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ABSTRACT
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used by firms in a wide range of sectors.  Firms that use these functions may choose to source 
them locally, or to purchase them from other cities.  The former case gives rise to cities 
developing a pattern of sectoral specialization, and the latter a pattern of functional specialization.  
A two-city country trades with the larger world, and workers within the country are mobile 
between the two cities. Productivity in a given function varies across cities, giving rise to urban 
comparative advantage.  This may be due to exogenous technological differences (Ricardian) or 
to city- and function-specific scale economies. Sectors differ in the intensity with which they use 
different functions, giving rise to a pattern of sectoral and functional specialisation.  We generate 
a number of economic insights, and examine the model’s predictions empirically over a 20-30-
year period for US states. As geographic fragmentation costs fall, both our theory and empirical 
analysis show that sector concentration and regional specialization fall for sectors and rise for 
functions (occupations).
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1. Introduction 
 

The production of final products and services typically requires numerous functions to be performed. 

Manufactured goods require engineering, finance and marketing; construction requires architects and 

lawyers, and so on. There may be spatial differences in the efficiency with which such functions can be 

supplied so, if the functions are not perfectly tradable, efficiency differences in functions will translate 

into a pattern of comparative advantage in final goods. This paper develops these ideas in the spatial 

context of cities or regions within a country, and investigates the impact of such differences for firm 

organisation, city specialisation, trade in goods, and for the associated gains from trade.  

The concept of “function" is fuzzy, depending on how narrowly it is defined. A rather aggregate 

level is the distinction between headquarters and production, as developed in some of the literature on 

foreign direct investment (Markusen 2002) and work in the urban context (Duranton and Puga 2005, 

Rossi-Hansberg et al. 2009). Alternatively, functions could be identified with occupations. Indeed, a 

common statistical breakdown is to divide a firm’s workforce into production (or blue-collar) and non-

production (or white-collar) workers, or into finer occupational definitions.   

The concept we seek to capture in this paper is finer than HQ vs. production or blue-collar vs. 

white collar, and corresponds to functions such as engineering, finance, or law, and their specialisms.  

They have several characteristics. First, most functions are required in most sectors, though in different 

proportions, which we refer to as the function intensity of a sector.  Second, many large cities appear to 

have developed strong functional specialisms.  London and New York in business services: finance, but 

also legal and advertising; the San Francisco area in both hardware and software; Los Angeles in a range 

of media and creative sectors.   

Third, labour productivity in a function differs by city, and we suggest that this may be the 

fundamental level at which city comparative advantage is based. Cities develop the skill set – through 

learning or the composition of its labour force – that comes to define what the city is good at.  The fourth 

characteristic is that firms can purchase their functional needs in one place, or from several different ones. 

Many workers in London and New York, in functions such as finance, accounting, law, or advertising, 

provide services for firms in many sectors and in different places. 

This concept of function is broader than that of a ‘task’, often thought of as a narrow stage of 

production and modelled as a continuum (Grossman and Rossi-Hansberg 2008, 2012, Autor 2013).   

While some cities specialise in quite narrow ‘tasks’, at least for large cities or regions, the broader 

functional or professional concept seems a better descriptor of their specialisms.  Formally, the task 

models often go from a continuum of tasks to a single final good; in the analytical part of this paper we go 

from few functions to a continuum of final goods sectors.  
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In our model, spatial heterogeneity derives from the productivity of labour in performing 

functions.  This translates, via the function intensity of sectors, into comparative advantage in goods.  In 

the simplest cases in which all functions are perfectly tradable this is purely mechanical, adding an 

intermediate step from factor productivity to sectoral comparative advantage.  However, the main 

direction we take in this paper is to vary the cost of sourcing functions from different cities. Firms then 

face a trade-off, between the efficiency with which functions operate in different cities and additional 

costs incurred if they source the functions they need from several different cities: we call these 

fragmentation costs, arising if e.g., engineering is purchased in one city, legal services in another, and so 

on.  

The model shows how the interactions between fragmentation costs, the function intensity of 

different sectors, and efficiency differences between cities cause firms in some sectors to integrate 

production in one place, and in others to fragment it between cities.  Firms’ choices have implications for 

cities’ production structures; to what extent are cities able to specialise in the functions in which they are 

most efficient, and how does this map into the sectoral specialisation of cities and countries?  

In order to investigate these questions, we develop a model that has elements of economic 

geography, the literature on vertical multinationals, urban economics, and external economies of scale 

with some novel twists. A country contains two regions or cities, with identical workers who are mobile 

between jobs within and between cities. There are many final products (sectors) and just two functions, 

sectors requiring the functions in different proportions. There is free trade in final products, capturing the 

idea that the cities under study are embedded in an integrated market.  However, sourcing functions from 

different places – i.e. splitting the production of a good between two locations – incurs a ‘fragmentation 

cost’. This may be the cost of transporting ‘functions’ between cities, but is better thought of as 

coordination costs and the communication costs of maintaining links with suppliers in different cities. 

The efficiency with which functions are produced is city specific, and we start with the simplest 

case in which these are exogenous Ricardian productivity differences. This provides a very clean example 

of how reducing fragmentation costs causes firms in some sectors to fragment (sourcing from both cities), 

and causes cities to move from sectoral towards functional specialisation. Sectors with extreme function 

intensities are more likely to contain integrated firms, concentrating production in the city with the 

advantage in the function in which they are intensive. Sectors which draw more equally on both functions 

will contain firms that are fragmented, performing each in the city with respective efficiency advantage. 

The Ricardian model provides a simple introduction, but functional productivity differences are, 

we think, more likely to arise endogenously from learning and network formation amongst functionally 

specialist workers, and consequent increasing returns to scale. We therefore add agglomeration 

(localisation) economies to the model. These are specific to the function, not to the sector as in the 
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standard model of Marshallian economies.  It follows that there is a ‘linkage’ or complementarity between 

firms in different sectors.  Although there are no direct technological spillovers between them, a range of 

sectors will benefit from an expansion and productivity increase in local production of a function which 

they use intensively.  This model creates the possibility of multiple equilibria and discontinuous change; 

as fragmentation costs fall and firms fragment, functions are able to concentrate thereby raising 

productivity.  Welfare gains from reductions in fragmentation costs can therefore be particularly large if 

they induce spatial reorganisation and the move from sectoral to functional specialisation. 

The model generates a number of hypotheses about the effects of falling fragmentation costs.  

The principal implications are first that concentration of functions should rise and sectoral concentration 

should fall.  Similarly, regional specialization in functions should rise and that of regional specialization 

in sectors should fall.  

The final section of the paper is an empirical investigation using US state level data on sectoral 

and occupational (as a proxy for functional) employment. Our main limitation is that fragmentation costs 

are not directly observed, and available proxies (e.g., travel costs for both personnel and physical 

products, internet applications from email to Skype and Zoom) do not provide either state- or sector-level 

variation.  As a consequence, our empirical analysis instead examines how some of the key relationships 

obtained from the theory behave over a 20-30 period. Charnoz, Lelarge, and Tevien (2018), and Eckert, 

Ganapati, and Walsh (2020) present evidence that information, communications and technology costs 

(ICT) are decreasing over time. This provide support for our assertions that our empirical analysis over 

time is a rough proxy for falling fragmentation costs in the theory section. 

Several findings emerge from our empirical analysis. First, we find declining sectoral 

concentration and increasing functional (occupational) concentration over time. In line with the 

predictions of theory, a large fraction of those changes is explained by within-sector and within-function 

changes in geographic concentration. A second result is that regional specialization indices in functions 

and sectors have the same properties as the concentration indices.   A third finding is that larger regions 

have lower levels of both sectoral and functional specialization.   

The questions we pose and the model we develop touch on many strands of international trade, 

economic geography, and urban economics.  Sorting the considerable volume of literature related to our 

work into boxes is not an easy task: many papers overlap several categories, some papers are largely or 

entirely theoretical, some are solely empirical.  Here we attempt to identify some rough groupings that 

form the background of our work.  There are many papers on trade, the fragmentation of production, 

expansion of trade at the extensive margin, multinational firms, and trade costs between countries.  These 
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include Autor (2013), Duranton and Puga (2005), Grossman and Rossi-Hansberg (2008, 2012), Limao 

and Venables (2002), Markusen (2002, 2013), Markusen and Venables (2007).1 

A general work on urban structure is Henderson and Thisse (2004).  Some of our analysis here 

relates to a large literature on economic geography, agglomeration, and multiple equilibria.  Relevant 

work includes Audretsch and Feldman (1996), Berhens, Duranton and Robert-Nicoud (2014), Brackman 

and van Marrewijk (2013), Courant and Deardorff (1992), Davis and Dingel (2018), Fujita, Krugman and 

Venables (1999), Krugman (1991). 

Evidence on urban specialization (sectoral and functional) includes Barbour and A. Markusen 

(2007), Duranton and Overman (2005), Ellison and Glaeser (1997), Gabe and Able (2012), Michaels, 

Rauch and Redding (2019), and the broad sweep of Moretti (2012.  

In the next section, we develop a partial equilibrium model with two symmetric regions with 

exogenous Ricardian differences in functional productivity. In section 3, we endogenize productivity 

differences by adding external economies of scale in the form of spillovers. In section 4, we characterise 

the general equilibrium model and address these questions via simulation analysis.  In section 5, we 

confront the main theoretical predictions with the data using region-level information on production and 

employment for US states for the period 1990-2019. 

 

2. Cities, sectors and functions   

 

The ingredients of the model are locations, focussing on two cities; sectors, which we model as a 

continuum; two functions that are used as inputs to production each sector; and a single primary factor, 

labour, which is used to produce functions and is perfectly mobile between cities and functions.2 We 

build the model in stages. In this section and the next we focus on sectors and functions to draw out 

results on fragmentation and specialisation, whilst keeping the general equilibrium side of the model in 

the background; there is an outside good that we take as numeraire, and we make sufficient assumptions 

 
1 Duranton and Puga (2005) is the closest to our theory model as the titles suggest.  But the approach is quite 
different.  In Duranton and Puga, there is no function intensity differences across sectors and cities do not have 
function comparative advantage as we do.  There is a function (headquarters) which has agglomeration economies 
similar to our approach.  But plants have agglomeration economies at the sector level, while ours are at the function 
level.  Our model creates a distribution of fragmented and integrated firms across industries and across cities and 
identifies the characteristics of industries that are fragmented versus integrated and of the city in which integrated 
firms locate. 
2 Thus, engineers can convert to lawyers.  Comparative advantage comes from efficiency differences for a given 
function between cities. It would be possible to add a Heckscher-Ohlin flavour by assuming endowments of 
engineers and accountants, but this seems to add little to our basic story. One way of interpreting this assumption is 
that labour is perfectly mobile internationally, although the national housing stock is fixed (so that engineers can be 
traded for accountants).  
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to ensure that the two cities are symmetric. In section 4, we fully specify the general equilibrium side of 

the model, enabling analysis of a richer set of possibilities.  

The two cities are indexed 𝑟𝑟 = 1, 2, and the wage rate in city r is denoted 𝑤𝑤𝑟𝑟.  The single factor 

of production, labour, is perfectly mobile between cities but, since the cost of living may vary across 

cities, so may the nominal wage rate.  The two functions, labelled f = A, B, are produced by labour with 

productivity that varies by city and function; production of one unit of function f in city r requires 𝜆𝜆𝑓𝑓𝑓𝑓 > 0 

units of labour.  Cities are labelled such that productivity differences (if any) give city 1 a comparative 

advantage in function A, i.e., 𝜆𝜆𝐴𝐴1 𝜆𝜆𝐵𝐵1⁄ ≤ 𝜆𝜆𝐴𝐴2 𝜆𝜆𝐵𝐵2⁄ .   

There is a continuum of sectors, indexed 𝑠𝑠 ∈ [0,1].   Sector s contain 𝑛𝑛(𝑠𝑠) firms, each of which 

produces one unit of output which is freely traded at price 𝑝𝑝(𝑠𝑠).  A unit of sector s output requires inputs 

of the two functions, and no other inputs.  Sector s uses 𝑎𝑎(𝑠𝑠) units of function A per unit output, and 𝑏𝑏(𝑠𝑠) 

units of function B, technical coefficients which we refer to as the function intensity of the sector. These 

intensities vary with sector s but are the same in both cities; we rank sectors such that low s sectors are A-

intensive, i.e.  𝑎𝑎′(𝑠𝑠) < 0 and 𝑏𝑏′(𝑠𝑠) > 0.   

Firms in each sector can source functions from either city, but if the two functions come from 

different cities then a fragmentation cost t is incurred.3  Each firm therefore operates in one of three 

modes, choosing to operate entirely in city 1, entirely in 2, or to purchase one function from city 1 and the 

other from city 2.4 Firms that produce in a single city are ‘integrated’ and will be labelled by subscript 1, 

2 according to city of operation; those operating in both are ‘fragmented’ (subscript F). The profits of a 

firm in sector s for each of the three production modes are therefore 

 𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1]𝑤𝑤1, 

𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑤𝑤1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1𝑤𝑤2] − 𝑡𝑡,      (1) 

 𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2]𝑤𝑤2. 

Costs are that of labour in the functions used, times the city wage rate. Thus, a firm in sector s uses 𝑎𝑎(𝑠𝑠) 

units of function A and 𝑏𝑏(𝑠𝑠) units of B. The functions use labour, with input per unit output in city r given 

by 𝜆𝜆𝑓𝑓𝑓𝑓,  f = A, B, and costed at wage 𝑤𝑤𝑟𝑟, r = 1, 2.  Since the technology with which functions are 

combined into final goods (𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠)) is the same in both cities, urban comparative advantage is 

determined entirely by the efficiency with which cities use labour to produce functions, 𝜆𝜆𝑓𝑓𝑓𝑓.   

 
3 We think of functions as being produced within the organisational boundaries of each firm, although they could 
just as well be outsourced and purchased through an arms-length relationship.  
4 The assignment of which function to which city will become clear, and does not merit additional notation. 
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Firms’ choice of mode partitions the continuum of sectors into three groups.  First is a range of s 

in which firms are integrated and source both functions in city 1.  Since we have labelled cities such that 

city 1 has a comparative advantage in function A, and ranked sectors such that low s sectors are A-

intensive, it follows that these will be low s sectors.  Second is a range of sectors in which firms are 

fragmented, sourcing function A from city 1 and function B in city 2; if this range exists it will contain 

sectors with intermediate values of s (i.e. using both functions in similar proportions). Third are high s (B-

intensive) sectors in which firms are integrated and operate only in city 2, the city with comparative 

advantage in function B.   

The boundaries between these ranges are denoted 𝑠𝑠1, 𝑠𝑠2 and are the sectors for which different 

modes of operation are equi-profitable, i.e. 𝜋𝜋1(𝑠𝑠1) = 𝜋𝜋𝐹𝐹(𝑠𝑠1), and 𝜋𝜋2(𝑠𝑠2) = 𝜋𝜋𝐹𝐹(𝑠𝑠2). Using (1), these 

mode-boundaries are implicitly defined by 

𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = 𝑏𝑏(𝑠𝑠1)[𝜆𝜆𝐵𝐵1𝑤𝑤1 − 𝜆𝜆𝐵𝐵2𝑤𝑤2] − 𝑡𝑡 = 0,     (2) 

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = 𝑎𝑎(𝑠𝑠2)[𝜆𝜆𝐴𝐴2𝑤𝑤2 − 𝜆𝜆𝐴𝐴1𝑤𝑤1] − 𝑡𝑡 = 0.  

Given the number of firms in each sector, 𝑛𝑛(𝑠𝑠), employment levels by function, city, and sector, denoted 

𝐿𝐿𝑓𝑓𝑓𝑓(𝑠𝑠), follow directly from eqn. (1) and are given in appendix Table A.1.  The lower rows of the table 

sum employment of each factor in each city over sectors (giving 𝐿𝐿𝑓𝑓𝑓𝑓), employment in each sector 

embodied in functions (giving  𝐿𝐿𝑟𝑟(𝑠𝑠)), and over both to give total employment in each city, 𝐿𝐿𝑟𝑟.  

 

3. Sectoral and functional specialisation in symmetric equilibria 

 

We start by analysing the way in which firms’ mode of operation and the consequent location of sectors 

and functions depend on technology and fragmentation costs, looking first at the case where efficiency 

differences are exogenous (3.1) and then turning to economies of scale (3.2).  Full general equilibrium is 

set out in section 4, while some material on asymmetric cases is found in Appendix 2.  The empirical 

analysis is presented in section 5.  

 

3.1  Functional productivity: Ricardian differences 

Throughout this section, we make strong assumptions which make cities and sectors symmetrical, 

enabling us to derive a number of key results. We assume that the number of firms in each sector s is the 

same and constant, such that 𝑛𝑛(𝑠𝑠) = 𝑛𝑛, and that wages are the same in both cities taking common value 

w.  Labour productivity in functions is assumed to be symmetric across cities, which we capture by 

denoting the labour input coefficient in each city’s high productivity function as 𝜆𝜆 ≡ 𝜆𝜆𝐴𝐴1 = 𝜆𝜆𝐵𝐵2, and that 
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of the lower productivity function 𝜆𝜆𝐴𝐴2 = 𝜆𝜆𝐵𝐵1 = 𝜆𝜆 + ∆𝜆𝜆, with ∆𝜆𝜆 > 0.  Values for the mode-boundaries 

come from eqns. (2), and are implicitly given by 

        𝑏𝑏(𝑠𝑠1)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡,   and   𝑎𝑎(𝑠𝑠2)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡.                 (3) 

A simple case which we develop in detail takes the function intensity of sectors as linear in s, taking the 

form 𝑎𝑎(𝑠𝑠) = [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  and 𝑏𝑏(𝑠𝑠) = [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  with 1 ≥ 𝛾𝛾 > 0. This is symmetric, with 

middle sector, 𝑠𝑠 = 1 2⁄ , equally intensive in A and B.  The parameter γ measures the heterogeneity of 

function intensities across sectors and 1 ≥ 𝛾𝛾 means that both functions are used in all sectors.5  Appendix 

Table A.2 replicates Table A.1 with explicit expressions derived from this functional form.  The profit 

functions of eqn. (1) become, 𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 − 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ ,  𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − 𝜆𝜆𝜆𝜆 − 𝑡𝑡,  

𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 + 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ , and give explicit expressions for the mode boundaries,   

 

        𝑠𝑠1 =
1
2
�1 − �1 −

2𝑡𝑡
wΔ𝜆𝜆

�
1
𝛾𝛾
� ,    and    𝑠𝑠2 =

1
2
�1 + �1 −

2𝑡𝑡
wΔ𝜆𝜆

�
1
𝛾𝛾
� .                                      (4) 

 

These relationships capture the way in which the sourcing of functions by firms in each sector depends on 

fragmentation costs t relative to wages, the range of function intensities γ, and inter-city differences in 

relative labour productivity, ∆𝜆𝜆. 

Integration to fragmentation:  If 𝑡𝑡 = 𝑤𝑤Δ𝜆𝜆 2⁄  then 𝑠𝑠1 = 𝑠𝑠2 = 1 2⁄ ; i.e. half of sectors are integrated in 1, 

the other half integrated in 2, and no sectors are fragmented.  We call this the critical value 𝑡𝑡∗ = 𝑤𝑤Δ𝜆𝜆 2⁄  

and note that there is no fragmentation for any values 𝑡𝑡 ≥ 𝑡𝑡∗.  If 𝑡𝑡 < 𝑡𝑡∗ then fragmented firms emerge, 

first in sectors that have similar use of both functions, i.e. s in an interval around ½ and of width 

𝑠𝑠2 − 𝑠𝑠1 = (1 − 2𝑡𝑡 𝑤𝑤Δ𝜆𝜆⁄ )/𝛾𝛾, wider the smaller is t, and the larger are productivity differences, ∆𝜆𝜆.  

Intuitively, these are the sectors where both functions have a high share of costs (e.g. close to 50%), so it 

is worthwhile incurring fixed cost t to source each from the lowest cost city.  Sectors with more extreme 

function intensities remain integrated in the city where the function with highest cost share is relatively 

cheap.   

This and equations (4) are illustrated on Figure 1, which has sectors on the vertical axis and 

fragmentation costs, t, on the horizontal. Thus, at 𝑡𝑡 < 𝑡𝑡∗ the most A-intensive sectors operate with 

integrated firms in city 1, the most B-intensive are integrated in city 2, and those with intermediate 

 
5 Thus, for all 𝑠𝑠 ∈ [0,1] ,  𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠) ≥ 0.  The assumption is not necessary for our main results, see e.g. the proof 
of proposition 1 in appendix A1.  Figure 1 has γ = 1, this being the special case in which all sectors become 
fragmented (s1 = 0 and s2 = 1) at t = 0. If sectors are more similar in function intensity, γ < 1, then all sectors become 
fragmented at some positive value of t; if γ > 1 then extreme sectors use only one function.  
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function intensities are fragmented. Figure 1 is constructed with 𝛾𝛾 = 1 and Δ𝜆𝜆 = 0.4, and w = 1.  The 

critical value 𝑡𝑡∗ is proportional to 𝑤𝑤Δ𝜆𝜆 and, for a given value of 𝑡𝑡 𝑤𝑤Δ𝜆𝜆⁄  the range of fragmented firms is 

larger the smaller is γ, the parameter that measures the range of function intensities. 

 

 

 

Sectoral to functional specialisation: The preceding paragraph established where firms in each sector 

source their input of functions. The dual question is: what activities take place in which cities?  As 

fragmentation costs fall below 𝑡𝑡∗ so some sectors remain integrated in a single city, but others (𝑠𝑠 ∈

(𝑠𝑠1, 𝑠𝑠2) fragment, so there is a decline in the average sectoral specialisation of cities.  In Figure 1 the 

curly brackets indicate the range of sectors with a presence in each city and evidently, once 𝑡𝑡 < 𝑡𝑡∗,  

further reductions in t increase this range.  In the empirical section we will measure this by calculating 

specialisation indices defined on the shares of each city’s total employment in each sector, i.e. 𝑚𝑚𝑠𝑠𝑠𝑠 =

𝐿𝐿𝑠𝑠𝑠𝑠/𝛴𝛴𝑟𝑟𝐿𝐿𝑠𝑠𝑠𝑠 .   While cities’ specialisation in sectors is falling, their specialisation in functions is increasing.  

Employment of each function in city r is 𝐿𝐿𝐴𝐴𝐴𝐴, 𝐿𝐿𝐵𝐵𝐵𝐵 (appendix Table A.2).  Intuitively, production of each 

function moves into the city according to comparative advantage.  In later sections of the paper we 

compute functional specialisation indices, based on shares of each city’s total employment in each 

function,  𝑚𝑚𝑓𝑓𝑓𝑓 = 𝐿𝐿𝑓𝑓𝑓𝑓/𝛴𝛴𝑟𝑟𝐿𝐿𝑓𝑓𝑓𝑓.  Pulling this together, we summarise results in the following proposition: 
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Proposition 1: In the symmetric model with γ ≤ 1. 

i) If fragmentation costs are high, i.e.  𝑡𝑡 ≥ 𝑡𝑡∗ = 𝑤𝑤Δλ 2⁄ , then 𝑠𝑠1 = 𝑠𝑠2 = 1 2⁄  and: 

a) Mode: All sectors are integrated. 

b) Sectors:  Each city contains activity in half the sectors; each sector operates in a single city 

(city 1 for 𝑠𝑠 ≤ 1 2⁄ , and city 2 for 𝑠𝑠 > 1 2⁄ ).  

c) Functions: If every sector uses both functions (1 ≥ 𝛾𝛾), then every function is present in 

each city. 

ii) If fragmentation costs are low, 𝑡𝑡 < 𝑡𝑡∗ = 𝑤𝑤Δλ 2⁄ , then 𝑠𝑠2 − 𝑠𝑠1 = (1 − 2𝑡𝑡 𝑤𝑤Δλ⁄ )/𝛾𝛾 > 0   and: 

a) Mode:  Sectors with 𝑠𝑠 𝜖𝜖 [s2, s1] are fragmented, operating in both cities; sectors with more 

extreme function intensities (𝑠𝑠 <  𝑠𝑠2, 𝑠𝑠 > 𝑠𝑠1) are integrated, operating in a single city. 

b) Sectors:  Each city contains activity in more than half the sectors. If 𝑡𝑡 ≤ (1 − 𝛾𝛾)𝑤𝑤Δ𝜆𝜆 2⁄   

then each city contains activity from all sectors.   

c) Functions: If  𝑡𝑡 ≤ (1 − 𝛾𝛾)𝑤𝑤Δ𝜆𝜆 2⁄   then each city specialises in a single function, 

𝐿𝐿A1 = 𝐿𝐿B2 > 0, 𝐿𝐿A2 = 𝐿𝐿B1 = 0 , (complete functional concentration). 

 

The implications of this proposition will be discussed further in section 4.3 where, in the context of the 

full general equilibrium model, specialisation (concentration) indices are calculated for the distribution of 

both sectoral and functional employment across cities. They are central to the empirical work of section 5. 

 

3.2 Functional productivity: localisation economies 

Ricardian efficiency differences provide the simplest model framework, but we think it unlikely that 

differences the productivity of functions varies because of exogenous efficiency differences.  There is 

considerable evidence of agglomeration economies in this and other sectors, so we develop a variant of 

the model in which these economies of scale drive productivity.   

Labour input coefficients are function and city specific, and are now assumed to be based on an 

endogenous part deriving from productivity spillovers in the same function and city, as well as a possible 

Ricardian component.  The Ricardian component is as before, taking values λ and λ + Δλ. Productivity 

spillovers generated by each function in each city are equal to output in the function-city pair, 𝑋𝑋𝑓𝑓𝑓𝑓 =

𝐿𝐿𝑓𝑓𝑓𝑓/𝜆𝜆𝑓𝑓𝑓𝑓 , 𝑓𝑓 = 𝐴𝐴,𝐵𝐵, 𝑟𝑟 = 1, 2 with parameters σ𝐴𝐴 and σ𝐵𝐵 measuring the impact of spillovers on 

productivity. The Ricardian and endogenous components of labour input coefficients are additive, giving 

𝜆𝜆𝐴𝐴1 = λ − σ𝐴𝐴𝑋𝑋𝐴𝐴1,    𝜆𝜆𝐴𝐴2 = λ + Δλ − σ𝐴𝐴𝑋𝑋𝐴𝐴2,    (5) 

  𝜆𝜆𝐵𝐵1 = λ + Δλ − σ𝐵𝐵𝑋𝑋𝐵𝐵1,   𝜆𝜆𝐵𝐵2 = λ − σ𝐵𝐵𝑋𝑋𝐵𝐵2.  
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Hence, productivity differentials are, using expressions from appendix Table A.2, block IV, 

𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2 = Δλ − σ𝐵𝐵𝑛𝑛 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]�,     (6a)  

𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1 = Δλ − σ𝐴𝐴𝑛𝑛 �
1
2
− 𝑠𝑠2[1 + 𝛾𝛾(1 − 𝑠𝑠2)]�.          (6b) 

Thus, if 𝑠𝑠2 is large a relatively small range of sectors undertake function A in city 2, thereby reducing city 

2’s productivity in A, i.e. raising 𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1. If these spillovers are equally powerful in both functions 

(𝜎𝜎 ≡ 𝜎𝜎𝐴𝐴 = 𝜎𝜎𝐵𝐵 > 0) and wages are the same in both cities then the mode-boundaries defined in eqn. (2) 

become, 

𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = {[1 − 𝛾𝛾(1 − 2𝑠𝑠1)](𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0,   (7a)   

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = {[1 + 𝛾𝛾(1 − 2𝑠𝑠2)](𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0.   (7b) 

To analyse these relationships, we focus on (6a) and (7a), the other pair, (6b) and (7b), being symmetric.  

Substituting (6a) in (7a) gives 𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) as a function of 𝑠𝑠1.  The objective is to find sets of 

parameters at which different types of equilibria hold.   

Notice first that there is full integration if 𝜋𝜋𝐹𝐹(𝑠𝑠1) ≤ 𝜋𝜋1(𝑠𝑠1) at 𝑠𝑠1 = ½.  Straightforward calculation 

gives critical value 𝑡𝑡∗∗ = [∆λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄   at which 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝜋𝜋1(𝑠𝑠1) evaluated at s1 = ½.  Evidently, 

this reduces to the Ricardian case if 𝜎𝜎 = 0, while 𝜎𝜎 > 0 implies a strictly higher critical point 𝑡𝑡∗∗.   At 

higher values of t, 𝑡𝑡 ≥ 𝑡𝑡∗∗, there is an equilibrium with fully integrated production. This is illustrated by 

the solid horizontal line on Figure 2.   
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Figure 2 differs from Figure 1 in the non-linearity of the mode boundaries and, in particular, the 

overlap between these lines that occurs in the interval (𝑡𝑡∗∗, 𝑡̃𝑡).6  This is a region of multiple equilibria.  

Integrated production is an equilibrium, because at this equilibrium productivity differences are small.  

But so too is a fragmented equilibrium.  At such an equilibrium production of function A is relatively 

concentrated in city 1, and B in city 2; the presence of increasing returns means that the productivity 

differential is now large, justifying firms’ choices to fragment production. 

Formally, this occurs because using (6a) in (7a) generates a cubic equation.  Appendix 1 works 

this through in some detail, deriving the critical value 𝑡̃𝑡 below which fragmented production is an 

equilibrium.  There is a positive interval (𝑡𝑡∗∗, 𝑡̃𝑡) in which there are multiple equilibria if spillovers 𝑛𝑛𝑛𝑛 are 

large relative to any Ricardian productivity difference, ∆Λ.  

To summarise:  

Proposition 2: In the symmetric model with external economies of scale 

i) If  𝑡𝑡 ≥ 𝑡𝑡∗∗ = [∆Λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄ , there is an equilibrium in which all sectors are 

integrated.  

ii) If 𝑡𝑡 < 𝑡𝑡∗∗, there is a unique equilibrium, in which sectors 𝑠𝑠 𝜖𝜖 [s2, s1] are 

fragmented.  

iii) There is a range of values of 𝑡𝑡 ∈ (𝑡𝑡∗∗, 𝑡̃𝑡)  at which integration of all sectors and 

fragmentation of a range of sectors are both equilibria. 

iv) Increasing returns (σ > 0) means that, should fragmentation occur, the range of 

sectors that are fragmented is wider, at each t and for each ∆λ, than if σ = 0.  

 

Parts (i) and (ii) of the proposition mean that the qualitative predictions concerning the effect of 

reductions in t on cities’ sectoral diversification and functional specialisation are as in proposition 1; we 

use these predictions in the empirical section.  Parts (iii) and (iv) are a consequence of the externality 

created by technological spillovers. An important difference is that the localisation economy operates at 

the functional rather than the sectoral level.  Thus, while there are no direct technology spillovers between 

sectors, expansion in one sector will increase the quantity of functions supplied and, this raising 

productivity in functions and reducing costs for other sectors, particularly those with similar function 

intensities.  Linkages between sectors are created via the medium of localisation economies in functions. 

 
6 Figure 2 has the same parameters as Figure 1, except that Δλ = 0 and σ𝐴𝐴 = σ𝐵𝐵 =  1.5. 
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 These arguments set out the driving mechanisms that we want to explore, and we now move to 

place them in a general equilibrium setting, endogenizing wages and the scale of activity (number of 

firms) in each sector.  

 

4. General Equilibrium 

 

To this point, we have assumed product prices are constant, a fixed and equal number of firms in all 

sectors, and that wages are constant and the same in both cities. We now relax these assumptions and 

develop the general equilibrium of the model. In section 4.1 we model urban structure and the labour 

market, endogenizing wages; then in section 4.2 we look at product supply and demand, adding free entry 

of firms and endogenizing prices.  Section 4.3 sets out the full equilibrium structure of the production side 

as the basis for the empirical analysis of section 5. Section 4.4 considers asymmetric cases. 

 

4.1 City size, employment and wages 

In addition to the sectors and functions modelled above we now add a hinterland region producing an  

‘outside good’ which we use as numeraire.  This good is produced using labour alone, at constant 

productivity giving fixed wage w0.  This and all other final goods are perfectly freely traded.   

Labour is perfectly mobile, equating utilities across cities and the outside region.  To give 

determinate city sizes and wages we use the standard urban model (the Alonso-Mills-Muth model, see for 

example Henderson and Thisse 2004).  City workers face urban costs of commuting and land rent, costs 

which depend on city size. It follows that the cost of living may vary across locations, so labour mobility 

implies that equilibrium wages in each city, 𝑤𝑤1, 𝑤𝑤2, may differ from 𝑤𝑤0 and from each other. The micro-

foundations of this are that each household occupies one unit of land, all urban jobs are in the city centre 

(CBD), and commuting costs are 𝑐𝑐𝑟𝑟  per unit distance. Urban costs at distance z from the CBD consist of 

commuting costs 𝑐𝑐𝑟𝑟𝑧𝑧, plus rent at distance z from the centre denoted ℎ𝑟𝑟(𝑧𝑧). Workers choose residential 

location within and between cities, so real wages are equalised when 𝑤𝑤𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑧𝑧 − ℎ𝑟𝑟(𝑧𝑧) = 𝑤𝑤0 for all r and 

at all occupied distances z.  There are K spokes from the CBD, along which people live and commute, so 

population is 𝐿𝐿𝑟𝑟 = 𝐾𝐾𝑧𝑧𝑟𝑟∗, where 𝑧𝑧𝑟𝑟∗ is the edge of the city (length of each spoke). At the city edge land rent 

is zero, so 𝑤𝑤0 = 𝑤𝑤𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑧𝑧𝑟𝑟∗ = 𝑤𝑤𝑟𝑟 − 𝑐𝑐𝑟𝑟𝐿𝐿𝑟𝑟 𝐾𝐾⁄  giving the city-size equations  

            𝐿𝐿1 = (𝑤𝑤1 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐1⁄ , and  𝐿𝐿2 = (𝑤𝑤2 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐2⁄ .    (8) 

It should be noted that 𝐿𝐿𝑟𝑟  denotes both the number of residents and the number of workers in the city.  

These equations simply say that larger cities have to pay higher wages in order to cover the commuting 

costs and rents incurred by workers. Finally, we note that rent in each city can be expressed as, ℎ𝑟𝑟(𝑧𝑧) =
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𝑤𝑤𝑟𝑟 − 𝑤𝑤0 − 𝑐𝑐𝑟𝑟𝑧𝑧 = 𝑐𝑐𝑟𝑟(𝐿𝐿𝑟𝑟 𝐾𝐾⁄ − 𝑧𝑧), so integrating over z and adding over all spokes, total rent in a city of 

size 𝐿𝐿𝑟𝑟 is  

𝐻𝐻𝑟𝑟 = 𝑐𝑐𝑟𝑟𝐿𝐿𝑟𝑟2 2𝐾𝐾⁄ .         (9) 

Thus, while workers’ utility is equalised across all locations, the productivity gap associated with 

𝑤𝑤1,𝑤𝑤2 > 𝑤𝑤0 is partly dissipated in commuting costs, with the rest going to recipients of land rents. 

 

4.2   Sectoral output and the number of firms 

The price of output of sector s is 𝑝𝑝(𝑠𝑠) and, since each firm produces one unit of output, total supply of 

good s is simply 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠).  We have to this point held the price and number of firms 

constant. We now endogenize these variables by modelling demand for each sector’s output and letting 

the number of firms adjust until profits in each sector are zero.  

Demands for final output comes from domestic spending and from exports.  The domestic 

country is assumed small as an importer, and so foreign prices in all of the s sectors take exogenous value 

𝑝̅𝑝, common across all sectors. Demand comes from domestic and foreign sales, respectively 

𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠),   𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) for sector s, and domestic and foreign goods are CES substitutes in each market with an 

elasticity of substitution 𝜀𝜀 > 1.  Sectoral composites (domestic and foreign varieties) are Cobb-Douglas 

substitutes. The outside good (numeraire) is additively separable with a constant marginal utility, 

implying that income does not appear in the demand functions for the Q goods (though we will introduce 

a demand shifter later).  With these assumptions, demand for the output of each sector is  

𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)  =
𝛼𝛼 𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃𝜃𝑓𝑓  𝑝̅𝑝1−𝜖𝜖
+

𝛼𝛼�𝜃̅𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃̅𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃̅𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
.                        (10) 

Demand parameters are α, θ, and overbars are used to denote parameters in foreign. The utility functions 

and budget constraints that support these demand functions are given in appendix 2, and are used in some 

welfare calculations that follow.   

Domestic supply response comes from free entry of firms.  The zero profit conditions are 

complementary slack inequalities since not all modes will be active in all sectors, and we state them (from 

equations 1) as,  

 

𝑤𝑤1[𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1] ≥ 𝑝𝑝(𝑠𝑠)     ⊥ 𝑛𝑛1(𝑠𝑠),   

 𝑤𝑤2[𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2] ≥ 𝑝𝑝(𝑠𝑠)     ⊥ 𝑛𝑛2(𝑠𝑠),  (11) 

 𝑤𝑤1𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑤𝑤2𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 +  𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄ ≥ 𝑝𝑝(𝑠𝑠)  ⊥ 𝑛𝑛𝐹𝐹(𝑠𝑠).    
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Recalling that firms operate at unit scale, total domestic supply in each sector s is 

 𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠).       (12) 

Output prices and numbers of firms adjust to clear markets.  As they do so employment levels, wages, and 

the structure of economic activity in each city will also change.  Firm types may be active or non-active in 

each city, so the equilibrium can be thought of as a non-linear complementarity problem in which corner 

solutions are a crucial feature of the model.  To explore this we use numerical techniques, and the full set 

of equations and inequalities used simulation are given in appendix 3.  To implement this we discretize 

the number of sectors: in the simulations to follow model development, there are 51 sectors (i.e., s = 1, 2, 

…, 51.  an odd number allows for a middle sector).  The total number of weak inequalities and non-

negative unknowns is 318 (appendix 3).  

 

4.3  Symmetric Ricardian and spillovers cases in general equilibrium 

Figures 3 and 4, and appendix Figures A2 to A5 present simulation results that develop economic 

implications of the model.  Figure 3 presents the symmetric Ricardian case, with fragmentation costs t on 

the horizontal axis. Each column of the figure is a solution to the model for that value of t, as will be the 

case in the following figures (the jagged line is a consequence of the discreteness of sectors). The results 

naturally qualitatively resemble Figure 1 earlier in the paper. With all firms integrated, the middle sector 

(there is an odd number of sectors) is produced in both countries.  

 

 
Figure 3: Symmetric Ricardian Case (fragmentation cost t on horizontal axes) 
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Figure 4 shows further results for the case in Figure 3 in four panels. The upper left panel gives 

Herfindahl employment concentration indices for sectors and functions across the two cities for each level 

of fragmentation costs. The concentration of sector s is the sum over cities r of the share of sector s’s 

national employment that is in r minus city r’s share of national employment, squared:7 

  𝐺𝐺𝑠𝑠 = ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑟𝑟)2𝑟𝑟 ,              𝑚𝑚𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑟𝑟  ,                    𝑚𝑚𝑟𝑟 = 𝐿𝐿𝑟𝑟/∑ 𝐿𝐿𝑟𝑟𝑟𝑟 ,        (13) 

The concentration of function f employment across regions is similarly defined. 

𝐺𝐺𝑓𝑓 = ∑ �𝑚𝑚𝑓𝑓𝑓𝑓 − 𝑚𝑚𝑟𝑟�
2

𝑟𝑟    𝑚𝑚𝑓𝑓𝑓𝑓 = 𝐿𝐿𝑓𝑓𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑟𝑟  ,   𝑚𝑚𝑟𝑟 = 𝐿𝐿𝑟𝑟/∑ 𝐿𝐿𝑟𝑟𝑟𝑟 . (14) 

These are then averaged over all sectors s and functions f to get the indices used in the upper left-

hand panel of Figure 4.  As fragmentation costs fall, the sectoral concentration index falls and the 

function concentration index rises.  This is a central prediction of the model, which will be examined 

empirically in section 5 below. 

 

 
 

Figure 4: Symmetric Ricardian Case (fragmentation cost t on horizontal axes) 
 

 
7  Definitions of employment levels 𝐿𝐿𝑠𝑠𝑠𝑠 , 𝐿𝐿𝑓𝑓𝑓𝑓 , 𝐿𝐿𝑟𝑟 are given in appendix tables A1 and A2.   𝐿𝐿𝑟𝑟 =
∑ 𝐿𝐿𝑠𝑠𝑠𝑠 = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 ,  𝐿𝐿𝑠𝑠 = ∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑟𝑟 ,  𝐿𝐿𝑓𝑓 = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑟𝑟 .   
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In addition to examining sector and function concentration theoretically here and empirically in 

section 5, we can compute indices of regional specialization. Each region is compared to the national 

distribution of employment across sectors and functions via a specialization index D. Similar to our 

measure of concentration, the specialization of region r is defined as the sum over sectors (functions) of 

the square of the difference between the share of region r’s employment in sector s (function f) and the 

share of national employment that is in sector s (function f) as follows 

 

𝐷𝐷𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ (𝑞𝑞𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑠𝑠)2𝑠𝑠 ,      𝑞𝑞𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠  , 𝑞𝑞𝑠𝑠 = 𝐿𝐿𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠 ,    (13a) 

 

𝐷𝐷𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ �𝑞𝑞𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑓𝑓�

2
𝑓𝑓 , 𝑞𝑞𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑓𝑓𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓  ,  𝑞𝑞𝑓𝑓 = 𝐿𝐿𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓  .  (14a) 

  

These are then averaged over all regions to get the indices used in the upper right-hand panel of Figure 4. 
    

The top left panel of Figure 4, giving the sector and function concentration indices and the top 

right panel giving the regional specialization indices in both sectors and functions, are qualitatively 

almost identical, though they differ some in scale (note the different scale on the right and left axis in the 

top left panel).  This is largely due to the fact that this example has regions and sectors that are symmetric 

in size.  This choice of example is deliberate, providing an intuitive base case which is examined 

empirically in section 5.  We do not hypothesize that the concentration and specialization indices are 

qualitatively the same, only that the sector indices both fall with falling fragmentation costs and the 

function indices both rise with falling t.  We have done many simulations with various asymmetries 

between regions and sectors, and these slope relations always hold for both concentration and 

specialization. 

The bottom left panel of Figure 4 graphs the producer wage and welfare (recall all workers earn a 

wage net of commuting costs and land rent equal to 𝑤𝑤0).  Note from equation (8) that the producer wage 

is proportional to urban population or city size. The producer wage / city size curve shown in the bottom 

left of Figure 4 indicates that a lowering a fragmentation costs does not have a big effect on city size: 

increased outputs depress product prices some and so from the free-entry conditions, producer wages (city 

populations) don’t change much. The increase in welfare as fragmentation costs fall is larger. Part of 

potential welfare gains is dissipated by falling prices (worsening terms of trade with the outside world) 

due to the increased domestic productivity. Average prices p(s) are 2.5% lower with full fragmentation 

than under fully integrated production. This fall in prices also holds down urbanization (producer wages 

and employment) as fragmentation costs fall. Nevertheless, falling fragmentation costs is analogous to an 

aggregate productivity improvement and raise welfare. 
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The bottom right panel of Figure 4 illustrates an effect which was not discussed in previous 

sections. The fall in fragmentation costs improves the competitiveness of the urban (manufacturing and 

services) sectors relative to the outside good. The vertical axis gives the trade balance (exports minus 

imports) of urban goods as a proportion all domestic urban goods production.  This trade balance in urban 

sectors is normalized to zero at zero fragmentation costs. The trade balance with the rest of the world is 

negatively related to fragmentation costs. Ease of internal transport and communications is a source of 

comparative advantage. 

Turning to the spillovers case, Figure A2a shows results confirming those in Figure 2 earlier. 

There is a region of multiple equilibria: one in which all sectors are integrated and one in which some 

(middle) sectors are fragmented. Results corresponding to those in Figure 4 for the Ricardian case are 

qualitatively the same as for the Ricardian case, and thus we won’t show them here.  

One thing that is qualitatively different between the Ricardian and spillovers cases is the effect of 

increasing demand (increases in the alphas) in (10) on the equilibrium regime. In the Ricardian case in 

which the λ’s are constants, a symmetric situation (𝑤𝑤1 = 𝑤𝑤2) means that the boundaries between the 

integrated and fragmented sectors do not depend on demand (also true in the partial-equilibrium case as 

seen in (4)).  However, in (7) and here in (A14) - (A17) we see that increases in total market demand will 

affect the λ’s and hence will affect regime boundaries in the spillovers case. Figure A2b shows the effect 

on the regime boundaries following a 50 percent increase in αd and αf. For middle levels of t, additional 

sectors will now fragment as shown, which implies increases function specialization and lower sectoral 

specialization for a given level of fragmentation costs. 

 

4.4 Asymmetric cases 

Figures A3 and A4 consider asymmetry between the sectors/cities in the Ricardian case. Figure A3 

assumes that city 1 has a comparative and absolute advantage in function A, while city 2 has a 

comparative advantage in function B, but no absolute advantage. For intermediate or high levels of 

fragmentation costs, the result in Figure A.3 is that city 1 will have a larger range of integrated industries. 

The intuition follows from a simple argument by contradiction. Consider high fragmentation costs such 

that all sectors are integrated. Suppose that the solution was symmetric across cities. Then if sector s = 0.5 

is just breaking even in city 2, there would be positive profits for sector s in city 1.  

 Two further results follow in the asymmetric Ricardian case.  The right-hand panel of Figure A3 

shows the employment levels in the two cities.  Intuitively, the city with the absolute advantage (city 1) 

will be larger for all levels of fragmentation costs, but this difference shrinks as these costs fall.  Figure 

A4 shows the function and sector concentration indices for the same asymmetric Ricardian case.  The 

more productive city 1 will have lower concentration for both sectors and functions.  The intuitive follows 
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from the previous paragraph: city 1 will have more integrated industries.  But the difference disappears as 

fragmentation costs go to zero.  In our empirics in section 5, we show that larger cities do have lower 

levels of both forms of concentration.   

Figure A5 shows a similar result for the spillovers case: here only function A has spillovers, but 

in both cities (in contrast to the Ricardian case where only 𝜆𝜆𝐴𝐴 is smaller in city 1 only). In equilibrium 

however, the spillovers case is similar: city 1 will have a comparative and an endogenous absolute 

advantage in function A, while city 2 has a comparative but not absolute advantage in function B.  

These results show up as differences in city size/employment (which in turn translate into 

producer wages), shown in the right-hand panel of Figure A5. The city size difference is large when all 

industries are integrated and small when all are fragmented (though largest in the middle for the spillovers 

case). Again, the intuition follows from a simple argument by contradiction. If city sizes (employment) 

were the same, then producer wages would be the same, in which case there must be positive profit 

opportunities in city 1 and/or losses incurred in city 2.  

The convergence in city sizes as fragmentation costs become small seems to be in large part a 

terms-of-trade effect: as fragmentation costs fall, the relative prices of goods with low sector indices 

(located in city 1) fall a lot more in general equilibrium than the prices of the high index goods. An 

alternative way to think about this is that the high productivity of city 1 workers in the A function means 

that less workers are required to produce those tasks at given output prices and hence city 1's employment 

falls some in response to that increased productivity.  

 

5.  Sectoral and functional concentration in the US 

 

The theoretical model provides a rich set of predictions that relate changes in fragmentation costs to 

changes in a region’s sectoral and functional composition. In this section, we explore the empirical 

validity of three key predictions of the model using information on US employment. For empirical 

purposes, we interpret sectoral as industries, functional as occupational, and geographical as US states. 

In section 5.1, we look at the spatial concentration of sectors and functions in order to test the 

hypotheses that as fragmentation costs fall sectoral concentration declines while occupational 

concentration rises. Fragmentation costs are not directly observed, and available proxies (e.g., travel 

costs, long-distance phone calls, or access to internet) do not provide either state- or sector-level variation. 

Therefore, we simply assume fragmentation costs are falling over time, and use time as the proxy.8 We 

 
8 While this assumption is consistent with the general decrease in the cost of exchanging goods and services at a 
distance, it has two main drawbacks. First, it prevents us from exploiting across sector variation to identify the 
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find declining sectoral concentration and increasing occupational concentration over time. In line with the 

predictions of theory, a large fraction of those changes is explained by within-sector and within-function 

changes in geographic concentration. 

In section 5.2, we explore time series changes in states’ distributions of employment across 

sectors and across functions. The model predicts that, as fragmentation costs decrease, regions should 

experience decreasing sectoral specialization and increasing functional specialization. To test this 

hypothesis, we calculate our two measures of regional specialization defined in equations (13a) and (14a) 

for each state-year in the sample. As predicted by the model, we find that the states’ sectoral 

specialization is decreasing overtime, whereas the functional specialization is increasing. 

Finally, in section 5.3, we estimate the correlation between regional specialization and size (i.e., 

total employment in the region). The theoretical model predicts that larger regions have lower sectoral 

and functional specialization. In line with the prediction of model, we find a negative correlation between 

US states’ size and measures of specialization for both sectors and functions. 

 

5.1 Sectoral and functional concentration over time 

In this section, we explore the first prediction of the model related to sectoral and functional geographic 

concentration. We begin by describing the method we use to measure the geographic concentration. We 

then describe the main data sources. Finally, we implement the index of concentration to study the time 

series changes in sectoral and functional concentration. 

 

5.1.1 The Ellison and Glaeser concentration index 

Indices similar to 𝐺𝐺𝑠𝑠, defined in (13), are often used to measure agglomeration across regions (e.g., 

Krugman (1991) and Audretsch and Feldman (1996)). An important limitation of these measures is that 

they could suggest high levels of concentration in sectors comprised of a few large companies locate in a 

dispersed, random pattern. To control for this possibility, Ellison, and Glaeser (1997, henceforth EG97) 

incorporate information about the size distribution of firms in the sector to construct the following index 

of concentration 

 

            𝐸𝐸𝐸𝐸𝑠𝑠 =
𝐺𝐺𝑠𝑠 (1 − ∑ 𝑚𝑚𝑟𝑟

2
𝑟𝑟 )⁄ − 𝐻𝐻𝑠𝑠

1 − 𝐻𝐻𝑠𝑠
, (15) 

  

 
impact of changes in fragmentation costs. Second, it prevents us from making quantitative predictions regarding the 
impact of fragmentation costs on regional outcomes. 
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where 𝐻𝐻𝑠𝑠 = ∑ 𝑧𝑧𝑗𝑗𝑗𝑗2𝑗𝑗  is the Herfindahl index of the sector’s plant size distribution and 𝑧𝑧𝑗𝑗𝑗𝑗 is the jth plant’s 

share of sectoral employment. EG97 refer to 𝐺𝐺𝑠𝑠 (equation (13) above) as the “raw geographic 

concentration” of employment in a sector. The subtraction of 𝐻𝐻𝑠𝑠 is a correction that accounts for the fact 

that the index 𝐺𝐺𝑠𝑠 is expected to be larger in industries consisting of fewer larger plants if locations were 

chosen completely at random.9  

The EG97 index of concentration defined in equation (15) has many useful properties.10 First, it is 

easy to implement. Second, it is widely used which allows us to compare our results with previous 

studies. Third, it uses employment shares, which implies that it does not confound features in time-series 

data such as the general decline in manufacturing. 

To measure functional concentration index, we use a modified version of the EG97 index defined 

as follows 

 

𝐸𝐸𝐸𝐸𝑓𝑓 =
𝐺𝐺𝑓𝑓 �1 − ∑ 𝑚𝑚𝑓𝑓

2
𝑟𝑟 �⁄ − 𝐻𝐻𝑓𝑓

1 −𝐻𝐻𝑓𝑓
. (16) 

 

As for sectors, we adjust our raw measure of concentration 𝐺𝐺𝑓𝑓, defined in (14), to account for the fact that 

functions that are specific to a small number of plants will be more concentrated geographically compared 

to functions that are ubiquitous. Because we do not have information on plant-level employment by 

function, we cannot control directly for the dispersion of occupations across plants. Instead, we use  𝐻𝐻𝑓𝑓 =

∑ 𝑚𝑚𝑓𝑓𝑓𝑓
2

𝑠𝑠  , where 𝑚𝑚𝑓𝑓𝑓𝑓 is the share of employment in sector s performing function f.11 The intuition for the 

correction factor 𝐻𝐻𝑓𝑓, suggested by Gabe and Able (2010), is that when a function’s employment is 

concentrated in a few industries, the measured geographic concentration of the function should be higher 

all else equal. 

 

 
9 In practice, changes in the value of the 𝐸𝐸𝐸𝐸𝑠𝑠 index over time are well approximated by changes in 𝐺𝐺𝑠𝑠. This happens 
because plant size distributions tend to change fairly slowly, so the correction is less important in cross-time 
comparisons within a short time period than in cross-industry comparisons. Nevertheless, we use 𝐸𝐸𝐸𝐸𝑠𝑠 as our 
benchmark measure. 
10 The motivation for the EG97 index defined in equation (15) is that it is an unbiased estimate of a sum of two 
parameters that reflect the strength of agglomeration forces (spillovers and unmeasured comparative advantage) in a 
model of location choice. At one extreme, the case of  𝐸𝐸𝐸𝐸 = 0, corresponds to a model in which location decisions 
are independent of region characteristics. In this case, the probability of choosing area r is 𝑚𝑚𝑟𝑟, the share of total 
employment in the region. At the other extreme, when 𝐸𝐸𝐸𝐸 = 1, region characteristics are so important that they 
completely overwhelm other factors, and the one region that offers the most favourable conditions will attract all the 
firms. In describing our results, we follow EG97 and refer to those industries with EGs above 0.05 as being 
concentrated and to those with EGs below 0.02 as being dispersed. 
11 In the 2-function model of earlier sections, 𝑚𝑚𝐴𝐴𝐴𝐴 = 𝑎𝑎(𝑠𝑠)/[𝑎𝑎(𝑠𝑠) + 𝑏𝑏(𝑠𝑠)] if productivity 𝜆𝜆𝑓𝑓𝑓𝑓 is the same for all f, r. If 
𝜆𝜆𝑓𝑓𝑓𝑓 varies then 𝑚𝑚𝐴𝐴𝐴𝐴 is a mode weight average of these ratios adjusted by productivity factors 𝜆𝜆𝑓𝑓𝑓𝑓.  
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5.1.2 Data 

To construct the EG97 indexes of concentration, we need information on the geographic distribution of 

sectoral and functional economic activity, measured throughout by employment. The two main sources 

from which we derive information are the BLS’s Quarterly Census of Employment and Wage dataset 

(QCEW) and Occupational Employment Statistics (OES).  

The QCEW provides sector-by-state level data, specifically employment by six-digit North-

American Industrial Classification System (NAICS) industries for each US state for the period 1990-

2019. We supplement this data with sector-level information on employment by firm size class, also from 

the QCEW, to compute the Herfindahl index, 𝐻𝐻𝑠𝑠, defined in (15).  From the OES, we derive function-by-

state data, specifically employment by six-digit Standard Occupational Classification (SOC) occupations 

by US states for the period 2000-2019. We also draw on national function-by-sector data from the OES to 

construct or to compute the Herfindahl index, 𝐻𝐻𝑓𝑓, defined in (16). Together, these data allow us to 

construct the sectoral and functional concentration indices for each year in our sample. Additional 

information on the datasets is provided in Appendix 4 at the end of the paper.   

A difficulty we face in developing our data is the frequent reclassification of sectors and 

functions over time. Over the period covered by our sample, the 1997 NAICS classification used in the 

QCEW is revised multiple times, first in 2002, and subsequently in 2007, 2012, and 2017. Similarly, the 

original SOC classification introduced in 2000 was revised in 2010 and in 2018. For the analysis, we 

construct longitudinal region-sector and region-function datasets restricted to sectors and functions that 

we can track accurately across changes in classification. This reduces the size of the sample but ensures 

that our results are not driven by changes in the scope of our sample or changes in sector and function 

definitions.  

 

5.1.3 Sectoral concentration 

As explained in sections 3 and 4 above, the theoretical model predicts that a decrease in fragmentation 

costs leads to lower sectoral concentration. To test this prediction, we explore the time-series in the 

geographic concentration index defined in equation (15). For this part of the empirical analysis, we use a 

balanced panel that contains state-level data on 626 six-digit NAICS industries across all sectors of the 

economy for years 1990 to 2019. About 41 percent of the 18,780 observations are in the manufacturing 

sector, the remainder of the observations are distributed across industries in the business services (23%), 

personal services (20%), and wholesale, retail and transportation (15%). 

Time series changes in the geographic concentration of sector employment can be decomposed into 

two adjustments margins, within-sector changes in geographic concentration and across-sector 

reallocation of employment. We are mostly interested in quantifying the contribution of the first margin 
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because the theoretical model’s predictions are related to within-sector changes in employment 

concentration. For any given year 𝜏𝜏, the mean sectoral concentration can be decomposed as follows 

 

 𝐸𝐸𝐸𝐸𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 +  ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑠𝑠) 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 ,     (17) 

   

where 𝑚𝑚𝑠𝑠𝑠𝑠 is sector-s’s share of national employment in year 𝜏𝜏 and 𝑚𝑚𝑠𝑠 is the sector’s share of 

employment in the sample (i.e., the mean over time of 𝑚𝑚𝑠𝑠𝑠𝑠). The first equality follows by definition of a 

weighted average. The second equality decomposes time series changes into two components. The first 

term of the decomposition holds employment shares constant at the sample mean and provides 

information on the contribution of the within-industry changes in concentration over time. The second 

term captures the remainder of the time series change. 

We report the results from decomposition (17) in Figure 5. The solid line depicts the weighted 

average 𝐸𝐸𝐸𝐸𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. It clearly shows the steady decline in the weighted mean geographic concentration of 

sector employment. The dashed line depicts the within-industry component of the decomposition, i.e., the 

term ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  in equation (17). The figure makes clear that even when holding the employment 

weights constant, the mean geographic concentration of sectors declines steadily over time. 

 

 
Figure 5: Geographic concentration of sectors over time 
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As illustrated in Figure 5, the rate of decay is lower when considering only the within-sector 

changes in concentration. This happens because part of the observed decrease in sectoral concentration is 

due to labor movement from less concentrated industries towards more concentrated industries. As seen 

from the first line table 1, the mean  sectoral concentration decreases by about 44% over the period (going 

from 0.027 in 1990 to 0.015 in 2019), while the within-sector component decreases by about 30% (going 

from 0.023 in 1990 to 0.016 in 2019) as shown in the second line. So, the decline in the within-industry 

component of geographic concentration is large in absolute term and represents the majority of the time 

series change in geographic concentration. Overall, the results presented in Table 1 suggest that the 

average worker is employed in a more geographically dispersed sector in 2019 than he was in 1990. 

Given our assumption on the evolution of fragmentation costs, the decrease in the sectoral concentration 

over time observed in the data is consistent with the predictions of the theoretical model. 

 

 
 

To get a sense of which component of the weighted mean drives the time series changes, Table 1 

also reports the simple means of the EG97 index, EG, the raw geographic concentration, G, and the 

correction factor, H. As seen in the table, the simple average decreases by about 14% over the period. The 

time series changes in raw concentration closely mimic those of the EG97 index. This happens because 

changes in the plant-level Herfindahl are an order of magnitude smaller compared to the raw geographic 

concentration index. Comparing the simple and the weighted mean reveals that large sectors tend to be 

more dispersed on average compared to smaller ones. The simple mean suggests that the average sector is 

geographically concentrated (𝐸𝐸𝐸𝐸 > 0.05), whereas the weighted mean suggests that the average 

employee works in a geographically dispersed industry (𝐸𝐸𝐸𝐸 < 0.02). 
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Overall, changes in the weighted averages are useful indicators of the time series behavior of 

geographic concentration. However, to provide a more formal assessment of the time series trend in 

geographic concentration, we estimate regressions of the sectoral EG97 indices on a time trend 

controlling for sector-level factors using fixed effects 

   

             ln𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑠𝑠 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑠𝑠𝑠𝑠 .         (18) 

 

Under the assumption that fragmentation costs are decreasing over time, the theoretical model predicts 

that the trend, 𝛽𝛽, should be negative. 

The results from estimating equation (18) by OLS are reported in Table 2. The first row reports 

the results for the full sample of 626 six-digit NAICS sectors. As predicted, the point estimate is negative 

and statistically significant and suggests that the within-sector geographic concentration of employment is 

declining over time. To evaluate if the results are driven by a specific set of sectors, we estimate equation 

(18) separately for each broad groups: manufacturing, business services, personal services, and wholesale, 

retail and transportation. As reported in Table 2, every point estimate is negative and statistically 

significant. Overall, the results presented so far, support the prediction that the geographic concentration 

of sectoral employment is declining over time. 

 

 
 

The results presented in this section share many similarities with the findings of Dumais, Ellison, 

and Glaeser (2002) who study the geographic concentration of sectoral employment across US states from 

1972 to 1997. First, the two sets of estimates are of the same magnitude. They report a (simple) mean 

0.034 for 1992. Our corresponding estimate is 0.056 (not in Table 1). The fact that our sectors are more 

concentrated on average can be explained by differences in scope and aggregation levels for sectors 

across studies. We include services and manufacturing sectors, whereas they focus on manufacturing, and 

we use six-digit NAICS industries as our definition of sectors, whereas they use three-digit NAICS. 
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Second, they also find a decline in geographical concentration of sectors using US data. Both the simple 

and the employment weighted means of their index declines by more than 10% between 1972 and 1992. 

 

5.1.4 Functional concentration 

In this section, we use the decomposition in equation (17)—defined over functional shares instead of 

sectoral shares— to study the times series properties of the geographic concentration of functional 

employment. For this part of the empirical analysis, we use a balanced panel that contains state-level data 

on 704 six-digit SOC occupations across all sectors of the economy for years 2000 to 2019.   

The results are depicted in Figure 6. The solid represents the employment-year weighted mean 

concentration, while the dashed line depicts the within-function component of the weighted average. The 

figure clearly shows that there is an increase in the geographic concentration of function, even when 

holding the employment weights constant. 

 

 
Figure 6: Geographic concentration of functions over time 

 

Results from the decomposition (17), applied to functions, are reported in Table 3 for selected 

years. As seen in the table, the Herfindahl correction factor has little impact on the index because of its 

small magnitude, such that most of the changes in concentration over time is explained by the raw 

concentration index 𝐺𝐺𝑓𝑓, defined in equation (14). Comparing the simple and the weighted means reveals 
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that occupations that represent a large shares of employment tend to be more dispersed on average 

compared to occupations that accounts for small shares. 

 

 
 

As we did for the concentration of sectoral employment, we estimate OLS regressions of the form  

 

        ln𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓 = 𝛽𝛽𝑓𝑓 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑓𝑓𝑓𝑓             (19) 

 

to estimate the time trend of geographic concentration. Under the assumption that fragmentation costs are 

decreasing over time, the theoretical model predicts that the trend, 𝛽𝛽, should be positive. The results are 

reported in Table 4 for the full sample and by broad function categories defined in the OCC. As seen in 

the first row of the table, the time trend is positive and statistically significant in the full sample. This is 

not surprising given that the estimated beta is the slope of the fitted value through the solid line in Figure 

6. The remaining rows of Table 4 show that 17 out of 21 estimated time trends are positive and 12 of 

those are statistically significant at conventional levels.  

Overall, the results presented in Figure 6 and Tables 3 and 4 provide empirical support to the 

predictions of the theoretical model. As explained in sections 3 and 4 above, as fragmentation costs fall, 

more sectors fragment such that regions move from sectoral to functional specialization. Under our 

assumption, this implies that function concentration should increase over time. 

 

5.2  Regional specialization over time 

In this section, we explore the sectoral and functional structure of regional employment. Under our 

assumption about the time series evolution of fragmentation costs, we expect to find a decrease in sector 

specialization and an increase in functional specialization. 
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We use the region-sector and the region-function datasets described in the previous section to 

construct the two measures of regional specialization defined in equations (13a) and (14a) for each 

region-year in our datasets. In each case, we aggregate state-level measures using a weighted average, 

where the weights are the states’ shares of national employment in the corresponding year. The results are 

reported in Figure 7. The decreasing trend observed in panel (a) indicates that the states’ employment is 

becoming more evenly distributed across sectors over time. Conversely, panel (b) shows that states’ 

distribution of employment across function is becoming increasingly uneven. As predicted by the 

theoretical model, these results indicate that states are becoming less specialized in terms of sectoral 

employment, but more specialized in terms of functional employment. 
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(a)  sectors 

 
(b) Functions 

 

Figure 7: Regional specialization over time 
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Next, we evaluate the average time series changes in regional specialization using OLS 

regressions of the form  

 

        ln𝐷𝐷𝑟𝑟𝑟𝑟 = 𝛽𝛽𝑟𝑟 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑟𝑟𝑟𝑟 ,            (20) 

 

where 𝛽𝛽𝑟𝑟 represent region-level fixed effects. The results are reported in Table 5. As seen in the first row 

of the table, the time trend 𝛽𝛽 is negative and statistically significant for the sectoral specialization, and 

positive and statistically significant for the functional specialization. Overall, the results provide empirical 

support to the predictions of the theoretical model. 

 

 
 

5.3   Region size 

As explained in sections 3 and 4 above, the theoretical model predicts that larger regions have lower 

industrial and functional employment concentration. To test this prediction, we use thee indices of 

regional specialization for sectors and functions. The first set of measures are the indices D, defined in 

(13a) and (14a). The second set are Herfindahl-Hirschman indices (HHI) defined, respectively, over 

sectoral and functional employment for each region-year in the sample as 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝑟𝑟𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟2 ,𝑠𝑠    and 𝐻𝐻𝐻𝐻𝐻𝐻𝑟𝑟𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟2

𝑓𝑓 .   (21) 

 

These measures, which are commonly used in the literature, are similar to our index D but without the 

deviation from national employment. The third set of measures are Krugman (1991) indices of regional 

specialization defined as  

 

𝐾𝐾𝑟𝑟𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ |𝑞𝑞𝑟𝑟𝑠𝑠𝑠𝑠 − 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟|,𝑠𝑠   and  𝐾𝐾𝑟𝑟𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ �𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟� 𝑠𝑠 ,   (22) 

 



 30 

where 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟 denote the region’s average share of employment in a sector and a function in year 𝜏𝜏, 

respectively. By definition, high values of the specialization indices imply that regional employment is 

concentrated among a small number of sectors or functions. In our sample, the correlation between the 

two indices is 0.50 for sectors and 0.85 for functions. 

We test for the negative association between regional specialization and size by estimating 

regressions of the form 

 

           𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 𝛽𝛽𝜏𝜏 + 𝛽𝛽 log 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟 ,                      (23)                                                          

  

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 represents one of the three specialization indices (D, HHI, or K), 𝛽𝛽𝜏𝜏 denotes year fixed 

effects, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟 is the state’s employment, and 𝜀𝜀𝑟𝑟𝑟𝑟 is a residual term that capture the impact of exogenous 

factors that affect regional specialization and are not included in the model.  

We report results from estimating (23) by OLS in Table 6. Panels A and B report, respectively, 

results for sectoral specialization and functional specialization. The first, second and third line present, 

respectively, the results using the D indices defined in (13a) and (14a), the HHI index of specialization 

defined in equation (21) and the Krugman specialization index defined in equation (22). To obtain more 

meaningful magnitudes for the point estimates, we report so-called “beta coefficients” (defined as the 

usual OLS point estimates multiplied by the ratio of the independent and dependent variables’ standard 

deviation) which gives the number of standard deviations in the dependent variable associated with a one 

standard deviation change in the independent variable. 

As seen in the table, the point estimates vary across measures of specialization but, in all cases, 

the partial correlation between the measures and regional employment is negative and statistically 

significant as expected. These results indicate that region size is a strong predictor of the cross-sectional 

variation in both sectoral and functional specialization. 

 

6. Conclusions 

 

 Our paper is motivated by what is widely seen as changes in the nature of work and changes in 

scope of activities performed in our urban areas.  Our approach is necessarily circumscribed by the 

requirements of formal theory and data analysis, but many of the ideas here are consistent with the broad 

analysis and vision of Moretti (2012) for example.   
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 The paper draws on both concepts and analyses from a number of fields of study including 

international trade, multinational corporations, urban economics and economic geography.  Industries 

(sectors) produce with a range of functions, synonymous with occupations in the empirical analysis.  A 

sector in a city may produce with only locally sourced functions or may draw functions from other 

locations.  A key variable in our theory is a cost of geographically separating the sourcing of function 

inputs into a sector, referred to as the fragmentation cost.  Our principal result is that, at high costs, a 

city’s employment is concentrated in certain sectors, with each sector’s employees performing many 

different functions.  At low fragmentation costs, a city’s employment is concentrated in certain functions, 

with employees in a certain function doing work for many different sectors.  Instead of a city having 

production workers, managers, lawyers and accountants working in one sector, a lawyer or accountant 

does work for many different sectors, often at a distance.   

 This basic model result is in turn used to draw out a number of qualitative and quantitative 

predictions about a range of issues including how concentration indices for sectors and function behave, 

welfare effects and a country’s trade position with the outside world, and the correlation across regions 

between their degree of sectoral specialization with their degree of functions specialization.   

 We do not have good measures of these fragmentation costs and existing proxies do not provide 

either state or sector level variation.  But we are able to measure key relationships over a twenty-year 

period for functions, thirty years for sectors.  We find that over time our measure of sectoral concentration 

within cities has steadily decreased and functional concentration has increased.  We show that these 

adjustments are not just due to employment shifting from concentrated sectors to dispersed sectors; e.g., it 
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is not due to employment shifting from geographically concentrated manufacturing to dispersed services.  

Our effect holds just as strongly within sectors.   

 Second, we use the same data to calculate measures of regional specialization, more in line with a 

traditional international trade approach.  With the confines of our theory model, these measures of 

regional specialization in sectors and functions should be qualitatively similar to the concentration 

measures and indeed they are in our simulations.  Empirically, they also have the property that regional 

sectoral specialization is falling over time and regional functional specialization is rising, though the 

former has a slight u-shaped feature at the end of the time period.  

Finally, we find that larger regions are less specialized in both sectors and functions.  All three 

results are consistent with the model and with fragmentation costs that are falling over time.   
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Appendix 1: Section 3 theory 

 

Table A1:   Employment by function f = A, B, in sector s and city r = 1, 2. 

 City 1 City 2 

Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B     𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

𝐿𝐿𝑓𝑓𝑓𝑓:   Employment in each function/city (all sectors) 

Function A 𝐿𝐿𝐴𝐴1 = � 𝐿𝐿𝐴𝐴1(𝑠𝑠)𝑑𝑑𝑑𝑑   
𝑠𝑠2

0
 𝐿𝐿𝐴𝐴2 = � 𝐿𝐿𝐴𝐴2(𝑠𝑠)𝑑𝑑𝑑𝑑      

1

𝑠𝑠2
 

Function B 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑑𝑑  
𝑠𝑠1

0
 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑑𝑑      

1

𝑠𝑠1
 

𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/city (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

𝐿𝐿𝑟𝑟:   Total employment in each city 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑑𝑑   
1

0
 𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑑𝑑   

1

0
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Table A.2:   Employment by function f = A, B, in sector s and city r = 1, 2. 

 City 1 City 2 

I Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1     

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵1 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

II Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝑛𝑛𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

III Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function A   𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴2 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

Function B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

IV 𝐿𝐿𝑓𝑓𝑓𝑓:   Employment in each function/city (all sectors) 

Function A 𝐿𝐿A1 = λA1𝑠𝑠2[1 + γ(1 − 𝑠𝑠2)]𝑛𝑛 2⁄  𝐿𝐿𝐴𝐴2 = 𝜆𝜆𝐴𝐴2 (1 − 𝑠𝑠2)(1 − 𝛾𝛾𝛾𝛾2)𝑛𝑛 2⁄  

Function B 𝐿𝐿𝐵𝐵1 = 𝜆𝜆𝐵𝐵1𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]𝑛𝑛 2⁄  𝐿𝐿𝐵𝐵2 = 𝜆𝜆𝐵𝐵2(1 − 𝑠𝑠1)(1 + 𝛾𝛾𝛾𝛾1)𝑛𝑛 2⁄  

V 𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/city (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

VI 𝐿𝐿𝑟𝑟:   Total employment in each city 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑑𝑑   
1

0
 𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑑𝑑   

1

0
 

 

Profit functions are: 

𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 − 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ ,    𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − 𝜆𝜆𝜆𝜆 − 𝑇𝑇,  

𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 + 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ . 
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Proposition 1:     

iib)  𝑠𝑠2 = 1
2
�1 + 1

𝛾𝛾
�1 − 2𝑡𝑡

Δ𝜆𝜆
�� , decreasing in t.   𝑠𝑠2 = 1 when  𝑡𝑡 = (1 − 𝛾𝛾)Δ𝜆𝜆 2⁄    

iic)   𝐿𝐿𝐴𝐴2 = 𝜆𝜆𝐴𝐴2 (1 − 𝑠𝑠2)(1 − 𝛾𝛾𝛾𝛾2)𝑛𝑛 2⁄ .  If γ < 1 then  𝐿𝐿𝐴𝐴2 = 0  at  𝑠𝑠2 = 1 , i.e. 𝑡𝑡 = (1 − 𝛾𝛾)Δ𝜆𝜆 2⁄ .  All 

sectors use all functions and all sectors are fragmented at this value of t. 

If γ > 1 then  𝐿𝐿𝐴𝐴2 = 0  at  𝛾𝛾𝑠𝑠2 = 1 , i.e. 𝑡𝑡 = (𝛾𝛾 − 1)Δ𝜆𝜆 2⁄ .   Some sectors use only one function: all 

sectors that use both functions are fragmented at this value of t. 

 

Section 3.2: localisation economies  

Using equation (6a) in (7a) gives the profit advantage from integration,   

𝛱𝛱(𝑠𝑠1, 𝑡𝑡) ≡ 𝜋𝜋1(𝑠𝑠1) − 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝑡𝑡 − [1 − 𝛾𝛾(1 − 2𝑠𝑠1)] �∆Λ − 𝜎𝜎𝜎𝜎 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]��𝑤𝑤 2,   (A1)�  

There exists an integrated equilibrium if  𝑡𝑡 ≥ 𝑡𝑡∗∗, where 𝑡𝑡∗∗ is the minimum value at which 𝛱𝛱(𝑠𝑠1 =

1/2, 𝑡𝑡) ≥ 0, and its value is (from inspection of A1), 𝑡𝑡∗∗ = [∆Λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄ . 

The function 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) is cubic in 𝑠𝑠1, and is illustrated in figure A1 over the interval 𝑠𝑠1 ∈ [0, 0.5], for three 

different values of t, higher values of t shifting the curve upwards.  At the lowest value of t illustrated, 

integration is profitable for sector 1 at 𝑠𝑠1 ≤ 0.22.  The middle curve is drawn for value 𝑡𝑡∗∗, i.e. is the 

value of t at which 𝛱𝛱(𝑠𝑠1 = 1 2⁄ , 𝑡𝑡∗∗) = 0.  There is an interval of values somewhat greater than 

𝑡𝑡∗∗ at which there are two values of 𝑠𝑠1 at which 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) = 0, the lower one of which is stable, the 

upper unstable.  The highest curve is the greatest value of t at which there is a fragmented 

equilibrium, this occurring at values {𝑠𝑠�1, 𝑡̃𝑡, } .  It is possible to derive the values {𝑠𝑠�1, 𝑡̃𝑡} from the 

pair of equations 𝜕𝜕𝛱𝛱(𝑠̃𝑠1, 𝑡̃𝑡) 𝜕𝜕𝑠𝑠1⁄ = 0,  𝛱𝛱(𝑠̃𝑠1, 𝑡̃𝑡) = 0.  If ∆Λ = 0, the value is, 𝑡̃𝑡 = 𝑛𝑛𝑛𝑛(1 + 𝛾𝛾2)3 2⁄ 31 2⁄ 𝑤𝑤/

(36𝛾𝛾).  There is a positive interval (𝑡𝑡∗∗, 𝑡̃𝑡) in which there are multiple equilibria if spillovers 𝑛𝑛𝑛𝑛 are large 

relative to Ricardian productivity difference, ∆Λ.  
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Figure A1:  Expression A1 for different values of t 
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Appendix 2: Specification of utility and income 

 

The specification of utility (welfare) is quite standard for trade models. The Q goods are a two-level CES 

nest. Domestic and foreign varieties for any z sector have an elasticity of substitution of ε > 1 whereas 

goods from different s sectors are Cobb-Douglas substitutes. R is the outside good, giving a standard 

quasi-linear utility function  

𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑅𝑅     (A1) 

where 𝛽𝛽 is a scaling parameter. Income (Y) is given the sum of wages (net of commuting costs and rents = 

𝑤𝑤0) for all urban and outside workers (𝐿𝐿�) plus land rents 𝐻𝐻1 and 𝐻𝐻2 from (12).  

 𝑌𝑌 = 𝑤𝑤0𝐿𝐿� + 𝐻𝐻1 + 𝐻𝐻2         (A2) 

The domestic economy’s budget constraint is that Y is spend on R (used as numeraire) plus domestic and 

foreign urban goods. 

 𝑌𝑌 = 𝑅𝑅 + ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 + ∑ 𝑝̅𝑝𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)𝑠𝑠        (A3) 

(A3) can be substituted into (A1) to replace R. 

   𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑌𝑌 − ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 − ∑ 𝑝̅𝑝𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)𝑠𝑠   (A4) 

Maximization of (A4) with respect to the Q’s (and equivalently for foreign) yields the demand functions 

in the body of the paper, which do not depend directly on Y as is the usual result in quasi-linear 

preferences. Domestic demand for domestic good s for example is: 

 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓𝑝𝑝(𝑠𝑠)−𝜖𝜖 {𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖}⁄       (A5) 

where 𝛼𝛼𝑑𝑑 is a scaling parameter that is increasing in 𝛽𝛽 (𝛽𝛽𝑑𝑑  which could differ from the foreign 𝛽𝛽𝑓𝑓). 

Suppose θd = θf = 0.5 and all p(s) = 𝑝𝑝�  = 1. Then α = 2 in the demand functions implies β = 21/ε and Qij = 

1. Parameters αd and αf in the demand functions in section 2 are increasing in the β of the domestic or 

foreign economy, and increases in the α’s or β’s can represent increases in or differences in market size.12   

 

 

 

 
12Our algebra indicates that the relationship between the 𝛽𝛽 in (A1) and the 𝛼𝛼 in the demand functions 
above are related by 𝛼𝛼 = (𝛽𝛽 2⁄ )

𝜀𝜀
1+2𝜀𝜀. Because of the concavity of the log formulation of utility, 𝛽𝛽 must 

more than double to double market demand (𝛼𝛼) at constant prices.   
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Appendix 3: General equilibrium as a non-linear complementarity problem 

 

Here we give the specification for the spillovers’ model, which has more equations and unknowns than 

the Ricardian model.  The latter is simpler because the lambdas are exogenous. 

Non-negative variables: 

       𝐿𝐿𝑖𝑖  labor demand or employment in city i 

       𝑤𝑤𝑖𝑖  wages in city i 

   𝑋𝑋𝑖𝑖𝑖𝑖  output of function j in city i 

  𝜆𝜆𝑖𝑖𝑖𝑖  labor requirements in function j in city j 

𝑄𝑄𝑑𝑑(𝑠𝑠)  total output of sector z (all firm types) 

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)   domestic demand for foreign goods 

𝑛𝑛𝑘𝑘(𝑠𝑠)  number of firms of type 𝑘𝑘 = 1, 2,𝐹𝐹 in sector s 

𝑝𝑝(𝑠𝑠)  price of (domestic) good z 

 

With the dimension of s equal to 51, the model has 318 non-negative variables complementary to 

318 weak inequalities. A strict inequality corresponds to a zero value for the complementary variable. 

First, the supply-demand relationships for labor demand in the two cities are given as follows, where ⊥ 

denotes complementarity between the inequality and a variable.  Labor is used in variables costs for all 

firm types in all sectors, plus used in fragmentation costs for fragmented sectors.  We use a simple 

formulation of the fragmentation labor use, which divides it between the two cities, each using  𝑡𝑡 2⁄  per F 

type firm. 

 𝐿𝐿1  ≥ ∑ 𝑛𝑛1(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑠𝑠 +   𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄   ⊥  𝐿𝐿1 (A6) 

 𝐿𝐿2  ≥ ∑ 𝑛𝑛2(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 +  𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄𝑠𝑠   ⊥  𝐿𝐿2 (A7) 

 

Second, from eqn. (11) wages are given by:  

 (𝑤𝑤1 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿1     ⊥ 𝑤𝑤1   (A8) 

 (𝑤𝑤2 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿2     ⊥ 𝑤𝑤2   (A9) 

 

Third, output levels of the two functions in the two cities are given by:   

 𝑋𝑋𝐴𝐴1  ≥ ∑ 𝑎𝑎(𝑠𝑠)�𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐴𝐴1   (A10) 

 𝑋𝑋𝐴𝐴2  ≥ ∑ 𝑎𝑎(𝑧𝑧)𝑛𝑛2(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐴𝐴2   (A11) 

 𝑋𝑋𝐵𝐵1  ≥ ∑ 𝑏𝑏(𝑠𝑠)𝑛𝑛1(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐵𝐵1   (A12) 

 𝑋𝑋𝐵𝐵2  ≥ ∑ 𝑏𝑏(𝑠𝑠)�𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐵𝐵2   (A13) 
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Fourth, the labor input coefficients (inverse productivity) are given by: 

 𝜆𝜆𝐴𝐴1  ≥ Λ𝐴𝐴1 − 𝜎𝜎𝐴𝐴X𝐴𝐴1     ⊥ 𝜆𝜆𝐴𝐴1   (A14) 

 𝜆𝜆𝐴𝐴2  ≥ Λ𝐴𝐴2 − 𝜎𝜎𝐴𝐴X𝐴𝐴2     ⊥ 𝜆𝜆𝐴𝐴2   (A15) 

 𝜆𝜆𝐵𝐵1  ≥ Λ𝐵𝐵1 − 𝜎𝜎𝐵𝐵X𝐵𝐵1     ⊥ 𝜆𝜆𝐵𝐵1   (A16) 

 𝜆𝜆𝐵𝐵2  ≥ Λ𝐵𝐵2 − 𝜎𝜎𝐵𝐵X𝐵𝐵2     ⊥ 𝜆𝜆𝐵𝐵2   (A17) 

 

The number of active firms of each type in each sector is complementary to a zero-profit condition, that 

unit cost is greater than or equal to price. Fragmentation costs are: 𝑡𝑡( 𝑤𝑤1 + 𝑤𝑤2) 2⁄ . 12F

13  Therefore 

 𝑤𝑤1(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛1(𝑠𝑠)   (A18) 

 𝑤𝑤2(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛2(𝑠𝑠)   (A19) 

 𝑤𝑤1𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑤𝑤2𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 +  𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄ ≥ 𝑝𝑝(𝑠𝑠) ⊥ 𝑛𝑛𝐹𝐹(𝑠𝑠)   (A20) 

 

Total output of good s is given by the sum the outputs across firm types: 

 𝑄𝑄𝑑𝑑(𝑠𝑠) ≥ 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)   ⊥ 𝑄𝑄𝑑𝑑(𝑠𝑠)   (A21) 

 

The final element is to specify the demand size of the model, which links outputs, prices, and the 

external foreign market. The domestic country is assumed small as an importer, and so all foreign prices 

for the z sectors are given by an exogenous value, common across all sectors. Domestic and foreign goods 

within a sector are CES substitutes with an elasticity of substitution 𝜀𝜀 > 1. Sectoral composites (domestic 

and foreign varieties) are Cobb-Douglas substitutes. The outside good R is treated as a numeraire. It is 

additively separable with a constant marginal utility and hence income does not appear in the demand 

functions for the Q goods (though we will introduce a demand shifter later).  

The market clearing equation for the domestic good z is that supply equal the sum of domestic 

and foreign demand. αd and αf are “short-hand” scaling parameters for domestic and foreign, that could 

depend on the relative market sizes for example (see appendix). 𝜃𝜃𝑑𝑑 and 𝜃𝜃𝑓𝑓 are the weights on the 

domestic and foreign varieties in the nest for each sector z.  

 

𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
+ 𝛼𝛼𝑓𝑓𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑓𝑓 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
 ⊥  𝑝𝑝(𝑠𝑠)   (A22) 

 

Domestic demand for foreign goods is not needed to solve the core model, but is needed for welfare 

calculations after solution. These are given by 

 
13 Note that all inequalities are homogeneous of degree 1 in wages and prices. 
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 𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓𝑝̅𝑝−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
       ⊥  𝑄𝑄𝑓𝑓𝑓𝑓(𝑧𝑧)   (A23) 

 

As noted above, the core model is then 318 weak inequalities complementary with 318 non-negative 

unknowns.  

 

 
Figure A.2: Symmetric Spillovers Case 

 

 
Figure A.3: Asymmetric Ricardian Case 

City 1: comparative and absolute advantage in function A 
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Figure A.4: Asymmetric Ricardian Case 

City 1: comparative and absolute advantage in function A. 

 

 

 

 
 

Figure A.5: Asymmetric Spillovers Case; spillovers in function A only 
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Appendix 4: Data 

 

In this appendix, we provide information on the main dataset used in the empirical analysis. There are two 

main datasets, both from the Bureau of Labor Statistics: (i) the Quarterly Census of Employment and 

Wages (QCEW); (ii) the Occupational Employment Statistics (OES). We describe the main properties of 

each dataset in turn. 

 

Quarterly Census of Employment and Wage 

The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of 

employment reported by employers covering more than 95 percent of U.S. jobs available at the county, 

Metropolitan Statistical Area (MSA), state and national levels by detailed industry. Additional information 

on the QCEW is available online at https://www.bls.gov/cew/overview.htm.14 

In accordance with the BLS Confidentiality policy, data reported under a promise of confidentiality 

are published in a way so as to protect the identifiable information of respondents. BLS withholds the 

publication of UI-covered employment and wage data for any industry level when necessary to protect the 

identity of employers. Totals at the industry level for the states and the nation include the undisclosed data 

suppressed within the detailed tables without revealing those data. Therefore, to limit the number of missing 

values, we use States as our geography instead of Metropolitan Statistical Area (MAS) or counties.  

At the State level, the QCEW program publishes employment down to the 6-digit NAICS industry 

level. It also produces data on establishments and employment stratified by size of establishment for the 

first quarter of each year. In some case, imputed values create significant gaps in otherwise continuous 

levels of employment. We fill in the gaps in the data using linear interpolation (and extrapolation). About 

15 percent of the observations are imputed.  

For the analysis, we restrict our attention to years 1990 to 2019 (all the years using NAICS) to 

minimize the impact of industry reclassification on our results. We also remove industries in the 

“Farming” (NAICS 11), “Mining, Quarrying, and Oil and Gas Extraction” (NAICS 21), Utilities (NAICS 

22), “Other Services” (NAICS 81) and “Public Administration” (NAICS92) sectors, as well as industries 

that contain the word “other” in their names. 

 

 
14 For our purpose, the QECW data is preferable to similar data from the Census’ County Business Pattern data 
because it contains much less top coded entries. The correlation between the two dataset is 0.8. The “low” 
correlation is likely due to the imputation required to use CBP. While CBP has more data, imputation introduces a 
lot of noise. 
 

 

https://www.bls.gov/cew/overview.htm
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Occupational Employment Statistics 

The Bureau of Labor Statistics’ Occupational Employment Statistics (OES) program is the only 

comprehensive source of regularly produced occupational employment and wage rate information for the 

U.S. economy. It produces employment estimates annually for over 800 occupations. These estimates are 

available for the nation as a whole and for individual States; national occupational estimates for specific 

industries are also available. Additional information on the OES can be found online at 

https://www.bls.gov/oes/oes_emp.htm. 

Beginning in year 2000, the OES survey began using the Office of Management and Budget 

(OMB) Standard Occupational Classification (SOC) system. For that reason, we limit the analysis to 

years 2000 to 2019. As was the case for the QCEW, we fill in gaps in the data using interpolation (about 

11 percent of the data is imputed) and drop occupations that contain “other” in their title. 

 

 

 

https://www.bls.gov/oes/oes_emp.htm
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