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Abstract

The rise of information technology and big data analytics has given rise to “the new econ-

omy.” But are its economics new? This article constructs a growth model where firms accumulate

data, instead of capital. We incorporate three key features of data: 1) Data is a by-product

of economic activity; 2) data is information used for prediction, and 3) uncertainty reduction

enhances firm profitability. The model can explain why data-intensive goods or services, like

apps, are given away for free, why many new entrants are unprofitable and why some of the

biggest firms in the economy profit primarily from selling data. While our transition dynamics

differ from those of traditional growth models, the long run still features diminishing returns.

Just like accumulating capital, accumulating predictive data, by itself, cannot sustain long-run

growth.

1 Introduction

Does the new information economy have new economics? In the information age, production

increasingly revolves around information and, specifically, data. Many firms, particuarly the most

valuable U.S. firms, are valued primarily for the data they have accumulated. Collection and use of

data is as old as book-keeping. But recent innovations in data-intensive prediction technologies (AI)

allow us to use more data more efficiently. How will this new data economy evolve? Because data

is non-rival, increases productivity and is freely replicable (has returns to scale), current thinking
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equates data growth with idea or technological growth. This article uses a simple framework to

argue that data accumulation has forces of increasing and decreasing returns, as well as returns to

specialization. But in the long run, data accumulation is more like capital accumulation, which, by

itself, cannot sustain growth.

Data is information that can be encoded as a binary sequence of zeroes and ones. That broad

definition includes literature, visual art and technological breakthroughs. We are focusing more

narrowly on big data, defined as that data which is being analyzed by machine learning, AI or

new big data technologies. The reason we focus on big data is because of claims that new big

data technologies will spawn a new information age or economy, and the fact that an explosion

of data accumulation has coincided with the arrival of this technology. Big data technologies, like

machine learning and artificial intelligence, are prediction algorithms. Such algorithms predict the

probability of a high demand for a good on a day, a picture being a cat, or advertisement resulting

in a sale. Much of the data firms use for these predictions is transactions data. It is personal

information about online buyers, satellite images of traffic patterns near stores, textual analysis

of user reviews, click through data, and other evidence of economic activity. Such data is used to

forecast sales, earnings and the future value of firms and their product lines. Big data is also used

to advertise, which may create social value or might simply steal business from other firms. We

will consider both possibilities. But the essential features of the data production economy modeled

in Section 1 are user-generated data that is a long-lived asset, used to predict uncertain future

outcomes.

Section 2 performs a thought experiment, which is a data parallel to the question Solow (1956)

asks about capital: Can data sustain growth, in the absence of any technological progress? To

answer this question, the model will shut down all sources of technological change. Of course, this

is unrealistic. Of course, data can be an input into research, just like capital can be an input into

research, and thereby boost growth. But understanding whether data alone can sustain growth

shapes our understanding of data, just like Solow’s finding shaped our understanding of investment’s

role in economic development.

We prove and trace out the consequences of three properties of data as an asset: 1) decreasing

returns, 2) increasing returns, and 3) returns to specialization. Diminishing returns comes from

data’s role in improving predictions. Prediction errors can only be reduced to zero. That places a
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natural bound on how much prediction error data can possibly resolve. In addition, unforecastable

randomness limits how much firms can benefit from better data and better predictions. Both of

these forces ensure that, when data is abundant, it must have diminishing returns, in a broad class

of models.

However, when data is scarce, it may have increasing returns, which arise because of the way in

which data is produced. Our model features what is referred to as a “data feedback loop.” More data

makes a firm more productive, which results in more production and transactions, which generate

more data, further increasing productivity and data generation. This force is the dominant force

when data is scarce, before the diminishing returns to forecasting set in and overwhelm it. One

reason this increasing returns force is significant is that it can generate a data poverty trap. Firms,

industries, or countries may have low levels of data, which confine them to low levels of production

and transactions, which make profits low, or even negative.

Because data is a long-lived asset, firms may choose to produce goods with negative profits,

because goods production will also produce data, which is an asset with long-lived value. This

rationalizes the commonly-observed practice of data barter. Many digital services, like apps, which

were costly to develop, are given away to customers at zero price. This is not generosity. Firms

are exchanging these services for their customers’ data. The exchange of data for a service, at a

zero monetary price, is a classic barter trade. Such trades can arise in our model: Firms give away

their goods, as a form of costly investment in data.

Finally, a data economy may feature specialization. In some circumstances, large firms that

have a comparative advantage in data production, derive most of their profit from data sales.

Meanwhile, small firms have a comparative advantage in high-quality goods production. Therefore,

the large firms produce high volumes of low-price goods, in order to produce data and sell it to

small firms, that produce higher-quality goods. The business model of these large firms is to do

lots of transactions at a low price and earn more revenue from data sales. While we know that

many firms execute a strategy like this, it is different from a capital accumulation economy and

suprising that such a strategy arises from simple economic properties of data as information.

The primary contribution of the paper is not the particular predictions we explore. Some of

those predictions are more obvious, some more suprising. The larger contribution is a tool to think

clearly about the economics of aggregate data accumulation. Because our tool is a simple one,
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many applications and extensions are possible. Section 3 describes applications ranging from the

distribution of firm size, to economic development, to finance.

The model also offers guidance for measurement. Measuring and valuing data is complicated by

the fact that frequently, data is given away, in exchange for a free digital service. Our model makes

sense of this pricing behavior and assigns a value to goods and data that have a zero transactions

price. In so doing, it moves beyond price-based valuation, which often delivers misleading answers

when valuing digital assets.

Our result should not be interpreted to mean that data does not contribute to growth. It

absolutely does, just like capital investment does. If ideas continue to improve, then data will help

us find the most efficient uses of these new ideas. The accumulation of data may even reduce the

costs of technological innovation by reducing its uncertainty, or increase the incentives for innovation

by increasing the payoffs. The point is that being non-rival, freely replicable and productive is not

enough for data alone to sustain growth. We still need innovation for that.

Related Literature. In the growth literature, our model builds on Jones and Tonetti (2018).

They explore how different data ownership models affect the rate of growth of the economy. The

key difference in our model is that data is information, used to forecast a random variable. In Jones

and Tonetti (2018) and related work Cong et al. (2020), data contributes directly to productivity.

It is not information. A fundamental characteristic of information is that it reduces uncertainty

about something. When we model data as information, not technology, Jones and Tonetti (2018)’s

conclusions about the benefits of data privacy may still hold. But instead of long-run growth, there

is long-run stagnation.

In models of learning-by-doing (Jovanovic and Nyarko (1996), Oberfield and Venkateswaran

(2018)) and organizational capital Atkeson and Kehoe (2005), firms also accumulate a form of

knowledge. But the economics differ. Unlike prediction data, this knowledge need not have long-

run diminishing returns. Also, it is not a tradeable asset. Our short-run increasing return to data

differs from growth models with increasing returns Farmer and Benhabib (1994), because those are

based on positive spillovers between firms. Ours is a feedback loop within a firm.

Work on information frictions in business cycles (Caplin and Leahy (1994), Veldkamp (2005),

Lorenzoni (2009), Ordonez (2013), Ilut and Schneider (2014) and Fajgelbaum et al. (2017)) have
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early versions of a data-feedback loop whereby more data enables more production, which in turn,

produces more data. In each of these models, information was a by-product of economic activity;

firms used this information to reduce uncertainty and guide their decision-making. But the key

difference is that information was a public good, not a private asset. The private asset assumption

in this paper changes firms’ incentives to produce data. In these earlier models, firms use data to

forecast business cycles, not optimal firm strategy. We model data that is industry or firm specific,

and is private property of the firm.

Work exploring the interactions of data and innovation complements ours. For example, Agrawal

et al. (2018) develop a combinatorial-based knowledge production function and embed it in the

classic Jones (1995) growth model to explore how breakthroughs in AI could enhance discovery

rates and economic growth.1 Our work analyzes big data and new prediction algorithms, in the

absence of technological change. Once we understand this foundation, one can layer these insights

about data and innovation on top.

In the finance literature, Begenau et al. (2018) explore how growth in the processing of financial

data affects firm size. They do not model firms’ use of their own data. There is also a literature on

data-driven decision making, which explores how data matters at a microeconomic level. We add

the aggregate effects of such activities.

Finally, the insight that the stock of knowledge can serve as a state variable comes from the five-

equation toy model sketched in Farboodi et al. (2019). That was a partial-equilibrium numerical

exercise, designed to explore the size of firms with heterogeneous data. This paper builds an

aggregate equilibrium model that we solve analytically, with richer features and explores different

questions. The new features, including a market for data, non-rival data, and adjustment costs are

not mere whistles and bells. These new margins shape the answers to our main questions about

aggregate dynamics and long-run outcomes.

1Other work in the vein includes:Lu (2019) who embeds self-accumulating AI in a Lucas (1988) growth model
and examines growth transition paths and welfare; Aghion et al. (2017) who explore the reallocative effects of AI, as
Baumol (1967)’s cost disease leads to the declining share of traditional industries’ GDP.
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2 A Data Economy Growth Model

The model looks much like a simple Solow (1956) model. To isolate the effect of data accumulation,

the model holds fixed productivity, aside from that which results from data accumulation. There

are inflows of data from new economic activity and outflows, as data depreciates. The depreciation

comes from the fact that firms are forecasting a moving target. Economic activity many periods

ago was quite informative about the state at the time. However, since the state has random drift,

such old data is less informative about what the state is today.

The key differences between our data accumulation model and Solow’s capital accumulation

model are three-fold: 1) Data is used for forecasting; 2) data is a by-product of economic activity,

and 3) data is, at least partially, non-rival. Multiple firms can use the same data, at the same time.

These subtle changes in model assumptions are consequential. They alter the source of diminishing

returns, create increasing returns and data barter, and produce returns to specialization.

2.1 Model

Real Goods Production Time is discrete and infinite. There is a continuum of competitive

firms indexed by i. Each firm can produce kαi,t units of goods with ki,t units of capital. These goods

have quality Ai,t. Thus firm i’s quality-adjusted output is

yi,t = Ai,tk
α
i,t (1)

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory components: θt+ εa,i,t. Neither

component is separately observed. The persistent component θt follows an AR(1) process: θt =

θ̄ + ρ(θt−1 − θ̄) + ηt. The AR(1) innovation ηt ∼ N(0, σ2
θ) is i.i.d. across time.2 The transitory

shock εa,i,t is i.i.d. across time and firms and is unlearnable.

The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

2One might consider different possible correlations of ηi,t across firms i. An independent θ processes
(corr(ηi,t, ηj,t) = 0, ∀i 6= j) would effectively shut down any trade in data. Since buying and selling data hap-
pens and is worth exploring, we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). It is also possible to
achive an imperfect, but non-zero correlation.
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technique θt + εa,i,t:

Ai,t = Ā− (ai,t − θt − εa,i,t)2 (2)

Data The role of data is that it helps firms to choose better production techniques. One in-

terpretation is that data can inform a firm whether blue or green cars or white or brown kitchens

will be more valued by their consumers, and produce or advertise accordingly. In other words, a

technique could represent a resource allocation. Transactions help to reveal customers’ marginal

values, but these values are constantly changing. Firms must continually learn to catch up. An-

other interpretation is that the technique is inventory management, or other cost-saving activities.

Observing production and sales processes at work provides useful information for optimizing busi-

ness practices. For now, we model data as welfare-enhancing. We relax that assumption in Section

3.

Specifically, data is informative about θt. The role of the temporary shock εa is that it prevents

firms, whose payoffs reveal their productivity Ai,t, from inferring θt at the end of each period.

Without it, the accumulation of past data would not be a valuable asset. If a firm knew the value

of θt−1 at the start of time t, it would maximize quality by conditioning its action ai,t on period-t

data ni,t and θt−1, but not on any data from before t. All past data is just a noisy signal about

θt−1, which the firm now knows. Thus preventing the revelation of θt−1 keeps old data relevant

and valuable.

The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t, (3)

where zi is the parameter that governs how much data a firm can mine from its customers. A data

mining firm is one that harvests lots of data per unit of output.

Each data point m ∈ [1 : ni,t] reveals

si,t,m = θt+1 + εi,t,m, (4)
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where εi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all the shocks

in the model are normally distributed: fundamental uncertainty is ηt ∼ N(µ, σ2
θ), signal noise is

εi,t,m ∼ N(0, σ2
ε ), and the unlearnable quality shock is εa,i,t ∼ N(0, σ2

a).

Data Trading and Non-Rivalry Let δi,t be the amount of data traded by firm i a time t. If

δi,t < 0, the firm is selling data. If δit > 0, the firm purchased data.3 We restrict δi,t ≥ −ni,t so

that a firm cannot sell more data than it produces. Let the price of one piece of data be denoted

πt.

Of course, data is non-rival. Some firms use data and also sell that same data to others. If there

were no cost to selling one’s data, then every firm in this competitive, price-taking environment

would sell all its data to all other firms. In reality, that does not happen. Instead, we assume that

when a firm sells its data, it loses a fraction ι of the amount of data that it sells to each other firm.

Thus if a firm sells an amount of data δi,t < 0 to other firms, then the firm has ni,t + ιδi,t data

points left to add to its own stock of knowledge. Recall that for a data seller, ιδ < 0 so that the firm

has less data than the ni,t points it produced. This loss of data could be a stand-in for the loss of

market power that comes from sharing one’s own data. It can also represent the extent of privacy

regulations that prevent multiple organizations from using some types of personal data. Another

interpretation of this assumption is that there is a transaction cost of trading data, proportional

to the data value. If the firm buys δi,t > 0 units of data, it adds ni,t + δi,t units of data to its stock

of knowledge.

Data Adjustment and the Stock of Knowledge The information set of firm i when it

chooses its technique ai,t is4 Ii,t = [{Ai,τ}t−1
τ=0; {{si,τ,m}

ni,τ
m=1}

t−1
τ=0]. To make the problem recursive

and to define data adjustment costs, we construct a helpful summary statistic for this information,

called the “stock of knowledge.”

Each firm’s flow of ni,t new data points allows it to build up a stock of knowledge Ωi,t that it

uses to forecast future economic outcomes. We define the stock of knowledge of firm i at time t

to be Ωi,t. We use the term “stock of knowledge” to mean the precision of firm i’s forecast of θt,

3This formulation prohibits firms from both buying and selling data in the same period.
4We could include aggregate output and price in this information set as well. We explain in the model solution

why observing aggregate variables makes no difference in the agents’ beliefs. Therefore, for brevity, we do not include
these extraneous variables in the information set.
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which is formally:

Ωi,t := Ei[(Ei[θt|Ii,t]− θt)2]−1. (5)

Note that the conditional expectation on the inside of the expression is a forecast. It is the firm’s

best estimate of θt. The difference between the forecast and the realized value, Ei[θt|Ii,t] − θt, is

therefore a forecast error. An expected squared forecast error is the variance of the forecast. It’s

also called the variance of θ, conditional on the information set Ii,t, or the posterior variance. The

inverse of a variance is a precision. Thus, this is the precision of firm i’s forecast of θt.

Data adjustment costs capture the idea that a firm that does not store or analyze any data

cannot freely transform itself to a big-data machine learning powerhouse. That transformation

requires new computer systems, new workers with different skills, and learning by the management

team. As a practical matter, data adjustment costs are important because they make dynamics

gradual. If data is tradeable and there is no adjustment cost, a firm would immediately purchase

the optimal amount of data, just as in models of capital investment without capital adjustment

costs. Of course, the optimal amount of data might change as the price of data changes. But such

adjustment would mute some of the dynamics we are interested in.

We assume that, if a firm’s data stock was Ωi,t and becomes Ωi,t+1, the firm’s period-t output

is diminished by Ψ(∆Ωi,t+1) = ψ(∆Ωi,t+1)2, where ψ is a constant parameter and ∆ represents the

percentage change: ∆Ωi,t+1 = (Ωi,t+1 − Ωi,t)/Ωi,t. The percentage change formulation is helpful

because it makes doubling one’s stock of knowledge equally costly, no matter what units data is

measured in.

Firm’s Problem A firm chooses a sequence of production, quality and data-use decisions

ki,t, ai,t, δi,t to maximize

E0

∞∑
t=0

(
1

1 + r

)t (
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t

)
(6)

Firms update beliefs about θt using Bayes’ law. Each period, firms observe last period’s revenues

and data, and then choose capital level k and production technique a. The information set of firm

i when it chooses its technique ai,t and its investment ki,t is Ii,t.

As in Solow (1956), we take the rental rate of capital as given. This reveals the data-relevant
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mechanisms as clearly as possible. It could be that this is an industry or a small open economy,

facing a world rate of interest r.

Equilibrium Pt denotes the equilibrium price per quality unit of goods. In other words, the price

of a good with quality A is APt. The inverse demand function and the industry quality-adjusted

supply are:

Pt = P̄ Y −γt , (7)

Yt =

∫
i
Ai,tk

α
i,tdi. (8)

Firms take the industry price Pt as given and their quality-adjusted outputs are perfect substitutes.

2.2 Solution

The state variables of the recursive problem are the prior mean and variance of beliefs about θt−1,

last period’s revenues, and the new data points. However, we can simplify this to one sufficient

state variables to solve the model simply. The next steps explain how.

Optimal Technique and Expected Quality Taking a first order condition with respect to

the technique choice, we find that the optimal technique is a∗i,t = Ei[θt|Ii,t]. Thus, expected quality

of firm i’s good at time t in (2) can be rewritten as E[Ai,t] = Ā − E
[
(Ei[θt|Ii,t]− θt − εa,i,t)2

]
.

The second term is an expected squared forecast error, or equivalently, a conditional variance, of

θt + εa,i,t. That conditional variance is denoted Ω−1
i,t + σ2

a. Therefore, the expected quality of firm

i’s good at time t in (2) can be rewritten again as Ei[Ai,t] = Ā− Ω−1
i,t − σ2

a.

Notice that the way signals enter in expected utility, only the variance (or precision) matters,

not the prior mean or signal realization. As in Morris and Shin (2002), precision, which in this case

is the stock of knowledge, is a sufficient statistic for expected utility and therefore, for all future

choices. The quadratic loss, which eliminates the need to keep track of signal realizations, simplifies

the problem greatly.

The Stock of Knowledge Since the stock of knowledge Ωi,t is the sufficient statistic to keep

track of information and its expected utility, we need a way to update or keep track of how much
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of this stock there is. Lemma 1 is just an application of Bayes’ law, or equivalently, a modified

Kalman filter, that tell us how the stock of knowledge evolves from one period to the next.

Lemma 1 Evolution of the Stock of Knowledge In each period t,

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+
(
ni,t + δi,t(1δi,t>0 + ι1δi,t<0)

)
σ−2
ε (9)

The proof of this lemma and of all the lemmas and propositions that follow are in Appendix

A. Lemma 1 says that the stock of knowledge is the depreciated stock from the previous period t,

plus new data inflows.

The inflows of data are new pieces of data that are generated by economic activity. The number

of new data points ni,t is assumed to be data mining ability times end of period physical output:

zik
α
i,t. By Bayes’ law for normal variables, the total precision of that information is the sum of the

precisions of all the data points: ni,tσ
−2
ε . The term σ−2

a in (9) is the additional information learned

from seeing one’s own realization of quality Ai,t, at the end of period t. That information also gets

added to the stock of knowledge. At the firm level, we need to keep track of whether a firm buys

or sells data. Thus the newly added stock of data ni,t has to be adjustd for data trade. That is the

role of the indicator functions at the end of (9).

One might wonder why firms do not also learn from seeing aggregate price and the aggregate

output. These obviously reflect something about what other firms know. But what they reflect is

the squared difference between θt and other firms’ technique ajt. That squared difference reflects

how much others know, but not the content of what others know. Because the mean and variance

of normal variables are independent, knowing others’ forecast precision reveals nothing about θt.

Seeing one’s own outcome Ai,t is informative only because a firm also knows its own production

technique choice ai,t. Other firms’ actions are not observable. Therefore, aggregate prices or quan-

tities reveal what other firms predicted well, which conveys no useful information about whether

θt is high or low.

How does data flow out or depreciate? Data depreciates because data generated at time t is

about next period’s optimal technique θt+1. That means that data generated s periods ago is about

θt−s+1. Since θ is an AR(1) process, it is constantly evolving. Data from many periods ago, about

a θ realized many periods ago, is not as relevant as more recent data. So, just like capital, data
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depreciates. Mathematically, the depreciated amount of data carried forward from period t is the

first term of (9):
[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The Ωi,t+σ

−2
a term represents the stock of knowledge

at the start of time t plus the information about period t technique revealed to a firm by observing

its own output. This stock of knowledge is multiplied by the persistence of the AR(1) process

squared, ρ2. If the process for optimal technique θt was perfectly persistent then ρ = 1 and this

term would not discount old data. If the θ process is i.i.d. ρ = 0, then old data is irrelevant for the

future. Next, the formula says to invert the precision, to get a variance and add the variance of the

AR(1) process innovation σ2
θ . This represents the idea that volatile θ innovations make knowledge

about past θ’s less relevant. Finally, the whole expression is inverted again so that the variance

is transformed back into a precision. This precision represents a (discounted) stock of knowledge.

The depreciation of knowledge is the period-t stock of knowledge, minus the discounted stock.

At the aggregate level, an economy as a whole cannot buy or sell data. Therefore, for the

aggregate economy,

Inflows: Ω+
t = σ−2

ε

∫
i
zik

α
i,tdi+ σ−2

a (10)

Outflows: Ω−t = Ωt + σ−2
a −

∫
i

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
di. (11)

A One-State-Variable Problem We can now express expected firm value recursively, with

the stock of knowledge as the single state variable in the following lemma.

Lemma 2 The optimal sequence of capital investment choices {ki,t} and data sales {δi,t ≥ −ni,t}

solve the following recursive problem:

V (Ωi,t) = max
ki,t,δi,t

Pt

(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t

+

(
1

1 + r

)
V (Ωi,t+1) (12)

where ni,t = zik
α
i,t and the law of motion for Ωi,t is given by (9).

This result greatly simplifies the problem by collapsing it to a deterministic problem with choice

variables k and δ and one state variable, Ωi,t. In expressing the problem this way, we have already

substituted in the optimal choice of production technique. The quality Ai,t that results from the
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optimal technique depends on the conditional variance of θt. Because the information structure is

similar to that of a Kalman filter, that sequence of conditional variances is deterministic.

The non-rivalry of data acts like a kinked price of data, or a negative transactions cost in (9).5

Valuing Data Since Ωi,t can be interpreted as a discounted stock of data, V (Ωi,t) captures

the value of this data stock. V (Ωi,t)− V (0) is the present discounted value of the net revenue the

firm receives because of its data. Therefore, the marginal value of one additional piece of data, of

precision 1, is simply ∂Vt/∂Ωi,t. When we consider markets for buying and selling data, ∂Vt/∂Ωi,t

represents the firm’s demand, its marginal willingness to pay for data.

3 Long-Run and Short-Run Growth of a Data Economy

In this section, we establish key properties of growth in this data economy. The first set of results

involve the long-run growth of the data economy. We start by showing that within the model, there

is no long run growth. We then move to results that describe general conditions under which data

used for forecasting can sustain infinite growth. These results are not model-specific. They do not

prove that data-driven growth is not possible. Rather, if one believes that the accumulation of data

for forecasting can sustain growth forever, there are some logically equivalent statements that one

must also accept. The second set of results demonstrate that data can create firm-level increasing

returns, in the short run.

3.1 Diminishing Returns and Zero Long Run Growth

Just like we typically teach the Solow (1956) model by examining the inflows and outflows of capital,

we can gain insight into our data economy growth model by exploring the inflows and outflows of

data. Figure 1 illustrates the inflows and outflows (eq.s 10 and 11), in a form that looks just

like the traditional Solow model with capital accumulation. What we see on the left is the large

distance between inflows and outflows of data, when data is scarce. This is a period of fast data

accumulation and fast growth in the quality and value of goods. What we see on the right is the

5To see the kinked price interpretation more clearly, redefine the choice variable to be ω, the amount of data added
to a firm’s stock of knowledge Ω. Then, ω = ni,t + δi,t for data purchases (δi,t > 0) and ω = ni,t + ιδi,t for data sales
when δi,t < 0. Then, we could re-express this problem as a choice of ω and a corresponding price that depends on
whether ω ≥ ni,t or ω < ni,t.
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Figure 1: Economy converges to a data steady state: Aggregate inflows and outflows of data.
Line labeled inflows plots the quantity in (10) for the aggregate economy, for different levels of initial data stock.
Line labeled outflows plots the quantity in (11). This is equivalent to the outflow and inflow for a representative firm
i who operates in an economy populated with identical firms with no trade. The representative firm makes optimal
capital decision k∗i,t, with different levels of initial data stock.

distance between inflows and outflows diminishing, which represents growth slowing. Eventually,

inflows and outflows cross at the steady state. If the stock of knowledge ever reached its steady

state level, it would no longer change, as inflows and outflows just balance each other. Likewise,

quality and GDP would stop growing.

One difference between data and capital accumulation is the nature and form of depreciation.

In the Solow model of capital accumulation, depreciation is a fixed fraction of the capital stock,

always linear. In the data accumulation model, depreciation is not linear, but is very close to

linear. Lemma 5 in the Appendix shows that depreciation is approximately linear in the stock of

knowledge, with an error bound that depends primarily on the variance of the innovation in θ.

Inflows have diminishing returns because returns to data are bounded. With infinite data, all

learnable uncertainty about θ can be resolved. With a perfect forecast of θ, the expected good

quality is
(
Ā− σ2

a

)
, which is finite. 6 Thus, the optimal capital investment is finite. Since a

function that is continuous and not concave will always cross any finite upper bound, productivity,

investment and data inflows must all be concave in the stock of knowledge Ω.

6it is also true that inflow concavity comes from capital having diminishing returns. The exponent in the production
function is α < 1. But that is a second force. Even if capital did not have diminishing marginal returns, inflows
would still exhibit concavity.
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Figure 2: Aggregate growth dynamics: Data accumulation grows knowledge and output over time,
with diminishing returns. Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, γ = 0.1, A = 1, P = 1, σ2

a =
0.05, σ2

θ = 0.5, σ2
ε = 0.1, z = 5, ι = 1 . See appendix B for details of parameter selection and numerical solution of the

model.

What diminishing returns means for a data-accumulation economy is that, over time, the aggre-

gate stock of knowledge and aggregate amount of output would have a time path that resembles the

concave path in Figure 2. Without idea creation, data accumulation alone would generate slower

and slower growth.

Conceptually, diminishing returns arise because we model data as information, not directly as an

addition to productivity. Information has diminishing returns because its ability to reduce variance

gets smaller and smaller as beliefs become more precise. Of course, mathematically, diminishing

returns is hard-wired into the model by imposing Ā as the upper bound on productivity. That

raises the question of how general this result is. The next set of results speak to the generality and

justify the mathematical form we adopt.

Long Run Growth Impossibility Results One might be concerned that diminishing returns

is a remnant of the quadratic loss assumption, or some other functional form. Here, we consider

an abstract economy, where the assumptions we impose are that data is used to forecast future

outcomes and that productivity is not growing from sources other than improved forecasts. If there

is sustained growth arising from such an economy two things must be true: 1) Perfect foresight

implies infinite real output; and 2) the future is a deterministic function of today’s observable data.

Both appear implausible.
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The point is not that data is unproductive. The point is that absent any technological progress,

better forecasts are not a tool that can logically sustain long-run growth.

Consider an economy, where data is used to forecast random outcomes. Let Γt represent the

distribution of firms’ stock of knowledge Ωi,t at time t. For a continuum of firms, Γt encapsulates

exactly what measure of firms have how much data, or more specifically, how much forecast preci-

sion, when they forecast θt. There is a finite-valued mapping f(Γt) that maps the forecast precision

of all firms into output (or, it could be a mapping into quality-adjusted output AtYt). f(Γt) defines

a “data economy.” The fixed nature of the f function represents the assumption that productivity

is fixed. Then the following results must hold for data accumulation to sustain a minimal positive

rate of aggregate output growth.

Proposition 1 Perfect Foresight Must Deliver Infinite Output A data economy with

output Yt = f(Γt) can sustain an aggregate growth rate of output ln(Yt+1) − ln(Yt) that is greater

than any lower bound g > 0, in each period t, only if perfect foresight Ωi,t = ∞ for some firm i

implies infinite output yi,t =∞.

From a mathematical perspective, this result is perhaps obvious. But it is economically signif-

icant for two reasons. First, there are many models with perfect foresight. None generate infinite

real economic value. Second, if society as a whole knows tomorrow’s state, they can simply produce

today what they would otherwise be able to produce tomorrow.

Furthermore, the feasibility of perfect foresight is dubious, as the next result shows.

Proposition 2 Data-Driven Growth Implies Deterministic Future Suppose aggregate

output is a finite-valued function of each firm’s forecast precision: Yt = f(Γt), and all data points

si,t,m are t-measurable signals about some future event θt+1.Sustained aggregate growth ln(Yt+1)−

ln(Yt) ≥ g > 0 requires that future events θt+1 are t-deterministic: θt+1 is a deterministic function

of the time-t sigma algebra of past events.

This result is significant because it illustrates why forecast precisions should not become infinite

(no perfect foresight). Infinite precision implies no un-forecastable noise. In other words, perfect

foresight (Ωi,t =∞) is not consistent with the existence of fundamental randomness. If there is no

un-forecastable component of the future state, that means the future state is deterministic. Perfect
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forecasting requires that the future event is a deterministic function of observable information today.

If the mapping is not deterministic, then the forecast has randomness, or noise and is not perfect.

Thus, if one believes some events tomorrow are truly random today, then one must logically

accept a finite upper bound on precision. A finite upper bound implies diminishing marginal

returns: any function without this property would violate the upper bound.

Taken together, these results suggests two distinct reasons why one might be skeptical of long-

run, data-driven growth. The first reason is that perfect forecasts might not create infinite output.

The second reason is that a perfect forecast implies that future events are deterministic functions

of past events. Proving such determinism is well beyond the scope of economics.

3.2 Increasing Returns in the Short Run

While the previous results focused on diminishing returns, the other force at work is increasing

returns. Increasing returns arise from the data feedback loop: A firm with more data produces

higher-quality goods, which induces them to invest more, produce more, and sell more. This, in

turn, generates more data for them. That feedback causes aggregate knowledge accumulation to

accelerate. The feedback loop competes against diminishing returns. Diminishing returns always

dominate when data is abundant; the previous results about the long run were unambiguous. But

when firms are young, or data is scarce, increasing returns can be strong enough to create an

increasing rate of growth. While that sounds positive, it also creates the possibility of a firm

growth trap, with very slow growth, early on the in the lifecycle of a new firm.

While we have been talking about symmetric firms that do not trade data, we now relax the

symmetry assumption to allow for data trade. We consider a setting were all firms are in steady

state. Then, we drop in one, atomless, low-data (low Ωi,t) firm and observe its transition. From

this exercise, we learn about barriers to new firm entrants.

Before stating the formal result, we need to define net data flow. Recall that aggregate data

inflows Ω+
t are the total precision of all new data points at t (eq. 10). Aggregate data outflows

Ω−t are the end-of-period-t stock of knowledge minus the discounted stock (eq. 11). We can define

the data flows as the difference between data inflows and outflows. At the aggregate level, this is

dΩt = dΩ+
t − dΩ−t . At he individual level, data flows are defined using the individual version of

equations (10)-(11), which incorporates data trade: dΩi,t = dΩ+
i,t−dΩ−i,t. Proposition 3 states when

17



a single firm entering faces increasing and then decreasing rates of net data flow.

Proposition 3 S-Shaped Accumulation of Knowledge When all firms are in steady state,

except for one firm i, then the firm’s net data flow dΩi,t

1) increases with the stock of knowledge Ωi,t when that stock is low, Ωi,t < Ω̂, when goods

production has sufficient diminishing marginal return, α < 1
2 , adjustment cost Ψ is sufficiently

low, goods and data prices are sufficiently high, and the second derivative of the value function

is bounded V ′′ ∈ [ν, 0); and

2) decreases with Ωi,t when Ωi,t is larger than
ˆ̂
Ω.

Entry dynamics and aggregate growth dynamics differ. The difference between one firm entering

when all other firms are in steady state, and all firms growing together, is prices. When all firms are

data-poor, all goods are low quality. Since quality units are scarce, prices are high. The high price

of good induces these firms to produce goods, creating data. When the single firm enters, others

are already data-rich. Quality goods are abundant, so prices are low. This makes it costlier for

the single firm to grow. What works in the opposite direction is that data may also be abundant,

keeping the price of data low.

For some parameter values, the diminishing returns to data is always stronger than the data

feedback loop. Proposition 6 in the Appendix shows that, when learnable risk is abundant, knowl-

edge accumulation is concave.7 In such cases, each firm’s trajectory looks like the concave path in

Figure 2. But for other economies, the increasing returns of the data feedback loop is strong enough

to make data inflows convex, at low levels of knowledge. The inflows, outflows and growth dynamics

of such an economy are illustrated in Figure 3. This figure illustrates one possible economy. Data

production may lie above or below the data outflow line.

The difference between data inflows (solid line) and data production (dashed line) is data pur-

chases. These purchases push the inflows line above the outflows line and help speed up convergence.

What does an economy with this S-shaped knowledge accumulation look like? Figure 4 illus-

trates the growth path of a new entrant firm in this environment. On the left side of the time path,

7An additional proposition in the Appendix proves that the time-path of the stock of knowledge is s-shaped,
implying a long low-return incubation period for new entrants. That result is not logically equivalent to proposition
3 because one also needs to show that the stock of knowledge Ω is always increasing.
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Figure 3: New firms grow slowly: inflows and outflows of data of a single firm.
Line labeled inflows plots the individual firm i version of the quantity in equation (10), that makes an optimal capital
decision k∗i,t and data decision δ∗i,t, with different levels of initial data stock. This firm is in an economy where all
other firms are in steady state. Line labeled outflows plots the individual firm i version of the quantity in (11). Data
production is zik

∗
i,t
ασ−2

ε , which is inflows without the data purchases δi,t.

where the firm is young and the stock of data is low, increasing returns dominates. In this region,

increasing returns in knowledge means low returns to production at low levels of knowledge. Early

on, the negative profits and negative book value could jeopardize the firm’s financial viability.

We define the firm book value to be the cumulative, discounted sum of profits, plus the cost of

any purchased data. This corresponds to the accounting practice of including the assets acquired

by the firm, in this case the data the firm has bought, in the book value.

Profitst = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t (13)

Book Valuet =

t∑
τ=0

(1 + r)t−τ
(
PτAi,τk

α
i,τ −Ψ(∆Ωi,τ+1)− πτδi,τ1δi,τ<0 − rki,τ

)
(14)

The indicator function 1δi,t<0 does not subtract any cost of purchased data because, according

to GAAP accounting rules, purchased intangible assets add to the book value of a firm. However,

intangibles created by the company, i.e. the firm’s own data, are not counted. The market value of

the firm is the Bellman equation value function V (Ω) in (12). The difference between the market

value of a firm and its book is used to measure intangible assets. In our numerical example, the new
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Figure 4: S-shaped growth can create initial profit losses. Knowledge stock defined in Lemma 1. Book
value defined in (14). Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, A = 0.5, P = 0.5, σ2

a = 0.05, σ2
θ =

0.5, σ2
ε = 0.1, z = 0.01, π = 0.002, P = 1, ι = 1

entrant has negative book value for 9 periods. Such a long period of negative value suggests that

new entrants with financing constraints might falter. Adding firm entry is one of many directions

for additional research.

4 Applications

Frameworks like this are only as important as the questions they can be used to answer. The benefit

of a simple framework is that it can be extended in many directions to answer other questions. In

this section, we investigate a diverse set of questions through the lens of the model.

4.1 Data Barter

Data barter arises when the goods are exchanged for customer data, at a zero price. While this is a

knife-edge possibility in this model, it is an interesting outcome because it illustrates a phenomenon

we see in reality. In many cases, digital products, like apps, are being developed at great cost to

a company and then given away “for free.” Free here means zero monetary price. But obtaining

the app does involve giving one’s data in return. That sort of exchange, with no monetary price

attached, is a classic barter trade.

20



Proposition 4 Bartering Goods for Data It is possible that a firm will optimally choose

positive production kαi,t > 0, even if its price per unit is zero: Pt = 0.

The possibility of barter is not shocking, given the assumptions. But the result demonstrates

the plausibility of the framework, by showing how it speaks to data-specific phenomena we see.

The framework also allows us to value data, despite its zero monetary price.

At Pt = 0, the marginal benefit of investment is additional data that can be sold at price πt.

If the price of data is sufficiently high, and/or the firm is a sufficiently productive data producer

(high zi), then the firm should engage in costly production, even at a zero goods price, because it

also produces data, which has a positive price.

Figure 4 illustrated an example where the firm makes negative profits for the first 1-2 periods

because they sell goods at a loss. Producing goods at a loss eventually pays off for this firm. It

generates data that allows the firm to become profitable. This situation looks like Amazon at its

inception. During its first 17 quarters as a public company, Amazon lost $2.8 billion, before turning

a profit. Today, it is one of the most valuable companies in the world.

4.2 Specialization in Data Sales

This framework can also give us insight into the organization of data markets. When some firms

have better data mining ability (zi), do they keep the data or sell most of it off? There are two

possible ways a data-efficient firm might profit. First, it could retain the data, to make high-quality

goods, to sell at a high price. Such firms are specialized in the production of high-quality goods.

Alternatively, they could sell off most of their data and produce low-quality goods. Their goods

would earn little or even no revenue. But their data sales would earn profits. We say that such a

firm specializes in data production or data services.

When data is sufficiently non-rival, a version of comparative advantage emerges that resembles

patterns of international trade: Firms that are better at data collection have a comparative (and

absolute) advantage in data and specialize in data sales. Firms that are poor at data collection

have the comparative advantage in high-quality goods production and specialize in that.

We consider a competitive market populated by a measure λ of low data-productivity firms

(zi = zL, hereafter L-firms), and 1−λ of high data-productivity firms (zi = zH , hereafter H-firms),
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in steady state. We are interested in the difference between the accumulated data of the H- and

L-firms in the steady state. Firms who accumulate more data produce higher quality goods. In

order to make this comparison, we define the concept of the knowledge gap.

Definition 1 (Knowledge Gap) Knowledge gap denotes the equilibrium difference between knowl-

edge level of a high and low data productivity firm, Υt = ΩHt − ΩLt.

When the knowledge gap is high, data-producing firms produce high-quality goods. When

it is negative, data producers behave like data platforms, providing basic low-cost services and

profiting mostly from their data. Regardless of the knowledge gap, high data-productivity firms

would produce many units of goods and data. The question is whether they use data to produce

high-quality goods or not.

Lemma 3 Data-Accumulation by Individual Efficient Data Producer Suppose there is

a single, measure-zero H-firm in the market with zi = zH (λ = 1). In steady state, the knowledge

gap is positive, Υss > 0, and increasing dΥss

dzH
> 0, ∀ι and zH .

When a single, high-productivity (H) firm enters a market populated by L-firms (λ = 1). The

steady state outcome is what is intuitively expected. A positive knowledge gap means that the data-

productive firm is larger, accumulates more data in the steady state, and specializes in high quality

production. Furthermore, dΥss

dzH
> 0 means that the data productivity of the H-firm increases, it

accumulates even more knowledge in steady state.

Next, consider a steady state in which there are many H-firms. Formally, the measure of L-

firms, λ, is bounded away from one. In this case, when data is sufficiently non-rival, the reverse

happens; the knowledge gap is negative. The next result shows that, when firms can retain most

of the data they sell, high-productivity data miners sell more data; so much more that they are left

with less knowledge.

Proposition 5 More Efficient Data Producers Accumulate Less Knowledge Suppose

that there is a strictly positive measure of high-data-productivity firms, lambda < 1. If α < 1
2 and

γ is sufficiently small then when data is sufficiently non-rival, ι < ῑ, the steady state knowledge gap

is negative: Υss < 0.
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The non-rivalry of data here is essential. The proof in the Appendix also shows that when data

is sufficiently rival (ι > ῑ), the knowledge gap becomes positive Υss > 0. Data non-rivalry acts

like a negative bid-ask spread in the data market. It drives a wedge between the value of the data

sold and the opportunity cost, the amount of data lost through the act of selling. While a bid-ask

spread typically involves some loss from exchange of an asset, with non-rivalry, exchanging data

results in more total data being owned. If the buyer pays a price π per unit of data gained, the

seller earns more than π per unit of data forfeited, because they forfeit only a fraction of the data

sold. This negative spread, or tax, on transactions incentivizes data producers to be prolific sellers

of data. The incentive to sell data can be so great that these data producers are left with almost

no data for themselves.

Since many economists and policy makers are concerned about concentration in data markets,

we also explore what happens to data specialization when the the data market is more concentrated.

The numerical example in Figure 5 illustrates the visible hallmarks of data specialization. Since

data is multi-use (non-rival), the knowledge gap is negative. As a result, efficient data producers

earn more of their profits from data sales. Low-efficiency producers earn negative data profits

because they are data purchasers. We interpret λ close to 1, where there is a small measure of

high-efficiency data producers, as being data market concentration. Figure 5 shows that data

market concentration amplifies the specialization of data firms and high-quality goods producers.

Data specialization also grows as the gap between data-productivity of H- and L-type firms

widens.

Corollary 1 Data Efficiency Divergence Amplifies Knowledge Gap Suppose λ < 1,

α < 1
2 , γ is sufficiently small, and the economy is in steady state. For each λ, ∃ῑ2, zH such that

dΥss

dzH
> 0 if zH > zH , ι > ῑ2

dΥss

dzH
< 0 if zH > zH , ι < ῑ2.

If ι is high, the knowledge gap was originally positive, and it becomes more positive when data

processing efficiency diverges. If ι is low, meaning that data is not very rival, negative knowledge

gap becomes more negative. But the cutoff ῑ for positive knowledge gap is not the same as the

cutoff ῑ2 for growing knowledge gap. That means that for some intermediate levels of data rivalry,
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Figure 5: Data market concentration (λ) causes large (H) firms to derive most profits from data.
Data market concentration is one minus the fraction of high-data-efficiency (H) firms. Parameters: ρ = 1, r =
0.2, β = 0.97, α = 0.3, γ = 0.09, A = 1, P = 0.5, σ2

a = 0.05, σ2
θ = 0.5, σ2

ε = 0.1, z1 = 0.01, z2 = 10

the knowledge gap can shrink as the efficiency of the more efficient data producers improve.

Comparing Propositions 3 and 5 raises the question: How does a positive mass of high-data-

productivity firms cause the result to change sign? The key is that the single, measure-zero H-firm

cannot influence the amount of data held by the continuum or L-firms. The knowledge gap falls

in Proposition 5, not because H-firms lose knowledge but because L-firms gain knowledge. That

gain cannot happen when there is a single, measure-zero H-firm because that one firm is simply

not large enough to sell data to all L-firms. By continuity, the knowledge gap also rises when

data-productive firms in an industry are scarce (λ→ 1). Scarce data-efficient firms means that the

data production market is very concentrated in a small number of firms.

Interpretation: Data Platforms and Data Services Large firms that sell most of their

data are like data platforms (the second scenario of Corollary 1). That might appear contradictory

because social networks and search engines do use lots of their own data. But they use that data

primarily to sell data services to their business customers, which is a type of data sale. For example,

Facebook revenue comes not from postings, but from advertising, which is a data service. A formal

analysis of the equivalence between data services and data sales is in Admati and Pfleiderer (1990).
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4.3 Data for Business Stealing

Data is not always used for a socially productive purpose as in this model. Firms can use data

simply to steal customers away from other firms. Using an idea from Morris and Shin (2002), we

can model such business-stealing activity as an externality that works through productivity:

Ai,t = Ā−
(
ai,t − θt − εa,i,t

)2
+

∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj (15)

This captures the idea that when one firm uses data to reduce the distance between their chosen

technique ai,t and the optimal technique θ + ε, that firm benefits, but all other firms lose a little

bit. These gains and losses are such that, when added up to compute aggregate productivity, they

cancel out:
∫
Ai,t = Ā. This represents an extreme view that data processing contributes absolutely

nothing to social welfare. While that is unlikely, examining the two extreme cases is illuminating.

Reformulating the problem this way makes very little difference for most of our conclusions. The

externality does reduce productivity and welfare. But it does not change firms’ choices because it

does not enter in a firm’s first order condition.8 Therefore, it does not change data inflows, outflows

or accumulation.

Whether data is productivity-enhancing or not matters for welfare, but does not change our

conclusions about bounded growth, data poverty traps or the organization of data markets.

4.4 Data-Driven Innovation

If there is technological progress and ideas are accumulating, data could facilitate that accumulation

of ideas, and thereby promote growth.

The simplest way to accommodate data-driven innovation in the model is to allow Āt in equation

2 to be a function of firm’s stock of data at time t, Āt(Ωit).
9 More generally, advances in the quality

frontier Āt might depend on the size of the labor force engaged in research LR, some research capital

8To see why this is the case, note that firm i’s actions have a negligible effect on the average productivity term∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj. So the derivative of that new externality term with respect to i’s choice variables is zero.

If the term is zero in the first order condition, it means it has no effect on choices of the firm.
9Alternatively, Āt could be a function of a firm’s newly collected data at time t − 1,

Āt
(
ni,t + δi,t(1δi,t>0 + ι1δi,t<0)

)
. This formulation looks like learning-by-doing models (Jovanovic and Nyarko,

1996).
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KR, and research data DR:

Āt − Āt−1 = (LRt )α(KR
t )γ(DR

t )1−α−γ

If 1− α− γ > 0, then data not only contributes to growth, it is essential for growth.

But perhaps transactions records are essential for marketing and product development, but true

innovations make use of some other kind of data, perhaps developed with labor and capital, in a

lab. If that is true, then DR is a function of LR and KR. In this case, we could substitute out DR

and write the idea production function in terms of LR and KR, without mentioning data at all.

That model’s role for data would be similar to our baseline model. Either could be integrated into

this framework, perhaps to explore optimal data policy.

4.5 Data Portfolio Choice

A useful extension of the model would be to add a choice about what type of data to purchase or

process. Firms that make different data choices would then naturally occupy different locations in

a product space or operate in different industries.

The relevant state θt becomes an n× 1 vector of variables. The stock of knowledge would then

be the inverse variance-covariance matrix, Ωi,t := Ei[(Ei[θt|Ii,t] − θt)(Ei[θt|Ii,t] − θt)′]−1, which is

n× n. The choice variables {ki,t, δi,t} are n× 1 vectors of investments in different sectors, projects

or attributes and the corresponding data sales. The multi-dimensional recursive problem becomes

V (Ωi,t) = max
ki,t,δi,t

P ′t

(
1
′(Ā− σ2

a)1− Ω−1
i,t

)
kαi,t −Ψ(∆Ωi,t+1)− π′tδi,t − rk′i,t1

+

(
1

1 + r

)
V (Ωi,t+1) (16)

where kαi,t means that each element is raised to the power α, 1 is an n× 1 vector of ones, and the

law of motion for Ωi,t is given by (9).

In such a model, locating in a crowded market space presents a trade-off. Abundant production

of goods in that market will make goods profits low. However, for a firm that is a data purchaser,

the abundance of data in this market will allow them to acquire the data they need to operate

efficiently, at a low price. If many data purchasers locate in this product space and demand data
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about a particular risk θt(j), then efficient data producers might also want to produce goods that

load on risk j, in order to produce high-demand data.

4.6 Other Possible Applications and Extensions

Below we mention other extensions, which we do not explore in detail.

Optimal Data Policy. Figure 3 shows how a lack of data can slow the growth of a firm. Given

this problem, a benevolent government might adopt a data policy to promote the growth of small

and mid-size firms. The policy solution to increasing returns growth traps is typically a form of

big push investment. In the context of data invesment, the government could collect data itself,

from taxes or reporting requirements, and share it with firms. For example, China shares data

with some firms, in a way that seems to facilitate their growth Beraja et al. (2020). Alternatively,

the government might facilitate data sharing or act to prevent data from being exported to foreign

firms. The current policy debates in the European Union, could be partly about countries fighting

for their ability to keep up in the data race, to prevent being stuck in relative data poverty.

Firm Size Dispersion. One of the biggest questions in macroeconomics and industrial organi-

zation is: What is the source of the changes in the distribution of firm size? One possible source

is the accumulation of data. The S-shaped dynamic of firm growth implies that firm size first

becomes more heterogeneous and then converges. During the convex, increasing returns portion of

the growth trajectory, small initial differences in the initial data stock of firms get amplified.

Investing in Data-Savviness. The fixed data productivity parameter zi represents the idea that

certain industries will spin off more data than others. Credit card companies learn more than

barber shops. We could allow a firm to do more to collect, structure and analyze the data that

its transactions produce. It could choose its data-savviness zi, at a cost. Endogenizing this choice

might produce changes in the cross-section of firms’ data, over time.

5 Conclusions

The economics of transactions data bears some resemblance to technology and some to capital.

It is not identical to either. Yet, when economies accumulate data alone, the aggregate growth

economics are similar to an economy that accumulates capital alone. Diminishing returns set
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in and the gains are bounded. Data’s production process, with its feedback loop from data to

production and back to data, also makes increasing returns a natural outcome. Thus, while the

accumulation and analysis of data may be the hallmark of the “new economy,” this new economy

has many economic forces at work that are old and familiar.

This simple framework speaks to many data-related phenomena. It can be a foundation for

thinking about many more.
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A Appendix: Derivations and Proofs. Not For Publication.

A.1 Belief updating

The information problem of firm i about its optimal technique θi,t can be expressed as a Kalman filtering system,

with a 2-by-1 observation equation, (µ̂i,t,Σi,t).

We start by describing the Kalman system, and show that the sequence of conditional variances is deterministic.

Note that all the variables are firm specific, but since the information problem is solved firm-by-firm, for brevity we

suppress the dependence on firm index i.

At time t, each firm observes two types of signals. First, date t − 1 output reveals −1 good quality Ai,t−1 =

yi,t−1/k
α
i,t−1. Good quality Ai,t−1 provides a noisy signal about θt−1. Let that signal be sai,t−1 = (Ā − Ai,t−1)1/2 −

ai,t−1. Note that, from equation 2, that the signal derived from observed output is equivalent to

sai,t−1 = θt−1 + εa,t−1, (17)

where εa,t ∼ N (0, σ2
a).

The second type of signal the firm observes is data points. They are a by-product of economic activity. For

firms that do not trade data, the number of new data points added to the firm’s data set is ωi,t = ni,t = zkαi,t. For

firms that do trade data, ωi,t = ni,t + δi,t(1δi,t>0 + ι1δi,t<0). The set of signals {st,m}m∈[1:ωi,t] are equivalent to an

aggregate (cross-firm average) signal s̄t such that:

s̄t = θt + εs,t, (18)

where εs,t ∼ N (0, σ2
ε/ωit). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).

At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2]

Σt−1 = V ar
[
θt | st−1, yt−2]

where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yi,t−3, . . . } denote the histories of the observed variables, and

st = {st,m}m∈[1:ωi,t].
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We update the state variable sequentially, using the two signals. First, combine the priors with sai,t−1:

E
[
θt−1 | It−1, s

a
i,t−1

]
=

Σ−1
t−1µ̂t−1 + σ−2

a sai,t−1

Σ−1
t−1 + σ−2

a

V
[
θt−1 | It−1, s

a
i,t−1

]
=
[
Σ−1
t−1 + σ−2

a

]−1

E
[
θt | It−1, s

a
i,t−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, s

a
i,t−1

]
− θ̄
)

V
[
θt | It−1, s

a
i,t−1

]
= ρ2[Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ

Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1

· E
[
θt | It−1, s

a
i,t−1

]
+ ωtσ

−2
ε s̄t[

ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

(19)

Σt = V ar
[
θt | It

]
=
{[
ρ2[Σ−1

t−1 + σ−2
a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

}−1

(20)

Multiply and divide equation (19) by Σt as defined in equation (20) to get

µ̂i,t = (1− ωtσ−2
ε Σt)

[
θ̄(1− ρ) + ρ

(
(1−Mt)µt−1 +Mts

a
i,t−1

)]
+ ωtσ

−2
ε Σts̄t, (21)

where Mt = σ−2
a (Σt−1 + σ−2

a )−1.

Equations (20) and (21) constitute the Kalman filter describing the firm dynamic information problem. Impor-

tantly, note that Σt is deterministic.

A.2 Making the Problem Recursive: Proof of Lemma 1

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive problem with one state variable.

Consider the firm sequential problem:

maxE0

∞∑
t=0

(
1

1 + r

)t
(PtAtk

α
t − rkt)

We can take a first order condition with respect to at and get that at any date t and for any level of kt, the optimal

choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt + εa,t|It]|Is] + σ2
a,
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for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for any information set

that does not contain the realization of θt.

We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt,at

E
[
PtAtk

α
t − rkt +

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]

with ωi,t being the net amount of data being added to the data stock. Taking a first order condition with respect

to the technique choice conditional on It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the

optimal choice of at into At and rewrite the value function as

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[
Pt
(
Ā− (E[θt|It]− θt − εa,t)2)kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]
.

Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[
Pt
(
Ā− ((E[θt|It]− θt)2 + σ2

a)
)
kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]
.

Notice that E[(E[θt|It] − θt)2|It−1] is the time-t conditional (posterior) variance of θt, and the posterior variance of

beliefs is E[(E[θt|It]− θt)2] := Σt. Thus, expected productivity is E[At] = Ā− Σt − σ2
a, which determines the within

period expected payoff. Additionally, using the Kalman system equation (20), this posterior variance is

Σt =
[
Pt
[
ρ2(Σ−1

t−1 + σ2
a)−1 + σ2

θ

]−1
+ ωtσ

−2
ε

]−1

which depends only on Σt−1, nt, and other known parameters. It does not depend on the realization of the data.

Thus, {st,m}m∈[1:ωt], yt−1, µ̂t do not appear on the right side of the value function equation; they are only relevant

for determining the optimal action at. Therefore, we can rewrite the value function as:

V (Σt) = max
kt

[
Pt(Ā− Σt − σ2

a)kαt + πδi, t−Ψ(∆Ωi,t+1)− rkt +

(
1

1 + r

)
V (Σt+1)

]
s.t. Σt+1 =

[[
ρ2(Σ−1

t + σ2
a)−1 + σ2

θ

]−1
+ ωi,tσ

−2
ε

]−1

Data use is incorporated in the stock of knowledge through (9), which still represents one state variable.

A.3 Lemma 2: Equilibrium and Steady State Without Trade in Data

Capital Choice The first order condition for the optimal capital choice is

αPtAi,tk
α−1
t −Ψ′(·)∂∆Ωt+1

∂ki,t
− r +

(
1

1 + r

)
V ′(·)∂Ωt+1

∂ki,t
= 0
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where
∂Ωt+1

∂ki,t
= αzik

α−1
i,t σ−2

ε and Ψ′(·) = 2ψ(Ωi,t+1 − Ωi,t). Substituting in the partial derivatives and for Ωi,t+1, we

get

ki,t =

[
α

r

(
PtAi,t + ziσ

−2
ε (

(
1

1 + r

)
V ′(·)− 2ψ(·))

)]1/(1−α)

(22)

Differentiating the value function in Lemma 1 reveals that the marginal value of data is

V ′(Ωi,t) = PtAi,tk
α
i,t
∂Ai,t
∂Ωi,t

−Ψ′(·)
(
∂Ωt+1

∂Ωt
− 1

)
+

(
1

1 + r

)
V ′(·)∂Ωt+1

∂Ωt

where ∂Ai,t/∂Ωi,t = Ω−2
i,t and ∂Ωt+1/∂Ωt = ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

.

To solve this, we start with a guess of V ′ and then solve the non-linear equation above for ki,t. Then, update

our guess of V .

Steady State The steady state is where capital and data are constant. For data to be constant, it means that

Ωi,t+1 = Ωi,t. Using the law of motion for Ω (eq 9), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (23)

This is equating the inflows of data ωi,tσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1 − Ωi,t. Given a

number of new data points ωss, this pins down the steady state stock of data. The number of data points depends

on the steady state level of capital. The steady state level of capital is given by (22) for Ass depending on Ωss and a

steady state level of V ′(Ωss). We use the term V ′ss to refer to the partial derivative ∂V/∂Ω, evaluated at the steady

state value of Ω. We solve for that steady state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating V ′(Ωi,t) =

V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss, which in turn depends on

Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Ptk
α
ssΩ
−2
ss (24)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we assumed that

Ψ′(0) = 0.

The equations (22), (23) and (24) form a system of 3 equations in 3 unknowns. The solution to this system

delivers the steady state levels of data, its marginal value and the steady state level of capital.

A.4 Equilibrium With Trade in Data

To simplify our solutions, it is helpful to do a change of variables and optimize not over the amount of data purchased

or sold δi,t, but rather the closely related, net change in the data stock ωi,t. We also substitute in ni,t = zik
α
i,t and
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substitute in the optimal choice of technique ai,t. The equivalent problem becomes

V (Ωi,t) = max
ki,t,ωi,t

Pt
(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t − π

(
ωi,t − zikαi,t

1ωi,t>ni,t + ι1ωi,t<ni,t

)
− rki,t

−Ψ (∆Ωi,t+1) +

(
1

1 + r

)
V (Ωi,t+1) (25)

where Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ ωi,tσ

−2
ε (26)

Capital Choice The first order condition for the optimal capital choice is

FOC[ki,t] : αPtAi,tk
α−1
i,t +

παzik
α−1
i,t

1ωi,t>ni,t + ι1ωi,t<ni,t
− r = 0 (27)

Solving for ki,t gives

ki,t =

(
1

r
(αPtAi,t + π̃αzi)

) 1
1−α

(28)

where π̃ ≡ π/(1ωi,t>ni,t + ι1ωi,t<ni,t). That the adjusted price π̃ is higher when a firm sells data. We are dividing

by ι < 1, which raises the price. This idea is that a firm that sells δ units of data only gives up δι units of data. So

it’s as if they are getting a higher price per unit of data they actually forfeit.

Note that a firm’s capital decision is optimally static. It does not depend on the future marginal value of data

(i.e., V ′(Ωi,t+1)) explicitly.

Data Use Choice The first order condition for the optimal ωi,t is

FOC[ωi,t] : −Ψ′(·)∂∆Ωi,t+1

∂ωi,t
− π̃ +

(
1

1 + r

)
V ′(Ωi,t+1)

∂Ωi,t+1

∂ωi,t
= 0 (29)

where
∂Ωi,t,t+1

∂ωi,t
= σ−2

ε .

Steady State The steady state is where capital and data are constant. For data to be constant, it means that

Ωi,t+1 = Ωi,t. Using the law of motion for Ω (eq 9), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (30)

This is equating the inflows of data ωi,tσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1 − Ωi,t. Given a

number of new data points ωss, this pins down the steady state stock of data. The number of data points depends

on the steady state level of capital. The steady state level of capital is given by Equation 28 for Ass depending on

Ωss and a steady state level of V ′ss. We solve for that steady state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating V ′(Ωi,t) =

V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss, which in turn depends on

Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Pssk
α
ssΩ
−2
ss (31)
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Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we assumed that

Ψ′(0) = 0.

From the first order condition for ωi,t (eq 29), the steady state marginal value is given by

V ′ss = (1 + r)π̃σ2
ε (32)

The equations (28), (29), (30) and (31) form a system of 4 equations in 4 unknowns. The solution to this system

delivers the steady state levels of capital, knowledge, data, and marginal value data.

A.4.1 Characterization of Firm Optimization Problem in Steady State

At this point, from tractability, we switch notation slightly. Instead of optimizing over the net additions to data ω,

we refer to the purchase/sale of data δ := ωi,t − ni,t.

Individual Optimization Problem

V (Ωi,t) = max
ki,t,δi,t

PtAi,tk
α
i,t − ψ

(
Ωi,t+1 − Ωi,t

Ωi,t

)2

− πδi,t − rki,t +
1

1 + r
V (Ωi,t+1)

Ωi,t+1 =
(
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ε

Ai,t = Ā− Ω−1
i,t − σ

2
a

where i denotes the firm data productivity.

Thus the steady state is characterized by the following 8 equations:

ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+
(
zLk

α
L + δL

)
σ−2
ε (33)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (34)

αP (Ā− Ω−1
L − σ

2
a)kα−1

L + παzLk
α−1
L = r (35)

αP (Ā− Ω−1
H − σ

2
a)kα−1

H +
παzHk

α−1
H

ι
= r (36)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(37)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(38)

P = P̄
(
λ(Ā− Ω−1

L − σ
2
a)kαL + (1− λ)(Ā− Ω−1

H − σ
2
a)kαH

)−γ
(39)

λδL + (1− λ)δH = 0 (40)

A.5 Proof of Proposition 1: Perfect Foresight Must Imply Infinite Output

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data ni,t →∞ implies finite firm output

yi,t < ∞. Thus My ≡ supi{yi,t} + 1 exists and is finite. By definition, yi,t < My, ∀i. If the measure of all firms is
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also finite, that is ∃0 < N < ∞ such that
∫
i
di < N . As a result, the aggregate output is also finite in any period

t+ s, ∀s > 0:

Yt+s =

∫
i

yi,tdi < My

∫
i

di < MyN <∞. (41)

On the other hand, given that the aggregate growth rate of output ln(Yt+1) − ln(Yt) > g > 0, we have that in

period t+ s, ∀s > 0,

ln(Yt+s)− ln(Yt) =[ln(Yt+s)− ln(Yt+s−1)] + · · ·+ [ln(Yt+1)− ln(Yt)] > gs, (42)

which implies

Yt+s > Yte
gs. (43)

Thus for ∀s > s ≡ d ln(MN)−ln(Yt)
g

e,

Yt+s > Yte
gs > Yte

gs > Yte
g

ln(MyN)−ln(Yt)

g = MyN, (44)

which contradicts (41).

A.6 Proof of Proposition 2: Perfect Foresight Implies a Deterministic Future

We break this result into two parts. Part (a) of the result is that in order to have infinite output in the limit, an

economy will need an infinite forecast precisions. Forecasts with errors won’t produce the maximum possible, infinite,

output.

Part (b) of the result says that if signals are derived from the observations of past events, then infinite precision

implies that the one-period-ahead future is deterministic. Allowing precesion to be infinite means there cannot be

any fundamental randomness, any unlearnable risk, because that would cause forecasts to be imperfect. Infinite

precision means zero forecast error with certainty. Such perfect forecasts can only exist if future events are perfectly

forecastable with past data. Perfectly forecastable means that, conditional on past events, the future is not random.

Thus, future events are conditionally deterministic.

Part a. Claim: Suppose aggregate output is a finite-valued function of each firm’s forecast precision: Yt = f(Γt).

A data economy can sustain an aggregate growth rate of output ln(Yt+1) − ln(Yt) that is greater than any lower

bound g > 0, in each each period t, only if infinite data ni,t →∞ for some firm i implies infinite precision Ωi,t →∞.

Proof part a: From proposition 1, we know that sustaining aggregate growth above any lower bound g > 0 arises

only if a data economy achieves infinite output Yt → ∞ when some firm has infinite data ni,t → ∞. Since Yt is a

finite-valued function of Γt, it can only be that Yt → ∞ if some moment of Γt is also becoming infinite Γt → ±∞.

Moments of Γt cannot become negative infinite because Γt is a distribution over Ωt which is a precision, defined

to be non-negative. Thus for some moment, Γt → ∞. If some amount of probability mass is being placed on Ω’s

that are approaching infinity, that means there is some measure of firms that are achieving perfect forecast precision:
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Ωi,t →∞. �

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data ni,t →∞ implies finite precision

Ωi,t < ∞, that is Γt is finite (except for zero-measure sets). Since Yt = f(Γt) is a finite-valued function, we must

have Yt < ∞, as ni,t → ∞. In other words, since Yt is a finite-valued function of Γt, it can only be that Yt → ∞ if

some moment of Γt is also becoming infinite Γt → ±∞. Moments of Γt cannot become negative infinite because Γt

is a distribution over Ωt which is a precision, defined to be non-negative. Thus for some moment, Γt →∞. If some

amount of probability mass is being placed on Ω’s that are approaching infinity, that means there is some measure

of firms that are achieving perfect forecast precision: Ωi,t →∞.

But finite limit output is inconsistent with sustained growth. From proposition 1, we know that sustaining

aggregate growth above any lower bound g > 0 arises only if a data economy achieves infinite output Yt →∞ when

some firm with positive measure has infinite data ni,t →∞. This is a contradiction.

Part b. Claim: Suppose all data points si,t,m are t-measurable signals about some future event θt+1. If infinite

data ni,t →∞ for some firm i implies infinite precision Ωi,t →∞, then future events θt+1 are deterministic: θt+1 is

a deterministic function of the sigma algebra of past events.

We prove this statement by proving the contrapositive: If the future, θt is not deterministic at t − 1, then the

stock of knowledge must be finite.

Suppose θt+1 is not a deterministic function of the sigma algebra of past events. Then θt+1 is random with

respect to the sigma algebra of the t-1 history of events. Let Ft be the sigma algebra derived from the history

{θτ , sτ,m, sai,τ}t−1
τ=0.

If signals are measurable with respect to all past events, then they are a subset of the sigma algebra of past events.

Formally, the information set of firm i when it chooses its technique ai,t is Ii,t = [{sai,τ}t−1
τ=0; {{si,τ,m}

ni,τ
m=1}

t−1
τ=0]. By

assumption, si,t−1,m and sai,t−1 are measurable with respect to Ft, that is ∀B ∈ B, {ω : si,t,m(ω) ∈ B} ⊂ Ft. So

σ(Ii,t) ⊂ Ft. This implies that t− 1 measurable signals cannot contain information about the future event θt, other

than what is already present in the history of events.

By construction, θt is not measurable with respect to Ft−1, that is ∃B′ ∈ B s.t. {ω : θt(ω) ∈ B} 6⊂ Ft. Since

σ(Ii,t) ⊂ Ft, we have that {ω : θt(ω) ∈ B} 6⊂ Ii,t,m, and thus θt is not measurable with respect to Ii,t,m. Therefore

Var(θt | Ii,t,m) > 0. By the definition of Ω as the inverse of the conditional variance, this implies Ωi,t <∞.

This showed that, if θt is random with respect to past events, it must be random with respect to all possible

signals si,t,m . If θt is random with respect to the signals, there is strictly positive forecast variance. If forecast

variance cannot be zero, then signal precision cannot be infinite.

Since we proved that the the stock of knowledge must be finite, therefore the contrapositive, that infinite precision

implies a deterministic future, must also be true.

A.7 Proof of Proposition 3: S-shaped Accumulation of Knowledge

We proceed in two parts: convexity and then concavity.
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Part a. Convexity at low levels of Ωt. In this part, we first calculate the derivatives of data infow and outflow

with respect to Ωi,t, combine them to form the derivative of data net flow, and then show that it is positive in given

parameter regions for Ωi,t < Ω̂.

Since all other firms, besides firm i are in steady state, we take the prices πt and Pt as given. Since data is

sufficiently expensive, data purchases are small. We prove this for zero data trade. By continuity, the result holds

for small amounts of traded data.

Recall that data inflow is dΩ+
i,t = zi,tk

α
i,tσ
−2
ε and its first derivative is

∂dΩ+
i,t

∂Ωi,t
= αzi,tk

α−1
i,t σ−2

ε
∂ki,t
∂Ωi,t

. We then need

to find
∂ki,t
∂Ωi,t

.

Since we assumed that Ψ is small, consider the case where ψ = 0. In this case, the data adjustment term in

equation 22) drops out and it reduces to ki,t =
[
α
r

(
PtAi,t + ziσ

−2
ε

1
1+r

V ′(Ωi,t+1)
)]1/(1−α)

, which implies

k1−α
i,t =

α

r

(
PtAi,t + ziσ

−2
ε

1

1 + r
V ′(Ωi,t+1)

)
.

Differentiating with respect to Ωi,t on both sides yields

∂k1−α
i,t

∂Ωi,t
=
∂k1−α

i,t

∂ki,t
· ∂ki,t
∂Ωi,t

= (1− α)k−αi,t ·
∂ki,t
∂Ωi,t

Plugging in
∂Ai,t
∂Ωi,t

= Ωi,t
−2 and

∂Ωi,t+1

∂Ωi,t
= ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2, we have

=⇒ ∂ki,t
∂Ωi,t

= kαi,t
α

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
.

Therefore,

∂dΩ+
i,t

∂Ωi,t
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2.

(45)

Next, we calculate the derivative of data outflow dΩ−i,t = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
with respect

to Ωi,t. We have
∂dΩ−i,t
∂Ωi,t

= 1− 1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

. (46)

The derivatives of net data flow is then

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

= zi,tk
2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

+
1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

− 1. (47)

For notational convenience, denote the first term in (2) as M1 = zi,tk
2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 > 0, the second term as

M2 = z2
i,tk

2α−1
i,t σ−4

ε
α2

1−α
1

r(1+r)
V ′′(Ωi,t+1)ρ2[ρ2+σ2

θ(Ωi,t+σ
−2
a )]−2 ≤ 0 and the third term asM3 = 1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

>

39



0. Notice that M3 − 1 < 0 always holds, and thus M2 + M3 − 1 < 0.
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
> 0 only holds when Pt is

sufficiently large so that M1 dominates.

Assume that V ′′ ∈ [ν, 0). Let h(Ωi,t) ≡M1(P̄ ) +M2(ν). Then

h′(Ωi,t) = (2α− 1)zi,tk
3α−2
i,t α

(
α

r(1− α)

)2

σ−2
ε

[
P̄Ωi,t

−2 + zi,tσ
−2
ε

1

1 + r
νρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

]2

+zi,tk
2α−1
i,t

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

i,t − zi,tσ
−2
ε

1

1 + r
νρ2 2σ2

θ

(ρ2 + σ2
θ(Ωi,t + σ−2

a ))3

]
.

The first term is positive when α > 1
2
, and negative when α < 1

2
. And the second term is positive when P̄ < f(Ωi,t),

and negative when P̄ > f(Ωi,t). To see this, note that

zitk
2α−1
it

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

it − zitσ
−2
ε

1

1 + r
νρ2 2σ2

θ(
ρ2 + σ2

θ

(
Ωit + σ−2

a

))3
]

> 0 (48)

if and only if P̄ < f(Ωi,t), where

f(Ωi,t) := −zitσ−2
ε

1
1+r

νρ2Ω3
it

σ2
θ

(ρ2+σ2
θ(Ωit+σ

−2
a ))

3 (49)

Notice by inspection that f ′(Ωi,t) < 0.

Let Ω̂ be the first root of

h(Ωi,t) = 1−M3, (50)

then if α < 1
2
, when Ωi,t < Ω̂ and Pt > f(Ω̂), we have that h(Ωi,t) is decreasing in Ωi,t and h(Ω) ≥ 1 −M3. Since

ν ≤ V ′′, we then have M1 +M2 ≥ 1−M3, that is
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
> 0. By the same token, if α > 1

2
and Pt < f(Ωi,t),

then
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
< 0.

Part b. Concavity at high levels of Ωt. In this part, we first calculate limit of the derivatives of net data flow

with respect to Ωi,t is negative when Ωi,t goes to infinity and then prove that when Ωi,t is large enough,
∂dΩi,t
∂Ωi,t

is

negative.

For ρ ≤ 1 and σ2
θ ≥ 0, data outflows are bounded below by zero. But note that outflows are not bounded

above. As the stock of knowledge Ωi,t → ∞, outflows are of O(Ωi,t) and approach infinity. We have that
∂dΩ−

i,t

∂Ωi,t
=

1− 1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

. It is easy to see that limΩi,t→∞
∂dΩ−

i,t

∂Ωi,t
= 1.

For the derivative of data inflow (45), note that
∂dΩ+

i,t

∂Ωi,t
≤ zi,tk

2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 because 0 < α < 1 and

V ′′ < 0. Thus limΩi,t→∞
∂dΩ+

i,t

∂Ωi,t
≤ 0.

Therefore, limΩi,t→∞
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
≤ −1. Since data outflows and inflows are continuously differentiable,

∃ ˆ̂
Ω > 0 such that ∀Ωi,t > ˆ̂

Ω, we have
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
< 0, which is the decreasing returns to data when data is

abundant.
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A.8 Proof of Proposition 4: Firms Sell Goods at Zero Price (Data Barter)

Proof: Proving this possibility requires a proof by example. Suppose the price goods is Pt = 0. We want to show

that an optimal production/ investment level Kt can be optimal in this environment. Consider a price of data πt

is such that firm i finds it optimal to sell a fraction χ > 0 of its data produced in period t: δi,t = −χni,t. In this

case, differentiating the value function (12) with respect to k yields (πt/ι)χziαk
α−1 = r +

∂Ψ(∆Ωi,t+1)

∂ki,t
. Can this

optimality condition hold for positive investment level k? If k1−α = πtχziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then the firm optimally

chooses ki,t > 0, at price Pt = 0. �

A.9 Proof of Lemma 3: Knowledge Gap When High Data Productivity is

Scarce

When there is a single zH firm, δL = 0 in steady state and (kL,ΩL) and (P, π) are determined by the following 4

equations:

ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+ zLk

α
Lσ
−2
ε (51)

αP (Ā− Ω−1
L − σ

2
a)kα−1

L + παzLk
α−1
L = r (52)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(53)

P = P̄
(
(Ā− Ω−1

L − σ
2
a)kαL

)−γ
(54)

While (kH ,ΩH , δH) are determined by the following 3 equations, taking the above (kL,ΩL, P, π) as given:

αP (Ā− Ω−1
H − σ

2
a)kα−1

H +
παzHk

α−1
H

ι
= r (55)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(56)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (57)

Manipulate to get

αP (Ā− Ω−1
H − σ

2
a) +

παzH
ι

= rk1−α
H (58)

kαH =
(
k1−α
H

) α
1−α =

π

ιPσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(59)

ι
1−2α
1−α

1

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(60)

Next we show three steps:

a. For ι < ῑ, more data productivity makes the “more data productive firm” (zH firm) both larger, and retaining
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more data.

∃ῑ s.t. ι < ῑ⇒ dkH
dzH

> 0,
dΩH
dzH

> 0.

b. For ι < ῑ and ∀zH , the “more data productive firm” (zH firm) retains more data when ι increases.

∃ῑ s.t. ι < ῑ⇒ dΩH
dι

> 0.

c. ῑ > 1.

This completes the proof.

Part a. Take the total derivative of equation (60) wrt to zH and simplify. It implies

dΩH
dzH

=

α2πι
2− 1

1−α
(
α
(
ιP
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ4+ρ2σ2

aσ
2
θ

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P

−
α2Pι

1
α−1

+3
(
α

(
ĀιP− ιP (σ2

aΩH+1)

ΩH
+πzH

)) 1
1−α−2

(1−α)Ω2
H

=
πΩ2

iA(H)

B(H)− ιPA(H)

Note that ιiP̄
(
Ā− σ2

a − 1
Ωi

)
+ πzi = ιirk

1−α
i . Use that to simplify dΩH

dzH
by letting

A(i) =
α2ι

2− 1
1−α

i

(
ιirk

1−α
i

) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

(61)

B(i) =

2πσ2
εΩi

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+Ωi))

3

)
P

= π
dC(i)

dΩi
(62)

C(i) =

σ2
εΩ2

i

(
1 + r − ρ2

(ρ2+σ2
θ
(σ2
a+Ωi))

2

)
P

=
ιik

α
i

π
(63)

where i = L,H, ιL = 1 and ιH = ι.

In dΩH
dzH

the numerator is positive. Thus “more data productive firms retains more data”, or dΩH
dzH

> 0 iff the

denominator is positive, which is the case if

2πσ2
εΩH

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+ΩH ))3

)
P

− ιiP
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

> 0

2πσ2
ε (1− α)Ω3

H

(
1 + r − ρ2(ρ2 + σ2

aσ
2
θ)

(ρ2 + σ2
θ(σ2

a + ΩH))3

)
> ιiP

2α2r
2α−1
1−α k2α−1

i

which leads to ῑ:

ῑ =

2πσ2
ε (1− α)Ω3

H

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+ΩH ))3

)
α2P 2r

2α−1
1−α k2α−1

i
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Furthermore, consider equation (38). Keeping the prices constant, the left hand side is increasing in kH . Alter-

natively, the derivative of the right hand side with respect to ΩH is given by

2ΩH

(
1 + r − ρ2(ρ2 + σ2

θσ
−2
a )(

ρ2 + σ2
θ(ΩH + σ−2

a )
)3
)
.

(ρ2+σ2
θσ

−2
a )

(ρ2+σ2
θ
(ΩH+σ−2

a ))
< 1, thus equation (38) implies that the term in the parenthesis is positive, thus the derivative is

positive. Thus ΩH and kH move in the same direction.

Since the high data productivity firm is atomistic, so ΩL and kL are unchanged. Thus the proposition also implies

that surprisingly, both H-L size ratio and H-L knowledge gap of the two firms is increasing in data productivity of

the more productive firm if ι < ῑ:

d(kH − kL)

dzH
> 0,

d(ΩH − ΩL)

dzH
> 0

Equation (59) implies that fixing ι, kH moves in the same direction as ΩH .

Part b. The proof is the same as the previous step The derivative dΩH
dι

is more complicated but it simplifies

to the exact same expression. Furthermore, let ι̂ denote the smallest ι for which an equilibrium exists. We have

ΩH(ι̂) > ΩL. Since ΩL is independent of ι, this implies that whenever an equilibrium exist, ∀zH ,

ΩH − ΩL > 0 ι < ῑ

Part c. It is straight forward to show that ῑ > 1, i.e. the proposition holds for ∀ ι ≤ 1. Note that ι > 1 would

mean that selling data would result in more data for the seller, which is not economonically meaningful economic.

We have thus restricted ι ≤ 1 from the start. As such, the result holds for every ι.

A.10 Proof of Proposition 5: Negative Knowledge Gap with Non-rival Data

When High Data Productivity is Abundant

The proof proceeds in a few steps. We will do the proof for γ = 0, which implies P = P̄ . Then, by continuity, the

same result holds for γ sufficiently small.

Part a. zH firms are data sellers while zL firms are data buyers (δH < 0 and δL > 0). The marginal benefit of

selling data is the same for both firms, data price π. The marginal cost of producing data is lower for the zH firms

at the same level of capital. Thus the zH firm produces more data in equilibrium. Furthermore, recall that each firm

can only buy or sell data.

Now assume that in equilibrium σL < 0. This means that the H firm prefers to buy the last unit of data rather

than to produce it, while the L firm prefers to produce it and sell it. This would imply that the marginal benefit

of selling data is larger than marginal cost of producing it for a small firm, but smaller than marginal cost of its

production for a large firm, a contradiction.
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Part b. dπ
zH

< 0. Step 1 shows that the H firm is always the data seller. Thus higher zH corresponds to an

upward shift of supply curve, which in turn implies a lower dat aprice.

Part c. Negative knowledge gap: ∃ῑ | ι ≤ ῑ⇒ Υss < 0. Merge equations (35)-(38) and use P = P̄ to write ΩH

and ΩL:

π

P̄σ−2
ε

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

=
1

r
α

1−α

(
αP̄ (Ā− Ω−1

L − σ
2
a) + παzL

) α
1−α (64)

π

P̄σ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

=
ι

1−2α
1−α

r
α

1−α

(
ιαP̄ (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α . (65)

Consider equation (65). Since α < 1
2
, ι → 0 implies that the first term on the right hand since goes to zero. Every

other term in the left and right hand side of the equation is finite and bounded away from zero, except Ω2
H , so

ΩH → 0. By continuity, as ι gets small, keeping everything else constant ΩH has to decline while there is no effect

in equation (64) on ΩL. Thus ∃ῑ such that ι ≤ ῑ⇒ Υss < 0.

A.11 Proof of Corollary 1: Change in Knowledge Gap dΥss

dzH

Similar to proof of Proposition 5, we do the proof for γ = 0, which implies P = P̄ . Then, by continuity, the same

result holds for γ sufficiently small.

Equations (35) and (37) can be solved to get (kL,ΩL) in terms of data price π:

k1−α
L =

α

r

(
P̄ (Ā− Ω−1

L − σ
2
a) + πzL

)
Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

1(
P̄ (Ā− Ω−1

L − σ2
a) + πzL

) α
1−α

=
P̄ σ−2

ε

π

(α
r

) α
1−α

The second equation implies

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

=

(
P̄ (Ā− Ω−1

L − σ
2
a) + πzL

) α
1−α

π
P̄σ−2

ε

(α
r

) α
1−α

(66)

The same argument as in proposition 3 shows that using equation (37), the derivative of the left hand side with

respect to ΩL is positive. Next, using implicit function theorem on both sides of equation (66) implies that if α ≤ 1
2
,

the equation is only consistent with dΩL
dπ

< 0. Note that α ≤ 1
2

is a sufficient (not necessary) condition. As such,

π ↓⇔ ΩL ↑. Using this in the first equation implies kL increases as well, kL ↑.

Next, merge equations ((35), (37)) and ((36), (38)) to get:

1

r
α

1−α

(
αP (Ā− Ω−1

L − σ
2
a) + παzL

) α
1−α =

π

Pσ−2
ε

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(67)

ι
1−2α
1−α

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)
. (68)
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Again, γ = 0 implies P = P̄ , thus taking the derivatives we have

dΩL
dzH

=
−
σ2
εΩ2

L

1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩL))2


P̄

+
zLα

2
(
α
(
P̄
(
Ā−σ2

a−
1

ΩL

)
+πzL

)) 1
1−α−2

(1−α)

2πσ2
εΩL

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩL))3


P̄

−
P̄α2

(
α
(
P̄
(
Ā−σ2

a−
1

ΩL

)
+πzL

)) 1
1−α−2

(1−α)Ω2
L

dπ

dzH

dΩH
dzH

=

πα2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

+
−
σ2
εΩ2

H

1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩH ))2


P̄

+
zHα

2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

dπ

dzH

Using definition (61)-(63) the above expressions simplify to:

dΩL
dzH

=
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

dΩH
dzH

=
πΩ2

HA(H)

B(H)− ιP̄A(H)
+
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)

dπ

dzH

Thus the derivative of the knowledge gap is given by

dΥ

dzH
=
d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
− zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH

We have already shown that dπ
dzH

< 0. Using that, we first show that fixing the parameters, ∃ι̂ such that if and only

if ι > ι̂, the knowledge gap is increasing in zH .

∃ι̂ s.t. ι > ι̂⇔ dΥ

dzH
> 0.

Note that

d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
− zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH
=⇒

d(ΩH − ΩL)

dzH
> 0⇔

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

B(H)− ιP̄A(H)
>
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

Multiply both sides by the denominator on the left hand side, which is positive as ι < 1. Divide both sides by the

right hand side expression which is also positive. Since both expressions are positive, the inequality sign does not
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change

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)
dπ
dzH

> B(H)− ιP̄A(H)

ι >
1

P̄A(H)

B(H)−
πΩ2

HA(H) +
(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)
dπ
dzH



A(i) =
α

1
1−α ι

2− 1
1−α

i

((
ιiP̄

(
Ā− σ2

a − 1
Ωi

)
+ πzi

)) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

ι >
1

P̄
α2r

2α−1
1−α k2α−1

i

(1−α)Ω2
i

B(H) +
C(H)

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)



ι >ῑ1H =

 (1− α)Ω2
i

P̄α
1

1−α (πzi)
1

1−α−2

B(H) +
C(H)

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)

 1− α
2− 3α

Since α < 1
2
, and Ωi and ki, i = L,H are finite, sufficiently large zH insures ῑ1H < 1.

A.12 Proposition 6: Accumulation Can be Purely Concave

It turns out that data accumulation is not always S-shaped. The S-shaped results in the previous proposition hold

only for some parameter values. For others, it can be that data accumulation is purely concave. In other words, even

when Ωi,t is small enough, there is no convex region. Instead, the net data flow (the slope) decreases with Ωi,t, right

from the start.

Proposition 6 Concavity of Data Inflow ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), the net data flow decreases with Ωi,t

if σ2
θ > σ2

a.

We proceed in two steps. In Step 1, we prove that data outflows are approximately linear when Ωi,t is small.

And then in Step 2, we first calculate the derivative of net data flow with respect to Ωi,t and then characterize the

parameter region where it is negative.

Step 1: Data outflows are approximately linear when Ωi,t is small.

This is proven separately in Lemma 4.

Step 2: Characterize the parameter region where the derivative of net data flow with respect to Ωi,t is negative.

A negative least upper bound is sufficient for it be negative.

Recall that the derivative of data inflows with respect to the current stock of knowledge Ωt is
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∂dΩ+
i,t

∂Ωi,t
= ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

> 0 (see the Proof of Proposition 3 for details). Thus

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

≈ ρ2 [ρ2 + σ2
θ(Ωi,t + σ−2

a )
]−2 − 1 + ρ2(1 + ρ2σ2

θσ
−2
a )−2. (69)

Since this derivative increases in ρ2 and decreases in Ωi,t = 0, so its least upper bound 2

1+σ2
θ
σ−2
a
− 1 is achieved when

ρ2 = 1 and Ωi,t = 0. A non-negative least upper bound requires σ2
a ≥ σ2

θ . That means, if σ2
θ > σ2

a, the supreme of

∂dΩ+
i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
is negative, so it will always be negative ∀Ωi,t ∈ Bε(0).

A.13 Proposition 7: S-shaped Stock of Knowledge Over Time

This proposition shows the S-shape of Ωi,t in the time domain. The result differs from Proposition 3 because instead

of establishing that data flows are increasing or decreasing in Ω, this result establishes that flows increase and then

decrease in time.

Proposition 7 Let ζ ≡ σ2
θ
σ2
a

. If ζ is sufficiently small, σε sufficiently small, zi sufficiently large, or σa sufficiently

large, then

1)
∂2Ωi,t
∂t2

> 0 when Ωi,t is small enough, there is sufficient diminishing return to scale α < 1
2

, price is sufficiently

large Pt > f(Ω̂) and the value function is not too concave V ′′ ∈ [ν, 0), where Ω̂ is the first root of (50), and f

is defined by (49);

2) and
∂2Ωi,t
∂t2

< 0 when Ωi,t is large enough.

Proof: We have established how net data flows change with Ωi,t. To map it to concavity and convexity of Ωi,t

with respect to t, we need to find the regions where net data flow, dΩ+
i,t − dΩ−i,t = zi,tk

α
i,tσ
−2
ε − Ωi,t − σ−2

a +[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
is positive. If dΩ+

i,t − dΩ−i,t > 0, then
∂dΩ+

i,t−dΩ
−
i,t

∂Ωi,t
> 0 maps to

∂2Ωi,t
∂t2

> 0 and

∂dΩ+
i,t−dΩ

−
i,t

∂Ωi,t
< 0 maps to

∂2Ωi,t
∂t2

< 0. The rest of the proof proceeds in two steps.

Step 1: Prove that net data flows are positive when Ωi,t ∈ (0, Ω̄f ) and negative when Ωi,t ∈ (Ω̄l,∞).

We can sign the second derivative of outflows with respect to Ωi,t easily:
∂2dΩ−

i,t

∂Ω2
i,t

=
2ρ4σ2

θ

(1+ρ2σ2
θ
σ−2
a +ρ2σ2

θ
Ωi,t)3

>

0. The first derivative of outflows with respect to Ωi,t is
∂dΩ−

i,t

∂Ωi,t
= 1 − 1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

. Since

∂2dΩ−
i,t

∂Ω2
i,t

> 0, we have that
∂dΩ−

i,t

∂Ωi,t
is monotonically increasing and its minimum value is obtained when Ωi,t = 0:

∂dΩ−
i,t

∂Ωi,t
|Ωi,t=0 = 1− 1

ρ2σ−4
a (σ2

θ
+ρ−2σ2

a)−1)2
, which is always positive given σa, σθ > 0 and ρ2 ≤ 1. Therefore

∂dΩ−
i,t

∂Ωi,t
> 0.

On the other hand, we know from the proof of Proposition 8 that
∂dΩ+

i,t

∂Ωi,t
|Ωi,t=0 > 0 and limΩi,t→∞

∂dΩ+
i,t

∂Ωi,t
|Ωi,t=0 ≤ 0.

When Ωi,t = 0, the data infow and outflow are dΩ+
i,t|Ωi,t=0 = zi(k

∗
0)ασ−2

ε , where k∗0 is the optimal invesment

when Ωi,t = 0, and dΩ−i,t|Ωi,t=0 = σ−2
a (1 − ρ2

1+ρ2ζ
), respectively. If dΩ+

i,t|Ωi,t=0 ≥ dΩ−i,t|Ωi,t=0, then the data outflow

and inflow curves must have intersection(s) in the region (0,∞). Let’s denote the first intersection by Ω̄f and the last

by Ω̄l. When there is a unique intersection, Ω̄f and Ω̄l coincide. Then net data flows are positive when Ωi,t ∈ (0, Ω̄f )

and negative when Ωi,t ∈ (Ω̄l,∞).
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Step 2: Find out the parameter regions where Step 1 holds.

Since dΩ−i,t|Ωi,t=0 is monotonic in ρ2 and ρ2 ∈ [0, 1], we have dΩ−i,t|Ωi,t=0 ∈ [ ζ
1+ζ

σ−2
a , σ−2

a ]. dΩ+
i,t|Ωi,t=0 ≥

dΩ−i,t|Ωi,t=0 is guaranteed when dΩ+
i,t|Ωi,t=0 ≥ ζ

1+ζ
σ−2
a , that is k∗0 ≥

σ2
ε

ziσ2
a

ζ
1+ζ

. The last inequality is only true when

ζ is sufficiently small, σε sufficiently small, zi sufficiently large, or σa sufficiently large.

We can then apply Proposition 8 and map concavity and convexity of Ωi,t to the time domain.

A.14 Lemma 4, 5, 6: Linearity of Data Depreciation

One property of the model that comes up in a few different places is that the depreciation of knowledge (outflows)

is approximately a linear function of the stock of knowledge Ωi,t. There are a few different ways to establish this

approximation formally. The three results that follow show that the approximation error from a linear function is

small i) when the stock of knowledge is small; ii) when the state is not very volatile; and iii) when the stock of

knowledge is large.

Lemma 4 Linear Data Outflow with Low Knowledge ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), data outflow is approx-

imately linear and the approximation error is bounded from above by
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
. The approximation

error is small when ρ or σθ is small, or when Ωi,t is very close to 0.

Proof:

Recall that data outflows are dΩ−i,t = Ωi,t+σ
−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Its first-order Taylor expansion around 0 is g(Ωi,t) = g(0)+g′(0)Ωi,t+o(Ωi,t),

with g′(0) = ρ2

(1+ρ2σ2
θ
σ−2
a )2

. Thus
∂dΩ−

i,t

∂Ωi,t
= 1 − g′(Ωi,t) ≈ 1 − g′(0) for Ωi,t in a small open ball Bε(0), ε > 0, around

0. And the approximation error is |o(Ωi,t)| =
ρ4σ2

θΩ2
i,t

(1+ρ2σ2
θ
σ−2
a )[1+ρ2σ2

θ
(Ωi,t+σ

−2
a )]

, which increases with Ωi,t and thus is

bounded from above by error term evaluated at ε, that is
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
.

Lemma 5 Linear Data Outflow with Small State Innovations ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), data outflows

are approximately linear and the approximation error is bounded from above by
ρ4 ε̄2(Ωi,t+σ

−2
a )2

1+ρ2ε2σ(Ωi,t+σ
−2
a )

. The approximation

error is small when ρ is small, or when σθ is close to 0.

Proof:

Recall that data outflows are dΩ−i,t = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The non-linear term g(Ωi,t) =

[(ρ2(Ωi,t+σ
−2
a ))−1 +σ2

θ ]−1 is linear when σθ = 0. Therefore, ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), g(Ωi,t) is approximately

linear. The approximation error |g(Ωi,t) − ρ2(Ωi,t + σ−2
a )| is increasing with εσ and reaches its maximum value at

σθ = εσ, with value
ρ4ε2σ(Ωi,t+σ

−2
a )2

1+ρ2 ε̄2(Ωi,t+σ
−2
a )

.

Lemma 6 Linear Data Outflow with Abundant Knowledge When Ωi,t � σ−2
θ , discounted data stock is very

small relative to Ωi,t, so that data outflows are approximately linear. The approximation error is small when ρ is

small or when σθ is sufficiently large.
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Proof:

Recall that data outflows are dΩ−i,t = Ωi,t+σ
−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Since (ρ2(Ωi,t + σ−2
a ))−1 ≥ 0, we have g(Ωi,t) ≤ σ−2

θ . Since Ωi,t ≥ 0,

we have g(Ωi,t) ≥ (ρ−2σ2
a + σ2

θ)−1. That is g(Ωi,t) ∈ [(ρ−2σ2
a + σ2

θ)−1, σ−2
θ ]. For high levels of Ωi,t, Ωi,t �

σ−2
θ generally holds. And for low levels of Ωi,t, it holds when σθ is very large. The approximation error is

|σ−2
θ −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1 | and decreases with Ωi,t, reaching its minimum at Ωi,t = 0 with a value of

ρ2

(1+ρ2σ2
θ
σ−2
a )2

.

B Numerical Examples

The section contains computational details, additional comparative statics and steady state numerical analyses that

illustrate how our data economy responds to changes in parameter values for one or more firms.

Parameter Selection The results below are not calibrated.10 However, the share of aggregate income paid

to capital is commonly thought to be about 0.4. Since this is governed by the exponent α, we set α = 0.4. For

the rental rate on capital, we use a riskless rate of 3% , which is an average 3-month treasury rate over the last

40 years. The inverse demand curve parameters determine the price elasticity of demand. We take γ and P̄ from

the literature. Finally, we model the adjustment cost for data ψ in the same was as others have the adjust cost of

capital.This approach makes sense because adusting one’s process to use more data typically involves the purchase

of new capital, like new computing and recording equipment and involves disruptive changes in firm practice, similar

to the disruption of working with new physical machinery.

Finally, we normalize the noise in each data point σε = 1. We can do this without loss of generality because

it is effectively a re-normalization of all the data-savviness parameter for all firms {zi}. This is because for normal

variables, having twice as many signals, each with twice the variance, makes no difference to the mean or variance of

the agent’s forecast. As long as we ignore any integer problems with the number of signals, the amount of information

conveyed per signal is irrelevant. What matters is the total amount of information conveyed.

B.1 Computational Procedure

Figure 2 solves for the dynamic transition path when firms do not trade data.

Value Function Iteration: To solve for the value function, make a grid a values for Ω (state variable) and k (choice

variable). Guess functions V0(Ω) and P0(Ω) on this grid. Guess a vector of ones for each. In an outer loop, iterate

until the pricing function approximation converges. In an inner loop, given a candidate pricing function, iterate until

the value function approximation converges.

10To calibrate the model, one could match the following moments of the data. The capital-output ratio tells us
something about the average productivity, which would be governed by a parameter like Ā, among others. The
variance of GDP and the capital stock, each relative to its mean, var(Kt)/mean(Kt) and var(Yt)/mean(Yt), are
each informative about variance of the shocks to the model, such as σ2

θ and σ2
a.
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Forward Iteration: Solving for the value function as described above also gives a policy function for k(Ω) and

price function P (Ω). Linearly interpolate the approximations to these functions. Specify some initial condition Ω0.

For each t until T : Determine the choice of kt and price at this state Ωt. Calculate Ωt+1 from Ωt and kt.

Trade Value Function Approximation: Figure 4 solves for dynamic transition path when firms are allowed to

buy/sell data for fixed final goods and data prices. We take the same steps as written above, but now optimize over

ω rather then k.

Heterogeneous Firm Steady State Calculation: Figure 5 solves for the steady state equilibrium with two types of

firms, in which both P and π are endogenous.
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