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1 Introduction

Developed economies experience recurrent boom-bust cycles in financial and economic activity.

In the US, buoyant credit markets - measured by low credit spreads - tend to be followed by

a financial tightening in which credit spreads rise, investment growth drops, and GDP growth

declines (López-Salido et al., 2017). In panels of developed countries, rapid credit expansions

(Schularick and Taylor, 2012) and growth of private debt (Mian et al., 2017; Greenwood et al.,

2020) forecast declines in real economic activity.

According to a longstanding hypothesis (Minsky, 1977; Kindleberger, 1978), these boom-bust

cycles are driven by non-rational beliefs. During good times, the argument goes, investors are

too optimistic, so credit and investment overexpand. Subsequently, beliefs cool off, credit markets

tighten, real activity declines, and default rates increase. In this mechanism, inflated expectations

and their disappointment play a key role. Two sets of facts are consistent with this view. First,

credit booms predict low and even negative returns on corporate bonds and bank stocks (Baron

and Xiong, 2017; Greenwood and Hanson, 2013). This finding is consistent with overoptimistic

pricing of credit risk in the boom. Second, there is direct evidence from expectations data. When

credit spreads are low, credit analysts forecast spreads to be too low in the future (Bordalo et al.,

2018), and stock analysts are systematically too optimistic about the future profitability of risky

firms (Gulen et al., 2019). This evidence suggests that beliefs overreact to current conditions,

becoming too optimistic in good times and too pessimistic in bad times. Can such overreaction

produce the boom-bust fluctuations of financial and real activity observed in reality?

We address this question by presenting a workhorse real business cycle (RBC) model in which

investors overreact to total factor productivity (TFP) news. We modify a standard heterogeneous

firm model by a single parameter that regulates the overreaction of beliefs. We estimate the

model using firm-level data, which crucially includes data on managers’ expectations about their

firms’ profitability. We show that a realistic degree of overreaction generates dynamics that match

qualitatively, and to a good extent quantitatively, the cycles in spreads, bond returns, and invest-

ment at both the firm and aggregate levels. The rational expectations model estimated on the

same data can neither match the expectations data nor produce credit cycles. A single parameter

controlling belief overreaction offers a parsimonious way to obtain realistic boom-bust cycles in

standard business cycle models.

The paper proceeds as follows. In Section 2 we present novel evidence based on microdata that

directly connects expectations to credit spreads, bond returns, and investment at the firm level.

We first show that managers’ expectations of their firms’ profits overreact to current conditions:

they are too optimistic in good times and too pessimistic in bad times. In turn, excess optimism

about a firm’s future profits measured from expectations data predicts a one year-ahead increase
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in the firm’s credit spread, low realized returns on the firm’s bonds, and a decline in its investment

growth. Overreacting beliefs appear to be directly linked to firms’ financial and real cycles. In

the rest of the paper we investigate whether this mechanism can produce aggregate credit cycles

as well.

In Section 3 we present our formalization of non-rational beliefs, based on diagnostic expecta-

tions (DE) (Bordalo et al., 2018). This model is founded in the psychology of selective recall. The

idea is that good news does not only increase the objective likelihood of good future outcomes.

Good news also causes such outcomes to be top of mind and thus overweighted in beliefs. In our

setting diagnostic beliefs give rise to the expectations formula:

Eθt (At+1) = Et (At+1) + θ [Et (At+1)− Et−1 (At+1)] , (1)

where At+1 is future TFP, Et (·) is the rational expectation at time t, and θ ≥ 0 is a diagnosticity

parameter. When θ = 0 expectations are rational. When θ > 0 agents overreact to news, becoming

too optimistic after good news and too pessimistic after bad news.

DE have several advantages relative to other formulations such as mechanical extrapolation or

adaptive expectations. First, they are forward-looking and are therefore not directly vulnerable to

the Lucas (1976) critique. Second, DE can better account for survey evidence on the expectations

of financial analysts (Bordalo et al., 2019) and macroeconomic forecasters (Bordalo et al., 2020).

Third, the diagnosticity parameter θ has already been estimated using such data, and this set of

external estimates offers an important out of sample check for our results.

To assess whether DE yield realistic aggregate cycles, in Sections 4 and 5 we build and estimate

an RBC model in which firms are subject to idiosyncratic and common TFP shocks, both of which

follow AR(1) processes. Each firm optimally decides whether to default, how much labor to hire,

how much to invest subject to adjustment costs, as well as how much equity and how much debt to

issue. Deep-pocket risk-neutral lenders provide credit. Both managers and lenders hold identical

diagnostic expectations. We mostly focus on a partial equilibrium setting: labor is infinitely elastic

at an exogenous fixed wage. We later endogenize wages. We structurally estimate the model by

matching moments on firm-level profitability, spreads, debt, investment, and, crucially, forecast

errors. The estimated degree of diagnosticity θ ∼ 1 is in the ballpark of previous estimates

(Bordalo et al., 2019, 2020; Pflueger et al., 2020; d’Arienzo, 2020). Despite its nonlinearity and

the overidentified estimation with more target moments than parameters, our DE model captures

both the volatilities of, and to a large degree the correlations between, real variables, beliefs, and

financial outcomes in the firm data. To assess the role of overreacting expectations on macro

outcomes, we also estimate and simulate a rational expectations (RE) model with θ fixed at 0,

which does not match predictable forecast errors at the firm level.

Two key properties emerge from the analysis. First, the DE model matches untargeted macro
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moments significantly better than the RE model, including the observed countercyclicality of credit

spreads. This is a robust implication: overreaction magnifies the volatility of beliefs of investors

and firms, but such excess volatility disproportionately affects the supply of credit. Fluctuations

in credit demand are dampened by diminishing returns and bankruptcy costs. Thus, in good times

overoptimistic investors are willing to supply all the extra capital demanded at a lower spread. In

bad times the reverse is true. In the RE model, beliefs are less volatile and shifts in credit demand

are relatively more important, generating procyclical spreads.

Second, under DE, but not under RE, the reaction of aggregate investment to a given TFP

shock is highly nonlinear. In good times, even a small negative TFP shock causes a large drop in

aggregate investment, which is not the case when the same shock hits in normal times. Fragility

during good times occurs because overoptimism and hence excess debt issuance are followed by a

strong downward revision of beliefs when the adverse shock hits. Debt is then sharply repriced and

investment is cut. In this sense, DE offer a belief-based theory of the financial shocks evident in

macro-financial data (Jermann and Quadrini, 2012; Gilchrist and Zakraǰsek, 2012) by generating

non-fundamental increases in the cost of credit caused by the waning of optimism.

In Section 6 we assess the ability of this mechanism to account for observed credit cycle facts.

Using simulated data, we first show that the DE model yields predictable boom-bust dynamics in

investment and credit spreads and also predictable bond returns at both the aggregate (López-

Salido et al., 2017; Greenwood and Hanson, 2013) and the firm levels. The RE model can generate

some reversals in spreads from mean reversion in productivity but cannot account for any of the

other facts.

We next ask how large a TFP shock is required in our model to produce the massive increase

in credit spreads observed during 2007-09 and investigate the macroeconomic implications of such

a shock. We find that the empirically observed TFP decline of 1.5% is exactly sufficient to justify

the observed increase in credit spreads in 2007-09. Moreover, it generates drops in aggregate

investment, credit, and in earnings expectations that are quantitatively consistent with the data.

This result is surprising given that our model abstracts from important elements of large scale

crises such as asset price bubbles and bank runs. The RE model is entirely incapable of producing

the increase in spreads from the same TFP shock.

In Section 7 we report two robustness exercises. First, we simulate a version of the model

in which only firms have diagnostic expectations while lenders hold rational expectations. Now

credit cycles are dampened, consistent with the centrality of an overreacting supply of capital for

our findings. Second, we endogenize the real wage by adding to the model a labor choice with

convex effort cost. As expected, this modification dampens financial volatility: in good times real

wages increase, reducing the incentives of firms to lever up and invest. This effect, however, does

not eliminate sizable fragility after good times, even with fully flexible wages.
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Overall, our DE model offers a theory of endogenous financial fragility. It accounts well for

boom-bust dynamics in credit market conditions. It also amplifies overall macroeconomic volatility

relative to RE, even though in our model investment and output move less than in observed

credit cycles. Enriching our purely supply-driven setup with realistic ingredients such as shifts in

aggregate demand (Farhi and Werning, 2020), time-varying capacity utilization (King and Rebelo,

1999), or sharp cuts to firm-level employment in bad times (Ilut et al., 2018) may produce realistic

macroeconomic volatility in a way consistent with the observed excess volatility in financial markets

and with beliefs data.

Our paper is related to two strands of work in macroeconomics. A large literature studies

financial frictions as amplifiers of shocks under rational expectations (Bernanke and Gertler, 1989;

Bernanke et al., 1999; Kiyotaki and Moore, 1997). This work views prolonged recessions after

financial booms as the result of fire sales (Shleifer and Vishny, 1992; Lorenzoni, 2008; Stein, 2012;

Dávila and Korinek, 2017), intermediary leverage/bank runs (Brunnermeier et al., 2012; He and

Krishnamurthy, 2019; Eggertsson and Krugman, 2012; Guerrieri and Lorenzoni, 2017), demand

externalities (Farhi and Werning, 2016; Korinek and Simsek, 2016), and slow reallocation of excess-

capital toward more productive sectors (Rognlie et al., 2018). To capture non-fundamentals driven

crises, this work often relies on financial shocks to required returns or collateral constraints, or

multiple equilibria (Gu et al., 2013). Arellano et al. (2019) analyze the 2008 crisis by adding

uncertainty shocks to a standard business cycle model. This helps account for the decline in debt

purchases, output, and labor during the Great Recession, despite the relative stability of TFP.

Relative to this work, we depart from rational expectations. We show that realistic belief

overreaction disciplined by microdata generates substantial financial shocks and credit cycles from

small TFP shocks in an RBC framework. Some recent work combines DE with the amplification

mechanisms above. Maxted (2020) introduces diagnostic expectations into He and Krishnamurthy

(2019)’s model. Krishnamurthy and Li (2020) also jointly consider beliefs and intermediation

within this type of framework. Relatedly, Farhi and Werning (2020) and Caballero and Simsek

(2020) analyze demand externalities in models with extrapolative expectations.

A second strand of work studies departures from rationality, often in the form of partial in-

formation and inattention. These papers do not typically consider belief overreaction and credit

cycles. Coibion and Gorodnichenko (2015) link macroeconomic forecast errors to information

rigidities as in Woodford (2003). Kohlhas and Walther (2020) model asymmetric attention paid

to distinct macroeconomic variables. Kozlowski et al. (2017) links belief dynamics to the per-

sistence of the Great Recession. Angeletos et al. (Forthcoming) relies on dispersed information

and overextrapolation of macroeconomic outcomes. Falato and Xiao (2020) models imperfect in-

formation and learning about corporate profits. Adam et al. (2017) models asset price booms

relying on subjective price beliefs by investors. Schaal and Taschereau-Dumouchel (2020) models
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herding and dispersed information in a setting that generates boom-bust dynamics. Bianchi et al.

(2020) measures macro belief distortions using professional forecaster data. Jaimovich and Rebelo

(2007) study the impact of other belief distortions in quantitative macro models without financial

frictions. Bianchi et al. (2018) and Ilut and Saijo (2020) study ambiguity aversion and fluctuations

in real aggregates and the stock market, concluding that ambiguity aversion can deliver business

cycle comovement and amplification. Ambiguity aversion can generate excess volatility in beliefs,

but it has a hard time explaining overoptimism, unless a preference for ambiguity is added, as in

Bhandari et al. (2019).1 Our approach incorporates waves of extensive optimism and pessimism.

Finally, behavioral finance has studied the role of beliefs in credit cycles, but without assessing

quantitatively the promise of this approach. Bordalo et al. (2018) offers a stylized model of credit

cycles with diagnostic expectations. Greenwood et al. (2019) builds a model in which credit

markets extrapolate from recent default history, so that crises are slow moving. Richter and

Zimmermann (2020) studies bank profits and the occurrence of banking crises with behavioral

beliefs. Fostel and Geanakoplos (2014) and Simsek (2013) emphasize belief heterogeneity.

2 Evidence on Firm-Level Credit Cycles

If aggregate credit cycles are produced by overreacting beliefs, the same mechanism should produce

credit cycles at the firm level. When a firm goes through good times, overreaction should cause

excess optimism about its future prospects. When such optimism is systematically disappointed,

there should be: i) a predictable increase in the firm’s credit spread, ii) predictably low returns

on the firm’s bonds, and iii) a predictable drop in the firm’s investment. This section shows that

such predictable firm-level cycles indeed occur, even after controlling for macro shocks. In Section

5 we use this firm-level variation to estimate our model and see whether it accounts for boom-bust

cycles in the macroeconomy.

We use micro data on firm-level forecasts from the IBES manager guidance database. This

panel records, for an individual firm-fiscal year, the prediction offered by the firm’s management

for their own company’s profits or earnings over the next year. We exploit bundled forecasts,

i.e., predictions made concurrently with the release of the current year’s financials, in a sample

spanning the 1999-2018 period. The data from US public firms links to the Compustat database

providing the standard firm financial information. To study firm-level credit spreads, we use

the Mergent Fixed Income Securities Database (FISD), which contains issuance information on

individual securities. We obtain data on bond returns using the FINRA’s Trade Reporting and

Compliance Engine (TRACE) dataset, which contains detailed information on secondary market

1More broadly, a literature links business cycles to beliefs with ambiguity or robust control mechanisms (Hansen
and Sargent, 2001a,b; Ilut and Schneider, 2014). Relative to this work, our model of beliefs contributes an expla-
nation for credit cycles and for predictable forecast errors.
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Table 1: Predictable Forecast Errors

(1) (2) (3) (4)

Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1

Forecastt  -0.242***
(0.030)   

Profitst  -0.043*** 
(0.021)

Investmentt  -0.455*** 
(0.065)   

Debt Issuancet  -0.040*** 
(0.007)

Firm Effect X X X X
Time Effects X X X X
Years 1999-18 1999-18 1999-18 1999-18
Firm-Years 9664 9664 9664 9664

-0.106015

Notes: The table reports estimates of specifications on the merged Compustat - IBES Guidance
sample at the firm-fiscal year level. Forecasts are earnings guidance, profits are earnings,
investment is tangible capital expenditures, debt issuance is end-of-period net debt, and forecast
errors are actual earnings minus manager guidance at a 1-year horizon. All series are relative to
firm tangible capital stocks at the beginning of the year. Standard errors are clustered at the firm
level. * = 10% level, ** = 5% level, and ***=1% level. The standard deviation of future forecast
errors is 0.784, the standard deviation of forecasts is 0.925, the standard deviation of profits is
1.031, the standard deviation of investment is 0.233, and the standard deviation of debt issuance
is 3.803. For all series, 0.01=1% relative to a firm's tangible capital stock.

transactions from bond dealers. The combined FISD-TRACE bond return sample covers the years

2003-2018. Appendix B provides more information on the data sources, our sample construction,

descriptive statistics, etc.

To begin, we assess whether expectations of firm profitability overreact to current conditions.

We regress next year’s firm-level forecast errors, defined as realized minus predicted profits, on

current-year firm-level financial outcomes. Under rational expectations, the manager’s forecast

errors should be unpredictable based on any information available to the firm when the forecast is

made. In contrast, if beliefs about the firm’s earnings overreact, displaying overoptimism during

good times and undue pessimism during bad times, then future forecast errors should be negatively

correlated with current firm-level fundamentals.

Table 1 reports the results. Each specification includes firm and time effects, identifying solely
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off of within-firm variation not driven by common shifts across firms. In column (1), we see that

firms making high forecasts of earnings for next year experience more negative earnings surprises

on average. In column (2), firms with higher profits today are systematically disappointed next

year. In column (3), firms investing more today issue overly optimistic forecasts. Column (4)

reports that firms issuing more debt today are also disappointed next year. The magnitudes are

meaningful. For example, a one-standard deviation higher firm investment rate, about 23% higher,

is on average associated with 23% × 0.455 ≈ 11% stronger disappointment in earnings next year.

The evidence on managers’ beliefs is consistent with belief overreaction, confirming the findings

obtained by Gennaioli et al. (2016) and Barrero (2020) using different data.2’3

A series of checks in the empirical Appendix B establishes robustness in the conclusions from

Table 1 to a range of different sample and specification choices. We exclude the Great Recession

in Table B2, to check whether these patterns are driven by a single episode. Motivated by the

arguments in Bertomeu et al. (2020) that forecast manipulation is more common in firms that

report fewer forecasts, in Table B3 we drop firms with fewer than five years of earnings guidance.

We exclude firms with high-yield debt in Table B4 to verify that our findings are not driven only

by the riskiest firms. We also control flexibly for firm-level trends, running regressions in first

differences in Table B5. In all cases, we continue to find statistically precise evidence consistent

with belief overreaction with small differences in magnitudes.

Building on this analysis, we next assess whether the overreaction of beliefs is associated with

firm-level credit cycles. Table 2 estimates a range of specifications on our sample combining data

on firm financials, earnings forecast errors, and bond returns. Columns (1), (3), and (5) report OLS

regressions. Firms with lower forecast errors – lower profits relative to expectations – experience

lower bond returns, higher spread growth, and lower investment growth, with varying degrees of

precision in our OLS estimates across outcomes. This pattern of results is, however, consistent

with rational expectations because future news can drive all of these outcomes.

To check whether periods of overoptimism predict low bond returns, rising spreads, and de-

clining investment, we run an IV regression. In the first stage, which is analogous to the results

from Table 1 for this sample, we regress future forecast errors on current investment. This allows

us to identify times of excess optimism (pessimism) as those in which investment is so high (low)

that it ex-ante predicts future negative (positive) forecast errors. Investment is a good first-stage

predictor because, as shown in Gennaioli et al. (2016), it reflects the manager’s beliefs without

being affected by the measurement error that may contaminate survey expectations and generate

2The recent literature on overreaction stresses the predictability of forecast errors from forecast revisions (Bordalo
et al., 2020, 2019; Coibion and Gorodnichenko, 2015). Since manager profit forecasts are released less frequently,
and for fewer horizons, we do not have enough data to perform this type of revision-based analysis.

3Bouchaud et al. (2019) study equity analysts’ short-term earnings forecasts which, while correlated with man-
ager forecasts, display a form of underreaction. Both the variable forecasted and the incentives involved are distinct
in their sample.
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Table 2: Linking Forecast Errors and Firm Credit Cycles

(1) (2) (3) (4) (5) (6)

Dependent Variable: Returnt Returnt Δ Spreadt Δ Spreadt Δ Investmentt Δ Investmentt
Estimation OLS IV OLS IV OLS IV

Fcst. Errort 0.001 0.007* -0.004*** -0.011*** 0.009 0.485***
(0.001) (0.004) (0.001) (0.004) (0.007) (0.061)

First Stage Fcst. Errort Fcst. Errort Fcst. Errort

Investmentt-1 -0.562*** -0.562*** -0.562***
(0.105) (0.105) (0.105)

Years 2003-18 2003-18 2003-18 2003-18 2003-18 2003-18
Firm-Years 2852 2852 2852 2852 2852 2852
Time Effects X X X X X X
First Stage F 28.94 28.94 28.94

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE sample at the
firm-fiscal year level. The top panel plots OLS and IV second-stage estimates. The bottom panel, where relevant,
reports IV first-stage estimates. Columns (3)-(4) control for lagged spreads, and columns (5)-(6) control for current
profits in the second stage. Standard errors are clustered at the firm level. * = 10% level, ** = 5% level, and ***=1%
level. The standard deviation of the bond return is 0.014, the standard deviation of spread growth is 0.024, the
standard deviation of investment growth is 0.090, the standard deviation of the forecast error is 0.438, and the
standard deviation of lagged investment is 0.133. For all series, 0.01=1% relative to a firm's tangible capital stock.

spurious predictability of forecast errors.

In the second stage, we regress bond returns, the change in credit spreads, and investment

growth on the forecast errors predicted in the first stage. This IV strategy reveals whether the

predictable reversal of expectations itself predicts reversals of firm-level conditions, a result that

is not consistent with rationality. Columns (2), (4), and (6) present the second-stage estimation

results. In all these specifications, we control for time effects.4 We find that periods for which be-

liefs about a firm are predictably overoptimistic and hence subsequently disappointed, controlling

for macro shocks, also display disappointing returns on the firm’s bonds, an increase in its credit

spread, and a decline in investment.5 The magnitudes are meaningful. For example, in column (2)

a firm predictably disappointed with a one standard deviation lower forecast error sees its bond

returns fall by 0.007 × 0.438 ≈ 0.3 percentage points on average, a sizable decline relative to the

standard deviation of around 1.4 percentage points for bond returns in our sample.

4If we add firm effects the results are confirmed directionally but we lose power in our first-stage regressions due
to a smaller cross-sectional dimension due to the requirement that we also need firm-level credit spreads.

5In Appendix B we also check that these firm-level cycles are not driven by highly risky firms, which may display
a stronger reaction to macro shocks. We thus repeat the exercise in Table B7 for the subset of investment grade
firms, excluding all firms with high-yield debt. Our results are confirmed.
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Can mean reversion in fundamentals account for the spread and investment reversals we ob-

serve? In the spread regressions in columns (3)-(4) we control for the lagged spread and in the

investment regressions in columns (5)-(6) for current profits, so the results suggest otherwise.6

Also, such concerns are not relevant for realized bond returns, which should be unpredictable.7

To summarize, overreacting expectations are directly linked to reversals in bond returns, in

spreads, and in investment at the firm level. Can this mechanism, once aggregated up, account

for aggregate credit cycles? To address this question, Section 3 presents our formulation of ex-

pectations and shows in a stylized setting how it yields the firm-level cycles documented here. In

Section 4 we incorporate these expectations into a standard heterogeneous firm RBC setting.

3 Diagnostic Expectations and Neglected Risk

3.1 Diagnostic Expectations

Diagnostic expectations are a model of belief formation that describes how probabilistic assess-

ments depart from the Bayesian benchmark, accounting for a large body of evidence that started

with Kahneman and Tversky in the 1970s. Gennaioli and Shleifer (2010) argue that the assessed

probability of an event reflects its accessibility in memory:8 an agent who receives new information

selectively recalls outcomes that are historically most associated with the news and fails to recall

outcomes that are less associated with it. Because judgments overweight what is top of mind,

they overreact to news.

Bordalo et al. (2018) apply this principle to a dynamic setting in which an agent forecasts a

variable Xt, say TFP, on the basis of its history. The true distribution is Markovian, denoted by

f (Xt+1 |Xt ), and stored in the agent’s memory. Under DE, the agent’s beliefs follow the distorted

distribution:

f θ (Xt+1 |Xt ) ∝ f (Xt+1 |Xt )

[
f (Xt+1 |Xt )

f (Xt+1 |Et−1 (Xt))

]θ
(2)

where θ ≥ 0 and Et−1 (Xt) is the expectation ofXt conditional on information at t− 1 computed

using the memory database. The likelihood ratio measures the diagnosticity of outcome Xt+1 on

the basis of news at t, namely the increase in its probability relative to the case of neutral news

Xt = Et−1 (Xt). θ captures the extent to which memory focuses on such diagnostic outcomes.

When θ = 0 there are no memory distortions, so expectations are rational.

6The lagged spread and current profit controls, while reassuring, are not necessary for our results. Table B6 in
the empirical Appendix B reproduces Table 2 without such controls, with little resulting change in our estimates.

7Here we implicitly rule out time variation in required returns. Models of time varying risk aversion are unable
to account for the predictable negative excess returns on high yield bonds (Greenwood and Hanson, 2013) and are
also not consistent with data on expectations of returns (Greenwood and Shleifer, 2014). Finally, data on earnings
expectations outperform these models in accounting for stock price volatility (Bordalo et al., 2019).

8Bordalo et al. (2021) present experimental evidence for the link between memory and probability assessments.
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Equation (2) simplifies the general DE formulation in two ways. First, it assumes that Xt

is perfectly observable. Bordalo et al. (2019, 2020) allow for information frictions such as dis-

persed information about Xt. Second, Equation (2) captures overreaction to current news only.

Other applications of DE allow for overreaction to a longer streak of news (Bordalo et al., 2019;

d’Arienzo, 2020; Maxted, 2020). These features are psychologically plausible and can match per-

sistent belief distortions, such as slowly brewing asset price bubbles (Bordalo et al., Forthcoming).

The specification of Equation (2) focuses our analysis on the basic overreaction mechanism.

DE offer two advantages relative to other models of non-rational expectations used in macroe-

conomics and finance. First, they are forward-looking: updating in (2) depends on the true data

generating process f (Xt+1 |Xt ). This is important not only methodologically from a traditional

macro perspective (Lucas, 1976) but also in accounting for survey data. Belief revisions by profes-

sional forecasters are larger for more persistent macroeconomic and firm-level variables (Bordalo

et al., 2020, 2019; Afrouzi et al., 2020; Azeredo da Silveira et al., 2020). Forward-looking beliefs

also reconcile, in a setting with dispersed information, the well-known sluggishness of consensus

forecasts with overreacting individual-level forecasts (Bordalo et al., 2020; Coibion and Gorod-

nichenko, 2015). The forward-looking nature of DE also accounts for the fact that overreaction is

stronger for longer-term outcomes, which are truly more uncertain (d’Arienzo, 2020). The sensi-

tivity of beliefs to the underlying data generating process is not achieved in mechanical models of

belief formation such as adaptive or extrapolative expectations.

A second advantage of DE is that departures from rationality are disciplined by a single

parameter θ. This parameter has now been estimated in different settings, ranging from financial

analysts forecasting firm-level earnings (Bordalo et al., 2019), to professional forecasters predicting

macroeconomic variables (Bordalo et al., 2020), to beliefs inferred from prices about interest rates

(d’Arienzo, 2020), to stock price volatility (Pflueger et al., 2020). These estimates point to a value

of θ between 0.5 and 1.5, providing a valuable external benchmark to discipline our quantitative

exercise and assess its reliability.

3.2 Diagnostic Expectations and Supply-Driven Bond Pricing: A Toy
Model

A stylized example illustrates how diagnosticity generates predictability of forecast errors and the

boom-bust cycles documented in Section 2. Suppose that a firm seeks to roll over a fixed amount

b of one period bonds by selling them to deep-pocket risk-neutral lenders. Lenders demand a

constant expected return R, which we normalize to one.

Debt is defaultable. If at t lenders believe that default in the next period occurs with probability

δθt , they charge the firm an interest rate R̂t = 1
1−δθt

. The spread paid by the firm is then given by:
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R̂t − 1 ≡ st =
δθt

1− δθt
, (3)

which increases in the probability of default δθt perceived by investors. Suppose now that the firm

defaults at time t if and only if its productivity is sufficiently low, At < A∗, where A∗ is a given

threshold. TFP follows an AR(1) process, lnAt = ρlnAt−1+εt, where ρ ∈ (0, 1) and εt is Gaussian

with mean zero and variance σ2. From Equation (2), at time t the diagnostic lenders perceive next

period productivity to be Gaussian with mean:

Eθt (lnAt+1) = ρ lnAt + θρεt, (4)

and variance σ2. DE are too optimistic after good news εt > 0 and too pessimistic after bad

news εt < 0. The perceived probability of default is then:

δθt = Φ

[
lnA∗ − Eθt (lnAt+1)

σ

]
, (5)

where Φ (·) is the standardized Gaussian CDF, which is naturally too low after good news and

too high after bad news.

In this stylized model, predictability of forecast errors follows directly from Equation (4):

Cov
[
lnAt+1 − Eθt (lnAt+1) , lnAt

]
= −θρσ2 < 0.

High current productivity is associated with good news and thus with excessive optimism. This

mechanism can account for the predictability of forecast errors in Table 1, which cannot occur

under RE with θ = 0.

The model also has implications for the path of credit spreads. Substituting δθt (Equation 5)

in (3) and linearizing with respect to expectations about productivity around their long run zero

mean yields:

st ≈ s∞ − sEθt (lnAt+1) , (6)

where s∞ > 0 is the long run spread and s > 0. The spread drops when creditors are more

optimistic about future productivity. Inserting (4) above we obtain:

st ≈ s∞ (1− ρ) + ρst−1 − sρ (1 + θ) εt + sθρ2εt−1. (7)

Under RE, with θ = 0, spreads mirror TFP and follow an AR(1) process with persistence

ρ. Under DE, with θ > 0, there are two differences. First, TFP shocks are amplified: after a

positive TFP shock, beliefs become too optimistic and the spread drops too much. Second, part

of the effect of current news reverts next period, as optimism wanes and the spread increases, as
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shown by the term sθρ2εt−1. According to Equation (7) the reversals in spreads documented in

Table 2 conflate fundamental mean reversion in TFP (the term ρst−1 in (7)), and waning of past

optimism (the term sθρ2εt−1). Controlling for past spreads st−1 in Table 2 should then help single

out reversals in spreads due to reversals in beliefs.

Finally, the model generates predictability in bond returns. Excess returns are predictable

whenever the current spread st differs from its RE counterpart s∗t , obtained when θ = 0 in Equation

(7). The distortion in spreads is given by:

st − s∗t ≈ −sρθεt. (8)

When current expectations are overly optimistic, θεt > 0, bonds are overpriced. As a result,

their future return tends to be low. The converse holds when expectations are pessimistic.

In sum, DE for lenders can generate the firm-level boom-bust cycles in expectations, spreads,

and returns documented in Section 2. Can they also account for macro credit cycles when the

demand for credit and investment fluctuates, when there are idiosyncratic and aggregate TFP

shocks, and when wages flexibly adjust? The rest of the paper addresses this question.

4 RBC Model with Diagnostic Firms and Lenders

Firms with different and persistent productivities decide whether to default, hire labor, invest,

issue equity, and borrow subject to capital adjustment costs. Credit is supplied by a continuum

of risk-neutral lenders. The only difference relative to a workhorse neoclassical model with firm

heterogeneity and risky debt (Khan and Thomas, 2008; Arellano et al., 2019; Gilchrist et al., 2014),

is that firms and lenders form expectations diagnostically.

We start from a partial equilibrium analysis. The risk-free rate R and the wage rate W

are taken as given. In Section 7 we endogenize the wage. This is useful because overoptimistic

beliefs may boost labor demand and hence the real wage, which could dampen the cycle. We

instead maintain the risk-free rate R fixed, for two reasons. First, consumption-based models of

required returns make predictions on expectations of returns that are inconsistent with measured

expectations (Greenwood and Shleifer, 2014). Second, and related, the cyclical changes in the risk-

free rate generated by consumption-based models are counterfactual relative to those observed in

the data (Winberry, 2017; Cooper and Willis, 2015).9

9Recent work in quantitative macroeconomics studying firm heterogeneity (Khan and Thomas, 2008; Bachmann
et al., 2013; Winberry, 2017) emphasizes that general equilibrium stochastic discount factor movements do not
necessarily lead to a dampening of business cycle nonlinearities or investment dynamics if they are structured to
produce realistic countercyclicality of real interest rates, while the traditional stochastic discount factor does in
fact dramatically dampen investment dynamics through procyclical real interest rates. Our fixed real interest rate
assumption here strikes a middle ground between these alternatives and is consistent with the evidence that the
real interest rate is not particularly cyclical (Winberry, 2017; Cooper and Willis, 2015).
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Time is discrete. We use ′ to denote future values and −1 to indicate lagged values. Uppercase

letters refer to macro or common values, lowercase letters refer to idiosyncratic objects.

4.1 Firms

The generic firm has micro-level TFP z and is subject to macro level TFP A. It uses capital k

and labor n as inputs to produce output according to a decreasing returns technology

y = Azkαnν , α + ν < 1.

The log of micro TFP follows the AR(1) process

log z′ = ρz log z + ε′z, ε′z ∼ N(0, σ2
z), 0 < ρz < 1 , (9)

while the log of macro TFP follows a similar process with

logA′ = ρA logA+ ε′A, ε′A ∼ N(0, σ2
A), 0 < ρA < 1 . (10)

Firms invest i in capital k with one-period time to build

k′ = i+ (1− δ)k, 0 < δ < 1.

Investment entails quadratic adjustment costs AC(i, k) = ηk
2

(
i
k

)2
k indexed by ηk > 0.

Firms act competitively. In each period, the timing of events is as follows. First, each firm

decides whether to default on its debt. If a firm defaults, its assets net of deadweight default costs

are recovered by lenders, and the firm restarts with zero capital and debt after one period. If a

firm repays, it hires labor at wage W and chooses how much to invest, how much equity to issue,

and how much one-period debt to issue. Firms maximize the expected discounted sum of current

and future payouts, where the discount rate (1 +R)−1 < 1 reflects the exogenous risk-free rate R.

The firm’s current dividend d is given by:

d = (1− τ) [y −Wn− AC(i, k)− φ] + qθ(s, k′, b′)b′ − i− b+ τ(R + δk). (11)

If d < 0 the firm issues equity which following Gomes (2001) is associated with the issuance

cost IC (d) = I (d < 0) (ηf + ηd |d|), where ηf > 0 is the fixed and ηd > 0 is the variable cost of

issuance. The firm’s profits are given by its output minus the wage bill, the adjustment cost, and

a fixed production cost φ > 0, net of the corporate income tax rate τ ∈ (0, 1). The firm then raises

additional resources by issuing new debt b′ priced by the schedule qθ, incurs the investment cost

i, and repays its current debt b. Finally, the firm receives tax rebates for capital depreciation and
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interest expenses on debt.10 This formulation of dividends and specification of firm fundamentals

is standard (Strebulaev and Whited, 2012).

To decide whether to default and how much to borrow and invest, the firm forms beliefs

about its future productivity. To assess default risk and interest rates, lenders must do the same.

Firms and lenders form identical expectations diagnostically. Given the AR(1) processes (9) and

(10), and given Equation (2), diagnostic beliefs over micro and macro TFP are described by the

lognormal processes:

log z′|(log z, εz) ∼ N
[
ρz(log z + θεz), σ

2
z

]
(12)

logA′|(logA, εA) ∼ N
[
ρA(logA+ θεA), σ2

A

]
. (13)

When θ > 0 the agent forecasts future productivity by overweighting current news, as if the true

productivity process follows an ARMA (1,1).11 θ > 0 is the only difference between our model

and a workhorse business cycle model.

When forming beliefs about a firm, diagnostic agents consider four state variables: its current

micro TFP z, macro TFP A, the micro shock εz and the macro shock εA. We collect these

exogenous states in the vector s = (z, εz, A, εA). A firm is also identified by two endogenous states,

its inherited capital stock k and debt b. Given an overall state (s, k, b), the firm defaults if its

diagnostically expected value from doing so is greater than its perceived value without defaulting,

and it repays otherwise. If the firm repays, it hires labor, invests, and borrows so as to maximize

the sum of the current and diagnostically expected discounted future payouts, taking into account

the possibility of default in the future.

This problem can be written recursively. Upon entering the current period, the value of the

firm is given by:

V θ (s, k, b) = max
[
V θ
D(s), V θ

ND(s, k, b)
]

, (14)

where V θ
ND(s, k, b) is the continuation value from not defaulting and V θ

D(s) is the continuation

from defaulting. Condition V θ
ND (s, k, b) < V θ

D(s) identifies states in which the firm optimally

defaults. The continuation value from not defaulting is recursively determined as:

V θ
ND(s, k, b) = max

k′,b′,n

{
d− IC(d) +

1

1 +R
Eθ
[
V θ(s′, k′, b′)|s

]}
. (15)

If the firm does not default, it optimally hires labor n, sets future capital k′ and debt b′

so as to maximize its current dividend plus its diagnostically expected discounted future value

10For computational simplicity, we assume the rebate is on average equal to the cost of debt R.
11Another approach to capture extrapolation is Fuster et al. (2010)’s Natural Expectations, in which long lags in

the data generating process are neglected by agents who end up overestimating short-term persistence in processes
with long-term mean reversion. In the current AR(1) setting, such beliefs would be indistinguishable from RE.
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V θ(s′, k′, b′).12 The labor choice n is statically optimized, leaving only the intertemporal choices

of k′ and b′.

If the firm defaults, its assets k net of deadweight costs are claimed by lenders during a period

of reorganization in which no production occurs. The firm then restarts with zero debt and assets:

V θ
D(s) =

{
0 +

1

1 +R
Eθ [V (s′, 0, 0)|s]

}
. (16)

In particular, after defaulting a firm must borrow in order to invest.

Equations (14), (15), and (16) determine both the optimal firm default policy by df θ(s, k, b)

and, for those firms which choose not to default with df θ(s, k, b) = 0, the policies for endogenous

states k′θ(s, k, b) and b′θ(s, k, b).

4.2 Lenders

Firms borrow from risk-neutral deep-pocket lenders who require an expected return equal to the

risk-free rate R. If a firm (s, k, b) defaults on its debt b, the lender receives the recovery rate

R(k, b) = (1− τ) γ
(1− δ)k

b

which reflects, net of tax, an exogenous fraction γ of the liquidation value (1− δ) k of the firm’s

capital stock. The remaining fraction 1− γ is a deadweight loss.

The price of debt qθ(s, k′, b′) adjusts endogenously so that the diagnostically expected bond

return is equal to the risk free rate R :

qθ(s, k′, b′) =
1

1 +R
Eθ
[
1 + df θ(s′, k′, b′) (R(k′, b′)− 1) |s

]
. (17)

To equalize expected bond returns across firms, riskier firms promise a higher interest rate.13

Thus, the firm’s interest rate spread relative to the risk-free rate is given by:

Sθ(s, k′, b′) =
1

qθ(s, k′, b′)
− (1 +R).

These equations illustrate how diagnosticity affects spreads. On the demand side, diagnosticity

affects the firm’s default df θ(s, k, b), debt b′θ(s, k, b), and investment k′θ(s, k, b) policies. On the

supply side, diagnosticity affects the probability of default perceived by lenders, as captured by the

operator Eθ(·) in (17). We later analyze how these demand and supply forces separately contribute

to macroeconomic fluctuations.
12We apply DE to the recursive formulation of the problem, Equation (15). The diagnostic agent believes that

productivity follows an ARMA(1,1) and correctly thinks that he will continue to believe the same in the future.
The recursive problem is equivalent to an optimal control problem in which the probability distribution of At+s at
time t is the product Πs

j=1f
θ(At+j |At+j−1, εt+j−1) of the conditional distributions between times t and t + s − 1.

This distribution has the same mean as the time t diagnostic distribution fθ(At+s|At, εt) but has larger variance.
This is due to overreaction to news (which are zero on average) in the intermediate periods.

13For reference, the realized firm bond return is given by Rfirm(s, s′, k′, b′) =
1+dfθ(s′,k′,b′)(R(k′,b′)−1)

qθ(s,k′,b′)
.
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4.3 Solving the Model

A solution to the model reflects a set of firm-level policies and values b′θ, k′θ, df θ, V θ
ND, V

θ
D, and V θ

together with a debt price schedule qθ. These objects must jointly satisfy optimization by firms,

Equations (14), (15), and (16), as well as the lenders’ zero-profit condition in Equation (17).

Figure 1: Firm Value and Diagnosticity
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Notes: The figure plots the perceived value function as a function of firm capital k for the estimated DE model
and in a comparably parameterized RE model. All lines hold fixed the value of micro TFP z, macro TFP A, macro
news εA, and the firm’s debt b. The first three lines, in the DE model, reflect different realizations of micro TFP
news εz, with positive news (green line), medium news (blue line), and bad news (red line). The final line, from
the RE model with θ = 0, does not depend upon the value of micro TFP news εz because micro TFP z is fixed.

We solve the model numerically. In addition to the set of Bellman equations characterizing

V θ, V θ
ND, and V θ

D, the model features a crucial fixed point between firm default policies df θ and

credit prices qθ in Equation (17). We employ an iterative approach detailed in Appendix A.

First, we guess a firm default rule df θ, computing the implied debt price schedule qθ according

to the lenders’ zero-profit condition. Then, we solve the Bellman equations for V θ, V θ
D, and V θ

ND

using discretization and policy iteration. If the implied default states, i.e., those with V θ
ND < V θ

D,

match the set of initial guesses, then the iteration is complete. Otherwise, we compute the newly

implied default states and repeat the process. The algorithm we employ is standard within the

literature solving quantitative dynamic corporate finance models and follows the implementation in
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Strebulaev and Whited (2012). Our numerical approach here is highly computationally intensive,

given the presence of four exogenous states, two endogenous states, an endogenous default rule,

and a debt-pricing fixed point. However, judicious application of parallelization and an economical

approach to storage of micro-level outcomes following Young (2010) and Terry (2017a) allow for

solution of the model in several minutes on a desktop computer.

To illustrate how diagnosticity affects firm-level outcomes, Figure 1 plots cross-sections of the

value function in our baseline parameterization with DE (θ > 0) versus RE (θ = 0) as a function of

capital k. The green, blue, and red lines in the figure plot the perceived value V θ for a firm under

DE with different realizations of micro TFP news εz but otherwise identical states (z, A, εA, k, b).

In the comparable curve in black for the RE case, firm value does not depend upon micro TFP

news εz because the level of the Markov chain z is taken as given.14 Intuitively, after good news,

diagnostic firms are too optimistic, so they value capital more than an otherwise identical firm

which recently experienced adverse news. These overoptimistic firms invest and borrow more, an

effect that is absent in the RE case. Combined with diagnostic shifts in the supply of capital by

lenders, this mechanism proves crucial for generating aggregate effects.

5 Model Estimation

Our model includes seventeen parameters, listed below in Tables 3 and 5. The seven parameters in

Table 3 are set to values that are conventional for a model like ours solved at an annual frequency

and featuring tangible capital and labor inputs. Given the similarity of the production structure

and macro TFP fluctuations, we draw on Bloom et al. (2018) for a range of firm-level and macro

TFP parameters. Information on corporate income taxes is obtained from the Congressional

Budget Office (CBO, 2017).

We structurally estimate the remaining ten parameters by matching a set of both micro and

macro moments. These parameters govern the micro-level TFP process ρz and σz, adjustment and

operating costs ηk and φ, lender recovery rates γ, macro volatility σA, the equity issuance costs

ηf and ηd, and crucially the diagnosticity parameter θ. We also estimate the volatility σπ of iid

measurement noise in profits. Allowing for such measurement noise is useful to capture accounting

conventions that may create spurious variability in measured profits regardless of fundamentals.

We structurally estimate these ten parameters through a simulated method of moments (SMM)

procedure targeting eighteen moments. Of these, fifteen are firm-level moments: the covariance

matrix of investment rates, profits, debt, credit spreads, and, crucially, errors in firm forecasts

14The RE curve for perceived firm value lies uniformly below the DE curves in Figure 1. This level shift occurs
because diagnostic firms have more volatile expectations of future TFP. Since decreasing returns in production
imply convex firm payoffs as a function of TFP, the DE perceived value function lies above that in the RE case
due to Jensen’s inequality.
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Table 3: Externally Fixed Parameters

Parameter Value Explanation Source

1 δ 0.1 Depreciation rate Annual solution
2 R 0.04 Risk-free rate Annual solution
3 α 0.25 Capital revenue elasticity Bloom et al. (2018)
4 ν 0.50 Labor revenue elasticity Bloom et al. (2018)
5 ρA 0.95 Macro TFP persistence Bloom et al. (2018)
6 τ 0.20 Corporate income tax Effective corporate tax rates, CBO (2017)
7 W 0.5 Wage Normalization

Notes: The table reports the parameter symbol, numerical value, a description, and source information for each of
the externally fixed parameters. Outside of the unit-free persistence or normalized parameters, all reported values
are in proportional units, e.g. 0.01 = 1%.

of their own profits. We obtain the moments using our combined datasets with firm financials,

earnings forecasts, and credit spreads described in Section 2. Just as in Section 2 we focus on

idiosyncratic variation, residualizing the underlying series with respect to firm and time effects. We

also target three macro moments in the SMM procedure to ensure appropriate scaling of the macro-

financial structure of the model: the average credit spread, the average frequency of default, and

GDP growth volatility. Table 4 reports the moments we target, including raw covariance values,

standard errors clustered at the firm level, and more easily interpretable scaled values in standard

deviation or correlation form. Given our use of ten parameters to target eighteen moments, we

note at the outset that this is a highly overidentified structural estimation of a nonlinear model.

We can exploit a great deal of information but are not in general able to deliver an exact fit.

The key innovation in our estimation exercise is to add moments involving forecast errors and

their link to the belief parameter θ. In the RE model with θ = 0, future forecast errors should be

unpredictable using any currently available information. In contrast, the DE model with θ > 0 can

capture the overreaction whereby expectations are too optimistic in good times and pessimistic in

bad times. This yields predictions on the sign and magnitude of forecast errors, offering a direct

way to pin down θ.

The other moments are conventional, and their choice is natural given the parameters we seek

to estimate. Firm profits and their correlations encode information about the productivity process

at firms, helping to identify σz, ρz, and σπ. Firm investment also reflects the various frictions such

as adjustment costs operating at firms, helping to identify ηk. Debt issuance choices, together

with credit spreads, aid in the identification of equity issuance costs ηf and ηd. Finally, mean

default and spread values encode information about the fixed cost φ and recovery rate γ, while

GDP growth volatility provides information about macro shocks σA.

To estimate the model parameters, we minimize the deviation of the empirical moments in
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Table 4: Target Moments for SMM Estimation

Number Moment Value SE Scaled (SD/Corr)

1 Var(Fcst Error' ) 0.1359 0.0174 0.3687
2 Cov(Fcst Error' ,Profit) -0.0057 0.0050 -0.0512
3 Cov(Fcst Error' ,Investment) -0.0026 0.0010 -0.0974
4 Cov(Fcst Error',Debt') -0.0425 0.0162 -0.1343
5 Cov(Fcst Error',Spread) 0.0000 0.0001 -0.0088
6 Var(Profit) 0.0922 0.0132 0.3036
7 Cov(Profit,Investment) 0.0053 0.0009 0.2395
8 Cov(Profit,Debt') 0.0245 0.0120 0.0939
9 Cov(Profit,Spread) -0.0006 0.0001 -0.1626

10 Var(Investment) 0.0053 0.0006 0.0731
11 Cov(Investment,Debt') 0.0111 0.0023 0.1764
12 Cov(Investment,Spread) -0.0001 0.0000 -0.0729
13 Var(Debt') 0.7363 0.0842 0.8581
14 Cov(Debt',Spread) -0.0003 0.0002 -0.0317
15 Var(Spread) 0.0001 0.0000 0.0116

Moment Value SE Scaled (SD/Corr)

16 E (Spread) 0.0287 0.0048 0.0287
17 E(Default) 0.0035 0.0008 0.0035
18 Var(GDP Growth) 0.0002 0.0001 0.0141

Micro Moments

Macro Moments

Notes: The moments were computed on a sample combining information from the Compustat, IBES Manager Guidance,
and FISD/Trace Bond databases from 2003-2018, with 2,921 firm-years spanning 387 firms. The reported standard errors for
the micro moments are computed using firm-level clustering, and the reported standard errors for the macro moments are
computed using a stationary block bootstrap. Scaled values are the associated standard deviation for variances, correlations
for covariances, and preserve the mean for expectations. An apostrophe indicates future values. For the micro moments, the
forecast error, profit, investment, and debt issuance series are expressed relative to firm tangible capital stocks, while the
spread is in proportional units. For the macro moments, the mean spread is the average across years of the mean spread
across firms in the FISD/Trace Bond-Compustat merged database, the mean spread is the average across years of the mean
default rate across firms in the FISD/Trace-Compustat merged database. The GDP series in annual GDP in chained 2012
dollars.

Table 4 from those computed in a comparable unconditional simulation of the model. We weight

the moments optimally using the inverse of our estimate of the moment covariance matrix, implying

an asymptotically efficient SMM estimator. See Appendix B for a more detailed description of

the variable definitions, sample construction, and our approach to computing the SMM point

20



estimates and standard errors.

As seen in Section 2, one key feature of the micro data is forecast error predictability, which

is in particular reflected in the negative correlation between current firm outcomes and future

forecast errors in rows (2)-(4) of Table 4.

Table 5: Estimated Parameters

Number Parameter Role Value SE

1 𝜃 Diagnosticity 1.069 0.116
2 𝜌z Micro persistence 0.722 0.006
3 𝜎z Micro volatility 0.127 0.011
4 𝜂k Capital adjustment cost 3.732 0.196
5 𝜙 Fixed operating cost 0.108 0.021
6 𝛾 Recovery rate 0.087 0.048
7 𝜎A Macro volatility 0.007 0.002
8 𝜎𝜋 Profit noise 0.714 0.068
9 𝜂f Equity issuance fixed cost 0.013 0.011

10 𝜂d Equity issuance linear cost 0.021 0.005

Parameter Estimates

Notes: The table reports point estimates and standard errors for each of the parameters in our SMM estimation. The
moment covariance matrix is based on firm-level clustering in the micro block and a stationary block bootstrap in the
macro block. The moment Jacobian is computed numerically. In the SMM estimation, the weighting matrix is
optimal, i.e., the inverse of the moment covariance matrix.

Table 5 reports the SMM point estimates and standard errors for our DE model. We later

discuss how these values fit the data moments. The diagnosticity parameter θ ≈ 1 is in the same

ballpark as the values found by Bordalo et al. (2018) using data on professional forecasts of credit

spreads (θ = 0.9), by Bordalo et al. (2019) using analyst expectations of US listed firms’ long term

earnings growth (θ = 0.9), by Pflueger et al. (2020) using stock price-derived measures of risk

perception (θ = 1), by d’Arienzo (2020) using bond prices (θ = 1), and by Bordalo et al. (2020)

using professional forecasts of several macro series (θ = 0.5). A value of θ close to 1 means that

forecast errors are roughly equal to the size of incoming news.

The estimated values governing physical factors such as micro TFP volatility σz and capital

adjustment costs ηk are close to those from other work calibrating or structurally estimating

firm-level shock processes with similar data (Gourio and Rudanko, 2014; Terry, 2017b; Khan and

Thomas, 2008; Saporta-Eksten and Terry, 2018). The parameters governing financial frictions

indicate equity issuance costs ηf , ηd and recovery rates γ comparable to those in Hennessy and

Whited (2007). The fixed operating costs φ in model units is mainly linked to average default
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rates and spreads. Finally, the estimated measurement error volatility for profits σπ suggests that

a high degree of noise in accounting conventions is needed to match the covariance of profits and

other firm-level outcomes.

Table 6: Estimated Parameters: Constrained Rational Model

Number Parameter Role Value SE

1 𝜌z Micro persistence 0.794 0.011
2 𝜎z Micro volatility 0.185 0.010
3 𝜂k Capital adjustment cost 3.815 0.491
4 𝜙 Fixed operating cost 0.070 0.011
5 𝛾 Recovery rate 0.159 0.058
6 𝜎A Macro volatility 0.007 0.002
7 𝜎𝜋 Profit noise 0.847 0.052
8 𝜂f Equity issuance fixed cost 0.013 0.004
9 𝜂d Equity issuance linear cost 0.041 0.031

Parameter Estimates

Notes: The table reports point estimates and standard errors for each of the parameters in our SMM estimation 
which imposes rational beliefs with 𝜃=0. The moment covariance matrix is based on firm-level clustering in 
the micro block and a stationary block bootstrap in the macro block. The moment Jacobian is computed 
numerically. In the SMM estimation, the weighting matrix is optimal, i.e., the inverse of the moment 
covariance matrix.

Using the same micro and macro moments, we also conduct a constrained SMM structural

estimation exercise to estimate the nine parameters of a RE model in which we constrain θ = 0

and eliminate diagnosticity in beliefs. By comparing the performance of this estimated RE model

and the estimated DE model, we can assess the consequences of overreacting beliefs. The SMM

point estimates and standard errors for the parameters of the RE model are in Table 6. Comparing

the DE vs RE parameter estimates, we see that we estimate a lower persistence ρz and volatility

σz of micro TFP shocks in the DE model, because diagnosticity itself amplifies perceived volatility

and persistence. We estimate a slightly lower volatility σA of aggregate TFP in the RE model than

in the DE case, although in both models the standard deviation of the shock is around 0.7% per

year. Also, because diagnostic beliefs — by inflating a firm’s perceived volatility of TFP shocks in

a context where production function-based payoffs are convex — reduce a firm’s average incentive

to default, we estimate a higher fixed operating cost φ in the DE model to match the observed

default frequency.

Table 7 reports the fit of the micro moments relative to the data for both the estimated DE
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and RE models. The DE model offers an excellent match of the micro moments, especially taking

into account its strong nonlinearity and the overidentified nature of the SMM estimation. The DE

model matches both the predictable disappointment of firms after high profits, investment, and

debt issuance. Because firms in the DE model respond to both the level and the news in TFP,

the correlation of profits with firm investment is realistically moderate.

There are two main discrepancies with the data. First the DE model predicts a stronger

correlation between firm-level debt and profitability than seen in the data. Second, while the

DE model is good at capturing the negative correlation between investment and spreads, it does

not capture the negative correlation between profitability and spreads at the micro level. In our

model, highly profitable firms, which generally have high micro TFP, choose to issue a lot of debt,

endogenously increasing their riskiness. This results in a low positive correlation between spreads

and profits in equilibrium and high correlation between debt and profits. We speculate that an

extended version of our model allowing for empirically important costs of debt financing, such

as restrictive contractual covenants, would moderate debt movements and improve the already

strong fit of our DE model to the data.

As evident from Table 7, the RE model is even less capable of accounting for debt’s correlation

with profits. Most importantly, the RE model cannot match the predictability of forecast errors nor

generate a meaningful default frequency. These results are important: in the DE model, overopti-

mistic expectations create overindebtedness and hence realistically higher default frequencies than

in the RE model in which there is no overexpansion of leverage after good shocks.15

In Section 6 we show that these differences between the DE and RE models prove critical

to account for recurrent credit cycles, both at the aggregate and the firm levels. But first, in

Section 5.1 we examine the real side of the macroeconomy and consider nonlinearities in the

macro investment response to a TFP shock. In Section 5.2 we simulate the model and analyze

its ability to match untargeted but traditional macro correlations, placing particular emphasis on

the correlation between credit spreads and economic activity.

5.1 Diagnosticity and the Nonlinear Response of Investment to Shocks

To study the real implications of DE, we simulate the contemporaneous response of macro invest-

ment, a real variable that reflects firms’ beliefs, to a negative macro TFP shock. We compute

this response for different initial conditions, captured by TFP shocks of varying magnitudes in the

previous period. This exercise highlights one important consequence of DE: fragility after good

times. This state dependence is critical to account for boom-bust credit cycles.

15The RE model also features too high a correlation between profitability and investment. In the DE model, this
correlation is muted because investment depends, via beliefs, on the TFP shock rather than just on its level.
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Table 7: Model vs Data Moments

Number Moment Data DE Model RE Model

1 Std Dev(Fcst Error') 0.3687 0.2687 0.3387
2 Corr(Fcst Error' ,Profit) -0.0512 -0.0319 -0.0031
3 Corr(Fcst Error' ,Investment) -0.097 -0.119 -0.002
4 Corr(Fcst Error',Debt') -0.134 -0.111 -0.002
5 Corr(Fcst Error',Spread) -0.009 0.008 -0.001
6 Std Dev(Profit) 0.304 0.271 0.361
7 Corr(Profit,Investment) 0.239 0.264 0.343
8 Corr(Profit,Debt') 0.094 0.295 0.369
9 Corr(Profit,Spread) -0.163 0.006 0.007

10 Std Dev(Investment) 0.073 0.076 0.071
11 Corr(Investment,Debt') 0.176 0.474 0.357
12 Corr(Investment,Spread) -0.073 -0.064 -0.043
13 Std Dev(Debt') 0.858 0.810 1.197
14 Corr(Debt',Spread) -0.032 -0.025 -0.027
15 Std Dev(Spread) 0.012 0.009 0.015

Moment Data DE Model RE Model

16 E (Spread) 0.029 0.018 0.019
17 E(Default) 0.004 0.003 0.001
18 Std Dev(Δ GDP) 0.014 0.014 0.013

Micro Moments

Macro Moments

Notes: The data column reports the empirical values of the target moments for our SMM exercise. The DE model
column reports the target moments at our estimated parameters from the diagnostic expectations model. The RE model
reports the target moments at our estimated parameters from the constrained rational expectations model. The empirical
moments were computed on a sample combining information from the Compustat, IBES Manager Guidance, and
FISD/Trace Bond databases from 2003-2018, with 2,921 firm-years spanning 387 firms. The model moments are based
on a simulation of 1,000 firms for 250 years. An apostrophe indicates future values. For the micro moments, the
forecast error, profit, investment, and debt issuance series are expressed relative to firm tangible capital stocks. For the
macro moments, the mean spread is the average across years of the mean spread across firms, the mean spread is the
average across years of the mean default rate across firms.

Figure 2 plots the average impulse response of investment to a negative macro TFP shock in

both the DE model (red line) and RE model (blue line).16These responses reflect “typical times,”

based on simulated reactions to negative TFP shocks across 10,000 experiments following the

16The shock is identically sized in the two experiments, as a one standard deviation negative shock to macro
TFP using the parameter estimate σ̂A from the DE model.
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Figure 2: Investment Response to a Negative TFP Shock
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Notes: The figure plots the simulated generalized impulse responses of investment (right panel) to a one-standard
deviation negative shock to macro TFP (left panel) occurring at period 0. The DE model (red) and RE model
(blue) paths are based on identical shocks to TFP over 10,000 simulated experiments following the Koop et al.
(1996) methodology.

methodology of Koop et al. (1996). In normal times, the investment responses to TFP shocks

differ only slightly across the DE and RE models. As usual in RBC models, a negative shock to

TFP causes a large decline in investment. There is some amplification of the DE model relative

to the RE model, but the paths are otherwise fairly similar.

With these baseline responses in hand, we simulate the impact of the same negative shock to

macro TFP, varying the initial conditions in a flexible manner. Figure 3 reports the investment

response in the DE model (vertical axis, red line) as a function of the magnitude of the previous

period’s macro TFP shock (horizontal axis), which we control in our experiment. There is a large

nonlinearity: the adverse TFP shock is much more damaging for aggregate investment when it

occurs in good times, after positive shocks. Intuitively, because during good times expectations

are too optimistic, leverage and investment overexpand. When a bad shock hits, the original

optimism wanes and reverts to pessimism. The firms are overleveraged, their debt is perceived to

be excessively risky, and so they are forced to cut investment. Due to overreacting beliefs, during

good times the economy is fragile and prone to crash in response to a negative shock.

Figure 3 also adds to the same diagram the response of investment in the RE model (blue line).

This response is almost the same across different initial conditions, with little excess fragility in

good times. Because, under RE, debt and investment are chosen and priced optimally during both
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Figure 3: Investment Nonlinearity
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Notes: The vertical axis in the figure reports the simulated impulse response of macro investment to a one-standard
deviation negative shock to macro TFP, and the horizontal axis reports the initial conditions, i.e., the magnitude
of the shock to macro TFP in the previous period. Both the DE model (red line) and RE model (blue line) are
reported on the figure.

good and bad times, a negative shock does not create financial distress in either state.17

Recent work on investment dynamics over the business cycle (Bachmann et al., 2013; Winberry,

2017; Bloom et al., 2018) suggests that investment exhibits more sensitivity to shocks during booms

than during normal times. Our results show how DE play a key role in generating this feature by

generating fragility in good times. We next examine the implications of the DE model for business

cycle volatility and comovement.

17Interestingly, state dependence in Figure 3 also generates a positive response during bad times under DE, when
even a moderate negative shock to TFP can be considered “good news” relative to overpessimistic beliefs. Under
RE, the response curve is uniformly negative.
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5.2 Diagnosticity and Business Cycle Comovement

Macro business cycle correlations are entirely untargeted in our calibration procedure. We set

macro TFP shock persistence to a conventional value in Table 3 and only target the volatility of

GDP growth, which simply ensures that the standard deviation of output is comparable to the

data. In this sense, the ability of our model to reproduce macro moments is a stringent metric of

its explanatory power for business cycles.

Table 8 reports the annual business cycle correlations and volatilities of output, debt, invest-

ment, and average credit spreads in the empirical data (top panel), simulated data from the DE

model (middle panel), and simulated data from the RE model (bottom panel). The DE and RE

model moments are computed based on an identical set of exogenous shocks.

Table 8: Business Cycle Moments

Correlation Output Debt Investment Spread Standard Deviation
Output 1.000 0.891 0.803 -0.105 0.017
Debt 1.000 0.755 -0.169 0.048
Investment 1.000 -0.107 0.053
Spread 1.000 0.01

Correlation Output Debt Investment Spread Standard Deviation
Output 1.000 0.897 0.484 -0.084 0.014
Debt 1.000 0.690 -0.131 0.012
Investment 1.000 -0.037 0.041
Spread 1.000 0.012

Correlation Output Debt Investment Spread Standard Deviation
Output 1.000 0.837 0.821 0.368 0.014
Debt 1.000 0.535 0.322 0.006
Investment 1.000 0.300 0.032
Spread 1.000 0.007

Data

Diagnostic Expectations Model

Rational Expectations Model

Notes: The table reports business cycle correlations (left) and standard deviations (right) from the data
(top panel), the diagnostic expectations model (middle panel), and the rational expectations model
(bottom panel). The empirical sample is 2003-18 at annual frequency. Real GDP and private
nonresidential fixed investment from the US NIPA accounts. Total credit to US non-financial
corporations from the BIS. BAA-Treasury spread based on Moody's ratings. The model moments are
computed from an unconditional simulation of 250 years. Model quantities refer to total values (output,
debt, and investment) or average values (spread) computed from the distribution of firms. Output, debt,
and investment are HP-filtered with smoothing parameter 100.  
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The DE model offers a good account of business cycle moments. It captures well the positive

covariance between macro output and debt, the positive covariance between investment and debt,

and crucially the negative covariance of spreads with output, debt and investment. It also offers a

good account of the standard deviation of macro output and investment. The main difficulty for

the DE model lies in capturing the high correlation between investment and output in the data, as

well as the high standard deviation of debt. We speculate that a version of DE allowing for slower

dynamics in overreaction, as in Bordalo et al. (2019), might generate more variation in debt by

allowing for credit to shift over multiple years of overreaction.

The RE model makes the counterfactual prediction of procyclical credit spreads and also fails

to produce meaningful volatility in debt, investment and spreads compared either to the data or

to the DE model.18 The failure of the RE model to capture countercyclical spreads is due to the

fact that it features a strong demand effect. During good economic times, the demand for credit

increases relative to its supply, raising the credit spread. In the DE model, countercyclicality arises

because the excess volatility in beliefs caused by θ > 0 mainly influences the supply of credit. On

the demand side, diminishing returns and bankruptcy costs limit the extent to which the demand

for capital accommodates excess volatility in beliefs. Under DE, procyclical shifts in the supply

of credit become more important and generate countercyclical spreads.

The RE model does, however, generate a higher correlation between current output and invest-

ment than the DE model, more in line with the data. In the DE model, investment responds both

to the level of TFP but also to recent news, increasing the volatility of investment in the direction

of the data but bringing down somewhat the contemporaneous correlations between output and

investment from its empirical value.

Overall, diagnosticity helps in accounting for cyclical variation in debt, investment, and the

countercyclicality of spreads. We next assess the explanatory power of the model for observed

financial and real instability.

6 Boom-Bust Cycles in Financial and Real Activity

We show that our model can shed light on two phenomena: recurrent boom-bust credit cycles, as

documented in López-Salido et al. (2017) (Section 6.1) and large increases in spreads and financial

crises occurring after good times, as described in Krishnamurthy and Muir (2016) (Section 6.2).

Our model significantly improves the explanatory power for these cycles due to its ability to

generate fragility and belief reversals, even though we targeted neither pattern in our estimation.

18These statements compare the estimated DE model to an estimated RE counterpart, a comparison which allows
the RE model the best chance of fitting our target moments while varying all of the model’s parameters. The failure
of RE to generate meaningful aggregate volatility is even further exaggerated when comparing the estimated DE
model to a counterfactual rational expectations model in which we set θ = 0 but otherwise keep the parameters
fixed at their DE estimates. See Table A2 in the Model Appendix for business cycle moments in that case.
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6.1 Recurrent Credit Cycles

We consider credit cycles both at the macro level, so that we can compare our results to López-

Salido et al. (2017), and at the firm level, so we can compare them to our analysis in Section

2.

To do so, we simulate the model for a large number of periods and then use the simulated

aggregate data to perform a two-step exercise. First, following López-Salido et al. (2017) we

regress spread growth on the lagged spread level.

∆Spreadt = α + βSpreadt−1 + εt.

which detects predictable reversals in credit market conditions. Second, we regress macro outcomes

of interest at t, Xt, on the predicted spread change ̂∆Spreadt from the first stage:

Xt = δ + γ ̂∆Spreadt + λ∆Yt−1 + ηt,

where following López-Salido et al. (2017) we include lagged output growth ∆Yt−1 as a control.

Table 9 reports β̂ from the first step in column (1) and γ̂ from the second step in columns (2)-

(4). The top panel reports the coefficients in the simulated DE model, the middle panel reports

empirical coefficients directly reproduced from López-Salido et al. (2017), and the bottom panel

reports the coefficient obtained from the simulated data of the RE model in which θ = 0.

Consider the top and middle panels. The DE model reproduces salient qualitative features

in the data. First, it yields a sizable reversal of spreads in column (1). Second, it yields, in the

same direction as the data, that predictable increases in spreads are associated with declines in

GDP growth (column (2)), in aggregate investment growth (column (3)), and with lower realized

bond returns (column (4)). The predictable declines in output growth and, to a lesser degree, in

investment growth are quantitatively much smaller in the DE model than in the data. In this RBC

model output is entirely supply-driven with predetermined capital, so there are few mechanisms

for belief revisions to affect output on impact other than the direct effect of TFP. Mechanisms

such as aggregate demand (Farhi and Werning, 2020), time-varying capacity utilization (King and

Rebelo, 1999), sharp labor adjustment in the face of bad news (Ilut et al., 2018), or intermediary

financial disruptions (Maxted, 2020; Krishnamurthy and Li, 2020) might all be at work in the

data.

In the bottom panel we see that the RE model cannot reproduce the observed credit cycles

even directionally. In fact, while the RE model obtains meaningful mean reversion in spreads via

mean reversion in TFP, it cannot produce any predictability in bond returns (column (4)). The

RE model also produces a counterfactual positive response of output and investment to predictable

increases in credit spreads.
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Table 9: Recurrent Credit Cycles

(1) (2) (3) (4)

Δ Spread Δ Output Δ Investment Bond Return
Pred. Δ Spread -0.512*** -3.64*** -0.010**

(0.042) (0.198) (0.001)
Lagged Spread -0.304***

(0.012)
Years 7500 7500 7500 7500

Pred. Δ Spread -4.800*** -9.202***
(1.134) (1.346)

Lagged Spread -0.248***
(0.042)

Years 1929-2015 1929-2015 1929-2015

Pred. Δ Spread 0.623*** 4.975*** 0.000
(0.107) (0.239) (0.000007)

Lagged Spread -0.218***
(0.007)

Years 7500 7500 7500 7500
Notes: The table reports regressions based on macro data from the simulated diagnostic expectations model (top
panel), from empirical regressions directly drawn from Lopez-Salido, et al. (2017) for comparison (middle
panel), and from the simulated rational expectations model (bottom panel). Predicted spread growth in columns
2-4 is the predicted value from the regression in column 1. Columns 2-4 control for lagged output growth. In the 
estimates drawn from Lopez-Salido, et al. (2017), columns 1-2 are from Table II, and column 3 is from Table
IV. All standard errors are Newey-West. * = 10% level, ** = 5% level, and ***=1% level. 

Diagnostic Expectations Model

Data (from Lopez-Salido, et al. 2017)

Rational Expectations Model

The ability of the DE model to generate credit cycles comes from the fact that in good times

capital suppliers are too optimistic, which lowers the spread. A significant chunk of the spread

reversal is due to waning of such optimism, and comes with disappointing bond returns, output,

and investment. In the RE model, by contrast, spreads are procyclical, so they are low in bad

times and predictably increase with TFP mean reversion, which is in turn associated with higher

output and investment.

Finally, consider the ability of our model to account for firm-level credit cycles. Table 10 re-

produces our IV regression exercise of Table 2 in Section 2, in which predictable future forecast

errors are used as an index of overoptimism. The top panel reports the results in the simulated
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data obtained from the DE model. In line with the estimates of Table 1, in the DE model high

investment predicts future negative forecast errors (column (1)), indicating that when investment

is high expectations are overly optimistic. In line with the results of Table 2, predictable overopti-

mism is then associated with lower future realized bond returns (column (2)), higher future spreads

(column (3)), and lower future investment (column (4)). The regressions for spreads and invest-

ment also control for lagged spread and current profits, respectively, to account for fundamental

mean reversion, as in Table 2. The magnitudes here are large. Firms that are optimistic, with

a predicted forecast error one-standard deviation lower, experience 27 × 0.121 ≈ 3 percentage

points lower bond returns. The RE model cannot reproduce these findings in the bottom panel:

because it fails to generate predictability of forecast errors, it does not reproduce the first stage

of Table 2.

Overall, DE help account for the evidence on credit cycles thanks to the overreaction of ex-

pectations, which creates booms in which the supply of credit overexpands. These expansions are

followed by reversals in which optimism wanes, debt is repriced, and real activity contracts.

6.2 The Financial Crisis of 2007-09

We next assess the ability of the DE model to generate the large and sudden increases in credit

spreads associated with the Lehman crisis in September 2008. Our model misses some important

elements of large crises such as the gradual and persistent inflation of asset prices and the ampli-

fication of crashes through financial intermediaries. An asset price bubble can be obtained under

DE by introducing information frictions as in Bordalo et al. (Forthcoming), but here we abstract

from this aspect to isolate in the sharpest way the role of overreaction. For the same reason, we

abstract from financial intermediaries considered in Maxted (2020) and Krishnamurthy and Li

(2020).

How large a TFP shock is needed in our model to produce the actual crisis movement in credit

spreads? Standard business cycle models have a hard time generating large crises without massive

TFP shocks, so they are often enriched with shocks to collateral constraints and uncertainty. By

creating fragility after good times, the DE model can produce a crisis-like event with modest TFP

shocks alone.19 We can then look at the macroeconomic consequences of such a shock in our

model.

To answer these questions, we perform a “crisis decomposition” exercise. We separate the

2004-2009 period into a “pre-crisis” period, 2004 - 2007, and a “crisis” period, 2008 - 2009 (our

model yields neither a gradual path of asset price inflation nor the gradual reduction in spreads

19Note that work by Maxted (2020) shows that DE can also generate higher fragility during good times through
a distinct intermediary channel, so we conclude that the dynamics generated by our model are likely only a part
of the full impact of DE on financial fragility.
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Table 10: Forecast Errors and Firm Credit Cycles

(1) (2) (3) (4)

Dependent Variable: Fcst. Errort Returnt Δ Spreadt Δ Investmentt
Estimation 1st Stage 2nd Stage 2nd Stage 2nd Stage

Fcst. Errort 0.121*** -1.891*** 1.436***
(0.004) (0.205) (0.005)

Investmentt-1 -0.703***
(0.007)

Years 500 500 500 500
Firm-Years 500000 500000 500000 500000
Time Effects X X X X
First Stage F 9635

Fcst. Errort 0.209 108.362*** -137.182***
(0.407) (10.778) (0.502)

Investmentt-1 0.004
(0.007)

Years 500 500 500 500
Firm-Years 500000 500000 500000 500000
Time Effects X X X X
First Stage F 0.268

Rational Expectations Model

Diagnostic Expectations Model

Notes: The table reports first and second stage IV estimates based on simulated firm-level data from the
diagnostic expectations model (top panel) and the constrained rational expectations model (bottom panel).
Column 1 reports the first stage, and columns 2-4 report second stage regressions. Standard errors are clustered
at the firm level. * = 10% level, ** = 5% level, and ***=1% level. Forecast error is realized minus expected
profits normalized by the firm's capital stock. Investment is the investment rate, i.e., capital expenditures
normalized by the firm's capital stock. Return is the realized bond return, and spread is the realized bond spread
relative to the risk-free rate. Column 3 controls for the lagged spread, and column 4 controls for current profits.
 For all series, 0.01=1%.

during 2004-2007). Credit spreads in the US during the pre-crisis period were low with an average

of 1.6% and jumped to an average level of 4.5% during the crisis period. We then ask: what TFP

pattern is needed in our model to go from an initial 1.6% spread to 4.5%?

Figure 4 plots the required TFP shocks, along with their implications for the growth of credit,

output, investment, and corporate profit forecasts. The red lines connect the pre-crisis and crisis

outcomes generated by the DE model, while the green lines present the data. In the top left panel,

the DE model by construction perfectly matches the pre-crisis and crisis spreads. Remarkably,

though, the bottom left panel shows that the pattern of TFP growth needed to account for the

increase in spreads is virtually identical to the TFP growth observed during the period. This
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overlap is an untargeted feature and shows that in the DE model a moderate 1.5% reduction in

TFP growth is able to produce the large observed increase in the average spread.

Figure 4: The Financial Crisis of 2007-09: DE Model vs RE Model
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Notes: Each panel plots a macro series from our crisis decomposition exercise, with the data (green), DE model
(red), and RE model (blue) included. “Pre-Crisis” is the 2004-07 period, and “Crisis” is the 2008-09 period. In
the data, all empirical values are averages drawn from the pre-crisis or crisis periods. Spread is the average spread
across firms in our Mergent FISD-TRACE-Compustat sample, credit growth is the growth in total credit to non-
financial corporations, real GDP and private nonresidential fixed investment are from NIPA, and profit forecasts
are the sum of predicted earnings across all firms in our Compustat-IBES guidance data. In the DE model, we
choose the TFP growth series in the bottom left panel in order to exactly match the empirical spread values in the
top left panel. We feed the resulting TFP growth series into the RE model to produce the RE line in each panel.

The reversal is due to the fragility built during the good times of the pre-crisis period which is

in turn capable of producing realistic macro consequences: a large reduction in credit, investment,

and output, together with a strong reduction in forecasts of profit growth. These macroeconomic

changes in the DE model are not identical to those in the data, but the quantitative fit is note-

worthy in light of the simplicity of our model.

We then input the same TFP pattern in the RE model, as also reported in Figure 4. The

RE model (blue lines) does not produce any movement in credit spreads, it does not produce

deleveraging, nor does it produce the sharp observed downward revision in profit forecasts. Both

the DE and RE models feature output growth that declines by similar magnitudes as the data,
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although the larger drop in investment in the DE model naturally implies a lower path for output

growth during the later stages of the recovery. The fact that output differences between DE and

RE are small is expected, since in both neoclassical models the business cycle is driven by the

same TFP series. But the RE model is incapable, by itself, of generating a crisis episode because

it cannot match the observed movements in the price and quantity of credit with realistic TFP

shocks.

This exercise shows the potential of DE for accounting for the salient features of the boom-

bust cycles in macro-financial aggregates. The realism of the analysis and its fit can be improved

by adding ingredients that have likely played a role, such as the housing bubble, intermediary

leverage, and the link between household debt and consumption. Boom-bust belief dynamics,

however, seem a promising ingredient to generate overexpansion in good times and sharp financial

tightening and real contractions after modest TFP shocks.

7 Robustness

We conclude by reporting the results of two important robustness exercises. First, we evaluate the

role of lenders’ beliefs in generating fragility in good times. Second, we endogenize wages in general

equilibrium, which can dampen volatility. As before, the analysis focuses on the contemporaneous

response of macro investment to TFP shocks, and in particular its fragility after good times.

7.1 Demand vs Supply of Capital

In our model, overreacting beliefs affect both the demand and the supply of credit. Large shifts

in the supply of credit are crucial to account for the observed countercyclicality of spreads and

for the predictability of bond returns. Here we ask a broader question: what is the role of credit

supply in creating real fragility and large drops in investment after good times?

To address this question, we analyze the DE model by assuming that only borrowers are diag-

nostic. This exercise allows us to assess the extent to which fragility can be reduced if diagnostic

firms are disciplined through rational debt pricing.

We thus run a simulation of the model in which we set θ = 0 for lenders while keeping θ at

the estimated value for firms. Figure 5 then reports the response of investment to a negative TFP

shock obtained in this exercise (green line), superimposing it on top of Figure 3 reporting the full

RE case (blue line) and the full DE case (red line).

Qualitatively, the response of investment displays the nonlinearity typical of the DE model:

after good times the economy is fragile, so a given negative TFP shock causes a larger drop in

investment than after bad times. Quantitatively, though, shutting down the overreaction of credit

supply sharply reduces the magnitude of the effect. The green curve lies about halfway between
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Figure 5: Investment Nonlinearity with Rational Lenders
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Notes: The vertical axis in the figure reports the simulated impulse response of macro investment to a one-standard
deviation negative shock to macro TFP, and the horizontal axis reports the initial conditions, i.e., the magnitude
of the shock to macro TFP in the previous period. The DE model (red line), the RE model (blue line), and a
model with DE for firms but RE for lenders (green line) are reported on the figure.

the full DE and the full RE investment responses. In this respect, diagnostic shifts in the supply

of credit appear to play an important role in creating significant fragility.

7.2 General Equilibrium

Anticipated procyclical wage shifts may dampen movements in the anticipated marginal product

of capital and hence push against volatility or nonlinearity in investment. To assess the impor-

tance of this mechanism, we now endogenize the wage W , moving towards general equilibrium.

We keep the required rate of return R exogenous because, as argued above, empirically realistic

countercyclical shifts in real interest rates in this class of heterogeneous firms models are likely

to amplify rather than dampen investment dynamics. Moreover, consumption-based models of

expected (and required) returns are inconsistent with expectations data.
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We allow for disutility from effort by modelling period utility as:

U(C,N) = C − ω

1 + 1
λ

N1+ 1
λ ,

where the disutility of labor is governed by ω > 0 and the elasticity of labor supply is given

by λ > 0. The real interest rates are pinned down by the inverse of the household’s subjective

discount rate 0 < β < 1, i.e., R = 1/β − 1.

Let µ(s, k, b) be the cross-sectional distribution of exogenous states s, capital k, and debt

b. The macro state is (µ,A, εA). Market clearing in the labor market implicitly defines wages

W (µ,A, εA) through (
W

ω

)λ
=

∫
n(s, k, b|W )dµ(s, k, b),

where the left hand side is the household’s closed-form labor supply and the right hand side reflects

labor demand generated by the current cross-sectional distribution of firm states µ.

As usual in this class of heterogeneous firms models with anticipated macro shocks, general

equilibrium creates two computational challenges (Krusell and Smith, 1998). First, the macro

state (µ,A, εA) is intractable because µ is a distribution. Second, the mapping W (µ,A, εA) is a

complicated implicit object which must be consistent with the firm-level decisions embedded in

market clearing.

We follow a novel computational approach tailored to our problem and detailed in Appendix

A. To briefly summarize, our approach is to replace the macro state (µt, At, εAt) with a history

of macro shocks (At, At−1, ..., At−K) up to some truncated lag length, nonparametrically storing

predictions of the wage W given each shock history. We then follow an outer loop/inner loop

approach, guessing a wage mapping, solving and simulating the model, and updating the wage

predictions until convergence. Our solution technique proves tractable and quite accurate in

practice, as is also detailed in Appendix A. We parameterize the model based on the estimated

values from Table 5. We further assume a conservative Frisch elasticity of labor supply of λ = 0.5

and choose β to deliver the same fixed 4% annual real interest rate as considered above.

Wages in this equilibrium structure reflect an intratemporal mapping from the macro states to

prices, so it might not be immediately clear how our explicitly intertemporal notation of diagnostic

expectations interacts with general equilibrium. We make the link explicit in Figure 6, which plots

expected future wage growth as a function of current productivity growth in both the DE model

(red line) and the RE model (blue line). In the DE model, a positive productivity shock that

renders agents overly optimistic increases their perceptions of the future demand for capital and

labor and hence future wage growth relative to the RE model. Because perceived future wages

affect the future payoff from capital, these anticipated factor price movements dampen investment

fluctuations today, a dampening force that is in fact a bit stronger in the DE model than the
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Figure 6: Expected Wage Growth
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Notes: The figure plots the expected path of wage growth in the next period (vertical axis) given productivity
growth today (horizontal axis) in the DE model (red) and RE model (blue).

RE model. Since shifts in the intratemporal price of labor can have a meaningful impact in

equilibrium on a firm’s perceived intertemporal incentives to invest, we next investigate whether

the investment nonlinearities we highlighted above in the DE model survive general equilibrium.

Figure 7, the general equilibrium analogue of Figure 3, reports the response of investment to a

negative TFP shock for different initial conditions. The investment response continues to display

nonlinearity and in particular the high fragility induced by DE (red line): the negative shock

exerts a much larger negative impact in good times. As expected, endogenous wages moderate

the quantitative magnitude of the investment response and nonlinearity relative to the partial

equilibrium model. However, the nonlinearity remains substantial. The response to a negative

TFP shock increases in size by about 40% when arriving after a one standard deviation positive

shock rather than in normal times. This increase matches the trough-to-peak growth in empirical

investment sensitivity estimated in Bachmann et al. (2013). In the RE model (blue line), by

contrast, the general equilibrium feedback working through wages eliminates the (already very

insignificant) state dependence of investment almost entirely.

In sum, even after allowing for fully flexible wages, the DE economy proves more fragile than
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Figure 7: Investment Nonlinearity with General Equilibrium
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Notes: The vertical axis in the figure reports the simulated impulse response of macro investment to a one-standard
deviation negative shock to macro TFP, and the horizontal axis reports the initial conditions, i.e., the magnitude
of the shock to macro TFP in the previous period. Both the DE model (red line) and RE model (blue line) are
reported on the figure. These results are computed in the general equilibrium model with labor market clearing.

the RE economy in good times, and hence more responsive to negative shocks due to the boom-bust

mechanism created by overreacting beliefs.

8 Conclusion

The financial crisis of 2008 has renewed economists’ interest in financial instability. One key

challenge is to understand where such instability comes from. We showed that non-rational beliefs,

and in particular overreaction to news, can generate realistic credit cycles without relying on

exogenous financial shocks. These boom-bust dynamics display elements of predictability, in line

with the evidence on cyclical movements in credit spreads (López-Salido et al., 2017) and on

large financial crises (Greenwood et al., 2020). Critically, our results are obtained in a standard

RBC model in which a single new parameter, the degree of belief overreaction, is estimated

using microdata on managers’ errors in forecasts of the earnings growth of their firms. Realistic

micro-level belief distortions can, once aggregated, generate realistic credit cycles with financial
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overexpansion in good times, fragility, and sharp reversals as small negative news arrives.

Future work can enrich our approach. A key factor is the role of financial intermediaries,

which recent work has already begun to investigate (Maxted, 2020; Krishnamurthy and Li, 2020).

Another important aspect is household debt, which has been shown to be a key determinant

of drops in aggregate demand during financial tightenings (Mian et al., 2017; Mian and Sufi,

2009). Prolonged asset price bubbles are another important element, especially to account for

large crises. These factors open up exciting avenues for studying the transmission of beliefs to

the real economy. As an initial step, our work shows that realistic departures from rationality

disciplined by expectations data can be introduced into standard macroeconomic models and

significantly improve their explanatory power.
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the business cycle.” The Quarterly Journal of Economics, 132, 1373–1426.

Lorenzoni, Guido (2008), “Inefficient credit booms.” The Review of Economic Studies, 75, 809–
833.

Lucas, Robert E (1976), “Econometric policy evaluation: A critique.” In Carnegie-Rochester con-
ference series on public policy, volume 1, 19–46.

Maxted, Peter (2020), “A macro-finance model with sentiment.” Working paper.

Mian, Atif and Amir Sufi (2009), “The consequences of mortgage credit expansion: Evidence from
the u.s. mortgage default crisis.” Quarterly Journal of Economics, 124, 1449–96.

Mian, Atif, Amir Sufi, and Emil Verner (2017), “Household debt and business cycles worldwide.”
The Quarterly Journal of Economics, 132, 1755–1817.

Minsky, Hyman P (1977), “The financial instability hypothesis: An interpretation of keynes and
an alternative to standard theory.” Challenge, 20, 20–27.

Pflueger, Carolin, Emil Siriwardane, and Adi Sunderam (2020), “Financial market risk perceptions
and the macroeconomy.” The Quarterly Journal of Economics, 135, 1443–1491.

Richter, Björn and Kaspar Zimmermann (2020), “The profit-credit cycle.” Working paper.

Rognlie, Matthew, Andrei Shleifer, and Alp Simsek (2018), “Investment hangover and the great
recession.” American Economic Journal: Macroeconomics, 10, 113–53.

Saporta-Eksten, Itay and Stephen J. Terry (2018), “Short-term shocks and long-term investment.”
Working paper.

Schaal, Edouard and Mathieu Taschereau-Dumouchel (2020), “Herding cycles.” Working paper.

Schularick, Moritz and Alan M Taylor (2012), “Credit booms gone bust: Monetary policy, leverage
cycles, and financial crises, 1870-2008.” American Economic Review, 102, 1029–61.

43



Shleifer, Andrei and Robert W Vishny (1992), “Liquidation values and debt capacity: A market
equilibrium approach.” The Journal of Finance, 47, 1343–1366.

Simsek, Alp (2013), “Belief disagreements and collateral constraints.” Econometrica, 81, 1–53.

Stein, Jeremy C (2012), “Monetary policy as financial stability regulation.” The Quarterly Journal
of Economics, 127, 57–95.

Strebulaev, Ilya A and Toni M Whited (2012), “Dynamic Models and Structural Estimation in
Corporate Finance.” Foundations and Trends in Finance, 6, 1–163.

Tauchen, George (1986), “Finite state markov-chain approximations to univariate and vector
autoregressions.” Economics letters, 20, 177–181.

Terry, Stephen J (2017a), “Alternative methods for solving heterogeneous firm models.” Journal
of Money, Credit and Banking, 49, 1081–1111.

Terry, Stephen J. (2017b), “The macro impact of short-termism.” Working paper.

Winberry, Thomas (2017), “Lumpy investment, business cycles, and stimulus policy.”

Woodford, Michael (2003), “Imperfect common knowledge and the effects of monetary policy.”
In Knowledge, Information, and Expectations in Modern Macroeconomics (Philippe Aghion,
Roman Frydman, Joseph Stiglitz, and Michael Woodford, eds.), Princeton University Press.

Young, Eric R (2010), “Solving the Incomplete Markets Model with Aggregate Uncertainty Using
the Krusell–Smith Algorithm and Non-Stochastic Simulations.” Journal of Economic Dynamics
and Control, 34, 36–41.

44



Appendices for Online Publication Only

A Model

A.1 Solving the Model

The computational algorithm involves iteration on an outer loop (related to debt pricing) and

an inner loop (related to firm policies). Before solving the model, we discretize the state space

(s, k, b) = (z, εz, A, εA, k, b) into nz × nz × nA × nA × nk × nb grid points. We then discretize the

rational and perceived diagnostic transitions of the exogenous states according to Tauchen (1986).

The computational algorithm - following Strebulaev and Whited (2012) - proceeds as follows:

Start outer loop.

1. Guess a default policy df θ(s, k, b), and compute the implied debt prices qθ(s, k, b) according

to the lenders diagnostic zero-profit condition Equation (17).

Start inner loop.

(a) Given the debt prices qθ(s, k, b) and default policy df θ(s, k, b), solve the diagnostic firm’s

Bellman Equations (14), (15), and (16) for V θ(s, k, b), V θ
ND(s, k, b), and V θ

D(s) as well

as the implied optimal policies for investment and debt issuance k′θ(s, k, b), b′θ(s, k, b).

Use standard discrete-state, discrete-policy dynamic programming policy iteration to

do so.

2. Compute updated default policies df θ(s, k, b) according to the default choice defining V θ in

Equation (14), i.e., V θ
ND(s, k, b) < V θ

D(s).

3. Compute the ergodic distribution µ(s, k, b) implied by the firm policies for default, capital,

and debt df θ(s, k, b), k′θ(s, k, b), and b′θ(s, k, b).

4. Compute the mass of states in which the guessed default policy differs from the updated

default policy. If this set of states has mass lower than some tolerance, exit. If not, then go

to top and restart with the updated set of default states as your new guess.

We implement this computationally intensive algorithm in heavily parallelized Fortran on a

2017 iMac Pro, with runtimes around 250 seconds. Table A1 reports the value of several dimensions

used for the baseline solution of the model.
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Table A1: Computational Choices

Quantity Description Value

T sim Simulated periods 250
T erg Initially discarded periods 25
N firm Number of firms 1250
N IRF Number of IRF economies 10000
T IRF Length of IRF economies 75
T decomp Length of historical decomposition 2
nz Micro productivity grid size 5
nA Macro productivity grid size 5
nk Capital grid size 30
nb Debt grid size 30

Notes: The table reports various computational values used in discretizing and solving the model.

A.2 Simulating the Model

After the model is solved, we unconditionally simulate the model by drawing exogenous uniform

random shocks and combining this information with the transition matrix for macro TFP to

simulate the macro process for At for some periods t = 1, ..., T sim + T erg. At the micro level, we

simulate the model “non-stochastically” according to the method of Young (2010), i.e., we store

the dynamics of the weight of the cross-sectional distribution at each discretized point in the state

space (s, k, b) rather than simulating a large number of firms. Note that when simulating the

model, all macro shocks and distributional dynamics are determined according to the rational or

true representations of the driving process, even though debt pricing and firm polices may involve

diagnostic expectations.

With the simulated distribution in hand for each period, macro series of interest are simply

weighted sums of micro-level outcomes across this distribution, discarding the first T erg periods to

remove the influence of initial conditions. Note that we do in fact simulate a number of individual

firms N firm for the purpose of computing moments within our SMM estimation algorithm, but

this is not a step required for the purpose of solving the model or simulating within-period business

cycle aggregates.
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A.3 Computing Impulse Responses

Our approach to impulse response calculation in this nonlinear context follows Koop et al. (1996),

i.e., we compute nonlinear generalized impulse responses. To understand the impact of a given

sequence of shocks, we perform the following:

1. For a large number N irf of economies of length T irf , simulate two different versions of the

simulation, the “shock” and “no shock” versions. For each economy and each version, we

simulate the macro TFP process by first drawing T irf uniform shocks for comparison with the

macro TFP transition matrix. Then, simulate both versions unconditionally using identical

macro TFP shocks until period T shock < T irf .

2. From period T shock and continuing as long as the desired sequence of exogenous innovations

you wish to impose lasts, impose a number of periods of certain pre-determined innovations

in productivity for the “shock” case, while continuing to simulate the “no shock” economy

unconditionally.

3. After the imposed shocks sequence is complete, simulate macro TFP in both economies as

normal.

4. After the macro TFP process is determined for each pair of economies, compute the business

cycle aggregates of interest in each economy, period, and version by using the simulation

approach outlined above.

5. If business cycle aggregate Xshock
i,t is series X in economy i in period t in the shock case, and

Xnoshock
i,t is series X in economy i in period t in the no shock case, then define the impulse

response to the predetermined sequence of innovations as

IRFX
t =

1

N irf

N irf∑
i=1

Xshock
i,t −Xnoshock

i,t

Xnoshock
i,t

.

The main text’s set of impulse response figures reports the series IRFX for the indicated

macro-financial aggregates. Note, however, that the impulse responses presented in the text are

scaled to equal an exact shock size, while the productivity grid in the model varies discretely. We

achieve this by imposing movements up or down by a single grid point, imposing Step 2 above

only with a certain probability chosen in each period to deliver the desired average shock size.

A.4 Performing the Spread Matching Exercise

In a classic linear setting, performing historical decompositions such as the one used in Section

6 is typically a trivial matter of inverting a data path using simple linear algebra. However, our
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nonlinear model with heterogeneity and a discretized productivity process poses some additional

computational challenges. Given the empirical path across two period t = 1, 2 for macro credit

spreads to match (S1, S2, ..., S
decomp
T ), we proceed as follows.

First, we pick an initial period drawn from a representative location in the unconditional

simulation of the model, fixing the associated simulated cross-sectional distribution of firm-level

states µ0 drawn from the simulation of the model. Call this period t = 0, and note that at

the end of period 0 a cross-sectional distribution µ1 is pre-determined. Then for each period

t = 1, ..., T decomp, do the following:

1. Guess a value for macro TFP At, and find the bracketing interval [Ai−1, Ai] together with

linear interpolation weights ω(At, i) = At−Ai−1

Ai−Ai−1
for the guessed value of productivity.

2. Compute the implied policies of all firms in the cross-sectional distribution µt given a macro

TFP level equal to Ai, together with the implied macro spread level S(Ai). Repeat the

process for macro TFP equal to Ai−1 to obtain S(Ai−1).

3. Assume that firms play a “mixed strategy” over the two macro TFP grid points, in which

case the resulting macro spread level is (1− ω(At, i))S(Ai−1) + ω(At, i)S(Ai).

4. If the implied macro spread level is not equal to the desired spread value St to within some

tolerance, then update your guess for macro TFP At and return to Step 1. Otherwise

proceed.

5. Given a productivity guess which delivers exactly the correct interpolated value of macro pro-

ductivity in period t, compute the beginning-of-period distribution µt+1 of firm-level states

by pushing forward a fraction ω(At, i) of the distribution µt using firm policies associated

with Ai and a fraction 1− ω(At, i) of the distribution µt using firm policies associated with

Ai−1.

At the end of this process, you have determined a smooth value of productivity At which

gives you an implied macro spread series exactly consistent with the target value in period t,

and you have updated the cross-sectional distribution in an internally consistent fashion given

the smooth value of productivity between grid points. Repeating this process for each period

t = 1, ..., T decomp yields a productivity path At, as well as a set of cross-sectional distributions

µt, which exactly match the target data path for spread. All other macro aggregates of interest

can then be computed from the distributional and macro TFP path. Note that for the spread

matching exercise for the Great Recession and financial crisis in Section 6, we set T decomp = 2,

with t = 1 being the “Pre-Crisis” period and t = 2 being the “Crisis” period.

A.5 General Equilibrium Solution Algorithm

We follow an outer loop/inner loop approach to solving the model with endogenous wages.
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1. Guess a mapping from a truncated history of macro states

(At−K , At−K+1, ..., At−1, At)→ Wt.

2. Solve the model conditional upon this tractable truncated history, where (At, At−1, ...., At−K)

enters the firm’s state vector and hence the Bellman equations determining investment,

default, and debt issuance policies.

3. Simulate the model for a large number of periods t = 1, ..., T , clearing markets with Wt in

each period t by numerically solving the nonlinear equation(
Wt

ω

)λ
=

∫
n(s, k, b|Wt)dµt(s, k, b)

for each period t in the simulation. Note that this is a well behaved nonlinear equation in

one variable. The static labor policies n(s, k, b|Wt) are strictly declining in Wt on the RHS

and the function on the LHS is strictly increasing in Wt. In practice, markets can be cleared

robustly using bisection or another similar algorithm.

4. Based on the simulated wage data, update your wage prediction mapping from Step 1. If

the mapping has converged to within some tolerance, exit. If not update the mapping and

return to Step 1.

A few practical comments are in order. First, given the discretized macro TFP state space,

we store the wage mapping nonparametrically as a matrix of mean wages conditional upon each

combination of truncated macro TFP histories. After simulation, the wage mapping update step

simply involves repeated calculations of mean wages within the appropriate subsamples of the

simulated data. Second, because the macro state is replaced with macro TFP shock histories rather

than with an augmented endogenous macro moment, there is no need to create an approximate

anticipated default rule used to price debt. Lenders simply price debt according to the usual

no-arbitrage condition in Equation (17), conditional upon firm default policies which now have

as explicit inputs the macro TFP shock histories. Third, because no endogenous moments are

forecasted in our solution method, there is no Den Haan (2010)-style distinction between static

and dynamic forecasts of the wage. In other words, there is no room for forecast errors about

endogenous macro moments to accumulate over time, since only exogenous shock histories are

used for forecasts. So, unlike in typical adaptations of the Krusell and Smith (1998) method, the

R2 of the implicit wage forecast rule is in this case an appropriate metric of accuracy. With this

in mind, Figure A1 plots the estimated R2 of regressions of the log wage on fully populated sets

of dummies for macro TFP histories of up to a given lag length. Once a single lag is taken into
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account, incorporating information from yesterdays’ TFP level about the current distribution of

capital and hence labor demand in the cross section, the R2 measures stabilize. Our baseline case,

which uses a single lag with K = 1 in the wage prediction rule, is therefore a parsimonious but

apparently accurate choice.

Figure A1: Wage Predictions and TFP Lags
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Notes: The figure plots the R2 of nonparametric regressions of log wages on discrete histories of macro TFP of
increasing length.
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Table A2: Business Cycle Moments: Rational Counterfactual with θ = 0

Correlation Output Debt Investment Spread Standard Deviation
Output 1.000 0.728 0.701 0.390 0.012
Debt 1.000 0.512 0.196 0.007
Investment 1.000 0.319 0.032
Spread 1.000 0.000

Rational Counterfactual Model

Notes: The table reports business cycle correlations (left) and standard deviations (right) from the
rational counterfactual model, i.e., a model with rational expectations but parameterized otherwise
identically to the estimated model with diagnosticity. The model moments are computed from an
unconditional simulation of 1000 years. Model quantities refer to total values (output, debt, and
investment) or average values (spread) computed from the distribution of firms. Output, debt, and
investment are HP-filtered with smoothing parameter 100.  
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B Data

B.1 Microdata on Firm Beliefs from Compustat and IBES-Guidance

In our analysis of firm financial and profit forecasts we use a combination of the Compustat

Fundamentals Annual and IBES manager guidance databases. The combined sample for the

Compustat-IBES data spans 1999-2017 for 8620 firm-fiscal years spanning 1320 firms. To construct

our sample, we discard utilities and financials as well as any firm-years with negative values for

assets, capital, employment or sales. Descriptive statistics for each variable from this sample used

in our analysis, as well as firm revenues and capital, are reported in Table B1. Robustness checks

for the forecast error reversion regressions in Section 2 in the main text also follow below.

Table B1: Sample Descriptive Statistics

Quantity Mean Standard Deviation

Sales 6732.4 23268.8
Capital 1499.4 6286.3
Profit 0.448 1.062

Investment 0.321 0.238
Debt Issuance -0.404 3.883
Forecast Error -0.267 0.804

Forecast 0.823 0.933

Notes: The table reports descriptive statistics for the sample of 1320 firms from 1999-2017 in the combined
Compustat-IBES database. The first two rows represent revenues and the book value of the capital stock, in $
millions. The remaining rows reflect the ratio of realized earnings to the book value of the capital stock, the
capital expenditures investment rate, the ratio of end of period total liabilities to the capital stock, the next-period
forecast error defined as realized future profits minus manager guidance scaled by firm capital, and the next period
forecast defined as manager profit guidance scaled by firm capital. The sample was winsorized before computing
the descriptive statistics above.

The variable definitions are given as follows, with both empirical and model information at-

tached:

• Earnings or profits are equal to GAAP net income, Compustat ib. The model equivalent

is π = (1− τ)(y −Wn− AC(i, k)− φ) + τ(Rb+ δk)− δk.

• Capital k is equal to the book value of plants, property, and equipment, Compustat ppent.

The model equivalent is the state variable k.

• Investment i is equal to the total value of capital expenditures, Compustat capxv. The

model equivalent is the policy variable i = k′ − (1− δ)k.

• Debt b is equal to the total net value of liabilities, Compustat dltt+dlc−che. The model

equivalent is the state variable b.
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• Forecast error fe is equal to the realized value of earnings π minus the forecast level

of earnings πf made from the previous fiscal year, where realized earnings are Compustat

ib and forecast earnings are equal to manager guidance from the IBES database. The

model equivalent is the earnings value π above, minus the forecast level implied by firm-level

diagnostic expectations, the definition of π, and firm policies predetermined in the previous

period.

We also use the merged Compustat-IBES guidance sample to run various robustness checks to

the firm forecast error predictability regressions reported in the main text. Table B2 shows similar

forecast error predictability maintains after the Great Recession. Table B3 shows that forecast

error predictability is robust in a sample of firms present for five or more years in the data. Table

B4 shows that forecast error predictability remains present after discarding all firms with high-

yield debt as classified by Moody’s ratings. Table B5 shows that forecast error predictability is

robust in a specification with all variables in first differences.

B.2 Microdata on Bonds from FISD-TRACE

We use the WRDS US Corporate Bond Return database, which merges the Mergent FISD and

FINRA TRACE datasets with issuance and secondary market information on corporate bond is-

sues, respectively. We consider only unsecured, unconvertible debentures and convert secondary

market yields to spreads based on comparable Treasury rates, with a resulting dataset of around

80,000 issues from mid-2002 to late 2019. We link the bond return database to Compustat firm

financials through the WRDS CRSP link, and we aggregate from the issue to firm level by com-

puting average yields and bond returns for a firm in Q4 of a given year. The resulting dataset

spans around 1,500 large US public firms. Linking this panel to the IBES-manager guidance data

yields the sample used in Table 2 in the main text. Table B6 replicates Table 2 but does not

include current profit controls for the investment regressions nor lagged spread controls for the

spread regressions. Table B7 replicates Table 2 conditioning only on investment grade bonds.

B.3 Macro Data

At the macro level, we use a combination of information from the NIPA accounts, the BIS,

Moody’s. The following variables are relevant, all at annual frequency or converted to annual

frequency by averaging.

• Output Y is real GDP from the NIPA accounts.

• Debt B is real total nonfinancial corporate credit in the US from the BIS.

• Investment I is real nonresidential private investment from the NIPA accounts in the data.
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• Spreads are the Moody’s BAA spread relative to 10-year Treasury bonds, at an annualized

rate.

• TFP is the annualized value of the series dtfp from John Fernald’s website.

• Profit Fcst is the sum of earnings guidance across firms in a given year from our Compustat-

IBES merged database.

In the empirical business cycle moments in Table 8, we reports moments from the HP-filtered

values of output, investment, and debt, together with unadjusted spread levels. In the spread

matching/Great Recession exercise in Figure 4, we report the average spread and the average

growth of credit, output, investment, and profit forecasts in each subperiod.

B.4 SMM Estimation

Our SMM estimation exercise in Section 5 involves three steps: 1) moment and covariance matrix

calculations, 2) model estimation, and 3) standard error calculation. We detail each of these steps

in turn.

B.4.1 Moment and Covariance Matrix Calculation

Table 4 reports a set of 18 target moments at the micro and macro levels for our SMM estimation

exercise. The micro moments are a covariance matrix of the vector

Xit = (Forecast Errorit+1,Profitit, Investmentit,Debtit, Spreadit)
′

for firm i in fiscal year t from our merged Compustat-IBES-FISD-TRACE sample. The merged

sample with each of those variables available for all firms spans 387 firms and 2919 total observa-

tions. To compute the micro moments, we use the following procedure:

• Demean Xit by firm and year to obtain X̂it

• Compute the covariance matrix as the mean of X̂itX̂
′
it.

• Apply the standard formula for the clustered covariance of a mean vector to obtain the

moment covariance matrix ΩMicro, clustering across firms.

With the estimated micro moments and the estimated moment covariance matrix for the micro

moments in hand, we then turn to the calculation of the macro moments and their covariance

matrix. Note that the macro moments are the mean default rate, the mean spread, and the

standard deviation of real GDP growth. We compute the mean default and spread series from our

merged FISD-TRACE data on corporate debt, and we compute real GDP growth from the NIPA
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data. The point estimates of these macro moments are trivial to compute. We then compute

an estimate of the covariance matrix of these macro moments ΩMacro using a stationary block

bootstrap.

Note that for our later inference based on clustering at the firm level, we will rely upon

asymptotics in the number of firms, together with an assumption that the macro sample length T

and the number of firms N behave proportionally with T/N → γ for some constant γ as N →∞.

This allows us to rely on asymptotics of the basic form

√
N(µ̂− µ)→d,N→∞ N(0,Ω), (18)

where µ̂ is the estimated moment vector (with micro and macro moments) and Ω is the joint

moment covariance adjusted for γ.

Ω =

[
ΩMicro 0

0 1
γ
ΩMacro

]
.

Table 4 reports µ̂ and standard errors based on the approximating variance from (18).

B.4.2 Point Estimate Calculation

We compute the point estimates β̂ for the vector of estimated parameters β in Tables 5 and 6 by

solving the following standard SMM optimization problem

min
β

(µS(β)− µ̂)′Ω̂−1(µS(β)− µ̂)

where µS(β) is the model value of the moments given β computed from simulated data, Ω̂−1

is the asymptotically efficient weighting matrix given by the inverse of the estimated moment

covariance matrix, and µ̂ is the empirical moment vector. We employ particle swarm optimization

to solve this optimization problem, a stochastic global optimization routine that bears substantial

similarity to simulated annealing and genetic algorithms.

B.4.3 Standard Error Calculation

Given the ratio between the number of firms N sim in the model simulation used to compute

µS(β) and the empirical number of firms N , the SMM estimator’s asymptotic covariance matrix

Σ follows

√
N(β̂ − β)→d,N→∞ N(0,Σ) (19)
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where

Σ =

(
1 +

N

N sim

)(
∂µS(β)

∂β′
Ω−1

∂µS(β)

∂β

)−1
. (20)

Equation (20) yields a feasible formula for Σ after substitution of the estimated covariance matrix

Ω̂ and numerical calculation of the moment Jacobian matrix ∂µS(β)
∂β′

within the model using forward

differentiation from the point estimates β̂. With these elements in hand, Tables 5 and 6 report

standard errors based on the approximating variance from (19).
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B.5 Robustness Tables

Table B2: Predictable Forecast Errors: Post-Great Recession

(1) (2) (3) (4)

Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1

Forecastt  -0.320***
(0.052)

Profitst  -0.133*** 
(0.030)

Investmentt  -0.398*** 
(0.107)   

Debt Issuancet  -0.051*** 
(0.013)

Firm Effect X X X X
Time Effects X X X X
Years 2010-18 2010-18 2010-18 2010-18
Firm-Years 3880 3880 3880 3880

Notes: The table reports estimates of specifications on the merged Compustat - IBES Guidance
sample at the firm-fiscal year level, restricting to the post-Great Recession period. Forecasts are
earnings guidance, profits are earnings, investment is tangible capital expenditures, debt issuance
is end-of-period net debt, and forecast errors are actual earnings minus manager guidance at a 1-
year horizon. All series are relative to firm tangible capital stocks at the beginning of the year.
Standard errors are clustered at the firm level. * = 10% level, ** = 5% level, and ***=1% level.
The standard deviation of future forecast errors is 0.781, the standard deviation of forecasts is
0.914, the standard deviation of profits is 1.008, the standard deviation of investment is 0.216,
and the standard deviation of debt issuance is 3.719. For all series, 0.01=1% relative to a firm's
tangible capital stock.
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Table B3: Predictable Forecast Errors: Forecasts for 5 or More Years

(1) (2) (3) (4)

Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1

Forecastt  -0.243***
(0.030)

Profitst  -0.036* 
(0.021)

Investmentt  -0.451*** 
(0.066)

Debt Issuancet  -0.040*** 
(0.007)

Firm Effect X X X X
Time Effects X X X X
Years 1999-18 1999-18 1999-18 1999-18
Firm-Years 9564 9564 9564 9564

Notes: The table reports estimates of specifications on the merged Compustat - IBES Guidance
sample at the firm-fiscal year level, restricting to firms with at least 5 years of forecasts.
Forecasts are earnings guidance, profits are earnings, investment is tangible capital expenditures,
debt issuance is end-of-period net debt, and forecast errors are actual earnings minus manager
guidance at a 1-year horizon. All series are relative to firm tangible capital stocks at the
beginning of the year. Standard errors are clustered at the firm level. * = 10% level, ** = 5%
level, and ***=1% level. The standard deviation of future forecast errors is 0.777, the standard
deviation of forecasts is 0.921, the standard deviation of profits is 1.012, the standard deviation
of investment is 0.232, and the standard deviation of debt issuance is 3.760. For all series,
0.01=1% relative to a firm's tangible capital stock.
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Table B4: Predictable Forecast Errors: Investment Grade Debt

(1) (2) (3) (4)

Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1

Forecastt  -0.229***
(0.031)

Profitst  -0.050**
(0.022)

Investmentt  -0.445*** 
(0.068)

Debt Issuancet  -0.036*** 
(0.007)

Firm Effect X X X X
Time Effects X X X X
Years 1999-18 1999-18 1999-18 1999-18
Firm-Years 8620 8620 8620 8620

Notes: The table reports estimates of specifications on the merged Compustat - IBES Guidance
sample at the firm-fiscal year level, restricting to firms with Moody's rated investment grade
debt. Forecasts are earnings guidance, profits are earnings, investment is tangible capital
expenditures, debt issuance is end-of-period net debt, and forecast errors are actual earnings
minus manager guidance at a 1-year horizon. All series are relative to firm tangible capital stocks
at the beginning of the year. Standard errors are clustered at the firm level. * = 10% level, ** =
5% level, and ***=1% level. The standard deviation of future forecast errors is 0.804, the
standard deviation of forecasts is 0.933, the standard deviation of profits is 1.062, the standard
deviation of investment is 0.238, and the standard deviation of debt issuance is 3.883. For all
series, 0.01=1% relative to a firm's tangible capital stock.
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Table B5: Predictable Forecast Errors: First Differences

(1) (2) (3) (4)

Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1 Fcst. Errort+1

Forecastt  -0.385***
(0.047)

Profitst  -0.304***
(0.021)

Investmentt  -0.286*** 
(0.073)

Debt Issuancet  -0.035*** 
(0.012)

Firm Effect X X X X
Time Effects X X X X
Years 2000-18 2000-18 2000-18 2000-18
Firm-Years 7125 7125 7125 7125

Notes: The table reports estimates of specifications on the merged Compustat - IBES Guidance
sample at the firm-fiscal year level. Forecasts are earnings guidance, profits are earnings,
investment is tangible capital expenditures, debt issuance is end-of-period net debt, and forecast
errors are actual earnings minus manager guidance at a 1-year horizon. All series are relative to
firm tangible capital stocks at the beginning of the year. Standard errors are clustered at the firm
level. * = 10% level, ** = 5% level, and ***=1% level. The standard deviation of future forecast
errors is 0.652, the standard deviation of forecasts is 0.383, the standard deviation of profits is
0.780, the standard deviation of investment is 0.178, and the standard deviation of debt issuance
is 1.713. For all series, 0.01=1% relative to a firm's tangible capital stock. All series are in first
differences.
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Table B6: Linking Forecast Errors and Credit Spreads: No Controls

(1) (2) (3) (4) (5) (6)

Dependent Variable: Returnt Returnt Δ Spreadt Δ Spreadt Δ Investmentt Δ Investmentt
Estimation OLS IV OLS IV OLS IV

Fcst. Errort 0.001 0.007* -0.003*** -0.007** 0.008 0.453***
(0.001) (0.004) (0.001) (0.004) (0.007) (0.096)

First Stage Fcst. Errort Fcst. Errort Fcst. Errort

Investmentt-1 -0.562*** -0.562*** -0.562***
(0.105) (0.105) (0.105)

Years 2003-18 2003-18 2003-18 2003-18 2003-18 2003-18
Firm-Years 2852 2852 2852 2852 2852 2852
Time Effects X X X X X X
First Stage F 28.94 28.94 28.94

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE sample at the
firm-fiscal year level. The top panel plots OLS and IV second-stage estimates. The bottom panel, where relevant,
reports IV first-stage estimates. Standard errors are clustered at the firm level. * = 10% level, ** = 5% level, and
***=1% level. The standard deviation of the bond return is 0.014, the standard deviation of spread growth is 0.024,
the standard deviation of investment growth is 0.090, the standard deviation of the forecast error is 0.438, and the
standard deviation of lagged investment is 0.133. For all series, 0.01=1% relative to a firm's tangible capital stock.
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Table B7: Linking Forecast Errors and Credit Spreads: Investment Grade Debt

(1) (2) (3) (4) (5) (6)

Dependent Variable: Returnt Returnt Δ Spreadt Δ Spreadt Δ Investmentt Δ Investmentt
Estimation OLS IV OLS IV OLS IV

Fcst. Errort 0.00004 0.007* -0.001** -0.007*** 0.020** 0.409***
(0.0005) (0.003) (0.0004) (0.003) (0.009) (0.074)

First Stage Fcst. Errort Fcst. Errort Fcst. Errort

Investmentt-1 -0.568*** -0.568*** -0.568***
(0.118) (0.118) (0.118)

Years 2003-18 2003-18 2003-18 2003-18 2003-18 2003-18
Firm-Years 1984 1984 1984 1984 1984 1984
Time Effects X X X X X X
First Stage F 23.27 23.27 23.27

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE sample at the
firm-fiscal year level, restricting to firms with Moody's rated investment grade debt. The top panel plots OLS and IV
second-stage estimates. The bottom panel, where relevant, reports IV first-stage estimates. Columns (3)-(4) control
for lagged spreads, and columns (5)-(6) control for current profits in the second stage. Standard errors are clustered
at the firm level. * = 10% level, ** = 5% level, and ***=1% level. The standard deviation of the bond return is 0.014,
the standard deviation of spread growth is 0.024, the standard deviation of investment growth is 0.090, the standard
deviation of the forecast error is 0.438, and the standard deviation of lagged investment is 0.133. For all series,
0.01=1% relative to a firm's tangible capital stock.
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