expositional clarity, we outline the model in

stationary form. Appendices A and B provide proofs and full derivations. Appendix D

describes the full model along the transition path.

1.1 Economic Environment

Households. There is a unit continuum of households that differ in their skills z, with `z
denoting the population share of each skill. Households maximize standard preferences over

utility flows from consumption subject to a flow budget constraint and a natural debt limit:

max
{cz,t,az,t}t≥0

ˆ ∞
0

e−ρt
c1−σ
z,t

1− σ
dt (1)

subject to: ȧz,t = wz + raz,t − cz,t, and az,t ≥ −wz/r,

where az,t denotes assets, cz,t consumption, r the return to wealth and wz wage income.

Without any modification, Gorman’s aggregation theorem applies (see theorem 5.2 in

Acemoglu, 2009) and this model would admit a representative household. Independently

of the production side, the steady state would involve a constant interest rate equal to the

discount rate ρ. Moreover, the wealth distribution would be indeterminate (see Caselli and

(see Gabaix, 2009, for a review). In fact, the process with dissipation shocks in our model is a simple and
tractable example of a random growth process, and the idea that it leads to a Pareto distribution has been
used before by many authors.

11Because policy functions are linear “macro matters for inequality, but inequality does not matter for
macro.” A large recent literature instead argues that models incorporating empirically realistic heterogeneity
in household balance sheets and marginal propensities to consume often deliver different aggregate implica-
tions than do representative agent models, precisely because aggregates depend on distribution. We view
linear policy functions and other abstractions with unrealistic implications as costs worth paying in return
for our theory’s analytical tractability.
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Ventura, 2000), and so the theory would be ill-suited to study how technology affects income

and wealth inequality.

We break Gorman aggregation by assuming that the accumulation of wealth is subject to

dissipation shocks, which arrive at a constant rate p > 0. We operationalize this assumption

in the simplest possible way by assuming that after receiving a dissipation shock, households

consume all of their wealth and are left with zero assets.12 Appendix B shows formally that

in the presence of dissipation shocks, households solve (1), where t denotes the time elapsed

since the last dissipation shock, and households discount the future at a rate ρ := %+p, where

% is the pure rate of time preference. Our formulation implies that following a dissipation

shock we have az,0 = 0. In what follows, we will refer to the case with p = 0 as the

representative-household benchmark.

We view dissipation shocks as a reduced-form way of capturing the risks and hazards

involved in raising and maintaining a fortune, both over time and across generations. These

risks are a defining feature of wealth accumulation. For instance, recent work documents

substantial churn at the top of the wealth distribution (Gomez, 2018; Zheng, 2019). Dissi-

pation shocks provide a natural way of thinking about this churn. As we discuss in more

detail in Appendix B.1, there are several possible micro-foundations for dissipation shocks,

many of which are key ingredients in existing theories of wealth inequality:

• perpetual youth: individuals die with a constant probability p and are not altruistic

toward their offspring. If there are no accidental bequests (either because of an annuity

market, as in Blanchard, 1985, or because people consume their wealth right before

they die), newborns start life with zero assets and only their labor income, mimicking

the effect of a dissipation shock.13 As shown by Benhabib and Bisin (2007), this setup

can be generalized to allow for some bequests (e.g. due to partial altruism or a “joy

of giving” bequest motive) so long as individuals do not pass on their entire wealth to

their offspring thereby forming a perfect infinitely-lived dynasty.

• finite lives and stochastic altruism: finitely-lived individuals are part of a dynasty and

pass on their wealth over time. At rate p, the current member of the dynasty stops

being altruistic and consumes all of her wealth so that the dynasty is interrupted.

• population growth: p captures net increases in population. Being born is isomorphic

to receiving a dissipation shock because newborns start life with zero assets.

• discount rate shocks: at rate p, households become infinitely impatient and consume

all of their wealth. This is a simple and tractable version of the more general process

for discount rates assumed in Krusell and Smith (1998).

12For households with debt, we assume that dissipation shocks act as a cancellation of their debt. Alter-
natively, one could assume that households cannot borrow, or that dissipation shocks only hit households
with a positive level of assets. These assumptions are not important for our results. As we will show, the
steady state of our model involves all households accumulating assets at a positive rate.

13When there is an annuity market, the return obtained by households is r + p, where the addition of p
accounts for the income from annuities. See Appendix B.1.1 for a more detailed discussion.
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• capital income risk: at rate p, the assets held by a household become obsolete and

lose all their value, i.e. a return of minus one hundred percent. This is a simple and

tractable version of more general processes for idiosyncratic returns to wealth (e.g.

Benhabib, Bisin and Zhu, 2011, 2015).

Technology. Our description of the production process emphasizes the role of tasks, which

are either completed by workers or automated. Each skill type z works in a different sector

that produces output Yz. The economy produces a final good Y using these sectoral outputs

according to a Cobb-Douglas aggregator

Y = A
∏
z

Y ηz
z with

∑
z

ηz = 1.

Here, ηz denotes the importance of the sectoral output produced by skill type z in production.

The productivity shifter A captures the role of factor-neutral technological improvements.

The production of sectoral output Yz involves the completion of a unit continuum of tasks

u, which are then combined via a Cobb-Douglas aggregator:

lnYz =

ˆ 1

0

lnYz(u)du.

These tasks can be produced using capital and skill-z labor as follows:

Yz(u) =

{
ψz`z(u) + kz(u) if u ∈ [0, αz]

ψz`z(u) if u ∈ (αz, 1].

The threshold αz summarizes the possibilities for the automation of tasks performed by

workers of skill z. Tasks u ∈ [0, αz] are technologically automated and can be produced by

capital kz(u) or labor `z(u). The remaining tasks are not technologically automated and

must be produced by labor. Firms in sector z hire in a competitive labor market at a skill-

specific wage wz and they rent capital in a competitive rental market at rental rate R = r+δ

where δ ≥ 0 is the depreciation rate. Therefore the unit cost of producing a task with capital

is R and that of producing it with labor is wz/ψz.

An increase in αz captures the development of automation technologies that expand the

range of tasks in which capital is now able to substitute workers of type z. For example,

workers engaged in white-collar office work devote their time to tasks such as accounting,

keeping and locating records, and customer support. Workers engaged in blue-collar work

devote their time to tasks such as welding, painting, assembling, machining, and supervision.

Over time, technological improvements have allowed the automation of some of these tasks,

while others, like customer support or supervision, remain the domain of workers.

8



Equilibrium. Throughout, we assume competitive input and final good markets and define

a steady state equilibrium of the economy as follows.

Definition 1 The steady state equilibrium is given by aggregate output and capital, factor

prices, a set of factor allocations, and consumption and saving policy functions such that:

• capital and labor, {kz(u), `z(u)}z,u, are allocated in a cost minimizing way to produce

output Y given factor prices {wz}z, R = r + δ and technology.

• policy functions az,t, cz,t maximize utility given az,0 = 0, wz and r.

• labor markets clear: ˆ 1

0

`z(u)du = `z for all z.

• the aggregate capital supplied by households and used by firms equals K:

K =
∑
z

ˆ αz

0

kz(u)du =
∑
z

`z

ˆ ∞
0

az,tpe
−ptdt,

where pe−pt is the share of households that have accumulated wealth without experienc-

ing a dissipation shock for t periods.

We first study households’ consumption and saving decisions, which determine the sup-

ply of capital in the economy. We then consider the firms’ problem of choosing the cost-

minimizing mix of factor inputs, which determines the demand for capital. We are able to

derive a closed-form solution for both the supply of and demand for capital, and for the

interest rate that equilibrates the capital market.

Lemma 1 (Policy functions) Suppose that r > (r − ρ)/σ. The solution to the savings

problem is given by policy functions that are linear in effective wealth, az,t + wz/r:

ȧz,t =
r − ρ
σ

(
az,t +

wz
r

)
, cz,t =

(
r − r − ρ

σ

)(
az,t +

wz
r

)
(2)

with az,0 = 0.

The lemma shows that households accumulate assets at a rate (r − ρ)/σ and consume

a constant share of their effective wealth. The rate at which households accumulate assets,

and thus the supply of capital, depends positively on the return rate r.

We now turn to the production side of the economy. To simplify the exposition, we make

the following assumption for the rest of the paper:

Assumption 1 (Full adoption of available automation technologies)

wz
ψz

> R for all z.

9



Assumption 1 ensures that in all tasks for which automation technologies are available, the

cost of producing them with labor, wz/ψz, exceeds the cost of producing them with capital,

R. As a result, all automation technologies will be adopted.14

The following lemma characterizes output and factor prices.

Lemma 2 (Output and factor prices) Suppose Assumption 1 holds. Output is given by

Y (K) := AK
∑
z αzηz

∏
z

(ψz`z)
(1−αz)ηz , (3)

where A is a constant that depends on parameters {A,αz, ηz}. Factor prices are given by

wz = (1− αz)
ηz
`z
Y (K), R = α

Y (K)

K
, (4)

where α is the average degree of automation in the economy: α :=
∑

z αzηz.

Lemma 2 shows that aggregate output is given by a Cobb-Douglas production function with

factor shares linked to the range of tasks performed by each factor. As tasks that were the

domain of skill z get automated, this skill loses importance in production (1− αz declines)

while capital becomes more important (α rises).15 Changes in the αz’s thus provide a flexible

way of capturing technological improvements that involve an expansion in the range of tasks

that capital and machines can do at the expense of workers with particular set of skills.

1.2 Behavior of Aggregates and Wages

Lemma 1 showed how the return to wealth determines the rate at which households ac-

cumulate wealth and supply capital, and Lemma 2 characterized how technology shapes

the demand for capital. We now characterize the equilibrium of the return to wealth and

aggregates. We denote variables in the equilibrium steady state with an asterisk.

Proposition 1 (The return to wealth and the aggregate effects of automation) The

steady state is unique. The return to wealth, r∗, is given by the solution to the equation

r∗ − ρ
σp+ ρ− r∗

=
α

1− α
r∗

r∗ + δ
. (5)

14Assumption 1 involves endogenous factor prices, so it needs to be verified in equilibrium. Lemma A1 in
Appendix A shows that it holds for steady-state factor prices when productivity A is high, so that steady-
state wages are high relative to the steady-state rental rate R.

15Our model abstracts from firms and industries, and so the decline of the labor share following improve-
ments in automation manifests at the aggregate level. In practice, larger and growing firms might be more
likely to deploy automation technologies, or firms already operating more automated production processes
may expand at the expense of others as automation technologies improve. These dynamics are consistent
with the evidence in Autor et al. (2017); Kehrig and Vincent (2018) on the role played by firms in driving
the decline in the labor share, and with the theoretical model in Martinez (2019).
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Equivalently, denoting by α∗net := r∗K∗/(r∗K∗ +
∑

z w
∗
z`z) the net share of capital income,

the return to wealth satifies

r∗ = ρ+ σpα∗net. (6)

The return to wealth, r∗, the net capital share α∗net , and the capital-output ratio, (K/Y )∗,

are all increasing functions of α. Moreover, output increases in all αz.

Equation (5) shows how technology and the parameters governing households’ saving behav-

ior determine the equilibrium return to wealth in steady state. We can think of the return

to wealth as determined by the supply of capital and the demand for capital. To elaborate

this argument, it is convenient to think in terms of capital relative to human wealth

k :=
K

w̄/r
,

where w̄ :=
∑

z wz`z is the wage bill and w̄/r is the value of human wealth in the economy.

To derive the supply of capital, we use the characterization in Lemma 1. Integrating

equation (2) yields K̇ = r−ρ
σ

(
K + w̄

r

)
− pK, where the term −pK accounts for the wealth

loss due to dissipation shocks. In steady state K̇ = 0 and hence

r − ρ
σ

(
K +

w̄

r

)
= pK.

Rearranging gives the (relative) supply of capital for r ≥ ρ:

ks =
r − ρ

σp+ ρ− r
. (7)

This equation is an upward-sloping long-run capital supply curve and we depict it in Figure

1. Intuitively, as the return to wealth rises, households accumulate and supply more capital

relative to their human wealth.

Figure 1: Equilibrium determination of the return to wealth.
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Figure 1 also plots a capital demand curve which we obtain from the economy’s produc-

tion side: rearranging (4) yields

kd =
α

1− α
r

r + δ
.

and so (normalized) capital demand is a decreasing function of the return to wealth.

Equation (5) gives the return r∗ at which demand equals supply.

The main implication of the supply and demand diagram in Figure 1 is that r∗ lies

between ρ and ρ + σp, which implies that the return to wealth has a premium above ρ.

Equation (6) shows that α∗net determines exactly where in this range r∗ lies. According to

this equation, the premium of r∗ above ρ is given by σ × p× α∗net.16

Figure 1 also illustrates the difference between the equilibrium in our model compared

to the representative-household benchmark. With a representative household, the supply of

capital is perfectly elastic and the return to wealth is fixed at r∗ = ρ. In such models, only

the quantity of capital adjusts in the long run, ensuring that technology can have at most a

short-lived impact on asset returns.

Despite the simplicity of our model, we find the logic behind the upward-sloping supply

of capital and the result that the return to wealth has a premium above ρ linked to the net

capital share to be quite general. The driving force behind this result is that all the financial

wealth and capital in the economy derives from labor income that households save and invest

over time. Because everyone at some point in time had nothing but their human wealth, the

equilibrium return to wealth r must exceed the discount rate ρ so as to incentivize households

to accumulate and supply capital. How high above ρ must the return to wealth be? This

depends on the importance of capital relative to human wealth. If the net capital share is

high, and hence capital is important relative to human wealth, households must accumulate

capital rapidly and this requires that the return to wealth exceeds ρ by a large amount.

The Proposition shows that the average extent of automation in the economy, α, increases

the return to wealth and the net capital share. This finding can be seen directly from Figure

2. An increase in α raises the demand for capital relative to labor. This demand shift

increases the return to wealth, the ratio of capital to human wealth, k∗, and the net share

of capital. The proposition also shows that the capital-output ratio, (K/Y )∗, expands as

automation increases the relative demand for capital. These findings are intuitive. At a

fundamental level, automation makes capital more important than human wealth. A higher

return is then required to get households to accumulate and supply the higher level of capital

required for production.

Does the higher demand for capital following an increase in automation result primarily

16 The exact formula for r∗ in equation (6) follows from rearranging equation (7) and holds independently
of the production structure of the economy. The reason why the return to wealth exceeds ρ is different from
the known formula r = ρ+ σg which holds along a balanced-growth path where technology grows at a rate
g > 0. Equation (18) in Section 2 generalizes equation (6) to an environment with sustained growth and
shows that the equilibrium return is given by ρ+σg+ pσα∗

net, where α∗
net is now the capital share in income

net of depreciation and growth.
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Figure 2: Effect of automation—an increase in α—on the equilibrium return to wealth,
r∗. The green arrows illustrate how the equilibrium changes in our model and in the
representative-household benchmark.

in a higher return to capital or in an expansion of the capital-to-output ratio? The answer

depends on the capital-supply elasticity, which is inversely linked to p. To illustrate this,

consider the special case δ = 0 in which we obtain simple formulas for aggregates:

Example 1 When δ = 0, we have that α∗net = α and

r∗ = ρ+ σpα, (K/Y )∗ =
α

ρ+ σpα
. (8)

As these equations show, for high values of p, automation leads to a sizable increase in the

return to capital and a mild expansion in the capital-to-output ratio.

This is in contrast to what happens in the representative-household benchmark with

p = 0. As Figure 2 shows, in this case the long-run capital supply is infinitely elastic at

r∗ = ρ. Compared to our model with an upward-sloping long-run capital supply, automation

now results in a larger expansion of capital and has no effect on the return to wealth.

Finally, the Proposition shows that output always rises with automation. In particular,

the appendix shows that, to a first-order approximation, the steady state effect of automation

on output is given by

d lnY ∗ =
1

1− α
∑
z

ηz ln

(
wz
ψzR

)
dαz︸ ︷︷ ︸

:=d ln TFPα

+
α

1− α
d ln(K/Y )∗ > 0. (9)

Output increases via two channels. First, by allowing the substitution of labor for capital,

automation increases productivity (the first term). The contribution of automation to TFP

is a (weighted) sum of the cost-saving at the task-level wz/(ψzR). Second, output increases

due to endogenous capital accumulation. As discussed above, for high values of p, this second
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force is modest, and automation generates a limited output expansion.

The following proposition summarizes the effects of automation on real wages.

Proposition 2 (The long-run effects of automation on wages)

• An increase in αz reduces the wage w∗z relative to other wages w∗v for v 6= z.

• For a given increase in the α′zs, there exists a threshold p̄ > 0 such that, for p > p̄, the

average wage w̄∗ falls; and for p < p̄, w̄∗ increases.

The effect of automation on relative wages is unambiguous and follows from the fact that

wz = (1− αz)ηz`z Y (see also Hémous and Olsen, 2018; Acemoglu and Restrepo, 2018).

A more novel implication of the proposition is the possibility that automation may lead

to stagnant wages for the average worker, which necessarily implies a more pronounced real

decline in the wages of workers displaced by automation. Whether this is the case or not

depends again on p, which determines how inelastic the supply of capital is in steady state.

Two complementary intuitions illustrate the importance of the capital supply in deter-

mining the behavior of the wage level. First, following a technological improvement that

raises TFP by d ln TFPα > 0, the dual version of the Solow residual implies that17

d ln TFPα = (1− α)d ln w̄ + αd lnR, R = r + δ (10)

That is, productivity improvements accrue either to workers in the form of higher average

wages or to capital owners in the form of a higher return to wealth. While this expression is

very general and also holds outside of steady state and in a much broader class of models,

consider now the steady state of our economy. In the representative-household benchmark

p = 0, supply is perfectly elastic and hence d lnR = 0 so that all productivity gains from

automation accrue to labor – the inelastic factor.18 However, as p increases and capital supply

becomes more inelastic, an increasingly larger share of these productivity gains accrues to

capital in the form of a higher return. When p > p̄ so that capital supply is sufficiently

inelastic, most of these gains accrue to capital so that average wages actually fall, d ln w̄ < 0.

An alternative intuition comes from studying directly the behavior of the average wage.

From Lemma 2, we have that w̄ = (1−α)Y . From (9) we know that automation results in an

17This result holds in general whenever aggregate output exhibits constant returns to scale and markets
are competitive. Under these assumptions, we have Y = w̄L + RK where we now allow for movements in
labor supply L to underline the argument’s generality so that w̄ denotes the average wage. Differentiating
both sides of this identity, we get that, following a technological improvement, we have

d lnY = d ln TFPα + αd lnK + (1− α)d lnL = (1− α)d ln w̄ + αd lnR+ αd lnK + (1− α)d lnL,

where α = RK/Y . The expression in the main text follows by canceling the d lnK and d lnL terms. This
derivation shows that the results in the proposition extend beyond our model: any type of technological
change will raise wages provided that d lnR = 0. See Jaffe et al. (2019, ch.18/19) for a textbook treatment.

18This part of the proposition is in line with papers that studied the impact of automation in settings with
a representative household or an infinitely elastic supply of capital, such as Simon (1965); Acemoglu and
Restrepo (2018); Caselli and Manning (2018). These settings correspond to the case p = 0 in our model.
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output expansion, with the magnitude depending on the productivity increase d ln TFPα and

the expansion in capital supply d ln(K/Y )∗. The effect of automation on the average wage is

therefore determined by the relative strength of this output expansion and the displacement

effect captured by the term 1 − α. With sufficiently inelastic capital supply (i.e., p > p̄),

the displacement effect dominates. With sufficiently elastic capital supply (i.e., p < p̄), the

output expansion dominates.

Transitional dynamics and a numerical example. Appendix D shows that the tran-

sition dynamics for the aggregate variables are governed by the stable arm of the system of

differential equations

Ċ − pK̇ =
1

σ
(Y ′(K)− δ − ρ) (C − pK)− µpK

K̇ =Y (K)− δK − C
µ̇

µ
=µ− Y ′(K) + δ +

1

σ
(Y ′(K)− δ − ρ) ,

where µ is the (common) marginal propensity to consume out of effective wealth. This

is similar to the usual system of equations determining the equilibrium in the neoclassical

growth model, but is now coupled with an additional forward-looking equation determining

the behavior of µ. Moreover, C−pK—the consumption not triggered by dissipation shocks—

follows a standard Euler equation, with an adjustment −µpK which accounts for the share

µ of dissipated wealth pK that would have been consumed.19

To illustrate the results from Propositions 1 and 2 and how the transition dynamics

in our model deviate from the representative-household benchmark, we present a numerical

example that shows the response of economic aggregates following a permanent improvement

in automation technologies—an increase in the αz’s.

For this numerical example, we use a subset of the parameters from the calibration of

our extended model in Section 3. In particular, as explained there, we feed into the model

a gradual increase in the αz’s that starts in 1980 and matches the observed increase in the

capital share between 1980 and 2014 from 34.5% to 43% and we assume that automated

tasks see a cost reduction of 30%. This amount of automation generates a TFP increase of

2.5% (the share of automated tasks times the cost saving gains from automating a task – see

(9)), which is a relatively small shock in terms of productivity gains. Finally, we set a value

of p = 4.5%, which implies a fairly high capital supply semi-elasticity, d lnK/dr, of 50.

Figure 3 presents the transition dynamics for the labor share (summarizing the techno-

logical change fed into the model), output per worker, the net investment rate, the capital-

output ratio, the return to wealth, and the average wage per hour. For comparison, we also

19As for the steady state of the model, we can solve the transition dynamics without knowing the evolution
of the wealth distribution. This block-recursive property implies that one can first solve for aggregates and
then use the behavior of aggregates to compute the evolution of distributions. This also implies that, in this
model, “macro matters for inequality” but “inequality does not matter for macro.”
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Figure 3: Transitional dynamics for the main aggregates following an improvement in au-
tomation technologies in 1980. The solid line presents the transition dynamics in our model.
The dashed line presents the transition dynamics in the representative-household benchmark.

plotted the transition dynamics for the representative-household benchmark.

In our model, automation leads to a modest expansion of output of 11%. Despite re-

ducing the labor share, automation generates a modest expansion in the capital-output and

investment-output ratios of 15% and permanently increases the return to wealth from 6.5%

to 7.2%. Thus, our model with an upward-sloping long-run capital supply provides a par-

tial answer to the question “if the decline in the US labor share was driven by automation,

shouldn’t investment and capital have increased?” The answer is “yes, but only slightly,

precisely because capital supply is upward-sloping.”20 It does not follow that automation

20To see this in more detail, recall from above that the capital share increased from 0.345 to 0.43 percent
between 1980 and 2014, a 25 percent increase. How much would we expect the capital-output ratio to
increase? The answer can be seen from manipulating the definition of the capital share α = RK/Y :

(K/Y )2014
(K/Y )1980

=
α2014/α1980

R2014/R1980
(11)

Now consider two scenarios, and assume in both that R1980 = 11.5% as in our calibration. If the rental
rate R is unchanged so that R2014/R1980 = 1, as in the representative household model, the capital-output
ratio must increase by 25 percent. But suppose instead that the rental rate R rises by one percentage as in

our model. Then
(K/Y )2014
(K/Y )1980

= 0.43/0.345
12.5%/11.5% = 1.15. Rather than increasing by 25%, the capital-output ratio

16



predicts massive expansions in investment and capital. While automation leads to an in-

crease in the gross capital share α = RK/Y , a substantial fraction of this increase may show

up in R rather than K/Y .

Despite the increase in the average output per hour of labor, and in line with Proposition

2, mean wages go down by 3% in 2020 and by 1% in the long run.21 This is in contrast

to what would happen in the representative-household benchmark, where automation leads

to a more pronounced economic expansion propelled by a boom in investment, a temporary

increase in the return to wealth, and higher average wages in the long run.

The differences between these models underscore the importance of the capital-supply

elasticity. Even though the supply of capital in our numerical example is fairly elastic (with

a semi-elasticity d lnK/dr = 50), the response of macroeconomic aggregates to automation

differs significantly from what one would get in a representative household model.

1.3 Wealth and Income Inequality

We now study the wealth and income distributions. Before proceeding, recall that the

steady-state return to wealth satisfies r∗ > ρ. Therefore, while aggregate capital K is

constant in steady state, households accumulate wealth at a positive rate. At the same time,

they experience a dissipation shock and lose all their wealth at rate p. The combination of

accumulation and dissipation gives rise to a unique, non-degenerate distribution of effective

wealth, which in turn determines the income distribution.

Proposition 3 (Automation and the wealth and income distribution) Denote house-

holds’ effective wealth by xz,t := az,t + w∗z/r
∗. The stationary distribution of effective wealth

for skill type z is Pareto, with a PDF

fz(x) =

(
w∗z
r∗

)ζ
ζx−ζ−1,

1

ζ
:=

1

p

r∗ − ρ
σ

= α∗net.

The conditional and unconditional wealth distributions satisfy

Pr(wealth ≥ a|z) =

(
a+ w∗z/r

∗

w∗z/r
∗

)−ζ
, Pr(wealth ≥ a) =

∑
z

`z

(
a+ w∗z/r

∗

w∗z/r
∗

)−ζ
;

and the conditional and unconditional income distributions satisfy

Pr(income ≥ y|z) =

(
max{y, w∗z}

w∗z

)−ζ
, Pr(income ≥ y) =

∑
z

`z

(
max{y, w∗z}

w∗z

)−ζ
.

increases by only 15%. As we discuss in Appendix I.1, this is well within the range observed in the data.
21Equation (10) shows why a small increase in the return to wealth of roughly 1 percentage point can have

a large effect on wages. Using this equation with α = 0.345—the base point of our calibration—shows that
a small increase in R∗ of 10% (or 1 percentage point) is enough to ensure that the 2.5% increase in TFP
driven by automation results in a decline in real wages, w̄, of roughly 1%.

17



Moreover, the tail index 1/ζ = α∗net increases with automation, α.

The proposition shows that the distribution of effective wealth for skill type z is Pareto

with scale w∗z/r
∗ and tail index 1/ζ = α∗net. The driving force behind this result is the

random growth process governing the accumulation of wealth: starting from their human

wealth xz(0) = w∗z/r
∗, households accumulate capital over time at a rate (r∗ − ρ)/σ. The

distribution of wealth is stabilized by the dissipation shocks, which arrive at a rate p. Figure

4 depicts the process of accumulation. This random growth process gives rise to a Pareto

distribution (see Wold and Whittle, 1957; Steindl, 1965; Jones, 2015) with tail index

1

ζ
=

individual household accumulation rate

dissipation rate
=

(r∗ − ρ)/σ

p
.

As the formula shows, inequality depends on the ratio of the rate at which households

accumulate wealth and the probability with which their wealth dissipates, p. The formula

in the proposition follows from the observation that the steady state return to wealth is

r∗ = ρ+ σpα∗net, which implies a household accumulation rate of (r∗ − ρ)/σ = pα∗net.

Figure 4: Dynamics of effective wealth accumulation.

The reason why we get a Pareto tail is that, while the average household retains a

constant level of wealth due to the dissipation shocks, some fortunate households manage to

accumulate wealth exponentially at a rate (r∗ − ρ)/σ > 0, populating the tail of the wealth

distribution over time. Higher returns increase the rate at which successful households

accumulate wealth but do not change the rate at which the average household accumulates

wealth, leading to widening differences in the rate at which fortunate households accumulate

wealth and higher levels of wealth inequality.

Although our model delivers this insight in a stylized way, we see dissipation shocks as a

simple and tractable way to micro-found a nexus between returns to wealth and inequality

that is present in a broader class of more realistic models where the stochastic accumulation of

wealth results in fat-tailed distributions. This broader class includes models with stochastic

bequest motives (see Benhabib and Bisin, 2007), models with stochastic returns or discount

rates (see Krusell and Smith, 1998; Benhabib, Bisin and Zhu, 2011, 2015), or the extension
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of our model presented in Section 2. While the details differ, in all of these models wealth

accumulation at the top of the distribution is governed by a random growth process and

this creates a natural nexus between returns and inequality (see Gabaix et al., 2016). In

particular, higher returns increase the rate at which successful households accumulate wealth

and hence a more fat-tailed wealth distribution. It follows that in this broader class of

models, technological changes that lead to a higher return to wealth and more rapid wealth

accumulation by successful households will generate a fatter tail of the wealth distribution,

as is the case in our model.

The distribution of effective wealth is important in and of itself because it tells us about

inequality in consumption and welfare (a corollary of Lemma 1). But our model also allows

us to characterize the conditional and unconditional distributions of wealth and income,

which is what we typically measure in the data. The remaining formulas in Proposition 3

provide an exact characterization of the wealth and income distributions.

The formulas in Proposition 3 show that technology affects both distributions via wages—

which determine the scale parameters—, but more novel via the net capital share—which

determines the return to wealth and the tail index of the income distribution, 1/ζ. These

formulas illustrate why automation might contribute to the pattern of uneven growth de-

scribed in the introduction. By depressing the real wages of displaced workers, automation

will reduce incomes at the bottom of the distribution, especially for displaced households

with few assets. By raising the return to wealth, automation will generate rising income

inequality at the top driven by the rapid capital accumulation of some fortunate households.

Both effects depend crucially on the fact that in our model, the long-run supply of capital is

less than perfectly elastic, which implies that automation is more likely to reduce real wages

for some workers and increase returns for households at the top of the income distribution.

Composition of top income earners. The formulas in Proposition 3 can also be used

to study the composition of top income earners and quantify their share of national income.

As we show in Appendix C, for small enough q, the share of national income held by the top

q (i.e., the top 0.1%) is

S(q) = Λq1−α∗net , (12)

where Λ is a constant that depends on the wage distribution. When there is no heterogeneity

in wages, Λ = 1 and we obtain the usual formula for the top q percent share in a Pareto

distribution (see Jones, 2015). One implication of this formula is that technology might

affect S(q) through wages (via the Λ term) but this would cause a proportional increase in

S(q) for all q < q̄. Instead, by raising α∗net, technology will increase the share of income held

by higher percentiles disproportionately.

Moreover, the probability that someone with a wage wz reaches the top q (i.e., the top
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0.1%) of income earners is

Pr(skill = z|top q) =
`zw

1/α∗net
z∑

v `vw
1/α∗net
v

,

which implies that the share of labor income among the top q is

E[labor income|top q]

E[income|top q]
= (1− α∗net)qα

∗
net

∑
z `zw

1+1/α∗net
z(∑

z `zw
1/α∗net
z

)1+α∗net
.

As this formula shows, as we move up the income distribution, households derive more

of their income from capital ownership. This reflects the fact that the tail of the income

distribution is increasingly made of successful investors for whom labor income represents a

small part of their earnings.

As shown by these formulas, the effect of technology on the composition of top incomes

is ambiguous. Technologies that increase the relative wage of high wage earners, like the

automation of middle and low-skill jobs and skill-biased technical change more generally,

will increase the share of high skill workers and the importance of labor income among top

earners. On the other hand, by raising the net capital share, automation also makes relative

wages less important in determining the composition of top income earners, and reduces the

importance of labor income at the top of the distribution. Intuitively, many more households

that managed to accumulate assets for long periods at the higher rate brought by automation

will be among top earners independently of their wage.

Other mechanisms. Starting with Meade (1964) and more recently with Piketty (2014),

several authors have emphasized that a rise in the net capital share will generate income

inequality via a compositional effect. The argument is that because capital is more unequally

distributed than labor income, a rise in the relative importance of capital would contribute to

inequality. This argument differs from ours, since we emphasize how technology might lead

to a more concentrated ownership of wealth, with major implications for income inequality.

We can use our model to illustrate the differences between compositional effects and our

mechanism. As above, denote by S(q) the top q percent income share. Also denote by S̃k(q)

and S̃`(q) the share of aggregate capital income and labor income earned by the top q percent

of the distribution of total income. The appendix shows that

S(q) = αnet × S̃k(q) + (1− αnet)× S̃`(q).

This simple formula is precisely the one derived by Meade (1964, p.34) and we can use it to
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decompose changes over time in S(q) as

dS(q) = (S̃k(q)− S̃`(q))× dαnet︸ ︷︷ ︸
Compositional effect at q

+αnet × dS̃k(q) + (1− αnet)× dS̃`(q)︸ ︷︷ ︸
Changes in within factor distribution at q

. (13)

This decomposition highlights the difference between compositional effects and our mech-

anism. In our mechanism, automation increases the concentration of capital ownership,

leading to a rise in income inequality via changes in the within factor term.

The decomposition also shows that composition effects will be small in practice. For

example, for the top 1% in the US in 1980 we had S̃`(q) = 8.3% and S̃k(q) = 15.3%, so

that an increase in the net capital share of one percentage point would yield an increase in

the top 1% income share of only (S̃k(q) − S̃`(q)) × dαnet = 0.07 × 0.01 = 0.07 percentage

points.22 As we will see, these compositional effects are small when compared to the effects

in our model and in the data.

2 Extended Model: Multiple Assets and Growth

2.1 An Extended Version of the Model

We now present an extended version of our model that clarifies how automation and other

concurrent changes in capital markets affect the returns of different assets. This extension

also identifies the key returns that are linked to rising wealth inequality in our theory, and

explains how these returns can be measured and estimated.

We modify the baseline model in four ways:

1. We assume that there are two assets, risky capital (or equity) and safe bonds, and that

only a fraction of the population can invest in capital, but are constrained to do so

because of risk or financial frictions.

2. We include markups in the production sector, which allows for the possibility that

part of the decline in the labor share might be due to markups, and that the return to

capital may include some of the profits generated by markups.

3. We model the taxation of capital, which will also affect capital markets.

4. We allow for factor-neutral technological change causing sustained growth at a rate g.

All proofs and derivations are in Appendix E.
22In 1980, the top 1% earned 10% of US income. 35% of the income of that group was capital income and

65% was labor income (as opposed to a 20% and 80% breakdown in the aggregate) (see Piketty and Saez,

2003). Using these numbers, we have S̃k(q) = αnet(q)
αnet

S(q) = 15.3% and S̃`(q) = 1−αnet(q)
1−αnet

S(q) = 8.3%.
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Households and Investors. Households maximize their expected lifetime utility. Be-

cause we will want to separately analyze changes in risk aversion and intertemporal substi-

tution, we work with Duffie-Epstein-Zin preferences

v0 = E0

ˆ ∞
0

f(ct, vt)dt with f(c, v) =
ρ(1− ϑ)v

1− σ

((
c

((1− ϑ)v)1/(1−ϑ)

)1−σ

− 1

)
,

where ϑ > 0 measures risk aversion and σ > 0 is the inverse of the IES. As in the baseline

model, households face dissipation shocks at rate p so that the discount rate ρ equals %+ p.

A fraction χ ∈ (0, 1) of households can invest in both capital and safe bonds. We refer to

these households as investors, and assume that investors come with equal probability from

all skill groups. The remaining 1− χ households can only invest in bonds.

The bond pays a safe return rB. The return to capital instead features idiosyncratic risk:

the after-tax return over a time interval of length dt equals dRt = rKdt+ νdWt, where rK is

the average after-tax return per dollar of capital, ν is the standard deviation of returns, and

Wt is an idiosyncratic standard Brownian motion. This return risk might arise from shocks

to the productivity of businesses or might also capture idiosyncratic capital gains.

The budget constraint of an investor with wage wz is therefore given by

daz,t + dbz,t = (rKaz,t + rBbz,t + wz + T − cz,t)dt+ az,tνdWt.

Investors also face a borrowing constraint:

−bz,t ≤ θaz,t +
wz + T

rB − g
,

where θ ∈ (0, 1] parameterizes the extent to which investors can pledge their capital.23

Investors thus solve a portfolio allocation problem similar to the one in Merton (1969). The

remaining non-investor households only have access to the bond market and their budget

constraint is ḃz,t = rBbz,t + wz + T − cz,t.

Taxation. Capital income from bond holdings and equity is taxed at a rate τ and the

revenue is returned to households via a common lump-sum transfer T . To simplify the

exposition, we assume that idiosyncratic capital returns—the term az,tνdWt in investors’

budget constraint—are not taxed.24

Technology and Market Structure. Firms operate the same technology as in our base-

line model but now charge a constant markup ϕ ≥ 1 with all profits accruing to equity

owners. In addition, to generate balanced growth, we assume that ψz grows at a constant

23The usual formulation used in the literature is −bz,t ≤ θaz,t. Relative to this, our formulation assumes
that human wealth is pledgeable, which makes the model more tractable.

24If these were taxed, the after-tax income risk would be (1− τ)az,tνdWt, and taxes would reduce capital
income risk. Instead, here we are only interested in the effect of taxes on after-tax returns rK and rB .
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rate of g > 0 for all skill groups z. Finally, we assume throughout that Assumption 1 holds,

so that output is given by (3).

Balanced-growth Equilibrium (BGE). In a balanced-growth equilibrium, output, cap-

ital, bond holdings, and wages grow at a rate g > 0, and the returns rK and rB are constant,

with rB > g so that human wealth (wz + T )/(rB − g) is finite. Moreover, in the main text,

we will focus on characterizing the BGE of a closed economy in which bonds are in zero net

supply. We assume that ρ+ (σ − 1)g > 0, which is a sufficient condition to ensure that the

equilibrium exists and features finite wealth.25

Define the return on investors’ wealth as

rW := κrK + (1− κ)rB︸ ︷︷ ︸
portfolio return

+
1

2
(σ − 1)ϑν2κ2︸ ︷︷ ︸
risk adjustment

(14)

where κ := min
{

1
1−θ ,

rK−rB
ϑν2

}
denotes the share of investors’ effective wealth invested in risky

capital. The formula for the return on investors wealth takes the return on their portfolio,

κrK + (1 − κ)rB, and adjusts it by the extra term 1
2
(σ − 1)ϑν2κ2, which accounts for the

effect of capital income risk on investors’ saving decisions.26 Appendix E shows that rW is

the relevant return governing the rate at which investors accumulate wealth. In particular,

the effective wealth of investors follows a random growth process of the form

dxz,t =
rW − ρ
σ

xz,tdt+ κνxz,tdWt,

where, in addition, xz,t is reset with probability p. Non-investors solve the same problem as

in the baseline model so that Lemma 1 applies and their effective wealth evolves as

ẋz,t =
rB − ρ
σ

xz,t,

and resets with probability p.

In what follows, define the after-tax share of capital inclusive of profits in GDP

α̃ := (1− τ)

(
ϕ− 1

ϕ
+
α

ϕ

)
, (15)

25Alternatively, we can assume that bond markets are open, so that rB is fixed in international markets at
a level r̄B , with g < r̄B < ρ+ σ(p+ g). This case is analyzed in the Appendix and delivers similar insights.

26In the presence of capital income risk, investors recognize that a given investment will bring them a lower
future consumption equivalent. This generates an income effect (the lower value of future consumption pushes
current consumption down and savings up) and a substitution effect (the lower consumption equivalent
pushes current consumption up and savings down). For σ = 1 these effects cancel, but for σ > 1, as in most
calibrations of the (inverse of the) intertemporal elasticity of substitution, the income effect dominates, and
capital income risk leads to higher savings, which shows up in our formula as if investors faced a higher
return. The observation that capital income risk has an ambiguous effect on savings that depends on the
(inverse of the) intertemporal elasticity of substitution σ is in line with Obstfeld (1994) and Angeletos (2007).
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which increases in α, ϕ and the keep rate 1− τ . As we will see, all these primitives have the

same effects on returns and wealth inequality operating through α̃.

Proposition 4 There exists a threshold constraint-tightness θ̄ ∈ (0, 1) such that:

• If investors are risk neutral and θ ≥ θ̄, there is a unique BGE. In this equilibrium,

r∗W = r∗K = r∗B = r∗, where

r∗ − ρ− σg
σ(p+ g) + ρ− r∗

=
α̃

1− α̃
r∗ − g
r∗ + δ

. (16)

• If investors are risk averse or if θ < θ̄, there is a BGE. In any BGE,

r∗W , r
∗
K > r∗B, ρ+ σg.

• In any BGE, the distributions of wealth and income have Pareto tails with tail index

1

ζ
:=

r∗W − ρ− σg − σκ∗2ν2

2
+

√(
r∗W − ρ− σg − σκ∗2ν2

2

)2

+ 2σ2κ∗2ν2p

2pσ
. (17)

The first part of the Proposition shows that, when investors are risk neutral and their

borrowing constraint does not bind, the return of capital and bonds is equalized. The

extended model then collapses to a one-asset model which is similar to our baseline model

except that it features profits, capital taxes and growth. The common return that equalizes

supply and demand is given by the solution to (16), which slightly generalizes equation (5)

in the baseline model. This return now satisfies a generalized version of equation (6):

r∗ = ρ+ σg + pσα∗net(α̃), α∗net(α̃) :=
α̃− δK/Y − gK/Y
1− δK/Y − gK/Y

, (18)

with the only difference that now, α∗net(α̃) is the capital share net of depreciation, capital

taxes, and growth (but including all profits).

The second part of the proposition shows that, if investors are risk averse or if financial

frictions bind, the equilibrium risky and safe returns instead differ and the model no longer

collapses to a one-asset model. In such an equilibrium, the return to capital and investors’

wealth exceeds the return on bonds, and also ρ+ σg, which is the level of returns in a BGE

of the representative-household benchmark.

The third part of the proposition characterizes the tail properties of the wealth and in-

come distributions. When they are not hit by a dissipation shock, investors accumulate

wealth at a rate (r∗W − ρ)/σ which exceeds the rate at which the average household accu-

mulates wealth and the rate at which wages grow, g – hence the dependence of the tail

index in (17) on r∗W − ρ− σg. In fact, because returns are stochastic, some investors obtain

even larger returns in a sustained way. As a result, the tail index of the wealth and income
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distributions depends not only on r∗W −ρ−σg, but also on κ—determining their exposure to

risk and therefore the possibility that some of them will obtain higher-than average returns.

This second term explains why relative to the formula for the tail index in Proposition 3,

the extended model with additional capital income risk generates higher wealth inequality.27

Our extended model also provides a more realistic description of the process by which

investors reach and leave the top of the wealth distribution. Because of the additional

capital income risk, some investors will quickly reach the top after obtaining a series of high

returns and rapidly growing their fortunes. The top of the wealth distribution will therefore

be populated by investors who have not experienced dissipation shocks in a long period—

being able to grow their wealth over time and presumably across generations—and also by

newcomers who grew their fortunes quickly. By the same token, there is now much more

churn among this group, with investors dropping out of the top after a dissipation shock or

obtaining a series of low returns.28

In what follows, define the return premium as the gap between the return to investors’

wealth r∗W and ρ+ σg. Using (14), this return premium can be written as

r∗W − ρ− σg := κ∗r∗K + (1− κ∗)r∗B︸ ︷︷ ︸
portfolio return

+
1

2
(σ − 1)ϑν2κ∗2︸ ︷︷ ︸
risk adjustment

− (ρ+ σg)︸ ︷︷ ︸
usual BGP return

. (19)

As we discussed above and can be seen from (17), the return premium r∗W − ρ − σg is the

key object determining top inequality in our model.

The expression for the return premium (19) and its link to top inequality in equation

(17) are the key results of the extended model. The two expressions identify which returns

are linked to rising wealth inequality in our theory and answer the question: how does

inequality respond to a change in equilibrium safe returns r∗B or returns to capital r∗K? The

answer depends on investors’ portfolio shares κ∗. In particular, note that if investors are

primarily invested in business capital (κ∗ close to one), inequality will be largely unaffected

by movements in the safe return r∗B. In fact, (19) shows that if investors are leveraged,

κ∗ > 1, it is a reduction in safe rates that increases inequality. Instead, if investors at the

top of the wealth distribution are leveraged or hold few safe assets in their portfolios, the

return to business capital r∗K is tightly connected to inequality.

In a way, our formula (19) generalizes Piketty’s (2014) “r − g” which is the special

case of the return premium (19) with logarithmic preferences σ = 1 and zero discounting

27In particular, when ν = 0, the formula in (17) boils down to (r∗W − ρ − σg)/(σp), which is the natural
extension of the formula in our baseline model to a context with growth. When ν > 0, this extra source of
capital income risk generates a fatter tail, as some investors are lucky to obtain high returns consistently.

28Recent work documents the importance of churn at the top of the wealth distribution, as well as the
contribution of newcomers to the rising share of wealth held at the top (Gomez, 2018; Zheng, 2019). Random
growth processes offer a natural way of thinking about this churn. For example, consider the group of
investors at the top of the wealth distribution at time t0. In both our baseline model and in the extended
version, the wealth of these investors grows at an average rate of g between t0 and t, for any t > t0. On the
other hand, the wealth of investors who reach the top between t0 and t grows at a rate higher than g.
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ρ = 0 (so that investors reinvest all their wealth). However, as we show next, our theory

also recognizes that the return premium is an endogenous object and that its long-run level

depends on secular forces affecting capital markets such as automation.

Proposition 5 Suppose that investors are risk averse and/or θ < θ̄. There exists a threshold

ᾱ ∈ (0, 1] such that, for α̃ < ᾱ, the balanced-growth equilibrium in the closed economy is

unique, and following an increase in α̃, we have that:

• The return to wealth r∗W , the return premium r∗W−ρ−σg, and the return spread r∗K−r∗B
all strictly increase, and the portfolio share of capital κ∗ weakly increases;

• Top tail inequality 1/ζ∗ in (17) strictly increases.

The key takeaway from this proposition is that automation results in a higher return to

wealth r∗W , a higher return premium r∗W −ρ−σg, and higher wealth inequality.29 Part of the

increase in tail inequality is due to the effect described in our baseline model, namely that

investors’ return to wealth and return premium increase and that they therefore accumulate

wealth at a faster rate. However, our extended model also features an additional effect:

because the return spread r∗K−r∗B increases, unconstrained investors expose themselves more

to risky capital. On the other hand, automation has an ambiguous effect on the bond rate

r∗B (or no effects in the open-economy version of our extended model). Thus, changes in the

return premium r∗W −ρ−σg and the spread r∗K− r∗B are more informative for understanding

wealth inequality than changes in the bond rate r∗B.

2.2 Other Drivers of an Increasing Net Capital Share

An immediate implication of our extended model is that automation is not the only secular

change that has the potential to explain rising wealth inequality. Instead higher markups

(ϕ) or lower capital taxation (τ) have similar effects. In particular both higher markups and

lower capital taxes also increase the after-tax share of capital inclusive of profits α̃ defined in

equation (15) and Proposition 5 showed that it is this object that determines asset returns

and top wealth inequality. Intuitively, all of automation, higher markups and lower capital

taxes increase the demand for capital and hence the return to wealth, the return premium,

and the spread between the return to capital and safe assets.

While our paper’s main focus is on understanding the consequences of automation on

income and wealth inequality, we view our framework’s ability to speak to these alternative

trends as one of its key advantages. In our quantitative exercise below and the discussion

that follows, we study the effects of automation on inequality. But readers should keep in

29The result for r∗W holds even for large values of α̃ > ᾱ provided that the equilibrium is unique. If there
were multiple equilibria, the result would still apply to the equilibria with the lowest and the largest levels
for r∗W . On the other hand, as discussed in detail in the Appendix, r∗K − r∗B might fall for very high values
of α̃ (above 0.85 in our calibrations with high levels of risk aversion).
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mind that the model-implied effects of automation on capital markets, returns, and wealth

inequality at the top of the distribution are identical to those generated by an increase in

markups or a reduction in capital taxes causing the same reduction in the after-tax share of

capital inclusive of profits. That being said, while these other secular trends affecting capital

markets have similar implications as automation for returns and wealth inequality, they do

have different implications for wage inequality and aggregates such as investment.

2.3 Has the Return Premium Risen?

We now turn to a measurement exercise that shows that the return premium has risen since

1980, at the same time as we have seen a large secular decline in safe rates. We here highlight

the main takeaways and relegate a more detailed discussion to Online Appendix G.

As a first step, Figure 5 plots estimates of returns on bonds—our proxy for rB. The red

line with round markers depicts the long-run return to safe assets, which we measure using

Holston, Laubach and Williams’ (2017) estimate of the real natural interest rate for the

United States. The safe rate has been on a secular decline since the 1970s, falling by about

1.5 percentage points in 1960–2007 and then experiencing a sharp and persistent decline

of 1.5 percentage points after the 2007 Great recession. A significant proportion of this

decline can be explained by demographic factors (captured by a lower ρ in our model) and

slower trend productivity growth (see Rachel and Summers, 2019; Auclert et al., 2019); while

developments in international markets, like the “savings glut,” could have also contributed

to the decline.

Figure 5: Estimates of the return to US business capital, rK , and the safe rate, rB,
Notes—see Appendix G for data sources and measurement details.

More importantly, as our theoretical discussion has highlighted, capital income of U.S.

households, the return to wealth and the return premium may be largely decoupled from

safe asset returns. This is a particular concern when investors at the top of the wealth

distribution are leveraged or hold few safe assets in their portfolios.
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Figure 5 therefore plots other return series, namely measures of returns to business

capital—our proxy for rK—in the US economy using national accounts data. Our theoreti-

cal discussion suggests that these return measures are more relevant for wealth inequality.30

The first series is from Gomme, Ravikumar and Rupert (2011), who measure the return

to U.S. business capital from the “firm side.” Their approach defines capital income Yk as

net output minus wage payments, benefits and taxes and computes the return to capital

as rK := Yk/K + pK where K is the stock of capital measured at replacement cost and pK
captures capital gains arising from changes in the price of capital over time.31 We plot a

version of their measure that abstracts from variation in capital gains over time and sets

capital gains to their average over the period of analysis. Although this measure reflects

the returns to investing in U.S. businesses, it does not tell us whether it is U.S. investors

and households who are reaping the higher returns. Figure 5 therefore also plots a measure

of returns to business capital from the “household side.” We use the same formula for re-

turns but measure the components differently. In particular, we define capital income Yk as

dividends or profits from business ownership obtained by U.S. households net of personal

income taxes (from NIPA); K by the market value of equity held by households (from the

Integrated Macroeconomic Accounts—IMAs); and capital gains from revaluations (also from

the IMAs). Using this approach, we constructed measures of returns to capital in the corpo-

rate and noncorporate sectors. As before, we start with a baseline that abstracts from time

variation in capital gains.

In stark contrast with what we found for the safe rate, all measures of returns to business

capital exhibit an increasing trend between 1970 and 2017, rising by 1 to 2 percentage

points.32 This upward trend in returns is driven by the income component of returns,

and not by higher capital gains over time. In particular, Appendix Figure A7 shows that,

relative to the income component, the revaluation component is highly volatile, with large

fluctuations at high frequencies but no visible trend.

To illustrate the implications of these divergent return trends for wealth inequality, we

provide several estimates of the return to investors’ wealth rW and the return premium

rW − ρ − σg. Because some of their components in equations (14) and (19) are hard to

measure empirically, we proxy them as follows.

We proxy the return rW by imposing two key simplifications. First, we simply ignore the

risk-adjustment term in equation (14) which would require us to take a stance on the risk

30These calculations exclude housing and focus only on productive or business capital. As shown by
Gomme, Ravikumar and Rupert (2011), the resulting patterns are broadly similar including housing.

31This approach to measuring returns is also used by Poterba (1998); Mulligan (2002); Karabarbounis and
Neiman (2018) and the BLS multifactor productivity program.

32The divergence between safe rates and returns computed from income flows is at the heart of the
literature on “factorless income.” The basic idea is that using risk-free interest rates to impute net capital
income as rB × K (or gross capital income via a user cost formula) leads to a large and volatile residual
category of “factorless income” (see Karabarbounis and Neiman, 2018). In our extended model, factorless
income is equal to (rK − rB) × K, and rises in importance with automation, financial frictions, and risk
compensations. This aligns with the argument in Karabarbounis and Neiman (2018) that factorless income
could reflect a mismeasurement of returns (what they refer to as “case R”).
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preferences of investors.33 Second, we exclude all other assets besides capital and bonds,

such as housing. We thus proxy rW as

r̂W = share equity in net assets× rK + share bonds in net assets× rB,

where rK is the mean return to business capital obtained by U.S. households (a weighted

average of the two lines from IMA/NIPAs in Figure 5), rB is given by Holston, Laubach

and Williams (2017) estimate of the real natural interest rate for the United States, and

the portfolio shares will be described momentarily. Next, to proxy the return premium

rW − ρ− σg we not only replace rW by its proxy r̂W (as just discussed) but also ignore the

discounting term ρ. This latter simplification is arguably conservative because the effective

discount rate has arguably declined over time, e.g. due to demographic trends, so that it

would have pushed up the return premium.

To compute our estimates of the return to investors’ wealth and the return premium, we

use several different portfolio share measures. In particular, some measures use aggregate

data on all households and others use data for the top 1% of the income distribution so as

to capture the idea that it is the returns of those households that are most relevant for the

mechanism in our theory. When focusing on all households, we have data on portfolio shares

from the IMAs, the DINAs, and also from the Distributional Financial Accounts (or DFAs),

which are available since 1989 and are maintained by the Federal Reserve. For the top 1%,

we have data on portfolio shares from the DINAs and the DFAs. Finally note that in all

calculations, we compute “bonds” as fixed income assets net of debt and thus the share of

bonds can be negative if households are leveraged.

Figure 6: Estimated returns to wealth (left panel) and the return premium for σ = 1
(middle panel) and σ = 2 (right panel). Notes—see Appendix G for details.

33We conjecture that taking this risk-adjustment term into account would contribute to a larger increase
in the return to investors’ wealth rW . We therefore view ignoring it as conservative.
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The left panel in Figure 6 presents estimates for portfolio returns based on the observed

portfolio composition of all households and the top 1% income earners. The figure shows that

in 1960–2007, portfolio returns followed a U-shape pattern, dropping from 5 to 4 percentage

points per year between 1960 and 1980, and then rising again from 4 to 4.7 percentage points

between 1980 and 2007. As we show in the Appendix, the early decline in portfolio returns

during 1960–1980 was largely due to changes in the growth rate of the economy but also due

to a rising share of pension wealth in households’ portfolio over time. The upward trend

between 1980 and 2007 was interrupted by the Great Recession of 2008, when there was a

large drop in the share of equity in net assets (presumably driven by a loss of business value)

and a sizable decline in the safe rate rB.

The middle and right panels turn to our proxy of the return premium which our theory

identifies as the key object determining top tail inequality. The panel in the middle uses an

inverse intertemporal elasticity of σ = 1, which we view as conservative. The right panel

uses our baseline value of σ = 2. We measure g using a 10-year moving average of the CBO’s

estimation of the potential growth rate of the economy. In both cases, we find that the return

premium before 1980 was roughly stable, suggesting that the deceleration of growth was one

of the key driving forces behind the U-shape pattern behind portfolio returns documented

in the left panel. More importantly, we find that the return premium rose by 1–2 percentage

points since 1980, with a large but temporary drop during the Great Recession. As a whole,

we view these estimates as supporting the idea that returns to wealth and in particular the

return premium rose between 1980 and 2007 by 0.7–2 percentage points. This growing return

premium is thus a potential driver of the observed rise in wealth and income inequality.

3 Calibration and Implications for Aggregates

3.1 Calibration

To study the effects of automation, we feed changes in αz into the model and explore the

consequences of this technological change for aggregates and inequality using the extended

version of the model. We will focus on changes in automation between 1980 and 2014,

a period with a marked shift in technology towards automation (Acemoglu and Restrepo,

2019), especially of routine tasks both in manufacturing and services (Autor, Levy and

Murnane, 2003; Acemoglu and Autor, 2011).34 Because we are not feeding any other drivers

of inequality into the model besides automation, the results here must be interpreted as

isolating the effects of automation on the economy while holding all other potential drivers

34Our focus on this period does not imply that there was no automation before then. As discussed in
Acemoglu and Restrepo (2019), before 1980 jobs were automated in some specific industries and tasks,
but automation was counteracted by other technological improvements that raised labor shares in other
industries or introduced new labor-intensive roles for labor in production. As a result, the aggregate labor
share—the key object determining how technology affects wealth inequality—remained stable during this
period. Technological change might have contributed to rising wage inequality before 1980, but because the
labor share remained constant, our mechanism did not contribute to rising wealth inequality back then.
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of distributional and macroeconomic trends at their 1980 levels.

To bring the model to the data, we interpret z as indexing the group of workers in a given

percentile of the wage distribution, so that we have 100 skill groups. The main ingredient

in our calibration is a measure of how automated the tasks being performed by workers

in each percentile of the wage distribution have been over time, αz,t. We think of changes

in αz,t as been driven by the automation of routine tasks. To operationalize this view, we

assume that all routine tasks have been automated at the same rate over time starting in

1980, that other tasks did not experience additional automation during this period, and that

each skill group had a fixed relative exposure to routine tasks. Moreover, to benchmark the

size of this shock, we assume that the rate at which routine tasks were automated explains

the overall decline in the labor share between 1980 and 2014, though we also present results

under different scenarios below.35 Finally, we normalize αz,1980 to be equal across all z,

which requires αz,1980 = α1980 = 34.5%—the gross capital share in this year. As we show in

Appendix F, these assumptions imply that

1

1− αz,2014

− 1

1− αz,1980

= ωRz

(
1

1− α2014

− 1

1− α1980

)
, (20)

which relates the change in αz between 1980 and 2014 to the increase in the capital share

during this period (from α1980 = 34.5% to α2014 = 42.8%, respectively, in the BLS series for

the non-financial corporate sector) interacted with the exposure of workers in each percentile

to routine jobs, ωRz . This exposure measure is in turn defined as the share of labor income

derived by workers in percentile z from routine jobs relative to the labor income derived

by all workers from routine jobs.36 This procedure results in the 1980 and 2014 values for

αz,t plotted in the left panel of Figure 7, which shows greater exposure to the automation

of routine jobs among workers at the middle and bottom of the wage distribution. The

average change in αz,t (weighted by ηz) is of 8.4 percentage points, which roughly matches

the observed decline in the labor share during our period of analysis (8.3 p.p decline).37

35We view this stark assumption as providing a useful benchmark. In particular, our calibration asks: if
the observed decline in the labor share were explained by the automation of routine jobs, what would the
distributional and aggregate consequences be? We recognize that there are other forces behind the decline
in the labor share, including rising markups (Autor et al., 2017; De Loecker and Eeckhout, 2017). The
extended model in Section 2 shows that all these potential drivers of the decline in the labor share have
similar implications as automation for wealth inequality at the top.

36We measure ωRz using the 2000 Census—a point in the middle of the period we study. In our model, the
composition and specialization patterns of a skill group are assumed invariant. However, in the data, the
composition of workers in a given wage percentile might change over time, as the relative ranking of groups
of workers with different characteristics changes. In our baseline calibration, we used the 2000 values for
ωRz as describing the level of specialization of different groups in routine jobs. We also experimented with
measuring ωRz using the 1980 Census and obtained similar results. The reason is that ωRz is highly correlated
over time (the correlation between the 1980 and 2000 measures is of 0.9714).

37The average change in αz,t in the model is slightly larger than the one observed in the data. The reason
is that over time, we also have changes in ηz that are not fed to the model. In particular, the observed
changes in ηz imply that other technological changes resulted in a reallocation of value added from highly
automated skills to less automated ones at the top of the wage distribution.
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Figure 7: Calibrated αz by wage percentile in 1980 and the new steady state (left panel).

Finally, we feed a smooth increase in αz,t from its value in 1980 to its final value in 2014,

which results in the smooth change in the aggregate labor share shown in Figure 3 (recall

that the labor share is 1− αt =
∑
ηz(1− αz,t) in our model).

For the remaining labor parameters, we calibrate ηz to match the wage distribution in

1980 (obtained from the 1980 Census). The ηz’s might have changed over time as a result

of other forms of skill biased technical change not modeled here, but we do not explore

this possibility. We pick ψz to ensure that human labor is 30% more costly than capital in

automated tasks. This number is in line with studies exploring the cost-saving gains from

industrial robots (see Acemoglu and Restrepo, 2020). As already discussed, this implies

that automating a task reduces its cost by 30%, and that, to a first-order approximation,

the productivity gains from the calibrated increase in αz,t between 1980 and 2014 is of only

2.4%—or 10% of the total increase in TFP during this period (Fernald, 2014).

Turning to investors, we focus on a calibration with risk averse investors with γ = 2. We

also present results for a low risk aversion calibration in the appendix, with γ = 0.1. We

assume that the extent of capital income risk is given by ν = 6%, and we calibrate the share

of investors in the economy to χ = 8.1% to match the observed tail index of the income

distribution in 1980.38 Finally, we set θ = 0.5, which implies that investors can hold up to

two times their effective wealth in risky capital.

The remaining parameters are chosen to match aggregates in 1980 and available estimates

of the elasticity of capital supply. We take a capital-output ratio of K/Y = 3, which implies

a rental rate of capital R = 11.5%. We take a depreciation rate of 5% so that the net capital

38The share of income held by the top 0.1% (inclusive of capital gains) rose from 4% in 1980 to a peak
of 12% before the Great Recession (Jones, 2015; Piketty and Saez, 2003), which implies a tail index of 0.54
in 1980 and 0.7 before the Great Recession. In this model, the tail index of the wealth distribution and the
income distribution coincides, and so by matching the tail of the income distribution we cannot match the
thicker tail for wealth inequality.
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Table 1: List of calibrated parameter values
Description Value Target / Source

Preferences
σ Inverse IES 2 Standard calibration
p Dissipation rate (p.a.) 4.5% Target capital-supply elasticity d lnK/dr ≈ 50
γ Risk aversion 2 High risk aversion
χ Share investors 5.8% Match tail index of income in 1980
ρ Discount rate (p.a.) 1.31% Target r = 6.5%
ν Capital risk 6% Assumed
θ Borrowing constraint 0.5 Assumed

Technology
g Growth rate of ψz 1.5% Standard calibration
δ Depreciation rate (p.a.) 5% Standard calibration
A Hicks-neutral productivity term 0.14 Y/L in 1980
ηz Skill demand shifters in 1980 vector Wage levels in 1980 Census/ACS

ψz,1980 Productivity of labor relative to capital vector Automation reduces costs by 30% (= wz
ψzR

)

Automation Shock
α1980 Capital share in 1980 0.345 BLS labor share in 1980
α2014 Capital share in 2014 0.428 BLS labor share in 2014
ωRz Routine jobs share in each pctile in 2000 vector Acemoglu-Autor + 2000 Census/ACS

Notes: The table provides the parameters used in our baseline calibration of the model. For details, see the
main text and Appendix F.

share equals 23% and the return to wealth equals r = 6.5%. We pick ρ to ensure a 6.5%

return to wealth and pick p to target a long-run elasticity of capital supply d lnK/dr of about

50. We view this choice of p as conservative, in the sense that much of the evidence suggests

a more inelastic supply of capital (see Appendix F). Table 1 summarizes the parameters

used in our exercise.

3.2 Implications for Aggregates and Returns

With this calibration in hand, we now explore the effects of changes in the αz’s on macroe-

conomic aggregates and asset returns. In the next section, we will then turn to the distri-

butional effects of these changes.

Figure 3 already plotted the transition dynamics of our baseline model following a gradual

increase in automation. In what follows, we will therefore focus on steady-state comparisons.

The results are summarized in Figure 8.

The horizontal axis plots α =
∑

z αzηz, the average extent of automation in the economy.

The different panels plot various steady-state aggregates and returns. In line with the

discussion in Section 2, automation leads to a sharp rise in the return to capital; while the

return on bonds and safe assets increases slightly. As a result, we see a widening gap between

rK and rB. Because some of the productivity gains from automation accrue to investors,

mean wages are stagnant and median wages decline, and we see a modest expansion in

output and the capital-output ratio. Finally, despite the large distributional implications
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Figure 8: Aggregate effects of changes in α =
∑

z αzηz in steady state.

that we will document, a rise in the capital share driven by automation generates an increase

in TFP of 1.9%, which is smaller than what our first-order approximation suggests but of

a similar order of magnitude. In Appendix I.1 we further show that the modest increase in

the capital-output ratio implied by our model is in line with that observed in the data.

4 Uneven Growth: Inequality in Model and Data

We now turn to our paper’s main focus, namely to understand inequality trends observed in

the data, in particular the pattern of highly uneven growth of different income percentiles

since the 1980s. Section 4.1 briefly describes our model’s implications for changes in wages

and wage inequality. Section 4.2 then presents our model’s implications for inequality of

overall income, including not only wages but also capital income, and Section 4.3 then

confronts these model implications with the analogous data. Section 4.4 briefly discusses a

discrepancy between model and data regarding the speed at which these changes occur at

the top of the income distribution.

4.1 Wage Inequality

As we already saw in Figure 8, average wages in our model are roughly stagnant when the

capital share increases. However, the constant average wage masks substantial heterogeneity.
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This can be seen in Figure 9 which plots the change in steady-state wages by wage percentile.

The real wage of workers below the 80th percentile of the wage distribution declines over

time, but the most pronounced effects are for workers at the 25th percentile of the wage

distribution, whose real wages fall by 10%. In contrast, the real wages of workers at the

95th percentile of the wage distribution rise by 7%.39 For comparison, the figure also plots

on a different vertical axis the observed change in wages by percentile between 1980 and

2012–2016 (using data from the US Census and the American Community Survey (ACS)).

Figure 9: Predicted change in wages by wage percentile (left axis) and observed change in
wages by wage percentile (right axis). Notes— Observed wage changes computed using the 1980
Census and 2012–2016 ACS. See Appendix F for details.

4.2 Uneven Growth in the Model

We now turn to our model’s implications for income inequality. Figure 10 presents the change

in total income for different percentiles of the income distribution across steady states. The

figure reveals a pattern of uneven growth. Below the 50th quantile, households experienced

declines in total income of 5–10%. Between the 50th and 80th percentile, households experi-

enced stagnant incomes. This is in contrast to the top income quantiles, which experienced

an increase in income ranging from 20% (for households in the top 1%–0.5%) to 55% (for the

top 0.1%). Although other technologies not modeled here also shifted incomes, the figure

shows that automation is capable of generating substantial income gains at the very top of

the distribution and stagnant or declining incomes at the bottom.

Both wage and wealth inequality combine to produce the pattern observed in Figure

10. The blue-shaded area plots the contribution of changes in labor income. The fall in real

wages for households at the bottom of the wage distribution contributed to declining incomes

39Because our model’s wage distribution is very skewed (just like in the data), the rising wages for the top
25 percent of the wage distribution in Figure 9 are enough to offset the declining wages for the bottom 75
percent of the distribution so that the average wage in Figure 8 is roughly constant.
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Figure 10: Predicted change in income by income percentile decomposed into the contribu-
tion of capital and labor income. The dotted red line plots the results from the representative-
household benchmark.Notes—see Appendix E.3 for a detailed explanation of the figure’s construction.

for households at the middle and bottom of the income distribution. The red-shaded area

plots the contribution of changes in capital income. This is uniformly positive, as everyone

benefits from a higher return to wealth. But the benefits from a higher return to wealth are

highly dispersed. People at the bottom of the distribution have few assets and only invest

in bonds and safe assets, and so do not benefit as much from an increase in the return to

capital. In contrast, a higher return to capital allows investors at the top of the income

distribution to accumulate large swaths of wealth and earn a high capital income.

Interestingly, although automation is skill-biased and raises wages at the top of the

wage distribution (see Figure 9), the contribution of wages at the top of the overall income

distribution is small or even negative. As discussed in section 1.3, there are two effects

at play here. On the one hand, the skill-biased nature of automation raises the wages of

households at the top of the distribution more than at other percentiles. However, the

permanent increase in returns also means that the top of the income distribution becomes

increasingly populated by low-wage investors with very high capital incomes. This shift in

the composition of top earners dominates at the top of the income distribution and generates

the observed low or negative contribution of labor income.40

This finding can be contrasted with the representative-household benchmark (see Ap-

40Formally, the expected wage of households at the top of the income distribution is∑
z `zw

1+1/α∗
net

z /
∑
z `zw

1/α∗
net

z . Skill-biased changes in wages raise this expected wage, but increases in
α∗
net reduce it. See the related discussion of Proposition A1. Note that as we keep moving up the tail, the

contribution of labor income converges to zero since households’ own mostly capital income.
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pendix D for details). In this model the steady-state wealth distribution is indeterminate,

but one can still trace its evolution starting from a given initial distribution, and so we

assume the same initial distribution of wages and wealth as in the extended model with

dissipation shocks. The dashed line in Figure 10 shows the change in income for different

percentiles of the income distribution in this model. The representative household model

does not generate uneven growth: there is a fairly uniform increase in income between 10%

and 18% for all quantiles. This reflects two differences. First, there is no wage stagnation in

the representative household model, since the infinitely elastic supply of capital implies that

all productivity gains from automation accrue to workers. Second, the temporary increase in

returns to wealth benefits all households equally, as they are all able to scale their effective

wealth by the same amount. This is in contrast to our model with dissipation shocks, where

only a few households benefit from the higher return to capital.

How strong is the new mechanism in our model linking changes in the capital share due

to automation, returns, and the resulting increase in income inequality? To address this

question, Figure 11 plots the behavior of the return premium r∗W − ρ− σg and the resulting

tail index of the income distribution as functions of the capital share in our calibrated model.

Figure 11: Steady-state inequality effects of changes in α =
∑

z αzηz. Appendix Figure A6
reproduces the same figure for an alternative calibration with low risk aversion.

The figure shows that the return premium in our calibrated model rises by 1.2 percentage

points from 4 to 5.2 percentage points per year. Despite this relatively modest rise in the

return premium, the tail index of the income distribution rises from 0.54 (the targeted level

in 1980—see footnote 38) to 0.65, which is roughly 70% of the observed increase in the

data. A large part of this increase in tail inequality is due to the effect described in our

baseline model, namely that investors’ return to wealth rW increases and that they therefore

accumulate wealth at a faster rate. However, in our extended model with idiosyncratic capital

income risk, there is also an additional effect: when the return spread rK − rB increases (see

Figure 8), investors increase the share of equity in their portfolios and become more exposed

to this risky capital. The right panel of the figure shows that the higher return to wealth (the
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drift effect) generates an increase in the tail index from 0.54 to 0.63; while greater exposure

to risk explains the remaining increase from 0.63 to 0.65.41

Of course, this steady-state comparison must be taken with a grain of salt, since as we

discuss in Section 4.4, the transition dynamics in our model are slow.

4.3 Uneven Growth in the Data

The main implication of our model is that technological change involving the automation

of tasks performed by low and middle-wage workers generates the pattern of uneven growth

documented in Figure 10: stagnant or decreasing labor incomes at the bottom and rising

incomes at the top, with an increasing role for capital income at the top of the distribution.

We now explore whether the evolution of capital and labor income in the US economy has

followed a similar pattern of uneven growth. To this end, we use two data sources: the NBER

IRS public use sample from 1980 to 2012 and the synthetic micro-files from the Distributional

National Accounts (DINAs) of Piketty, Saez and Zucman (2018) for the same period.42 The

IRS dataset is based on administrative tax records and yields reliable information on incomes

for the very top of the distribution. However, it only records fiscal income and therefore

omits pensions and other sources of income that are tax-exempt. Likewise, fiscal income

misses income flows such as corporate taxes, retained earnings, or housing services for home

owners, which are part of national income but do not show up in households’ tax filings.

The DINAs account for this “missing income” by imputing tax-exempt sources of income

and measuring corporate income and other sources of capital income using a “capitalization

approach.” For example, this approach allocates aggregate measures of equity from the IMAs

to households according to positive corporate income reported to the IRS, and then imputes

corporate income based on these stock measures. Given this, the main advantage of the

DINAs are the more comprehensive income concept being used that also adds up to national

income but this comes up at the cost of strong assumptions and numerous imputations.

Conversely, the main advantage of the IRS data is the transparency and simplicity of the

data construction but this comes up at the cost of substantial amounts of missing income

and, in particular, missing capital income.

Figure 12 provides our analysis of uneven growth in the United States. Panel (a) uses

41This second channel is only operational in the calibration of our model with sufficiently high risk aversion
and a sufficiently loose financial constraint so that investors are unconstrained, a point we explore in our
low-risk aversion calibration in Appendix F.4. Nevertheless, even in our alternative calibration that shuts
down this second channel, our model predicts a sizable increase in tail inequality.

42The NBER IRS public use sample is available through the NBER. See https://users.nber.org/∼taxsim/
gdb/ and https://www.nber.org/taxsim-notes.html. This IRS data is also used in Piketty and Saez (2003).
The synthetic micro-files for the Distributional National Accounts can be accessed via Gabriel Zucman’s
website http://gabriel-zucman.eu/usdina/. The DINAs merge semi-public and private IRS data with na-
tional accounts and the US Census/ ACS to construct consistent measures of wealth and income across the
income and wealth distribution. Their construction is detailed in Piketty, Saez and Zucman (2018). We
focus on the period 1980–2012 for which the underlying IRS data used in the DINAs are available, and
present additional decompositions for 1980–2007 in the Appendix.
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Panel (a)—IRS data

Panel (b)—DINAs data

Figure 12: Income growth by percentile between 1980–2012 and decomposition into capital
and labor income. Notes— see Appendix H for details.

the IRS data and panel (b) the DINAs. The dash-dotted black lines labeled “total income”

plot the average annual income growth between 1980 and 2012 for different percentiles of the

income distribution. The income percentiles corresponding to the lower half of the distribu-

tion have stagnated or declined between 1980 and 2012. In contrast, top income percentiles

have grown rapidly. For example, in both data sets, the top 0.1 percentile increased at a

yearly rate of 5 percent. The hockey stick shape of income growth at different percentiles in

the figure is qualitatively similar to that predicted by our model (see Figure 10).43

43The change in total incomes in panels (a) and (b) is qualitatively similar but there are some quantitative
differences in terms of both the average growth and the relative growth across different income percentiles.
The blue line in panel (b) labeled “total income” is the same as that in Figure II(a) of Piketty, Saez and
Zucman (2018) and they discuss this discrepancy. In particular, they note that their series yields “more
growth for the bottom 90% since 1980 than suggested by the fiscal data studied by Piketty and Saez (2003)”
which is essentially our IRS series.
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What is the contribution of capital and labor income to the pattern of uneven growth

in Figure 12? Decomposing income growth into these components is difficult because a

substantial share of income is derived from self-employment or ownership of passthrough

entities, and these cannot be easily classified as labor or capital income. As a starting point,

we follow Piketty, Saez and Zucman (2018) who propose measuring capital income as the

sum of corporate income (including the income of both C- and S-corporations) plus 30% of

the mixed income from non-corporate passthrough businesses (including self-proprietorships

and partnerships). However, Smith et al. (2019) criticize this approach and argue that (in

addition to the 70% of non-corporate passthrough income already classified as wage income

by Piketty, Saez and Zucman) also about 75% of S-corporation income should be counted as

labor income rather than capital income. The argument is that these 75% of S-corporation

income are, in fact, returns to the human capital of owners and are only reported as corporate

income to minimize tax obligations. To address this criticism, we also present an alternative

measure of capital income that relabels 75% of S-corporation income as labor income.

The shaded areas in both panels of Figure 12 decompose the growth in total income into

parts due labor income, capital income, and the ambiguous S-corporation income.44 The

blue area is the contribution of what both Piketty, Saez and Zucman (2018) and Smith et al.

(2019) classify as labor income and the red area is the contribution of what they agree is

capital income. The green area in the middle corresponds to the contribution of the 75% of

S-corporations income that Piketty, Saez and Zucman (2018) attribute to capital and Smith

et al. (2019) attribute to the human capital of owners. The sum of the green and red areas

thus provides the contribution of capital to income growth under the classification favored

by Piketty, Saez and Zucman (2018), while the red area provides the contribution of capital

to income growth under the classification favored by Smith et al. (2019).45

In both datasets, capital income is unimportant for income growth at the bottom of the

distribution. As in our model, the stagnant incomes at the bottom of the distribution are

driven by declining or stagnant real wages. However, further up in the distribution and

especially within the top 1 percent, capital income becomes more important. The extent

to which capital income accounts for the observed uneven growth and at which percentiles

it starts to be important differs between the two datasets. The IRS data in panel (a)

suggest that up to the 90th percentile, essentially all growth in total income is accounted

for by labor income. Capital income becomes important within the top 1% and especially

at the top 0.1% where it accounts for around 60% of the cumulative growth from 1980-

2012, or 30% if one focuses only on the red area. In contrast, the DINA data in panel (b)

suggest that capital income plays an important role already around the median of the income

44Denoting by yt(q) the qth income percentile at time t and by y`,t(q) and yk,t(q) that percentile’s labor

and capital income, we decompose the annualized growth rate from a base year t = 0, 1
T
yT (q)−y0(q)

y0(q)
, into a

part due to labor income 1
T
y`,T (q)−y`,0(q)

y0(q)
and a part due to capital income 1

T
yk,T (q)−yk,0(q)

y0(q)
.

45In these figures, we measure S-corporation income using the reported fiscal income. The appendix shows
an alternative strategy using DINAs where we compute corporate income from S-corporations using the
capitalization method. Both approaches yield very similar quantitative results.
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distribution, accounts for around half of cumulative growth of the top 1% and is twice as

important as labor income for the rise in top 0.01% incomes. When using the DINA data,

the relabeling of S-corporations income does not alter these conclusions. These discrepancies

across datasets are to be expected, given the differences in coverage between the IRS and

DINAs. In particular, the share of capital in fiscal income using the IRS data is of less than

10% whereas this share rises to 25–30% in the DINAs (a level that matches the net capital

share in national income). Thus, the IRS data is likely to understate the contribution of

capital to income growth, and relabeling part of S-corporations income as labor income is

more consequential when using the IRS data.

As a whole, the empirical patterns in both data sets are consistent with those generated

by our model. Our analysis suggests that the exact contribution of capital to income growth

at the very top of the distribution depends on the dataset and assumptions used, but ranges

from 30% (in the IRS data) to 70% (in the DINAs). Moreover, both sources of data suggest

that incomes at the middle and bottom have stagnated due to slow labor-income growth.

The main difference between the patterns in these figures and that in our model is that,

in the data, wage income plays a more prominent and positive role at the top of the income

distribution. This suggests that there are forms of skill-biased technical change other than

automation affecting relative wages at the top which are not included in our model (see the

discussion of Figure 10).

Our discussion focused on inequality trends observed in the U.S. since the 1980s. But

it is natural to ask whether our model’s prediction that rises in the net capital share are

accompanied by large increases in top income inequality receives support from other countries

or time periods. Appendix I.2 shows that this link is visible across countries and during

historical periods of rapid mechanization, such as the industrial revolution in Britain.

4.4 Speed of Top Inequality Dynamics

Figure 10 plotted the model-implied changes in inequality between two steady states. Figure

12, in contrast, showed the analogous changes between two calendar years, 1980 and 2012,

and in particular showed that the data features not only very large but also very fast changes

in top inequality. It is therefore natural to ask whether our model can replicate such fast

transitions. The answer is “no”: while our theory can account for large changes in inequality

between steady states, it cannot generate rapid transition dynamics of top income inequality.

That theories like ours cannot generate fast transition dynamics is a known result: Gabaix

et al. (2016) have shown that standard theories of the Pareto tails of the income and wealth

distributions, which build on a random growth mechanism, generate transition dynamics

that are too slow relative to those observed in the data. Our theory is exactly a special case

of such a theory – see Proposition 3 – and is therefore subject to the same criticism.

The good news is that we know how to “fix” random growth theories to deliver fast transi-

tion dynamics like those observed in the data. Gabaix et al. (2016) show that what is needed
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are particular deviations from Gibrat’s law, what they call “type- and scale-dependence.”

For the case of wealth dynamics, heterogeneous and persistent rates of return to wealth are

one candidate for generating such type- and scale-dependence and seem to be a prevalent

feature of the data (Fagereng et al., 2016). Future work should build more quantitatively

serious theories of the general-equilibrium interaction between technology and income and

wealth distribution that feature these model elements.46

5 Conclusion

In this paper, we developed a tractable framework to study the effects of technology on

income inequality. Our theory allowed us to go beyond wages and to explore how technology

affects wealth inequality and overall income inequality. We used our framework to study

the effects of automation and identified a new channel through which technology affects

inequality. The benefits of new technologies accrue not only to high-skilled labor but also to

owners of capital in the form of higher capital incomes and returns.

There are two fruitful avenues for future work. First, one could use our tractable frame-

work to study the distributional consequences of other types of technical change, changes

in market structure and markups, and government policies, like the taxation of capital or

estates, or redistributive policies. For example, it could be worthwhile to integrate our model

with a theory of international trade so as to examine the effects of globalization on income

and wealth distribution, and not just that of wages as is common in the trade literature.

Similarly, our analytically tractable theory featuring a less-than-perfectly-elastic capital sup-

ply and non-degenerate wealth distribution may serve as a useful laboratory for exploring

the optimal taxation of capital income and wealth.

Second, one could devise more elaborate quantitative models to study the effect of tech-

nologies on inequality. As explained in the introduction, these more elaborate models should

retain the two key features underscored by our analysis: an upward-sloping supply of cap-

ital and a return inequality nexus. Our model in Section 2 is a first step in that direction.

More elaborate versions of our model could include realistic life-cycle structures, a careful

treatment of intergenerational transfers, and additional sources of heterogeneity in port-

folio and return rates. Successful quantitative extensions should also include some form of

scale-dependence and type-dependence to account for the rapid rise of inequality in the data.
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