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ABSTRACT

The design of health insurance can cause large, abrupt, and arbitrary changes in drug prices. We use 
this fact to study what happens to patients’ health when they stop taking their drugs. Thanks to a 
quirk in Medicare’s drug coverage, 65-year-olds are as-if-randomly assigned a budget—a spending 
limit on drugs, beyond which they are responsible for 100% of the cost—as a function of their birth 
month. We find that an exogenous $100 per month decrease in this budget (a 24.4% change) causes 
mortality to increase by 0.0164 percentage points per month (13.9%). This estimate is robust to a 
range of falsification checks, and in the 97.4th percentile of 541 ‘placebo effects’ formed in 
settings that are observably similar, but lack the policy quirk linking birth month to drug budgets. 
We make sense of this large effect in three ways. First, patients stop taking drugs that not only 
appear ‘high-value’ (e.g., blood pressure medications), but are also known to have withdrawal or 
‘rebound’ effects. Harm from abruptly stopping these drugs can be large, dwarfing any foregone 
benefits of not taking the drug. Second, using machine learning, we identify patients at the highest 
risk of drug-preventable adverse events (e.g., heart attack). Contrary to the predictions of some 
economic models of behavior, high-risk patients cut back more than low-risk patients on precisely 
those drugs that would benefit them the most (e.g., statins). Third, patients appear largely unaware 
of the risks. In a survey, we find only one-third believe that missing their drugs for up to a month 
could have serious health consequences. We conclude that, far from curbing waste and moral 
hazard, cost-sharing causes patients to miss opportunities to purchase health at low cost ($11,321 
per life-year).
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I Introduction

Few patients take their drugs as prescribed (World Health Organization, 2003). Even in carefully

controlled clinical trials, only 43–78% of doses are ever taken (Osterberg and Blaschke, 2005).

Health insurance design often encourages this inconsistency: the non-linear contract structures of

many drug plans create variation in out-of-pocket price over time, causing patients to stop then

restart prescriptions abruptly (Einav et al., 2015; Einav and Finkelstein, 2018; Einav et al., 2018).

In general, price-driven interruptions in drug consumption have not been taken as cause for

concern, at least by economists, because their welfare effects are theoretically ambiguous. Patients

are known to stop taking apparently high-value medicines, like statins and beta-blockers (Brot-

Goldberg et al., 2017; Choudhry et al., 2011; Einav et al., 2018), but there is no clear-cut evidence

that these decisions harm their health.1 So patients may be deciding, rationally, that costs outweigh

benefits: they may judge that financial savings outweigh health gains, or have private information

about their own treatment benefits. Indeed, patients themselves seem unbothered by drug interrup-

tions. In a survey of Medicare-age patients taking medication (Figure I), we find that only one-third

(33.5%) believe that missing their drugs for up to a month could have serious consequences, like

hospitalization or death. A majority (53%) do not predict any negative health consequences from

missing their drugs for up to a week—even simply feeling worse symptomatically.

The medical literature, by contrast, gives more cause for concern. An obvious reason is that

interrupting a drug means forgoing potentially large health benefits shown in clinical trials. A more

surprising reason is the existence of drug withdrawal or ‘rebound’ effects, which can cause harms

that dwarf any foregone benefits. Consider a classic study that randomly alternated different doses

of the beta-blocker propranolol (a drug for high blood pressure) with placebo, to find an optimal

dose (Miller et al., 1975). Of 20 patients participating in what should have been a fairly mundane

trial, 10 had adverse cardiac events, 6 of which were heart attack or death; all adverse events

occurred in the placebo periods (4 of 44 total weeks), when the drug was abruptly withdrawn. In

another study, researchers noted that for idiosyncratic reasons, patients taking statins as outpatients

sometimes failed to get them durings hospitalizations (Heeschen et al., 2002). In the setting of heart

attack, patients whose statins were interrupted had three-fold higher risk of death or repeat heart
1Previous studies show only effects on proxies for health, like hospitalizations or spending. For example, Chandra

et al. (2010) find that price increases in costs for drugs led to increased hospitalizations, but did not study mortality.
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attack than similar patients whose statins were continued—and 69% higher risk than patients who

never took statins. Clinical guidelines now mandate initiating a statin immediately on diagnosis of

heart attack (Cannon and Freeman, 2023). Rebound effects have also been documented for diuretics

(Walma et al., 1997), corticosteroids (Jarad et al., 1999), insulin (Czosnowski et al., 2009), inhaled

bronchodilators (Hancox, 2006), antithrombotics (Broderick et al., 2011), hormone replacement

(Waddell et al., 1999), antihypertensives (Psaty et al., 1990), and most psychotropics (Horowitz

et al., 2021). Guidelines thus suggest carefully tapering these drugs under medical supervision,

rather than simply stopping them (Steinman and Reeve, 2023; Bain et al., 2008).

Despite these concerns, little is known about the consequences of drug interruptions in the

real world, because formal study is difficult and potentially unethical. So outside of clever studies

like the ones above, the literature consists largely of non-randomized comparisons—consistent vs.

inconsistent patients—which are confounded. Practicing physicians are unlikely to notice even large

effects, because adverse events are rare. Detecting a 35% increase in mortality from a baseline

of 1% would require a physician with perfect recall and 30,000 patients with randomly assigned

interruptions (vs. a typical panel of 2000 patients (Raffoul et al., 2016)).

We study the mortality effects of drug interruptions using a quirk in Medicare coverage that,

abruptly and as-good-as randomly, assigns patients to higher or lower drug prices. This strategy,

pioneered by Aron-Dine et al. (2015) and Kaplan and Zhang (2017), leverages variation linked to

birth month. Every January, beneficiaries start by paying only 25% of drug costs out-of-pocket. If

they exceed an annual budget cap of $2500, however, they enter the “donut hole,” where they pay

100% of costs. Whether or not a beneficiary enters the donut hole is not random: it depends on prior

consumption. Critically, however, annual plan thresholds are not pro-rated, if enrollment happens

part-way through the year. And because eligibility for coverage begins in the month someone turns

65, birth month generates exogenous variation in drug budgets in the first year of enrollment. Early

and late enrollees get the same “pre-donut budget” of $2500, before cost-sharing abruptly rises to

100%. But by the time a late enrollee spends her first dollar, an earlier enrollee has been spending

down their budget for months, and approaching the donut hole. These early vs. late differences in

donut hole exposure grow as spending accumulates over the course of the first year. Reassuringly

though, “pre-treatment” characteristics are similar: we find good balance on demographics, drug

consumption, drug spending, and mortality in the first 90 days of enrollment.
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Variation in drug budget will affect drug consumption only for those whose spending is high

enough to approach the budget cap. So our analysis focuses on a very specific set of “compliers”:

those with the highest drug spending in their first 90 days. Higher initial spending puts them on

track to approach the budget cap if they enroll early in the year, but not if they enroll later.2 By

contrast, the budget cap should not affect lower-spending “never-takers,” who will end the year far

below $2500, even if they enroll early. Like Aron-Dine et al. (2015), we further focus on the month

of December, when we expect budget differences across enrollment months to affect consumption

the most: as spending accumulates for early enrollees, more begin to approach or enter the donut

hole, while later enrollees are protected. Empirically, we find that by December, early-enrolling

compliers are far more likely to enter the donut hole (5.2 p.p. for every month of earlier enrollment)

and more likely to interrupt their drugs as a result (3.65 fewer drug-days for every month).

These exogenous budget changes cause large mortality differences. For each $100/month de-

crease in the pre-donut budget caused by enrollment month (on average, a 24.4% change in our

sample), mortality increases by 0.0164 p.p. per month (13.9%).3 We make sense of this large effect

in two ways. First, like Einav et al. (2018); Brot-Goldberg et al. (2017), we find that patients inter-

rupt drugs that are both “high-value,” and known to have dangerous rebound effects: statins and

antihypertensives, glucose-lowering agents, and inhalers and steroids for pulmonary disease. Second,

we document a positive correlation between a beneficiary’s benefit from a drug and their likelihood

of interrupting that drug. For example, those at the highest predicted risk of heart attack and

stroke interrupt their cardiovascular drugs (e.g., statins, antihypertensives) four times more than

lower-risk patients (2.46 vs. 0.60 drug-days per $100 change in monthly pre-donut coverage).4 Sim-

ilar patterns exist for diabetes and respiratory drugs. These differences are unlikely to be explained

solely by income: we see similar cutbacks in both high- and low-income zip codes. This is surprising,
2As noted above, initial spending is uncorrelated with enrollment month, meaning forward-looking behavior does

not induce differential selection. This allows us to identify a similar group of compliers across enrollment months. A
small handful (3%) of the highest spenders not only enter the donut hole, but also approach catastrophic coverage;
we exclude them from the complier group, and discuss them in detail below and in Section II.B.

3We present our estimates in terms of this monthly budget, rather than two-stage least squares, because enrollment
month affects mortality through a complex network of variables. Prices and quantities consumed in month t affect
prices and quantities in t + 1, and prices in t + 1 affect quantities in t (see Appendix Figure A.1). Any of these
could affect health outcomes at year-end, so choosing just one as the endogenous variable is difficult to defend. By
contrast, the pre-donut budget is both interpretable, and a mechanical function of enrollment month: e.g., a $2500
budget gives a February enrollee $228/month and a September enrollee $628/month.

4There is strong evidence from the medical literature that such risk is a good proxy for treatment benefit, partic-
ularly for cardiovascular drugs, an assumption we discuss in detail in Section III.D.
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at least from the point of view of economic models. Moral hazard predicts that the marginal drugs

patients interrupt should be low-value; and well-informed patients with private information about

their own health should not be interrupting drugs that benefit them.

To build confidence in our estimate, we begin by ruling out two obvious confounders: while

earlier enrollees are of course a few months older than later enrollees, mortality differences are 10

times larger than those implied by age differences. Likewise, well-known health differences across

birth seasons are far too small to explain our results (Doblhammer and Vaupel, 2001). We then

conduct a range of additional analyses and falsification checks, all of which replicate our analysis

in closely-related settings, and ensure mortality effects are only present when enrollment month

affects drug budgets. Our first check is to compare the effect of enrollment month on mortality in

the compliers, as above, to the effect in those with lower and higher initial drug spending in the

population. We find that the lowest-spending 70% of our sample (never-takers), who remain far

below the donut hole budget cap in all enrollment months, and show no enrollment month gradient

in either drug consumption or mortality. By contrast, the highest-spending 3% spend through the

donut hole and approach the “catastrophic coverage” (around $6000), where cost-sharing drops from

100% to near zero. Here, the effect of enrollment month reverses: earlier enrollees now pay less for

drugs, thanks to the catastrophic coverage, while later enrollees pay more because they are still

stuck in the donut hole. Among these “defiers,” we find large, significant, and opposite-sign effects

of enrollment month on drug consumption and mortality, just as we would expect. It is hard to

imagine a confounder that so perfectly matches this interaction of enrollment month, initial spending

level, and Medicare policy.

We further isolate the mortality effect temporally, in two ways. First, we track the effect of

enrollment month on drug consumption and mortality over the months before and after Deccember

of the first enrollment year. We find that the only significant difference in mortality is in December.

This is exactly when differences in drug consumption across enrollment months peak, abruptly and

discontinuously, driven by early enrollees holding out until prices reset in January.5 We also take

advantage of reforms to Medicare that began to close the donut hole, starting in 2011. Replicating

our analysis before vs. after this change, we find significant negative mortality effects only before.
5These results complement our balance checks, which as noted above show no differences in mortality in the first

three months of enrollment.
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In our final, most comprehensive falsification test, we construct a large set of “placebo estimates,”

of the effect of enrollment month on mortality, in observably similar Medicare populations for whom

enrollment month does not affect drug budgets. This includes, for example, 66 year-olds, who are not

affected by the enrollment month quirk we exploit at age 65, dual eligibles who face no cost-sharing,

and disabled beneficiaries whose enrollment timing is not driven by birth month. Replicating our

analysis in each of these samples, across a range of calendar months, we find that our main estimate

is in the 97.4th percentile of mortality effects—larger than 527 of 541 placebo estimates.

The large mortality effect we find fits with a growing literature in economics showing that health

insurance design matters for health. Most closely related, Abaluck et al. (2021) find that switching

into a plan with at partial (as opposed to no) donut hole coverage reduces mortality by 0.46 p.p.

per year, or .038 p.p. per month. A rough calculation based on our estimates implies that full (as

opposed to no) donut hole coverage would reduce mortality by 0.063 p.p. per month; considering

we are comparing partial to full coverage, these effect sizes are quite similar.6 More broadly, Miller

et al. (2019) show Medicaid expansion reduced mortality (0.089 p.p./year), and Goldin et al. (2020)

find similar effects from the Obamacare insurance tax incentive (0.09 p.p./year).

Cost-sharing, via coinsurance or deductibles, has been a cornerstone of health insurance design

for decades, driven by worries about wasteful spending and moral hazard. Our results build on a

growing body of literature suggesting that, far from reining in low-value care, cost-sharing causes

patients to systematically miss opportunities to purchase health at very low cost (Baicker et al.,

2015). We estimate that eliminating cost-driven drug interruptions would extend life at a cost of

around $11,321 per life-year (vs. commonly-used thresholds for cost-effectiveness: $100-200,000

(Neumann et al., 2014))—and given that increased inpatient spending can offset any savings on

drug costs, this number is likely to be an over-estimate (Chandra et al., 2010). We view these

results optimistically: improving the design of prescription drug insurance gives policy makers a

unique opportunity to achieve large health gains at little to no cost.
6To generate this, we instrument for donut hole entry using enrollment month, then regress mortality on predicted

donut hole entry (all in December). Because this happens in compliers only, while Abaluck et al. (2021) deal with
all enrollees, we scale our estimate by the fraction of compliers (0.27). For context, we estimate the mean change in
coinsurance in our data at 45 p.p. (initial vs. donut hole), vs. 20 p.p. in Abaluck et al. (2021) (partial vs. no donut
hole coverage). In other words, both the price difference and mortality effect are twice as large in our setting.
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II Empirical Strategy

Studying interruptions in drug consumption presents a number of empirical challenges, because

interruptions are not randomly assigned. Patients who interrupt consumption are quite different

from those who do not. Perhaps the best evidence of this comes from randomized trials, in which

every drug dose is carefully tracked. Patients with more drug interruptions are often found to have

worse outcomes by the end of the trial—whether they have been receiving the active treatment or

the placebo (Osterberg and Blaschke, 2005). This elegantly shows how simply comparing the health

of patients with vs. without interruptions is confounded by the myriad unmeasured links between

drug-taking behavior and health.

An idiosyncratic feature of Medicare’s prescription plan design allows us to isolate a setting

where interruptions are as-good-as-randomly assigned, due to abrupt changes in the price patients

must pay for their drugs. Starting with the RAND health insurance experiment, and extending

through work in the modern economics and medical literature, random assignment of higher drug

prices is known to reduce drug consumption (Newhouse and Group, 1993; Choudhry et al., 2011;

Finkelstein et al., 2012; Brot-Goldberg et al., 2017). Price increases in this setting affect drugs across

the board, so this design does not allow us to study the effect of any one specific drug. However, it

does let us investigate how interruptions in drug consumption more broadly affect health.

II.A Program Details and Identification Strategy

Since 2006, Medicare Part D has offered prescription drug coverage to seniors and disabled indi-

viduals in the US. Individuals can enroll in either stand-alone prescription drug plans (PDPs) that

are offered alongside traditional medicare or Medicare Advantage (MA) plans where drug coverage

is bundled with inpatient/outpatient care. The benefit’s non-linear structure with respect to out-

of-pocket costs is illustrated in Panel A of Figure II (Einav et al., 2015). Using the 2008 details to

describe the plan, the calendar year begins with a deductible phase in which the beneficiary pays

the entire cost of all drugs until she has spent $275. She then faces a 25% cost-sharing (coinsurance)

rate that lasts until the total cost of all drugs purchased exceeds the budget cap of $2,510 (called

the initial coverage limit). After this, the beneficiary falls into the coverage gap, or “donut hole” and

again pays 100% of the cost of all drugs. Finally, after reaching $5,726 of total spending in the donut
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hole, she enters the “catastrophic coverage” (which, to continue the analogy, represents the far side

of the donut). Here, she pays only a 5% cost-sharing rate, or copays of $2.25 for generic or preferred

drugs and $5.60 for other drugs.7 The cutoff points for each coverage arm change slightly from year

to year, as shown in Appendix Table A.1, but the basic structure remains the same. Importantly,

starting in 2011, the donut hole began to close as a result of policy changes (fully closing in 2020),

with cost-sharing rates for generic and branded drugs in the donut hole falling from 100 percent to

50% and 93%, respectively.

As first noted by Aron-Dine et al. (2015) and Kaplan and Zhang (2017), the spending limits that

define cost-sharing are not pro-rated in the first year of enrollment. In other words, a person who

enrolls in, say, February gets the exact same budget—e.g., $2510 of total spending before falling

into the donut hole—as a person who enrolls in September. It is easy to see that a beneficiary’s

monthly budget will be far greater if they enroll in later calendar months: the same “pre-donut

budget” of $2500 is spread over fewer months. This results in earlier enrollees being more likely to

exceed their budget cap, landing them in the higher prices of the donut hole, while later enrollees

are more likely to remain in the generous initial coverage phase with lower prices.

Individuals become eligible to enroll in Medicare Part D on the first day of their 65th birth

month, meaning that enrollment month is primarily driven by birth month. If we believe that (i)

birth month is as good-as-random, and (ii) people of different birth months select into enrollment

months similarly, then the effect of any resulting variation in drug budgets on mortality can be

identified. We test these three assumptions in detail below: first, via balance checks on range of

health and utilization measures (Table II), to verify that enrollment months are observably similar.

Second, we estimate a variety of “placebo estimates” of the effect of birth month and enrollment

month on mortality, in a variety of settings where birth month and drug budgets are uncorrelated,

to ensure there is no effect beyond the mechanical effect of being a month older or younger (Figure

IV). Third, following Aron-Dine et al. (2015), we test whether beneficiaries select into enrollment
7The overall non-linear structure was largely the result of a political compromise balancing the desire to cover very

sick beneficiaries (the catastrophic phase) with reducing the total cost of the program (the donut hole); a review is
found in Oliver et al. (2004). Insurers may offer coverage that is “actuarially equivalent”, or “enhanced” compared to
the standard benefit. One common deviation from the standard design is to replace the deductible phase with uniform
cost-sharing until the donut hole is reached. Additionally, most plans do not base cost-sharing on cost-sharing rates
but rather copays based on drug tiers for each coverage arm. In practice, copays equate to roughly the same level of
cost-sharing in each arm as the cost-sharing rates specified by the standard benefit (Einav et al., 2015).
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months similarly across birth months (Appendix Figure A.2).8 Like Aron-Dine et al. (2015), we

prefer estimates based on enrollment month, as opposed to birth month, in our main specifications.

Enrollment month more accurately measures the start of actual spending, as opposed to the start

of eligibility, meaning it more accurately predicts drug prices. If we instead use birth month, we

find similar, but less precise results (see Appendix Table A.2).

Since enrollment month affects prices, and prices might affect mortality via decreased drug

quantities, it is tempting to estimate a two-stage least squares model. But this raises a thorny

question: which price or quantity does enrollment month affect? Patients are well-known to change

their consumption in response to both the current spot-price of a drug, and also the expected

future price. In our setting, enrollment month changes both. Early-year enrollees will likely reduce

utilization towards the end of the year (e.g. December) when their spot price is (quasi-randomly)

high, but they may also reduce utilization earlier in the year (e.g. October) given their expected

high end-of-year price. This in turn affects consumption earlier in the year, which also affects future

price. Appendix Figure A.1 shows these messy causal relationships graphically. Therefore, using

enrollment month to instrument for any one specific price or quantity will violate the exclusion

restriction.

On the other hand, using an average or cumulative price or quantity risks smoothing over

important temporal dynamics. As Aron-Dine et al. (2015) note, the end of the first calendar year

of enrollment has several characteristics that make it different fron earlier months. As the year

progresses, more and more beneficiaries enroll, yielding both larger samples and more identifying

variation in enrollment month. Just as importantly, differences in price across enrollment months

peak in December, as shown in Panel B of Figure II: early enrollees are most likely to land in the

donut hole, while late enrollees are protected, before prices reset for all enrollees in January. Finally,

our patient survey indicates that short drug interruptions are viewed as more innocuous than longer

ones. This suggests that interruptions driven by high donut hole prices will increase as the time to

January 1 decreases, and patients hold out for prices to reset (we will confirm this in Figure V).
8Unlike Medicare Part A, enrollment in Part D is not automatic. Beneficiaries can enroll during a 7-month long

initial enrollment period that runs from three months before to three months after their 65th birth month. Coverage
starts on the first day of the month after the individual enrolls, but not before the first day of the enrollee’s birth
month. If an individual chooses to enroll later, she faces a penalty of higher premiums for the remainder of her tenure
on Part D. Of those enrolling within a year of turning 65, the majority enroll in their birth month (69%). Empirically,
a small number of individuals enroll in the month before their birth month. This proportion is similar across birth
months, and of similar magnitude in Aron-Dine et al. (2015).
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As a result, we opt for a transparent, reduced-form estimate of the effect of enrollment month

on December mortality shown in the following estimating equation:

MortalityDec
i = θ0 + θ1EnrollMonthi + Yeariθ2 +Xiθ3 + ϵi (1)

Enrollment month has the advantage of being causally upstream from all prices and quantities; it

has the disadvantage of being somewhat difficult to interpret. Fortunately, it is easy to translate

enrollment month into a highly policy-relevant quantity: a beneficiary’s monthly “pre-donut budget”,

the average amount a beneficiary is allotted per month before entering the donut hole. For example,

in 2008, the donut hole kicked in at $2,510 of total spending. So a February enrollee would have

a monthly pre-donut budget of $228 (over the 11 months of coverage in her first year), while a

September enrollee would have a monthly pre-donut budget of $628 (over 4 months). Concretely,

this means we also estimate a version of Equation (1) where EnrollMonthi is replaced with Budgeti.

These upstream measures mean we do not need to specify one particular endogenous variable that

influences mortality. Rather, we tie random variation in enrollment month directly to the overall

cost-sharing policy it implies, and estimate its effect on mortality.9 To summarize, our basic model

relies on enrollment month to generate variation in the pre-donut budget and thus drug consumption.

We assume (and test) that those with lower budgets will be more likely to reach the donut hole by

the end of the year, and consequently, interrupt their drug consumption more, due to increased cost-

sharing. We hypothesize that the cost-induced medication cutbacks could lead to adverse health

events such as death.10

9We recognize that this budget too is not a perfectly sufficient statistic for plan design, as it ignores the re-
introduction of coverage in the catastrophic phase, plan premiums, and plan-specific cost-sharing rates/copayments.
However, we note that changes in price due to arm-specific prices or plan premiums are much smaller in magnitude
than the initial coverage vs. donut hole difference. In addition, only 3% of beneficiaries ever even come close to the
catastrophic phase, while the vast majority are affected by the donut hole, whether directly or via forward-looking
behavior (Aron-Dine et al., 2015). So we believe that donut hole threshold, and by extension, the monthly pre-donut
budget, is the key parameter to summarize coverage generosity.

10Of course, it’s important to acknowledge that the donut hole might affect drug consumption differently from other
cost-sharing policies (e.g., year-to-year changes in coinsurance rates) because it is such a sudden and temporary shock
to drug expenditures. We can only study beneficiaries in their first year, so there could be later learning effects that
modify the effect of the donut hole in later years. That said, Appendix Table D.3 shows that the demand response
we measure is quite similar to other studies in the economics and medical literature, which gives us some reassurance
that the effects we measure are generalizable outside of the specific setting we study.
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II.B Focusing on Compliers

We depart from the prior literature with one important refinement to our analytic strategy. Varia-

tion in drug budget will affect drug consumption only for those whose spending is high enough to

approach the donut hole budget cap. So our analysis hones in on a population whose drug con-

sumption we expect to be most affected by enrollment month: those whose initial drug spending

puts them on track to enter the donut hole if born earlier, but who are less likely to enter the donut

hole if born later.

Definition 1. Let W ∗ indicate a 65-year-old’s beneficiary’s (unobserved) spending on drugs at

year-end, in the absence of cost-sharing, based on health and preferences. Let D be an indicator

for whether she exceeds the budget cap and enters the donut hole by year-end. Let Z be enrollment

month, restricted without loss of generality to a 2-month period where Z = 0 is earlier and Z = 1

later month. The population can be partitioned into 3 groups. For never-takers N , W ∗ is so low that

donut hole entry likelihood does not depend on Z: Pr(D = 1|W ∗ ∈ N , Z = 0) = Pr(D = 1|W ∗ ∈

N , Z = 1). For compliers C, monthly pre-donut budget increases and likelihood of entering the donut

hole decreases in Z: Pr(D = 1|W ∗ ∈ C, Z = 0) > Pr(D = 1|W ∗ ∈ C, Z = 1). For defiers D, W ∗

is so high they predictably enter the donut hole, and likelihood of subsequently entering catastrophic

coverage decreases in Z: Pr(D = 1|W ∗ ∈ D, Z = 0) < Pr(D = 1|W ∗ ∈ D, Z = 1).

To make Definition 1 concrete, we can consider three beneficiaries who will experience very

different effects of enrollment month on drug consumption. First, consider a beneficiary whose

preferred spending W ∗ is well below the donut hole budget cap (even if she enrolled in January).

Such a never-taker’s drug prices will not be affected by enrollment month, and her drug consumption

will likewise be unchanged. Second, we have a beneficiary whose spending W ∗ approaches the donut

hole threshold. If such a complier is born earlier in the year, she will likely end up reducing her drug

consumption in response to the donut hole—either to avoid entering the donut hole (forward-looking

behavior), or as a direct result of higher prices. If on the other hand she is born later in the year,

her higher monthly pre-donut budget will shield her from these dynamics, and she will consume

more drugs. Third, we turn to a beneficiary whose spending W ∗ is so high that she will certainly

enter the donut hole, and then approach the catastrophic coverage phase, when prices return to

near zero. This is rare—only the highest-spending 3% of the sample reach this point, as we will
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show. But such a defier would show the exact opposite relationship between enrollment month and

price as the compliers: very high-spending late enrollees now face higher, not lower, prices, because

they do not have enough time to spend through the donut hole and reach the catastrophic phase.

Thus early enrollees will consumer fewer drugs than later enrollees.

Failing to distinguish among these types is, at best, inefficient: a large fraction of the sample, the

never-takers, will not have variation in drug consumption in response to the treatment. At worst,

it generates unreliable estimates: the non-monotonicity of the defiers muddies the interpretation of

the local average treatment effect of enrollment month on mortality. So we would like to find some

way to partition the sample into types before estimating (1), to hone in on a homogeneous group

of compliers with monotonic change in drug consumption in response to the instrument. But doing

so is not straightforward because W ∗ is unmeasured, and realized spending W cannot be used to

make the partitions: it is endogenous to enrollment month. For example, consider two beneficiaries

who have spent $1000 by year-end, one of whom enrolled in February and the other in September.

Both end the year in the initial coverage phase, but grouping them together as never-takers would

be an error: the former (who spent roughly $100 per month to reach $1,000) is likely a never-taker,

but the latter (who spent $300 per month, and would have spent $3000 by year end had she been

born in February) is likely a complier.

Proposition 1. Since W ∗ is unmeasured, a proxy W ′ must be used to partition the sample into

types {N , C,D}. To be a good proxy, following Definition 1, Pr(D = 1|W ′ ∈ N , Z = 0) ≈ Pr(D =

1|W ′ ∈ N , Z = 1), Pr(D = 1|W ′ ∈ C, Z = 0) > Pr(D = 1|W ′ ∈ C, Z = 1), and Pr(D = 1|W ′ ∈

D, Z = 0) < Pr(D = 1|W ′ ∈ D, Z = 1). Further, to use the proxy for identification of the effect of

Z, W ′ ⊥⊥ Z.

One candidate proxy that might meet the criteria in Proposition 1 is a beneficiary’s spending

early in their Part D enrollment. The first criterion is that the proxy must partition the sample

into groups with different impacts of enrollment month on donut hole entry. To test this, we take

beneficiaries in a given enrollment month and bin them into percentiles of spending over their first

90 days. We then estimate the effect of enrollment rate on donut hole entry separately, for each

(within-enrollment month) percentile bin of 90-day spending (shown in Appendix Figure A.3).11

11Using within-enrollment month percentile is attractive because is requires only a weaker assumption, that within-
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We hypothesize that this will allow us to empirically partition the sample based on the likelihood

of donut hole entry across enrollment months.

The second criterion in Proposition 1 is that the proxy W ′ must be uncorrelated with enrollment

month. Early spending may fit this, if early enrollees do not display more forward-looking behavior

than late enrollees, in anticipation of the donut hole budget cap. This is plausible, because all

enrollees are learning about a highly complex program in their first few months of enrollment. On

the other hand, given that forward-looking behavior is ubiquitous, it is also possible that even

early spending is contaminated by responses to cost-sharing, and thus correlated with enrollment

month. Using it as a proxy would thus induce differential sample selection across enrollment months

and bias estimates of the enrollment month effect. While it is impossible to know exactly when

beneficiaries begin to reduce their drug consumption in anticipation of donut hole limits, we can

ask the empirical question of whether spending in the first few months of enrollment differs across

enrollment months and verify it meets this criterion (we do so in Table II).

With this grouping strategy, we then have our primary estimating equation:

MortalityDec
i,j = αj + InitSpendiβ1 + (EnrollMonthi × InitSpendi)β2 +Xiβ3 + ϵi (2)

Here, MortalityDec
i,j is December mortality, InitSpendi are indicators for being in a specific range of

within-enrollment month initial 90-day (from enrollment) spending percentile, and αj is fixed effect

capturing each individual Part D plan–year combination. Under the assumption that within each

initial spending bin, pre-donut budget is quasi-randomly assigned (by enrollment month), estimates

of β2 in Equation 2 give unbiased estimates of the effect of enrollment month (and thus monthly

pre-donut budget) on mortality.

II.C Data

Our main sample consists of a 20% random sample of first-time Medicare Part D enrollees in their

initial enrollment period (birth month and three subsequent months) from 2007 to 2012. First,

enrollment month ranking of initial spending correlates with year-end prices. In an earlier version of this paper we
instead used machine learning to predict one-year total spending using a range of early utilization measures (spending,
number of fills, drug class indicators). We trained a model of one-year spending on early utilization out-of-sample
(in the dual population that faces no cost-sharing) and applied it to our sample. However, we found that the simpler
initial 90-day spending measure gave us enough precision to estimate our model.
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we make sample restrictions common to the Part D literature. We subset to all beneficiaries who

become eligible for Medicare because they turn 65, under the Old Age and Survivors Insurance

(OASI).12 This leaves us with 1,131,922 observations. We then remove all individuals dually-eligible

for Medicaid or other low income subsidies, as they face low prices that do not change as a function

of yearly spending (though we will later use this fact to construct falsification tests in this sample),

which leaves us with 925,170 observations. We also remove all individuals that enroll in a deductible

plan, as their initial claims vary with enrollment month due to the future price effects (Einav et al.,

2015), bringing the sample to 605,502. A series of other minor subsets brings our sample to 557,999

beneficiaries.13

We make three additional exclusions with respect to the timing of enrollment month and death.

First, in order to calculate mortality rates in December, we must exclude those who die before

December 1. We will carefully check for and exclude mortality differences across enrollment months

before December 1, which could indicate selection bias introduced by this exclusion. We also

drop those who enroll in October and later: as Aron-Dine et al. (2015) note, these beneficiaries

are still ramping up their drug consumption, whether because of new coverage or transitioning

from a previous insurer. As a result, their December utilization is spuriously low compared to

beneficiaries enrolling earlier in the year, who have reached steady state in terms of consumption

by December. In addition, those born in October and later are legally allowed to enroll in January

without penalty, because January is in their 4-month initial enrollment period (IEP). Empirically,

January enrollment appears to be an outlier in terms of volume of patients enrolling, and January

enrollees are observably different from all other enrollment months. So we follow Aron-Dine et al.

(2015) here as well, and exclude them from our sample.14 With these restrictions, our final analytic

sample consists of 358,706 individuals.

Our analyses of specific drug filling decisions use the Medicare Part D drug claims made by

beneficiaries in our sample, including fill date, total cost, out-of-pocket (OOP) cost, and 11-digit

National Drug Code (NDC) identifiers. To classify drugs into clinically meaningful categories, we
12We exclude those who enroll in Medicare before age-64, for disability or end-stage renal disease.
13We include individuals in standalone PDPs and standard MA plans. The included MA plan types are HMO,

HMO POS, Local PPO, Private FFS, and Regional PPO). We exclude individuals in special needs plans, those with
non-standard ICL locations, and those not residing in the US 50 states or Washington, DC.

14We also find evidence that those born in January are less likely to delay enrollment, and that those born in other
months (e.g. November) are more likely to delay enrollment to January as opposed to other months.
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use the RxNorm and RxClass APIs to link NDCs to their corresponding Anatomical Therapeutic

Chemical (ATC) codes, a hierarchical system for drug classification. This allows us to map, for

example, a claim for Lipitor to the drug class of statins (HMG-CoA reductase inhibitors), within

the ‘lipid-modifying agents’ category of cardiovascular drugs. We attempted to measure medical

diagnoses, procedures, and other kinds of health care utilization besides drugs, using Medicare

Parts A and B claims, including diagnoses, procedures, and admit/discharge dates. However, the

subsample of individuals enrolled in standalone PDPs (non-MA), for whom we observe these data,

is only about half our sample, so our analyses were largely under-powered.

III Results

III.A Sample Description

Summary statistics are shown in Table I. The sample is 90% white and mostly (60%) female.

Roughly half of the sample is in a standalone PDP, with the other half in a Medicare Advantage

plan. As our sample is relatively young, one-year mortality is low, 0.9 percentage points (p.p.), and

one-year total spending is approximately $1,500. We also present the 10 most-used drug classes

in our sample, which include statins, antihypertensives, diuretics, antidepressants, glucose-lowering

drugs, and corticosteroids.

We check balance by regressing key ‘pre-treatment’ characteristics on enrollment month. Table

II, Panel A, shows that estimates for race and sex are statistically and economically insignificant.

Importantly, we also find that initial drug spending and consumption are balanced across enroll-

ment months. As a more synthetic test, we also predict one-month mortality using all pre-treatment

variables, and regress this on enrollment month.15 This too is reassuring. Table II, Panel B shows

a more direct balance check on ‘pre-treatment’ mortality: mortality in the first 3 months of en-

rollment, before cost-sharing begins to affect enrollment months differently (recall that this was

already demonstrated in Panel A). We regress mortality in the 30, 60, and 90 days after enrollment

on enrollment month. No estimates are significant, providing further evidence that baseline health
15Our model is estimated in a sample of 66+ year-olds, who we assume have the same relationship between mortality

and covariates. The independent variables are measured over the first 90 days of coverage for the year (January-
March), to mirror our main sample, and the dependent variable is mortality (April-December). We apply this model
to generate predictions in our main sample, using covariates measured over the first 90 days of enrollment.
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is similar between enrollment months. This also reassures us that conditioning our analytic sample

on survival to December 1 does not introduce selection bias correlated with enrollment month.

Having established balance overall, we partition the sample into never-takers, compliers, and

defiers (see Section II.B above). Appendix Figure A.3 shows the effect of enrollment month on the

likelihood of entering the donut hole (y-axis), for each percentile of initial 90-day spending (x-axis).16

In the first 70 percentiles of initial spending there is no relationship between enrollment month and

donut hole entry, and only a very slight negative relationship in the 61-70th percentiles. Starting

at the 71st percentile, we see significant and increasingly negative effects of enrollment month, as

more and more earlier enrollees fall into the donut hole while later enrollees do not. Finally, at

the 98th percentile, the relationship begins to reverse, and the last 2 percentile bins have a large

positive effect, as earlier enrollees exit the donut hole and enter the catastrophic coverage.

Our primary goal in setting percentile cutoffs is to estimate Equation 2 in a homogeneous

group of compliers, whose drug consumption monotonically increases in enrollment month. Because

estimates for never-takers and defiers are not our primary focus, we are willing to tolerate some

heterogeneity in these groups, to ensure homogeneity in the complier group. As a result, we assign

the first 70 percentiles to the never-taker bin—even though, empirically, this is likely to include a

small number of low-spending compliers from percentiles 61-70. We assign percentiles 98-100 to the

defier bin. We emphasize that, on average, the 98th percentile experiences the impact of enrollment

month more like a complier than a defier; but because our primary interest is in estimates from

the complier bin, we set the cutoff very conservatively to minimize non-monotonicity of enrollment

month in that bin. We performed a sensitivity analysis over a range of alternative cutoffs (e.g.,

starting the complier bin at the 61st percentile, or ending it at the 95th percentile) and found

nearly identical results. Table I Column 2 and Table II Panel C show that the summary statistics

and balance checks in compliers are very similar to those in the full population, apart from the fact

that compliers spend and consume more drugs (as expected).
16There are not unique percentiles for the 60% of initial spending so we choose to estimate by decile for this group.

However, we find precise null estimates for all 6 deciles.
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III.B Mortality Effects of Drug Interruptions

Figure III summarizes our identification strategy and main result graphically. Panel A shows the

proportion of beneficiaries that finish the year in each coverage arm, by initial spending bin. Like the

finer percentile bins in Appendix Figure A.3, we observe a clear separation of (mostly) never-takers

on the left, for whom enrollment month has no effect; compliers in the middle, where early enrollees

end up in the donut hole more often (34.9% of February vs. 0.6% of September enrollees) but not

the catastrophic coverage; and (mostly) defiers on the right, where early enrollees first enter the

donut hole more often, then also enter the catastrophic coverage more often (the latter cannibalizes

the share of early enrollees in the donut hole, hence the non-monotonic trend for the former). Panel

B of Figure III shows that differences in donut hole exposure affect drug consumption, as measured

by drug-days filled (i.e., the number days supplied, summed across all drugs). As expected, never-

takers have no variation in days filled by enrollment month. Compliers fill substantially fewer days

when they enroll early, a difference of 25.5 days between February and September. And defiers

show the opposite pattern, with February enrollees filling 31.8 more days than September enrollees.

(We take all estimates in this latter group with a grain of salt, due to the non-monotonicity of

enrollment month effect on consumption, but emphasize that these beneficiaries are not the focus

of our analysis.)

Panel C of Figure III shows the relationship between December mortality and enrollment month.

For never-takers, there is no effect. For compliers, we find a significant and substantial negative

relationship between mortality and enrollment month, that mirrors the increase in drug consumption

shown in Panel B. And for defiers, we again see a large positive relationship, contrasting with

compliers. Panel A of Table III summarizes these trends, via OLS estimates of β2 from equation

(2), both in terms of enrollment month (Column 2) and in terms of changes to monthly pre-donut

budget (Column 3). Among compliers, a $100 budget increase—24.4% relative to the average

enrollment-month budget—leads to a mortality reduction of 0.0164 percentage points (p.p.), or

13.9% of the base mortality rate. The effect is negative, but small and insignificant, in never takers.

The effect is positive and large in defiers; it is significant in the enrollment month specification, but

not the pre-donut budget specification.

We might worry that variation in mortality across enrollment (or birth) months might be con-
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founded by factors other than cost-sharing. Recall, though, that we have already seen two reassuring

facts in this regard. First, no such variation in mortality exists early in enrollment, before cost-

sharing and drug consumption trends start to diverge across enrollment months, as shown in Table

II, Panel B. Second, any confounder would have to correlate not only to enrollment month, but also

to exactly the combination of enrollment month and spending patterns we would expect, given Medi-

care policy: it would have to be present for medium-spenders, disappear for low-spenders, and then

change sign for high-spenders. It is hard to imagine confounders that match these requirements.

Nevertheless, we directly address two known channels by which mortality variation linked to

enrollment month could emerge, in the absence of the policy we study. The first and most obvious

confounder is age: earlier enrollees are by construction older. But a simple calculation using US

life tables (from the Social Security Administration) illustrates why this is unlikely to be a concern.

Based on annual mortality rates for 65 vs. 66 years olds, we can roughly estimate the effect

of being one month younger on monthly mortality: -0.001 p.p., or -0.76%.17 As another point

of comparison, the (imprecisely estimated) effect of enrollment month from the never-takers is -

0.00036, or -0.68% (Table III). Just below (Section III.C), we describe how we construct a null

distribution of effects of enrollment (or birth) months on mortality, across many observably similar

samples lacking enrollment month effect on drug budgets. This yields a median estimate of -0.53%,

which we interpret as the mean effect size of being one month younger in these populations. So

these different methods of calculating age effects all give fairly consistent estimates of between -0.5-

1%. They are all an order of magnitude smaller than the effect size from our main analysis, which

captures the effect of enrollment month on cost-sharing plus the effect of being one month younger:

-0.118 or -9.49%. (The equivalent estimate based on birth month is -10.8%, shown in Appendix

Table B.1, Panel A.) This gives us confidence that aging is only a small part of the relationship we

observe.

A second potential confounder is variation in health outcomes by birth season, which has been

suggested to result from disease seasonality (Currie and Schwandt, 2013) or selection (Buckles and

Hungerman, 2013).18 Most of the literature focuses on peri- and post-natal outcomes, but two
17Using 2010 data, annual mortality was 1.59 p.p. for 65-year-olds and 1.74 p.p. for 66-year-olds, translating into

monthly rates of roughly 0.133 p.p. and 0.146 p.p. The difference, -0.013 p.p., is approximately the effect of being
one year younger on monthly mortality. We divide by 12 to get the effect of being one month younger, then divide
by the mean base rate to get the percent decrease.

18While a full review of this literature is beyond the scope of our work, we refer the reader to Currie and Schwandt
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large studies explore later-life outcomes in populations quite similar to our own. In a study of life

expectancy at age 50, Doblhammer and Vaupel (2001) find that mortality peaks among May births

and falls on either side. This cyclical pattern is stable across samples in the Northern Hemisphere

(Austria and Denmark) and exactly reversed in Australia. In our sample, by contrast, mortality

peaks among February births, while May births are solidly in the middle of the mortality distribution

(Appendix Table A.2, Panel B). In addition, the birth month differences in our setting are orders

of magnitude larger.19 Another study by Zhang et al. (2019) considers cardiovascular disease and

mortality over 40 years starting in middle age, among participants in the Nurses’ Health Study. They

find that while cardiovascular disease mortality peaks among April births, there was no difference

in overall mortality across birth months. To the extent that both studies find some evidence of

increased mortality among those born in April and May, this does not fit with our main finding of

a large peak in early-year births, that varies widely as a function of drug spending.

III.C Falsification Tests

As we saw, the enrollment month effect varies widely across spending bins, following the idiosyncratic

changes in drug budgets assigned by Medicare policy. We consider this our first falsification check,

since few confounders could produce this very specific pattern. We develop this insight into a

broader range of falsification checks: our analysis is closely tied to a specific Medicare policy, which

is relevant only to a specific population at a specific time. So we replicate our analysis in a range of

closely-related settings that lack these specific features linking enrollment month (or birth month)

to drug budgets.

First, we follow the population of compliers over time, and show that the mortality effect of

enrollment month is transient: it appears just as differences in prices and drug consumption peak

at the end of the first calendar year, and disappears as soon as prices reset and drug consumption

re-equalizes at the start of the second calendar year. Figure shows the last five months of the first

calendar year of enrollment (August–December) and the first five months of their second calendar

(2013) for an excellent summary, and a very rigorous empirical exploration of mechanisms.
19Doblhammer and Vaupel (2001) find the maximum effect of one birth month change on life expectancy (at age

50, e50) is 0.05-0.1 year, vs. an average of 27.5 years. Without access to the full life table, converting between e50 and
mortality risk is not possible. But using the empirical rule of thumb from Pollard (2002), these e50 changes imply
on the order of a 0.03% relative annual change in mortality risk (in each one-year age bin), compared to the effect of
10.8% we observe (0.0137 p.p. per birth month vs. base mortality of 0.127 p.p. for compliers.)
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year (January–May) on the x-axis.20 For each of these 10 months, we estimate the effect of enroll-

ment month on three key outcomes. Panel A shows the effect of enrollment month on likelihood

of entering the donut hole. This effect grows smoothly over time, as more beneficiaries enter the

donut hole, then abruptly disappears in January, when all enrollment months re-enter the initial

coverage phase. Panel B shows the effect of enrollment month on drug consumption. There is

significant difference in drug consumption between earlier vs. later enrollees as early as September,

and the difference steadily over the next 3 months. Then, in contrast to Panel A, there is an abrupt

jump in December: while the enrollment month effect on donut hole entry is nearly identical from

November to December, the effect on drug consumption more than doubles (1.75 drug-days for

each later enrollment month in November, to 3.65 in December). Also in contrast to Panel A, drug

consumption gradients reverse in January: as soon as prices reset, earlier enrollees—who have been

waiting out the high prices of the donut hole, and filling fewer drug-days December as a result—now

take advantage of lower prices to make up for their missed doses. Not only do earlier enrollees fill

2.86 more drug-days per enrollment month, they also fill sooner (0.30 days sooner for each earlier

enrollment month, for those filling in January; estimate not shown). Finally, Panel C shows the

effect of enrollment month on mortality. There is no significant mortality gradient across enroll-

ment months from August to November—until December. Then, just as prices reset in January

and earlier enrollees rush to fill their medications, the mortality effect attenuates: it is negative but

insignificant in January, then disappears altogether from February onward. Overall, these results

temporally tie mortality increases to the sudden increase in drug interruptions in December, likely

driven by the facts shown in our survey (Figure I): patients view short interruptions in their drugs

as largely innocuous, and many put off filling until prices reset.

Second, we leverage policy variation over time. In 2011, the donut hole began to close (described

in Section II.B), reducing cost-sharing for earlier enrollees. This implies we should find larger

mortality effects in 2010 and before. Panel B of Table III shows estimates of Equation (2) where

instead of interacting enrollment month with bin of initial spending, we interact enrollment month

with indicators for pre- vs. post-policy change. Over 2007-2010, we find that a $100/month increase

in the pre gap budget leads to a mortality reduction of 0.0104 p.p.; while there is no significant
20We could not produce stable estimates prior to August of year one, as sample size decreases with each month

due to fewer enrollment months.
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mortality effect in 2011-2012. Panel C repeats this analysis restricting to compliers. The effects are

larger, with a mortality reduction of 0.0210 p.p. per $100/month pre-gap budget increase, isolated

to 2007-2010. So the effect of cost-sharing on morality is concentrated in the enrollees we expect,

and over the time period when these enrollees are most affected by cost-sharing.

Third, we formalize the intuition of these placebo tests and construct an empirical “null distri-

bution” of enrollment (or birth) month effects on mortality. We expect the estimates to be centered

at zero (adjusting for the effect of age, which we discuss in detail below), and for our main estimate

to be in the extreme tail. The placebo tests come from a large number of settings where Medicare

beneficiaries look similar to the ones in our main sample, but lack the same idiosyncratic link be-

tween enrollment month and drug budgets. First, we extend the analysis in Figure V and follow our

main sample further in time, estimating monthly effects from January of their second calendar year

of enrollment until December of their fourth year (36 estimates: Appendix Figure B.1, Panel A).

Second, we replicate the analysis in dual-eligibles, those on Medicaid or low-income subsidies, who

do not face cost-sharing We pool all years together, then split into subsets defined by demographic

factors or geography (46 estimates: Appendix Figure B.1, Panel B). Third, we broaden to a larger

set of beneficiaries 66 years old and above—non-duals, duals, and disabled beneficiaries (ages 50-64),

none of whom face the exact same cost-sharing as 65-year-old non-duals—whose initial spending

makes them observably similar to our compliers (459 estimates: Appendix Figure B.1, Panel C).21

Figure IV pools results from all 541 falsification samples. We rank estimates of the enrollment

month effect by magnitude on the x-axis.22 The y-axis shows the cumulative fraction at least as

large as x. The median estimate is -0.53%, likely reflecting the effect of age across these samples,

as it is quite close to the age effect we estimated from other sources in Section III.B above (-0.76%

from Social Security data, or -0.68% from the never-takers). The estimate from our main analysis,

-9.49%, is shown in red. It is at the 97.4th percentile of mortality effects, larger in magnitude than

527 of 541 placebo estimates overall. In addition to the more tailored falsification tests above, this

‘omnibus’ test builds confidence that our observed mortality effect is in fact due to difference in the
21Because some of these populations lack an observable enrollment month, we use birth month as a proxy. More

details are in the Appendix.
22Estimates are relative to the baseline mortality in each sample for comparability: falsification samples vary in

their baseline mortality. Many samples are sicker than our 65 year-old non-dual primary sample, because of older
age, lower income, and enrollment based on disability. As a result, mortality is higher, which if anything could make
us better powered to detect a (spurious) effect.
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pre-donut budget faced by enrollees, rather than a spurious correlation.

III.D Are These Effect Sizes Medically Plausible?

Table IV confirms in our setting a key finding of prior work (Einav et al., 2018; Brot-Goldberg et al.,

2017): patients cut back many apparently high-value drugs, prescribed to prevent life-threatening

adverse events: cardiovascular (e.g., statins, antihypertensives), glucose-lowering (e.g., insulin, oral

hypoglycemics), and respiratory (e.g., steroids, inhalers). For each of these three classes, Column

(1) shows the fraction of compliers who ever fill the drug. Column (2) shows estimates of how a $100

increase in monthly pre-donut budget affects drug-days consumed (in December). Earlier enrollees

fill 5.2 more drug-days overall, with half of this total accounted for by cardiovascular, diabetes, and

respiratory drugs (1.5, 0.6, and 0.5 more drug-days, respectively).23

Could short interruptions in these drugs cause mortality effects of the magnitude we find?

Two sets of facts in the medical literature indicate that this is a possibility. First, it is a common

misperception that drugs for chronic diseases begin to work slowly. Certainly, clinical trials for these

drugs last many years—but particularly for rare outcomes like mortality, we should not conflate the

time scale required to measure effects, with the time scale on which effects begin. Inspection of many

published survival curves for chronic drugs shows that they start to diverge almost immediately, but

only reach statistical significance after years. Statins provide an instructive example: the Kaplan-

Meier curves in the landmark JUPITER trial begin to diverge at the origin (Ridker et al., 2008), and

as Heeschen et al. (2002) note, appear to have protective effects in patients during hospitalizations

for heart attack. This seems counter-intuitive, since the cholesterol-lowering effect of statins is to

reduce atherosclerosis (heart disease) over long time periods. But statins also act via a range of

other ‘pleiotropic’ mechanisms: they prevent blood clotting, and reduce inflammation and reactivity

of blood vessels (Oesterle et al., 2017). These mechanisms yield large protective effects in the very

short-term for patients with acute conditions like heart attack and stroke. Several other drugs have

similar effects over multiple time-scales: the diabetes drug metformin lowers blood glucose in the

short term, and also has a variety of longer-term anti-aging effects (Kulkarni et al., 2020); antibiotics
23We confirm in Appendix Table D.1 that deaths follow a similar pattern of drug consumption before they die:

early (February-May) vs. late (June-September) enrollees have similar drug consumption over days 31-60 before
death, then diverge sharply in the 1-30 days before death, with earlier enrollees filling 27.6 fewer drug-days than later
enrollees, although estimates are imprecise.
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used for COPD both treat acute infections and reduce long-term inflammation (Blasi et al., 2012).

As a result, even short drug interruptions can mean large foregone treatment benefits, depending

on the idiosyncratic time scale of the mechanisms mediating the drug’s treatment benefit.

Second, simply thinking in terms of foregone benefit can be highly misleading. Drugs induce a

complex set of physiological changes that put patients in a new physiological equilibrium—indeed,

that is the point of taking drugs. Abruptly stopping a long-standing drug to which the body

has adapted is well-known to precipitate a potentially dangerous set of withdrawal or rebound

effects. This idea has entered the popular consciousness for opiates, but opiates are far from the

only drug class with such effects: the list includes 7 of the 10 most commonly taken drugs in our

sample (Table I)—statins (Heeschen et al., 2002), antihypertensives (Psaty et al., 1990), diuretics

(Walma et al., 1997), antidepressants (Horowitz et al., 2021), corticosteroids (Jarad et al., 1999),

and glucose-lowering drugs (Czosnowski et al., 2009). Because of the practical and ethical difficulties

of studying drug interruptions directly, the best evidence for guidelines on drug tapering—which

recommend slow transitions, under close medical supervision (Steinman and Reeve, 2023; Bain et al.,

2008)—comes largely from older, small, idiosyncratic studies.24 Our results add new weight to these

recommendations.

If our results are unsurprising in light of the medical literature, they are far more surprising

when viewed through the lens of economics: they run counter to the predictions of several economic

models of behavior. If treatment benefit is as heterogeneous across individuals as most research

indicates (Chandra and Skinner, 2012; Chandra and Staiger, 2020), under a variety of models,

cutbacks should be concentrated among individuals in whom the drug is less clinically valuable.

A moral hazard view would predict that the marginal drugs patients drop are disproportionately

low-value. A Roy model of patient decision making with private information on heterogeneous

treatment effects would likewise suggest that patients self-select into treatments that benefit them

more. The corollary of this is that those with the highest potential benefit should be willing to pay

more for a drug, and thus less likely to cut back when the price increases.

Our main results are only plausible if these models are incorrect, and drug interruptions also

affect very high-value drugs. If by contrast interruptions are concentrated in low-treatment benefit
24Even for beta-blockers, perhaps the class of drugs for which there is the most evidence on rebound effects, a

recent article can be summed up by its title: “Beta blocker rebound phenomenon is important, but we do not know
its definition, incidence or optimal prevention strategies” (Koracevic et al., 2020).
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patients, just as moral hazard or patient private information would predict, it would be hard to

square with our results. If, on the other hand, high-benefit patients are interrupting their consump-

tion, it could help make sense of the large treatment effects we observe. To distinguish between

these views, it is critical to know who is interrupting their consumption, and estimate the health

benefit an individual patient might get from a given treatment.

To develop such a measure, we use machine learning to form predictions on a patient’s benefit

from preventive medicines. The idea that drug benefit is proportional to the baseline risk of the

outcomes the drug prevents is often simply assumed by doctors and in guidelines (e.g., the Amer-

ican College of Cardiology’s 10-year risk calculator used to allocate treatments for cardiovascular

disease). But there is strong and growing evidence to support this assumption, as well as specific

clinical guidelines, for cardiovascular drugs. For example, the JUPITER, HOPE-3, CARDS, and

ASCOT trials (reviewed by Bibbins-Domingo et al. (2016)) show 30-50% larger absolute risk re-

ductions from statins in groups with higher predicted risk of heart disease, whether defined by age,

diagnosed risk factors (e.g., diabetes), or biomarkers (e.g., LDL, CRP). Studies of polygenic risk

scores show similar heterogeneity, with higher-risk participants getting nearly three times the ab-

solute risk reduction (Natarajan et al., 2017). There is less strong evidence, but medical consensus

and biological plausibility, for diabetic and respiratory drugs.25

So we identify three important drug classes G—cardiovascular, diabetes, respiratory—and com-

pile a list of observable adverse outcomes, YG, the drugs are prescribed to prevent: heart attack

and stroke for cardiovascular medicines, diabetic complications (e.g., foot amputation) for diabetes

medicines, and respiratory failure. We form separate predictive models for each outcome, using a

beneficiary’s initial 90-day claims to predict the likelihood of adverse events over the next 270 days.

These models are trained on an entirely separate sample of dual-eligible 66+ year olds, to ensure our

predictions are out-of-sample. We restrict to those who are not taking class G (e.g., when predicting

risk of heart attack or stroke, we exclude patients on statins), to obtain a prediction on the risk of

complications if untreated.26 Additional details are in Appendix C.
25Even if this model is far from optimal, in the sense that it captures ‘true’ treatment heterogeneity, if patients

or doctors believe that high risk equates to high benefit, this measure will identify patients who believe they would
benefit from a given treatment. We view this too as a useful fact to understand.

26In other words, we wish to predict YG=0, not YG=1 in potential outcomes notation, as our proxy for the benefit
of drug G Naturally this choice of prediction target also induces selection bias, as documented in Mullainathan and
Obermeyer (2022), who use machine learning to predict the yield of testing for heart attack in the tested then validate
the model in the untested. Building on that work, Appendix Figure C.1 shows that true risk rises monotonically in
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We then estimate the effect of changes in the pre-donut drug budget on drug class-specific con-

sumption in the compliers, interacted with predicted risk. We specify risk as a simple indicator

indexing the top one-third of the sample, based on where risk begins to increase rapidly (see Ap-

pendix Figure C.1). Table IV shows that the highest risk beneficiaries have elasticities at least as

high, if not higher, for all three major drug classes. This trend is especially pronounced for cardio-

vascular drugs: for each $100/month budget increase, low-risk patients fill 0.598 more cardiovascular

drug-days, while high-risk patients fill 2.46 more. This finding is incompatible with a moral hazard

model of behavior, or patient private information: either way, those at high risk of a cardiovascular

event should have the most inelastic demand for treatment, proportional to their benefit from the

drug. We find similar, although less pronounced, trends for diabetes and respiratory drugs. Impor-

tantly, Appendix Table D.2 demonstrates that these effects are of similar magnitude in high- and

low-income zip codes alike. So while socioeconomically disadvantaged patients may have both worse

health and less ability to pay for treatments, our results are unlikely to be driven by socioeconomic

factors alone.27

IV Conclusion: Errors and Misinformation

Medicine and economics share a fundamental respect for individuals’ preferences and decision-

making. Our results, alongside a nascent literature in both fields, raise a dilemma for this perspec-

tive, if patients are making decisions that are very far from optimal. A rough calculation highlights

the problem. Starting with the effect of enrollment month on cumulative drug spending (from

September-December, when drug-day differences begin to emerge across enrollment months), we

divide by the effect of enrollment month on mortality to obtain an estimate of the implied life-year

valuation: $11,321 (95% confidence interval: $6,195-73,858).28 Another way to look at the patient

calculus is that, at the usual life-year valuation of $100,000 per year, a 65-year-old complier in our

predicted risk for the treated just as the untreated, establishing face validity.
27Of course, there is variation in income within zip codes, often quite a bit, so this does not by any means rule out

income effects or liquidity constraints. However, to the extent that we see similar behaviors in rich and poor areas
alike, it forms some upper bound on how important these effects can be on average.

28This is based on the full cost of the drug, which is an upper bound on how much patients actually pay. We
estimate a two-stage-least squares (2SLS) regression of December mortality on (instrumented) spending from October-
December of year 1, in compliers. The inverse of this estimate is then “dollars per life.” We then divide the dollars per
life estimate by average life expectancy at 65 from Social Security data, weighted by the proportion of males/females
in our sample, to estimate life-year valuation. Finally we calculate the implied life-year valuation at the bounds of
the 95% confidence interval from the 2SLS coefficient.
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sample would have to believe that she had at most 2.19 years left to live. In our sample, at a

median follow-up period of 5 years, 93.2% of compliers are still alive; average life expectancy in the

general population at age 65 is 19.2 years. This is hard to square with the idea that patients are

equalizing marginal benefit with marginal cost of drugs, and suggests that the price elasticity of

demand is an insufficient statistic for welfare, as has been noted by both Baicker et al. (2015) and

Einav and Finkelstein (2018). This idea, termed ‘behavioral hazard,’ has far-reaching implications

for the design of health insurance, particularly as insurers place more emphasis on cost-sharing.

Behavioral economics has identified several distortions that could contribute to our results.

Costs, for example, might be over-weighted relative to their true value. If a patient arrives at the

pharmacy counter to find that her drug basket has shot up in cost relative to her expectations, it

could cause costs to be salient and overweighted (Bordalo et al., 2013, 2020). If costs deviate from

previously set reference points, they may be viewed as losses and thus overweighted (Kahneman

and Tversky, 1979). Present bias (Laibson, 1997; O’Donoghue and Rabin, 1999) could likewise

cause patients to overweight present costs over future benefits. Alternatively, patients could be

relying on heuristics—like filling the most important drug, dropping the most expensive drug—

effectively substituting simpler problems for the more difficult full calculation of marginal costs

and benefits (Tversky and Kahneman, 1974). Or patients could disengage from the cost-benefit

calculus altogether, because of inattention (Handel and Schwartzstein, 2018; Gabaix, 2019), choice

fatigue (Augenblick and Nicholson, 2016; Iyengar and Kamenica, 2010), or judging the problem as

unsolvable and simply giving up (Ackerman and Thompson, 2017), could work similarly. Exploring

whether these factors might be at play is a fruitful direction for future work in behavioral science,

with potentially large real-world impact.

It is also worth considering a simpler explanation: patients could simply be misinformed. The

survey of Medicare patients taking medications we fielded, while small, is perhaps the first evidence

of its kind on how patients view short drug interruptions.29 The 200 patients we surveyed were

quite similar to the compliers in our sample: the median respondent was on at least 5 medications,

and 75% indicated they had hypertension or high cholesterol. In general, these patients view short
29We partnered with the firm Survey Healthcare Global (SHG) to recruit patients ages 61-70 who report taking at

least one medication, from a panel of 600,000+ patients and caregivers maintained by the firm. The survey, which
took place in July 2022, asked patients about the consequences of drug interruption: how long before the risk of a
serious health problem increased, and what kind of health problem they would worry about. The survey took less
than 5 minutes to complete and had a 100% completion rate.
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interruptions as innocuous: two-thirds doubt any acute events (hospitalization, deaths) would result

from even a month-long interruption. Most cannot imagine any issues with missing their drugs for a

week. These results grounds our empirical result, that drug interruptions peak sharply in December,

in patient beliefs, and shows why the phenomenon is so temporary: patients are willing to hold out

for low prices on the horizon in January. Our results argue strongly that this view is mistaken.

Ultimately, the decision to ingest a drug lies with the patient. However our results suggest that

both physicians and policy-makers are missing opportunities to improve the architecture of these

decisions. Policy-makers should remember that drug cost-sharing policies have major implications

for patient health, as well as health are costs. And physicians should remind their patients that, for

a variety of chronic medications, even short interruptions can be deadly.
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Tables

TABLE I
SAMPLE DESCRIPTIVE STATISTICS

(1) (2)

Mean (Standard Deviation)

Entire Sample Compliers

Panel A: Demographics, Spending, Health

White (%) 89.6 (30.5) 92 (27.1)
Female (%) 59.2 (49.1) 58.8 (49.2)
One-year total spending ($) 1,478 (2,789) 2,828 (1,910)
One-year mortality (p.p.) 0.873 (9.3) 1.16 (10.7)

Panel B: Top 10 Drug Classes (% on class)

Lipid-lowering drugs (statins) 34 (47.4) 59.2 (49.1)
ACE inhibitors 20.5 (40.4) 30 (45.8)
Beta blockers 18.9 (39.2) 31.4 (46.4)
Thiazide diuretics 18 (38.4) 26.7 (44.2)
Antidepressants 14.1 (34.8) 24.8 (43.2)
Corticosteroids 13 (33.6) 22.4 (41.7)
Acid blockers (GERD) 12.4 (33) 24.3 (42.9)
Antiiinfectives 11.6 (32) 17.4 (37.9)
Glucose-lowering drugs (oral) 11.2 (31.5) 20.9 (40.7)
Decongestants 11 (31.3) 20 (40)

Observations 358,706 96,849

Notes: Column 1 shows descriptive statistics for the entire sample. Column 2 shows the sub-sample of compliers,
whose donut hole exposure will be most affected by enrollment month (based on high initial spending: 71-97th
percentiles, measured in the first 90 days of enrollment). One-year spending is measured from the first day of
enrollment. One-year mortality is measured from December 1 of the first calendar year of enrollment, to parallel our
analysis. The percent on a drug class is measured by the presence of any claim in a given class in the first 90 days
of enrollment.
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TABLE II
BALANCE OF KEY VARIABLES ACROSS ENROLLMENT MONTHS

(1) (2)

Enrollment Month
Mean Effect (Std. Error)

Panel A: Key Characteristics

White (%) 89.6 0.004
(0.022)

Female (%) 59.2 0.058
(0.036)

Initial 90-day spending ($) 357 0.18
(0.49)

Initial 90-day consumption (fills) 5.35 0.0036
(0.0042)

Predicted mortality (p.p.) 0.411 -0.00048
(0.00047)

Panel B: Initial Mortality (p.p., cumulative)

1-30 days from enrollment 0.058 -0.000053
(0.0017)

1-60 days from enrollment 0.128 0.0013
(0.0026)

1-90 days from enrollment 0.201 0.0037
(0.0032)

Panel C: Initial Mortality, Complier Subset (p.p., cumulative)

31-60 days from enrollment 0.082 -0.0037
(0.0041)

31-90 days from enrollment 0.181 -0.0011
(0.006)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Panel A: Sample mean (Column 1) and enrollment month coefficients from a regression of key ‘pre-treatment’
variables on enrollment month (Column 2), for for the entire sample (n = 358,706). Predicted mortality is estimated
by fitting a model with demographics and initial (3-month) drug data to predict subsequent (9-month) mortality, in
a sample of 66-year-olds. Panel B: Sample mean (Column 1) and enrollment month coefficients from a regression
of initial mortality, measured over different time windows after enrollment, on enrollment month (Column 2). This
Panel includes the entire sample (n = 363,306), though rows 2-3 of Panel B exclude those that die in the first 30 days
of enrollment (n = 358,496). Panel C: The same as Panel B, but restricted to compliers, whose donut hole exposure
will be most affected by enrollment month (based on high initial spending; n = 96,849). Compliers here are identified
using the first 30 days of spending (unlike our main specification, which uses 90 days), so we are unable to report the
estimate for 1-30 days.
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TABLE III
MORTALITY EFFECTS OF CHANGES IN DRUG BUDGETS

(1) (2) (3)

December Enrollment Month Pre-Donut Budget
Mortality (p.p.) Effect (p.p./mo) Effect (p.p./$100)

Panel A: By Initial Spending

Never-takers (1-70th pct.) 0.053 -0.000362
(0.00199)

-0.000771
(0.00317)

Compliers (71-97th pct.) 0.118 -0.0112**
(0.00498)

-0.0164**
(0.00786)

Defiers (98-100th pct.) 0.288 0.0469**
(0.0219)

0.0549
(0.0402)

Panel B: Pre- vs. Post-Donut Hole Change

2007-2010 0.083 -0.0055**
(0.00266)

-0.0104**
(0.00427)

2011-2012 0.067 0.00405
(0.00321)

0.00611
(0.00511)

Panel C: Pre- vs. Post-Donut Hole Change, Complier Subset

2007-2010 0.120 -0.0137**
(0.00626)

-0.021**
(0.00993)

2011-2012 0.113 -0.0063
(0.00814)

-0.00993
(0.0129)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Panel A: December mortality rate (Column 1), and regression estimates of the effect of enrollment month
on mortality (Column 2), for three groups of beneficiaries (n = 358,706): Never-takers (lowest 70% of initial 90-day
spending), who are unlikely to enter the donut hole irrespective of enrollment month; compliers (71-97th percentile)
who are likely to enter the donut hole if enrolling earlier but not later; and defiers (98-100th percentile) who are
likely to enter both the donut hole then the catastrophic coverage. Column (3) translates enrollment month into a
beneficiary’s ‘pre-donut budget’ (in $100/month), the amount she can spend before entering the donut hole, which is
a mechanical function of enrollment month. Panel B: effect of enrollment month (or pre-donut budget) on mortality
for the full sample (n = 358,706), estimated before vs. after a policy change that began to close the donut hole in
2011. Panel C: Same as Panel B, but restricted to the complier bin (n = 96,849; the four coefficients for never-takers
and defiers are omitted for clarity). Robust standard errors are in parentheses.
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TABLE IV
DRUG BUDGET EFFECTS ON DRUG CONSUMPTION, BY PREDICTED RISK

(1) (2) (3) (4) (5) (6)

All Bottom 2/3 Risk Top 1/3 Risk

Mean Est. Mean Est. Mean Est.

All Classes 126.40 4.93***
(0.289) 111.40 3.34***

(0.32) 155.50 7.13***
(0.552)

Cardiovascular 50.20 1.42***
(0.157) 40.50 0.598***

(0.172) 68.90 2.46***
(0.302)

Diabetes 10.20 0.618***
(0.0701) 9.80 0.515***

(0.0848) 10.90 0.813***
(0.123)

Respiratory 5.30 0.459***
(0.0453) 4.80 0.407***

(0.0544) 6.00 0.549***
(0.0805)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: N= 358,706. Effect of cost-sharing on consumption of key drug classes. Cardiovascular classes include
statins, beta-blockers, ACE inhibitors, calcium channel blockers, angiotensin receptor blockers, and thiazide diuretics.
Diabetes drugs include both insulin and oral hypoglycemic agents. Respiratory drugs are inhaled and oral treatments
for chronic pulmonary disease. Column (1) shows the mean number of drug-days compliers filled in December: days
supply, summed across all prescriptions filled, and grouped by drug class. Column (2) presents regression estimates
(and robust standard errors) of drug-days on the pre-gap budget (in $100s). Columns (3) and (4) show mean drug
days and regression estimates, restricted to the 2/3 we predict to be at the lowest risk of the adverse events each drug
class prevents: heart attack and stroke for cardiovascular drugs, diabetic complications for diabetes, and respiratory
failure for pulmonary drugs. Columns (5) and (6) do the same for the highest-risk 1/3. (For “all classes”, we use
predicted cardiovascular event risk, since both cardiovascular drugs and cardiovascular mortality are common.)
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Figures

FIGURE I
Patient Beliefs on the Health Effects of Drug Interruptions

Notes: Results of a survey of 200 Medicare-age patients taking medications. The y-axis shows the cumulative
percentage of patients who believed a given type of health problem could result from interrupting consumption of
their medications. (Respondents were able to choose multiple problems, so each individual is assigned the most severe
problem, ordered from feeling worse to death.) The x-axis shows the minimum number of weeks until such a health
problem occurred. The exact wording of the questions was: “Patients often miss doses of their medications (research
has found that up to 57% of doses are missed). Imagine a situation where you missed doses of your own medications.
How long would it take before your risk of a serious health problem increased?” and “Think about the kinds of health
problems that could arise from missing your medications. Which of the following could happen?” Possible responses
were: “no change to your health”, “you feel worse on days you miss the medications”, “your chronic conditions get
worse, in a way that eventually harms your health”, “you need to be hospitalized”, “death”. 15 respondents selected
“no change to your health,” and thus do not contribute to the totals in the Figure.
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Panel A

Panel B

FIGURE II
Medicare Drug Benefit Design and Donut Hole Consequences

Notes: Panel A: Part D standard benefit design, adapted from Einav et al. (2015), using 2008 program details. The
initial coverage limit (ICL) is the budget cap where beneficiaries transition from initial coverage to the donut hole.
Panel B: Percentage of beneficiaries who enter the donut hole by the end of their first calendar year of enrollment,
by enrollment month. February enrollees appear on top (red), March-August enrollees in the middle (gray), and
September enrollees at the bottom (blue). The monthly pre-donut budget, the amount each beneficiary can spend
before entering the donut hole, is shown in parentheses beside the enrollment month.
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Panel A: Coverage Arm

Panel B: Drug Consumption

Panel C: Mortality

FIGURE III
Effect of Enrollment Month on End-of-Year Coverage Arm, Utilization, and Mortality

Notes: Panel A: Proportion of beneficiaries in a given coverage arm at year-end (y-axis), by enrollment month (x-
axis) and initial 90-day spending bin (sub-panels, left to right: Never-takers, Compliers, Defiers). Initial coverage is
omitted for clarity. Panel B: Drug-days filled in December (y-axis) by enrollment month and spending bin. Panel C:
December mortality (y-axis) by enrollment month and spending bin; some upper confidence intervals in the right-most
panel are truncated for visibility. The x-axis also shows monthly pre-donut budget for each month in parentheses.
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FIGURE IV
Distribution of ‘Placebo’ Estimates of Enrollment or Birth Month on Mortality

Notes: Regression estimates of the effect of enrollment month or birth month on mortality, for compliers (initial
spending in the 71-97th percentiles, measured in the first 90 days of enrollment), in a variety of settings: Non-dual
enrollees from age 66-85, dual enrollees from age 66-85, and disabled enrollees from age 50-64. Estimates are divided
by mean mortality in each sample to get a percentage change. This Figure pools all falsification tests together;
Appendix Figure B.1 provides further detail on the separate types of tests that contribute. Vertical lines show the
2.5 and 97.5 percentiles. The main (non-placebo) estimate is shown as a red dot.
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Panel A: Effect on Donut Hole Entry

Panel B: Effect on Drug Consumption

Panel C: Effect on Mortality

FIGURE V
Effects of Enrollment Month on Donut Hole Entry, Drug Consumption, and Mortality Over Time

Notes: Effects (and 95% confidence intervals) of enrollment month on key variables over time, for compliers (71-97th
percentiles of initial spending). Each point shows the result of a regression, one for each month from August of year
1 to May of year 2. December is shown in red. For months prior to December, we exclude those who have not
been enrolled for three months, in order to identify a similar group of compliers over time (e.g. September regression
includes February-June enrollees). Panel A: Effects on donut hole entry. Panel B: Effects on the total number of
drug-days supplied, summed over all drugs. Panel C: Effects on mortality.
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Appendix A Prices, Part D Design, and Enrollment

FIGURE A.1
Channels for Price Effects

Notes: This graph shows how enrollment month can affect December mortality through multiple price and forward-
looking behavior channels. Enrolling earlier leads to a higher price both in November and December. The higher
November price affects November consumption which in turn affects the December price due to the non-linear contract.
The higher December price affects consumption in December but may also affect November consumption if patients
respond to the future price. Additionally, prices in future months (usually higher, but lower in January of year 2 after
spending levels reset) may also affect the current month’s consumption, if patients are forward-looking. These issues
compound as we consider additional months (e.g. October). We are therefore unable to attribute health changes in
December to any single price or quantity.
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TABLE A.1
PART D COVERAGE ARM SPENDING THRESHOLDS AND COINSURANCE RATE BY YEAR

(1) (2) (3) (4)

Spending Threshold Gap Coinsurance Rate

Year Coverage Gap Catastrophic Generic Branded

2007 $2,400 $5,451 100% 100%
2008 $2,510 $5,726 100% 100%
2009 $2,600 $6,154 100% 100%
2010 $2,830 $6,440 100% 100%
2011 $2,840 $6,648 93% 50%
2012 $2,930 $6,658 86% 50%

Source: q1medicare.com

FIGURE A.2
Enrollment Timing by Birth Month

Notes: Each panel corresponds to a different birth month, and plots the percentage of beneficiaries (from that birth
month) enrolling in each of the 12 calendar months during the first year of Part D eligibility.
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FIGURE A.3
Effect of Enrollment Month on Donut Hole Entry, by Fine Bin of Initial Spending

Notes: Each point represents the linear coefficient from a regression performed within a percentile of initial 90-day
spending. The dependent variable is an indicator for ending year 1 in the donut hole, and the independent variable is
enrollment month (and the usual controls, which are not shown). Initial spending levels below the 71st percentile are
grouped into deciles because there is not enough variation in these levels of spending to define unique percentiles. The
first and second deciles are grouped together for the same reason. Coefficients on the horizontal line (at zero) indicate
no effect of enrollment month on donut hole incidence. Negative coefficients correspond to bins of initial spending
where later enrollment months are more likely to end up in the donut hole, and positive coefficients correspond to
bins where later enrollees are more likely to end up in the donut hole. We use these fine-binned estimates to create
the larger bins displayed in Figure III and subsequent tables. The colors in this figure match those in Figure III.
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TABLE A.2
BIRTH MONTH ESTIMATES

(1) (2)

Dec. Mortality Birth Month
Rate (p.p.) Estimate (p.p./mo)

Panel A: By Initial Spending

1-70th percentile 0.046 0.000258
(0.00224)

71-97th Percentile 0.127 -0.0137**
(0.00594)

98-100th percentile 0.285 0.055**
(0.0224)

Panel B: Mortality by birth month (71-97th %)

Feb. Mar. Apr. May. Jun Jul Aug Sep

0.185
(0.046)

0.176
(0.044)

0.147
(0.041)

0.144
(0.04)

0.088
(0.031)

0.11
(0.033)

0.069
(0.026)

0.108
(0.033)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: N= 358,706. In Panel A, present estimates of equation (2) where enrollment month is replace with birth
month. In Panel B, we report the mortality rates by birth month for those in the 71-97th percentiles of initial
spending. For both panels, we restrict to the subset of beneficiaries that enroll in their birth month (so enrollment
and birth month are the same).
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Appendix B Falsification Tests

We group our falsification checks into three categories, based on the population they draw on.

First, we extend the intuition of Figure V and follow our main sample for four years after the

first enrollment year. Specifically, we estimate equation 2 replacing December year 1 mortality

with monthly mortality from January year 2 to December to December of year 4 (36 estimates).

Regressions exclude those who died in a previous month. We also exclude those who are right-

censored (e.g. those enrolling in 2012 are excluded from year 3 regression). Note that this particular

exercise suffers from the fact that cost-sharing differences at the end of year 1 may lead to health

effects in subsequent months. However, we expect this would bias estimates towards our main

estimate (Table III). These estimates are shown in Appendix Figure B.1, Panel A.

Second, we focus exclusively on dual enrollees, who face little-to-no cost sharing for prescription

drugs so there are no differences in cost-sharing by birth month. As a result, they provide a very

useful comparison sample. Here, we pool all ages (66-85) together, but split the sample into subsets

based on observable characteristics. Concretely, we construct 5 samples based on spending ventiles,

2 samples based on gender (male/female), 2 based on race (white/non-white), and 37 based on

states. (Of note, we restrict to states with at least 10,000 observations in the dual sample.) For

each of the 46 sub-samples we regress December mortality on birth month. These estimates are

shown in Appendix Figure B.1, Panel B.

Finally, we turn to a larger sample of dual-eligibles ages 66-85, non-duals ages 66-85, and disabled

enrollees ages 50-64. In both the disabled and older non-dual populations, almost all individuals

are enrolled for the entire year and non-January enrollment is not driven by birth month, meaning

there are are also no birth-month driven cost-sharing variation. To mirror our design, which focuses

on a subset of high-spending individuals, we use claims from January-March to place enrollees into

the same three initial spending spending bins: 1-70th, 71-97th, and 98-100th percentiles. We then

estimate a total of 459 sample/month specific regressions (e.g. 66 year-old non-duals in December)

of monthly mortality on birth month interacted with spending bin. Because these populations lack

an observable enrollment month, we use birth month as a proxy. These estimates are shown in

Appendix Figure B.1, Panel C.
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Panel A: Main Sample, January Year 2–December Year 5

Panel B: Dual-Eligibles, by Geography & Demography

Panel C: Older Non-Dual & Dual, Younger Disabled

FIGURE B.1
Detail: Distribution of ‘Placebo’ Estimates of Enrollment or Birth Month on Mortality

Notes: Regression estimates of the effect of enrollment month or birth month on mortality, for compliers (based on
spending in the 71-97th percentiles, January-March), in a variety of settings. Panel A: 36 enrollment month effects
on monthly mortality in our main sample, restricted to compliers (initial spending in the 71-9th percentiles) from
January of year 2, to December of year 4. Panel B: 46 birth month effects on monthly mortality in dual eligibles, ages
66-85, split into subsets based on: male/female (2), white/non-white (2), spending quintile (5), and state (restricted
to states with at least 10,000 beneficiaries: 37). Panel C: 459 birth month effects from non dual enrollees from age
66-85, dual enrollees from age 66-85, and disables enrollees from age 50-64. Vertical lines show the 2.5 and 97.5
percentiles. The main (non-placebo) estimate is shown as a red dot.
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Appendix C Risk Prediction

We define 3 sets of drug–event pairs G: cardiovascular, diabetes, and pulmonary. For each of these

classes, we compile a list of observable adverse outcomes, YG: heart attack and stroke for cardio-

vascular medicines (ICD9 codes 410-411 and 433-435), diabetic complications (using the Diabetes

Complications Severity Index (Young et al., 2008), e.g., foot amputation) for diabetes medicines,

and pulmonary collapse requiring mechanical assistance (ICD9 codes 5188, 7991, 9604, and 9607)

for pulmonary medicines. We group medications into these classes using ATC3 codes.

We construct a sample of dual-eligible enrollees, where each observation is a beneficiary-year. We

define the outcome as an indicator for having a class of acute event (e.g., heart attack or stroke) over

April to December. We form a set of predictors including race, sex, state and drug filling behavior

(number of claims, total spending, ATC4 indicators) in the first 90 days of the year (roughly

January-March). In total this 1,770 features. We then define separate training samples for each

drug–event pair, restricting to those not treated with the particular medications in question (e.g.,

when predicting risk of heart attack or stroke, we exclude patients on statins, antihypertensives,

etc.). We do this to form a prediction on the risk of complications if untreated (i.e., in potential

outcomes notation, we wish to estimate Pr(YG0 = 1|X), not Pr(YG1 = 1|X). Naturally this choice

of prediction target also induces selection bias: we form predictions on YG0 in patients selected

into treatment status T = 0, but then wish to generate predictions on in patients with arbitrary

treatment status. In our setting, our predictions are likely to underestimate risk on average, because

doctors select patients into treatment T = 1 on the basis of higher risk. This is similar in spirit to

Mullainathan and Obermeyer (2022), who predict the yield of testing for heart attack in the tested,

and apply the model to generate predictions in the untested. We verify that, as a check of face

validity, risk increases in predicted risk for both groups (Figure C.1).

Our machine learning model consists of an ensemble of two predictors, LASSO (ℓ1-regularized

regression) and gradient boosted trees (a combination of multiple tree-based models, each fit to

the residual of the last). 70% of the sample is used to train the LASSO/gradient boosted models

and 10% is used to ensemble them via no-intercept OLS of the outcome on the individual model

predictions. We then validate the model using the final 20% of the sample. The model follows

Mullainathan and Obermeyer (2022) closely. We then apply this model to generate predictions in
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the main sample of 65 year-old beneficiaries (using the same predictors, measured in the first 90

days of enrollment). We make separate predictions for each (but use the same predictors for each).
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Panel A

Panel B

FIGURE C.1
Acute Event Risk Prediction Calibration and Capture

Notes: Panel A plots the actual event rate (for acute health events in each category, from days 90-360 of enrollment)
by decile of predicted risk (using data from the first 90-days) and treatment status. An individual in the sample is
considered treated if she fills a claim in the category in the first 90 days of enrollment. Panel B plots the cumulative
percent of actual events captured by each successive decile (e.g. 0.1 is top 10 percent of sample in terms of risk) and
treatment status. This figure uses only the stand alone PDP (non-MA) subsample for whom we observe Parts A
claims.
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Appendix D Effects of Cost-Sharing on Drug Consumption

Here, we provide evidence that the individuals that die in December exhibit similar utilization cut-

backs as the entire sub-sample of compliers. Estimates in table IV are based on both individuals

that survive and die in December. While we have no reason to expect the patterns to not hold in the

mortality sub-sample, we are able to address this potential concern directly. To do so, we compare

the utilization of early enrollees (February-May) to that of late enrollees (June-September) in the

1-30 days before death in December, to utilization in the 31-90 days before death. We hypothesize

that early enrollees and later enrollees have (more) similar utilization 2-3 months before death, but

that early enrollees have substantially lower utilization in the 1-30 days before death. Days filled by

enrollment/pre-death timing along with a difference-in-difference estimate are presented in Table

D.1 below. In the 31-90 days before death, early and late enrollees fill an almost identical amount of

days per-month (148.0 vs 148.4). In the 30 days before death however, early enrollees fill only 101.9

days compared to the 130.0 days filled by late-year enrollees. This gives us a difference in differences

estimates of 27.6 days filled. Scaling this by the average difference in the pre-donut budget between

early and late year enrollees ($234), gives us an estimate of 11.8 days per $100/month of pre-

donut budget. In conclusion, we observed the same, if not larger, utilization cut-backs in the death

sub-sample as in the broader sample of compliers.
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TABLE D.1
UTILIZATION CUTBACKS IN DECEMBER DEATHS

(1) (2) (3)

Days Filled

Late Enrollees Early Enrollees Diff-in-Diff
(June-September) (February-May) Estimate

31-90 days before death (÷2) 148.4
(12.3)

148
(10.7)

1-30 days before death 130
(16.2)

101.9
(13.5)

Difference 46.06
(17.23)

18.44
(20.41)

27.61
(26.71)

Notes: Column (1) presents mean days filled for those in the 71-97th percentiles of initial spending, that enrolled in
June-September, and died in December of year 1, for the 31-90, and 1-30 days before death. Column (2) presents
the same but for those that enrolled between February-May. Column (3) presents a difference in differences estimate
which captures how much more early enrollees cut-back prior to death in December than late enrollees.
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TABLE D.2
UTILIZATION RESPONSE BY RISK AND INCOME

(1) (2) (3) (4) (5) (6)

Pre-Donut Budget Effect (Days/100$)

All Bottom 2/3 Income Top 1/3 Income

Mean Est. (S.E.) Mean Est. (S.E.) Mean Est. (S.E.)

All Classes 126.40 4.93***
(0.289) 129.20 4.8***

(0.36) 121.30 5.2***
(0.493)

Cardiovascular 50.20 1.42***
(0.157) 51.00 1.4***

(0.193) 48.80 1.43***
(0.275)

Diabetes 10.20 0.618***
(0.0701) 11.00 0.623***

(0.0875) 8.60 0.567***
(0.118)

Respiratory 5.30 0.459***
(0.0453) 5.40 0.482***

(0.0564) 5.00 0.433***
(0.0776)

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: N = 352,454. In column (1) we present the mean number of December days filled for all drugs and by broad
class, for those in the 71-97th percentiles of initial spending. In column (2) present regression estimates (and robust
standard errors) of days filled in December on the pre-donut budget (in $100s of dollars). Cardiovascular classes
include statins, beta-blockers, ACE inhibitors, calcium channel blockers, angiotensin receptor blockers, and thiazide
diuretics. Diabetes drugs include both insulin along with oral hypoglycemic agents. Respiratory drugs are drugs for
obstructive airway diseases. In columns (3) through (6) we present means and regression estimates separately by
quantile of five-digit zip code median income (from the American Community Survey). We exclude individuals for
whom the American Community Survey has missing income for their zip code.
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TABLE D.3
DEMAND RESPONSE: COMPARISON TO LITERATURE

(1) (2) (3)

Chandra et al.
Our Estimate (95% CI)
(2SLS, Claims per $) PPO HMO

Overall
Number of claims -0.0377 (-0.0408, -0.0346) -0.0143 -0.0387

Our Estimate (95% CI)
(2SLS, % with claims per $) Choudhry et al. Einav et al.

By Class
ACE or ARB -0.0051 (-0.0062, -0.004) -0.0043
Beta Blockers -0.0043 (-0.0062, -0.0023) -0.0032 -0.0034
Statins -0.003 (-0.0036, -0.0024) -0.0022 -0.0028

Notes: Here, we attempt to present demand response estimates on the same scale as three key previous studies. To
generate comparable estimates, we set up a two-stage least squares—with all the caveats that enrollment month can
affect utilization via many mechanisms, of which this is just one—that uses the December price in dollars (either
overall or class specific) per fill as the endogenous variable. In Chandra et al. (2010), the authors present demand
response estimates from two policy changes for different types of plans (HMO and PPO), hence the two columns here.
Einav et al. (2018) report elasticities instead of a derivative; we multiply the elasticities reported in their study by P

Q

(estimated in our sample) to obtain a comparable derivative to the one we estimate. For Choudhry et al. (2011), we
simply divide the quantity change in utilization for a class by the average copayment amount (prior to intervention,
which erased copayments).
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