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No Man is an Island
“No man is an island entire of itself; every man is a piece of the continent, a part
of the main; if a clod be washed away by the sea, Europe is the less, as well as if a
promontory were, as well as any manner of thy friends or of thine own were; any
man’s death diminishes me, because I am involved in mankind. And therefore
never send to know for whom the bell tolls; it tolls for thee.”

– John Donne

1 Introduction

On January 28, 2021, Taiwan reached out to Germany for assistance in obtaining Covid-19

vaccines, following Berlin’s request for help with a shortage of automobile semiconductor

chips.1 This initiative by Taiwan represented a strategic maneuver to address two critical

shortages simultaneously: the scarcity of vaccines and semiconductor chips. In exchange

for chips vital to its automobile industry, Germany was expected to provide sufficient vac-

cines to curb the pandemic in Taiwan, thereby ensuring the continued production and de-

livery of chips to Germany.

Within a year, these shortages had extended to other sectors, impacting all factors of

production. Our study employs a multi-sector-country framework to quantify the sector-

specific output losses attributed to these shortages, which arise from imbalances in the sup-

ply of factors of production across sectors and asymmetric consumer demand for goods

from different sectors. With our open economy model, we also assess the relative decline

in domestic expenditures across countries and evaluate the resulting welfare loss. In our

analysis, pandemic-related shocks to sectoral demand and supply can only be alleviated

through global vaccinations. Due to the uneven pace of vaccinations globally, these shocks

propagate through supply chains from countries with low vaccination rates to those with

higher rates. We estimate the hypothetical changes in global and national-level output un-

der various scenarios, comparing outcomes with and without an equitable distribution of

vaccines.

Our key findings are as follows: Using empirically relevant trade and production elas-

ticities, we determine that if wealthy countries only vaccinate their own populations, global

output decreases by nearly 1% compared to pre-pandemic levels, with the wealthy nations

bearing 15% of this global loss. Conversely, if wealthy countries allocate vaccines equiv-

alent to 50% of their populations to low-income countries (a feasible amount considering

1https://www.reuters.com/article/us-health-coronavirus-taiwan-idINKBN29X11P.
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that wealthy nations initially stockpiled vaccines equal to three times their populations),

this could immunize a third of the global poor within less than 8 months. This strategy

yields a 178% return on investment for wealthy countries and reduces global output losses

by half, thereby decreasing the wealthy countries’ share of the global loss to 9%.2 It’s im-

portant to note that under this scenario, rich countries can still vaccinate 100% of their

populations. Consequently, the losses incurred by rich countries decrease by 70% solely

due to enhanced trade and production connections with low-income countries, as their in-

vestment resolves supply chain bottlenecks. This underscores the economic rationale for

global vaccinations. In another hypothetical scenario that tries to come close to actual vac-

cine distribution, where half of the population in low-income countries is vaccinated by the

end of 2021, the global loss decreases by 12% (instead of halving), and losses for rich coun-

tries increase by 60% compared to the previous scenario where low-income countries were

vaccinated more rapidly and extensively.3

Our framework builds upon the closed-economy model introduced in Baqaee and Farhi

(2022). By extending it to a global context, we model the transmission of demand and sup-

ply shocks through global supply chains. The primary empirical contribution of our study

is to quantify the economic losses experienced by vaccinated countries due to deficiencies

in vaccination rates in other nations, which propagate shocks through global linkages. For

instance, the zero-Covid strategies adopted by unvaccinated trading partners manifest as

new sectoral shocks in vaccinated countries, echoing the findings of Guerrieri et al. (2022)

where a supply shock in one sector can lead to a demand shock in another. The sole fric-

tion in our model lies in segmented labor markets, implying that labor supply is specific

to sectors and not mobile across sectors within any given country.4 Labor demand in our

model adjusts endogenously to exogenous consumption shocks, such as shifts in consumer

preferences from services to goods. Our model does not include nominal rigidities; there-

fore, sectoral wages adjust freely to achieve equilibrium within each sector, reflecting a

segmented labor market.

Our two-period model is calibrated as follows: The primary shock is a sectoral labor

supply shock, approximated by sector-specific infections. The first period represents the

2The 178% return rate is derived by comparing our estimated expenditure losses of 338 billion USD with
the projected 190 billion USD cost to manufacture sufficient vaccines for global inoculation. This cost projec-
tion is based on COVAX’s early 2021 estimate of 38 billion USD to produce enough vaccine doses to immunize
the world’s vulnerable population.

3Our analysis focuses on 2021, and as of August 2022, a third of the world remained unvaccinated. See
https://ourworldindata.org/covid-vaccinations.

4According to Fernald and Li (2022), there was no significant labor reallocation across sectors in the U.S.
during the pandemic.
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pre-Covid-19 equilibrium, while the second period simulates the pandemic by integrating

sectoral shocks. Within our calibration framework, the duration of the second period dic-

tates when the economy reverts to the pre-Covid-19 equilibrium. We divide the second

period into 365 days and solve the model daily. Daily sectoral shocks are determined by

the day-to-day dynamics of the disease, modeled using epidemiological parameters estab-

lished at the onset of vaccine discovery. Additionally, our model incorporates endogenous

lockdowns: When the number of infected individuals exceeds a country’s ICU bed capac-

ity—a threshold derived from empirical data—we initiate a lockdown. It’s important to

note that sectoral labor supply shocks occur daily based on the number of individuals un-

able to work due to illness and the rate of vaccination. Once a country achieves full vaccina-

tion coverage, sectoral shocks cease, and the model returns to its pre-pandemic equilibrium.

Thus, the conclusion of the second period is contingent upon the vaccination scenarios and

the occurrence of endogenous lockdowns.

How do we get sectoral infections from an SIR model? Starting with the pre-pandemic

employment baseline for each sector-country pair, we introduce infection-driven demand

and supply shocks to assess deviations from this equilibrium. The magnitude of labor sup-

ply shocks is influenced by contact intensity within the sector, the feasibility of remote work,

and the imposition of lockdowns. Thus, each country-sector pair receives its own sectoral

labor supply shock. Additionally, we model a sectoral demand shifter to reflect composi-

tional changes in consumption from services to goods. To calibrate these sectoral shifts, we

utilize data on personal consumption expenditures by sector for the U.S. economy. From

this data, we derive the relationship between sectoral changes in consumption and sectoral

infections for the U.S. Subsequently, we extend these projections to the other 64 countries

in our study, applying the parameters obtained from the U.S. data and using country-level

infection rates.

We start with the pre-pandemic equilibrium and calibrate the global linkages to OECD’s

Inter-Country Input-Output (ICIO) tables,5 as depicted in Figure 1a and Figure 1b. Of the 65

countries analyzed, 39 are classified as advanced economies (AEs) with access to vaccines

as of January 2021, while the remaining countries—including a collective entity labeled

the “Rest of the World”—are categorized as emerging markets and developing economies

(EMDEs) and are presumed unvaccinated at the start.

5As of the time of this writing, the OECD had not updated its global network data to reflect changes
in network expenditure changes during the pandemic, therefore, we used the data from the latest available
year of 2015. Anecdotal evidence suggests shipping delays and inventory adjustments throughout 2021, but
this information alone is inadequate for calculating endogenous changes in the global network’s expenditure
shares.
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In our baseline calibration, we employ estimated trade elasticities from Boehm et al.

(2019, 2023), which are relatively low. For robustness, we also use higher elasticities from

Caliendo and Parro (2015) to reflect greater substitution possibilities. Low elasticities imply

complementarity between domestic and foreign inputs, resulting in higher estimated losses

since, in the short run, countries cannot easily replace their imported intermediate inputs

from one source with those from another. An open economy, though more integrated into

the global production network and thus more vulnerable to supply-chain shocks, is also

beneficial in terms of larger number of suppliers. Thus, using higher elasticities allows for

medium-to-long-run substitution between suppliers. We have the interesting result that,

under complementarity, AEs account for a smaller share of the global loss since EMDEs,

unable to produce without foreign inputs, bear a larger portion of the loss. Conversely,

with high substitution elasticities, EMDEs are much better off and, hence, AEs account for

a larger share of the global output loss. Given the importance of supply chains for EMDEs,

substitution benefits them more as long as they get to be vaccinated.
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Figure 1: Inter-country Inter-industry Trade Linkages

(a) International Trade Linkages
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(b) Inter-industry Trade Linkages
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NOTES: Panel (a) presents a summary of international linkages. Each node corresponds to a country, with
sizes proportional to the GDP of the respective country. The node color indicates the country’s openness,
defined as the ratio of imports and exports to GDP, with darker shades signifying higher trade openness
(See Table E.1). Countries with vaccine access are highlighted by black borders. The thickness of the lines
between nodes increases with the volume of bilateral trade. For expositional clarity, we only show the top two
significant trade relations per country for 65 countries in our dataset. Panel (b) illustrates aggregated inter-
industry linkages. Each node represents an industry, with node size reflecting the industry’s total intermediate
usage. The smallest node, representing the Mining Support industry, corresponds to 184 billion USD, while
the largest, for the Construction industry, corresponds to 5.9 trillion USD. Node colors indicate the proportion
of imported inputs, ranging from 5.9% in the Real Estate industry to 37% in the Coke & Refined Petroleum
industry. The thickness of edges from the supplying to the target industry indicates the strength of trade
relations, based on two criteria: (i) the intermediate input from the supplier constitutes at least 10 percent of
the inputs of the target industry, or (ii) the supplier ranks among the top two suppliers of the target industry.
The network displays 35 nodes and 72 edges. Source: ICIO Tables for 2015 OECD (2020).

The structure of this paper is as follows. Section 2 introduces our model. Section 3

details the data and parameters used for calibration. In Section 4, we discuss the findings

of our quantitative analysis and examine the robustness of these results. Section 5 provides

concluding remarks.

2 The Model

Our model analyzes the transmission of sectoral supply and demand shocks within the pro-

duction network and hence we deliberately exclude aggregate shocks and nominal rigidi-

ties to focus on the sectoral dynamics. We solve the analytical model using small pertur-

bations/shocks that provide an exact hat-algebra solution, rather than solving the model

via log-linearization around the steady state. This solution method is similar to Baqaee and
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Farhi (2024), who focus on different shocks, namely tariff changes. This approach allows us

to integrate responses to many successive small shocks, thereby accommodating relatively

large shocks as well. The difference of our method is that we hard code all different types

of Allen-Uzawa elasticities into our computations, which reduces the time needed for a full

solution at each perturbation stage.

Our two-period model runs intra-temporally within each period. Across the two peri-

ods, consumption adjusts in response to sectoral shocks. However, due to the absence of an

aggregate demand shock, there is effectively no intertemporal aspect and, hence, consumers

act as hand-to-mouth agents who spend their income within each respective period.

2.1 Environment

Notation. Each country produces and consumes final and intermediate goods and services.

We denote the set of countries with C and we index countries with c, v or m. The N denotes

the set of industries or sectors (we use these terms interchangeably) that are indexed by i, j

or k. A sector i in country c is denoted by ic and we denote the set of all such pairs with CN .

Production in ic can use inputs from sector j in country m, i.e., jm. For example automotive

industry, i, in Germany, c, imports steel, j, from country m, Turkey. For convenience, we

also introduce the consumption as sector 0 /∈ N , and consumption in country c is indexed

by 0c. The set of factors is represented by F and indexed by f or g. Because we work

with more than 2 countries, more than 2 sectors, and more than 2 factors, this notation is

essential. We denote the set of factors present and owned by country c with Fc.

Prices, outputs and expenditures. The output of industry i in country c is denoted with

yic and its price with pic. The country-sector pair ic uses inputs from other sectors from

different countries in addition to labor. We show the inputs used from sector j in country

m by sector i in country c with xic
jm and the price of this input is pjm.6 Recall that i = 0

denotes the consumption of households. We assume y0c = Cc is the total consumption

in country c and the price index of consumption is denoted by p0c. Let’s denote the total

nominal expenditure of country c with Ec = p0cy0c = p0cCc. The total world expenditure

is E ≡ ∑c Ec, which is also equal to the total world GDP. We assume that the factors are

country and sector-specific. Since they are sector-specific, with an abuse of notation, we use

6We solve the changes in the log prices and quantities to implement hat algebra used in the trade literature
(Costinot and Rodrı́guez-Clare, 2014; Caliendo and Parro, 2015). We assume that the trade costs, specifically
tariffs, do not change during the pandemic. The increase in shipping costs enters into the model because the
transportation sector is represented as a separate entry in the Input-Output matrix. In the model, we initialize
the price of each good to be 1 in each country. Hence, when we solve for log-changes, price changes for a
given variety are the same in each country.
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industry indices to address them as well. For any factor used by industry i in country c, we

denote the corresponding labor with Lic and its wage with wic.

Input-Output Matrix. We use expenditure shares for both the consumption and the pro-

duction sides of the economy to construct the input-output matrix. The input share of sector

j of country m in sector i in country c is defined by:

Ωic
jm ≡

pjmxic
jm

picyic
. (1)

We denote the input share matrix with ΩN . We express the expenditure share of industry

jm in final good consumption in country c as:

Ω0c
jm ≡

pjmx0c
jm

Ec
, (2)

where x0c
jm denotes the amount of industry jm’s output consumed by the households in

country c. The matrix corresponding to the final consumption is denoted by Ω0. Finally,

the value-added (or factor share) in country-sector pair ic is defined as:

αic ≡ ΩF
ic ≡

wicLic

picyic
= 1 − ∑

jm∈CN

Ωic
jm. (3)

Note that ΩF– the matrix representing the factor shares– corresponds to a diagonal matrix

whose elements are given by the value-added share.

2.2 Production

Figure 2 summarizes our production side. Production in each sector i in country c is

achieved by combining sector-specific labor and a bundle of intermediate inputs. The as-

sumption of sector-specific labor implies that labor is not mobile between sectors but can

fluctuate within a sector over time. The empirical evidence during the pandemic supports

the presence of within-sector reallocation and the absence of between-sector reallocation

as shown by Fernald and Li (2022). The intermediate bundle for a sector-country pair ic

consists of all the inputs from different sector bundles. These sector bundles, in turn, are

formed by different sector-country varieties.
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Figure 2: Production Structure
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NOTES: This figure presents the inputs used in the production for sector i in country c. All the aggregations
are done with functions exhibiting constant elasticity of substitution, albeit with different elasticities. Sector
varieties, sector bundles, intermediate bundles, and labor are all country-sector specific. We show the notation
that we use for each input in the last line of each box.

Let’s explain this production structure with an example from German automotive man-

ufacturing. German automobiles are produced by German workers and an intermediate

bundle. This intermediate bundle consists of sector bundles such as steel, plastic, textiles,

leather, and glass. These sector bundles are aggregates of sector varieties from different

countries. The steel bundle for German automotive manufacturing, for instance, is formed

by steel from Turkey, India, China, the U.S., etc. We assume that the production follows this

three-layer nested CES structure as shown in Figure 2. Next, we formalize each of these

steps and highlight the key parameters.

The production in country-sector pair ic is achieved by combining the sector-specific

labor and the intermediate bundle. We denote the price of this bundle with pic
M and its

quantity with Mic. We assume that the production of the final good follows a constant

elasticity of substitution (CES) technology with elasticity φ. The normalized production

function is given by:

yic =
Aic

Āic


αic

(
Lic

L̄ic

) φ−1
φ

+ (1 − αic)

(
Mic

M̄ic

) φ−1
φ




φ
φ−1

. (4)

where the values with a bar on top denote the pre-pandemic 2019 equilibrium normaliza-
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tion and Aic is the productivity.7 The corresponding price index is:

pic =
Āic

Aic

[
αic (wic)

1−φ + (1 − αic)
(

pic
M

)1−φ
] 1

1−φ

.

We assume 0 ≤ φ < 1, i.e., labor and intermediate inputs are complements. As we show

in the calibration section, this assumption is supported by the estimates we use from the

empirical literature.

The intermediate bundle in ic is composed of inputs of sectoral bundles, denoted by xic
j

for sector j. Assuming a CES aggregator with elasticity of substitution of ε, the intermediate

bundle, Mic, and its price index is given by:

Ωsic
j ≡ ∑

m∈C

Ωic
jm, Mic =


∑

j∈N

Ωsic
j

1 − αic


xic

j

x̄ic
j




ε−1
ε




ε
ε−1

, pic
M =


∑

j∈N

Ωsic
j

1 − αic

(
pic

j

)1−ε




1
1−ε

.

Ωsic
j captures the share of sector j in production of ic and is calculated by summing over the

country varieties. pic
j is the sectoral price index. We assume that 0 ≤ ε < 1, i.e., all sectoral

inputs for the intermediate bundle are complements. This assumption implies that plastic

and steel cannot be easily substituted in auto production, which is backed by the estimates

from the empirical literature, as we show in our calibration section.

Sector bundles are aggregates of varieties coming from different countries. We capture

the share of bundle j for sector ic fulfilled by jm with the matrix ΞN , and write the sectoral

bundle input and the price index as:

Ξic
jm ≡

Ωic
jm

Ωsic
j

, xic
j =


∑

m∈C

Ξic
jm


xic

jm

x̄ic
jm




ξ j−1

ξ j




ξ j
ξ j−1

, pic
j =

[
∑

m∈C

Ξic
jm

(
pjm

)1−ξ j

] 1
1−ξ j

,

This uses a CES aggregator with a sector-specific elasticity of substitution ξ j. These sector-

specific elasticities are estimated to allow substitutions between varieties coming from dif-

7To ensure the model’s completeness, we include the sectoral productivity term. However, we do not
introduce any productivity shocks in our calculations. With this formulation, and by selecting appropriate
normalizations, we can assume all prices and productivity parameters are equal to 1 in the initial state. Our
solution methodology involves approximating large shocks by introducing small shocks across multiple iter-
ations. At each iteration, we recalibrate the model, ensuring that the weights in the primitive CES functions
correspond to the input shares.
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ferent countries in the long term (Costinot and Rodrı́guez-Clare, 2014; Caliendo and Parro,

2015) such that ξ j ≥ 1. But in the short term, we assume that it is hard to immediately sub-

stitute varieties from different countries to capture what happened during the pandemic.

The case of ξ j ≤ 1 is estimated by Boehm et al. (2019). Our empirical exercise presents

results for the cases of low and high substitution, for the range of ξ j ≤ 1 & ξ j ≥ 1.

2.3 Consumption

There is a representative agent in each country solving a two-period consumption opti-

mization problem. The first period corresponds to the pre-pandemic stage and the second

period corresponds to the pandemic stage. The households collect their income through

factor ownership. Each period, the national expenditure is equal to Ec,t. We normalize the

world expenditure to 1 in both periods. In the absence of aggregate shocks and perfect

foresight, the model effectively solved for each period. Hence, we drop the time subscript

below to simplify the notation.

Figure 3: Consumption Structure
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NOTES: This figure presents the consumption choice in country c. All the aggregations are done with functions
exhibiting constant elasticity of substitution albeit with different elasticities. The consumption bundles are
country-specific.

Similar to our production structure, we also assume a nested structure in consumption

as depicted in Figure 3. The representative agent optimization is given by:

Cc =


∑

j∈N

Ωs0c
j


x0c

j

x̄0c
j




σ−1
σ




σ
σ−1

, with Ωs0c
j ≡ ∑

m∈C

Ω0c
jm

where x0c
j denotes the (normalized) sectoral consumption and Ωs0c

j denotes the share of

industry j in the final consumption of consumers in country c. We assume σ to be equal to

1 for Cobb-Douglas preferences. Similar to the production side, consumption bundles that
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are comprised of varieties from different countries. The corresponding consumption price

index can be written as:

p0c =


∑

j∈N

Ωs0c
j

(
p0c

j

)1−σ




1
1−σ

, for (σ = 1) : log p0c = ∑
j∈N

Ωs0c
j log p0c

j , (5)

where p0c
j denotes the price of the consumption bundle j in country c, σ = 1 corresponds to

the Cobb-Douglas case with constant expenditure shares.

We capture the share of bundle j for consumers in c fulfilled by jm with the matrix Ξ0,

and write the sectoral consumption bundle and its price index as:

Ξ0c
jm ≡

Ω0c
jm

Ωs0c
j

, x0c
j =




∑
j∈N

Ξ0c
jm


x0c

jm

x̄0c
jm




ξ0
j
−1

ξ0
j




ξ0
j

ξ0
j
−1

, p0c
j =

[
∑

m∈C

Ξ0c
jm

(
pjm

)1−ξ0
j

] 1

1−ξ0
j

.

As in the production side, ξ0
i is the trade elasticity for consumption. We use values both

from Caliendo and Parro (2015) and from Boehm et al. (2023), so we study cases where

these elasticities are greater and smaller than 1.

2.4 Equilibrium and Perturbation

Given the parameters, a general equilibrium consists of good prices, factor prices, outputs,

intermediate inputs, factor inputs, and consumption levels such that producers minimize

their costs, households maximize their utilities, and good and factor markets clear. The

equilibrium is stable in the absence of any shocks. We perturb this equilibrium with sectoral

demand and supply shocks. At each point in time, we assume that good markets clear such

that for any industry ic:

yic = ∑
m∈C

∑
j∈N

x
jm
ic + ∑

m∈C

x0m
ic . (6)

The first term corresponds to the intermediate input usage of ic by all country-industry

pairs, indexed by jm. The second term captures to the final good usage of ic in all countries,

indexed by m. We also assume labor markets clear such that all “potential” sector-specific

workers are employed.

At the initial equilibrium, we set all prices to 1 and all output of country-sector pairs to
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their respective share in the total nominal world expenditure. After perturbing with shocks,

the prices and outputs re-equilibriate.

2.5 Domar Weights, GDP and Country-Level Expenditures

Let’s define the Domar weight of an industry ic to be: λic ≡ picyic/E and for the factor

employed in the same industry to be Λic ≡ wicLic/E. We denote the expenditure share of

country m with χm ≡ Em/E. Starting from market clearing condition in Equation (6), using

the expenditures for each country, Ec, we can write the sector Domar weight for ic as:

λic ≡
picyic

E
= ∑

m∈C

picx0m
ic

Em

Em

E
+ ∑

jm∈CN

picx
jm
ic

E

= ∑
m∈C

Ω0m
ic χm + ∑

jm∈CN

Ω
jm
ic

pjmyjm

E
= ∑

m∈C

Ω0c
jmχm + ∑

jm∈CN

Ω
jm
kc λjm. (7)

Let λ and χ denote the row-vectors corresponding to the Domar weights of sectors and

expenditure shares of countries, respectively. Then, Equation (7) can be written as:

λ = χΩ0 + λΩN ⇒ λ = χ Ω0 (I − ΩN )−1

︸ ︷︷ ︸
≡ΨN

= χ Ω0 ΨN , (8)

where ΨN is the Leontief Inverse. The row vector for factor Domar weights, denoted by Λ,

captures the ratio of added value to the world GDP in each sector. We can write it as:

Λ = λ ΩF = χ Ω0 ΨN ΩF
︸ ︷︷ ︸
≡ΨF

= χ Ω0 ΨF . (9)

The total world output (GDP) is the same as total world expenditure (GNE) and we nor-

malize them to be equal to 1. For a country c, its output (GDP), denoted as Πc, corresponds

to the total value-added in the country. Hence, we can write this country’s output in terms

of its factor Domar weights as:

Πc ≡ ∑
f∈Fc

Λ f ⇒ Π = Λ ΦG. (10)

where ΦG is the matrix that assigns factors to countries with, ΦG
f c equal to 1 if f ∈ Fc and

0 otherwise. Consistent with the real world, we allow countries to run trade surpluses or

deficits, similar to Dekle et al. (2007); Costinot and Rodrı́guez-Clare (2014). First, we define

the trade balance of country c with TBc ≡ Πc − χc, where χc denotes country’s expenditure
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(GNE). TB could be positive for a trade surplus or negative for a trade deficit. Trade deficit

corresponds to the current account balance in our model. Because there is no acquisition of

assets in international capital markets by assumption, the current account deficit is financed

only by “net factor income from abroad (NFIA)”. We calibrate the NFIA term by using data

from initial current account balances in 2019. In the model, we assume that countries who

start with a current account deficit receive factor income from abroad to close the model.

To calculate the factor assignment matrix, let’s first define the total unbalanced trade as:

UT ≡ ∑
c s.t. TBc>0

TBc = ∑
c s.t TBc<0

−TBc.

For countries that are running trade deficits, we can write the share of country c in the

unbalanced trade, SUTc, and for countries that are running trade surpluses, define their

portion of GDP that goes as income to other countries, FOc, as:

SUTc ≡




−TBc/UT if TBc < 0,

0 otherwise.
FOc ≡





TBc/GDPc if TBc > 0,

0 otherwise.

We define the factor income assignment matrix, O, between pairs of countries as:

Occ′ ≡





FOc × SUTc′ if c 6= c′,

1 − FOc if c = c′.

Using the definition of GDP in terms of factors and assuming that the GDP claims of each

country on other countries is proportionally distributed to their factor income assignment,

we can write country nominal expenditures as (GNE), χ:

χ = Π O = Λ ΦG O︸ ︷︷ ︸
≡ΦE

= Λ ΦE. (11)

The second equality follows from Equation (10). We calibrate ΦE matrix to the pre-pandemic

trade balances from 2019 and the initial factor Domar weights from ICIO tables that are

sector-country level. Once we shock this initial equilibrium, the factor Domar weights (Λ)

are endogenously solved, hence the country-level expenditure, χ, endogenously adjust af-

ter the shocks. Hence, current accounts also endogenously adjust through factor income

changes as factors assigned to countries change via ΦG.
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2.6 Shocks

Sectoral Supply Shocks. We start with shocks to “potential” labor supply. People may not

necessarily die, but they still cannot go to work either because they are sick, or taking care

of sick, or their workplace is not safe, or their employers operate under other restrictions.

All these factors will have negative effects on labor supply, making the economy operate

inside the production possibilities frontier. The production in the given country-sector pair

ic changes as a response to the labor supply shock specific to that pair, denoted by ∆L
ic(Ic,t),

which depends on the infection level in country c at time t. Hence, Equation (4) changes to:

yic,t =
Aic

Āic


αic

(
∆L

ic(Ic,t)Lic

L̄ic

) φ−1
φ

+ (1 − αic)

(
Mic

M̄ic

) φ−1
φ




φ
φ−1

. (12)

Sectoral Demand Shocks. On the consumption side, it is well known that sectoral con-

sumption shifted from services to goods in the early phase of the pandemic and started

shifting back slowly during the recovery phase (e.g., see Figure E.5a for the U.S.). di Gio-

vanni et al. (2022) documented different timing of such compositional changes in consump-

tion across several countries. Chetty et al. (2020) emphasizes that the fear of contracting the

disease is the main source of the decline in spending at the initial stages of the pandemic

in contact-intensive sectors. Similarly, using cell phone data to track the movements of in-

dividuals, Goolsbee and Syverson (2021) show that even though the consumer traffic fell

by 60%, only 7% could be explained by the lockdown suggesting that changes in consumer

behavior are most likely driven by the fear of infection. We model this as a sectoral demand

shifter, ∆0c
j (Ic,t), which in turn is a function of infection levels. Thus, Equation (5) changes

to:

p0c,t =


∑

j∈N

(
∆0c

j (Ic,t)
)σ

Ωs0c
j

(
p0c,t

j

)1−σ




1
1−σ

, with ∑
j∈N

(
∆0c

j (Ic,t)
)σ

Ωs0c
j = 1. (13)

SIR Model for Sectoral Infections. Figure 4 summarizes how we combine our model with

an epidemiological framework. The bottom half of the figure describes the supply side and

the top half depicts the demand side. On the supply side, the transmission dynamics of the

virus would differ depending on whether the workers are on-site or at a remote location like

home. Among the professions that need to be carried out on the work site, we assume that

the viral transmission depends on the physical proximity between the workers or between
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the workers and the customers. An on-site worker could be exposed to infection either

at work or outside work. Production is affected by domestic labor supply shocks linked to

infections. Imported inputs are affected by the evolution of the pandemic in other countries.

On the demand side, both domestic and foreign demand for final and intermediate goods

change with consumer preferences depending on the infection levels at home and in foreign

countries.

Figure 4: Integrating the Economic and SIR Models
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Output Implied
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2.7 Solution

We solve our model in a similar way to Baqaee and Farhi (2024), where the higher-order

terms are incorporated into the system via cross-factor and industry elasticities. By apply-

ing small perturbations to the system, and following the trajectory of the prices and wages,

we arrive at a new equilibrium where the system re-optimizes around the old one. This

methodology is akin to the Euler integration method to calculate the solutions of differen-

tial equations. Hence, we calculate differential exact hat-algebra to characterize the changes

in the system by iterative means.

To compute the new equilibrium, we need to trace through the changes in prices and ex-

penditure shares after we introduce pandemic-driven sectoral shocks. We trace the sectoral

pandemic shocks to the supply term –∆L
ic(Ic,t) in Equation (12)– and demand term –∆0c

j (Ic,t)

in Equation (13)– through inter-country input-output linkages. Any small perturbation to

the system results in changes in the Domar weights and changes in prices.

On the cost side, with Shepard Lemma, we can write all the price changes in terms of
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wage changes. Formally, we can write the changes in prices as (in matrix notation):

d log pic = ∑
jm∈CN

Ωic
jmd log pjm + ΩF

ic d log wic ⇒ d log p′ = ΩN d log p′ + ΩFd log w′.

Solving for changes in prices in terms of changes in wages, we arrive at:

d log p′ = ΩF (I − ΩN )−1 d log w′ = ΩF ΨN
︸ ︷︷ ︸
≡ΨF

d log w′ = ΨF d log w′. (14)

Focusing on the Domar weights of factors, we can also relate them to changes in prices

and labor supply changes with:

dΛ f = Λ f d log Λ f = Λ f (d log w f + d log L f ) ⇒ d log w = dΛ Λ̂−1 − d log L.

where Λ̂ is the diagonal matrix whose diagonal elements are given by Λ. Hence, we can

write the changes in log-wages in terms of changes in Factor Domar weights. Starting with

Equation (9), we can write changes in the Domar weights as:8

dΛ = dχ Ω0 ΨN ΩF
︸ ︷︷ ︸

ΨF

+χ dΩ0 ΨN ΩF
︸ ︷︷ ︸

ΨF

+χ Ω0 dΨN ΩF + χ Ω0 ΨN dΩF

= dχ Ω0 ΨF + χ dΩ0 ΨF + χ Ω0 ΨN

︸ ︷︷ ︸
λ

dΩN ΨN ΩF
︸ ︷︷ ︸

ΨF

+ χ Ω0 ΨN

︸ ︷︷ ︸
λ

dΩF

= (dχ Ω0 + χ dΩ0 + λ dΩN )ΨF + λ dΩF . (15)

To solve the system, we will write all these terms in terms of d log Λ or equivalently d log w.

Note that the formulation is more general than the sector-specific labor case. If multiple fac-

tors are used, let’s assume that these factors are combined with elasticity η. Consequently,

we can pin down the changes in wages for any factor using the following proposition:

Proposition 1 Given the supply shock d log ∆L
ic, the sectoral demand shock d log ∆0c

j and the nested

CES model explained in Sections 2.1 to 2.5, the changes in the wages satisfy:

d log w = d log w A Λ̂−1 + B Λ̂−1 − d log ∆L,

8The second equality comes from the fact that dΨN = ΨN dΩN ΨN (dropping superscripts):

d(Ψ Ψ−1) = 0 = dΨ Ψ−1 +Ψ dΨ−1 ⇒ dΨ Ψ−1 = −Ψ dΨ−1 ⇒ dΨ = −Ψ dΨ−1 Ψ = −Ψ d(I −Ω)Ψ = Ψ dΩ Ψ.
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where A = A1 + A22 + A23 + A24 + A31 + A32 + A33 + A34 + A41 + A42 + A43, and B =

B1 + B21 such that:

A1 = Λ̂ ΦE Ω0 ΨF B1 = d log ∆L Λ̂ ΦE Ω0 ΨF

A22 = ΨF ′
(1 − ξ̂0) χ̂Ω0 ΨF A23 = ΨF ′

(ξ̂0 − σ)

[
(1C×C ⊗ IN)⊙

(
Ξ0′ χ̂ Ω0

)]
ΨF

A24 = (σ − 1)ΨF ′
Ω0′ χ̂ Ω0 ΨF B21 = σ χ (Ω0 ⊙ d log ∆0)ΨF

A31 = ΨF ′
(1 − ξ̂) λ̂ΩN ΨF A32 = ΨF ′

(ξ̂ − ε)

[
(1C×C ⊗ IN)⊙

(
ΞN ′

λ̂ ΩN
)]

ΨF

A33 = (ε − φ)ΨF ′
ΩN ′

λ̂ (1 − α̂)−1 ΩN ΨF A34 = (φ − 1)ΨF ′
λ̂ ΩN ΨF

A41 = (1 − η)λ̂ΩF A42 = (η − φ)ΩF ′
λ̂ α̂−1 ΩF

A43 = (φ − 1)ΨF ′
λ̂ ΩF .

(16)

Here, ∆L represents the row-vector of labor supply shocks, ∆0 represents C × CN matrix of sectoral

demand shocks, ⊙ (⊗) represents Hadamard (Kronecker) product, 1C×C is the C ×C matrix of ones,

IN is the identity matrix of size N, ξ and ξ0 are the vector of sectoral elasticities matched to sector-

industry combinations, hat (ˆ) operator creates a diagonal matrix whose diagonal elements are given

by the vector underneath it. To make the rank of A matrix full, we need to replace one equation with

the fact that the total GDP of the world is not changing, i.e., ∑ f∈F dΛ f = 0. Hence:

A1,1 = 0, A f>1,1 = −Λ f

The proof of this proposition is provided in the online Appendix and requires careful dif-

ferentiation at each step, combined with Shepard Lemma. The intuition behind each matrix

is as follows:

• ΨF connects the good price changes to factor prices.

• A1 matrix captures the direct income effect of a change in factor wage on spending.

This is the linear Leontief inverse channel.

• B1 vector captures the income effect of the labor declines.

• B21 vector captures the direct effect of sectoral demand shocks.

• A22 matrix captures the direct effect of price change in an industry due to shocks. The

first and the last ΨF terms maps these changes to the factor prices.

• A23 matrix captures the substitution between factors due to differential substitutabil-

ity of country varieties within sectoral consumption bundles. The (1C×C ⊗ IN) term
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selects for varieties within the same sectors. Note that if all sector elasticities are the

same as σ, this term would drop.

• A24 matrix captures the overall substitution between any two industries in consump-

tion through the consumption price index.

• A31 is similar to A22, but operates through input shares.

• A32 is similar to A23, but operates through input sectoral bundles.

• A33 is similar to A24, but operates through input bundles.

• A34 matrix captures the direct effect of price changes.

• A41 matrix captures the wage changes induced by the factor input channel. Note that

When the factors are sector-specific and only a single factor is used in each sector, then

λ̂ΩF = λ̂ ⊙ α, where α is the vector of value-added shares.

• A42 matrix captures the factor substitution within the same industry. With sector-

specific labor as the only factor ΩF ′
λ̂ α̂−1 ΩF = λ̂ΩF = λ̂ ⊙ α. Hence, in this case,

the contribution of A41 + A42 becomes (1 − φ)λ̂ ⊙ α.

• A43 matrix captures the substitution between industries and factors. With the sec-

tor specific labor assumption, this term becomes A43 = (φ − 1)ΨF ′
λ̂ ΩF = (φ −

1)ΨF ′
Λ̂.

The normalization of world GNE / GDP, i.e., E = 1, only affects the prices to a multiplica-

tive factor. Since we focus on real welfare changes, this multiplicative factor does not affect

real output changes in sectors. As we do not compare prices between pre-Covid-19 and

Covid-19 epochs, this normalization does not affect our results presented below. Hence,

given the supply and demand shocks, d log w term can be solved with:

d log w = B Λ̂−1 (I − A Λ̂−1)−1.

where A and B are matrices summarizing all linear relationships in Equation (16).

From the changes in wages, we can calculate all other changes including Domar weights,

prices, Input-Output (Ω) matrix, Leontief-inverse (Ψ) matrix, GDP, country-level expendi-

tures, real GDP, and real expenditures. Briefly, from changes in factor prices and changes in

labor supply changes, we can calculate changes in factor Domar weights. From the changes

in factor Domar weights, we can calculate the changes in each country’s income share,

χ vector. On the other hand, using Shepard Lemma, we can easily find the changes in

good prices. From changes in good prices and changes in factor prices, we can calculate
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the changes in consumption shares, input-output shares, and value-added share for each

industry using the underlying elasticities in our nested production and consumption func-

tions. Once we have these changes as well, we can calculate the changes in Domar weights

for goods using Equation (15). Given the price change and the Domar weight change, we

can calculate the real production (GDP) change in each industry as:

d log yic = d log λic − d log pic.

Similarly, we can express the real expenditure (GNE) change of country c as:

d log Cc = d log χc − d log p0c, (17)

which is the nominal expenditure of country c divided by the consumption price index

of country c, p0c. Hence, the real “welfare” change linked to real expenditure change is

endogenously determined.

As can be seen in Equations (5) and (13), underlying demand equations have different

weight parameters during the shock period. Hence, to make post-pandemic real changes

comparable with the pre-pandemic levels, we use a chained Törnqvist price index. This

is a convenient tool to adapt for our framework because we chain small shocks to obtain

a solution as in Baqaee and Farhi (2024). Our solution methodology approximates larger

shocks by applying small shocks over many iterations. At each iteration, we recalibrate

the model to ensure that all equations described in Sections 2.1, 2.2 and 2.3 reflect the new

equilibrium. We provide the detailed calculations in Section F of the Online Appendix.

3 Data, Parameters and Variable Construction

3.1 Network and Employment

We utilize the OECD Inter-Country Input-Output (ICIO) Tables from 2015, covering 65

countries and 35 sectors, as depicted in Figure 1 in the introduction.9 These tables detail

the expenditure shares of each sector, illustrating the flow of funds to and from other sec-

tors across countries, thereby capturing global input-output links (or sectoral exports/im-

ports). We also use sectoral employment data from the OECD’s Trade in Employment (TiM)

9In the time of writing, 2015 table was the latest year for which the data was available. The OECD ICIO
table aggregates 2-digit ISIC Rev 4 codes into 36 sectors. The last sector, “Private households with employed
persons,” lacks inter-industry linkages and is therefore excluded from our analysis, leaving us with 35 sectors.
We refer to this classification as OECD ISIC Codes throughout our analysis.
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database (Horvàt et al., 2020).10

To estimate the industry-level teleworkable share and physical proximity measures,

we analyze the occupational composition of industries. We utilize the list by Dingel and

Neiman (2020) to identify occupations capable of remote work. For employees who con-

tinue their roles on-site, we assume their infection risk is associated with the required phys-

ical proximity in their workplace. We derive these proximity requirements using the self-

reported Physical Proximity values from the Work Context section of the O*NET database.

O*NET categorizes physical proximity into five levels: (1) I don’t work near other people

(beyond 100 ft.); (2) I work with others but not closely (e.g., private office); (3) Slightly close

(e.g., shared office); (4) Moderately close (at arm’s length); (5) Very close (near touching).

For analysis, we normalize these values by dividing them by 3, setting category (3) as our

benchmark. Consequently, a proximity value greater than 1 signifies a closer interaction

than ’shared office’ level, and a value less than 1 indicates less dense working conditions.

We calculate the proximity values after excluding the teleworkable segment of the work-

force. A single proximity value for each occupation is then computed by weighting the

normalized score according to the percentage distribution of responses across categories.

To determine the industry-level teleworkable share and proximity values, we calculate

the weighted averages based on the occupations within each industry, utilizing the Occu-

pational Employment Statistics (OES) from the U.S. Bureau of Labor Statistics (BLS). The

OES data uses four-digit NAICS codes to classify industries. We then convert the proximity

data to OECD ISIC codes using the correspondence table between 2018 NAICS and ISIC

Revision 4 Industry Codes, provided by the U.S. Census Bureau. The teleworkable shares

and proximity indices for each industry are displayed in Figure E.3 in the Appendix.

3.2 Elasticities of Substitution: Consumption, Production and Trade

Figure E.2 shows the nested CES structure of our model both on the production side and on

the consumption side, combining Figures 2 and 3. For the closed economy, we use the same

elasticities as in Baqaee and Farhi (2024). Producing ”Good (Varieties)” requires combining

labor and intermediate goods, which are complements. We set this elasticity to θ = 0.6.

The ”intermediate bundle” captures the aggregation of alternative inputs such as steel and

textiles, which are also complementary to each other. This elasticity is set to be ε = 0.2.

This value is consistent with the estimates in the literature (Atalay, 2017) who find strong

10For 14 countries lacking data in the TiM database, we sourced employment data from the World Devel-
opment Indicators database of the World Bank and allocate across sectors according to average shares in the
countries where sectoral data is available.
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complementarities at this stage.

For an open economy, the ”sector bundle” in our model allows for the substitution

among input varieties from different countries, such as Turkish steel, Chinese steel, and U.S.

steel, from the perspective of the U.S. industry. We apply industry-specific trade elasticities

as measured by Caliendo and Parro (2015), where all varieties are considered substitutes.

Additionally, we incorporate elasticity estimates from Boehm et al. (2019), which treat the

input varieties as complements. This multilayer CES structure enables us to capture both

substitution and complementarity—e.g., between Turkish steel and Canadian lumber im-

ported by the U.S. construction industry, as well as between Turkish and Chinese steel for

the same U.S. sector. On the consumption side, the structure also allows us to distinguish

between the consumption of Turkish cars versus German cars by U.S. consumers.

3.3 Infection Dynamics

We employ the widely used Susceptible-Infected-Recovered (SIR) model, a fundamental

workhorse in epidemiological studies.11 Details of our implementation of the SIR model are

provided in Section A of the Appendix. Our adaptation captures sectoral heterogeneity in

infection rates by incorporating industry-specific proximity requirements and the potential

for teleworkability within each sector.

Each of the 65 countries in our sample has a distinct experience regarding the course of

the pandemic. In the SIR model, the two fundamental structural parameters, the resolution,

and the infection rates, define the pandemic’s trajectory. The resolution rate is a disease-

specific structural parameter that does not vary much across the countries. According to

the report by the WHO, the median recovery time for mild cases is approximately two

weeks.12 The mean recovery time could be longer when we include severe cases. In this

paper, we err on the optimistic side and set recovery time, γ = 1/14 ≈ 0.07 to establish

a mean recovery time of 14 days. However, the infection rate might vary across countries

depending on each country’s success in containing it. Since the onset of the pandemic,

the infection rate exhibits a varying pattern over time, which arises because of the various

lockdown measures adopted by countries to reduce the transmission of the virus.

For the calibration of infection rate, β, we make use of publicly available data sets to

trace this variation across countries and across time.13 For each country, we estimate a SIR

11See, for example, Allen (2017) among others.
12https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-

report.pdf
13The data is downloaded from GitHub, Covid-19 Data Repository by the Center for Systems Science and
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model described in Equations (A.1)-(A.3) using official data to reproduce the variation in

the trajectory of pandemic across countries. To capture the variation within each country,

we extend the SIR model to allow for time variation in the infection rate, i.e., βt. We employ

the methodology proposed in Çakmaklı and Şimşek (2024) to capture the changes in the rate

of infection throughout the pandemic for the countries in our sample. This methodology

involves estimating a SIR model with time-varying parameters in a statistically coherent

way to accommodate various non-pharmaceutical interventions, including lockdowns.

Numerous studies employ the SIR model with fixed parameters to estimate the pro-

gression of infectious diseases (See, for example Hortaçsu et al., 2021). However, models

that incorporate time-varying parameters are less common (e.g., Fernández-Villaverde and

Jones, 2022, incorporates time variation in the infection rate). The time-varying parameters

SIR model proposed by Çakmaklı and Şimşek (2024) offers two key advantages. First, it

is statistically consistent with the count data structure typically associated with pandemic

data, in contrast to models that rely on least-squares or likelihood-based inference assum-

ing a normal distribution. Second, it achieves computational efficiency, which is essential

given the extensive datasets involved, unlike models like the particle filter that are statisti-

cally robust but computationally intensive.

For our analysis, we use data from each country starting from the day the number of ac-

tive infections exceeds 1000 until the end of December 2020. The parameter values, country-

specific βt, and γ are calculated as of the end of December 2020, reflecting the pandemic’s

status in each country at the time of the vaccine discovery. Using these values, we simulate

the pandemic’s progression in each country over the following year. To mitigate potential

estimation errors due to parameter uncertainty, we typically imposed an R0 between 1.1

and 1.3 for all countries, except for Australia, New Zealand, and China, which have been

relatively successful in controlling infections. The R0 values used are detailed in Table E.1.

Our model incorporates endogenous lockdowns triggered when the number of cases

exceeds a threshold calibrated to the ICU capacity of each country. ICU capacity data is

sourced from various entities including the WHO, the JHU data repository, and national

health ministries. During a full lockdown, the infection rate drops to zero, effectively halt-

ing the spread of the virus. Each lockdown period lasts 14 days, during which the number

of Covid-19 patients is reduced to 36% of its pre-lockdown level. After lifting the lock-

down, we assume it takes 90 days for infection rates to return to the reproduction number

observed prior to the lockdown.

Engineering (CSSE), at Johns Hopkins University.
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Under a full lockdown, only essential industries remain operational. We identify which

industries are closed during lockdowns based on international government decrees (de-

tailed in Table E.3). Using disaggregated employment data, we calculate the share of each

OECD ISIC industry that remain active during a lockdown. Finally, we estimate the pro-

portion of public employees unaffected by the lockdown using publicly available data.

3.4 Labor Supply Shocks

Extensive survey-based evidence from the U.S. indicates that Covid-19 was a major reason

for workplace absences during 2021, as illustrated in Figure 5a. There is a strong correla-

tion—0.84 —from July 2020 to July 2022 between Covid-19 cases and the number of people

not attending work due to self-reported pandemic-related reasons, based on weekly data.

Figure 5b further demonstrates that labor supply linked to health in the U.S. has not re-

turned to pre-pandemic levels. The data reveal that the average number of individuals

absent from work due to illness remains significantly higher during the pandemic than in

the pre-pandemic period.

Sectors are heterogeneous in terms of the share of teleworkable jobs and physical prox-

imity requirements, which results in differential sector-specific labor supply shocks during

the pandemic. Once the virus hits and spreads among the workers, the total number of

workers in a given country-sector pair ic changes to Lic,t as a function of the infections and

can be written as:14

∆L
ic(Ic,t) Lic = (Nic − Iic,t) + TWic

(
1 −

I0c,t

N0c

)
= Lic − Iic,t − TWic

I0c,t

N0c

where Nic is the number of workers in the on-site group in industry-country pair ic, Iic,t is

the number of infected workers in the on-site group, and TWic is the number of workers

in the at-home group (i.e., those who can work remotely) in industry-country pair ic. We

denote the vector of all infections in the country with Ic,t.
15 The ratio I0c,t/N0c captures

the fraction of infected individuals in the at-home group, which includes the non-working

population as well as all workers in the at-home group (i.e., teleworkers).

14Figure E.4a in the Appendix demonstrates how our model accounts for labor supply shocks.
15The ith element of Ic,t corresponds to Iic,t. With an abuse of notation, we start indexing the vector with 0.
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Figure 5: The Effects of Covid-19 on U.S. Labor Supply

(a) Not working due to Covid-19
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NOTES: Panel (a) illustrates the co-movement between the weekly number of individuals reporting inability
to work due to “pandemic-related reasons” and the weekly number of Covid-19 cases. For details on the
construction of the data series derived from the U.S. Census Bureau Household Pulse Survey, see Section B.1.
Panel (b) displays the number of employed individuals in the U.S. labor market who are absent in any given
month, covering the period from January 2012 to July 2022. The U.S. Bureau of Labor Statistics conducts the
Current Population Survey, which provides a monthly measure of the number of employed people absent
from work due to their own illness, injury, or medical issues. For more information, refer to Figure B.1 in
Appendix B.2.

Under lockdowns, however, only the workers who can telework will be able to continue

to function in non-essential industries. For essential industries, the equation above still

determines the number of available workers.

Therefore, the sector-specific shock for industry ic is a function of the number of infected

workers in the on-site group, the share of teleworkable jobs in sector i, and lockdowns in

country c. The sectoral labor shock can be expressed as:

∆L
ic(Ic,t) =





Lic−Iic,t−TWic
I0c,t
N0c

Lic
if c is not under lockdown or i is essential,

TWic−TWic
I0c,t
N0c

Lic
if c is under lockdown and i is non-essential.

3.4.1 Reduced Form Evidence on Supply Shocks

Here, we provide two types of reduced-form evidence to validate the measurement of our

shocks. First, we compare our model’s infections-based sectoral supply shocks with actual
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data on workers who did not report to work due to pandemic-related reasons.16 As detailed

in Section B.1, 47 percent of U.S. households reported “pandemic-related” reasons for not

working. Notably, the correlation between these two series is 0.82, underscoring the direct

impact of the pandemic’s progression on labor supply (Figure E.4b in the Appendix).

As a second robustness check, we examine the co-movement between our labor shocks

and real-time supply chain disruptions. To this end, we utilize the Suppliers’ Delivery

Time Index—a sub-index of the Purchasing Managers’ Index (PMI)—and correlate it with

our model-based labor shock. This labor shock is calculated by aggregating data across the

manufacturing industries of 26 PMI-reporting countries, using trade shares as weights. We

observed a high correlation of 0.78. Further evidence supporting this correlation, including

additional data from surveys on labor and intermediate input shortages in the U.S. and

Euro area countries, is presented in Appendix Section C.

3.5 Consumption and Sectoral Demand Shocks

The OECD ICIO Tables provide input demand data for industry i in country c from any

industry in any country. The final demand vector comprises 2340 entries indexed by ic,

corresponding to country-industry combinations. By dividing the rows of the ICIO matrix

by the total output of industry ic, we obtain the direct requirements matrix Ω. This ma-

trix summarizes the usage of each intermediate input to generate $1 worth of output. The

output of each industry is either used as an intermediate input or consumed as final output.

For the changes in the composition of consumption, specifically the sector-specific de-

mand shifter ∆0c
j (Ic,t) in equation (13), we use U.S. sectoral personal consumption data and

predict the changes as a function of infections. We use the monthly data, sourced from

the Bureau of Economic Analysis, from February 2020 to the end of 2020 (Figure E.5a).

Corresponding data for other countries is unavailable. Therefore, we first perform a non-

parametric regression of U.S. sectoral personal consumption on U.S. sectoral infections us-

ing a second-order polynomial. From these estimates, we calculate the sector-specific con-

sumption changes for other country-sectors based on their respective sectoral infections.17

16In June 2022, the Census Bureau enhanced the Household Pulse Survey by adding four questions about
the current status and duration of Covid-19 symptoms, offering researchers improved insights into the preva-
lence of Covid-19 symptoms. A recent Brookings Report uses this data to estimate the impact of long Covid
on the U.S. labor market. As of August 2022, it is estimated that 16 million working-age Americans (aged 18
to 65) suffer from long Covid, with 2 to 4 million unable to work because of their condition. For more de-
tails, please visit https://www.brookings.edu/research/new-data-shows-long-covid-is-keeping-as-many-
as-4-million-people-out-of-work/.

17We perform several robustness checks to address the sensitivity of non-parametric estimation to func-
tional forms and extreme values in infections data, including higher-order polynomials to capture any re-

26



We performed two robustness checks on the estimated sectoral consumption data for

the other countries. The results are shown in the Appendix. First, we report the R2 to de-

termine if more variation in consumption is explained by infections in the services sectors.

Indeed, this is confirmed, as shown in Figure E.5b. Second, for Turkey, where we have de-

tailed credit card spending data by sector, we compare our estimated sectoral consumption

changes based on infections with the consumption changes based on credit card spending

data. There is a high correlation between the two, as illustrated in Figure E.5c.

4 Quantitative Results

4.1 Vaccination Scenarios

In our empirical exercises, we first assume a vaccination scenario, which determines the sec-

toral shocks we input into the model. Under full vaccination, there are no sectoral shocks.

For any other scenario, sectoral shocks are present. After inputting the sectoral shocks, we

calculate the relative reduction in welfare for each country using Equation (17), as detailed

in Section 2.7. To aggregate country-level losses to the country-group level (i.e., AEs vs.

EMDEs), we weight each country’s change by its 2019 GDP.

Our alternative vaccination scenarios are summarized in Table 1.18 Scenario I is a coun-

terfactual where AEs are vaccinated immediately upon vaccine discovery, corresponding to

the start of the model’s second period, while EMDEs do not receive vaccinations. The two

sub-scenarios that are related to the first scenario are vaccine transfer scenarios I-A and I-B

which allow for immediate vaccination of AEs (100% of AE population in I-A and 80% in

I-B) and transfer of vaccines from AEs to EMDEs. The last scenario (Scenario II) is meant to

mimic the actual vaccine rollout, where AEs are vaccinated faster than EMDEs throughout

the second period. AEs complete their vaccinations midway through the period, whereas

EMDEs, despite ongoing vaccinations, do not fully inoculate their populations by the end

of the period. This scenario closely mirrors real-world conditions as of the end of 2021.

How do we map our two-period model to the rich dynamics of the second period? Our

first period represents the pre-pandemic phase. We divide the second, pandemic period

into 365 days to capture the heterogeneity during 2021, solving the model daily with daily

sectoral supply and demand shocks. Due to the rapid vaccination rollout in the AEs, we

stop incorporating shocks by the 120th day. This is consistent with reality, since by mid-

maining nonlinear patterns in the consumption-infection relationship.
18We assume that vaccination proceeds at the same pace across different segments of society.
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2021, the average number of infections in the AEs had declined to low levels.

Table 1: Vaccination Scenarios

Scenario AEs EMDEs

I Immediate Complete Vaccination No Vaccination

I-A Immediate Complete Vaccination 50% from AEs

I-B Immediate 80% Vaccination 50+20% from AEs

II Fast Vaccination Slow Vaccination

4.1.1 Scenario I: Immediate Vaccination in AEs and No Vaccination in EMDEs

With this counterfactual scenario, our goal is to illustrate the costs incurred by fully vacci-

nated AEs solely due to their trade connections with the unvaccinated world, even though

they completely eliminate the pandemic domestically. Therefore, there are no sectoral de-

mand and supply shocks in the AEs. In EMDEs, the pandemic evolves without access to

any vaccine and can only be contained by lockdowns. Countries impose lockdowns when

the number of Covid-19 patients requiring ICUs exceeds the number of ICUs reserved for

Covid-19 patients.

Table 2: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels under
Scenario I (percent)

Scenario I

Consumption & Production Share of

Trade Elasticities World AEs (%) AE EMDE

(1) ξ0
i , ξi =0.50 1.940 25.8 0.882 3.329

(2) ξ0
i , ξi =0.60 0.863 14.9 0.226 1.699

(3) ξ0
i , ξi =0.70 0.735 11.2 0.145 1.511

(4) ξ0
i , ξi =0.80 0.683 8.8 0.106 1.440

(5) ξ0
i , ξi =0.90 0.655 7.2 0.083 1.408

NOTES: This table presents the real expenditure losses under Scenario I. In this counterfactual scenario, we
assume that the pandemic is fully contained in AEs immediately, while in EMDEs, the pandemic evolves nat-
urally. We assume endogenous lockdowns in EMDEs when the number of Covid-19 patients requiring ICUs
exceeds the number of ICUs reserved for Covid-19 patients. Consumption and production trade elasticities,
ξ and ξ0, have the same value in each row, and we increase both to capture the effect of higher substitution
from row (1) to row (5).
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We present the estimated real output losses for the world and by country groups in Ta-

ble 2 relative to their pre-pandemic levels. In this table, the second column presents the total

global loss in terms of pre-pandemic World GDP. The third column illustrates the relative

cost of AEs as a fraction of the total global cost. The fourth and fifth columns break down

this total cost into those incurred by AEs and EMDEs, respectively, which are expressed as

a percentage of their own pre-pandemic expenditure levels. We set both the consumption

and production trade elasticities to the same value and increase them together from row

(1) to row (5). Focusing on row (1), we observe that the total world real output loss can

be as high as 1.9 percent of pre-pandemic GDP. This first row represents an extreme case

where the trade elasticities are set at 0.5. As the trade elasticities increase and countries can

substitute goods and inputs imported from different countries, the overall costs decrease

for everyone. The costs incurred by EMDEs are significantly higher compared to AEs be-

cause EMDEs are not vaccinated under this scenario. The share of the world output loss

borne by the AEs decrease steadily from 26 percent to 7 percent as the elasticity of sub-

stitution increases. Evidently, when there are no domestic sectoral shocks, the losses from

international linkages are smaller for AEs as the elasticity of substitution is higher. Under

the empirically-relevant elasticity of 0.6 in the short-run, the global loss is almost 1% of

pre-pandemic GDP, with AEs shouldering 15 percent of this loss.

Figure 6: Model-Implied Real Expenditure Losses under Scenario I (percent)

(a) ξi = 0.9 (b) ξi = 0.6
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NOTES: This figure shows the reductions in real expenditure under Scenario I for two alternative trade elas-
ticities in Panels (a) and (b), respectively. Vaccinated countries are distinguished by light gray borders.

Figure 6 displays the last two columns of the table visually so that the reader can see

the country heterogeneity in terms of reductions in countries’ real expenditure for 2021,

relative to 2019, in percentage terms. Darker shades illustrate higher loss, and vaccinated

countries are denoted by gray borders. We report two sets of estimates for comparison.

High trade elasticity (left panel) corresponds to values reported in row (5) of Table 2, while

low trade elasticity (right panel) corresponds to row (2) in the same table. At first glance,
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the lighter shades of the vaccinated countries are immediately noticeable in both panels. As

we move from high trade elasticity to relatively low trade elasticity, the relative reduction in

real welfare increases, indicated by the darker shades. This is consistent with the intuition

that lower trade elasticity reflects the difficulty in substituting among suppliers, leading to

more expensive and limited imports of intermediate inputs.

Table 3 considers two additional counterfactual scenarios and compare them to scenario

I. In scenario I-A, we assume that AEs possess only the needed dosage of vaccines sufficient

for their population. At the onset of 2021, developed countries were securing vaccine con-

tracts in quantities well above their population needs. Scenario I-A considers the counter-

factual case of AEs only keeping vaccines for their populations and send the excess vaccines

to EMDEs. We assume this surplus amounts to 50% of the AEs’ population. This additional

supply accelerates and improves the reach of vaccination in EMDEs such that one-thirds of

the EMDE population gets vaccinated within eighth months. This assumption is consistent

with the results in Ledford (2022) who show that low and middle income nations would

suffer less losses if they got the vaccines earlier.

In scenario I-B, we consider the case where developed countries procure vaccines suffi-

cient for only 80% of their population and send the equivalent of 20% of their population’s

vaccine doses to EMDEs in addition to the surplus considered in Scenario I-A. This counter-

factual case also never happened but considered by few countries such as France. In both

scenarios, the model settings, including trade elasticities, are identical to those in Scenario

I. We present here only two cases, elasticities set to ξ0
i = ξi = 0.5 and ξ0

i = ξi = 0.6, for

illustration as provided in Table 3.

Table 3: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels (per-
cent): The Role of Vaccine Transfers

Vaccination Consumption & Production Share of
Scenario Trade Elasticities World AEs (%) AE EMDE

(1) Scenario I ξ0
i , ξi = 0.50 1.940 25.8 0.882 3.329

(2) Scenario I-A ξ0
i , ξi = 0.50 0.983 22.4 0.387 1.765

(3) Scenario I-B ξ0
i , ξi = 0.50 0.752 34.4 0.456 1.141

(4) Scenario I ξ0
i , ξi = 0.60 0.863 14.9 0.226 1.699

(5) Scenario I-A ξ0
i , ξi = 0.60 0.436 8.7 0.067 0.922

(6) Scenario I-B ξ0
i , ξi = 0.60 0.536 30.1 0.284 0.868

NOTES: This table presents model-implied country-level real expenditure losses under two scenarios that are
computed to understand the resulting economic losses/gains if advanced economies (AEs) delivered a part
of their vaccines reserved for their population to emerging markets and developing economies (EMDEs).
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Under empirically-relevant elasticities in the short-run, Scenario I-A demonstrates that

total costs in the world economy decrease substantially to 0.44% of pre-pandemic world

income, compared to 0.86% in Scenario I, where EMDEs are not vaccinated. In Scenario I-A,

partial vaccination of EMDEs reaches one-third of the population within eight months. This

results in a sharp decline in AEs’ losses to 0.07% of pre-pandemic AEs’ GNE, a significant

reduction of over 70% compared to the case where no EMDEs are vaccinated (0.23%). The

implication is clear: if EMDEs were at least partially vaccinated at no cost to AEs, as in

Scenario I-A, AEs would benefit due to their trade and production linkages with EMDEs.

Our message is straightforward: vaccinating poor countries mitigates the economic impact

on rich countries through these linkages.

In Scenario I-B, the losses incurred by AEs are higher since now only 80% of the AE

population is vaccinated. The world loss still goes down, though now AEs own costs and

their share of global loss are both increased. Still, these results highlight the significant

gains from trade and production linkages due to the improved ability of EMDEs to manage

the pandemic with the additional vaccines provided by AEs.

4.1.2 Scenario II: Fast Vaccination in AEs and Slow Vaccination in EMDEs

This scenario aims to resemble the actual vaccination roll-out in real life. AEs are not fully

vaccinated immediately, while EMDEs have access to the vaccine at a slower rate. AEs

start vaccination early, with half of the susceptible population getting vaccinated in the first

30 days and the remaining half within the following 90 days. Thus, we assume that the

vaccination of all susceptible populations in AEs will be accomplished within 120 days.

In contrast, EMDEs are unable to fully inoculate their susceptible populations due to a

lack of sufficient vaccines, as was the case in 2021. Their vaccination program starts simul-

taneously with the AEs but takes a full year to vaccinate half of the susceptible population.

Table 4 shows the results. We observe the highest cost in row (1), with the total world

real output loss at 1.5 percent of pre-pandemic GDP. We set the two trade elasticities to

0.60 in row (2), which serves as our baseline for the rest of the exercises. In our baseline

case, the global output loss is approximately 0.8 percent. As the trade elasticities increase, it

becomes easier to substitute varieties from different countries, thereby lowering the output

losses. As the trade elasticities increase, the relative costs of AEs approach half of the total

global costs, even though they are vaccinated faster.

Evidently, when both AEs and EMDEs deal with their own domestic shocks, a higher

degree of substitution decreases the losses of EMDEs more than the AEs such that the share
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of AEs in total cost increases. What is the underlying intuition for this finding? According to

our model, the economic costs that arise from supply chain disruptions are inversely related

to: (i) The number of suppliers: The diversity of suppliers allows for alternative trade routes.

Ceteris paribus, if one supplier is suffering from the pandemic, the presence of alternative

trade partners allows the importer to switch to another supplier. (ii) The exposure of the

suppliers to the health shock: If a country has more suppliers that are vaccinated, then this

country would be subjected to fewer disruptions in its supply chains.

Table 4: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels under
Scenario II (percent)

Scenario II

Consumption & Production Share of

Trade Elasticities World AEs (%) AE EMDE

(1) ξ0
i , ξi =0.50 1.455 38.3 0.983 2.075

(2) ξ0
i , ξi =0.60 (Baseline) 0.757 38.8 0.518 1.071

(3) ξ0
i , ξi =0.70 0.665 40.3 0.473 0.918

(4) ξ0
i , ξi =0.80 0.625 41.6 0.458 0.844

(5) ξ0
i , ξi =0.90 0.604 42.7 0.454 0.801

(6) Caliendo and Parro (2015) 0.555 48.8 0.477 0.657

NOTES: This table presents the model-implied real expenditure losses under Scenario II. AEs follow a vacci-
nation calendar to vaccinate the full population within four months, whereas EMDEs follow a more gradual
vaccination calendar, with only half of the population getting vaccinated in one year. Production and con-
sumption trade elasticities, ξ and ξ0, have the same value in each row, and we increase both to capture the
effect of higher substitution from row (1) to row (5). In the last row, we set those to the values computed by
Caliendo and Parro (2015); these values are generally greater than 4, implying a high degree of substitution.

What does the data tell us? As shown in Figure 1, the EMDEs are relatively more closed

economies compared to AEs. This means that EMDEs operate with fewer suppliers to begin

with. Additionally, AEs tend to trade more with other AEs. Given that EMDEs already have

fewer suppliers and a larger fraction of these suppliers are unvaccinated (compared to AEs),

potential disruptions in major suppliers are more likely for EMDEs. Consequently, these

disruptions hit EMDEs harder because they have limited options for alternative suppliers.

The story is different among AEs. The exposure of AEs to a specific supplier is already

less, thanks to their more diversified integration into the international trade network. In a

way, they do not put all their eggs in one basket. Furthermore, because a larger fraction

of their trade partners are vaccinated, they are exposed to fewer health shocks. Thus, at

any given level of elasticity of substitution, AEs not only have a lower likelihood of health
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shock exposure but also can diversify (and hence reduce) the size of the health shock. This

helps them mitigate the economic costs of the pandemic.

As we increase the elasticity of substitution, EMDEs gain greater flexibility to switch to

alternative suppliers during major disruptions, which significantly lowers their costs. For

AEs, the cost reduction from increased elasticity of substitution is less pronounced because

their diversified supplier base already mitigates reliance on any single supplier. Addition-

ally, because AEs have more vaccinated trade partners, their need for substitution (and the

consequent benefits from it) is relatively lower.

Consequently, the share of AEs’ costs in world welfare loss increases with higher elastic-

ities while EMDEs’ losses decrease. This crucial finding emphasizes the interplay between

international linkages and domestic shocks. Nationalizing the supply chains may not be a

panacea and could even be counterproductive. This result suggests that maintaining a level

of global diversification in supply chains can be advantageous, especially for EMDEs, by

providing the necessary flexibility to effectively mitigate disruptions.

Row (6) of Table 4 presents the results for the trade elasticity values estimated by Caliendo

and Parro (2015). These values can be interpreted as long-run elasticities with a higher de-

gree of substitution. The results are consistent with the rest of Table 4. As the elasticities of

substitution increase further, the share of AEs in world welfare losses approach 50 %. This

outcome is attributed to the same compositional effect, where a high degree of substitution

benefits EMDEs more significantly.19

Figure 7 displays the relative reduction in countries’ real expenditure under Scenario II

in percentage terms, for both low and high trade elasticities. The colors in both panels are

darker for AEs, reflecting higher costs. Compared to Scenario I, AEs face additional factors

that work in opposite directions. On the one hand, their vaccination calendar is now slower,

which increases their domestic losses. On the other hand, their EMDE trade partners now

have access to the vaccine, which reduces the losses from international linkages.

Comparing Figure 6 and Figure 7, AEs’ slower pace of domestic vaccinations outweigh

the trade partners’ access to the vaccine, yielding a net negative impact for AEs as we move

from Scenario I to Scenario II. This is an important result that shows the right path for

equitable global vaccinations: not to share limited supplies of AEs, since then domestic

pandemic will stay, but rather invest in global production of vaccines.

19There are endogenous lockdowns in both sets of countries here. We also consider another counterfactual
scenario where we do not allow for any lockdown measures. The results for this scenario are presented in
Table E.4 in the Appendix.
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Figure 7: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels un-
der Scenario II (percent)
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NOTES: This figure shows the reductions in real expenditures under Scenario II for two alternative trade
elasticities in Panels (a) and (b), respectively. Vaccinated countries are highlighted with light gray borders.

Turning to the EMDEs, the sharp reduction in costs borne by EMDEs is immediately

noticeable with the lighter shades. This is because EMDEs also have access to the vaccine in

this scenario. The darker shade for Russia is interesting. Russia is a major exporter to AEs.

Hence, when the AEs are subject to a slower pace of vaccinations, the Russian economy is

also adversely affected by lower demand in AEs for their exports.

4.2 Robustness: Counterfactual Shocks and Linkages

We consider two counterfactuals. In the first, we assume there is no international produc-

tion network (no IPN). In the second, we assume that there are no relative demand shocks

to change the composition of consumption across sectors. The only shocks present are to

labor supply.

Table 5 displays the results for these two counterfactuals. We report the baseline find-

ings for Scenario II for comparison purposes (top row). Row (1) shows the first counter-

factual case of no international production network (no IPN). In this analysis, there are no

international I-O linkages, so there is no trade for consumption and production inputs (or

final goods); only domestic I-O linkages exist. The share of AEs’ costs increased to 56.7

%. The costs increase we shut down the amplification role of the global network because

production in AEs relies heavily on the network.

Row (2) of Table 5 shows the results from the second counterfactual of no demand

shocks (no DS). We observe that, in the absence of demand shocks, there is a decline in

real output loss for AEs compared to the baseline. This is an interesting result. By keeping

the supply shocks the same and only removing the demand shocks, we obtain lower output

losses. This indicates that relative sectoral demand shocks amplify the negative effects of
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sectoral supply shocks for the AEs.

Table 5: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels under
Scenario II (percent): The Role of International Linkages and Demand Shocks

Scenario II

Share of
World AEs (%) AE EMDE

Baseline 0.757 38.8 0.518 1.071
(1) No IPN 0.713 56.7 0.712 0.715
(2) No DS 0.691 51.1 0.622 0.782

NOTES: This table presents the country-level real expenditure losses under Scenario II. “No IPN” stands for
the case where there are no International Production Networks. ”No DS” stands for no sectoral demand
shocks. Our Baseline scenario uses consumption and production trade elasticities of ξ0

i = 0.6 and ξi = 0.6,
respectively. The “No DS” case also uses these elasticities, whereas the ”No IPN” case is closed to international
trade.

The intuition for this result comes from the segmented labor markets. Sectors facing

higher demand cannot attract more labor from other sectors; however, they do take inputs

from other sectors. Due to diminishing returns on the inputs, this results in a loss in real

output. This finding is independent of complementarities. An example based on a two-

sector stylized economy is provided in Appendix Section D.

4.3 Robustness: Asymmetric Consumption and Production Trade Elas-

ticities with Domestic Complementarities

In rows (1) to (3) of Table 6, we display robustness results where we increase the elasticity of

substitution on the production side for traded inputs as before, but we leave the trade elas-

ticity of the consumption of final goods, ξ ′i , constant, exceeding 1. Intuitively, this exercise

depicts an environment where a consumer can switch from an imported car to a domestic

car under shocks. However, on the production side, if domestic car production needs for-

eign parts, there can be varying degrees of substitution for these parts. We obtain the same

qualitative result as before: a higher degree of substitution in intermediate inputs helps

EMDEs more than AEs. The share of AEs’ costs increase as we move from rows (1) to (3),

regardless of the ease of substitution for final consumption goods.
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Table 6: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels under
Scenario II (percent): The Role of Production Elasticities

Scenario II

Consumption & Production Share of
Trade Elasticities World AEs (%) AE EMDE

Baseline ξ0
i = 0.6, ξi = 0.6 0.757 38.8 0.518 1.071

(1) ξ0
i = 1.1, ξi = 0.5 0.645 40.3 0.458 0.891

(2) ξ0
i = 1.1, ξi = 0.6 0.624 41.3 0.454 0.847

(3) ξ0
i = 1.1, ξi = 0.9 0.593 43.3 0.452 0.777

NOTES: This table presents the model-implied country-level real expenditure losses under Scenario II. We
vary ξ, the trade elasticity for the production side, but keep ξ0, the trade elasticity for the consumption side,
constant.

Next, we examine robustness for complementarities within countries. Table 7, rows

(1) and (2), changes the value of σ, which controls the elasticity of consumption between

different domestic sectors. The baseline uses σ = 1. With higher σ, output losses decrease

for EMDEs. Interestingly, when σ is lower, the losses for EMDEs increase. We do not have a

solid intuition for this result, but we suspect it is due to the interaction between more severe

lockdowns in EMDEs, during which difficulty in consumption substitution across sectors

can have more negative effects. In row (3), we change the value of θ, which controls the

substitution between labor and the intermediate bundle. When we increase the elasticity

from 0.6 to 1.5, the costs decline for everyone, as the negative labor supply shock is more

easily substituted by intermediate inputs. In rows (4) and (5), we increase ε, the elasticity of

substitution between sector bundles forming the intermediate bundle, from 0.2 to 0.5 (row

(4)) and later to 1.5 (row (5)). The costs decrease with higher substitutability, but the share of

AEs in world welfare losses increases. In rows (6), we show the results for Cobb-Douglas,

for both consumption and production trade elasticities.20 Both AE and EMDE losses are

much lower under Cobb-Douglas, with a much higher degree of substitution under Cobb-

Douglas. However, the share of the world welfare losses borne by AEs is higher under

Cobb-Douglas, again as substitutability helps EMDEs more.

4.4 Evaluating Model’s Fit in the Cross-Section

The empirical evidence presented in Appendix C highlights the heterogeneous aspect of

the pandemic on different sectors of the economy and various countries. Here, we compare

20σ = 1, θ = 0.6, and ε = 0.2 here as in the baseline.
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the results from our realistic scenario (Scenario II) to the observed changes in the real world

using various data sources detailed in Appendix B.3.

Table 7: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels under
Scenario II (percent): The Role of Production and Consumption Elasticities

Scenario II

Share of
Elasticities World AE AE EMDE

Baseline ξ0
i = 0.6, ξi = 0.6 0.757 38.8 0.518 1.071

(1) ξ0
i , ξi =0.60, σ =1.5 0.709 41.7 0.521 0.956

(2) ξ0
i , ξi =0.60, σ =0.5 0.863 38.6 0.586 1.226

(3) ξ0
i , ξi =0.60, θ =1.5 0.689 40.6 0.493 0.947

(4) ξ0
i , ξi =0.60, ε =0.5 0.721 40.9 0.519 0.986

(5) ξ0
i , ξi =0.60, ε =1.5 0.670 43.1 0.508 0.882

(6) Cobb-Douglas 0.579 46.1 0.470 0.721

NOTES: This table presents the real model-implied real expenditure losses under Scenario II. We change
elasticities in each row. ”Cobb-Douglas” refers to the setup where all elasticities are set to 1.

We first compare the actual changes in country GDPs with our model’s predictions. Our

open economy model calculates deviations from the steady state for domestic absorption/-

expenditures (GNE). To capture the pre-pandemic steady state, we use the GDP growth

rates from 2011 to 2019 in the data at the country level as they are close to GNE growth

rates. We projected this growth into 2021 as if pandemic never happened and take the

difference from actual growth during 2020-2021. We then calculate model-implied growth

from 2020-2021 under pandemic shocks using our scenario II, which assumes that AEs are

fully vaccinated and would recover, while EMDEs would not, due to inequitable limited

vaccinations. Below figure plots these two series against each other.

Figure E.6 shows a strong positive correlation between two series for AEs, in spite of

the fact that, both AEs and EMDEs experienced stronger recoveries than expected due to

factors outside our model, such as stimulative policies aimed at boosting employment in

pandemic-stricken economies. For AEs, correlation of 0.64 between model-implied growth

and deviations from the trend growth is informative in our view since model-implied

growth for AEs is close to pre-pandemic growth under full vaccinations and deviations

in the real data are due to factors outside our model. For EMDEs, the correlation is neg-

ative. This makes sense as the model predicts negative growth for these countries given

limited vaccinations, while in reality, these countries experienced a stronger recovery both

due to higher vaccinations then our model assumes and also stimulative policies that are
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absent in our model.

Combining these data on sectoral input shortages with sectoral output and prices, we

test: (i) the relationship between actual input shortages and actual sectoral output, (ii) the

relationship between model-implied sectoral output changes and actual output changes,

(iii) the relationship between actual input shortages and model-implied price changes, (iv)

the relationship between model-implied sectoral price changes and actual price changes.

In columns (1) and (2) of Table 8, the dependent variable is the actual sectoral output

changes measured by the “Industrial Production Index” (Eurostat-IP). In column (1) we test

whether the actual shortages provided by European Commission-Business and Consumer

Survey (EC-BCS) is related to the observed output changes. In column (2), we use the

model implied real output as the dependent variable. The statistically significant coefficient

of interest, in both columns (1) and (2) as well as the reasonably high explanatory power

of these regressions are both reassuring regarding the key mechanism in our model that

connects input shortages to output losses, at the same time confirming the close relation

between actual sectoral output changes and the model-implied changes.

In columns (3) and (4) of Table 8, we evaluate our model’s fit at the sectoral level using

nominal output. For European countries, we utilize the Orbis firm-level database, released

by Bureau van Dijk (BvD)—a Moody’s Analytics company, where we aggregate firm-level

gross output to sector level, in column (3). To check our aggregation and compare value

added based output measure to gross output measure, we further use the “Value-added by

Activity” data from OECD (2024) in column (4). Column (3) demonstrates a statistically sig-

nificant positive correlation between our model-based sectoral output changes and nominal

output changes based on firm-level data, with nearly 50% explanatory power. In column

(4), we replicate the regression from column (3) across more countries but fewer sectors,

resulting in reduced explanatory power but still a strong relationship. Note the similarity

in the estimated coefficient across different columns, using different data.

Next, we focus on prices. Using input shortage data from EC-BCS, we examine whether

sectors experiencing supply constraints and input shortages also exhibit higher prices. To

investigate this relationship, we utilize national accounts statistics from Eurostat on the

“Harmonized Index of Consumer Prices” (Eurostat-HICP), as documented by Eurostat (Eurostat-

HCIP, 2024). This dataset covers 40 countries monthly, reporting at the Classification of In-

dividual Consumption According to Purpose (COICOP) Group level (3-digits). However,

data for the U.K. is unavailable post-Brexit, and the U.S. data lacks granularity at the 3-digit

level. Additionally, some countries are absent in the ICIO data, leaving us with data from 30

countries for comparison purposes. To align COICOP groups with ICIO sectors, we man-

38



ually matched them and used item weights from 2019 provided by Eurostat-HCIP-2 (2024)

in cases of many-to-one matching scenarios.

Table 8: EVALUATING MODEL FIT - I

Sample: Eurostat-IP Eurostat-IP BvD-Orbis OECD-NAS
Dep Var: %∆Y (Data) Real Output Real Output Nominal Output Nominal VA

(1) (2) (3) (4)

Input Shortage (from EC-BCS) -0.9662**
(0.350)

% ∆ Real Output (Model) 0.4066**
(0.182)

% ∆ Nominal Output (Model) 0.1957***
(0.056)

% ∆ Nominal VA (Model) 0.2592***
(0.055)

No. of Countries 21 21 27 42
No. of Sectors 16 16 35 7

Country FE yes yes yes yes
Obs. 282 282 928 290
R2 0.25 0.34 0.48 0.14

NOTES: In column (1), we regress sectoral industrial production changes on sectoral input shortages during
pandemic. In column (2), we use the same LHS variable as in column (1) and regressed it on real sectoral out-
put changes predicted by our model. In these columns, we aggregate actual output growth values calculated
at the 2-digit NACE Revision 2 codes to 2-digit OECD ISIC Revision 4 codes using 2-digit sector industrial
production values obtained from Eurostat. In column (3), we utilize gross nominal output (firm revenue)
from firm-level balance sheet data from BvD-Orbis and aggregate to sectors and regress the change from 2019
to 2021 on model implied nominal sectoral output changes. In column (4), we utilize national accounts statis-
tics on sectoral nominal value added from OECD-NAS and regress the annualized percentage change from
2019 to 2021 onto the implied sectoral nominal output changes by the model. In columns (1)-(2), we use the
data on 16 sub-manufacturing industries from 21 European countries. In column (3), we use the data on 35
sub-sectors for 27 countries. In column (4), we use the data from 42 OECD countries. The list of countries
are provided in Appendix Section B. The output growth values are aggregated from the 2-digit OECD ISIC
Revision 4 codes to the 1-digit NACE Revision 2 codes using 2-digit sector value-added values that we obtain
from the OECD ICIO Tables. NACE 1-digit sectors are A, BtoE, F, GtoI, J, K, L, and OtoQ. Heteroskedastic-
consistent standard errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and
10% levels, respectively.

Figure E.7 illustrates the distribution of model-implied factor price changes across coun-

tries. Notably, sectors experiencing significant factor price increases (depicted in green) are

predominantly those in tradable sectors, while services sectors show smaller changes (de-

picted in yellow and red). To relate the model-implied price changes to the actual input
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shortages observed, we utilize the data we have shown above in a regression framework.

Table 9 presents the regression results. The dependent variable is the change in the sever-

ity of input shortages during the pandemic. Column (1) tests whether sectors with more

pronounced input shortages, including labor, tend to also experience higher wages. The

positive and statistically significant coefficient that we estimate together with high R2 sup-

ports this hypothesis. The findings in column (2) are similar and provide further supportive

evidence: sectors experiencing significant input shortages, such as motor vehicles or elec-

tronics (as shown in Figure C.3) tend to experience higher goods prices. The positive and

significant coefficient confirms this relationship.

Table 9: EVALUATING MODEL FIT-II

Sample: EC-BCS Eurostat-HICP
Dep Var (Data) Input Shortage Input Shortage Price Change (%) Price Change (%)

(1) (2) (3) (4)

%∆w (Model) 0.0508** 0.0343**
(0.022) (0.014)

%∆P (Model) 0.1777*** 0.0520**
(0.043) (0.022)

No. of Countries 21 21 30 30
No. of Sectors 16 16 12 12

Country FE yes yes yes yes
Obs. 282 282 359 359
R2 0.34 0.36 0.43 0.44

NOTES: In columns (1) and (2), we measure the change in the severity of input shortages during the pan-
demic using the responses of business managers collected by the EC-BCS. In these two columns, we use the
data on 16 manufacturing industries from 21 European countries, focusing on changes during the pandemic.
In columns (3) and (4), we use the price indices at COICOP Group level (3 digits) for 30 European coun-
tries. The 3-digit COICOP Group level matched to the 2-digit OECD ISIC Revision 4 codes using 3-digit item
weights that we obtain from the Eurostat. 2-digit OECD ISIC Revision 4 codes are 10to12, 13to15, 31to33,
35to39, 45to47, 49to53, 55to56, 64to66, 68, 85, 86to88. The list of countries are provided in Appendix Section B.
Heteroskedastic-consistent standard errors are reported in parentheses. ***, **, and * indicate significance at
the 1%, 5%, and 10% levels, respectively.

Columns (3) and (4) analyze the relationship between model-implied price changes and

observed price changes from Eurostat-HICP data at the sector level. We find robust and

significant correlations between actual price changes, represented by CPI data, and model-

implied changes for both factor prices (column 3) and goods prices (column 4).
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5 Conclusion

In the face of a global pandemic, the equitable distribution of vaccines transcends mere hu-

manitarian duty; it is a strategic economic imperative. Our study underscores this by lever-

aging a structural model alongside economic and epidemiological data, demonstrating that

scaling up vaccine production globally and ensuring universal access yields substantial eco-

nomic returns for advanced economies (AEs) that initially secured vaccines. This proactive

investment offers AEs a remarkable 178 percent return on investment, mitigating not only

their own economic downturns but also smoothing the broader global impact of the pan-

demic.

COVID-19 has delivered an unprecedented shock to the global economy, marked by a

cascade of disparate demand and supply disruptions affecting nations at varying times.

Unlike the synchronized impacts of previous crises such as the 2008-09 Global Financial

Crisis, COVID-19’s effects unfold asynchronously across borders due to recurring health

shocks from evolving virus variants and disjointed international policy responses. This

fragmentation has exacerbated global supply chain bottlenecks, driven by uneven vaccina-

tion rates and divergent economic stimuli among nations.

Our analysis employs a comprehensive global network model calibrated with sector-

specific shocks across 65 countries and 35 sectors. These shocks, informed by epidemio-

logical insights and national disease dynamics, illuminate how sectoral infections trigger

localized lockdowns in the absence of widespread vaccination coverage. The resulting dis-

ruptions propagate through interconnected global trade and production networks, under-

scoring the criticality of vaccine equity in stabilizing international supply chains.

Early in the pandemic, global leaders such as WHO Director Dr. Tedros Ghebreyesus

and European Commission President Dr. Ursula von der Leyen highlighted the imperative

that ”None of us will be safe until everyone is safe.” Our findings extend this axiom into

economic realms, illustrating that global recovery hinges on universal recovery. In essence,

globalization acts both as an amplifier of shocks and a buffer against them, echoing John

Donne’s timeless observation that ”No man is an island.” Our study provides an economic

corollary: ”No economy is an island,” emphasizing the interconnectedness of global eco-

nomic stability and the imperative of equitable vaccine distribution in achieving it.
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APPENDIX

A The Epidemiological SIR Model

Let’s take a population of size N. At any given time t, we can split the population into three

classes of people: Susceptible (St), Infected (It), and Recovered (Rct). We provide the model

for a single country, suppressing the country index for the ease of the demonstration.21 The

susceptible group does not yet have immunity to the disease, and the individuals in this

group have the possibility of getting infected. The recovered group, on the other hand,

consists of individuals who are immune to the disease. Immunity can be developed ei-

ther because the individual goes through the infection or because they get vaccinated. The

SIR model builds on the simple principle that a fraction of the infected individuals in the

population,
It−1
N , can transmit the disease to susceptible ones St−1 with a (structural) infec-

tion rate of β. Therefore, the number of newly infected individuals in the current period is

βSt−1
It−1
N . The newly infected individuals should be deducted from the pool of susceptible

individuals in the current period. Meanwhile, in each period, a fraction γ of the infected

people recover from the disease, which in turn reduces the number of actively infected in-

dividuals. To track any changes in the number of individuals in the above-mentioned three

groups, the following set of difference equations are used:

∆St = −βSt−1
It−1

N
(A.1)

∆Rct = γIt−1 (A.2)

∆It = βSt−1
It−1

N
− γIt−1. (A.3)

The law of motion for the number of infected individuals shows the trajectory of the pan-

demic at the aggregate level. Note that, ∆St + ∆Rct + ∆It = 0 holds at any given time,

assuming that the size of the population remains constant.22

A central metric that characterizes the course of the pandemic is the basic reproduction

number, denoted as R0. The basic reproduction number refers to the speed of the diffu-

sion, which can be computed by the ratio of newly infected individuals to the recovered

cases. Therefore, it serves as a threshold parameter of many epidemiological models for

21We do not model cross-country infections due to travel as a source of prolonged pandemics.
22A small fraction of the resolved cases includes deaths due to disease, reducing the population size. In

our setting, we suppress the fraction of death cases in the recovery rate parameter γ, assuming that the pop-
ulation remains fixed for the SIR model to remain tractable. Therefore, throughout the text, we use the terms
”resolution rate” and ”recovery rate” interchangeably for the parameter γ. See also Atkeson (2020), Fauci et
al. (2020), Li et al. (2020), and Vogel (2020) on different estimates of recovery and death rates.
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examining whether the disease will be extinct or spread further. Accordingly, using (A.1)

and (A.2), R0 is equal to β/γ assuming that S(t)
N ≈ 1 at the onset of the pandemic. In this

sense, a value of R0 being less than unity indicates that the pandemic is contained, and if it

exceeds unity, this implies that the spread of the pandemic continues.

We modify the canonical SIR model to allow for sectoral heterogeneity in terms of the

size and working conditions that can lead to distinct infection trajectories in each sector.

The transmission of the virus accelerates with close physical proximity. Hence, employees

working in industries with higher physical proximity are infected with a higher probabil-

ity. We assume that the economy is composed of K sectors. We denote the industries by

subscript i = 1, . . . , K. Each industry has Li workers (since factors are industry-specific,

we can index them with the industry index) and there is also the non-working population

which we denote by NNW . Each industry has two types of workers: (i) employees who can

perform their jobs remotely (i.e., teleworkable) and (ii) employees who need to be on-site

to fulfill their tasks. In each industry, we denote the number of employees in the first group

with TWi and the second group with Ni. Hence:

Li = TWi + Ni.

For the disease propagation, we lump the non-working population and the employees in

the teleworkable jobs together and call them the “at-home” group. We denote the at-home

group with index i = 0. The total number of individuals in this group is, therefore:

N0 = NNW +
K

∑
i=1

TWi.

Suppose that the infection rate in the at-home group is β0. To account for heterogeneous

physical proximities across industries, we compute the rate of infection for each industry i,

denoted by βi, as:

βi = β0Proxi for i = 1, . . . , K (A.4)

where Proxi is the proximity index for industry i that captures the contact intensive nature

of the industry.

Here, Si,t, Ii,t and Rci,t denote the number of susceptible, infected and recovered individ-

uals, respectively, and Ni = Si,t + Ii,t + Rci,t denotes the total number of on-site individuals

in industry i and the at-home group (i = 0). Susceptible individuals in the at-home group
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can get infected from the infected individuals in the entire society:

∆S0,t = −β0S0,t−1
It−1

N
,

where It = ∑
K
i=1 Ii,t + I0,t captures the total number of infected individuals. An on-site

worker in sector i, however, could be exposed to infection either at work, at the rate of

βiSi,t−1
Ii,t−1

Ni
, or outside work, that involves all the remaining activities –including family

life, shopping and commuting– at the rate β0Si,t−1
It−1
N . Hence, the number of susceptible

individuals among the on-site workers in industry i changes as:

∆Si,t = −βiSi,t−1
Ii,t−1

Ni
− β0Si,t−1

It−1

N
.

The recovery rate is the same for all types of infected individuals:

∆Rci,t = γIi,t−1.

The number of infected individuals changes as the susceptible individuals get infected and

some infected individuals recover from the disease:

∆Ii,t = −
(
∆Rci,t + ∆Si,t

)
.

We can write the evolution of the infected individuals in terms of matrices as:

It = It−1 + diag(St−1/N) B It−1 − γIt−1 =
[
diag(St−1/N) B − (1 − γ)IK+1

]
It−1,

where It and St are K + 1 dimensional vectors, diag creates a diagonal matrix, IK+1 is the

identity matrix and B is a (K + 1)× (K + 1) dimensional matrix, whose elements are given

by:

B =




β0 β0 . . . . . . β0 β0

β0 β0 + β1 β0 . . . . . . β0

β0 β0 β0 + β2 β0 . . . β0
...

...
. . .

...
...

...
. . .

...

β0 β0 . . . . . . β0 + βK



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In period t, the effective infection rate at time t (βt) is given by:

βtSt−1
It−1

N
= β0St−1

It−1

N
+

K

∑
i=1

βiSi,t−1
Ii,t−1

Ni
.

In our simulations, we match the employment size weighted average βi’s of the infected

individuals to observed overall β in a country at the very beginning (t = 1) when Si ≈ Ni

and Ii/Ni ≈ I/N to initialize the system. Using Equation (A.4), we impose:

β = β0 +
K

∑
i=1

βi
Ni

N
= β0 + β0

K

∑
i=1

Proxi
Ni

N

Hence, we solve for β0 in terms of β, industry size, and the proximity levels as:

β0 = β


1 +

K

∑
i=1

ProxiNi

N




−1

. (A.5)

B Data Details

B.1 Household Pulse Survey

The U.S. Census Bureau designed the Household Pulse Survey, henceforth HPS (see HPS,

2022), to understand the individuals’ experiences of Covid-19 as well as to provide timely

information essential in terms of employment status, food security, housing, physical and

mental health, access to health care and educational disruption.23

For our analysis, we focus on the national-level information in terms of employment

status that is available in the employment section.24 This section asks the U.S. households

the reasons for not working and counts the responses for each reason reported. Using the

counts available, we first linearly interpolate the weekly/bi-weekly series into the daily

series. We then group the reasons for not working into the following three categories, listed

23As of May 2022, the HPS had three phases: In Phase 1 U.S. households were surveyed on a weekly basis
over the period from April 23, 2020 to July 21, 2020; In Phase 2 U.S. households were surveyed on a bi-weekly
basis over the period from August 19, 2020 to October 26, 2020; In Phase 3, U.S. households were surveyed on
a bi-weekly basis over the period from October 28, 2020 to May 9, 2022.

24The HPS uses a national representative sample to produce estimates at three geographic levels: (1) 15
largest Metropolitan Statistical Areas, (2) each of the 50 states plus the District of Columbia, and (3) the na-
tional level. Each round of HPS provides “Table 3. Educational Attainment for Adults Not Working at Time
of Survey, by Main Reason for Not Working and Source Used to Meet Spending Needs.”
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below.

(i) Individual pandemic related reasons (47.1%)

• I was caring for someone or sick myself with coronavirus symptoms

• I did not work because I am/was caring for children not in school or daycare

• I was concerned about getting or spreading the coronavirus

• I did not work because I am/was caring for an elderly person

• I am/was sick (not coronavirus related) or disabled

(ii) Business related reasons (15%)

• I was laid off or furloughed due to coronavirus pandemic

• My employment went out of business due to the coronavirus pandemic

(iii) Government mandated reasons (4.7%)

• My employment closed temporarily due to the coronavirus pandemic

For reasons for not being employed, 47.1% of the U.S. population aged 18 years and older

reported individual pandemic-related reasons, 15% reported business-related reasons and

4.7% reported government mandated reasons.25

B.2 Current Population Survey

The U.S. Bureau of Labor Statistics conducts the monthly household labor force survey,

Current Population Survey, henceforth CPS (CPS, 2022), to track the number of employed

people who missed work during the survey reference week. Specifically, this survey pro-

vides the following measures: i) people who did not work at all in the survey reference

week, ii) people who usually work full time but were at work part-time (1 to 34 hours) dur-

ing the reference week. Different from the HPS explained above, this survey provides time

series data that goes until 2012. This feature enables us to compare post-Covid-19 employ-

ment figures with pre-Covid-19 ones. For our analysis, we utilize the time series data on

25From the total U.S. population, we excluded the households who stated the reason for not working as
the retirement at the time of the survey. We calculate the shares by collapsing daily values into yearly values
and taking the average of the resulting yearly responses over the period from 2020 to 2022. The numbers do
not add up to 100 because the households stating the reason for not working as “Other” and “No response”
are not considered in the computation.
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Figure B.1: Reasons for Not Working, 2012m1–2022m7
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(a) averages over the sample
period 2012m1-2022m7
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(b) pre-Covid-19 averages
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(c) post-Covid-19 averages

NOTES: Figure B.1 displays the fraction of “employed” households in each of the given categories, based on
their expressed reasons for not being at work. The numbers may not be added up to 100 because of rounding
in the computation of the corresponding averages.

employed people with a job not at work for selected reasons. Figure B.1 displays the frac-

tion of “employed” households in each of the given categories, based on their expressed

reasons for not being at work.

B.3 Data Sources for Empirical Validation

BvD-Orbis We utilize the Orbis database, a commercial product released by Bureau van

Dijk (BvD)—a Moody’s Analytics company. We download firm-level information from the

Moody’s DataHub, which is a cloud-based data delivery platform (BvD-Orbis, 2023). For

our analysis, we adhere closely to the instructions and programs outlined in Online Ap-

pendix of Kalemli-Özcan et al. (2024). We follow their guidelines to construct and clean the

firm-level samples of the selected 27 countries to ensure its quality and readiness for our

empirical validation exercise. The included countries are: Austria (AT), Belgium (BE), Bul-

garia (BG), Switzerland (CH), Czechia (CZ), Germany (DE), Denmark (DK), Estonia (EE),

Spain (ES), Finland (FI), the United Kingdom (GB), Greece (GR), Croatia (HR), Hungary

(HU), Ireland (IE), Iceland (IS), Italy (IT), Japan (JP), Kazakhstan (KZ), Lithuania (LT), Nor-

way (NO), Portugal (PT), Romania (RO), Russian Federation (RU), Slovenia (SI), Slovakia

(SK), and Turkey (TR).

OECD-NAS We use the “Value-added by Activity” data from OECD (2024). We aggre-

gate our model output to match the level of sector aggregation present in this data set for 42

OECD countries. The included countries are: Australia (AU), Austria (AT), Belgium (BE),
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Brazil (BR), Chile (CL), China (CN), Colombia (CO), Costa Rica (CR), Czechia (CZ), Ger-

many (DE), Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France (FR), the United

Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Iceland (IS), India (IN), Indone-

sia (ID), Israel (IS), Italy (IT), Japan (JP), South Korea (KR), Lithuania (LT), Luxembourg

(LU), Latvia (LV), Mexico (MX), the Netherlands (NL), New Zealand (NZ), Norway (NO),

Poland (PL), Portugal (PT), Slovenia (SI), Sweden (SE), Slovakia (SK), South Africa (ZA),

Switzerland (CH), the United States (US), and Turkey (TR).

Eurostat IP We use the “Industrial Production Index by Industry” data that is provided

by Eurostat-IP (2022) for 21 EU member countries on a monthly basis. We aggregate 24

manufacturing sub-industries (classified based on NACE Revision 2 Industry Codes) to

corresponding 16 sub-manufacturing sectors (classified according to ISIC Revision 4 in the

OECD-ICIO data) using sectoral production values as weights. The included countries are:

Austria (AT), Belgium (BE), Bulgaria (BG), Czechia (CZ), Germany (DE), Denmark (DK),

Estonia (EE), Spain (ES), Finland (FI), France (FR), Hungary (HU), Ireland (IE), Italy (IT),

Lithuania (LT), Latvia (LV), the Netherlands (NL), Poland (PL), Portugal (PT), Romania

(RO), Sweden (SE), and Turkey (TR).

Eurostat HICP We use the “Harmonised Index of Consumer Prices (HICP)” data that is

provided by Eurostat-HCIP (2024) for 40 countries on a monthly basis reported at Classifi-

cation of Individual Consumption According to Purpose (COICOP) Group level (3-digits).

However, the data for U.K. is not available after Brexit and the data for U.S. is not available

at 3-digit level. And some countries are absent in ICIO data, which gives us 30 countries

to do the comparison. We matched COICOP groups to ICIO sectors manually and used

item weights from 2019 provided by Eurostat-HCIP-2 (2024) when there is a many to one

matching. The included countries are: Austria (AT), Belgium (BE), Bulgaria (BG), Croatia

(HR), Cyprus (CY), Czechia (CZ), Germany (DE), Denmark (DK), Estonia (EE), Spain (ES),

Finland (FI), France (FR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT), Lithuania (LT),

Latvia (LV), Luxembourg (LU), Malta (MT), the Netherlands (NL), Norway (NO), Poland

(PL), Portugal (PT), Romania (RO), Slovenia (SI), Sweden (SE), Slovakia (SK), Switzerland

(CH) and Turkey (TR).

EC-BCS We use the survey-based time series data provided by EC-BCS (2022). The survey

currently covers all 27 EU Member States and all five EU candidate countries (i.e. Montene-

gro, North Macedonia, Albania, Serbia and Turkey). The respective survey conducted by
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European Commission on a quarterly basis to ask business managers of those countries on

the factors limiting production. For our purpose, we utilize the responses of managers from

24 manufacturing sub-industries (classified based on NACE Revision 2 Industry Codes).

C Empirical Evidence

In this section, we provide additional empirical evidence using the time series data pro-

vided by EC-BCS. Panel A of Figure C.2 plots these factors as a weighted average of all

EU countries for manufacturing, construction, and services sectors. Historically, especially

during the 2008–2009 crisis, we observe that insufficient demand (blue line) is the most im-

portant factor limiting production. During times of low demand, labor and/or material

shortages turn out to be nonbinding constraints. This is consistent with the intuition that

when the economy is demand-constrained, there is a limited role for supply chain bottle-

necks. What is unique about the Covid-19 shock is the shortage of material and equipment

(the green line), and labor (red line) which both became the key reasons for limiting pro-

duction in all sectors, including services.

Figure C.2: Factors Limiting Production in Europe

Panel A: 2003q3-2022q1
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Panel B: 2019q4-2022q1

(b1) Manufacturing
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NOTES: Figure C.2 plots the replies of business managers to the question “What main factors are currently
limiting your production?” as a weighted average using country shares in EU’s total gross value added. These
series are smoothed by calculating a two-year moving average and they are seasonally adjusted.

Figure C.2 also plots the period after 2019.Q4 to zoom in on the asymmetric dynamics
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across sectors. As can be seen from Panel B of this figure, the recovery of demand, thanks to

vaccinations and economic stimulus packages, worsened the labor and material shortages

throughout 2021. This is consistent with the framework depicted in Guerrieri et al. (2022),

which notes the asymmetric nature of the pandemic and the associated spillovers among

sectors. Manufacturing, a tradeable sector, registered higher shortages of inputs due to the

overlap of supply chain bottlenecks and recovery in demand. The adverse effects of the

pandemic were rather noticeable in this sector because most of its inputs are imported. In

comparison, non-tradeable sectors such as construction and services suffer relatively more

from labor shortages. Given the complementarity of intermediate inputs and labor in our

framework, our estimates can capture this notion of switching from a primarily demand-

constrained world to a mostly supply-constrained world during the pandemic’s course.

An analogous survey for the U.S. illustrates the factors limiting production as shown in

Figure C.4. This figure highlights the importance of global supply chain bottlenecks even

in the non-tradeable sectors of construction and services in panels (a2) & (b2) and (a3) &

(b3), with the most important delays coming from foreign suppliers.

Figure C.3 digs deeper and provides a disaggregated picture of 2021.Q4 when material

and/or equipment shortages stood out among the reported factors limiting the produc-

tion in the EU manufacturing industry. In the heat map, the shades of red correspond to

the extent of severity of material and/or equipment shortages in 2021.Q4 across different

country-sector pairs. Darker shades of red correspond to more severity in shortages.

A comparison across the sectors shown in the rows reveals that those sectors that are

more exposed to the “chip crisis”, such as motor vehicles, computers, electrical equipment,

machinery, and equipment, are generally more severely hit by supply chain disruptions,

while clothing or petroleum products are less affected. A comparison across countries

shown in the columns reveals that countries such as Germany, Italy, Denmark, and the

Netherlands are hardest hit by these manufacturing bottlenecks.

The evidence presented here highlights the adverse effects of the pandemic on different

sectors of the economy and various countries in a heterogeneous manner. This heterogene-

ity stems from the varying levels of exposure to the pandemic’s impacts, including weak

demand and supply chain disruptions. Different countries and sectors have experienced

these challenges to differing degrees, reflecting their specific vulnerabilities and resilience.
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Figure C.3: Cross-sector Heterogeneity in Shortage of Material and/or Equipment in in
2021Q4
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NOTES: Figure C.3 presents a heat map of shortages in the manufacturing industry in 2021Q4. The shades
of red correspond to the varying extent of severity. The extent of severity for a given country-sector pair is
measured by the standard deviation of the positive responses to the EC-BCS’s question “the shortage of material
and/or equipment is a key limiting factor for their production” exceeding the historical average. Empty boxes
correspond to missing values. y-axis lists sub-sectors in the manufacturing industry with 2-digit Eurostat
NACE Revision 2 industry codes in parentheses. x-axis lists the following countries: Austria (AT), Belgium
(BE), Bulgaria (BG), Denmark (DE), Estonia (EE), Spain (ES), Finland (FI), France (FR), Hungary (HU), Ireland
(IE), Italy (IT), Lithuania (LT), Latvia (LV), Macedonia (MK), the Netherlands (NL), Poland (PL), Portugal
(PT), Romania (RO), Sweden (SE), and Turkey (TR).

D Sectoral Shocks with Sector Specific Labors

In this section, we provide an intuitive perspective to illustrate our results using a stylized

two-sector economy. Figure D.5 shows the Production Possibility Frontiers (PPF) and the

indifference curves of the economy under different scenarios. Before Covid-19, PPF was

denoted by the blue line, and the utility maximization by the indifference curve was de-

noted by the black curve, yielding an equilibrium at point A. For this PPF, we assume that

the labor is mobile between the sectors. Once we make the labor supply sector specific, we

arrive at the PPF represented by the dashed blue line. The dashed blue PPF lies below the

pre-Covid (solid blue) PPF. This is because the dashed line corresponds to the case with an

additional constraint of immobile factor (see, e.g., the specific factors model in Chapter 4 of

Krugman et al., 2022). Up to this stage, the equilibrium remains intact at pre-Covid equi-

librium, point A. After we introduce a sectoral demand shock, however, the utility function

changes such that we would be optimizing along the red indifference curves. If the labor

was not sector-specific, the equilibrium would have moved to point B following the de-

mand shock. Instead, the new equilibrium moves to point C. Furthermore, since there is

also a labor supply shock in both sectors, the new PPF shifts inwards to the one represented
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Figure C.4: Factors Limiting Production during the Pandemic in the U.S. (August 2020-May
2022)

Panel A: Supplier Delays
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Panel B: Material and Labor Shortage

(b1) Manufacturing
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NOTES: Figure C.4 plots the replies of small business managers in the U.S. Pulse Survey to the question
“In the last week, was this business affected by any of the following?” This figure provides a cross-sectoral
comparison of the factors that limit U.S. production during the Covid-19 era.

Figure D.5: Sectoral Shocks and Production Possibility Frontier
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by the green line and the equilibrium moves to point D. With standard assumptions on in-

difference curves, one can deduce that the output in point D is lower than point C, which

is lower than point B. In standard models, pure demand shocks as moving from point A

to point B will not deliver real output effects. But since point C and point D are worse off

compared to point B, point C is worse off than point B. To quantitatively compare the real

output levels between points A and C, we use the Törnqvist index.

E Additional Figures and Tables
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Figure E.1: THE STRUCTURE OF OECD INTER-COUNTRY INPUT-OUTPUT TABLE
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NOTES: This figure illustrates the structure of OECD Inter-Country Input-Output Table (ICIO), which rep-
resents the breakdown of output corresponding to 36 industries and 65 countries, giving us a matrix of
2340×2340 entries. In any industry-country combination, the output (Y) equals intermediate use (Z) plus
final demand (F) of 36 industries in 65 countries. The industry list can be found in Figure E.3. Further, in
any industry-country combination, final demand sums the following components of expenditures over 65
countries. fd1: Households Final Consumption Expenditure (HFCE); fd2: Non-Profit Institutions Serving
Households (NPISH); fd3: General Government Final Consumption (GGFC); fd4: Gross Fixed Capital For-
mation (GFCF); fd5: Change in Inventories and Valuables (INVNT); fd6: Direct purchases by non-residents
(NONRES); fd7: Statistical Discrepancy (DISC).

Figure E.2: Model Schematic with Nested Constant Elasticity of Substitution (CES)
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Figure E.3: Proximity Index and Teleworkable Share by Industry
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Proximity

Teleworkable Share

NOTES: In this figure, we present the physical proximity index, the share of teleworkable employees as well
as demand changes in a given industry, which is categorized based on OECD ISIC Codes. In comparing prox-
imity values across differential sectors listed in the first column, we use the weighted average of occupation-
specific proximity values in those sectors. Specifically, an occupation of a given industry is assigned a prox-
imity value that is smaller than 1 if it has sparse working conditions. An occupation of a given industry is
assigned a proximity value that is larger than 1 if it requires closer proximity than the ”shared office” level. We
calculate the proximity values for a given industry after removing the teleworkable share of the employees of
that industry. Doing so, we follow Dingel and Neiman (2020)’s list of teleworkable occupations to determine
the share of employees that can work remotely in each industry.

Figure E.4: Labor Supply Shocks

(a) Labor during Pandemic

L f = 1

Pre-Covid-19 Pandemic

Teleworkable
Share

L f

Lockdown

Vaccination
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NOTES: Panel (a) illustrates the pattern of labor supply shocks during the pandemic. Panel (b) displays
displays the co-movement between the weekly number of individuals who reported an inability to work
due to “pandemic-related reasons” and the labor supply shocks for the U.S. as derived from our sectoral
epidemiological model. Notably, the correlation between these two series is 0.82, underscoring the direct
impact of the pandemic’s progression on labor supply. The data spans from April 23, 2020, to May 9, 2022.
For detailed information on the construction of this series, which is sourced from the U.S. Census Bureau
Household Pulse Survey, please refer to Section B.1.
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Figure E.5: Demand Shocks

(a) Sectoral Demand in the U.S.
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(b) Goodness-of-Fit
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(c) Sectoral Demand— Credit Card Data
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NOTES: Panel (a) shows the range of changes in sectoral personal consumption data for the U.S. (minimum
and maximum observed values). The data is at the monthly frequency and obtained from the Bureau of
Economic Analysis (BEA) for the period from March 2020 until the end of 2021. Following Baqaee and Farhi
(2022), we calculate the monthly changes in consumption relative to February 2020. To calculate demand
changes, we first run regressions to fit declines in demands with a second-degree polynomial of the infections.
Panel (b) shows the goodness of the fit for each sector through the R2 values. There is no variation in the
reported data for Mining and extraction of energy-producing products, Mining support service activities,
Construction and Public administration and defense; compulsory social security sectors. For expositional
convenience, we do not show these industries. Panel (c) shows correlations of predicted demand changes
with real-time demand changes by sector for the period from 2020w11 to 2020w26 (corresponding to the first
three months of the pandemic since the first Covid-19 case was announced in Turkey). For Turkey, we estimate
predicted demand changes following the computation method explained in Section 3.5. We calculate weekly
changes in credit card spending relative to the four-week average value corresponding to the period from
2020w7 to 2020w10. Following the mapping between CBRT industry codes and OECD ISIC industries, we
exclude the sectors for which credit card is not the common means of payment, hence the coverage is limited.
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Figure E.6: Real GDP Growth Comparison

(a) AEs (Correlation = 0.64)
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(b) EMDEs (Correlation = -0.38)
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NOTES: This figure plots the real GDP changes from 2020-2021 compared to the model-implied GDP changes
under our baseline scenario. Source: World Development Indicators by World Bank and our own calculations.

Figure E.7: Factor Price Changes
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NOTES: Factor price changes from the Model. We calculate the z-scores for prices by subtracting the mean
changes and dividing by the standard deviation of the changes within a country. Changes in prices are shown
in the figure, ranging from a price decline relative to the mean, represented by red (starting from one standard
deviation below) to prices aligned with the mean, represented by yellow (0), to price increases relative to the
mean, represented by green (corresponding to one standard deviation above). Note that the order of countries
is same as Table E.1.
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Table E.1: COUNTRY SETTINGS FOR VARIOUS SCENARIOS

ICU capacity Share of Duration of
Country for Reproduction GDP 2019 vaccinated vaccination Openness

Covid-19 patients rate R0 (Billion USD) population (days) Index

Australia 1665 0.7 1,393 100% 120 (30-90) 35
Austria 1000 1.1 446 100% 120 (30-90) 81
Belgium 2756 1.1 530 100% 120 (30-90) 164
Canada 2713 1.3 1,736 100% 120 (30-90) 52
Chile 1383 1.3 282 50% 330 49
Czechia 4151 1.1 247 100% 120 (30-90) 153
Denmark 925 1.2 348 100% 120 (30-90) 60
Estonia 338 1.2 31 100% 120 (30-90) 109
Finland 220 1.1 269 100% 120 (30-90) 55
France 8000 1.1 2,716 100% 120 (30-90) 45
Germany 28000 1.1 3,846 100% 120 (30-90) 71
Greece 704 1.1 210 100% 120 (30-90) 48
Hungary 1094 1.1 161 100% 120 (30-90) 151
Iceland 163 1.1 24 100% 120 (30-90) 49
Ireland 248 1.1 389 100% 120 (30-90) 69
Israel 4900 1.3 395 100% 120 (30-90) 34
Italy 7700 1.1 2,001 100% 120 (30-90) 50
Japan 3996 1.3 5,082 100% 120 (30-90) 28
Korea 5481 1.3 1,642 100% 120 (30-90) 64
Latvia 186 1.1 34 100% 120 (30-90) 102
Lithuania 451 1.1 54 100% 120 (30-90) 127
Luxembourg 91 1.1 71 100% 120 (30-90) 57
Mexico 4211 1.1 1,258 50% 330 74
Netherlands 1161 1.1 909 100% 120 (30-90) 148
New Zealand 585 0.7 207 100% 120 (30-90) 40
Norway 455 1.1 403 100% 120 (30-90) 47
Poland 3074 1.1 592 100% 120 (30-90) 89
Portugal 455 1.1 238 100% 120 (30-90) 66
Slovakia 570 1.1 105 100% 120 (30-90) 170
Slovenia 377 1.1 54 100% 120 (30-90) 166
Spain 4566 1.1 1,394 100% 120 (30-90) 51
Sweden 365 1.1 531 100% 120 (30-90) 60
Switzerland 1012 1.1 703 100% 120 (30-90) 84
Turkey 16850 1.3 754 50% 330 52
United Kingdom 7018 1.1 2,827 100% 120 (30-90) 41
US 84676 1.1 21,370 100% 120 (30-90) 20
Argentina 8404 1.1 450 50% 330 25
Brazil 43466 1.1 1,840 50% 330 22
Brunei 57 1.1 13 50% 330 90
Bulgaria 1347 1.1 68 100% 120 (30-90) 104
Cambodia 495 1.1 27 50% 330 131
China 50328 0.6 14,340 100% 120 (30-90) 32
Colombia 5286 1.3 324 50% 330 28
Costa Rica 136 1.1 62 50% 330 45
Croatia 277 1.3 60 50% 330 75
Cyprus 126 1.1 25 100% 120 (30-90) 51
India 32784 1.3 2,875 50% 330 28
Indonesia 7306 1.1 1,119 50% 330 30
Hong Kong 533 1.3 366 100% 120 (30-90) 304
Kazakhstan 3943 1.1 180 50% 330 53
Malaysia 1086 1.3 365 50% 330 122
Malta 70 1.1 15 100% 120 (30-90) 68
Morocco 2100 1.3 119 50% 330 67
Peru 943 1.1 227 50% 330 40
Philippines 2378 1.1 377 50% 330 49
Romania 1500 1.1 250 100% 120 (30-90) 69
Russia 17500 1.1 1,700 100% 120 (30-90) 40
Saudi Arabia 7813 1.1 793 50% 330 52
Singapore 650 1.2 372 100% 120 (30-90) 202
South Africa 2323 1.1 351 50% 330 56
Taiwan 6725 1.1 611 50% 330 101
Thailand 7241 1.1 544 50% 330 89
Tunisia 479 1.1 39 50% 330 94
Vietnam 251 1.1 262 50% 330 198
ROW 57225 1.1 7,276 50% 330 48

NOTES: This table reports the ICU capacities (see Table E.2 for details), estimated reproduction rates, GDP
figures (obtained from World Development Indicators, 2019 current dollars), shared of the population getting
the vaccine (for scenario 3), duration of vaccination days (for scenario 3) and openness index, which is defined
as the ratio of imports and exports to GDP.
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Table E.2: ICU BED CAPACITIES

ISO-3 Country ICU Covid-19 Reference

AUS Australia 1665 https://www.mja.com.au/journal/2020/surge-capacity-australian-intensive-care-units-associated-covid-19-admissions
AUT Austria 1000 https://www.covid19healthsystem.org/countries/austria/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
BEL Belgium 2756 https://www.covid19healthsystem.org/countries/belgium/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
CAN Canada 2713 https://www.covid19healthsystem.org/countries/canada/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
CHL Chile 1383 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
CZE Czech Republic 4151 https://www.covid19healthsystem.org/countries/czechrepublic/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
DNK Denmark 925 https://www.sst.dk/-/media/Nyheder/2020/ITA COVID 19 220320.ashx?la=da&hash=633349284353F4D8559B231CDA64169D327F1227
EST Estonia 338 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
FIN Finland 220 https://www.covid19healthsystem.org/countries/finland/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
FRA France 8000 https://www.covid19healthsystem.org/countries/france/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
DEU Germany 28000 https://www.covid19healthsystem.org/countries/germany/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
GRC Greece 704 https://www.covid19healthsystem.org/countries/greece/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
HUN Hungary 1094 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
ISL Iceland 163 https://europepmc.org/article/med/32796182
IRL Ireland 248 https://www.thejournal.ie/icu-bed-numbers-5217685-Sep2020/
ISR Israel 4900 https://www.covid19healthsystem.org/countries/israel/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
ITA Italy 7700 https://apnews.com/article/international-news-virus-outbreak-italy-barcelona-france-d7a43368a17f0abaff4d563151b84127
JPN Japan 3996 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
KOR Korea, Rep. 5481 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
LVA Latvia 186 https://www.covid-19.no/critical-care-bed-numbers-in-europe
LTU Lithuania 451 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
LUX Luxembourg 91 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
MEX Mexico 4211 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
NLD Netherlands 1161 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
NZL New Zealand 585 https://www.nzherald.co.nz/nz/covid-19-coronavirus-new-zealands-intensive-care-unit-capacity-revealed/GYQ2FXOYHJECZAHU2YKHXYFWXI/
NOR Norway 455 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
POL Poland 3074 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
PRT Portugal 455 https://www.covid-19.no/critical-care-bed-numbers-in-europe
SVK Slovak Republic 570 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
SVN Slovenia 377 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
ESP Spain 4566 https://www.covid-19.no/critical-care-bed-numbers-in-europe
SWE Sweden 365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
CHE Switzerland 1012 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
TUR Turkey 16850 https://dosyasb.saglik.gov.tr/Eklenti/36164,siy2018en2pdf.pdf?0
GBR United Kingdom 7018 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
USA United States 84676 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
ARG Argentina 8404 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
BRA Brazil 43466 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
BRN Brunei Darussalam 57 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
BGR Bulgaria 1347 https://www.covid19healthsystem.org/countries/bulgaria/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
KHM Cambodia 495 Selected to be close to the minimum observed levels.
CHN China 50328 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
COL Colombia 5286 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
CRI Costa Rica 136 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
HRV Croatia 277 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
CYP Cyprus 126 https://in-cyprus.philenews.com/coronavirus-seven-patients-in-intensive-care/
IND India 32784 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
IDN Indonesia 7306 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
HKG Hong Kong SAR, China 533 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
KAZ Kazakhstan 3943 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
MYS Malaysia 1086 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
MLT Malta 70 https://www.covid19healthsystem.org/countries/malta/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
MAR Morocco 2100 https://northafricapost.com/39786-covid-19-morocco-expands-hospital-capacity.html
PER Peru 943 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
PHL Philippines 2378 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
ROU Romania 1500 https://www.covid19healthsystem.org/countries/romania/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
RUS Russian Federation 17500 https://tass.com/world/1162077
SAU Saudi Arabia 7813 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
SGP Singapore 650 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
ZAF South Africa 2323 https://www.samrc.ac.za/news/covid-19-surge-investing-heavily-icu-capacity-not-only-option
TWN Taiwan 6725 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
THA Thailand 7241 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
TUN Tunisia 479 https://www.medrxiv.org/content/10.1101/2020.06.02.20120147v1.full.pdf
VNM Vietnam 251 https://www.who.int/docs/default-source/wpro---documents/countries/viet-nam/covid-19/vnm-moh-who-covid-19-sitrep4.pdf
ROW Rest of the World 57225 Selected to be close to the minimum observed levels.

NOTES: This table provides the resources from which we built the ICU capacities dedicated to Covid-19
patients in each country. If there is a direct number for the ICU beds for Covid-19 in a resource, we used that
number. Otherwise, we assigned 70% of the total ICU beds to Covid-19 patients. We estimated this ratio from
the countries that we have the information about dedicated ICU beds to Covid-19 patients.
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Table E.3: LIST OF ESSENTIAL SECTORS DURING LOCKDOWNS

NACE Rev. 2 Definition

01 Crop and animal production, hunting and related service activities
10 Manufacture of food products

1722 Manufacture of household and sanitary goods and of toilet requisites
1811 Printing of newspapers
1920 Manufacture of refined petroleum products
21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
35 Electricity, gas, steam and air conditioning supply
36 Water collection, treatment and supply
463 Wholesale of food, beverages and tobacco
4646 Wholesale of pharmaceutical goods
4711 Retail sale in non-specialised stores with food, beverages or tobacco predominating
472 Retail sale of food, beverages and tobacco in specialised stores
4730 Retail sale of automotive fuel in specialised stores
4773 Dispensing chemist in specialised stores
4774 Retail sale of medical and orthopaedic goods in specialised stores
4781 Retail sale via stalls and markets of food, beverages and tobacco products
4920 Freight rail transport
4941 Freight transport by road
5224 Cargo handling
53 Postal and courier activities
60 Programming and broadcasting activities
61 Telecommunications
639 Other information service activities
75 Veterinary activities
86 Human health activities
87 Residential care activities

NOTES: This table provides the list of the essential sectors that we consider for the implementation of lock-
downs under Scenario I & Scenario II. These sectors are identified by the full lockdown practices of countries.
Turkish Ministry of Interior, for example, issued a decree on April 10, 2020 indicating the list of essential
sectors.

Table E.4: Model-Implied Real Expenditure Losses Relative to the Pre-Pandemic Levels
under Scenario II (percent): The Role of Full Lockdowns

Share of
World AEs (%) AE EMDE

Baseline - with lockdowns 0.757 38.8 0.518 1.071
No lockdowns 0.549 38.9 0.377 0.775

NOTES: This table presents model-implied country-level real expenditure losses under Scenario II. AEs
follow a vaccination calendar to vaccinate the full population within four months, whereas EMDEs follow a
more gradual vaccination calendar, with only half of the population getting vaccinated in one year. The
second row recomputes the losses under this baseline scenario, however in this case we do not allow for full
lockdowns, which alters the evolution of the pandemic over the course of the year.
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F Model Calculations

The notation that we use is summarized in Table F.1.

Table F.1: NOTATION USED IN THE MODEL

Var. Dimensions Explanation

C 1 Number of countries.
N (F) 1 Number of industries (factors).
CN (CF) 1 Number of country-industry (country-factor) pairs.
ΩN CN × CN Intermediate input shares.
Ωs CN × N Sectoral aggregate input shares (calculated from ΩN ).
Ξ CN × CN Sectoral input shares for production.
ΩF CN × CF Factor input shares.
Ω0 C × CN Expenditure shares.
Ω0s C × N Sectoral aggregate expenditure shares.
Ξ0 C × CN Sectoral input shares for consumption.
α CN × 1 Sectoral value-added (VA) shares.
∆0 C × CN Sectoral demand shocks.
∆L 1 × CN Sectoral supply shocks. We also use d log L = d log ∆L

ΨN CN × CN Leontief Inverse for goods: ΨN ≡ (I − ΩN )−1.
ΨF CN × CF Leontief Inverse for factors: ΨF ≡ ΨN ΩF .
λ 1 × CN Domar weights for goods.
Λ 1 × CF Domar weights for factors.
L 1 × C Factor levels.
χ 1 × C Expenditure/ Income shares of countries.
p 1 × CN Good prices.
w 1 × CF Factor prices.
ξ N × 1 Elasticity of substitution (EoS) within sectors for production.
ξ0 N × 1 EoS within sectors for consumption.
σ scalar Consumption EoS across sectors.
ε scalar EoS across input-bundles.
φ scalar EoS across VA and intermediate input bundle.
1n n Vector of ones of dimension n.
In n × n Identity Matrix of size n.

Solving for Shocks

Rewriting Equation (15) here:

dΛ = dχ Ω0 ΨF + χ dΩ0 ΨF + λ dΩN ΨF + λ dΩF , (F.1)

we would like to write each term in terms of d log w. We assume that the labor supply
shocks are exogenous and factor level changes satisfy d log L = d log ∆L. The relationship
between factor Domar weights and factor wages are given by:

d log Λ = d log w + d log L ⇒ dΛ = (d log w + d log L)Λ̂,
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where Λ̂ is the diagonal matrix whose diagonal elements are given by Λ. Therefore:

d log w = dΛΛ̂−1 − d log L.

Also note that, using Shepard Lemma, by transposing both sides in Equation (14), we can
write:

d log p = d log w ΨF ′
.

Therefore, we can easily write price changes in terms of factor price changes. To solve the
model, we will arrive at an equation:

d log w = d log w A + B ⇒ d log w = B (I − A)−1.

There are four terms in Equation (F.1). We will convert each term i = 1, 2, 3, 4 to d log w Ai +
Bi format. Then, we will combine all equations to arrive at the solution.

First term: dχ Ω0 ΨF

For the first term in Equation (F.1), we can use Equation (11) to write the changes in the
country income level in terms of the changes in factor Domar weights:

dχ = dΛ ΦE = (d log w + d log L)Λ̂ ΦE.

Therefore, we can write:

dχ Ω0 ΨF = d log w Λ̂ ΦE Ω0 ΨF
︸ ︷︷ ︸

A1

+ d log L Λ̂ ΦE Ω0 ΨF

︸ ︷︷ ︸
B1

.

Second term: χ dΩ0 ΨF

For the second term, we need to calculate dΩ0. Each individual term of Ω0 can be written
as:

Ω0c
jm = ω0c

jm(∆
0c
jm)

σ


 pjm

p0c
j




−ξ0
i

 p0c

j

p0c




−σ(
pjm

p0c

)

= ω0c
jm(∆

0c
jm)

σ
(

pjm

)1−ξ0
i
(

p0c
j

)ξ0
i −σ (

p0c

)σ−1
.

Here, we distinguish between the structural parameters, ω0c
jm and observed share Ω0c

jm. Be-

fore the shocks, we calibrate ω0c
jm = Ω0c

jm. We can write the elements of d log Ω0 with:

d log Ω0c
jm = σ d log ∆0c

jm + (1 − ξ0
i )d log pjm + (ξ0

i − σ)d log p0c
j + (σ − 1)d log p0c.
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Using Shepard Lemma, we can write the price index for sectoral consumption bundles with:

d log p0c
j = ∑

n∈C

Ξ0c
jnd log pc

jn.

Similarly:

d log p0c = ∑
i∈N

Ωs0c
i d log p0c

i = ∑
i∈N

Ωs0c
i ∑

n∈C

Ξ0c
ind log pin = ∑

in∈CN

Ω0c
ind log pin.

Replacing the corresponding price indices:

d log Ω0c
jm = σ d log ∆0c

jm +(1− ξ0
j )d log pjm +(ξ0

j −σ) ∑
n∈C

Ξ0c
jnd log pjn +(σ− 1) ∑

in∈CN

Ω0c
ind log pin.

We will write each term in χ dΩ0 in terms of d log p. Elements of χ dΩ0 are:

∑
c

χcΩ0c
jmd log Ω0c

jm =

Line 1: σ ∑
c

χcΩ0c
jmd log ∆0c

jm B̃21

Line 2: + (1 − ξ0
j )∑

c

χcΩ0c
jmd log pjm d log p Ã22

Line 3: + (ξ0
j − σ)∑

c

χcΩ0c
jm ∑

n∈C

Ξ0c
jnd log pjn d log p Ã23

Line 4: + (σ − 1)∑
c

χcΩ0c
jm ∑

in∈CN

Ω0c
ind log pin d log p Ã24

We will convert all Ã matrices that operate on d log p to matrices operating on d log w by

multiplying with ΨF ′
on the left. Moreover, to obtain χ dΩ0 ΨF , we need to multiply all

these terms by ΨF on the right.

Line 1: The first term does not have any term involving d log p. Therefore, Ã21 = 0. The
constant term is:

B21 = B̃21 ΨF = σ χ (Ω0 ⊙ d log ∆)ΨF ,

where ⊙ represents the element-wise (Hadamard) product.

Line 2: jmth element of the second line is given by

(d log p Ã22)jm = (1 − ξ0
j )∑

c

χcΩ0c
jmd log pjm.

We can write Ã22 as:

Ã22 = (1 − ξ̂0) χ̂Ω0

where ξ̂0 is the diagonal matrix of sectoral elasticities matched to sector-industry com-

binations and χ̂Ω0 is the diagonal matrix whose elements are given by the vector χΩ0.
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Therefore:
A22 = ΨF ′

Ã22 ΨF = ΨF ′
(1 − ξ̂0) χ̂Ω0 ΨF .

Line 3: jmth element of the third line is given by:

(d log p Ã23)jm = (ξ0
j − σ)∑

c

χcΩ0c
jm ∑

n∈C

Ξ0c
jnd log pjn.

We can write Ã23 as:

Ã23 = (ξ̂0 − σ)

[
(1C×C ⊗ IN)⊙

(
Ξ0′ χ̂ Ω0

)]
,

where 1C×C is the C × C matrix of ones and ⊗ is the Kronecker product operator.
(1C×C ⊗ IN) term is used to select for the sector varieties from different countries.
Therefore:

A23 = ΨF ′
Ã23 ΨF = ΨF ′

(ξ̂0 − σ)

[
(1C×C ⊗ IN)⊙

(
Ξ0′ χ̂ Ω0

)]
ΨF .

Line 4: jmth element of the fourth line is given by

(d log p Ã24)jm = (σ − 1)∑
c

χcΩ0c
jm ∑

in∈CN

Ω0c
ind log pin.

We can write Ã24 as:
Ã24 = (σ − 1)Ω0′ χ̂ Ω0,

where χ̂ is the diagonal matrix whose diagonal elements are given by χ. Therefore:

A24 = ΨF ′
Ã24 ΨF = (σ − 1)ΨF ′

Ω0′ χ̂ Ω0 ΨF .

Third term: λ dΩN ΨF

Many of the calculations are similar to the second term, so we will skip some of the steps.
We need to calculate dΩN for the third term:

Ωkc
jm = ωkc

jm


 pjm

pkc
j




−ξ j

 pkc

j

pkc
M




−ε(
pkc

M

pkc

)−φ(
pjm

pkc

)

= ωkc
jm

(
pjm

)1−ξ j
(

pkc
j

)ξ j−ε (
pMkc

)ε−φ (
pkc

)φ−1
.
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Again, we distinguish between the structural parameters, ωkc
jm and observed share Ωkc

jm.

Before the shocks, we calibrate ωkc
jm = Ωkc

jm. We can write the elements of d log ΩN as:

d log Ωkc
jm = (1 − ξ j)d log pjm + (ξ j − ε) ∑

n∈C

Ξ0c
jnd log pjn

+ (ε − φ) ∑
in∈CN

Ωkc
in

1 − αkc
d log pin + (φ − 1)d log pkc.

We will write each term in λ dΩN in terms of d log p. Elements of λ dΩN are:

∑
kc∈CN

λkcΩkc
jmd log Ωkc

jm =

Line 1: ∑
kc∈CN

λkcΩkc
jm(1 − ξ j)d log pjm d log p Ã31

Line 2: + (ξ j − ε) ∑
kc∈CN

λkcΩkc
jm ∑

n∈C

Ξkc
jnd log pjn d log p Ã32

Line 3: + (ε − φ) ∑
kc∈CN

λkcΩkc
jm ∑

in∈CN

Ωkc
in

1 − αkc
d log pin d log p Ã33

Line 4: + (φ − 1) ∑
kc∈CN

λkcΩkc
jmd log pkc d log p Ã34.

Line 1: jmth element of the first line is given by

(d log p Ã31)jm = ∑
kc∈CN

λkcΩkc
jm(1 − ξ j)d log pjm.

We can write Ã31 as:

Ã31 = (1 − ξ̂) λ̂ΩN

where ξ̂ is the diagonal matrix of sectoral elasticities matched to sector-industry com-

binations and λ̂ΩN is the diagonal matrix whose elements are given by the vector
λΩN . Therefore:

A31 = ΨF ′
Ã31 ΨF = ΨF ′

(1 − ξ̂) λ̂ΩN ΨF .

Line 2: jmth element of the second line is given by:

(d log p Ã32)jm = (ξ j − ε) ∑
kc∈CN

λkcΩkc
jm ∑

n∈C

Ξkc
jnd log pjn.

We can write Ã23 as:

Ã32 = (ξ̂ − ε)

[
(1C×C ⊗ IN)⊙

(
ΞN ′

λ̂ ΩN
)]

,

where 1C×C is the C × C matrix of ones and ⊗ is the Kronecker product operator.
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(1C×C ⊗ IN) term is used to select the sector varieties from different countries. There-
fore:

A32 = ΨF ′
Ã32 ΨF = ΨF ′

(ξ̂ − ε)

[
(1C×C ⊗ IN)⊙

(
ΞN ′

λ̂ ΩN
)]

ΨF .

Line 3: jmth element of the third line is given by

(d log p Ã33)jm = (ε − φ) ∑
kc∈CN

λkcΩkc
jm ∑

in∈CN

Ωkc
in

1 − αkc
d log pin.

We can write Ã33 as:
Ã33 = (ε − φ)ΩN ′

λ̂ (1 − α̂)−1 ΩN ,

where λ̂ is the diagonal matrix whose diagonal elements are given by λ and α̂ is the
diagonal matrix whose elements are the value-added shares. Therefore:

A33 = ΨF ′
Ã33 ΨF = (ε − φ)ΨF ′

ΩN ′
λ̂ (1 − α̂)−1 ΩN ΨF .

Line 4: jmth element of the fourth line is given by

(d log p Ã34)jm = (φ − 1) ∑
kc∈CN

λkcΩkc
jmd log pkc.

We can write Ã34 as:
Ã34 = (φ − 1)λ̂ ΩN .

Therefore:
A34 = ΨF ′

Ã34 ΨF = (φ − 1)ΨF ′
λ̂ ΩN ΨF .

Fourth term: λ dΩF

For the fourth term, we start with the individual factor terms:

Ωkc
f = ωkc

f

(
w f

pkc
VA

)−η (
pkc

VA

pkc

)−φ(
w f

pkc

)

= ωkc
f m

(
w f

)1−η (
pkc

VA

)η−φ (
pkc

)φ−1
.

Again, we distinguish between the structural parameters, ωkc
f and observed share Ωkc

f . Be-

fore the shocks, we calibrate ωkc
f = Ωkc

f . We can write the elements of d log ΩF as:

d log Ωkc
f = (1 − η)d log w f + (η − φ) ∑

g∈F

Ωkc
g

αkc
d log wg + (φ − 1)d log pkc.
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We will write each term in λ dΩF in terms of d log w and d log p. Elements of λ dΩF are:

∑
kc∈CN

λkcΩkc
f d log Ωkc

f =

Line 1: (1 − η)d log w f ∑
kc∈CN

λkcΩkc
f d log w A41

Line 2: + (η − φ) ∑
kc∈CN

λkcΩkc
f ∑

g∈F

Ωkc
g

αkc
d log wg d log w A42

Line 3: + (φ − 1) ∑
kc∈CN

λkcΩkc
f d log pkc d log p Ã43.

Line 1: f th element of the first line is given by

(d log w A41) f = (1 − η)d log w f ∑
kc∈CN

λkcΩkc
f .

We can write A41 as:

A41 = (1 − η)λ̂ΩF

where λ̂ΩF is the diagonal matrix whose elements are given by the vector (λΩF ).

Line 2: f th element of the second line is given by

(d log w A42) f = (η − φ) ∑
kc∈CN

λkcΩkc
f ∑

g∈F

Ωkc
g

αkc
d log wg.

We can write A42 as:
A42 = (η − φ)ΩF ′

λ̂ α̂−1 ΩF ,

where λ̂ is the diagonal matrix whose diagonal elements are given by λ and α̂ is the
diagonal matrix whose elements are the value-added shares

Line 3: jmth element of the third line is given by

(d log p Ã33)jm = (φ − 1) ∑
kc∈CN

λkcΩkc
f d log pkc.

We can write Ã33 as:
Ã33 = (φ − 1)λ̂ ΩF

Therefore:
A43 = ΨF ′

Ã43 = (φ − 1)ΨF ′
λ̂ ΩF .
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Sanity Check

If all the calculations are correct, the resultant A matrix should be singular because of re-
dundancies. Therefore, we need to replace one of the conditions with the fact that the world
nominal GDP is constant:

dE = ∑
f

dλ f = ∑
g

λ f (d log w f + d log L f ) = 0.

Hence, we can use this relation to break the singularity:

A1,1 = 0, A f>1,1 = −Λ f and B1 = − log L · Λ′.

Updating Variables

After solving for d log wg, we can solve for other variables as follows.

Good Prices: Using Shepard Lemma, we can easily obtain good prices with:

d log p′ = ΨFd log w′

Factor Domar Weights are related to the factor wages with:

dΛ = Λ̂(d log w + d log L).

Country Income Shares:
dχ = dΛ ΦE.

Changes in consumption patterns:

d log Ω0c
jm = σ d log ∆0c

jm +(1− ξ j)d log pjm +(ξ j −σ) ∑
n∈C

Ξ0c
jnd log pjn +(σ− 1) ∑

in∈CN

Ω0c
ind log pin.

Each term is given by:

• σ d log ∆0c
jm term in matrix notation:

σ d log ∆

• (1 − ξ0
j )d log pjm term in matrix notation:

(d log p ⊗ 1C) (I − ξ̂0)

• (ξ0
j − σ)∑n∈C Ξ0c

jnd log pjn term:

1′C ⊗ ([(d log p ⊗ 1C)⊙ Ξ0](ξ̂0 − σ)ΣN ),
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where ΣN matrix sums the country varieties.

• (σ − 1)∑in∈CN Ω0c
ind log pin term:

(σ − 1)([(d log p ⊗ 1C)⊙ Ω0] 1CN)⊗ 1′CN.

Finally:
dΩ0 = Ω0 ⊙ d log Ω0

Changes in input weights: We can write the changes in elements of d log ΩN :

d log Ωkc
jm = (1 − ξ j)d log pjm

+ (ξ j − ε) ∑
n∈C

Ξ0c
jnd log pjn

+ (ε − φ) ∑
in∈CN

Ωkc
in

1 − αkc
d log pin

+ (φ − 1)d log pkc.

Each element is given by:

• (1 − ξ j)d log pjm term in matrix notation:

(d log p ⊗ 1CN) (I − ξ̂)

• (ξ j − ε)∑n∈C Ξkc
jnd log pjn term:

1′C ⊗ ([(d log p ⊗ 1CN)⊙ ΞN ](ξ̂ − σ)ΣN ).

• (ε − φ)∑in∈CN
Ωkc

in
1−αkc

d log pin term:

(ε − φ) (1 − α̂)−1 ΩN (d log p ⊗ 1CN).

• (φ − 1)d log pkc term:
(φ − 1)(d log p′ ⊗ 1′CN).

Finally:

dΩN = ΩN ⊙ d log ΩN

Changes in factor shares: Factor share change terms are given by:

d log Ωkc
f = (1 − η)d log w f

+ (η − φ) ∑
g∈F

Ωkc
g

αkc
d log wg
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+ (φ − 1)d log pkc.

Each element is given by

• (1 − η)d log w f term in matrix notation:

(1 − η)(1CN ⊗ d log w)

• (η − φ)∑g∈F
Ωkc

g

αkc
d log wg term:

(η − φ)[α̂−1 ΩF d log w′]⊗ 1′CF.

• (φ − 1)d log pkc:
(φ − 1)(d log p′ ⊗ 1′CF).

Finally:

dΩF = ΩF ⊙ d log ΩF

Leontief Inverse: We can write dΨN as:

d ΨN = ΨN dΩN ΨN .

Good Domar Weights:

dλ = (dχ Ω0 + χ Ω0 + λ dΩN )ΨN .
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