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ABSTRACT

What happens when patients suddenly stop taking their medications? We study the health 
consequences of drug interruptions caused by large, abrupt, and arbitrary changes in price. 
Medicare’s prescription drug benefit as-if-randomly assigns 65-year-olds a drug budget as a 
function of their birth month, beyond which out-of-pocket costs suddenly increase. Those facing 
smaller budgets consume fewer drugs and die more: 0.0164 percentage points per month (13.9%) 
for each $100 per month budget decrease (24.4%). This estimate is robust to a range of 
falsification checks, and lies in the 97.4th percentile of 541 placebo estimates, formed in similar 
populations that lack the same idiosyncratic budget policy. Several facts help make sense of this 
large effect. First, patients stop taking drugs that are both ‘high-value,’ and suspected to cause 
life-threatening withdrawal syndromes when stopped. Second, using machine learning, we 
identify patients at the highest risk of drug-preventable adverse events. Contrary to the 
predictions of standard economic models, high-risk patients (e.g., those most likely to have a 
heart attack) cut back more than low-risk patients on exactly those drugs that would benefit them 
the most (e.g., statins). Finally, patients appear unaware of these risks. In a survey of 65-year-
olds, only one-third believe that missing their drugs for up to a month could have any serious 
consequences. We conclude that, far from curbing waste, cost-sharing policies cause patients to 
miss opportunities to buy health at very low cost ($11,321 per life-year).
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I Introduction

Randomized trials quantify the benefits of starting a drug, but far less is known about the costs

of stopping a drug. A researcher interested in this topic would struggle to obtain ethical approval:

experimentally withdrawing prescribed medications is infeasible in most settings. But the non-

linear contract structure of many health insurance plans creates sharp variation in out-of-pocket

drug prices over time, causing millions of patients to stop prescriptions abruptly every year (Einav

et al., 2015; Einav and Finkelstein, 2018; Einav et al., 2018).

In general, these price-driven drug interruptions have not been a cause for concern, at least to

economists, because their welfare effects are theoretically ambiguous. Patients are known to stop

taking apparently high-value medicines, like statins and beta-blockers (Brot-Goldberg et al., 2017;

Choudhry et al., 2011; Einav et al., 2018), but there is no clear-cut evidence this harms their health.1

Patients may be deciding, rationally, that financial savings outweigh health gains, particularly if

they have private information about the benefits (or side effects) of treatment. Indeed, patients

themselves seem unbothered. In a survey of Medicare-age patients taking medication (Figure I),

we find that only one-third (33.5%) believe that missing their drugs for up to a month could have

serious consequences (e.g., hospitalization, death). A majority (53%) predict no negative health

consequences, even simply feeling worse, from missing their drugs for up to a week.

The medical literature, by contrast, gives more cause for concern. Beyond the obvious reason—

stopping a drug means forgoing any benefits shown in clinical trials—interrupting drugs can cause

withdrawal or ‘rebound’ effects. This phenomenon is difficult to study experimentally, but there are

some rare, striking signals from the medical literature that even short interruptions can have life-

and-death consequences. Consider a classic study that randomly alternated a drug for high blood

pressure (the beta-blocker propranolol) with placebo, to identify an optimal dose (Miller et al.,

1975). Of 20 patients participating in what should have been a fairly mundane dose-finding trial,

10 had adverse cardiac events, 6 of which were heart attack or death; all adverse events occurred in

the multiple short placebo periods—4 of 44 total weeks—when the drug was abruptly withdrawn.

In another study, researchers noted that patients taking statins sometimes failed to get them for

idiosyncratic reasons (Heeschen et al., 2002). In the setting of hospitalization for heart attack, those
1Previous studies show only effects on proxies for health, like hospitalizations or spending. For example, Chandra

et al. (2010) find that price increases in costs for drugs led to increased hospitalizations, but did not study mortality.
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who failed to receive their statin in the hospital had three-fold higher risk of death or repeat heart

attack than similar patients who got their statin, and a 69% higher risk than patients who never

took statins.2 Rebound effects have been suggested for a large number of drugs in wide use by older

patients, and guidelines suggest tapering under medical supervision rather than simply stopping

them (Steinman and Reeve, 2023; Bain et al., 2008). But the empirical evidence backing these

guidelines is weak, relying mostly on animal models, or highly confounded real-world studies that

simply compare patients who do vs. do not interrupt their medications. Making matters worse,

physicians are unlikely to notice even large effects: detecting a 30% increase in mortality from a

baseline of 1% would require perfect awareness of drug interruptions in a sample size of 40,000 (vs.

a typical panel: 2000 patients (Raffoul et al., 2016)). So in practice, even if doctors advise against

interruptions, their recommendations are lost on patients—as evidenced by our survey results.

We study the mortality effects of drug interruptions at scale, exploiting an abrupt and as-good-as

random price shock affecting millions of Medicare Part D beneficiaries. We build on an identification

strategy pioneered by Aron-Dine et al. (2015) and Kaplan and Zhang (2017): a non-linear contract

structure causes drug prices to vary by birth month for enrollees in their first year of coverage.

Historically, every January, beneficiaries start by paying only 25% of drug costs out-of-pocket. If

they exceed an annual budget cap of ∼$2500, however, they enter the ‘donut hole,’ where out-of-

pocket costs jump to 100%. Whether or not a beneficiary enters the donut hole is of course not

random: it depends on prior consumption. Critically, however, the cap is not pro-rated, giving all

enrollees get the same ‘pre-donut budget’ whether they enroll early or late in the year. So by the

time a later enrollee spends her first dollar, an earlier enrollee has been spending down her budget

for months, approaching the donut hole. Because Part D eligibility begins in the month someone

turns 65, birth month generates exogenous budget variation in the first year of enrollment.3

An important nuance is that the donut hole affects beneficiaries differently, depending on their

drug spending. For example, most people end the year with far less than $2500 of total spending,

meaning even early enrollees do not risk entering the donut hole. We focus on a set of ‘middle-
2These observations illustrate a key principle of rebound effects. The body develops equilibrating reactions that

compensate the drug’s effect (e.g., opioids desensitize opioid receptors, requiring escalating doses to get the same
effect (Dumas and Pollack, 2008)). When the drug is suddenly stopped, these endogenous mechanisms are no longer
balanced, producing an opposite effect that will be problematic if the drug was doing something helpful.

3Reassuringly, baseline characteristics are similar for early vs. late enrollees, and balanced on demographics, drug
consumption, and mortality in the first 90 days of enrollment.
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spenders,’ whose initial drug spending puts them on track to enter the donut hole if they enroll early

in the year, but not if they enroll late.4 We focus our analysis on the month of December, when

our power to detect an effect is highest: sample size increases over time as 45,000 more beneficiaries

enroll every month, and drug consumption differences across enrollment months grow as more early

enrollees enter the donut hole.

The complex interaction of budget caps, initial drug spending, and enrollment month produces

sharp variation in mortality. Enrolling one month earlier increases December mortality by 0.0112

p.p., or 9.5%. We translate this into policy-relevant terms by noting that enrollment month implies

a monthly drug budget before full cost-sharing sets in5: each $100/month drug budget decrease

(a 24.4% change vs. the average budget) increases mortality by 13.9%. We verify that changes in

consumption mirror changes in assigned drug budgets and mortality, with earlier enrollees consuming

significantly fewer drugs.6 This large mortality effect in middle-spenders contrasts with the absence

of effect in low-spenders, just as we expect: low-spenders remain far from the donut hole, even if

they enroll early, and show no effet of enrollment month on consumption. At the same time, the

highest-spending 2-3% show a large, significant, and opposite-sign effect of enrollment month vs.

middle-spenders. Again, this is just as we expect: in this group, earlier enrollees spend through the

donut hole and enter the “catastrophic coverage”, where cost-sharing drops from 100% to near zero,

resulting in more drug consumption; later enrollees remain stuck in the donut hole. To summarize,

enrollment month has effects on both drug consumption and mortality that vary widely across

sub-populations, in a way that exactly matches the interaction of Part D budget caps and initial

spending. It is hard to imagine a confounder with such a complex and idiosyncratic structure.

To build confidence in our estimates, we conduct a broad set of falsification tests and checks,

beginning with two obvious potential confounders. First, while earlier enrollees are by construction
4We verify that initial spending, like other ‘pre-treatment’ characteristics, is uncorrelated with enrollment month.

This means specifically that forward-looking behavior has not yet induced differential selection into initial spending
bins, allowing us to identify a similar group of middle-spenders across enrollment months. We consider high-spenders,
who not only enter the donut hole but also approach or enter the catastrophic coverage, in detail in Section II.C.

5Monthly budget is a mechanical function of enrollment month: e.g., a $2500 budget gives a February enrollee
$227/month and a September enrollee $625/month.

6We cannot easily link mortality to drug consumption using two-stage least squares in our setting, as the inter-
temporal dependence of drug consumption and mortality would introduce bias. Intuitively, the enrollment month
effect on mortality is mediated via a feedback loop of prices and quantities over time. Using any one of these
quantities as the endogenous variable would violate the exclusion restriction. In particular, Appendix B shows that
the combination of (i) prior drug consumption effects on current mortality (ii) inter-temporal substitution of drugs
across periods produces a large upward bias in the estimated effect of consumption on mortality in any one period.
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slightly older, mortality differences are 10 times larger than those implied by age differences (based

on Social Security data). Second, well-known health differences across birth seasons have a different

temporal pattern, and are far too small to explain our results (Doblhammer and Vaupel, 2001).

Next, we replicate our analysis in a wide range of closely-related settings, to ensure mortality

effects are only present when enrollment month affects drug budgets. For example, we replicate our

analysis before vs. after reforms to Medicare that began to close the donut hole in 2011, and find

that the effect size mirrors the extent of cost-sharing. We also track the evolution of enrollment

month effects on drug consumption and mortality in our cohort of middle-spenders, before and after

December of the first year. We find a significant difference in mortality only in December, exactly

when differences in consumption across enrollment months peak and our power to detect an effect is

greatest. The effect fades, then disappears after prices reset for all enrollees in January. Finally, we

formally generate a large number of “placebo estimates”: enrollment month effects on mortality, in

Medicare populations for whom enrollment month does not affect drug budgets. This includes, for

example, 66 year-olds, who are no longer affected by the enrollment month quirk we exploit at age

65; 65-year old dual-eligibles who face no cost-sharing; and 64-year old disabled beneficiaries whose

enrollment timing is not driven by birth month. Replicating our analysis in each of these samples,

across a range of calendar months, our main estimate lies in the 97.4th percentile of mortality effects,

larger in absolute value than 527 of 541 placebo estimates.

We make sense of this large mortality effect in two ways. First, like Einav et al. (2018) and

Brot-Goldberg et al. (2017), we find that patients interrupt drugs that are ‘high-value.’ Many are

also suspected to produce dangerous rebound syndromes when interrupted, with potentially life-

threatening consequences: statins, antihypertensives, glucose-lowering agents, inhalers and steroids

for pulmonary disease. Second, among those taking a given drug, we document a positive correlation

between treatment benefit and likelihood of interrupting the drug. For example, beneficiaries at

the highest risk of heart attack and stroke cut back four times as much on cardiovascular drugs

(e.g., statins, antihypertensives) vs. lower-risk patients (2.46 vs. 0.60 drug-days per $100 change in

monthly pre-donut coverage, a 3.6% vs. 1.5% reduction).7 Similar patterns exist for diabetes and

respiratory drugs. These differences are unlikely to be explained by income alone, as we see similar
7There is strong evidence from the medical literature that such risk is a good proxy for treatment benefit, par-

ticularly for cardiovascular drugs, an assumption we discuss in detail in Section III.D. Again, we caution against
comparing the magnitudes of changes in drug-days and mortality, given the biases detailed in Appendix B.
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cutbacks in both high- and low-income zip codes. One potential driver of this effect is that higher-

risk patients are more likely to interrupt all of their medications when prices increase, causing large

absolute reductions in those on more drugs at baseline.

Our findings may be surprising from the point of view of standard economic models of behavior

that emphasize moral hazard or private information: patients should not interrupt drugs with large

benefits. Yet they fit with a growing literature in economics linking insurance coverage to lower

mortality. Most closely related, Abaluck et al. (2021) find that switching into a plan with donut hole

coverage reduces mortality by 9.8%.8 More broadly, Miller et al. (2021) show Medicaid expansion

reduced mortality by 9.4%, and Goldin et al. (2020) find that Obamacare tax incentives reduced

mortality by 6.3%. Together, these studies show that health insurance can have large health impacts,

by affecting how patients use—and especially under-use—high-value care (Baicker et al., 2015).

Cost-sharing has been a cornerstone of health insurance design for decades, driven by worries

about wasteful spending and moral hazard. Our results indicate that, far from reining in low-value

care, cost-sharing is itself highly wasteful. Eliminating cost-driven drug interruptions would extend

life at a cost of around $11,321 per life-year (vs. commonly-used thresholds for cost-effectiveness

of $100-200,000: Neumann et al. (2014)).9 An optimistic view of these results is that policy mak-

ers have a unique opportunity to purchase health at negligible cost, by improving the design of

prescription drug insurance.

II Empirical Strategy

Studying the health effects of drug interruptions is difficult. Experimentally stopping prescribed

medications is impractical and unethical, and observational comparisons are highly confounded:

patients who interrupt consumption are quite different from those who do not. Perhaps the best

evidence of this comes from randomized trials, in which every drug dose is carefully tracked: patients

who take a lower fraction of assigned doses have worse outcomes—whether they are in the treatment

or the placebo group (Osterberg and Blaschke, 2005). This fact elegantly demonstrates how difficult
8This estimate is from an two-stage least squares with donut hole coverage as the endogenous variable; of course,

many other aspects of plans also vary so these comparisons are necessarily approximate. Further discussion of how
our estimates relate to this literature is in Appendix Table E.2.

9Given that drug consumption can also offset inpatient spending (Chandra et al., 2010), this number is likely to
be an over-estimate of the cost. Unfortunately, because half of our sample is in Medicare Advantage and we do not
observe in- or out-patient spending, we are unable to study this directly.
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it is to study this phenomenon: the myriad unmeasured links between drug-taking behavior and

health can complicate comparisons of patients who do vs. do not interrupt their medications, even

in the setting of a randomized trial. The idiosyncratic structure of the Medicare drug benefit,

which creates exogenous and abrupt changes in drug prices, allows us to study the effects of drug

consumption interruptions on mortality.

II.A Medicare policy context

Since 2006, Medicare Part D has offered prescription drug coverage to seniors and disabled indi-

viduals in the US. Individuals can enroll in either stand-alone prescription drug plans (PDPs) that

are offered alongside traditional Medicare, or Medicare Advantage (MA) plans where drug cover-

age is bundled with inpatient/outpatient care. The benefit’s non-linear structure with respect to

out-of-pocket costs is illustrated in Panel A of Figure II (Einav et al., 2015).

Using plan details from 2008 to describe the plan, the calendar year begins with a deductible

phase in which the beneficiary pays the entire cost of all drugs until spending reaches $275. She

then faces a 25% cost-sharing (coinsurance) rate that lasts until spending exceeds the budget cap of

$2,510 (the initial coverage limit). After this, the beneficiary falls into the coverage gap, or ‘donut

hole’ and again pays 100% of the cost of all drugs (based on list-prices, which are significantly

higher than net prices). Finally, after reaching $5,726 of total spending, she enters the ‘catastrophic

coverage’ (to continue the analogy, this phase represents the far side of the donut). Here, she pays

only 5% of the drug cost, or a copay of between $2.25 and $5.60 for each drug (depending on whether

it is generic or preferred or not, respectively).10 The cutoff points for each coverage arm change

slightly from year to year, as shown in Appendix Table A.1, but the basic structure remained the

same until 2011, when the donut hole began to close as a result of policy changes: cost-sharing rates

for generic and branded drugs in the donut hole fell from 100% to 50% and 93%, respectively. The

donut hole was officially eliminated by the Affordable Care Act in 2020, but many aspects of its
10The overall non-linear structure was largely the result of a political compromise balancing the desire to cover

very sick beneficiaries (the catastrophic phase) with reducing the total cost of the program (the donut hole); a review
is found in Oliver et al. (2004). Insurers may offer coverage that is ‘actuarially equivalent’, or ‘enhanced’ compared
to the standard benefit. One common deviation from the standard design is to replace the deductible phase with
uniform cost-sharing until the donut hole is reached. Additionally, most plans do not use coinsurance, but rather use
copays based on drug tiers for each coverage arm. In practice, copays equate to roughly the same level of cost-sharing
in each arm as the coinsurance rates specified by the standard benefit (Einav et al., 2015).
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structure persist in both Medicare (CMS, 2024) and and private insurance.11

As first noted by Aron-Dine et al. (2015) and Kaplan and Zhang (2017), the spending limits

that define cost-sharing are not pro-rated in the first year of enrollment. In other words, a person

who enrolls in, say, February gets the exact same ‘pre-donut hole’ budget, $2510 of total spending,

as a person who enrolls in September. It is easy to see that a beneficiary’s monthly budget will be

far greater if they enroll in later calendar months: the same pre-donut budget of $2510 is spread

over fewer months. This results in earlier enrollees being more likely to exceed their budget cap,

landing them in the higher prices of the donut hole, while later enrollees are more likely to remain

in the generous initial coverage phase with lower prices.12

Individuals become eligible to enroll in Part D on the first day of their 65th birth month, meaning

that enrollment month is primarily driven by birth month. If we believe that (i) birth month is as-

good-as random with respect to health, and (ii) different birth months select into enrollment months

similarly,13 then the effect of any resulting variation in drug budgets on mortality can be identified.

Like Aron-Dine et al. (2015), we prefer estimates based on enrollment month as opposed to birth

month, and use these in our main specifications. Enrollment month more accurately measures the

start of actual spending, as opposed to the start of eligibility, meaning it more accurately predicts

drug prices.14 In the empirical work, we test the underlying assumptions in detail: first, by checking

that those from different birth or enrollment months are similar, on range of observable health and

utilization measures (Table II). We also compare our estimates to those from the literature on

birth-seasonal variation in health to see if these known effects can account for our results.
11For a helpful overview, see KFF (2023).
12Very high-spending earlier enrollees are also more likely to enter the catastrophic coverage after the donut hole,

for the same reason.
13Unlike Medicare Part A, enrollment in Part D is not automatic. Beneficiaries can enroll during a 7-month long

initial enrollment period that runs from three months before to three months after their 65th birth month. Coverage
starts on the first day of the month after the individual enrolls, but not before the first day of the enrollee’s birth
month. If an individual chooses to enroll later, she faces a penalty of higher premiums for the remainder of her
tenure on Part D. We explore the selection of enrollment timing from birth months in Appendix Figure A.1. Of those
enrolling within a year of turning 65, the majority enroll in their birth month (69%). Empirically, a small number
of individuals enroll in the month before their birth month. This proportion is similar across birth months, and of
similar magnitude in Aron-Dine et al. (2015).

14Using birth month instead of enrollment months for our main analysis yield similar, if less precise, results, just
as we would expect: see Appendix Table C.2.
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II.B Model

We would ideally like to estimate the effect of drug consumption Q, a vector of consumption measures

for individual drugs (specifically, number of drug-days consumed in some period), on mortality,

denoted by indicator Y . In addition to Q, Y is determined by patient factors, which can be either

observed (vector X) or unobserved (vector W ). Unobserved factors affect both mortality and

consumption, so OLS regression of Y on Q will be confounded, hence the need for an instrument Z

that exogenously shifts drug consumption: enrollment month. For ease of exposition, we begin with

a simplified scenario where Z takes two values, indicating whether patients are assigned to enroll

early in their first year, receiving the usual Medicare monthly drug budget (Z = 0), or late in the

year, receiving a higher monthly drug budget (Z = 1).15

We begin by considering the effect of Z on drug prices via the donut hole.16 Let function

g(S,Z, t; θ) represent the Medicare policy that calculates cumulative spending from beneficiary i’s

enrollment month Zi = z to period t, Si,z:t =
∑t

j=z Sij , and compares it to policy limits θ, in

particular the donut hole limit θD9.17 The function determines whether the beneficiary is in the

donut hole in t, measured by indicator Dit = 1 {Si,z:t ≥ θD}. The instrument mechanically affects

the calculation of cumulative spending, making earlier enrollees more likely to enter the donut hole:

in potential outcomes notation, E[D0
it] ≥ E[D1

it], where the superscript corresponds to the two

potential enrollment months.18 This sets the vector of individual drug prices: Pit = P0 + δDit,

the baseline price P0 plus the donut hole premium δ. Earlier enrollees thus face higher prices,

E[P 0
i,t] > E[P 1

it], which likely leads to lower drug consumption E[Q0
it] < E[Q1

it]. We hypothesize

that these differences in consumption drive mortality differences such that E[Y 0
it ] > E[Y 1

it ].

Given our interest in the effect of budget-induced drug consumption changes on mortality, a

natural estimation approach would be two-stage least squares, instrumenting for drug consumption

using enrollment month. Unfortunately, any choice of endogenous variable for the first stage will
15This simplified binary case sets up our potential outcomes framework; it will generalize to our actual empirical

setting, where Z runs from 2 for February enrollees to 9 for September enrollees, with larger values always implying
larger pre-donut hole budgets.

16The donut hole is the policy feature that affects the largest fraction of beneficiaries. We consider the catastrophic
coverage policy, which only the highest-spending 2-3% of beneficiaries enter, in Section II.C below.

17To simplify notation, we write θD as a constant, but in our analysis we account for the changing values of all
policy thresholds across years.

18While Dit is determined by spending, whether or not someone actually enters the donut hole depends on their
consumption choices, so E[Dz

i,t], z ∈ {0, 1} is taken over the distribution of individual behaviors, contingent on being
assigned to enroll early or late.
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violate the exclusion restriction, if the instrument affects mortality via a complex feedback loop

connecting quantities to prices over multiple time periods, because any of these may affect mortality.

A pernicious consequence of this problem is that estimates of the effect of consumption on same-

period mortality will be biased upwards, as we show more formally in Appendix B. The intuition

for this is two-fold. First, because prior and current drug consumption are correlated, and both

affect mortality, a regression of mortality on same-period consumption will be biased: the effect

of prior consumption will be mis-attributed to the current period.19 Second, because of the well-

documented phenomenon of inter-temporal substitution across time periods (Aron-Dine et al., 2015),

past consumption is greater than current-period consumption, inflating the bias: small changes in

current consumption will appear to have large effects on same-period mortality, reflecting in part

the large changes in prior consumption.

As a result, we report for a transparent, reduced-form estimate of the effect of enrollment month

on mortality in period t, using the following estimating equation:

Yit = γ0 + γ1Zi +Xiγ2 + γyear + γplan + ϵit (1)

where γyear is a set of calendar year fixed effects, γplan is a set of fixed effects for Part D plans, Xi

is a vector of sex and race indicators, and the instrument Zi is a scalar that takes integer values

from 2 (February enrollment) to 9 (September enrollment).20 Our primary interest is γ1, the effect

of enrolling one month later. The reduced form estimate of enrollment month is not generalizable

to other (non-Medicare) settings, where enrollment month is not a meaningful quantity. However,

it does have a natural policy-relevant interpretation: enrollment month mechanically implies a

monthly dollar budget—how much a beneficiary can spend before reaching the full cost-sharing

of the donut hole: Bi =
θD

(T−Zi+1) , where T = 12 (the total number of months). This has direct

relevance to other health insurance settings that use similar budget structures.

While we do not implement formal two-stage least squares to link mortality to drug consumption,

we do estimate the instrument’s effect on drug consumption, both for individual drugs and total
19We cannot easily get around this by using cumulative consumption, because the measurement of consumption

(and all other variables) in prior periods is correlated with the instrument—enrollment month: we will not observe
consumption for later enrollees as we go back in time.

20We exclude January, October, November, and December enrollees for reasons described in Section II.D.
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consumption, in a single period t, via

Qit = α0 + α1Zi +Xiα2 + αyear + αplan + ηit (2)

This is useful to confirm that budget limits produce the expected changes in drug consumption,

and to study where and when beneficiaries cut back. However, we emphasize that it is misleading

to correlate the magnitude of changes in estimated consumption to changes in estimated mortality:

any such effort suffers from the same bias as described above and in Appendix B, where small

changes in consumption will appear to have outsized effects on same-period mortality.

Given the inter-temporal dynamics described above, the choice of t is important. We favor a

time period near the end of the first calendar year—specifically December, like Aron-Dine et al.

(2015)—for two reasons. First, more and more beneficiaries enroll and reach their steady-state drug

consumption, meaning we have larger samples as the year progresses. Second, differences in drug

consumption across enrollment months accelerate over the course of the year, as shown in Figure II,

Panel B, before prices reset for all enrollees in January. The combination of these two factors means

our power to detect an effect increases dramatically and non-linearly over the course of the first

calendar year, peaking in December, as shown in Appendix Figure C.3. For example, our power to

detect an effect of the same magnitude as December would be 72 percent lower in November, and

76 percent lower in October.

II.C Heterogeneity in the Effect of Enrollment Month on Prices

We have so far focused on the dominant effect of enrollment month Zi: earlier enrollment increases

the likelihood of entering the donut hole by year-end (Di,12), resulting in higher prices and lower

consumption. But the effect of Zi is heterogeneous. For example, after the first calendar year

of enrollment (where all beneficiaries look like our early enrollees, since cumulative spending is

calculated starting in January), the majority of Part D beneficiaries have cumulative year-end

spending well below the donut hole budget limit E[Si,1:12] << θD ≈ $2500.21 For such low-spenders

i ∈ L, the effect of enrollment month on donut hole entry is likely negligible, because even the

earliest enrollees will end the year far from the donut hole limit. By contrast, a handful of the
21This is based on data from after the first enrollment year, i.e., absent enrollment month effects.
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highest-spending beneficiaries H are less likely to end the year in the donut hole: they do enter the

donut hole, but then exit it by exceeding the second policy limit E[Si,1:12|i ∈ H] ≥ θC ≈ $6000,

landing in the catastrophic coverage phase where cost-sharing returns to very low levels.

We would ideally like to focus attention on a group of middle-spenders M whose spending is

‘just right’: they spend enough to be affected by the donut hole budget limit by year-end, but

not enough to approach the catastrophic coverage limit. In this group, we expect large effects of

enrollment month on donut hole entry by year-end, and thus consumption and mortality, in a way

that is relatively easy to interpret. An analogy can help see why: the middle spenders are like

compliers, for whom donut hole entry is monotonically lower for later enrollees vs. earlier enrollees:

E[D0
i,12|i ∈ M] > E[D1

i,12|i ∈ M]. The lowest-spenders are never-takers, for whom E[D0
i,12|i ∈ L] =

E[D1
i,12|i ∈ L] = 0. The highest-spenders are defiers, E[D0

i,12|i ∈ H] < E[D1
i,12|i ∈ H], who violate

the monotonicity assumption: early enrollees are more likely to enter the donut hole (resulting in

higher prices), but also more likely enter the catastrophic coverage (resulting in lower prices)—i.e.,

the effect of enrollment month Zi on prices and consumption is ultimately reversed. Focusing on

the middle-spenders, who experience only the (prospect of) budget decreases, would produce the

most straightforward estimate of the effect of Zi.

In order to assign beneficiaries to groups Gi ∈ {L,M,H}, we cannot simply use realized year-end

spending—our identification strategy relies on the fact that cumulative year-end spending Si,z:12 is

endogenous to Zi. Just after enrollment, though, the donut hole limit may be sufficiently far away

that spending is temporarily unaffected by Zi: enrollees are all just starting to learn about a highly

complex program. While this is plausible, if even initial spending is affected by forward-looking

behavior and thus correlated with enrollment month, using initial spending to assign groups would

induce differential sample selection across enrollment months: higher-spending earlier enrollees,

who have already started to cut back, would be inappropriately grouped with lower-spending later

enrollees, who have not. Fortunately, this is an empirical question: we can directly inspect benefi-

ciaries’ spending trajectories in their first months of Part D coverage, to determine whether initial

spending varies by enrollment month. To do so, we first test for differences in spending in the first

month of enrollment E[Si,z|Zi = 1] − E[Si,z|Zi = 0] by regressing Si,z on scalar Zi. If we find no

significant effect (at p < 0.05), it implies that forward-looking behavior has not materialized by the

end of the first month. We proceed to test for differences in month (z+1), both individually and cu-

12



mulative since enrollment, and so on until we find a significant coefficient on Zi. Appendix Table A.2

shows that such a difference emerges only in month z+3. So we define ‘initial spending’ as spending

in the first three months of enrollment Si,z:z+2. We calculate percentile bins of initial spending for

each enrollment month, and use these to define a vector of indicators σi = [σi1, σi2, ...σij , ...σi100],

which are set to 1 if beneficiary i falls into the jth percentile of initial spending within her enrollment

month. Using within-enrollment month percentile is attractive because is requires only a weaker

assumption, that the ranking of initial spending within-enrollment month is correlated with the

likelihood of entering the donut hole at the end of the year.

This lets us estimate the empirical analog of E[D1
it−D0

it|Gi] using our instrument and spending

bins: E[Dit|Zi = 1, σi]− E[Dit|Zi = 0, σi].22 Focusing on December (t = 12), we regress

Di,12 = ϕ0 + (Zi × σi)ϕ1 +Xiϕ2 + ϕyear + ϕplan + ωi,12 (3)

and inspect vector ϕ1, coefficients for the vector of spending-percentile indicators σi interacted with

scalar Zi. This measures the effect of enrollment month on donut hole entry at year-end for each

spending percentile bin j. If ϕ1j = 0, it implies E[Dit|Zi = 1, σi] = E[Dit|Zi = 0, σi], and all

beneficiaries in spending percentile j are assigned to L. Likewise, if ϕ1j < 0 then i ∈ M, and if

ϕ1j > 0 then i ∈ H. With spending groups defined, we run our primary estimating Equation 1

separately by group:

Yi,12 = γ0 + (Zi × Gi)γ1 +Xiγ2 + γyear + γplan + ϵi,12 (4)

The vector γ1 will measure the effect of enrollment month on mortality, separately by initial spending

group G. Our hypothesis is that these mortality effects will mirror the effects on donut hole likelihood

from Equation 3, with γ1L = 0, γ1M < 0, and γ1H > 0.

II.D Data

Our main sample for estimation consists of a 20% random sample of first-time Medicare Part D

enrollees in their initial enrollment period (birth month and three subsequent months) from 2007-12.
22We take this empirical approach, rather than trying to forecast whether or not they will exceed policy budget

limits (θD, θC) based on initial spending, because we know cutbacks start well in advance of these limits.
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First, we make sample restrictions common to the Part D literature—though we will later use some

of these excluded populations for falsification tests. We subset to those who become eligible for

Medicare because they turn 65, under the Old Age and Survivors Insurance, which means excluding

those who enroll in Medicare before age 65, for disability or end-stage renal disease. This leaves us

with 1,131,922 observations. We then remove all individuals dually-eligible for Medicaid or other

low income subsidies, as they face low prices that do not change as a function of yearly spending,

which leaves us with 925,170 observations. We also remove all individuals that enroll in a deductible

plan, as their initial claims vary with enrollment month due to the future price effects (Einav et al.,

2015), bringing the sample to 605,502. A series of other minor subsets brings our sample to 557,999

beneficiaries.23

We make three additional exclusions with respect to the timing of enrollment month and death.

First, in order to calculate mortality rates in December, we exclude those who die before December 1.

We carefully check mortality differences across enrollment months before December 1, which could

indicate selection bias introduced by this exclusion, and find none: see Table II and Figure IV. We

also drop those who enroll in October and later, because as Aron-Dine et al. (2015) note, these

beneficiaries are still ramping up their drug consumption. As a result, their December utilization

is spuriously low compared to beneficiaries enrolling earlier in the year, who have reached steady

state in terms of consumption by December. Finally, we follow Aron-Dine et al. (2015) and exclude

January enrollees from our sample, for several reasons. Those born in October and later are legally

allowed to enroll in January without penalty, because January is in their 4-month initial enrollment

period (IEP). Empirically, January enrollment appears to be an outlier in terms of volume of patients

enrolling, and January enrollees are observably different from all other enrollment months.24 With

these restrictions, our final analytic sample consists of 358,706 individuals.

Our analyses of drug consumption use the Medicare Part D drug claims made by beneficiaries

in our sample, including fill date, total cost, out-of-pocket cost, and 11-digit National Drug Code

(NDC) identifiers. To classify drugs into clinically meaningful categories, we use the RxNorm and

RxClass APIs to link NDCs to their corresponding Anatomical Therapeutic Chemical (ATC) codes,
23We exclude individuals in special needs plans, those with non-standard ICL locations, and those not residing in

the US 50 states or Washington, DC. We include individuals in standalone PDPs and standard MA plans that are
HMO, HMO POS, Local PPO, Private FFS, and Regional PPO.

24We also find evidence that those born in January are less likely to delay enrollment, and that those born in other
months (e.g. November) are more likely to delay enrollment to January as opposed to other months.
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a hierarchical system for drug classification. This allows us to map, for example, a claim for Lipitor

to the drug class of statins (HMG-CoA reductase inhibitors), within the ‘lipid-modifying agents’

category of the cardiovascular category.25

III Results

III.A Sample Description

Summary statistics are shown in of Table I. The overall sample is 90% white and 60% female.

Roughly half is in fee-for-service Medicare (standalone PDP, with the rest in Medicare Advantage.

As our sample is relatively young and not dual-eligible (excluding the poorest beneficiaries, for whom

enrollment month does not affect cost-sharing), mortality is low, 0.9 percentage points (p.p./year),

and drug spending around $1,500/year. The 10 most-used drug classes in our sample include statins,

antihypertensives, diuretics, antidepressants, glucose-lowering drugs, and corticosteroids.

We check balance by regressing key ‘pre-treatment’ characteristics on enrollment month. Columns

1-2 of Table II present means and estimated coefficients on enrollment month for the entire sample,

respectively. Panel A shows that estimates for race, sex, and number of drug prescriptions filled in

the first 90 days are statistically and economically insignificant. Balance on spending is discussed

above (Section II.C and shown in Appendix Table A.2. As a more synthetic test, we predict one-

month mortality using all pre-treatment variables, and regress this on enrollment month.26 This

too is reassuring. Panel B shows a more direct balance check on mortality in the first 3 months

of enrollment, by regressing mortality in the 30, 60, and 90 days after enrollment on enrollment

month. Because cost-sharing begins to affect enrollment months differently after this period (Ap-

pendix Table A.2), and the latest enrollment months has already entered December by the fourth

month after enrollment, this is the last time we can compare mortality across enrollment months for
25We also attempted to measure medical diagnoses, procedures, and health care utilization besides drugs, using

Medicare Parts A and B claims, including diagnoses, procedures, and admit/discharge dates. However, we are under-
powered to detect effects for two reasons. First, the subsample of individuals enrolled in standalone PDPs (non-MA),
for whom we observe these data, is half our sample. Second, 69% of all deaths happened outside of the hospital,
implying a sudden event that did not result in prior utilization.

26This predictive model is estimated in a sample of 66+ year-old dual enrollees, who we assume have the same
relationship between mortality and covariates. The independent variables are demographics (race, sex) along with
consumption metric measured over the first 90 days of coverage for the year (January-March), to mirror our main
sample, and the dependent variable is mortality (April-December). We apply this model to generate predictions in
our main sample, using covariates measured over the first 90 days of enrollment.

15



the entire sample. No estimates are significant, providing further evidence that baseline health is

similar between enrollment months. This provides some reassurance that conditioning our analytic

sample on survival (i.e., to run our model of December mortality beneficiaries must be alive on

December 1) does not introduce selection bias correlated with enrollment month.

Having established balance, we now turn to defining initial spending bins as described above in

Section II.C. Appendix Figure A.3 shows the effect of enrollment month on the likelihood of entering

the donut hole by year end, for each percentile of initial spending.27 In the first 60 percentiles of

initial spending there is no relationship between enrollment month and donut hole entry, and only

a very slight negative relationship in the 61-70th percentiles. Starting at the 71st percentile, we see

significant and increasingly negative effects of enrollment month, as more and more earlier enrollees

fall into the donut hole while later enrollees do not. Finally, at the 98th percentile, the relationship

begins to reverse, and the last percentile bin has a large positive effect, as earlier enrollees exit the

donut hole and enter the catastrophic coverage.

Our primary goal in setting spending group cutoffs is to estimate Equation 4 in a homogeneous

group of middle-spenders, whose drug consumption monotonically increases in enrollment month.

Estimates for low-spenders and high-spenders are not our primary focus, so we are willing to tolerate

some heterogeneity in these groups, to ensure homogeneity in the middle-spender group. We thus

assign the first 70 percentiles to the low-spender bin—even though, empirically, this is likely to

include a small number of lower-middle-spenders from percentiles 61-70 who are slightly affected by

the donut hole—and percentiles 98-100 to the high-spender bin. On average, the 98-99th percentiles

likely experience the impact of enrollment month more like a middle-spender than a high-spender

(i.e., the effect of enrollment month on donut hole entry is negative); but because our primary interest

is in estimates from the middle-spender bin, we set the cutoff very conservatively to minimize non-

monotonicity of enrollment month in that bin. We performed a sensitivity analysis over a range of

alternative cutoffs (e.g., starting the middle-spender bin at the 61st percentile, or ending it at the

95th percentile) and found nearly identical results, shown in Appendix C.1.

Table I, Columns 2-4, present summary statistics by spending group. Middle-spenders, our
27As discussed in Section II.C and Appendix Table A.2, we use 90-day initial spending because it is balanced across

enrollment months, while spending past 90 days is likely affected by forward-looking behavior. There are not unique
percentiles for the 70% of initial spending so we estimate by decile for this group. We find precise null estimates for
all 6 deciles.
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main population of interest, are more likely to be fee-for-service, and have higher drug spending (by

construction) and mortality than the overall sample mean. Table II, Columns 3-4, present balance

checks within the middle-spending group. While we do find a statistically significant association

between enrollment month and sex in the middle-spenders sub-sample, it is quite small in both

percentage terms (0.29%) and orders of magnitude too small to explain the mortality differences

we find. Drug consumption, measured by number of prescriptions filled in the first 90 days, is

balanced across enrollment months. Our most important balance tests— predicted mortality based

on observables, and actual initial mortality in the first months of enrollment—are likewise reassuring.

III.B Mortality Effects of Drug Interruptions

Figure III shows our identification strategy and main result graphically, using a set of indicators for

enrollment month. In Figure III, Panel A, we see the proportion of beneficiaries in each coverage

arm in December, by spending group. This aggregates the finer percentile bins in Appendix Figure

A.3, and shows a similar pattern of clear separation of (mostly) low-spenders on the left, for whom

enrollment month has no effect on donut hole entry; middle-spenders, where early enrollees end

up in the donut hole more often (34.9% of February vs. 0.6% of September enrollees) but not the

catastrophic coverage; and (mostly) high-spenders on the right, where early enrollees first enter the

donut hole more often, then also enter the catastrophic coverage more often (the latter cannibalizes

the share of early enrollees in the donut hole, hence the non-monotonic trend for the former).

Panel B of Figure III shows that these differences in donut hole exposure affect drug consumption,

as measured by December drug-days filled (i.e., the number days supplied, summed across all drugs).

As expected, low-spenders have no variation in days filled by enrollment month. Middle-spenders

fill substantially fewer days when they enroll early: February enrollees, for example, fill 25.5 fewer

drug-days in December than September enrollees. And high-spenders show the opposite pattern,

with February enrollees filling 31.8 more drug-days in December than September enrollees.28 We

take all estimates in this latter group with a grain of salt, due to the non-monotonicity of the

enrollment month effect on consumption; the complexity of interpreting these coefficients means

these beneficiaries are not the focus of our analysis. Appendix Table D.1 shows the specific drug
28Figure IV will show that these decreases are indeed interruptions, particularly at year-end: differences across

enrollment months are small earlier in the year, then accelerate dramatically, peaking in December.
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classes most affected by price increases, which include statins, beta-blockers, ACE inhibitors, and

antidepressants; notably, opioids are unaffected.

Panel C of Figure III shows the relationship between December mortality and enrollment month.

For low-spenders, there is no effect. For middle-spenders, we find a significant and large negative

relationship between mortality and enrollment month, that mirrors the increase in drug consumption

shown in Panel B. And for high-spenders, we see a large positive relationship, again contrasting with

middle-spenders. Panel A of Table III summarizes these figures, and reports OLS estimates of β2

from equation (4), both in terms of enrollment month (Column 2) and monthly pre-donut budget

(Column 3) as scalars. Concretely, among middle-spenders, a $100 budget increase—24.4% relative

to the average enrollment-month budget in our sample—leads to a mortality reduction of 0.0164

percentage points (p.p.), or 13.9% of the base mortality rate. In low-spenders, the effect is small

and insignificant. In high-spenders, the effect is positive, large, and significant.29

A central question is whether variation in mortality across enrollment (or birth) months is

confounded by factors other than cost-sharing. Recall that we have already seen two reassuring facts

in this regard. First, no such variation in mortality exists in the first few months after enrollment,

before cost-sharing and drug consumption trends start to diverge across enrollment months (see

Table II, Panel B). Second, any confounder would have to correlate not only to enrollment month,

but also to the exact combination of enrollment month and initial spending patterns we would expect,

given Medicare policy: large for medium-spenders, absent for low-spenders, and opposite-sign for

high-spenders.

Nevertheless, we directly address two known potential confounders. The first and most obvious

is age: those who enroll earlier in the year are older than those who enroll later, so our results

indicate older enrollees die more—not a novel finding. We emphasize, however, that if aging alone

were responsible, this trend would not be affected by initial spending differences. In addition, a

simple calculation using US life tables (from the Social Security Administration) illustrates why

this is unlikely to be a concern. Comparing annual mortality rates for 65- vs. 66-year-olds, we

estimate the effect of being one month younger is to decrease monthly mortality by roughly -0.001
29The significant coefficient is in the enrollment month specification, but not the pre-donut budget specification,

which is not surprising. We would not expect the latter to be a good way to scale enrollment month for those who
have greatly exceeded the donut hole budget and entered the catastrophic phase.
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p.p., or -0.76%.30 This is quite similar to the effect of enrollment month from the low-spenders,

albeit imprecisely estimated, which in the absence of enrollment month effects on budget are likely

to be solely attributable to age: -0.00036, or -0.68% (Table III). Another data point comes from

a null distribution of effects of enrollment (or birth) months on mortality, across many observably

similar samples lacking enrollment month effect on drug budgets (which we describe in Section

III.C, below). This yields a median estimate of -0.53%, which again likely reflects the effect of being

one month younger in these populations. In other words, several different methods of calculating

the aging effect all give fairly consistent estimates, between -0.5 and 1%—an order of magnitude

smaller than the effect size from our main analysis, which captures the effect of enrollment month

on cost-sharing plus the effect of being one month younger: -0.118 p.p. or -9.49%. (The equivalent

estimate based on birth month is -0.009 p.p., or -7.7%, shown in Appendix Table C.2, Panel A.)

This gives us confidence that aging is only a small part of the relationship we observe.

A second potential confounder is health differences by birth season, which has been suggested to

result from disease seasonality (Currie and Schwandt, 2013) or selection (Buckles and Hungerman,

2013).31 Most of the literature focuses on peri- and post-natal outcomes, but two large studies

explore later-life outcomes in populations similar to our own. In a study of life expectancy at

age 50, Doblhammer and Vaupel (2001) find that mortality peaks among May births, a pattern

that is consistent across multiple cohorts in the Northern Hemisphere (Austria and Denmark; it is

exactly reversed in Australia). This echoes a Nurses’ Health Study by Zhang et al. (2019) that finds

cardiovascular disease mortality peaks among April births (although that study found no overall

mortality differences). In our sample, by contrast, mortality peaks among February births, and May

births are in the middle of our distribution of mortality effects (Appendix Table C.2, Panel B shows

these effects by birth month, rather than enrollment month, for comparability to this literature).

In addition, our mortality effects are again orders of magnitude larger.32 To summarize, the birth
30Using 2010 data, annual mortality was 1.59 p.p. for 65-year-olds and 1.74 p.p. for 66-year-olds, translating into

monthly rates of roughly 0.133 p.p. and 0.146 p.p. We interpret the difference, -0.013 p.p., as the effect of being
one year younger on monthly mortality. We translate this annual effect into a monthly effect, then divide by mean
monthly mortality to get the percent decrease.

31While a full review of this literature is beyond the scope of our work, we refer the reader to Currie and Schwandt
(2013) for an excellent summary, and a very rigorous empirical exploration of mechanisms.

32Doblhammer and Vaupel (2001) find the maximum effect of one birth month change on life expectancy (at age
50: e50) is 0.05-0.1 year, vs. an average remaining e50 of 27.5 years. Without access to the full life table, converting
between e50 and annual mortality risk is not possible, but using the rule of thumb from Pollard (2002), these e50
changes imply on the order of a 0.03% relative annual change in mortality risk (in each one-year age bin), compared
to the effect of 10.8% we observe (0.0137 p.p. per birth month vs. base mortality of 0.127 p.p. for middle-spenders.)
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seasonality literature demonstrates small, cyclical increases in mortality among those born in April

and May, while we find large mortality increases earlier in the year, that increase linearly with

enrollment month, and that are larger and correlate with Medicare drug budgets.

III.C Falsification Tests

As shown in Figure III, the effect of enrollment month on mortality varies across spending bins,

following the pattern of idiosyncratic changes in drug budgets created by Medicare policy. We

consider this our first falsification check because it would be so hard for potential confounders to

match the very specific set of idiosyncratic budget limits, initial spending, and calendar-month

effects we exploit. We build on this insight to develop a more comprehensive set of falsification

checks that replicate our analysis in a range of closely-related settings lacking an enrollment month

(or birth month)–drug budget link. This lets us further verify that our findings are only seen in the

presence of Medicare budget limits on drug consumption.

First, Figure IV isolates the mortality effect to the end of the first calendar year: it appears

just as differences in drug consumption peak in December, and disappears as soon as prices reset

and drug consumption re-equalizes in January. The Figure is constructed by following our main

population of middle-spenders over time, before and after December. In each calendar month, we

summarize the effect of enrollment month on being in the donut hole (Panel A), drug consumption

(Panel B), and mortality (Panel C), via a linear coefficient. For example, the red point in Panel

A is the coefficient on enrollment month, from a regression of donut hole entry in December on

enrollment month. This is analogous to ϕ1 from Equation 3, but estimated in all middle-spenders.

In other words, this red point summarizes the middle panel of Figure III, Panel A as a single linear

coefficient. Each point on the graph similarly represents an estimate of the enrollment month effect

on an outcome, one for each calendar month, from August of the first calendar year to May of

the second year.33 Panel A shows that the effect of enrollment month on donut hole entry grows

smoothly over time in year one, as more beneficiaries enter the donut hole. It then disappears in

January of year two, when all enrollment months re-enter the initial coverage phase.
33For months prior to December, we exclude those who have not been enrolled for three months, in order to identify

a similar group of middle-spenders over time (e.g. September regression includes February-June enrollees). We could
not produce stable estimates prior to August of year one, as the sample size decreases with each month due to fewer
enrollment months.
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Similarly, each point in Panel B is the estimated linear coefficient of monthly drug-days filled

on enrollment month (analogous to α1 from Equation 2, but estimated in all middle-spenders).

Differences in consumption between early and late enrollees appear as early as September, and this

effect grows steadily over the next 3 months. But in contrast to Panel A, the magnitude abruptly

jumps up in December: the effect on drug consumption more than doubles (1.75 drug-days difference

per enrollment month in November, vs. 3.65 in December). These consumption gradients completely

reverse in January: as soon as prices reset, earlier enrollees—who have been waiting out the high

prices of the donut hole, and filling fewer drug-days December as a result—now take advantage of

lower prices to make up for their missed doses. Indeed, not only do earlier enrollees fill 2.86 more

drug-days per enrollment month, they also fill sooner (0.30 days sooner for each earlier enrollment

month, conditional on filling in January; estimate not shown). These patterns fit with the beliefs

documented in our survey (Figure I): patients view short interruptions in their drugs as largely

innocuous, and put off filling until prices reset.

Finally, Panel C presents estimated linear coefficients of monthly mortality on enrollment month

(γ1M from Equation 4). Recall that our balance checks showed no differences in mortality in the

first three months of enrollment. This Panel shows a similar analysis, by calendar month rather

than enrollment month. We find no significant mortality gradient across enrollment months from

August to November—then a large a significant effect in December. In January, just as prices reset

and earlier enrollees rush to fill their medications, the mortality effect attenuates: it is negative

but insignificant in January, then disappears altogether from February onward. Overall, these

results show that mortality increases are a transient phenomenon tied to abrupt increases in drug

interruptions in December, and December alone. This is close to what we would expect based on

our effect size and power calculations (Appendix Figure C.3).

Our second falsification test leverages policy variation over time, to show that the mortality

effect is proportional to the degree of cost-sharing mandated by evolving Medicare policy. In 2011,

the donut hole began to close, allowing us to compare mortality effects of enrollment month in our

main sample of middle-spenders, before vs. after a policy change that reduced cost-sharing faced by

earlier enrollees. Panel B of Table III shows estimates based on Equation (4), but with enrollment

month interacted with indicators for pre- vs. post-policy change, and restricted to middle-spenders.

The effects are larger before the attenuation of the donut hole, with a mortality reduction of 0.0210
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p.p. per $100/month pre-gap budget increase, isolated to 2007-2010. In other words, the effect of

cost-sharing on morality is concentrated in the enrollees we expect, and over the time period when

these enrollees are most affected by cost-sharing.

Our most comprehensive set of falsification tests situates our main estimate in an empirical “null

distribution” of enrollment (or birth) month effects on mortality, from a range of related populations

and time periods. The placebo effects are estimated in samples of Medicare beneficiaries who are

similar to those in our estimation sample, but lack the idiosyncratic link between enrollment month

and drug budgets. As a result, we expect this distribution to be centered at zero (adjusting for the

effect of age, which we discuss in detail below), and for our main estimate to be in the extreme

left tail. Our first set of estimates extends the analysis in Figure IV to follow our main sample

further in time, estimating monthly effects from January of their second calendar year of enrollment

until December of their fourth year (36 estimates: shown separately in Appendix Figure C.1, Panel

A). Our second set replicates the analysis in older dual-eligibles, who do not face cost-sharing. We

pool all years together, then split into subsets defined by demographic factors and geography (46

estimates: Appendix Figure C.1, Panel B). Third, we broaden to a larger set of beneficiaries 66

years old and above—non-duals, older duals, and disabled dual beneficiaries (ages 50-64), none

of whom face the exact same cost-sharing as 65-year-old non-duals—whose initial spending makes

them observably similar to our middle-spenders (459 estimates: Appendix Figure C.1, Panel C).34

Figure V reports the distribution of results across these 541 falsification samples. We rank

estimates of the enrollment month effect by magnitude on the x-axis.35 The y-axis shows the

cumulative fraction at least as large as x. The median estimate is -0.53%, likely reflecting the effect

of age across these samples: it is quite close to the age effect we estimated from other sources

in Section III.B above (-0.76% from Social Security data, or -0.68% from the low-spenders). The

estimate from our main analysis, -9.49%, is shown in red. It is at the 97.4th percentile of mortality

effects, larger in absolute magnitude than 527 of 541 placebo estimates overall (and more negative

than 532 of 541 estimates, or 98.3%). Appendix Figure C.2 shows similar results in a plot of t-
34Because some of these populations lack an observable enrollment month, we use birth month as a proxy. More

details are in the Appendix.
35Estimates are relative to the baseline mortality in each sample for comparability: falsification samples vary in

their baseline mortality. Many samples are sicker than our 65 year-old non-dual primary sample, because of older
age, lower income, and enrollment based on disability. As a result, mortality is higher, which if anything could make
us better powered to detect a (spurious) effect.
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statistics from these regressions. This ‘omnibus’ test complements the more tailored falsification

tests above, and builds confidence that our observed mortality effect is in fact due to difference in

the pre-donut budget faced by enrollees, rather than any spurious correlation.

III.D Are These Effect Sizes Medically Plausible?

Table IV shows that a consistent finding of prior work is true in our setting as well (Einav et al., 2018;

Brot-Goldberg et al., 2017): patients cut back on many drugs that have been shown to prevent life-

threatening adverse events in randomized trials: cardiovascular (e.g., statins, antihypertensives),

glucose-lowering (e.g., insulin), and respiratory (e.g., steroids, inhalers). For each of these three

classes, Column (1) shows the fraction of middle-spenders who ever fill the drug. Column (2)

shows estimates of how a $100 increase in monthly pre-donut budget affects drug-days consumed in

December. Earlier enrollees fill 5.2 more drug-days overall, with half of this total accounted for by

cardiovascular, diabetes, and respiratory drugs (1.5, 0.6, and 0.5 more drug-days, respectively).36

Could short interruptions in these drugs cause mortality effects of the magnitude we find?

Two sets of facts in the medical literature indicate that this is plausible. First, it is a common

misperception that drugs for chronic diseases work slowly. Certainly, clinical trials for these drugs

last many years—but we should not conflate the time scale required to measure effects for rare, noisy

outcomes like mortality, with the time scale on which effects begin. Inspection of many published

survival curves for chronic drugs shows that they start to diverge almost immediately, but only

reach statistical significance after years. Statins provide an instructive example: the Kaplan-Meier

curves in the landmark JUPITER trial begin to diverge at the origin (Ridker et al., 2008), and

as Heeschen et al. (2002) note, appear to have short-term protective effects in patients during

hospitalizations for heart attack. This seems counter-intuitive, since the cholesterol-lowering effect

of statins is to reduce atherosclerosis (heart disease) over long time periods. But statins also act via

a range of other ‘pleiotropic’ mechanisms: they prevent blood clotting, and reduce inflammation

and reactivity of blood vessels (Oesterle et al., 2017). These mechanisms yield large protective

effects in the very short-term for patients with acute conditions like heart attack and stroke, which
36We again caution against any effort to tie the magnitude of changes in estimated consumption to changes in esti-

mated mortality in the same time period, given the bias discussed in Section III.B: lagging mortality effects of drugs,
combined with inter-temporal substitution across periods, means that scaling the mortality effect by consumption
will bias estimation of the effect of consumption (and thus consumption changes due to cutbacks).
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is why clinical guidelines mandate initiating a statin immediately on diagnosis of heart attack as

a result (Cannon and Freeman, 2023). Several other chronic medications have similar effects over

multiple time-scales: the diabetes drug metformin lowers blood glucose in the short term, and also

has a variety of longer-term anti-aging effects (Kulkarni et al., 2020); antibiotics used for COPD

both treat acute infections and reduce long-term inflammation (Blasi et al., 2012). As a result, even

short drug interruptions can mean large foregone treatment benefits, depending on the idiosyncratic

time scale of the mechanisms mediating the drug’s treatment benefit.

Second, inferring the effect of drug interruptions from the effect of drug initiation may be mis-

leading in the presence of rebound effects. Drugs induce a complex set of physiological changes

that put patients in a new physiological equilibrium—indeed, that is the point of taking drugs.

Abruptly stopping a long-standing drug, to which the body has adapted, can precipitate a poten-

tially dangerous set of effects in several settings. This idea has entered the popular consciousness

in the setting of opiate withdrawal, but opiates are far from the only drug class with such ef-

fects. Indeed, rebound effects have been noted for 7 of the 10 most commonly taken drugs in our

sample (Table I)—statins (Heeschen et al., 2002), antihypertensives (Psaty et al., 1990), diuretics

(Walma et al., 1997), antidepressants (Horowitz et al., 2021), corticosteroids (Jarad et al., 1999), and

glucose-lowering drugs (Czosnowski et al., 2009). Because of the practical and ethical difficulties of

studying drug interruptions directly, the best evidence for guidelines on drug tapering—which rec-

ommend slow transitions, under close medical supervision (Steinman and Reeve, 2023; Bain et al.,

2008)—comes largely from in vitro experiments, or older, idiosyncratic studies.37 Our results add

new weight to these recommendations, suggesting that drug interruptions can precipitate serious

adverse events. Interestingly, we find that 69% of December deaths in our sample occur outside the

hospital, suggesting a catastrophic, sudden event.38

If our results fit with medical intuition, they are more discordant with some parts of economics,

as they run counter to the predictions of several standard models of behavior. Consider a population

of patients prescribed a drug by a doctor, for whom treatment benefit is heterogeneous across indi-
37Even for beta-blockers, perhaps the class of drugs for which there is the most evidence, a recent article can be

summed up by its title: “Beta blocker rebound phenomenon is important, but we do not know its definition, incidence
or optimal prevention strategies” (Koracevic et al., 2020).

38This estimate comes from enrollees in standalone PDPs, 52% of our sample, in whom we also observe hospital-
izations. This combination of high Medicare Advantage prevalence and high out-of-hospital death rate means we are
under-powered to detect changes in hospitalizations in this study.
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viduals, as research indicates (Chandra and Skinner, 2012; Chandra and Staiger, 2020). If the price

of that drug suddenly increases, traditional models predict that cutbacks should be concentrated

among individuals for whom the drug yields fewer benefits. Under moral hazard, the marginal drugs

patients drop are disproportionately low-benefit. Likewise, a Roy model of patient decision making

with private information on heterogeneous treatment effects predicts that patients self-select into

treatments that benefit them more. The corollary of this is that those with the highest potential

benefit should be willing to pay more for a drug, and should thus cut back less when the price

increases. So a key question here is: who is interrupting their consumption? If interruptions occur

largely in patients with low treatment benefit, just as moral hazard or patient private information

would predict, it would be hard to square with our results. If, on the other hand, high-benefit

patients interrupt their consumption due to relatively small price increases suggests, it would help

make sense of the large mortality effects we see; it would also raise a fascinating new set of questions

about why this might happen.

To develop a measure of an individual’s health benefit from a drug, we use machine learning to

form predictions on patient risk. Focusing on a set of drugs used to prevent key adverse events,

we assume that the benefit of a given drug is proportional to the baseline risk of those outcomes

the drug prevents. For example, we assume the benefit of a statin is proportional to the risk of

heart attack and stroke. This assumption is supported by both a substantial body of evidence, as

well as specific clinical guidelines, particularly for cardiovascular drugs. Major randomized trials

(e.g., JUPITER, HOPE-3, CARDS, and ASCOT, reviewed by Bibbins-Domingo et al. (2016)) show

30-50% larger absolute risk reductions from statins in groups with higher predicted risk of heart

disease, whether defined by age, diagnosed risk factors (e.g., diabetes), or biomarkers (e.g., LDL,

CRP). Studies of polygenic risk scores show similar heterogeneity, with higher-risk participants

getting nearly three times the absolute risk reduction (Natarajan et al., 2017). Clinical guidelines

also reflect this assumption, for example use of the American College of Cardiology 10-year risk

calculator to guide treatment for cardiovascular disease. There is similar medical consensus and

biological plausibility, if less strong empirical evidence, for diabetes and respiratory drugs.39

Concretely, we identify three important drug classes M—cardiovascular, diabetes, respiratory—
39Even if this model is far from optimal, in the sense that it captures ‘true’ treatment heterogeneity, if patients

or doctors believe that high risk equates to high benefit, this measure will identify patients who believe they would
benefit from a given treatment. We view this too as a useful fact to understand.
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and compile a list of observable adverse outcomes that the drugs are prescribed to prevent: heart

attack and stroke for cardiovascular medicines, diabetic complications (e.g., foot amputation) for

hypoglycemic medicines, and respiratory failure for inhalers and steroids. This allows us to define

indicators YM , one for each of the three drug classes, that indexes whether a beneficiary experienced

an adverse event preventable by drug M . We form separate predictive models for each outcome, and

restrict to those who are not taking class M (e.g., when predicting risk of heart attack or stroke, we

exclude patients on statins and other medications for coronary artery disease), to obtain a prediction

on the risk of complications if untreated.40 These models use a beneficiary’s demographics and initial

90-day claims to predict the likelihood of adverse events over the next 270 days, and are trained

on an entirely separate sample of dual-eligible 66+ year olds, to ensure our predictions are out-of-

sample. We turn the model’s continuous risk predictions into simple indicators, ŶMi, that index the

highest-risk one-third of the sample, based on where risk begins to increase rapidly (see Appendix

Figure D.1). Additional details are in Appendix D.

Strikingly, the highest-risk beneficiaries cut back at least as much, if not more, on those med-

ications that benefit them the most. We run Equation 2 with enrollment month interacted with

ŶMi, separately for each drug class M and restricting to middle-spenders as usual. Table IV shows

the results, which are especially pronounced for cardiovascular drugs: for each $100/month budget

decrease, low-risk patients fill 0.598 fewer cardiovascular drug-days (a 1.5% reduction), while high-

risk patients fill 2.46 fewer (3.6%).41 This finding is incompatible with standard economic models

of behavior, or private information: those at high risk of a cardiovascular event should have the

most inelastic demand for treatment, proportional to their benefit from the drug.42 We find similar,

although less pronounced, trends for diabetes and respiratory drugs.

Importantly, Appendix Table D.2 demonstrates that these effects are of similar magnitude in
40In potential outcomes notation, we wish to predict Y 0

M , not Y 1
M , as our proxy for the benefit of drug M . Naturally

this choice of prediction target also induces selection bias, as noted in Mullainathan and Obermeyer (2019), who use
machine learning to predict the yield of testing for heart attack in the tested then validate the model in the untested.
Building on that work, Appendix Figure D.1 shows that true risk rises monotonically in predicted risk for the treated
just as the untreated, establishing face validity of the predictor irrespective of treatment status.

41We emphasize the relative, not the absolute, magnitude of these changes, which reflect only December differences
in consumption and not cumulative differences over the year; see Appendix B.

42As noted above, our population of middle-spending patients who have been prescribed a basket of drugs and then
must decide whether or not to continue them after a sudden price increase. Among this population, which is already
filling 126 drug-days per month, lower- vs. higher- risk patients should be more elastic. These results do not apply
to low-spenders, who are at such low risk that they are not prescribed any medications, who would also have zero
demand for treatment regardless of price.
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high- and low-income zip codes alike. So while socioeconomically disadvantaged patients may have

both worse health and less ability to pay for treatments, our results are unlikely to be driven by

socioeconomic factors alone.43 We do identify one potential contributor to this effect: a subgroup

of beneficiaries chooses to fill no drugs when prices increase—no matter how many drugs they

were on prior to the price shock, or their individual health risks. Indeed, those with higher initial

consumption are in fact more likely to interrupt their entire regimen of prescribed drugs.44 Table

D.3 shows that enrollment month makes it more likely for all middle-spenders to fill not medications

(Panel A), but also shows that those in the higher two terciles of initial drug consumption (in the

first 90 days of enrollment) are far more affected in both absolute and relative terms. Mechanically,

this behavior results in large absolute reductions in drug use for higher-risk patients, who are on

more drugs to begin with.

IV Conclusion: Errors and Misinformation

Clinical medicine and economics share a fundamental respect for individuals’ preferences and decision-

making. Our results, alongside a substantial literature in both fields, present a dilemma for this

perspective, if individuals make decisions that are inconsistent with the general preference to stay

alive. A rough calculation highlights the incongruous life-year valuations implicit in the price-driven

cutbacks we study. We divide the effect of enrollment month on cumulative drug spending (from

September-December, when drug-day differences begin to emerge across enrollment months), by

the effect of enrollment month on mortality to infer the life-year valuations underlying the decision

to interrupt drugs in our sample: $11,321 (95% confidence interval: $6,195-73,858).45 Put another

way, at a widely-used life-year valuation of $100,000 per year (Neumann et al., 2014), a 65-year-old

middle-spender in our sample would have to believe that she had at most 2.19 years left to live. This
43Of course, there is variation in income within zip codes, often quite a bit, so this does not by any means rule out

income effects or liquidity constraints. However, to the extent that we see similar behaviors in rich and poor areas
alike, it forms some upper bound on how important these effects can be on average.

44This is reassuring that this phenomenon is not simply a floor effect, i.e. due to left-censoring: it is more common,
not less, in those with more drug fills to begin with.

45This is based on the full cost of the drug, which is an upper bound on how much patients actually pay. We
estimate a two-stage-least squares (2SLS) regression of December mortality on instrumented spending from October-
December of year 1, in middle-spenders (we emphasize that this is a very approximate exercise and all the caveats
from Appendix B apply). The inverse of this estimate is ‘dollars per life-year,’ which we divide by average life
expectancy at 65 from Social Security data (weighted by the proportion of males/females in our sample) to estimate
life-year valuation. Finally we calculate the implied life-year valuation at the bounds of the 95% confidence interval
from the 2SLS coefficient.

27



contrasts sharply with average life expectancy in the general population at age 65—19.2 years—and

observed outcomes in our sample: at a median follow-up period of 5 years, 93.2% of middle-spenders

are still alive. This is hard to square with the idea that patients are equalizing marginal benefit

with marginal cost of drugs, particularly in the absence of obvious zip code differences that might

indicate income or liquidity constraints. It supports the idea that the price elasticity of demand is

an insufficient statistic for welfare, as has been noted by both Baicker et al. (2015) and Einav and

Finkelstein (2018). This ‘behavioral hazard’ has far-reaching implications for the design of health

insurance, particularly as insurers place more emphasis on cost-sharing.

Behavioral economics provides several potential explanations for our results, in the form of

predictable distortions in the cost-benefit calculus. Costs, for example, might be over-weighted

relative to their true value for several reasons. If a patient arrives at the pharmacy counter to find

that her drug basket has shot up in cost relative to her expectations, costs may be highly salient

(Bordalo et al., 2013, 2020); if costs deviate from previously set reference points, they may be viewed

as losses (Kahneman and Tversky, 1979). Present bias (Laibson, 1997; O’Donoghue and Rabin,

1999) could likewise cause patients to overweight present costs over future benefits. Alternatively,

patients could be relying on heuristics—like filling the most important drug, dropping the most

expensive drug—effectively substituting simpler problems for the more difficult full calculation of

marginal costs and benefits (Tversky and Kahneman, 1974). Or patients could disengage from the

cost-benefit calculus altogether, because of inattention or frictions (Handel and Schwartzstein, 2018;

Gabaix, 2019), choice fatigue (Augenblick and Nicholson, 2016; Iyengar and Kamenica, 2010), or

judging the problem as unsolvable and simply giving up (Ackerman and Thompson, 2017). This last

set of mechanisms in particular could explain the phenomenon of patients choosing to fill none of

their medications in response to price increases. Time-specific factors in December may contribute:

while the absence of zip-level effects suggest that household budgets around the holidays are less

likely to explain our results, the administrative burdens of getting a doctor’s visit or responses to

questions may be larger than usual at this time. Exploring which of these factors might be at play

is a fruitful direction for future work in behavioral science, with potentially large real-world impact.

It is also worth considering a simpler explanation: the seriousness of interrupting drugs is simply

not known to patients—and potentially also their doctors. Our survey of patients taking medica-

tions, while small, is some of the first evidence of its kind on how patients view short drug inter-
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ruptions. We partnered with the firm Survey Healthcare Global (SHG) to recruit 200 patients ages

61-70 who reported taking at least one prescription medication, in July 2022. Survey respondents

were selected to be similar to the middle-spenders in our sample: the median respondent was on at

least 5 medications, and 75% indicated they had hypertension or high cholesterol. The survey took

less than 5 minutes to complete and had a 100% completion rate.46 As shown in Figure I, patients

view short interruptions as innocuous: two-thirds doubt any acute events (hospitalization, deaths)

would result from even a month-long interruption. Most cannot imagine any issues with missing

their drugs for a week. These beliefs are one explanation for a central driver of our results—that

drug interruptions peak sharply in December—and may also explain why the phenomenon is so tem-

porary: patients are willing to hold out for low prices just over the horizon in January, because they

view short-term interruptions as innocuous. Our results argue strongly that this view is mistaken.

Ultimately, the decision to ingest a drug lies with the patient. However our results suggest that

both physicians and policy-makers are missing opportunities to improve the architecture of these

decisions. Policy-makers should remember that drug cost-sharing policies have major implications

for patient health, as well as health are costs. And physicians should remind their patients that, for

a variety of chronic medications, even short interruptions can be deadly.

46The sample was drawn from a panel of over 600,000 patients and caregivers maintained by the firm; more
information is available on SHG’s website. The exact wording of the questions was: (1) “Patients often miss doses of
their medications (research has found that up to 57% of doses are missed). Imagine a situation where you missed doses
of your own medications. How long would it take before your risk of a serious health problem increased?” Possible
responses were: “<1 week”, “1-2 weeks”, “2-3 weeks”, “3-4 weeks”, “>4 weeks”. (2) “Think about the kinds of health
problems that could arise from missing your medications. Which of the following could happen?” Possible responses
were: “no change to your health”, “you feel worse on days you miss the medications”, “your chronic conditions get
worse, in a way that eventually harms your health”, “you need to be hospitalized”, “death”. For this question, 15
respondents selected “no change to your health,” and thus do not contribute to the totals in the Figure.
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Tables

TABLE I
SAMPLE DESCRIPTIVE STATISTICS

(1) (2) (3) (4)

All Spending Group

Low Middle High

Panel A: Demographics, Spending, Health

White (%) 89.6 (30.5) 88.5 (31.9) 92 (27.1) 92.5 (26.4)
Female % 59.2 (49.1) 59.5 (49.1) 58.8 (49.2) 56.6 (49.6)
Standalone PDP (%) 51.7 (50) 46 (49.8) 64.2 (47.9) 71.2 (45.3)
Initial 90-day fills 5.35 (5.75) 3.16 (3.62) 9.75 (5.71) 16.9 (9.18)
One-year total spending ($) 1,478 (2,789) 626 (1,158) 2,828 (1,910) 9,185 (10,119)
One-year mortality (p.p.) 0.873 (9.3) 0.683 (8.24) 1.16 (10.7) 2.78 (16.4)

Panel B: Top 10 Drug Classes (%)

Lipid modifiers 34 (47.4) 22.9 (42) 59.2 (49.1) 64.7 (47.8)
ACE inhibitors 20.5 (40.4) 16.4 (37.1) 30 (45.8) 30.8 (46.2)
Beta blockers 18.9 (39.2) 13.3 (34) 31.4 (46.4) 37.7 (48.5)
Thiazide diuretics 18 (38.4) 14.4 (35.1) 26.7 (44.2) 25.7 (43.7)
Antidepressants 14.1 (34.8) 8.8 (28.4) 24.8 (43.2) 39.7 (48.9)
Corticosteroids 13 (33.6) 8.5 (27.9) 22.4 (41.7) 33.5 (47.2)
Acid blockers (GERD) 12.4 (33) 6.8 (25.1) 24.3 (42.9) 37 (48.3)
Anti-infectives 11.6 (32) 8.9 (28.4) 17.4 (37.9) 23.7 (42.5)
Hypoglycemics (oral) 11.2 (31.5) 6.4 (24.5) 20.9 (40.7) 33.2 (47.1)
Decongestants 11 (31.3) 6.7 (25) 20 (40) 31.6 (46.5)

Observations 358,706 251,093 96,849 10,764

Notes: Column 1 shows mean (standard deviation) for the entire sample. Columns 2-4 show the same by initial 90-
day spending group: low (1-70th within-enrollment month percentile), middle (71-97th), high (98-100th). One-year
spending is measured from the first day of enrollment. One-year mortality is measured from December 1 of the first
calendar year of enrollment, to parallel our analysis. The percent on a drug class is measured by the presence of any
claim in a given class in the first 90 days of enrollment. All participants are exactly 65 years old.

35



TABLE II
BALANCE OF KEY VARIABLES ACROSS ENROLLMENT MONTHS

(1) (2) (3) (4)

Entire Sample Middle-spenders

Enrollment Month Enrollment Month
Mean Effect (Std. Error) Mean Effect (Std.Error)

Panel A: Demographics and Key Characteristics

White (%) 89.6 0.00403
(0.0222) 92.0 0.0219

(0.0378)

Female (%) 59.2 0.0582
(0.0356) 58.8 0.165**

(0.0687)

Initial 90-day fills (count) 5.35 0.00364
(0.00419) 9.75 0.00374

(0.008)

Predicted mortality (p.p) 0.411 -0.000477
(0.000467) 0.458 0.00175

(0.00116)

Panel B: Initial Mortality (cumulative p.p., from enrollment)

30 days 0.058 -0.000053
(0.0017) - -

60 days 0.128 0.0013
(0.0026) 0.082† -0.0037

(0.0041)

90 days 0.201 0.0037
(0.0032) 0.181† -0.0011

(0.006)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Panel A: Sample mean (Column 1) and coefficient on enrollment month (scalar), from regression of key ‘pre-
treatment’ variables on enrollment month (Column 2), for the entire sample (n = 358,706). Predicted mortality is
estimated by fitting a model with demographics and initial (3-month) drug claims to predict subsequent (9-month)
mortality, in an independent sample of 66+ year-old dual enrollees. Columns (3-4) restrict to middle-spenders (n =
96,849), based on initial spending in the first 90 days of enrollment. Panel B: Sample mean (Column 1) and coefficient
on enrollment month (scalar), from regression of mortality in the first 30, 60, and 90 days after enrollment (Column
2). Columns (3-4) restrict to middle-spenders, based on initial spending in the first 30 days of enrollment (unlike our
main specification, which uses 90 days). Because we use the first 30 days to assign spending bins, we are unable to
report the estimate for 0-30 days, and mortality rates in middle-spenders reflect a one month shorter period than for
the entire sample (i.e., 31-60 and 31-90 days, denoted by the †). Balance checks on initial spending are in Appendix
Table A.2 and discussed in Section III.A.
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TABLE III
MORTALITY EFFECTS OF CHANGES IN DRUG BUDGETS

(1) (2) (3)

December Enrollment Month Pre-Donut Budget
Mortality (p.p.) Effect (p.p./mo) Effect (p.p./$100)

Panel A: Enrollment Month Effect, By Initial Spending

Low-spenders 0.053 -0.000362
(0.00199)

-0.000771
(0.00317)

Middle-spenders 0.118 -0.0112**
(0.00498)

-0.0164**
(0.00786)

High-spenders 0.288 0.0469**
(0.0219)

0.0549
(0.0402)

Difference: Middle vs. Low - 0.0109**
(0.00535)

0.0156*
(0.00846)

Difference: Middle vs. High - -0.0581***
(0.0225)

-0.0713*
(0.0411)

Panel B: Pre- vs. Post-Donut Hole Closing (Middle-Spenders)

Full Donut Hole (2007-10) 0.120 -0.0137**
(0.00626)

-0.021**
(0.00993)

Closing Donut Hole (2011-12) 0.113 -0.0063
(0.00814)

-0.00993
(0.0129)

Difference: Full vs. Closing - 0.00745
(0.0103)

0.0111
(0.0163)

Panel C: Key Falsification Estimates (Middle-Spenders)

Main Sample: December, age 66 0.12 0.003
(0.0051)

0.0076
(0.0083)

Duals: December, age 65 0.38 -0.0013
(0.013)

-0.0144
(0.021)

Disabled: December, age 64 0.593 -0.0017
(0.021)

-0.0066
(0.032)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Panel A: December mortality rate (Column 1) and coefficient γ2 on enrollment month from equation (4)
(Column 2), by initial spending: low-spenders (lowest 70% of initial 90-day spending: unlikely to enter the donut
hole irrespective of enrollment month); middle-spenders (71-97th percentile: more likely to enter the donut hole if
enrolling earlier; and high-spenders (98-100th percentile: likely to enter both the donut hole then the catastrophic
coverage if enrolling earlier). Column (3) translates enrollment month into ‘pre-donut budget’ (in $100/month) before
full cost-sharing. Panel B: Coefficient on enrollment month and pre-donut budget for middle-spenders (n = 96, 849),
before vs. after the donut hole began to close in 2011. ‘Difference’ rows are pairwise tests for equality of coefficients.
Panel C: Selected falsification tests, estimating enrollment month effect on mortality in settings with no policy link
between enrollment month and drug prices. Robust standard errors are in parentheses.
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TABLE IV
DRUG BUDGET EFFECTS ON DRUG CONSUMPTION, BY PREDICTED RISK

(1) (2) (3) (4) (5) (6)

All Lowest 2/3 Risk Top 1/3 Risk

Mean Est. (SE) Mean Est. (SE) Mean Est. (SE)

All Classes 126.40 4.93***
(0.289) 111.40 3.34***

(0.32) 155.50 7.13***
(0.552)

Cardiovascular 50.20 1.42***
(0.157) 40.50 0.598***

(0.172) 68.90 2.46***
(0.302)

Diabetes 10.20 0.618***
(0.0701) 9.80 0.515***

(0.0848) 10.90 0.813***
(0.123)

Respiratory 5.30 0.459***
(0.0453) 4.80 0.407***

(0.0544) 6.00 0.549***
(0.0805)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Effect of cost-sharing on December drug consumption, for key drug classes. Cardiovascular drugs includes
statins, beta-blockers, ACE inhibitors, calcium channel blockers, angiotensin receptor blockers, and thiazide diuretics.
Diabetes includes both insulin and oral hypoglycemic agents. Respiratory includes inhaled and oral treatments for
chronic pulmonary disease. Column (1) shows mean number of drug-days filled by middle-spenders in December
(days supply, summed across all prescriptions filled, and grouped by drug class). Column (2) presents estimates (and
robust standard errors) of the effect of pre-donut budget (in $100s) on drug-days. Columns (3)-(6) show mean drug
days and similar regression estimates, by risk of the adverse events each drug class prevents: heart attack and stroke
for cardiovascular drugs, diabetic complications for diabetes, and respiratory failure for pulmonary drugs. (For “all
classes”, we use predicted cardiovascular event risk, since both cardiovascular drugs and cardiovascular mortality are
the most common.)
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Figures

FIGURE I
Patient Beliefs on the Health Effects of Drug Interruptions

Notes: Results of a survey of Medicare-age patients taking at least one prescribed medication. The y-axis shows
the cumulative percent who believed a given type of health problem could result from interrupting consumption of
their medications. Respondents were able to choose multiple problems, so each individual is assigned the most severe
problem, ordered from feeling worse to death. The x-axis shows the minimum number of weeks respondents thought
it would take for such a health problem to occur.
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Panel A

Panel B

FIGURE II
Medicare Drug Benefit Design and Donut Hole Consequences

Notes: Panel A: Part D standard benefit design, adapted from Einav et al. (2015), using 2008 program details. The
initial coverage limit (ICL) is the budget cap where beneficiaries transition from initial coverage to the donut hole.
Panel B: Percentage of beneficiaries who enter the donut hole by the end of their first calendar year of enrollment,
by enrollment month. February enrollees appear on top (red), March-August enrollees in the middle (gray), and
September enrollees at the bottom (blue). The monthly pre-donut budget, the amount each beneficiary can spend
before entering the donut hole, is shown in parentheses beside the enrollment month.
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Panel A: Coverage Arm

Panel B: Drug Consumption

Panel C: Mortality

FIGURE III
Effect of Enrollment Month on End-of-Year Coverage Arm, Drug Consumption, and Mortality

Notes: Panel A: Fraction in the donut hole or catastrophic coverage at year-end (y-axis) by enrollment month (x-axis)
and initial 90-day spending bin (horizontal sub-panels). Panel B: Drug-days filled in December (y-axis) by enrollment
month and spending bin. Panel C: December mortality (y-axis) by enrollment month (translated into monthly pre-
donut budget, in parentheses) and spending bin. 95% confidence intervals are shown; one (July, high-spenders) is
truncated.
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Panel A: Enrollment Month Effect over Time—Donut Hole Entry

Panel B: Enrollment Month Effect over Time—Drug Consumption

Panel C: Enrollment Month Effect over Time—Mortality

FIGURE IV
Evolution of Enrollment Month Effects Over Time, Before and After December (Year 1)

Notes: Each point shows the linear coefficient (and 95% confidence interval) measuring the effect of enrollment month
over time, from August of calendar year 1 to May of year 2, for middle-spenders. Panel (A) shows the effect on donut
hole entry, (B) drug consumption, and (C) mortality. The red points show enrollment month effects in the calendar
month of December (i.e., each point summarizes one of the three middle panels of Figure III, as a linear coefficient).
For example, Panel (C) shows γ1t from the regression Yit = γ0t + γ1tZi + Xiγ2t + γyear + γplan + ϵit, for middle
spenders in months t = {8, 9, ..., 12, 1, 2, ..., 5}, and the red point is γ1,12.
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FIGURE V
Distribution of ‘Placebo’ Estimates of Enrollment or Birth Month on Mortality

Notes: Regression estimates of the effect of enrollment month or birth month on mortality, for middle-spenders, in a
variety of settings lacking an enrollment month-drug budget link: Non-dual enrollees from age 66-85, dual enrollees
from age 66-85, and disabled enrollees from age 50-64. Estimates are divided by mean mortality in each sample to get
a percentage change. This Figure pools all falsification tests together; Appendix Figure C.1 provides further detail on
the separate types of tests that contribute. Vertical lines show the 2.5 and 97.5 percentiles. Our main (non-placebo)
estimate from Table III is shown as a red dot.
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Appendix A Prices, Part D Design, and Enrollment

TABLE A.1
PART D COVERAGE ARM SPENDING THRESHOLDS AND COINSURANCE RATE BY YEAR

(1) (2) (3) (4)

Spending Threshold Gap Coinsurance Rate

Year Coverage Gap Catastrophic Generic Branded

2007 $2,400 $5,451 100% 100%
2008 $2,510 $5,726 100% 100%
2009 $2,600 $6,154 100% 100%
2010 $2,830 $6,440 100% 100%
2011 $2,840 $6,648 93% 50%
2012 $2,930 $6,658 86% 50%

Source: q1medicare.com

FIGURE A.1
Enrollment Timing by Birth Month

Notes: Each panel corresponds to a different birth month, and plots the percentage of beneficiaries (from that birth
month) enrolling in each of the 12 calendar months during the first year of Part D eligibility.
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FIGURE A.2
Utilization Ramp-Up

Notes: This figure plots the percentage of beneficiaries in each enrollment month (shaded lines) with a claim for at
least one Part D drug fill since enrolling (y-axis), by the number of months since enrollment (x-axis).

TABLE A.2
FORWARD-LOOKING BEHAVIOR AFTER ENROLLMENT

(1) (2) (3) (4)

Total Spending (30 Day) Total Spending (Cumulative)

Days From Enrollment Days From Enrollment
Enrollment Mean Month Est. Enrollment Mean Month Est.

1-30 124.9 -0.161
(0.219) 1-30 124.9 -0.161

(0.219)

31-60 113.4 -0.0533
(0.206) 1-60 238.4 -0.214

(0.355)

61-90 118.1 0.395*
(0.206) 1-90 356.5 0.181

(0.493)

91-120 121.6 1.14***
(0.215) 1-120 478.1 1.32**

(0.643)

Notes: Columns (1) and (3) present the mean total spending by days since enrollment. Columns (2) and (4) present
corresponding estimated coefficients on enrollment month from OLS regressions of spending on enrollment month.
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FIGURE A.3
Effect of Enrollment Month on Donut Hole Entry, by Fine Bin of Initial Spending

Notes: Each point represents the linear coefficient from a regression performed within a percentile of initial 90-day
spending (ϕ1j from equation (3)). The dependent variable is an indicator for ending year 1 in the donut hole, and
the independent variable is enrollment month (and the usual controls, which are not shown). The first and second
deciles of initial spending, as well as each subsequent decile below the 71st percentile, are grouped because there is
not enough variation to define unique percentiles. Coefficients on the horizontal line (at zero) indicate no effect of
enrollment month on donut hole incidence. Negative coefficients correspond to bins of initial spending where later
enrollment months are more likely to end up in the donut hole, and positive coefficients correspond to bins where
later enrollees are more likely to end up in the donut hole. We use these fine-binned estimates to create the larger
bins displayed in Figure III and subsequent tables. The colors in this figure match those in Figure III.
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Appendix B Rationale for Reduced Form Model and Bias in

Two-Stage Least Squares

Our understanding of the causal chain linking the Medicare policy we study to patient health is

shown in Figure B.1, Panel A.

QZ
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W, X
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g

(a) ‘True’ Model

Z

S

W, X

Y

g

(b) Reduced Form Model

FIGURE B.1
Proposed Causal Relationships in (a) the ‘true’ model and (b) our ultimate reduced form model. Y denotes

mortality; Q drug consumption; S drug spending; P drug prices; X,W observed or unobserved patient
factors; and Z enrollment month. Function g(S,Z, t; θ) is the Medicare policy that compares cumulative

spending from Z to period t to policy budget limits θ.

Given our interest in the effect of budget-induced drug consumption changes on mortality, a

natural choice of model would be two-stage least squares, instrumenting for drug consumption

using enrollment month. Unfortunately, this strategy suffers from several flaws. As the Figure B.1

shows, the effect of Z is mediated via a feedback loop connecting (Q,P, S), indicating the complex

inter-temporal relationship of these variables with each other and with mortality Y . To illustrate

the problem, consider a simple setting where we observe patients over two periods, (t − 1) and t,

and model mortality as:

Yit = β1Qit + β2Qi,t−1 + β3Xi + νit (5)

Drugs can have both short- and long-term effects on health, so both present and past consumption

may affect mortality. Clearly, choosing either Qit or Qi,t−1 as the endogenous variable for the

first stage will violate the exclusion restriction; the same problem applies to prices or spending.

We cannot easily get around this by simply redefining our endogenous variable as, for example,

cumulative consumption (Qi,t−1 + Qit): in any period t, the measurement of consumption and

all other variables in (t − 1) is correlated with the instrument—enrollment month—so we will not
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observe consumption for later enrollees as we go back in time. Of course, we can calculate cumulative

consumption since period (t− k)—i.e., redefine the endogenous variable as Qi,t−k:t—but only if we

drop the latest k enrollment months from the sample, because we do not observe Qi,t−k. In fact, in

practice we must drop the latest (k + 2) months, because consumption ramps up over the first 1-2

months of enrollment and only reaches steady-state in month (z + 2).

It is worth noting one specific consequence of this problem: any effort, implicit or explicit, to

estimate the effect of consumption Qit on same-period mortality Yit will be biased up. To see why,

consider a model that tries to estimate the effect of Qit on Yit (i.e., β1 from Equation 5) in isolation,

without accounting for the effect of prior consumption Qi,t−1 (i.e., β2). The resulting estimate β̃1

will be biased if β2 ̸= 0, unless Qit ⊥⊥ Qi,t−1 | Xi. So a lot depends on the relationship between

present and prior consumption (holding constant patient factors), which we can write as47

Qit = π1Qi,t−1 + π2Xi + µit (6)

Substituting for Qi,t−1 in Equation 5 (and dropping Xi for simplicity, since in any case we assume

observables are balanced across enrollment months) yields

Yit =

(
β1 +

β2
π1

)
Qit +

(
νit −

β2
π1

µit

)
(7)

In other words, our estimate of the effect of Qit on mortality, β̃1 = (β1 +
β2

π1
), will be biased; and

because of π1, the bias can be quite large, even if the effect of prior consumption on mortality β2

is small. The reason for this is that 0 < π1 < 1, due to inter-temporal substitution across periods

(Aron-Dine et al., 2015). Past consumption Qi,t−1 increases cumulative spending, causing some

beneficiaries to enter the donut hole, increasing prices Pit and reducing Qit. Even those beneficiaries

who do not enter the donut hole are known reduce their consumption over time in anticipation. To

summarize, the mis-attribution of mortality effect β2 from Qi,t−1 to Qit is exaggerated by inter-

temporal substitution between Qi,t−1 and Qit. To give a rough sense of the magnitude, running

Equation 7 in our sample, using November and December as (t − 1) and t, yields an estimate of
47We emphasize that there are many possible mechanisms by which Qit and Qi,t−1 might be causally related: via

the direct price effect, forward looking behavior, irregular timing of prescription fills, etc. This formulation is an
empirical one and agnostic to the mechanism, but does serve to illustrate the consequences of the correlation for our
analytical strategy in as transparent a way as possible.
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π1 = 0.164 (SE: 0.0024) pooled across all drugs, suggesting at least that the degree of bias could be

large. While it would be interesting to perform a more formal exercise to bound the bias in β̃1, our

identification strategy becomes more tenuous the further we go back in time, as we become unable

to observe later enrollment month cohorts, meaning any such exercise could not be comprehensive.

A final note is that we have used a highly stylized model of the relationship between Qi,t−1

and Qit to build intuition. Clearly, more sophisticated models are possible: for example, while

Equation 7 represents the population average, the degree of mis-attribution is correlated with our

instrument (earlier enrollees substitute more than later enrollees because they fall into the donut

hole, meaning the bias would in fact increase proportional to (π1 ×Zi). But we emphasize that the

presence of bias is independent of any model specification: it results from (i) the health effects of

prior drug consumption, and (ii) inter-temporal substitution, both of which are well-documented

and uncontroversial in the medical and economics literature.
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Appendix C Falsification Tests, Robustness Checks, and Power

Calculation

We group our falsification checks into three categories. First, we extend the intuition of Figure IV

and follow our main sample for four years after the first enrollment year, after the cost-sharing–

enrollment month link is broken. Specifically, we estimate equation 4 replacing December year

1 mortality on the left hand side with monthly mortality from January year 2 to December to

December of year 4 (36 estimates). Regressions exclude those who died in a previous month, and

those who are right-censored (e.g. those enrolling in 2012 are excluded from the year 3 regression

because we do not observe their mortality). Note that this particular exercise suffers from the fact

that cost-sharing differences at the end of year 1 may lead to health effects in subsequent months.

However, we expect this would bias estimates towards our main estimate (Table III), providing a

stringent falsification test. These estimates are shown in Appendix Figure C.1, Panel A.

Second, we focus exclusively on the population of dual-eligibles, who face little-to-no cost sharing

for prescription drugs, so there are no differences in cost-sharing by birth month. As a result, they

provide a very useful comparison sample. Here, we pool all ages (66-85) together, but split the

sample into subsets based on observable characteristics. Concretely, we construct 5 samples based

on spending ventiles, 2 samples based on gender (male/female), 2 based on race (white/non-white),

and 37 based on states. (Of note, we restrict to states with at least 10,000 observations in the dual

sample.) For each of the 46 sub-samples we regress December mortality on birth month. These

estimates are shown in Appendix Figure C.1, Panel B.

Finally, we turn to a larger sample of dual-eligibles ages 66-85, non-duals ages 66-85, and disabled

enrollees ages 50-64. In both disabled and older non-dual populations, almost all individuals are

enrolled for the entire year and non-January enrollment is not driven by birth month, meaning there

are are also no birth-month driven cost-sharing variation. To mirror our focus on middle-spenders,

we use claims from January-March to place enrollees into the same three initial spending spending

bins (1-70th, 71-97th, and 98-100th percentiles). We then estimate a total of 459 sample-month

specific regressions (e.g. 66 year-old non-duals in December) of mortality on birth month interacted

with spending bin. Because these populations lack an observable enrollment month, we use birth

month as a proxy. These estimates are shown in Appendix Figure C.1, Panel C.
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Panel A: Main Sample, January Year 2–December Year 5

Panel B: Dual-Eligibles, by Geography & Demography

Panel C: Older Non-Dual & Dual, Younger Disabled

FIGURE C.1
Detail: Distribution of ‘Placebo’ Estimates of Enrollment or Birth Month on Mortality

Notes: Regression estimates of the effect of enrollment month or birth month on monthly mortality, for middle-
spenders (initial spending in the 71-97th percentiles, measured in the first 90 days of enrollment). Estimates are
divided by mean mortality in each sample/month to get a percentage change. Panel A: 36 enrollment month effects
on monthly mortality in our main sample from January of year 2 to December of year 4. Panel B: 46 birth month
effects on December mortality in dual eligibles, ages 66-85, split into subsets based on: male/female (2), white/non-
white (2), spending quintile (5), and state (restricted to states with at least 10,000 beneficiaries: 37). Panel C: 459
birth month effects from non dual enrollees from age 66-85, dual enrollees from age 66-85, and dual-disabled enrollees
from age 50-64. For each age/sample group there are 9 estimates reported corresponding to monthly mortality in
April-December. In Panels B and C, initial pending is calculated using claims in the fist 3 months of the year
(January-March). Vertical lines show the 2.5 and 97.5 percentiles. The main (non-placebo) estimate is shown as a
red dot.
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FIGURE C.2
Distribution of ‘Placebo’ T-statistics of Enrollment or Birth Month on Mortality

Notes: Estimated t-statistics of the effect of enrollment month or birth month on monthly mortality, for middle-
spenders (initial spending in the 71-97th percentiles, measured in the first 90 days of enrollment). The same samples
that comprise Figure V (and C.1) are used.
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TABLE C.1
ALTERNATIVE MIDDLE-SPENDER DEFINITIONS

(1)

Bottom Percentile Cutoff Top Percentile Cutoff Enrollment Month Estimate (p.p.)

Panel A: Main Specification

70 97 -0.0112**
(0.00498)

Panel B: Alternative Specifications

70 96 -0.0114**
(0.00509)

70 95 -0.0103**
(0.00518)

65 97 -0.0115**
(0.00457)

65 96 -0.0116**
(0.00465)

65 95 -0.0108**
(0.00472)

60 97 -0.0117***
(0.00411)

60 96 -0.0118***
(0.00417)

60 95 -0.0111***
(0.00422)

Notes: Column (1) presents the estimated coefficient on enrollment month for the middle-spending bin from equation
(4). Panel A mirrors the estimate in Panel A of Table III, where the middle-spenders bin is defined from the 71-
97th within-enrollment month percentiles of initial 90-day spending. Panel B presents estimates from alternative
definitions of the bottom and top within-enrollment month percentile cutoffs used to define the middle-spenders bin.
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TABLE C.2
BIRTH MONTH ESTIMATES

(1) (2)

Dec. Mortality Birth Month
Rate (p.p.) Estimate (p.p./mo)

Panel A: Entire sample (N = 358,706)

Low-spenders 0.053 -0.000476
(0.00188)

Middle-spenders 0.118 -0.00913*
(0.00466)

High-spenders 0.288 0.053***
(0.0185)

Panel B: Birth month enrollee sample (N = 274,102)

Low-spenders 0.047 -0.000141
(0.00228)

Middle-spenders 0.124 -0.013**
(0.00591)

High-spenders 0.292 0.0563**
(0.0229)

Panel C: Mortality by birth month (middle-spenders, birth month enrollee sample)

Feb. Mar. Apr. May. Jun Jul Aug Sep

0.185
(0.046)

0.176
(0.044)

0.147
(0.041)

0.144
(0.04)

0.088
(0.031)

0.11
(0.033)

0.069
(0.026)

0.108
(0.033)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: In Panel A, present estimates of equation (4) where enrollment month is replace with birth month. In Panel
B we present the same but the sample is restricted to those enrolling “on time” in their birth month. In Panel C, we
report the mortality rates by birth month for those the middle-spenders in the birth month enrollee sample.
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FIGURE C.3
Power to Detect Mortality Effect by Month

Notes: Each point is the estimated power to detect a statistically significant coefficient of enrollment month on
mortality in a given month of calendar year 1 (August-December) and calendar year 2 (January-May). We normalize
power in December to 1, and set the target effect size to the estimated effect of enrollment month on mortality in
December (-0.0112 p.p., see Table III). For each month other than December, power is calculated following Dupont
and Plummer (1998), as a function of changes in (i) effect size and (ii) sample size. To determine effect size in other
months, we scale the December effect by the relative effect size of enrollment month on consumption (from Equation
2) in that month relative to the December’s (shown in Figure IV panel B). For example, the estimated coefficient α1

(drug-days filled on enrollment month) in November is 1.77 days filled/enrollment month, or 48% of the December
coefficient (3.69). We therefore set the effect size of November as -0.0054 p.p., 48% of the effect size in December
(-0.0112 p.p.). Power in each month prior to December also reflects the observed sample size, which reflects the loss
of an additional month of enrollees. For example, the November analysis must drop September enrollees, whom we
have not yet observed for three months to define spending bins, so the November sample size of middle spenders
is set at 83,672 (86.4% of the December sample of 96,849). Note that here we assume only same period effects of
utilization on mortality, and is therefore a lower-bound on power.
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Appendix D Risk Prediction and Drug Consumption

For each of three drug categories M , we define a set of adverse events the drug category is prescribed

to prevent: cardiovascular, diabetes, and pulmonary. We compile a list of observable adverse

outcomes in each category by inspecting the patient’s longitudinal claims record for the presence of

ICD codes indicating an adverse event: heart attack and stroke for cardiovascular medicines (ICD9

codes 410-411 and 433-435), diabetic complications (using the Diabetes Complications Severity

Index (Young et al., 2008), e.g., foot amputation) for diabetes medicines, and pulmonary collapse

requiring mechanical assistance (ICD9 codes 5188, 7991, 9604, and 9607) for pulmonary medicines.

For each of the three categories, let YM be an indicator indexing whether a beneficiary experienced

an adverse event in that category. We identify medications belonging to a category using ATC3

codes, and define TM as an indicator for whether the beneficiary was prescribed any drug in that

class.

In a sample of dual-eligible enrollees, where each observation is a beneficiary-year. We set

YM = 1 if we observe an adverse event in category M (e.g., heart attack or stroke) over April to

December of a given year. We set TM = 1 if we observe a claim for a drug in category M over

January-March, and form a set of predictors including race, sex, state and drug filling behavior

(number of claims, total spending, ATC4 indicators) over the same period. In total this yields

1,770 features. We then define separate training samples for each drug–event pair, restricting to

those for whom TM = 0 (e.g., when predicting risk of heart attack or stroke, we exclude patients

on statins, antihypertensives, etc.). We do this to form a prediction on the risk of complications

in the untreated, i.e., in potential outcomes notation, we wish to estimate Pr(Y 0
M = 1|X), not

Pr(Y 1
M = 1|X). Naturally this choice of prediction target also induces selection bias: we form

predictions on Y 0
M in patients selected into treatment status TM = 0, but then wish to generate

predictions on in patients with arbitrary treatment status. In particular, this means our predictions

are likely to underestimate risk on average, because doctors select patients into treatment TM = 1

on the basis of higher risk. We do verify that, as a check of face validity, risk increases in predicted

risk for both groups (Figure D.1). This is similar in spirit to Mullainathan and Obermeyer (2019),

who predict the yield of testing for heart attack in the tested, and apply the model to generate

predictions in the untested.
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Our machine learning model consists of an ensemble of two predictors, LASSO (ℓ1-regularized

regression) and gradient boosted trees (a combination of multiple tree-based models, each fit to the

residual of the last). 70% of the sample is used to train the LASSO and gradient boosted models

and 10% is used to create an ensemble, via no-intercept OLS, that predicts YM using both models’

predictions. We then validate the model using the final 20% held-out sample. The model follows

Mullainathan and Obermeyer (2019) closely. Finally, we apply this model to generate predictions

in the main sample of 65 year-old beneficiaries (using the same predictors, similary measured in the

first 90 days of enrollment). We make separate predictions for each outcome YM (but use the same

predictors for each).
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Panel A

Panel B

FIGURE D.1
Acute Event Risk Prediction Calibration and Capture

Notes: Panel A plots the actual event rate (for acute health events in each category, from days 90-360 of enrollment)
by decile of predicted risk (using data from the first 90-days) and treatment status. An individual in the sample is
considered treated if she fills a claim in the category in the first 90 days of enrollment. Panel B plots the cumulative
percent of actual events captured by each successive decile (e.g. 0.1 is top 10 percent of sample in terms of risk) and
treatment status. This figure uses only the stand alone PDP (non-MA) subsample for whom we observe Parts A
claims.
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TABLE D.1
CLASS-SPECIFIC CUTBACKS

(1) (2) (3) (4)

% with Pre-Donut
ATC 3 ATC3 Initial Mean Dec. Budget Est.
Code Label Claim Days Filled (Days/$100) (%)

C10A Statins 59.2 18.6 0.662***
(0.0762) 3.6

C07A Beta-Blockers 31.4 9.6 0.166***
(0.0546) 1.7

C09A ACE Inhibitors 30 9 0.17***
(0.0529) 1.9

C03A Thiazides 26.7 7.9 0.157***
(0.05) 2.0

N06A Antidepressants 24.8 7.9 0.273***
(0.0531) 3.5

A02B GERD 24.3 6.5 0.435***
(0.0459) 6.7

D07A Corticosteroids (Top.) 22.4 3.3 0.255***
(0.0304) 7.7

A10B Diabetes (Oral) 20.9 8.7 0.447***
(0.0635) 5.2

R01A Decongestants 20 3.3 0.261***
(0.031) 8.0

C09C ARBs 19.6 5.5 0.267***
(0.0414) 4.9

R03B Inhalants 17.9 3.4 0.296***
(0.0328) 8.7

S01A Antiinfectives 17.4 0.9 0.0118
(0.0108) 1.3

C08C CCBs 16.1 4.9 0.169***
(0.0396) 3.5

N02B Other Analgesics 15.4 1.6 0.0047
(0.0167) 0.3

H03A Thyroid 15 4.8 0.111***
(0.0409) 2.3

M01A Antiinflamatory 14.4 2.7 0.101***
(0.0278) 3.7

C05A Hemorrhoidal 13.4 1.9 0.0404*
(0.0224) 2.1
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% with
ATC 3 ATC3 Initial Mean Dec. Pre-Donut Budget %
Code Label Claim Days Filled Est. (Days/$100) Est.

H02A Corticosteroids (Oral) 12.5 1.1 0.0492***
(0.0162) 4.6

R05D Cough suppressants 11 1.1 0.00399
(0.0133) 0.4

S01B Anti-inflamatory (Oc.) 11 1.1 0.0316*
(0.0162) 2.8

A01A Dental Caries 10.6 0.9 0.0548***
(0.015) 5.9

N02A Opioids 10.3 1.4 0.0105
(0.0166) 0.8

A07E Anti-inflamatory (Intest.) 10.1 1.3 0.104***
(0.0195) 8.2

D07X Corticosteroids (Top., Comb.) 9.2 0.8 0.0297**
(0.0133) 3.5

J01M Quinolones 9.2 0.3 0.0106*
(0.00551) 3.2

Notes: This table presents average utilization and cutbacks by specific drug class (ATC3) for middle-spenders.
Column (1) shows the percent of enrollees with a claim in the class in the first 90 days. Column (2) shows the
average number of days filled in the class in December. Column (3) presents estimates of γ1 from equation 4, where
the dependent variable is the number of days filled in the class in December of year 1. Column (4) presents the
percentage reduced form estimate (column (3) divided by column (2)).
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TABLE D.2
UTILIZATION RESPONSE BY RISK AND INCOME

(1) (2) (3) (4) (5) (6)

All Bottom 2/3 Income Top 1/3 Income

Mean Est. (S.E.) Mean Est. (S.E.) Mean Est. (S.E.)

All Classes 126.4 4.93***
(0.289) 129.2 4.8***

(0.36) 121.3 5.2***
(0.493)

Cardiovascular 50.2 1.42***
(0.157) 51.0 1.4***

(0.193) 48.8 1.43***
(0.275)

Diabetes 10.2 0.618***
(0.0701) 11.0 0.623***

(0.0875) 8.6 0.567***
(0.118)

Respiratory 5.3 0.459***
(0.0453) 5.4 0.482***

(0.0564) 5.0 0.433***
(0.0776)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Column (1) presents the mean number of December days filled for all drugs and by broad class, for those in
the 71-97th percentiles of initial spending. Column (2) presents regression estimates (and robust standard errors) of
days filled in December on the pre-donut budget (in $100s of dollars). Cardiovascular classes include statins, beta-
blockers, ACE inhibitors, calcium channel blockers, angiotensin receptor blockers, and thiazide diuretics. Diabetes
drugs include both insulin along with oral hypoglycemic agents. Respiratory drugs are drugs for chronic pulmonary
disease. In columns (3) through (6) we present means and regression estimates separately by quantile of five-digit
zip code median income (from the American Community Survey). We exclude individuals for whom the American
Community Survey has missing income for their zip code.
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TABLE D.3
DROPPING ALL DRUGS

(1) (2) (3)

No Dec. Pre-Donut Budget Est.
Fills (%) Est. (% Fill/ $100) (%)

Panel A: All middle-spenders

All middle-spenders 16.6 -0.536***
(0.0877) -3.23

Panel B: By initial fills (middle-spenders)

Lowest third 32.1 -0.148
(0.22) -0.46

Middle third 16.1 -0.737***
(0.137) -4.58

Top third 6.9 -0.786***
(0.0993) -11.47

Notes: Panel A shows an estimate of γ1 (the effect of pre-donut budget changes) from equation 4, where the dependent
variable is an indicator for filling zero drug prescriptions in December (mean and estimate are shown in percentage
points). Panel B present similar estimates where pre-donut budget, in addition to being interacted with spending
group, is also interacted with within-spending group tercile of number of fills in the first 90 days.
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Appendix E Comparisons to Existing Literature

TABLE E.1
DRUG DEMAND RESPONSE: COMPARISON TO RECENT STUDIES

(1) (2) (3)

Chandra et al.
Our Estimate (95% CI)
(2SLS, Claims per $) PPO HMO

Overall
Number of claims -0.0377 (-0.0408, -0.0346) -0.0143 -0.0387

Our Estimate (95% CI)
(2SLS, % with claims per $) Choudhry et al. Einav et al.

By Class
ACE or ARB -0.0051 (-0.0062, -0.004) -0.0043
Beta Blockers -0.0043 (-0.0062, -0.0023) -0.0032 -0.0034
Statins -0.003 (-0.0036, -0.0024) -0.0022 -0.0028

Notes: Here, we attempt to present demand response estimates on the same scale as three key previous studies. To
generate comparable estimates, we set up a two-stage least squares that uses the December price in dollars (either
overall or class specific) per fill as the endogenous variable. (This assumes that the December spot price is the only
driver of filling, which we know is not the case. So all the caveats—that enrollment month can affect utilization
via many mechanisms, of which this is just one—still apply. This is likely why our estimates, while the same order
of magnitude as other studies, are biased upwards because of correlations between Pt and other periods before and
after.) In Chandra et al. (2010), the authors present demand response estimates from two policy changes for different
types of plans (HMO and PPO), hence the two columns here. Einav et al. (2018) report elasticities instead of a
derivative; we multiply the elasticities reported in their study by P

Q
(estimated in our sample) to obtain a comparable

derivative to the one we estimate. For Choudhry et al. (2011), we simply divide the quantity change in utilization
for a class by the average copayment amount (prior to intervention, which erased copayments).
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TABLE E.2
HEALTH INSURANCE AND MORTALITY: COMPARISON TO RECENT STUDIES

Study & Setting Age Mortality Effect Change Intervention
Mean p.p./yr p.p./yr % (Change %)

Abaluck et al. (2021) Full vs. partial donut
Medicare Advantage 77.5 4.70 -0.460 -9.8 hole coverage (IV)

Goldin et al. (2020) Obamacare
All taxpayers 38.6 1.01 -0.063 -6.3 coverage (+4.6%)

Miller et al. (2021) Medicaid
Medicaid, 55-64yo 59.3 1.40 -0.132 -9.4 coverage (+13.5%)

Present study, Part D
Middle-spenders 65.0 1.43 -0.197 -13.8 Per $100/mo. pre-donut
All 65.0 0.94 -0.053 -5.68 hole drug budget (+24%)

Notes: Summary of effect sizes, both absolute and in percentage terms, from three recent studies of the effect
of health insurance on mortality. Abaluck et al. (2021)’s design compares mortality in beneficiaries who switch
Medicare Advantage plans, which have a number of correlated characteristics, so isolating the specific effect of donut
hole coverage is challenging. Nevertheless, in a 2SLS design with donut hole coverage as the endogenous variable,
mortality was reduced by 0.46 p.p. per year vs. a base rate of 4.70 p.p., or 9.8%. (For context, we estimate the
mean change in coinsurance in our data at 45 p.p. (initial vs. donut hole), vs. 20 p.p. in Abaluck et al. (2021) who
study partial vs. no donut hole coverage). Goldin et al. (2020) take advantage of randomly-assigned letters advising
taxpayers of the penalty for lacking health insurance coverage under the Affordable Care Act, and find that this
reduced mortality by 6.3% (reduced form); they estimate that the intervention concurrently increased the number of
months of insurance coverage by 4.6% over the study period. Miller et al. (2021)’s differences-in-differences study of
Affordable Care Act Medicaid expansion finds a 9.4% reduction in mortality (reduced form); a survey-based measure
of uninsurance fell by 13.5% as a result of expansion. For comparison, we present estimates from the present study
in the table. The first row presents estimates from middle-spenders, which translate the results in Table III into
annualized numbers for comparability with the studies above. Note that the mortality figure differs slightly from the
figure in Table I: this table presents annualized December mortality rather than mortality calculated over the entire
year. The second row dilutes the middle-spender effect by the share of middle-spenders in the population (0.27),
again for comparability to the studies above.
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