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1. Introduction

The economics profession has long been male-dominated. The Committee on the Status

of Women in the Economics Profession (CSWEP), a standing committee of the AEA since

1971,1 has been regularly documenting the progress of female economists (or lack thereof):

see Chevalier (2020). This phenomenon has recently received renewed attention, possibly due

to the very slow progress attained in the last 25 years. The top panel of Figure 1 shows that,

while in this time span the fraction of women in undergraduate majors increased to almost

40% in the top-20 schools, the fraction of women PhD students has been flat at around

30%. More troubling, perhaps, is the middle panel, which shows that, among assistant

professors—i.e. the intake for the academic career—the fraction of women has been flat at

around 22% since 1994. The bottom panel shows a striking difference between schools with

and without a PhD program, with the latter hiring over 40% of female tenure-track faculty

while the former below 30%, and with the top-10 schools only 20%. In sharp contrast, the

share of women among teaching faculty is quite uniform across schools at around 37%.

This lack of progress is puzzling given the initiatives aimed at increasing female represen-

tation in the economics profession over the past several decades. Many of these interventions

are however informed by existing theories of discrimination, such as taste-based and statis-

tical discrimination, implicit bias, and stereotyping, which we review in Section 7. From this

perspective, recent empirical evidence may suggest that efforts to remove such sources of

discrimination or bias have only partially succeeded. For instance, Card, DellaVigna, Funk,

and Iriberri (2020) documents that acceptance rates for women-authored papers is lower

conditional on quality (proxied by future citations); Sarsons (2017) and Sarsons, Gërxhani,

Reuben, and Schram (2021) show that female coauthors tend to receive less credit for pub-

lished papers that are joint with male coauthors; Dupas, Modestino, Niederle, and Wolfers

(2021) document a bias against female presenters in economics seminars. Large differences

in women representation exist across fields, however (e.g. Chari and Goldsmith-Pinkham,

2018), which would then suggest that gender-bias is more prominent in some economic fields

than others.

The present paper provides a different perspective on these empirical findings, which

suggests alternative policy approaches to addressing gender imbalance. We propose a novel

theory that is consistent with the empirical evidence above but that does not depend on

stereotypes or gender discrimination, whether taste-based or statistical. In our model, gen-

der imbalance is due to the combination of self-image bias, i.e. the tendency of individuals

1See https://www.aeaweb.org/about-aea/committees/cswep/about.
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Figure 1: Percentage of Women in Academia
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to place more weight on their own positive attributes when judging others, and mild pop-

ulation heterogeneity in equally-valuable research characteristics. Both assumptions have

strong empirical and experimental support, as we discuss below. Our model, which we cali-

brate to the data, explains why female under-representation persists in the long run—even

when reviewers apply gender-neutral criteria to evaluate others’ work—and why this phe-

nomenon is especially concentrated in research-oriented institutions, and differs across fields.

In addition, our mechanism predicts that women are held to higher standards and their con-

tributions are valued less than men in co-authored work, notwithstanding gender-neutral

evaluation criteria. From a normative standpoint, our model suggests different interventions

to promote gender balance and reduce talent loss, as discussed in the concluding section.

To be clear, we do not suggest that outright gender discrimination does not exist in

academia. However, our paper identifies a subtle, yet powerful, mechanism that can per-

petuate a bias against an initially underrepresented group even if other forms of bias or

discrimination are eliminated. This calls for policies that are not just “gender-blind,” but

instead aim at achieving gender balance and preserving a diversity of talents in the profession.

Our model features overlapping generations of agents that belong to one of two groups,

labelled M and F . A new cohort of young M - and F -researchers appears in every period,

in equal proportions. Each researcher is endowed with a set of characteristics. Examples

of such characteristics include research approach (e.g. empirical or theoretical), methodol-

ogy (e.g. structural versus reduced form), field, topic, type of questions asked, depth vs.

breadth, writing style, ties to reality, policy relevance, and so on. Research characteristics

are randomly distributed in the population of young researchers, with some of them slightly

more common in the F -group and others symmetrically slightly more common in the M -

group. As in the data, we let between-group heterogeneity be far smaller than within-group

heterogeneity. Moreover, all research characteristics are equally valuable: each has the same

positive effect on the likelihood of quality research (i.e., that which achieves its objectives).

This implies the distribution of the likelihood of quality research in the M and F populations

is the same. We emphasize that we do not make any assumptions about the origins of these

distributional differences, which can very well be socially determined, but only that some

mild differences exist, as documented in the empirical evidence discussed below.

We assume that the quality of a young researcher’s output is objective and observable.

However, each young researcher who has produced quality work must also be evaluated

by a randomly matched member of the established population. This evaluator (hereafter,

referee) decides whether or not to accept the young researcher as a member of the estab-

lished population—and thus as a referee of future cohorts. Each referee’s perceptions of
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young researchers’ output reflect self-image bias (Lewicki, 1983): evaluators use their own

characteristics as yardstick to assess others’ research. Importantly, the referees’ evaluation

is group-neutral: each given referee uses the same set of research characteristics to assess

young M and F researchers. If the referee’s evaluation is positive, the latter becomes a

recognized, permanent member of the population; otherwise, he or she leaves the model.

We first show that when research is evaluated on a large number of characteristics,

the combination of self-image bias and even mild between-group heterogeneity generates

a persistent bias that favors young researchers who belong to the group that is initially

larger, say the M -group. Moreover, there is no convergence. While researchers from the

F -group are also successful, not only are they a minority: they are endogenously selected

to be the ones whose research characteristics are closer to the ones that are more prevalent

among M -researchers; this perpetuates the bias forward. Intuitively, it is as if the initially

largerM -group decided for society which characteristics are important and worthy of reward,

and which are not, despite the fact that all research characteristics are equally conducive to

quality research. Thus, valuable characteristics that are (mildly) more common among the

F -group, but also very common in the M -group, are vastly underrepresented in the steady

state. This implies a persistent loss of talent and knowledge, and a sub-optimal steady state.

Our model thus features gender-blind evaluations, and yet M -researchers are more likely

to meet with the approval of the profession than F -researchers who are their equal in terms

of objective quality. In this sense, the “bar” for F -researchers is higher, consistently with

the evidence in Card et al. (2020) that women-authored papers are accepted less frequently

conditional on quality (proxied by future citations).2 Similarly, while our model does not

explicitly allow for co-authorships, its basic force helps explain why female coauthors tend

to receive less credit for published papers that are joint with male coauthors (Sarsons, 2017;

Sarsons et al., 2021). In the online appendix we show that when coauthored work reflects

the characteristics of both M and F coauthors, but referees are unaware of each coauthor’s

characteristics, then conditional on their joint work being accepted, the expected objective

quality of the M -coauthor increases more than the one of the F -coauthor. Intuitively, the

referees’ population mostly reflects the characteristics of the M -group and thus the positive

characteristics of joint research are mostly ascribed to those of the M coauthor. Finally, self-

image bias implies that M and F researchers cluster around types whose characteristics are

(mildly) more common in their own groups, explaining differences in women representation

across fields (e.g. Chari and Goldsmith-Pinkham, 2018).

2The evidence in Card et al. (2020) is more nuanced and we discuss it in Section 5. This “higher bar” for
F -researcher is also evident in the empirical finding that female presenters are subject to more frequent and
more hostile questioning than “equivalent” male presenters in economics seminars (Dupas et al., 2021).

4



Gender imbalance and loss of talent are exacerbated by candidates’ career concerns. We

extend the model to allow young agents from both groups F and M to choose whether to

pay a cost to become researchers, or enjoy an outside option. Anticipating a bias against

their research characteristics, the mass of F -agents who pays the cost shrinks over time,

and eventually converges to a smaller fraction of “applicants” than their M counterparts. If

costs are sufficiently high, characteristics (mildly) more common in the F -group disappear

altogether. This intuitive result can help explain why the applications of women to PhD

programs in Economics are low to start with.

Gender imbalance is also exacerbated by institutions’ hiring practices. In a second exten-

sion, we assume that hiring institutions bear a cost to hire a young researcher, and receive

a payoff from hiring those who later become recognized members of the profession. Such

payoff may be in terms of visibility, recognition, grant money, and so forth. Crucially, insti-

tutions anticipate that new hires’ research will be reviewed by established scholars who are

affected by self-image bias. For this reason, hiring institutions skew the distribution of their

hires towards characteristics more prevalent in the M -group and thus exacerbates the loss

of talent. This result may explain why “the share female [sic] falls as the research intensity

of the department increases (e.g. from top 20 to top 10)” (Chevalier, 2020, p. 15) as shown

in the bottom panel of Figure 1. Indeed, consistently with this interpretation, we see little

difference in the female share of teaching faculty.

In a further extension, in the online appendix, we allow for different levels of seniority for

established researchers. Senior researchers evaluate junior researchers, and both senior and

junior researchers evaluate new entrants. This mimics the career dynamics in academia. Our

results about the persistent bias in hiring carry through. Moreover, under suitable parameter

configurations, there is a “leaky” pipeline (cf. Chevalier, 2020): senior researchers are even

more biased towards characteristics prevalent in the M -group than junior researchers.

We finally investigate the impact of some policy actions. We first investigate the impact

of mentorship. We assume that young researchers are matched with random advisors from

the set of established researchers. Given self-image bias, advisors advise young researchers to

become like them; young researchers can do so by paying a cost that increases in the distance

between them and their advisors. We show that, while mentorship may help reduce (but not

necessarily eliminate) gender imbalance, it also accelerates the loss of F−group character-

istics. Intuitively, mentors are drawn from the dominant population, which over-represents

M−group characteristics. Thus, young M -researchers have lower costs of switching than

F -researchers, on average. Moreover, since referees are drawn from the same dominant pop-

ulation, young F researchers may find it profitable to adopt their mentors’ characteristics,
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but they also give up their own characteristics. This exacerbates the loss of talent.

We then consider the impact of affirmative-action policies. Specifically, we consider a

mandate to accept the same number of F researchers as M researchers each period. Clearly,

such policy mechanically leads to gender balance. However, we also find that such a policy

additionally ensures that all characteristics are represented in the limit: thus, qualitatively,

there is no loss of talent. Intuitively, increasing the F -group representation by mandate also

increases heterogeneity in the future pool of referees, which in turn makes it more likely that

research characteristics (mildly) more prevalent across F researchers will be accepted.

Our results depend on two main assumptions: mild heterogeneity in research character-

istics between M researchers and F researcher, and self-image bias, i.e. the tendency of

reviewers to use their own research style to judge the importance and worth of others’ re-

search output. Both assumptions are grounded in the empirical and experimental literature.

First, there is a considerable body of research studying gender differences in personality

traits, preferences, and attitudes. Regarding personality traits, Hyde and Linn (2006) reviews

the literature and concludes that medium-sized effects are found for aggression (Cohen’s d

between 0.40 and 0.60) and activity level in the classroom (d = 0.49)3. Similarly, Hyde (2014)

reports the following d statistics of gender differences in the “big-5 personality traits,” earlier

studied by Costa, Terracciano, and McCrae (2001): among US subjects, there are small-

to-moderate differences in neuroticism (d = −0.40), extraversion (d = −0.21), openness

(d = 0.30) and agreeableness (−0.31), but a trivial difference in conscientiousness (d =

−0.05). Within economics, Croson and Gneezy (2009) provide a review of the experimental

literature and find “robust differences in risk preferences, social (other-regarding) preferences,

and competitive preferences.” Borghans, Golsteyn, Heckman, and Meijers (2009) also find

differences in risk aversion, but less so on ambiguity aversion. Dittrich and Leipold (2014)

find that women tend to be more patient than men, and Dreber and Johannesson (2008)

that males are more likely to lie in order to secure a monetary gain; see also Betz, O’Connell,

and Shepard (1989). Goldin (2014) discusses the higher gender pay gap in professions where

“working long hours” is rewarded, and suggests a (possibly socially determined) preference

for flexible work hours on the part of women.

As mentioned, we do not need to take a stand on the origins of these (small) distribu-

tional differences. Indeed, the evidence suggests that many of the traits for which a gender

difference exists may be socially determined—they are the result of cultural attitudes and

gender stereotyping. Guiso, Monte, Sapienza, and Zingales (2008) argue that gender dif-

3Cohen (2013)’s d measures the standardized mean difference between two populations. d ≈ 0.2 is
considered “small” and d ≈0.5 is considered “medium.”
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ferences in math scores across countries, as measured by the PISA assessment, are largely

explained by broad measures of gender equality in those countries. Falk, Becker, Dohmen,

Enke, Huffman, and Sunde (2018) document variation in preference traits across 76 coun-

tries and find that women are more risk-averse than men in most countries; however, for

trust and patience, the correlation with gender is only significant for a subset of countries.

This suggests that cultural factors may partly account for gender differences in preference

traits. Andersen, Ertac, Gneezy, List, and Maximiano (2013) provide experimental evidence

indicating that the gender gap in competitiveness does not arise in a matriarchal society.

The second important assumption of our model is researchers’ self-image bias. The

psychological literature on self-image bias (Lewicki, 1983) suggests that, when evaluating

others, individuals tend to place more weight on positive attributes that they themselves

possess (or believe they possess). Hill, Smith, and Hoffman (1988) show that this is true in

particular when subjects are asked to select a partner in a competitive game. Dunning, Perie,

and Story (1991) argue that a similar principle is at work when judging social categories

by means of prototypes (e.g., what makes a good economist?): “people may expect the

‘ideal instantiation’ of a desirable social category to resemble the self in its strengths and

idiosyncracies” (p. 958). Story and Dunning (1998) document a “rational” source for self-

image bias and self-serving prototypes: in their experiment, “those who received success

feedback came to perceive a stronger relationship between ‘what they had’ and ‘what it

takes to succeed’ than did those who received failure feedback” (p. 513). Translated to

our environment, established researchers view their personal success in research as evidence

that their own research characteristics are the right ones to produce quality research that,

in addition, is valuable to society. Hence, they use the same characteristics to evaluate the

research of others.

Our assumption that referees accepts young researchers who are similar to them can also

be due to referees’ preferences (e.g. theorists like theorists, and empiricists like empiricists).

However, this interpretation must be subject to two caveats. First, referees’ preferences

do not take group membership into account; thus, even this “homophily” interpretation

of our model differs from Becker’s taste-based theory of discrimination. Moreover, in this

interpretation, referees do not value heterogeneity (e.g., theorists derive no benefit from

interacting with empiricists, and conversely), nor the candidate’s objective productivity.

That is, they completely disregard the benefits that would accrue to a department—or, in

fact, from the profession as a whole—from advancing a productive young researcher who

however does not share their own characteristics. This strikes us as extreme.
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Figure 2: Symmetric Distribution of Research Characteristics

2. The Basic Model

We consider an overlapping-generations model in which unit masses of two groups of young

researchers, the M -group and F -group, appear at discrete times t = 1, 2, . . .. Each researcher

i ∈ M∪F is endowed with a type drawn from a set Θ, and distributed heterogeneously across

M and F researchers. While systematic, these distributional differences may well be small.

Research output fully reflects the researcher’s type; in fact, we assume that the characteristics

of a paper written by a researcher of type θ are θ itself.

We adopt a simple symmetric environment in which each type corresponds to a vector of

N characteristics which can only take two values, 0 and 1: that is, Θ ≡ {0, 1}N . (see online

appendix for a more general case.) For each agent i of type θi ∈ Θ, θin denotes the value of

the n-th characteristic. The number N of characteristics is even, characteristics are mutually

independently distributed, and their distributions depend on a single parameter φ > 0.5. Our

main assumption, illustrated in Figure 2, is that characteristics are distributed symmetrically

in the M and F population, in the sense that for n = 1, . . . , N
2
, Pr(θin = 1) = φ for M -

researchers and Pr(θin = 1) = (1−φ) for F -researchers, and the opposite for n = N
2
+1, . . . , N .

For every θ ∈ Θ, let pθ,f (resp. pθ,m) denote the fraction of types in the F (resp. M)

population of young researchers. Also let pg = (pθ,g)θ∈Θ for g = f,m. To sum up,

pθ,m =

N/2∏

n=1

φθn(1−φ)1−θn ·
N∏

n=N/2+1

(1−φ)θnφ1−θn , pθ,f =

N/2∏

n=1

(1−φ)θnφ1−θn ·
N∏

n=N/2+1

φθn(1−φ)1−θn .

(1)

We model each characteristic as a desirable research attribute, which makes it more likely

for the researcher to produce quality research. “Quality” research is one that achieves its

stated goals—estimating a parameter of interest, establishing a causal effect, documenting

a phenomenon experimentally, or proving a theorem. We assume that whether a research
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paper achieves its goals is observable and can be objectively determined; this may involve,

for instance, checking a formal argument regarding a theoretical claim or the application of

a statistical procedure, evaluating an experimental procedure for possible biases or ambigu-

ities, or ensuring that the formal results are clearly explained and interpreted, and that the

contribution is correctly placed within its literature.

Again, we adopt a simple symmetric specification: we fix γ0 ∈ (0, 1), ρ ∈ [1, 1
γ0
], and

assume that type θ = (θn)
N
n=1 writes a quality paper with probability

γθ ≡ γ0 ρ
1
N

∑
n θn . (2)

Thus, γ(0,...,0) = γ0, and the probability of producing quality research depends solely on

the number of 1’s in
∑

n θn, with the maximum attained for γ(1,...,1) = γ0 ρ ∈ [γ0, 1]. A

young scholar with many desirable characteristics is more likely to produce quality research

than another scholar with fewer desirable characteristics. Still, even scholar type (0, . . . , 0)

has probability γ0 > 0 to produce quality research, perhaps by sheer luck. The parameter

ρ reflects the relative impact of characteristics on the probability of producing “quality”

research. If ρ = 1, for instance, then all types produce quality research with probability γ0.

If ρ = 4, instead, it means that the best researcher (1, . . . , 1) is four times more likely to

produce quality research than the worst researcher, (0, . . . , 0).

To sum up, the free parameters in our model are φ, γ0, ρ, and N .

2.1. Objective Refereeing

This section studies a benchmark system where the evaluation by established scholars is

objective and only certifies whether the research is of sufficient quality or not. Since each

young scholar with type θ produces quality research with probability γθ, given in (2), this is

also the probability with which the research is “accepted” by referees.

For every type θ ∈ Θ, let aθ,mt and aθ,ft denote the mass of young researchers of group M

and, respectively, group F of type θ that produce quality research and are thus “accepted”

at the end of period t:

aθ,gt = γθ · pθ,g, g ∈ {f,m}. (3)

Denote the total mass of accepted young researchers by at =
∑

θ∈Θ
∑

g∈{f,m} a
θ,g
t .

Denote λθ,g
t the mass of established researchers of type θ and group g at time t. We

normalize the initial mass of all established researchers to one:
∑

θ

∑
g λ

θ,g
0 = 1.4 In order

4 The fact that the total mass of established scholars (a stock) equals the mass of young M and F
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to keep the mass of referees constant, we assume that each young agent whose research is

accepted replaces a randomly drawn established one. This is not necessary for the results

but keeps the analysis balanced. As we discuss in Section 2.2. below, this assumption is also

geared towards maximizing the impact of young researchers on the evolution of the system.5

The resulting dynamic is then described by the following equation:

λθ,g
t = (1− at)λ

θ,g
t−1 + aθ,gt , g ∈ {f,m}. (4)

The limiting behavior of this system is readily characterized. First, initial conditions

have no long-run effect. Eq. (3) shows that aθ,gt is time-invariant for g ∈ {f,m}; hence, so
is aθt , and therefore at. Then, dropping time indices, for g ∈ {f,m},

λθ,g
t = (1− a)λθ,g

t−1 + aθ,g = (1− a)tλθ,g
0 + aθ,g

1− (1− a)t

a
→ aθ,g

a
(5)

so the limiting fraction of M - to F -researchers is
∑

θ a
θ,m

∑
θ a

θ,g
=

∑
θ γ

θpθ,m∑
θ γ

θpθ,f
.

Second, in our symmetric model, for every type θ = (θ1, . . . , θN), there is a corresponding

type θ̄ = (θN/2+1, . . . , θN , θ1, . . . , θN/2) such that pθ,m = pθ̄,f and γθ = γ θ̄; hence, the above

fraction equals 1. This establishes the main result of this section: regardless of initial

conditions, the system converges to equal shares of M and F established researchers, and

the limiting type distribution is fully characterized by the probability of producing quality

research and the relative frequency of each type in the population of young researchers.

Proposition 1 In the benchmark model with objective refereeing, regardless of the compo-

sition (λθ,m
0 , λθ,f

0 )θ∈Θ of the initial population of established researchers, we have

λθ,m
t → γθpθ,m

a
, λθ,f

t → γθpθ,f

a
, and

∑
θ λ

θ,m
t∑

θ λ
θ,f
t

→ 1.

2.2. Refereeing with Self-Image Bias

Our main model differs from the benchmark in Section 2.1. in that established researchers

(referees) not only evaluate young researchers on whether their research is of sufficient quality

researchers (flows) is of course not realistic, but immaterial for our analysis. Normalizing the stock of
established researchers to any positive number K yields the same predictions.

5We also considered a similar model with a fix retirement rate of existing researchers to be replaced
by cohorts of hired young researchers. The results are similar. The assumption in the text has one less
parameter and it is more favorable to an eventual convergence to group balance.
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(as in previous section), but they also use their personal research styles to guide their subjec-

tive judgement as to the “importance” or “relevance” of the candidate’s output. Specifically,

each young researcher i ∈ M ∪F of type θi is now randomly matched to a referee r, who uses

his or her own characteristics θr to evaluate agent i’s work. Importantly, evaluation is anony-

mous and group-blind: it depends solely upon referee r’s own type θr and the characteristics

of researcher i’s output, which by assumption coincides with his of her type θi.

Consistently with self-image bias, referee r rejects applicants whose type is far from

his/her own set of characteristics. We make in fact a stark assumption: referee r has a

positive view of young agent i’s research if and only if θr = θi. (We relax this assumption in

the on-line appendix.) If agent i’s output is positively evaluated, i becomes an established

researcher, and will serve as referee for future cohorts of young researchers.

As in previous section, each young researcher who enters the population of established

researchers randomly replaces an existing one. This assumption is the most favorable to

young researchers; in particular, if the initial referee population is predominantly made of

M -researchers, this assumption makes it easier for the dynamics to “push out” old M -

researchers and replace them with young F -researchers. In other words, this assumption is

most conducive to attaining group balance in the limit.

Let λθ
t = λθ,f

t + λθ,m
t be the total mass of established researchers of type θ at time t; also

let λt = (λθ)θ∈Θ. Retaining the notation of Section 2.1., the dynamics for the mass of young

researchers of type θ and group g that are accepted in round t is

aθ,gt = γθ · λθ
t−1 · pθ,g. (6)

Importantly, whether a young researcher is accepted or not depends solely on the type θ,

and not also on the group g. As in Equation (4), the total mass of established researchers

of type θ and group g is given by

λθ,g
t = λθ,g

t−1 (1− at) + aθ,gt (7)

where as above at =
∑

θ

∑
g a

θ,g
t . Equations (6) and (7) indicate that there are two forces

at play. On one hand, the distribution of incumbent types impacts which research charac-

teristics are likely to be positively evaluated by referees. On the other hand, even among

incumbents, types that are more likely to produce quality research tend to be more prevalent.

As we shall demonstrate, the interplay of these two forces determines whether the system

ultimately attains the first-best outcome in Section 2.1., or if instead an inefficient outcome,

characterized by group imbalance, is reached.
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2.3. Type Dynamics

We begin by studying the evolution of the mass of each type in the population. The following

proposition identifies the types that can potentially survive (i.e. have positive mass) in the

limit. All other types vanish over time.

Proposition 2 Only three types can potentially survive in the limit: either

(i) the types most prevalent across M and, respectively, F researchers,

θm = (1, . . . , 1, 0, . . . , 0) and θf = (0, . . . , 0, 1, . . . , 1); or (8)

(ii) the type most likely to produce quality research,

θ∗ = (1, . . . , 1). (9)

Types θm and θf have frequency φN ; type θ∗ has frequency φN/2(1− φ)N/2, and is thus less

prevalent among both M and F researchers.

Proof: This and all subsequent results are proved in the Online Appendix.

Not all three types can survive simultaneously. Except for knife-edge parameter choices,

either θ∗ dominates in the limit and all other types (including θm and θf ) disappear, or

θm and θf dominate (and θ∗ disappears). Thus, one of the two forces at play—the initial

distribution of types and the likelihood of producing quality research—eventually prevails.

In the next proposition, recall that the parameter ρ measures the impact of research

characteristics on the probability of producing quality research (see equation (2)).

Proposition 3 Let λ̄θ = limt→∞ λθ
t for all θ ∈ Θ and

ρ̄(φ,N) =
1

4

((
1− φ

φ

)N/2

+

(
φ

1− φ

)N/2
)2

. (10)

(a) If ρ < ρ̄(φ,N), then only types θm and θf survive in the limit. In addition, if at time

0, all referees are in the M -group with λ0 = pm, then

λ̄θm =
φN

φN + (1− φ)N
>

1

2
; λ̄θf = 1− λ̄θm . (11)

(b) If ρ > ρ̄(φ,N) then, regardless of the distribution of time-0 referees, only type θ∗

survives in the limit.
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In part (a), the impact of research characteristics on the probability of producing a quality

paper, which is a function of ρ, is comparatively small. In this case, the dynamics of the

system are driven primarily by the initial conditions and the flows of young researchers. In

particular, if all referees are initially in the M -group, then in the limit M -researchers will

represent the majority—despite the fact that an equal mass of young M and F researchers

enters the model in every period, and that the research characteristics of both types are

equally conducive to quality research.

Interestingly, even type θ∗ disappears in this scenario, despite the fact that such type

has all desirable research characteristics. For instance, when a young researcher of type θ∗

is matched with a referee of type θm, the latter “disapproves of” the θ∗ traits from N/2 + 1

to N , even if they are objectively desirable. Similarly, a referee of type θf “disapproves of”

characteristics from 1 to N/2. To interpret, recall that research characteristics may also

include e.g. research topics or methodologies. More generally, the nature of self-image bias

is exactly that each reviewer considers his or her traits as the important ones, and discounts

the other ones.

Part (b) characterizes a more “meritocratic” scenario in which research characteristics

significantly improve the odds of producing quality research. In this case, regardless of the

initial conditions, the system reaches an efficient steady state in which all researchers possess

every research characteristics—regardless of their group. Self-image bias is still at work in

this scenario, but each characteristic is important enough that, over time, referees themselves

will tend to possess more and more of them, and hence select in a “virtuous” way.

Taken together, parts (a) and (b) show that our simple symmetric model is capable of

generating both long-run outcomes that are affected by group imbalance, as well as meri-

tocratic and balanced outcomes. The next corollary shows that, however, that irrespective

of parameter values, if the number N of research characteristics is large enough, the bi-

ased outcome in part (a) of Proposition 3 will prevail—even if between-group differences are

arbitrarily small (i.e. if φ is close to 0.5):

Corollary 1 For any φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
), if λ0 = pm, then

1. there exists N large enough such that outcome (a) of Proposition 3 realizes;

2. as the number of characteristics N → ∞, λ̄θm → 1.

Thus, if the number of research characteristics is large and the M–group dominates the

initial population, its most prevalent type θm will dominate in the steady state. Informally,
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M -researchers effectively determine on behalf of society that the only important research

characteristics are their own. It follows that F -researchers have no chance to grow to equality,

even without any explicit bias against them.

2.3.1. Higher “Bar” for F -researchers

If the initial population of referees is entirely from the M group, a basic force in our model

implies that young researchers from the F group are, in a sense, held to a higher standard.

Recall that, in our parameterization of objective quality γθ, all characteristics are equally

important. Now consider the set of all types θ that possess exactly L characteristics. All

such types have the same objective productivity, independently of group membership. Fur-

thermore, the same mass of young researchers in the M and F groups possesses exactly L

characteristics. Yet, if the referees are initially all from the M group, the mass of accepted

M -group researchers of such types is always at least as large as for the F group. This is true

even if parameters are consistent with the “meritocratic” regime.

Proposition 4 Assume that initially λ0 = pm. For every L ∈ {0, . . . , N} and t > 0, the

acceptance rate of M -researchers of quality L is higher than the one of F -researchers of the

same quality: ∑

θ:
∑

n θn=L

aθ,mt ≥
∑

θ:
∑

n θn=L

aθ,ft

and the inequality is strict if there is θ ∈ Θ with
∑

n θn = L and θn 6= θN+1−n for some n.

That is, in aggregate, it is easier for young M -researchers researchers to be accepted

than for F -young researchers, controlling for objective quality—the number of desirable

characteristics
∑

n θn = L. This is in line with the cited evidence in Card et al. (2020)

that, conditional on quality (proxied by citations post-publication) women-authored papers

tend to be accepted less frequently than men’s.6 Indeed, the following Proposition shows

that accepted F -researchers are of higher quality than accepted M researchers, on average,

for the case N = 2. Based on extensive numerical exploration, we conjecture the same

conclusions to hold for arbitrary N—but we are unable to prove this at this time.

6 Card et al. (2020) also show that, unconditionally, men- and women-authored papers are equally likely
to be accepted. The model in this section does not generate this finding: summing over L = 0, . . . , N in
the displayed equation of Proposition 4, one readily sees that young M researchers are more likely to be
accepted on average. The model with endogenous choice in Section 5. yields more uniform unconditional
acceptance across genders, and fewer female acceptance overall due to self-selection.
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Proposition 5 (i) Let N = 2. The average quality of accepted F -researchers is higher

than the one of accepted M -researchers:

E[L|f, accepted] =
∑

θ

Lθ wθ,f
t >

∑

θ

Lθ wθ,m
t = E[L|m, accepted] (12)

where Lθ =
∑N

n=1 θn is the quality type θ (i.e. its number of 1’s in θ), and

wθ,g
t =

aθ,gt∑
θ′ a

θ′,g
t

(ii) As t → ∞ the average quality of both F and M converges to either N/2 = 1 if only

θm and θf survive in the limit, or N = 2 if only θ∗ survives in the limit.

The intuition builds upon Proposition 4. With N = 2, referees accept the same mass of

M and F researchers of types (0, 0) and θ∗ = (1, 1). However, among types with Lθ = 1

(that is, θm and θf ), since established researchers are predominantly from the M group, type

θm is accepted more frequently than θf . But this type is more common among young M

researchers than among young F researchers. Thus, overall, more M -researchers of quality

L = 1 are accepted. This implies that the relative frequency of type θ∗ = (1, 1) is higher

among accepted F -researchers than accepted M -researchers. This turns out to imply that

the average quality of accepted F -researchers is higher.7

2.3.2. Group Imbalance in the Limit

Proposition 3 mostly concerns the distribution of researcher types irrespective of their group.

In the Online Appendix we analyze in detail how the mass of each type θ evolves among M -

and F -researchers separately, and also characterize group (im)balance in the limit. Here we

report the main result about group imbalance.

Proposition 6 Assume that all referees are initially from the M -group with λ0 = pm.

(a) If ρ < ρ̄(φ,N), then the total mass of M and F researchers are

Λ̄m = 1− Λ̄f =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N
+ 2

(
φ

1−φ

)N > 0.5. (13)

7The argument above is incomplete because the fraction of accepted type-(0, 0) researchers is also higher
among F rookies than M rookies; the proof of Proposition 5 takes this into account. The same basic forces
are at play with N > 2. However, in this case there are many different intermediate types, and this makes
extending the argument given above non-trivial.
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(b) If ρ > ρ̄(φ,N), then Λ̄m = Λ̄f = 1
2
.

The result in part (a) intuitively follows from the corresponding result in Proposition 3.

Eventually, only θm and θf survive, but θm is more common in the M group than θf . Thus,

the limiting total mass of M -researchers is larger than 0.5. The next corollary illustrates the

limiting case as the number of research characteristics N diverges to infinity:

Corollary 2 For all φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
), if λ0 = pm,

1. there exist N large enough such that case (a) in Proposition 6 realizes;

2. as N → ∞, Λ̄m → 1 and Λ̄f → 0.

This reinforces and refines tho message of Corollary 1: in particular, for all parameter

values, as N increases, the fraction of M -researchers always dominates in the limit, and in

the limit converges to one.

2.3.3. Talent Loss and Clustering

One further implication of our model is that, when self-image bias prevails, the characteristics

n = N/2+1, . . . , N that are more common in the F -group are under-represented in the limit.

Corollary 3 In part (a) of Proposition 6, in the limit,

0.5 =
λ̄θf ,f

λ̄θm,f + λ̄θf ,f
=

λ̄θm,f

λ̄θm,f + λ̄θf ,f
(14)

This result is in stark contrast with θf being the prevalent type in each cohort of young F -

researchers. The selection mechanism makes the type most prevalent among M -researchers,

θm, be a frequent type in the established F -researchers (50% of the time), even if such

type only has (1 − φ)N < 0.5 frequency in the population of young F -researchers. That is,

F−group research characteristics are underrepresented in the limit.

Self-image bias also implies clustering of characteristics and groups. In particular, M -

researchers will be mostly of type θm; in contrast, F -researchers, while a minority, will tend

to be mostly of type θf . Thus, if at least some of the characteristics correspond to research

topics, we conclude that different groups will be relatively more prevalent in different “fields:”
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Table 1: Type Frequencies in a Simple Example

pθm pθf
(0, 0) 0.2× 0.8 = 0.16 0.8× 0.2 = 0.16
θm = (1, 0) 0.8× 0.8 = 0.64 0.2× 0.2 = 0.04
θf = (0, 1) 0.2× 0.2 = 0.04 0.8× 0.8 = 0.64
θ∗ = (1, 1) 0.8× 0.2 = 0.16 0.2× 0.8 = 0.16

Corollary 4 In part (a) of Proposition 6, in the limit, M -researchers are relatively more

frequent as type θm and F -researchers are relatively more frequent as type θf :

λ̄θm,m

λ̄θm,m + λ̄θm,f
=

λ̄θf ,f

λ̄θf ,m + λ̄θf ,f
=

1

1 +
(

1−φ
φ

)N > 0.5; (15)

This results is qualitatively consistent with the evidence documenting large gender differ-

ences across economics topics (see e.g. Chari and Goldsmith-Pinkham (2018)), although it is

too extreme, as women’s frequency never breaks the 50% threshold in economics (although

it does in other areas, such as psychology). This result is also in stark contrast with the case

of meritocracy that is illustrated in Proposition 3(b). In that case, θ∗ prevails in the limit

which generates a symmetric distribution of M and F researchers across characteristics.

3. A Simple Numerical Example

To illustrate the intuition of our model, we first provide a simple example. Consider the case

in which agents have only two characteristics, so N = 2. Thus, we have a set of four types:

Θ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

In the notation of the preceding subsections, θm = (1, 0), θf = (0, 1), and θ∗ = (1, 1).

To characterize the population of young researchers, we choose φ = 0.8. That is, 80%

of M -researchers have characteristic 1, but only 20% have characteristic 2; conversely, 80%

of F -researchers have characteristic 2, but only 20% have characteristic 1. The probability

distributions of types θ are in Table 1. The between-group heterogeneity in this example is

large and not realistic. Our objective in this section is simply to illustrate the patterns that

our model can generate. Section 4. provides a numerical analysis of a more realistic case,

with between-group heterogeneity in line with the data.

We first consider parameters γ0 and ρ for which self-image bias prevails. Specifically, we

let γ0 = 0.2 and ρ = 4. This implies that type θ∗ is twice as likely as types θm and θf to
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produce quality research; in turn, these types are twice as likely as the worst type (0, 0) to

do so. Thus, research characteristics do matter in this scenario; however, it turns out that,

with φ = 0.8, by Proposition 3 self-image bias prevails:

ρ = 4 < 4.51625 = ρ̄(φ,N) =
1

4

((
0.2

0.8

)2/2

+

(
0.8

0.2

)2/2
)2

.

Part (a) of Proposition 3 states that, in the limit, only the two intermediate types have

positive mass. So, in particular, the “best” researcher type (1, 1) disappears in the limit.

Furthermore, if λ0 = pm, then eventually θm = (1, 0) becomes the majority type; specifically,

λ̄(1,0) = λ̄θm =
0.82

0.82 + 0.22
≈ 94%.

As may be expected, correspondingly, established researchers are predominantly M -type in

the limit: from Eq. (13) in Proposition 6, the fraction of M -researchers in the limit is

Λ̄m =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N
+ 2

(
φ

1−φ

)N =
1 +

(
.8
.2

)4

1 +
(
.8
.2

)4
+ 2

(
.8
,2

)2 ≈ 89%.

This is the case despite the fact that an equal mass of young M - and F -researchers appear in

every period, and also despite the absence of any explicitly group-biased evaluation of young

researchers. The result is driven solely by the initial condition and the referees’ self-image

bias. To give a sense of the dynamics of the system at finite times, panel (a) of Figure 3

displays the evolution of the fraction of M - and F -researchers in the population (that is,

Λm
t and Λf

t ) over 100 periods, assuming that all established researchers at time t = 0 are

M -researchers (λ0 = pm) and that pm and pf are as in Table 1.

Panel (b) of Figure 3 shows the average objective quality of accepted F and M re-

searchers, with the former being uniformly higher than the latter. This is consistent with

Proposition 5 and the intuition provided there. Graphically, the two panels of Figure 4 show

the percentage of established F -researchers (left) and M -researchers (right). Concentrating

onM -researchers first, type θm = (1, 0) prevails from the beginning, compared to other types.

As discussed in Proposition 5, this is due to referees being from M -group initially, and thus

oversampling the characteristics (1,0). The opposite is true for the F -researchers. In this

case, the population of successful F -researchers are initially mostly of type θ∗ = (1, 1) (blue

line), with smaller—and equal—masses of types θm = (1, 0) and θf = (0, 1). (The masses

are small in all three cases.) Hence, conditional on being accepted, F -researchers have a

large representation of the best characteristics (1,1) initially, as explained in Proposition 5.
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Figure 3: Fraction of M and F Researchers and Acceptance Rates

(a) M and F researchers (b) Average Quality

Fraction ofM and F researchers (Panel a) and average acceptance rates ofM and F researchers,

i.e.
∑

θ L
θwθ,g

t where Lθ =
∑N

n=1
θn and wθ,g

t = aθ,gt /
∑

θ′ a
θ′,g
t , g = f,m (Panel b). Initially

λ0 = pm.Parameters: φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

Figure 4: Types of Established F and M Researchers

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1), θm = (1, 0),
and θf = (0, 1). Initially λ0 = pm. Parameters: φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

The fact that successful F -researchers have equal mass of types θm and θf should be

contrasted with the fact that φ2

(1−φ)2
= 0.64

0.04
= 16 times as many θf types as θm types appear

among F -researchers in every period. It turns out that this ex-ante difference in the masses

of types θm and θf in the F population is offset by the fact that θm types are much more

likely to be matched with referees of the same type. In our symmetric model, these two

effects exactly offset each other.
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In summary, the system “weeds” out the least productive types θ = (0, 0), but also the

efficient type θ∗ = (1, 1), despite its higher objective quality. Moreover, because the M -

population dominates, and, in this population, characteristic n = 2 is under-represented,

we end up with a self-perpetuating state in which the dominant M -characteristic n = 1 is

over-sampled at the expense of the dominant F -characteristic n = 2.

3.1. Convergence to Efficiency

We now demonstrate how group balance may arise even with an unbalanced initial popu-

lation. We continue to assume that the initial population is M -dominated: λ0 = pm, and

that N = 2 and φ = 0.8. However, we now take γ0 = 0.1 and ρ = 9. Compared with

our previous parameterization, research characteristics now have a greater impact on the

likelihood of producing quality research. For instance, type θ∗ is 3 times as likely to produce

quality research as types θf and θm, who are themselves 3 times as likely to do so as type

(0, 0). Thus, the system is now more “meritocratic.” Now

ρ = 9 > 4.25 =
1

4

(
0.2

0.8
+

0.8

0.2

)2

= ρ̄(0.8, 2),

so Proposition 3 part (b) implies that type θ∗ will dominate in the limit. Figures 5 and

6 illustrate the dynamics. Now the percentage of F -researchers indeed converges to 50%.

Moreover, the system weeds out those researchers that do not possess both characteristics.

Panel (b) of Figure 5 shows that accepted F researchers are of higher quality than accepted

M researchers, as in Proposition 5, until convergence to quality L = 2.

4. Many Characteristics and a Calibration

The previous section illustrated the dynamics and the implicit bias that arises from the case

with only two research characteristics. The bias was evident and extreme when we considered

a large difference in the distribution of each characteristic in the population—we assumed

φ = 0.8, so 80% of young M -researchers and 20% of young F -researchers were endowed with

characteristics 1, while the opposite was true for characteristics 2. The parameter φ can be

easily related to Cohen’s d statistic for an individual characteristic: for n = 1, . . . , N
2
,

d =
E[θin|i ∈ M ]− E[θin|i ∈ F ]

σpooled(θin)
=

2φ− 1√
φ(1− φ)

. (16)

For n = N
2
+ 1, . . . , N , the d statistic is the negative of the above expression. Cohen

(2013) suggests that values of d around 0.2 should be considered “small,” values around
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Figure 5: Fraction of M and F Researchers and Acceptance Rates with More Meritocracy

(a) M and F researchers (b) Average Quality

Fraction ofM and F researchers (panel a) and average acceptance rates ofM and F researchers,

i.e.
∑

θ L
θwθ,g

t where Lθ =
∑N

n=1
θn and wθ,g

t = aθ,gt /
∑

θ′ a
θ′,g
t , g = f,m (Panel b). Initially

λ0 = pm. Parameters: φ = 0.8, γ0 = 0.1, ρ = 9, N = 2.

Figure 6: Types of Established Female and Male Researchers with More Meritocracy

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1), θm = (1, 0),
and θf = (0, 1). Initially λ0 = pm. Parameters: φ = 0.8, γ0 = 0.1, ρ = 9, N = 2.

0.5 “medium,” and values around or above 0.8 “large.” In the example in the previous

section, Cohen’s d statistic for each characteristic then equals

d =
2φ− 1√
φ(1− φ)

=
0.6√
0.16

= 1.5,

which is excessively large for most characteristics likely to be relevant to research activity.

However, Proposition 3 shows that, if the number of characteristics is sufficiently large, such

extreme across-group differences are not required for our conclusions to hold.

21



This section considers a more realistic parametrization of our model. The first issue is

the number of characteristics that lead to quality research and are taken into account by

referees when they evaluate a candidate. We suggest that the number of characteristics

is actually large. The following is but a partial list: (i) Economic motivation; (ii) “Nose”

for good questions; (iii) Institutional knowledge; (iv) Ability to find new data sources; (v)

Solid identification strategy; (vi) Sophisticated empirical analysis; (vii) Clever experimental

design; (viii) Skilful theoretical modelling; (ix) Ability to highlight insights, strategic effects,

etc. (x) Mathematical sophistication, proof techniques, etc. (xi) Ability to position within

the literature; (xii) Ability to highlight policy implications; (xiii) Presentation skills; (xiv)

Ability to address questions from audience; (xv) Honesty;8 and so on. Likely, there are

many others. Perhaps some of these research traits are more important than others, but as

a first pass, it is indeed plausible that the positive or negative result of a review depends

on a combination of research characteristics, and not just a small number. In light of these

considerations, and to be conservative, we assume that N = 10.

The second issue is the magnitude of between-group differences, which depends on the

parameter φ. We set φ = 0.5742, so the implied Cohen’s d is

d =
2× 0.5742− 1√

0.5742× (1− 0.5742)
= 0.3,

This value is considered “small” and in line with the estimated group differences of the

various traits discussed in the introduction.

As for the parametrization of γθ = γ0 ρ
1
N

∑N
n=1 θn , we proceed as follows: First, we assume

the best researchers θ∗ = (1, 1, ..., 1) has 100% probability of producing quality research,

ie. γθ∗ = 1. Second, we calibrate γ0 to match the rate at which economics PhD students

succeed in getting an academic job. We compute the latter from the NSF Survey of Doctoral

Recipients. We take the ratio of economics PhD recipients who are employed in 4-year

educational institutions over the total of economics PhD recipients, both inside and outside

the US.9 That ratio is 0.462. Choosing γ0 = 0.2 yields an objective success rate
∑

θ γ
θ(pθ,f +

pθ,m)/2 = 0.462. Interestingly, the implied ρ = γθ∗/γ0 = 5 entails that researcher N is

objectively five times as productive as researcher 0, which is roughly in line with the evidence

8For instance, some researchers may be more keen to “torture” the data than others, or search for variables
that lead to statistical significance. See e.g. discussion in Mayer (2009) and, on the impact of conflict of
interests on economic research, Fabo, Jancokova, Kempf, and Pastor (2020).

9The 2017 survey is the latest as of the time of this writing and it is available at https://ncsesdata.
nsf.gov/doctoratework/2017/index.html. The total number of economics PhD recipients is 32,000 in
US and 12,750 outside the US. The total number of them working in a 4-year educational institution are
12,750 in the US and 7,900 outside the US. The ratio of economics PhDs who undertake an academic career
is (12,750+7,900)/(32,000+12,750) = 0.462.
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Figure 7: Fraction of M and F Researchers and Acceptance Rates with Ten Characteristics

(a) M and F researchers (b) Average Quality

Fraction of M and F researchers (Panel a) and average quality of M and F researchers, i.e.∑
θ L

θwθ,g
t where Lθ =

∑N

n=1
θn and wθ,g

t = aθ,gt /
∑

θ′ a
θ′,g
t , g = f,m (Panel b). Initially

λ0 = pm. Parameters: φ = 0.5742, d = 0.3, γ0 = 0.2, ρ = 5, N = 10.

on research productivity reported in Conley and Önder (2014).10

The result is in Figure 7. Panel (a) shows that the system converges to a large imbalance

between M - and F -researchers, with F -researchers representing less than 10% of the popula-

tion.11 This large imbalance obtains despite the fact that the distribution of characteristics

is now very similar across M and F types. Panel (b) plots the average quality of accepted F -

and M -researchers, and shows the average quality of the former group is uniformly higher,

although both eventually converge to N/2 = 5. This plot is consistent with Proposition 5

and our conjecture that the result should hold for every N .

5. Endogenous Entry

In this section we extend the model to consider the optimal choice of young researchers

on whether to undertake a research career (Section 5.1.) and the optimal choice of hiring

institutions on whether to hire young researchers (Section 5.2.).

10These parallels with the data should be taken with a grain of salt, given that the data would reflect the
outcome of the model with self-image bias, and not just objective refereeing. On the other hand, we have
more degrees of freedom: recall that we normalized that mass of reviewers to 1, but we can choose another
mass K to match the failure rate from the data. See footnote 4.

11Indeed, inserting φ = 0.5742 and N = 10 in equation (13), the limiting fraction of M researchers is
Λ̄m ≈ 91%, which is where the system converges in Figure 7.
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5.1. Endogenous Choice of Young Researchers

Consider a potential researcher choosing between an academic career and an outside option.

The prospective researcher knows her type θ, and is aware of both the likelihood of producing

quality research, and the evaluation criteria used by the referees. Attempting to pursue

research entails a cost C, which is identical across agents. If the potential researcher is hired

(accepted), he or she receives a payoff of P ; finally, the outside option is normalized to 0.

Thus, the total payoff is P −C if the researcher is hired, and −C otherwise. What types of

agents decide to pay the cost C and thus take their chance with the academic career?

Assume that the entry decision, research activity, and hiring decision all occur at time t.

Then, given the time-t distribution λt = (λθ
t )θ∈Θ of referees’ types, a prospective researcher

of type θ pursues an academic career—“applies”—if and only if

γθλθ
t (P − C) + (1− γθλθ

t )(−C) > 0. (17)

Consequently, the accepted mass of researchers is as follows: for g = f,m,

aθ,gt =

{
γθ · λθ

t−1 · pθ,g if γθλθ
t−1 ≥ C

P

0 otherwise
(18)

λθ,g
t = λθ,g

t−1 (1− at) + aθ,gt (19)

Expression (18) shows that if the mass of type-θ reviewers drops below C
γθP

at time t− 1,

both M and F young type-θ researchers will not apply at date t. From Eq. (19), this

implies that the total mass of such types will decrease, at least weakly, because some type-θ

established researchers will have to retire in order to make room for researchers of other

types who are accepted. In fact, the mass of such types will decrease strictly, except in case

no young researcher wants to apply.

While the dynamics with endogenous entry is considerably more complicated than in the

benchmark case, we prove the following Proposition:

Proposition 7 Assume that at time 0, all referees are from the M -group with λ0 = pm.

(a.1) If ρ < ρ̄(φ,N) and C
P
≤ (1− φ)Nγ0

√
ρ, then the steady state is as in Proposition 3(a).

(a.2) If ρ < ρ̄(φ,N) and (1 − φ)Nγ0
√
ρ < C

P
≤ φNγ0

√
ρ, then only type θm survives in the

limit, i.e. λ̄θm = 1. The limiting mass of M researchers is strictly larger than in (a.1):

Λ̄m = lim
t→∞

∑

θ

λm,θ
t =

φN

φN + (1− φ)N
>

1 +
(

φ
1−φ

)2N

1 +
(

φ
1−φ

)2N
+ 2

(
φ

1−φ

)N . (20)
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(b) If ρ > ρ̄(φ,N) and [φ(1−φ)]N/2 ≥ C
γ0ρP

, then the steady state is as in Proposition 3(b).

In each of the above cases, if λ̄θ = 0, then there is tθ ≥ 0 such that λθ
t = 0 for all t ≥ tθ.

Part (a.1) and (b) of this proposition shows that if the cost C is low enough, then the the

steady state is the same as in the basic model in Section 2. for the same two conditions about

ρ, respectively. This is intuitive. The only difference is that all types other than surviving

ones drop out in finite time, rather than only in the limit.

The interesting new part is (a.2). In this case, the only type that survives in the long-run

is θm, the most prevalent type in theM−population. In particular, θf now disappears. Thus,

the characteristics that are mildly more frequent in the F−population, but also common in

the M -population, eventually disappear. In this case, endogenous entry greatly exacerbates

the loss of talent compared to the base case. Indeed, the total mass of M researchers, Λ̄m,

is now even larger than in its counterpart without endogenous entry, whose expression is in

Eq. (11) in Proposition 3. Thus, if the conditions in part (a.2) are satisfied, the distribution

of established researchers will be even more skewed towards the M group.

Parts (a.1)–(b) do not exhaust all possible cases; for instance, they do not analyze the

possibility that the first condition in part (b) holds, but the second does not—that is, θ∗ is

not willing to apply. The following section illustrates a stark instance of one such possibility.

The proof of the above Proposition in the Appendix provides a general characterization that

can be used to further explore different parametric choices.

5.1.1. Example of Group Imbalance due to Endogenous Entry

We first illustrate how endogenous entry can exacerbate group imbalance, provided the cost

of entry is not too small. Consider the parameterization in Section 4. In our basic model, M -

researchers represent 91% of the overall population in the limit. If we add endogenous entry,

Proposition 7 shows that the steady state either remains the same, if the cost C is sufficiently

low, as in case (a.1), or it becomes even more skewed towards the M group, as in case (a.2).

In the latter case, the limiting fraction of M -researchers is Λ̄m = φN/(φN +(1−φ)N) = 95%.

We now illustrate how endogenous choice may prevent convergence to group balance even

when group balance would in fact attain in the basic model. We use the same parameteriza-

tion as in Section 4., except that the number of characteristics is N = 8 instead of N = 10.

With these parameter values, Proposition 3 part (b) implies that the system will converge

to an equal mass of M and F researchers, because ρ = 5 > 3.61 = ρ̄(φ,N). The solid and
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dashed lines in Figure 8 confirm this.

However, assume now that entry is endogenous; the payoff if a researcher is hired is

P = 1, 000, and the cost of entry is C = 4 (i.e., 0.4% of the payoff of becoming a researcher

over the outside option). Note that these parameters apply equally to M and F researchers.

The key point is that now the efficient type θ∗ (M or F ) does not want to apply at date 0:

λθ∗

0 = pθ
∗,m = φN/2(1− φ)N/2 = 0.3574% < 0.4% =

C

γθ∗P
.

Moreover, type θf (M or F ) does not want to apply either:

λθf

0 = pθ
f ,m = (1− φ)N = 0.1081% < 0.8944% =

C

γθfP
.

On the other hand, type θm (M or F ) does:

λθm

0 = pθ
m,m = φN = 1.18% > 0.8944% =

C

γθmP
.

Therefore, while other types are also willing to apply, type θm will prevail, which will lead to

a severe imbalance between M and F researchers in the limit, as shown in Figure 8. Indeed,

in this case the talent loss is rather severe, as the only surviving type θm = (1, ..., 1, 0, ...0)

has none of the research characteristics that are (mildly) more common in the F−population.

Figure 9 shows that both F and M researchers are of type θm in the long run.

To sum up, even if the basic environment is meritocratic, in the sense that differences in

talents γθ across types are sufficient to lead to group balance, endogenous entry introduces a

bias in favor of M -researchers which leads to an imbalance steady state. In this case, policies

aimed at lowering the cost C can lead to group balance in the long run.

5.1.2. Characterization of the Applicant Pool

Due to variation in the distribution of characteristics, Proposition 7 also has implications

for the mass of young M and F researchers who decide to apply for an academic job:

Proposition 8 For every t, let

Am
t =

∑

θ:λθ
t≥ C

γθP

pθ,m and Af
t =

∑

θ:λθ
t≥ C

γθP

pθ.,f

Then Am
t ≥ Af

t . Moreover, if λθm

0 > C
γ0

√
ρP

> λθf

0 , then Af
t → 1− Λ̄m, where Λ̄m is as in part

(a.2) of Proposition 7.
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Figure 8: Fraction of M and F Researchers with Endogenous Entry

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d = 0.3), γ0 = 0.2,
ρ = 5, N = 8, P = 1000, and C = 4.

Figure 9: Types of Established F and M Researchers with Endogenous Entry

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers with endogenous entry. θm =
(1, ..., 1, 0, ..., 0) dominates; all other types eventually vanish. Parameters: φ = 0.0.5742
(d = 0.3), γ0 = 0.2, ρ = 5, N = 8, P = 1000, and C = 4.

The intuition stems from the fact that when the majority of referees is from the M -group,

it is more likely for an M -researchers to be accepted than for a F -researcher, on average.

Thus, mass of applicants from the M -group is higher than from the F -group.

Figures 10a and 10b show the total masses of M and F applicants and, respectively, the
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Figure 10: Endogenous entry: applicants

(a) M and F Applicants (b) Fraction of F Applicants

Total mass of M and F applicants (left) and fraction of F applicants (right). Parameters:
φ = 0.5742 (d = 0.3), γ0 = 0.2, ρ = 5, N = 8, P = 1000, and C = 4.

percentage of F applicants over the total application pool. The parameter values are the

same as for Figure 8. Consistently with Corollary 8, the mass of M applicants is always

greater than that of F applicants; furthermore, the latter declines over time. The discrete

jumps in these masses occur whenever, for some type θ, the population fraction λθ
t falls

below the cutoff C/(γθP ). In the limit, the fraction of F applicants equals the fraction of F

researchers of the only surviving type θm over the total:

lim
t→∞

Af
t

Am
t + Af

t

=
pθ

m,f

pθm,f + pθm,m
=

(1− φ)N

φN + (1− φ)N
=

0.42588

.42588 + .57428
= 0.0838

Finally, the left panel of Figure 11 shows the total acceptance rates of M and F appli-

cants. In the initial period, the acceptance rates of M and F applicants are similar. They

though diverge in the intermediate period, in which M applicants are accepted more often

than the (fewer) F applicants, and then they finally converge, when only type θm survives.

Interestingly, the right panel shows that the average quality of F researchers is uniformly

higher until the time of convergence. This implies that in the initial period our model pre-

dicts similar acceptance rates of M and F researchers, even if the latter have higher objective

quality. This result is reminiscent of Card et al. (2020), who show that unconditionally, ac-

ceptance rates of men- and women-authored papers are similar, but that the average quality

of accepted women-authored papers, proxied by their future citations, is higher.
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Figure 11: Endogenous entry: Acceptance Rates

(a) Acceptance rate of applicants (b) Average quality

Acceptance rate of M and F applicants (left) and average quality of accepted ones (right).
Parameters: φ = 0.5742 (d = 0.3), γ0 = 0.2, ρ = 5, N = 8, P = 1000, and C = 4.

5.2. Endogenous Selection by Hiring Institutions

The previous section demonstrates that endogenizing the choice of entry into academia may

shrink the supply of talent. We now show that the a similar mechanism operates on the

demand side: when hiring decisions are based on the expectation of academic success, the

anticipation of self-image bias in the refereeing process (Section 2.2.) induces institutions to

hire only those types θ that can produce research that is more likely to be “accepted” by

the established refereeing population.

Consider the following alternative interpretation of our model. When a hiring institution

evaluates a candidate, it takes into account whether or not the candidate will produce quality

work that the profession recognizes, or—in the language of Section 2.2.—“accepts.” A

candidate who is accepted by the profession yields a payoff P to the institution; this reflects

e.g. visibility, grant money, or increased ability to attract top students. Hiring a candidate

involves a cost C, which may be monetary but may also reflect mentoring resources and/or

opportunity cost. This cost is borne by the institution whether or not the candidate is

eventually accepted, and it is the same forM and F researchers. If the candidate is eventually

not accepted or if the institution does not hire any candidate, the institution’s payoff is zero.

As above, a candidate of type θ produces quality work with probability γθ. To analyze

demand effects, we reinterpret the key assumption of Section 2.2. as follows: the hiring

institution anticipates that referees are subject to self-image bias, so that a type-θ researcher

will be accepted by the profession with probability γθ λθ
t at the end of time t.
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Under these conditions, the institution hires an agent of type θ if and only if

γθλθ
t (P − C) +

(
1− λθ

tγ
θ
)
(−C) > 0 (21)

This is the same condition as in Equation (17) in the previous section. Thus, the mass of

established researchers λθ
t follows the system dynamics described by Equations (18) - (19).

Proposition 7 then applies and group imbalance and loss of talent obtains.

Moreover, under the conditions of case (a.2) of Proposition 7, the system converges, in

finite time, to a steady state in which only type θm survives. That is, if institutions only take

acceptance by the profession into account at the hiring stage, type θf eventually disappears,

even when such type would survive without endogenous selection. Again, this implies talent

loss: research characteristics that are (mildly) more common in the F -population disappear.

We can also re-interpret the example in subsection 5.1.1. as a consequence of the hiring

practices of hiring institutions. In the absence of endogenous selection, the parametric choices

in that example lead to group balance, with both types θm and θf being represented in the

limit. However, if institutions wish to hire only young researchers who are sufficiently likely

to be accepted by the current population of referees, then group imbalance emerges, as in

Figure 8. Again, in this example type θf then disappears completely, as in Figure 9.

This mechanism may explain the patterns in Figure 1. From the top panel, the female

representation of undergraduate students with economics major in the top-20 schools has

been rising over the past 25 years, reaching almost 40% by the late 2010s. This shows

interests in economics among female undergraduates. Yet, in the same period, the percentage

of female PhD students has been flat at around 30%, and that of assistant professors has

been flat at around 22%. The bottom panel shows a striking difference between schools with

and without PhD programs: In the latter group, the share of assistant professors is over 40%,

while in the former is below 30%, with the top 10 schools at 20%.12 These differences do not

apply to the female share of teaching faculty, which are around 37% across all schools. This

is consistent with our model: when a school has research as the guiding principle in hiring,

it tends to skew towards the characteristics of established researchers, i.e. θm in our model.

6. The Impact of Policy Action

In this section we discuss the impact of policy actions that have been proposed to address

gender imbalance. Our discussion of endogenous entry, as in e.g. subsection 5.1.1., already

12We use the “top-X schools” terminology as in Chevalier (2020). School names are not reported.
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suggests that, if the cost of pursuing an academic career is the main cause of group imbalance,

then reducing this cost is the appropriate policy response. This corresponds to outreach,

which we discuss in Section 8.. Here we focus on situations in which the cost of entry is

not the main cause of imbalance; instead, self-image bias is—formally, entry is costless, and

ρ < ρ(φ,N) in point (a) of Proposition 6. We consider (i) the impact of mentoring (section

6.1.); and (ii) the impact of affirmative action (section 6.2.).

6.1. The Impact of Mentoring

The adoption of mentoring to improve the prospects of female economists is one of the most

popular proposals. Indeed, there is evidence that mentoring does help increase the success

rate of female economists (Ginther, Currie, Blau, and Croson (2020)). We now investigate

the implications of mentoring in our model.

We assume that at the beginning of each period t every young researcher of type θ is

randomly matched with an advisor a of type θa drawn from the established group, whose

mass is λθa

t−1. Upon matching, the researcher of type θ can choose to pay a cost C(θ, θa) to

“become” the same type of the advisor. Assuming again that P is the payoff from being

hired and U is the utility from an outside option, researcher θ will pay the cost if and only if

γθaλθa

t−1 (P − C(θ, θa)) +
(
1− γθaλθa

t−1

)
(U − C(θ, θa)) > γθλθ

t−1P +
(
1− γθλθ

t−1

)
U

That is, a young researcher θ pays the cost if and only if

C̃(θ, θa) =
C(θ, θa)

P − U
< γθaλθa

t−1 − γθλθ
t−1

In words, the increase in the probability of getting hired must be sufficiently high relative to

the cost of undergoing mentoring. For instance, if the right-hand-side was negative (type θ

is already likely to succeed), nobody of that type would pay such a cost.

We assume that the cost itself depends on the distance between the young researcher’s

type θ and the type of the advisor θa: The larger the distance and the higher the cost,

indicating that it will take a higher effort to “learn” to become a type that is likely to

be hired. Note that such distance may be high as the young researcher θ may have some

characteristics that are desirable from an objective standpoint, but that are not viewed as

important or relevant by the majority of established researchers. The cost, in that case, is

to “unlearn” what is deemed “irrelevant.”

The online appendix contains the details of the system dynamics. For brevity, we only

provide the intuition here. Figure 12 illustrates the dynamics resulting from Eq. (A.29),
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under the same parameters as in Section 4. and a cost function C(θ, θ′) = β
∑N

n=1(θn− θ′n)
2,

with β = 0.075. We choose this cost so that not all of the young researchers want to pay the

switching cost to become like their advisors, which seems plausible. The resulting steady

state is roughly consistent with the percentage of female participation in economics.

Initially, the dynamics are as in the base case, as all θθt are small and thus no young

researcher wants to pay the cost of mentoring. In this dynamics, as we know, θθ
m

t and θθ
f

t

increase, with the former increasing faster, as shown in the in the right panel of Figure 13.

At some point, the mass of λθm

t becomes large enough to induce many young researchers,

both M and F , to pay the mentoring cost, and the system (nearly) jumps. The reason is

that many young researchers now expect that their advisor will likely be of type θm, which

is also the type of established researchers who will evaluate their research. They are thus

happy to pay the cost and become like their advisors.

Figure 13 shows, however, that the mass of young M -researchers jumps by more than

the mass of F -researchers. The reason is that even though the cost function is the same for

M - and F -researchers, young M -researchers are on average closer to θm and thus have have

systematically lower cost to switch than F -researchers. For this reason, group imbalance

persists forever.13 Moreover, only type θm survives and therefore the research characteristics

mildly more common in the F -population, but also very common in the M -population,

disappear, thus yielding talent loss and loss of knowledge.

6.2. The Impact of Affirmative Action

A common policy to increase diversity is “affirmative action”, that is, the policy to increase

the representation of under-represented groups by mandate. We consider a simple rule in this

section: it each round, it is mandated that reviewers must accept in their group of established

researchers the same number of M and F researchers. We change just one assumption to

the dynamics in the benchmark case: namely, we assume

aθ,mt = kt γ
θ λθ

t−1 pθ,m where kt =

∑
θ′ γ

θ′ λθ′

t−1 pθ
′,f

∑
θ′ γ

θ′ λθ′
t−1 pθ′,m

. (22)

The scaling factor kt ensures that
∑

θ a
θ,f
t =

∑
θ a

θ,m
t . Figures 14 and 15 provide the dynamics

for this case. The affirmative action policy reaches group balance (and this is not surprising,

given the definition of kt) as well as diversity in research characteristics, as in the limit M

researchers are of type θm and F researchers are of type θf . Assuming that maximizing the

13If the cost function was lower, however, then all young researchers, M and F , would pay the cost and the
system would jump to group balance. This extreme case is illustrated in Figure A.8 in the online appendix.
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Figure 12: Fraction of F and M Researchers with Costly Mentoring

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d =
0.3), γ0 = 0.2, ρ = 5, N = 10, cost function C(θ, θ′) = 0.0750

∑N
n=1(θn − θ′n)

2.

Figure 13: Types of Established F and M Researchers with Costly Mentoring .

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers with costly mentoring. We show the
masses of types θ∗ = (1, 1, ...., 1), θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initial
reviewers: λ0 = pm. Parameters: φ = 0.0.5742 (d = 0.3) , γ0 = 0.2, ρ = 5, N = 10; cost

function: C(θ, θ′) = 0.0750
∑N

n=1
(θn − θ′n)

2.

representation of research characteristics is beneficial to society, this policy appears superior

to mentoring, as it does not skew the distribution onto θm even when reaching group balance.

Intuitively, by expanding the set of referee characteristics, affirmative action makes it
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Figure 14: Fraction of F and M Researchers with Affirmative Action

Fraction of M and F researchers when λ0 = pm and there is an affirmative action policy that
requires to accept the same number of M and F researchers. Parameters: φ = 0.5742 (d = 0.3),
γ0 = 0.2, ρ = 4, and N = 10.

Figure 15: Types of Established F and M Researchers with Affirmative Action

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers when affirmative action requires
accepting the same number of M and F researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = pm. Parameters: φ = 0.0.5742
(d = 0.3), γ0 = 0.2, ρ = 4, and N = 10

possible to reward the research of talented F researchers—those who are more likely to

produce quality research. It is still the case that F researchers who are not (objectively) as

productive will not survive in the limit and will be weeded out from the system.
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7. Literature Review

There is a considerable body of research on the underlying reason of under-representation of

women in the economics profession. We do not attempt an exhaustive survey here, but refer

the reader to Bayer and Rouse (2016), who review the literature on both “supply-side” and

“demand-side” factors. Among supply-side factors, these authors argue that prior exposure

to economics, as well as the performance in introductory courses, and the lack of role models

all have documented effects on the gender imbalance in applications to Economics Ph.D.

programs. On the other hand, the evidence suggests that differences in math preparation

do not explain a significant fraction of the imbalance. On the demand side, Bayer and

Rouse (2016) suggest that policy changes in most academic institutions have diminished,

if not completely removed, the impact of explicit or statistical discrimination in recruiting

Ph.D. students. At the same time, these authors argue that the literature suggests that

an important role is played by implicit bias and stereotyping. Our model with self-image

bias is consistent with the persistence of gender bias even when all structural sources of

gender-biases have been removed.

In a more recent contribution, Sarsons et al. (2021)’s work on recognition for coauthored

papers shows that, for men, an additional coauthored paper has the same effect on the

likelihood of tenure as a solo-authored paper; however, for women, coauthorship entails a

significant “discount factor,” especially if the coauthor(s) are men. The large body of research

on the gender pay gap and on the “glass ceiling” in other labor markets is also indirectly

relevant in our context: see e.g. Blau and Kahn (2017); Goldin and Rouse (2000); Goldin

(2014); Weber and Zulehner (2014); Aigner and Cain (1977); Lazear and Rosen (1990).

On the theoretical side, our model is related to the literature on statistical discrimination:

a relative recent survey is Fang and Moro (2011). One strand within that literature, originat-

ing from Phelps (1972), posits the existence of exogenous differences between groups, either

in the distribution of productivity (“Case 1”), or in the quality of signals about it (“Case

2”). In Case 2, the employer does not observe the productivity of individual applicants, but

receives a signal about it. Differential average treatment of the two groups can emerge either

through risk aversion of the employer (Aigner and Cain, 1977), investment in human capital

(Lundberg and Startz, 1983), or if hiring occurs in a tournament (Cornell and Welch, 1996).

In Conde-Ruiz, Ganuza, and Profeta (2020), the difference in signal quality leads members

of the group in the minority of a hiring committee to underinvest in human capital; this per-

petuates the imbalance. A recent contribution, Bardhi, Guo, and Strulovici (2019), revisits

Phelp’s Case 1, but assume that success or failure is observed over time and is informative
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about the worker’s type. This can lead to large differences in ex-post treatment of the two

groups, even if ex-ante productivity differences are small. Differently from this literature,

in our model the ex-ante distributions of productivity are the same in the M and F group,

because all characteristics are equally valuable. Furthermore, productivity is observed. In

our model, standard statistical discrimination does not lead to gender imbalance.

Becker (1957)’s model of taste-based discrimination instead posits that employers may

have a preference for hiring members of one specific group. This is not the case in our model:

while referees only accept applicants whose research characteristics match their own, they

do not take group membership into consideration at all.

Heidhues, Kőszegi, and Strack (2019) proposes a model in which an agent’s ability is un-

observed, both by herself and by others. Agents belong to different groups, each potentially

subject to “discrimination,” and are “stubbornly overconfident” about their own ability.

Overconfidence leads agents to have a more favorable view of individuals in their own social

group, ascribing poor performance to discrimination against them. In our model, ability is

observed, and there is no exogenously imposed discrimination on either group. Incorporat-

ing (possibly biased) learning (cf. e.g. Bohren, Imas, and Rosenberg, 2019) about young

researchers’ characteristics is an interesting direction for future work.

8. Conclusions and Policy Implications

Our model highlights a novel mechanism that endogenously perpetuates specific research

characteristics over time without relying on implicit or explicit gender bias. This occurs due

to self-image bias, grounded in the psychology literature, and its application to the reviewing

process: established researchers use their own personal research characteristics as a guidance

to judge others’ output. Findings in psychology and experimental economics point to mild

between-group heterogeneity; yet, in our model, such mild differences are enough to lead the

initially prevalent group to dominate forever. It is as if the initially dominant group decided

for society what are the important research characteristics and topic.

Our results are consistent with empirical evidence and the trends in Figure 1. First,

gender imbalance can persist long after steps are taken to eliminate outright, or structural,

gender bias (see Bayer and Rouse, 2016): if evaluators are predominantly male due to past

discrimination against women, our model predicts that self-image bias will perpetuate this

imbalance forward. Second, our model implies that women are held to higher standards

(Card et al., 2020; Dupas et al., 2021) and receive less credit for joint work with co-authors
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(Sarsons, 2017; Sarsons et al., 2021). Third, it is consistent with a different representation

of women across fields (Chari and Goldsmith-Pinkham, 2018). Fourth, it predicts that the

under-representation of women should be especially severe in research-oriented institutions

(Chevalier, 2020 and Figure 1). Finally, it can generate a “leaky pipeline,” with women

applying less to Economics PhD programs and their representation being lower the higher

the rank (Chevalier, 2020).

Standard solutions to the gender bias problem may not be very effective in our model.

For instance, outreach programs to encourage members of a given group to apply to PhD

programs may prove ineffective. Such outreach program are akin to lowering the cost of

doing research (see Section 5.1.). While lowering the cost may indeed switch the path

towards convergence for some parameter configurations, as shown in Section 5.1.1., our basic

model in Section 2.2. assumes zero costs and yet, under the conditions of Proposition 3, (2.a),

gender bias persists. In particular, if reviewers evaluate others’ research on a multitude of

research characteristics, gender imbalance would persist.

Similarly, mentorship programs for female researchers will only be effective to increase

female representation in the profession insofar as they induce female researchers to adopt

those characteristics that are prevalent in the reviewer population (see Section 6.1.). While

this may improve female participation (as it has: see e.g. Ginther et al., 2020), it still

propagates the bias towards male research characteristics. This leads to under-representation

of valuable research characteristics relative to the efficient benchmark.

Because the problem is self-image bias, the best policy intervention must involve limiting

the ability of reviewers to use their own research style as a yardstick while judging others’

research. One solution is to provide strict guidelines in the refereeing process. Indeed, in

light of Proposition 1 and 2, editors should guide referees to limit the number of aspects

of the submitted research paper they should focus on. For instance, a journal may provide

questionnaires with precise, pointed questions and explicitly ask referees to leave aside other

judgemental elements that are most susceptible to self-image bias. Dunning, Meyerowitz,

and Holzberg (1989) provides suggestive evidence in support of this approach.

Another solution is instead to change the reviewing process to include input from the full

distribution of researchers, as opposed to just the established ones. While radical as a pro-

posal, it would be reasonable to consider an editorial policy that requires young researchers

to participate in the evaluation process, or in fact, “oversample” young female researchers.

Our model suggests a novel rationale for affirmative-action policies: diversifying the

pool of reviewers. In our model, scientific progress requires a combination of all research
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characteristics, regardless of whether they are more prevalent among males or females—

because all such characteristics are equally productive. If males are initially dominant, they

will remain so, and research characteristics more prevalent among females will be under-

represented. Facilitating the promotion of female researchers counteracts this force, and leads

to a more balanced representation of research characteristics in the steady-state population.

Finally, in this paper we emphasize gender discrimination in academia. However, a similar

force may help explain discrimination against other groups and in other settings. Even if

evaluators are group-neutral in their reviews, self-image bias may lead majority evaluators

to unconsciously fail to promote socially valuable characteristics that are (possibly slightly)

more prevalent in an underrepresented group. We leave this investigation to future research.
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This on-line appendix contains additional analysis and the proofs of our propositions.

A1. Additional Analysis and Results

A1.1. Balanced Steady State

In Section 3. we considered a simple numerical example with only two characteristics (N = 2),

which led to types Θ = {(0, 0), (0, 1), (1, 0), (1, 1)}. In that section, we showed that when

ρ < ρ(φ,N) and the initial population of referees is only from the M -group, λθ,m
0 = pθ,m,

then the dynamics never converges. Here we now consider a different initial condition.

Indeed, the dynamics of the mass of each type depends upon their frequencies in the

population of young researchers, pm and pf , as well as the initial conditions λ0. In particular,

suppose that the initial mass of referees is composed of M - and F -researchers in equal

proportions: λ0 = 1
2
pm + 1

2
pf . One implication is that then the two M -prevalent and F -

prevalent types θm = (1, 0) and θf = (0, 1) both represent 34% of the initial mass of referees,

whereas the other two types (0, 0) and (1, 1) each represent 16% of the initial population.

While we can no longer invoke the results in Sections 2.2.-2.3.3., we can plot the dynamics

of the fractions of established M - and F -researchers, as well as those of established M -and

F -researcher types. (Theorem A.1 in the Appendix characterizes the limiting behavior of

the system for arbitrary initial conditions and type distributions.)

Figures A.1 and A.2 display the results. The figures are self explanatory: an equal

proportion of M - and F -researchers is maintained throughout. However, importantly, type

θf (resp. θm) will eventually become prevalent among F -researchers (resp. M -researchers),

which means that established F - (resp. M -) economists are oversampled from those who

1



Figure A.1: Fraction of M and F researchers with Start from Equal Proportions

Fraction of M and F researchers when λ0 = 1

2
pm + 1

2
pf . Parameters: φ = 0.8, γ0 = 0.2, ρ = 4,

N = 2.

Figure A.2: Types of Established F and M Researchers with Start from Equal Proportions

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = 1

2
pm + 1

2
pf . Parameters:

φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

possess characteristic 2 (resp. 1). Furthermore, the efficient type θ∗ will disappear in the

limit.
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A1.2. Seniors and Juniors

We now extend the basic model (without endogenous entry) in a different direction, namely,

to the case in which there are different levels of seniority in the population of established

researchers, with the seniors judging the research of the juniors, before accepting them onto

their group. For instance, junior assistant professors may judge candidates from the rookie

market and senior professors judge both assistant professors and rookies.

To avoid introducing new symbols, we add a subscript “1” to denote the mass of junior

established researchers, and a subscript ”2” for the senior established researchers. The

difference from the previous case is mainly the mass of candidates of each type θ at each

time t. For simplicity, we assume that, at time 0 and thereafter, the mass of seniors is fixed

at σ and the mass of juniors is 1−σ, so that the overall population of established researchers

has mass 1, as in previous sections. That is, for all t, we must have

∑

θ

λθ
1,t = 1− σ,

∑

θ

λθ
2,t = σ.

The flows are similar to before: young researchers are evaluated by all, and juniors are

evaluated by seniors only. For each group g ∈ {f,m} and type θ ∈ Θ, the flows of juniors

aθ,g1,t and seniors aθ,g2,t evolve according to

aθ,g1,t = γθ · pθ,g · (λθ
1,t−1 + λθ

2,t−1) (A.23)

aθ,g2,t = γθ · λθ,m
1,t−1 · λθ

2,t−1. (A.24)

Again, we assume that current seniors are randomly replaced by newly promoted juniors,

and current juniors are randomly replaced by newly accepted young researchers. However,

we now must take into account the fact that juniors promoted to seniors leave the junior

pool. We thus obtain the dynamics

λθ,g
1,t = λθ,m

1,t−1

(
1− 1

1− σ
(a1,t − a2,t)

)
+ aθ,g1,t − aθ,g2,t (A.25)

λθ,g
2,t = λθ,g

2,t−1

(
1− 1

σ
a2,t

)
+ aθ,g2,t (A.26)

for g ∈ {f,m}, where aj,t =
∑

θ(a
θ,f
j,t + aθ,mj,t ) for j = 1, 2.

The dynamics are far more complex than in the base case, and we rely on numerical

simulations.
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Figure A.3: Leaky pipeline

Fraction of senior and junior M and F researchers, relative to σ (seniors) and 1− σ (juniors),
when λ0 = pm. Parameters: φ = 0.7, γ0 = 0.2, ρ = 4, N = 4 and σ = 0.5.

A1.2.1. Leaky Pipeline

Here we focus on the most interesting case, namely, the fact that this extension can also

account for the “leaky pipeline” pattern highlighted in the CSWEP report (Chevalier, 2020).

Figure A.3 provides a stark illustration: under the given parametric assumptions, group

balance attains among juniors, but not among seniors. A rough intuition is that the self-

image bias may not be strong enough to result in a prevalence of θm types among juniors,

given the constant influx of new researchers with a more balanced distribution of types.

However, it may be strong enough if the candidates’ types are themselves more biased towards

the M researchers’ distribution—as is the case for junior up for promotion to the senior rank.

A1.2.2. Other Patterns

We now consider other cases, for illustration. All the simulations in this section assume

equal fractions of juniors and seniors (σ = 0.5).

First, the presence of a second screening—and hence a second opportunity for self-image

bias to exert its influence—can exacerbate group imbalance in the senior rank, at least in the

short run. Figure A.4 demonstrates this. Model parameters are as in Figure 3, so in a single-

cohort environment significant group imbalance emerges. The same is true with two ranks;
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Figure A.4: More extreme imbalance for senior rank

Fraction of senior and junior M and F researchers when λ0 = pm. Parameters: φ = 0.8,
γ0 = 0.2, ρ = 4, N = 2.

however, in the short run, the imbalance is more pronounced in the senior rank. The reason

is that, in order to be promoted to the senior rank, a researcher must match with a referee of

the same type twice. Initially, both junior and senior referees have the same type distribution,

which by assumption coincides with that of M researchers. Hence, whatever effect is present

at the junior rank is compounded at the senior rank.1 The difference between the two ranks

vanishes in the long run because, as type θm becomes prevalent among established juniors

and seniors, promotion eventually is driven solely by objective research quality—matching

with a senior reviewer of the junior candidate’s own type is virtually guaranteed.

A more pronounced group imbalance can also arise, in the short / medium run, for

parameter values for which convergence is eventually attained. This is demonstrated in

Figure A.5, where we take φ = 0.6 rather than φ = 0.8. Again, the need to match with a

like type twice, coupled with the assumption that the initial population consists entirely of

M -researchers, leads to a lower representation of F researchers at the senior rank. However,

over time, type θ∗ prevails among juniors and seniors, so matching with like types is virtually

guaranteed; and since convergence is attained amongst juniors, it must obtain among seniors

as well.

1In fact, the bias becomes stronger over time at the senior rank. The reason is that the initial population of
junior candidates up for promotion is characterized by types distributed as among male researchers, whereas
the initial population of young researchers applying for a junior position is balanced.
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Figure A.5: Convergence, but greater short-run imbalance among seniors

Fraction of senior and junior M and F researchers when λ0 = pm. Parameters: φ = 0.6,
γ0 = 0.2, ρ = 4, N = 2.

A1.3. Similarity in Research Characteristics

In this section we extend the model to investigate the case in which referees accept researchers

who have characteristics close but not necessarily identical to their own. In particular, we

assume that referee r of type θr accepts the research of young researcher θ if

D(θr, θ) =
∑

n

(θrn − θn)
2 ≤ η (A.27)

where η is a non-negative integer. That is, referee θr treats candidate θ as “close enough” if

it differs from his or her own type in no more than η characteristics.

Our models so far correspond to η = 0. If instead η > 0, the dynamics for λθ
t are still as

in Eq. (7), but the mass aθ,gt of accepted researchers of type θ in group g ∈ {f,m} is given

by

aθ,gt = γθ
∑

θr:D(θr,θ)≤η

λθr

t−1 p
θ,g (A.28)

Unfortunately, obtaining general analytical results in this case seems difficult. Therefore, we

consider illustrative special cases.
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A1.3.1. Connected Set of Types

The set Θ of types we have considered so far enjoys a special structure that is relevant to the

relaxed definition of “acceptance” in Eq. (A.27). For every η ≥ 1, and every pair θ, θ′ ∈ Θ,

there is a finite ordered list θ1, . . . , θK ∈ Θ such that θ1 = θ, θK = θ′, and D(θk, θk+1) ≤ η for

all k = 1, . . . , K − 1. In this sense, we say that Θ = {0, 1}N is η-connected for every η ≥ 1.

Of course, being 1-connected implies being η-connected for η > 1; we shall see in the next

subsection that a subset of {0, 1}N may be η-connected for some η > 1, but for any smaller

integer η′ (including η′ = 1).

With Θ = {0, 1}N , and for the parameter values used in the examples of Sections 3.

and 4., the relaxed acceptance criterion in Eq. (A.27) leads to convergence. For instance,

Figure A.6 illustrates the parameterization used in Section 4.. The dashed lines represent the

benchmark case η = 0, where there is no convergence. The dotted lines reflect the assumption

that referees accept young researchers that are closely similar to them: specifically, taking

η = 1. Notably, group balance obtains. (The solid lines are discussed in the next section.)

Moreover, we have not been able to find parameterizations for which convergence did not

occur. We conjecture that this is a general property of the special structure of the type space

Θ = {0, 1}N . Intuitively, a referee of type θ accepts a positive mass of young researchers of

similar, but not identical type θ′; these become referees in the following period, and accept a

positive mass of young researchers of type θ′′ that type-θ referees would reject; and so on. A

contagion argument suggests that, in the limit, the impact of self-image bias should vanish,

so that group balance should emerge.

A1.3.2. Disconnected Set of Types

A subset of {0, 1}N may well be η-disconnected for some η. For a trivial example, {θm, θf}
is (N − 1)-disconnected, because each of the N coordinates of θf is different from the corre-

sponding coordinate of θf . A fortiori, it is η-disconnected for every η ≤ N − 1.

Intuition suggests that the contagion argument given above breaks down with a discon-

nected set of types. We now verify this intuition. The solid lines in Figure A.6 represent the

same parameterization as in the previous subsection, with η = 1, but applied to a state space

Θ obtained by randomly removing 20% of the elements of {0, 1}N and suitably renormalizing

probabilities. As expected, the system does not attain group balance in the limit.
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Figure A.6: Fraction of M and F Researchers under the Research Similarity Assumption

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742, which implied
d = 0.3, γ0 = 0.2, ρ = 5, N = 10, and, under research similarity, η = 1.

A1.3.3. Endogenous Entry

Finally, return to the case in which Θ = {0, 1}N (a connected set of types) but consider

endogenous entry, as in Section 5.. In this case, even if the connected set of types would lead

to convergence (see subsection A1.3.1.), the endogenous entry prevents such convergence, as

shown in Section 5.1.1.. This is shown in Figure A.7. Again, the dashed lines and the dotted

lines show the total fraction of M - and F -researchers in the benchmark case (η = 0) and,

respectively, the research similarity case (η = 1). The solid lines now show the the fraction

of M - and F -researchers under research similarity (η = 1) but with endogenous entry. The

intuition is the same as the one given in Section 5..

In sum, this section suggests that the main results of the paper are robust to a weaker

assumption about the referees’ selection mechanism.

A2. Mentoring

In this section we provide additional intuition on the dynamics of the system under mentor-

ing, and further illustration. The mass of young researchers from group g ∈ {f,m} of type
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Figure A.7: Fraction of M and F Researchers under Research Similarity and Endogenous
Entry

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742, which implied
d = 0.3, γ0 = 0.2, ρ = 5, N = 10, and, under research similarity, η = 1. Endogenous choice
assume P = 1000 and C = 6.

θ accepted at time t is then

aθ,gt = γθ λθ
t−1





pθ,g

∑

θa:C̃(θ,θa)≥γθaλθa
t−1−γθλθ

t−1

λθa

t−1


 +


λθ

t−1

∑

θ′:θ′ 6=θ,C̃(θ′,θ)<γθλθ
t−1−γθ′λθ′

t−1

pθ
′,g







(A.29)

The first term in brackets captures all of the young researchers of type θ from group g who

are matched with mentors of types θa (with probability λθa

t−1) and choose not to be advised

as the cost is too large; these young researchers thus remain of type θ. The inequality is

weak to reflect the fact that type θa = θ will also not want to pay the cost to “acquire” his

or her own current type. The second term in the bracket captures young g-researchers of

type θ′ 6= θ who are matched with a mentor of type θ (whose mass is λθ
t−1) and decide to

be advised by them. The remaining dynamics for λθ,m
t and λθ,f

t are the same as in the main

model. Note that if C̃(θ, θa) → ∞ for all types (e.g. P → U) then the first term in the

bracket converges to pθ,m and the second to 0, returning to the original dynamics.

To gauge the type of dynamics that emerges from Eq. (A.29), note that initially all λθ
t−1

are likely small, and thus for a given cost function, both conditions C̃(θ, θa) ≥ γθaλθa

t−1 −
γθλθ

t−1 and C̃(θ′, θ) < γθλθ
t−1 − γθ′λθ′

t−1 are likely to hold. That is, in this case, the system
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runs as in the benchmark case in Section 2.2.. However, as we know from our preceding

analysis, λθ
t converges to zero for all θ 6∈ {θ∗, θm, θf}. Specifically, consider the case in which

eventually only θm and θf survive, so λθm

t and λθf

t increase, and the former does so at a faster

rate. Intuitively, suppose t is large enough so the mass of established researchers satisfies

λθm

t−1 + λθf

t−1 ≈ 1. By symmetry, recall also that γθm = γθf = γ and the distance between

θf and θm is just C̃(θm, θf ) = C̃(θf , θm) = C̃. Consistently with the assumption of a large

M -group mass of referees initially, let
(
λθm

t−1 − λθf

t−1

)
> 0 with 0 < C̃ < γ

(
λθm

t−1 − λθf

t−1

)
.

The dynamics then specializes to

aθ
m,g

t = γ λθm

t−1


pθ

m,g + λθm

t−1


pθ

f ,g +
∑

θ′:θ′ 6=θm,θf ,C̃(θ′,θm)<γλθm
t−1

pθ
′,g





 (A.30)

aθ
m,f

t = γ λθm

t−1


pθ

m,f + λθm

t−1


pθ

f ,f +
∑

θ′:θ′ 6=θm,θf ,C̃(θ′,θm)<γλθm
t−1

pθ
′,f





 (A.31)

aθ
f ,g

t = γ
(
λθf

t−1

)2



∑

θ′:θ′ 6=θm,θf ,C̃(θ′,θf )<γλθf
t−1

pθ
′,g


 (A.32)

aθ
f ,f

t = γ
(
λθf

t−1

)2



∑

θ′:θ′ 6=θm,θf ,C̃(θ′,θf )<γλθf
t−1

pθ
′,f


 (A.33)

for g ∈ {f,m}. Comparing these expressions with the benchmark case, we see that each

aθ
mg

t is weakly larger than then in the benchmark case, and hence λθm

t increases further over

time. If λθm

t becomes sufficiently large, for many young researchers of type θ′ the condition

C̃(θ′, θm) < γλθm

t−1 will hold, but the condition C̃(θ′, θf ) < γλθf

t−1 will not hold (the details

depend on the cost structure). Indeed, if maxθ′
{
C̃(θ′, θm)

}
= C < γ and λθm

t−1 > C/γ, then

all young researchers will be willing to pay a cost to become type θm and none will be willing

to pay to became any other type. The system then quickly converges to λθm

t = 1.

Figure A.8 illustrates the dynamics resulting from Eq. (A.29), under the same parameters

as in Section 4. and a cost function C(θ, θ′) = β
∑N

n=1(θn − θ′n)
2, with β = 0.025. Initially,

the dynamics are as in the base case, as all θθt are small and thus no young researcher wants

to pay the cost of mentoring. In this dynamics, as we know, θθ
m

t and θθ
f

t increase, with the

former increasing faster, as shown in the in the right panel of Figure A.9. At some point,

the mass of λθm

t is sufficiently large to induce all young researchers, M and F , decide to pay

the cost and the system (nearly) jumps. The reason is that all young researchers now expect

that their advisor will likely be of type θm, which is also the type of established researchers

who will evaluate their research. They are thus happy to pay the cost and become like
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Figure A.8: Fraction of F and M Researchers with Costly Mentoring (low costs)

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d =
0.3), γ0 = 0.2, ρ = 5, N = 10, cost function C(θ, θ′) = 0.0250

∑N
n=1(θn − θ′n)

2.

their advisors. Moreover, we reach group balance, as all young M - and F -researchers decide

to become θm, and there are equal masses of them. However, the downside is that group

balance is achieved at the expense of weeding out valuable research characteristics that are

more prevalent among young F -researchers—there is, again, loss of talent.

A3. Co-authorship

This section briefly explores the implications of our model’s dynamics for inferences about

the relative (objective) quality of coauthors in a joint project.

We show that, consistently with the findings in Sarsons et al. (2021), if research co-

authored by a young M -researcher and a young F -researcher is accepted, then the expected

quality of the M -researcher is higher. For simplicity, we consider an economy that has

reached its steady state, and such that only types θm and θf are represented in the population

of established scholars. Hence, a joint research project is accepted if and only if its vector of

characteristics is θm or θf .

Proposition A.1 Let the economy be at its steady state with only types θf and θm sur-

viving. For each researcher of type θ, define L(θ) =
∑N

n=1 θn its objective quality. Let a

11



Figure A.9: Types of Established F and M Researchers with Costly Mentoring (low cost) .

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers with costly mentoring. We show the
masses of types θ∗ = (1, 1, ...., 1), θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initial
reviewers: λ0 = pm. Parameters: φ = 0.0.5742 (d = 0.3) , γ0 = 0.2, ρ = 5, N = 10; cost

function: C(θ, θ′) = 0.0250
∑N

n=1
(θn − θ′n)

2.

research that is coauthored by type θa and θb be of type θ = θa ∨ θb, where ∨ denotes

the component-wise maximum. Let researcher a ∈ M and b ∈ F . Then, conditional on

acceptance of the joint work, i.e. θa ∨ θb ∈ {θm, θf}, we have

E[L(θa)|θa ∨ θb ∈ {θm, θf}] > E[L(θb)|θa ∨ θb ∈ {θm, θf}]

The intuition of the result is that referees are more frequently of type θm, and, in addition,

θm is more frequent in theM population than in the F population. It follows that conditional

on the joint work being accepted, it is then more likely it is due for the M characteristics

than the F characteristics.

Proof of Proposition A.1 Let θa and θb be the types of the two young researchers. We

assume that the type of the joint project is the elementwise maximum of θa and θb: that is,

the project displays characteristics i if and only if at least one of the researchers displays it.

For g = m, f , let Θg = {(θ, θ′) : θ ∨ θ′ = θg}, where ∨ denotes the component-wise

maximum. Note that, if (θ, θ′) ∈ Θm, then θi = θ′i = 0 for i = N/2 + 1, . . . , N ; similarly,

if (θ, θ′) ∈ Θf , then θi = θ′i = 0 for i = 1, . . . , N/2. Moreover, (θ, θ′) ∈ Θg iff (θ′, θ) ∈ Θg

for g = m, f . Finally, (θ, θ′) ∈ Θm if and only if (θ̄, θ̄′) ∈ Θf , where θ̄, θ̄′ are defined by

θ̄i+N/2 = θi, θ̄
′
i+N/2 = θ′i and θ̄i = θ̄′i = 0 for i = 1, . . . , N/2; furthermore, these types satisfy

pθ,m = pθ̄,f and pθ
′,f = pθ̄

′,m. (A.34)
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Then, invoking the above properties, the probability that the joint project is accepted—

that is, the probability that θa ∨ θb ∈ {θm, θf}—is

γθmλ̄θm
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f + γθf λ̄θf
∑

(θ,θ′)∈Θf

pθ,m · pθ′,f

=γθmλ̄θm
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f + γθf λ̄θf
∑

(θ,θ′)∈Θm

pθ̄,m · pθ̄′,f

=γθmλ̄θm
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f + γθf λ̄θf
∑

(θ′,θ)∈Θm

pθ̄
′,m · pθ̄,f

=γθmλ̄θm
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f + γθf λ̄θf
∑

(θ′,θ)∈Θm

pθ
′,f · pθ,m

=γθmλ̄θm
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f + γθf λ̄θf
∑

(θ,θ′)∈Θm

pθ,f · pθ′,m

=(γθmλ̄θm + γθf λ̄θf )
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f

=γ0ρ
N/2

∑

(θ,θ′)∈Θm

pθ,mpθ
′,f ≡ γ0ρ

N/2Π,

where the last equality follows from the definition of γθ and the fact that θm, θf are the only

surviving types.

Now let L(θ) =
∑

i θi. We claim that the expectation of L(θa) − L(θb) conditional on

θa ∨ θb ∈ {θm, θf} is strictly positive—that is, the expected quality of a, the young M

coauthor, is strictly higher than the expected quality of that of the young F coauthor b.

First,

∆ ≡
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f [L(θ)− L(θ′)]

=
∑

(θ,θ′)∈Θm:L(θ)>L(θ′)

pθ,m · pθ′,f [L(θ)− L(θ′)] +
∑

(θ,θ′)∈Θm:L(θ)<L(θ′)

pθ,m · pθ′,f [L(θ)− L(θ′)]

=
∑

(θ,θ′)∈Θm:L(θ)>L(θ′)

[pθ,m · pθ′,f − pθ
′,m · pθ,f ][L(θ)− L(θ′)] > 0.

The last equality follows because (θ, θ′) ∈ Θm if and only if (θ′, θ) ∈ Θm, and of course

L(θ) > L(θ′) iff L(θ′) < L(θ). The inequality follows because, if L(θ) > L(θ′), then by

assumption pθ,m > pθ
′,m and pθ

′,f > pθ,f .

Repeating the calculations for Θf and again appealing to the properties of pairs (θ, θ′) ∈

13



Θm and the corresponding types (θ̄, θ̄′) ∈ Θf ,

∑

(θ,θ′)∈Θf

pθ,m · pθ′,f [L(θ)− L(θ′)] =
∑

(θ,θ′)∈Θf :L(θ)>L(θ′)

[pθ,m · pθ′,f − pθ
′,m · pθ,f ][L(θ)− L(θ′)]

=
∑

(θ,θ′)∈Θm:L(θ)>L(θ′)

[pθ̄,m · pθ̄′,f − pθ̄
′,m · pθ̄,f ][L(θ̄)− L(θ̄′)]

=
∑

(θ,θ′)∈Θm:L(θ)>L(θ′)

[pθ,f · pθ′,m − pθ
′,f · pθ,m][L(θ)− L(θ′)] =

=−
∑

(θ,θ′)∈Θm

pθ,m · pθ′,f [L(θ)− L(θ′)] = −∆.

Finally, the expected difference in the number of characteristics of θa and θb is

E[L(θa)− L(θb)|θa ∨ θb ∈ {θm, θf}] = γθmλ̄θm∆− γθf λ̄θf∆

γ0ρN/2Π
=

ρN/2∆

Π
(λ̄θm − λ̄θf ) > 0,

as asserted.

Q.E.D

A4. Proofs

We first characterize key features of the population dynamics for an arbitrary, finite set Θ

of types, with initial distribution λ0 ∈ ∆(Θ), such that λ0 = λm
0 + λf

0 for λm
0 , λ

f
0 ∈ RΘ

+, and

per-period inflows qg = (qθ,g)θ∈Θ ∈ RΘ
+ \ {0}, for g ∈ {f,m}. It is also convenient to define

q = qm + qf . Then, for g ∈ {f,m}, the dynamics are given by

λθ,g
t = λθ,g

t−1

(
1−

∑

θ′

λθ′

t−1q
θ′

)
+ λθ

t−1q
θ,g (A.35)

λθ
t = λθ,m

t + λθ,f
t . (A.36)

The body of the paper focuses on the special case qθ,m = γθpθ,m, qθ,f = γθpθ,f .

Theorem A.1 Assume that qθ ≤ 1 for all θ ∈ Θ. Then, for all t ≥ 0, λt ∈ ∆(Θ), and

λm
t , λ

f
t ∈ RΘ

+. Moreover:

1. if λθ
0 = 0, then λθ

t = 0 for all t ≥ 0;

2. if λθ
0 > 0, then λθ

t > 0 for all t ≥ 0;
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3. for θ, θ̃ ∈ Θ with λθ
0 · λθ̃

0 > 0:

(a)
λθ
t

λθ
t−1

− λθ̃
t

λθ̃
t−1

= qθ − qθ̃ for all t ≥ 1, and

(b) qθ > qθ̃ implies
λθ
t

λθ̃
t

→ ∞, and qθ = qθ̃ implies
λθ
t

λθ̃
t

= λ̄θ
o

λ̄θ̃
o

for all t ≥ 0;

4. define the set

Θmax = {θ ∈ Θ : λθ
0 > 0, θ ∈ argmax

θ′∈Θ
qθ

′} (A.37)

and let λ̄ ∈ ∆(Θ) be such that

λ̄θ̃ =

{
λθ̃
0∑

θ∈Θmax λθ
0

θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax :
(A.38)

then limt→∞ λt = λ̄;

5. define

λ̄θ̃,f =

{
λθ̃
0q

θ̃,f

∑
θ∈Θmax λθ

0q
θ θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax
and λ̄θ̃,m =

{
λθ̃
0q

θ̃,m

∑
θ∈Θmax λθ

0q
θ θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax :
(A.39)

then limt→∞ λf
t = λ̄f and limt→∞ λm

t = λ̄m.

Proof: Eqs. (A.35) and (A.36) imply that

λθ
t =

(
1−

∑

θ′∈Θ
λθ′

t−1q
θ′

)
λθ
t−1 + λθ

t−1q
θ. (A.40)

By assumption λ0 ∈ ∆(Θ). Inductively, suppose λt−1 ∈ ∆(Θ) and λm
t−1, λ

f
t−1 ∈ RΘ

+.

Summing over Θ on both sides of Eq. (A.40) yields
∑

θ λ
θ
t = (1 −∑θ′ λ

θ′

t−1q
θ′)(
∑

θ λ
θ
t−1) +∑

θ λ
θ
t−1q

θ = (1−
∑

θ′ λ
θ′

t−1q
θ′)+

∑
θ λ

θ
t−1q

θ = 1. Furthermore, since λt−1 ∈ ∆(Θ),
∑

θ′ λ
θ′

t−1q
θ′ ∈

[minθ′ q
θ′ ,maxθ′ q

θ′ ] ⊆ [0, 1]; moreover, qθ ≥ 0 and λθ
t−1 ≥ 0, so Eq. (A.40) implies that

λθ
t ≥ 0 as well. By the same argument, qθ ≥ 0 and λθ,g

t−1 ≥ 0 for g ∈ {f,m} imply λθ,g
t ≥ 0

for g ∈ {f,m} as well by Eq. (A.35). Thus, λt ∈ ∆(Θ), and λg
t ∈ RΘ

+ for each g.

Claim 1 is immediate. For Claim 2, again we argue by induction. For t = 0, the claim

is trivially true. Inductively, assume λθ
t−1 > 0. By Eq. (A.40), since as was just shown

1 −
∑

θ′ λ
θ′

t−1q
θ′ ≥ 0, and the inductive hypothesis implies that λθ

t−1 > 0, if qθ > 0 then

λθ
t ≥ λθ

t−1q
θ > 0. Suppose instead qθ = 0. If

∑
θ′ λ

θ′

t−1q
θ′ = 1, then, since qθ

′ ≤ 1 for all

θ′ by assumption, and λt−1 ∈ ∆(Θ), it must be that λθ′

t−1 > 0 implies qθ
′

= 1: but then

λθ
t−1 = 0, which contradicts the inductive hypothesis. Thus, 0 ≤ ∑

θ′ λ
θ′

t−1q
θ′ < 1, so Eq.

(A.40) implies that λθ
t =

(
1−∑θ′ λ

θ′

t−1q
θ′
)
λθ
t−1 > 0.
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For Claim 3, divide both sides of Eq. (A.40) for type θ by λθ
t−1, which is assumed to be

positive; this yields
λθ
t

λθ
t−1

= 1 + qθ −
∑

θ′

λθ′

t−1q
θ′ . (A.41)

A similar equation holds for θ̃. This immediately yields 3(a). To derive 3(b), since λθ′

t =

λθ′

0 ·∏t
s=1

λθ′
s

λθ′
s−1

for θ′ = θ, θ̃,

λθ
t

λθ̃′
t

=
λθ
0

λθ̃
0

·
∏t

s=1
λθ
s

λθ
s−1

∏t
s=1

λθ̃
s

λθ̃
s−1

=
λθ
0

λθ̃
0

·
t∏

s=1

λθ
s

λθ
s−1

λθ̃
s

λθ̃
s−1

=
λθ
0

λθ̃
0

·
t∏

s=1

λθ̃
s

λθ̃
s−1

+ qθ − qθ̃

λθ̃
s

λθ̃
s−1

=
λθ
0

λθ̃
0

·
t∏

s=1


1 +

qθ − qθ̃

λθ̃
s

λθ̃
s−1


 .

If qθ = qθ̃, then every term in parentheses equals 1, and the claim follows. If instead qθ > qθ̃,

recall that, by Eq. (A.41), for all s ≥ 1, since λs−1 ∈ ∆(Θ) and q ∈ [0, 1]|Θ|, λθ̃
s

λθ̃
s−1

≤ 1 + qθ̃.

Therefore, each term in parentheses is not smaller than 1 + qθ−qθ̃

1+qθ̃
> 1. It follows that

λθ
t

λθ̃′
t

=
λθ
0

λθ̃
0

·
t∏

s=1


1 +

qθ − qθ̃

λθ̃
s

λθ̃
s−1


 ≥ λθ

0

λθ̃
0

·
(
1 +

qθ − qθ̃

1 + qθ̃

)t

→ ∞.

For Claim 4, consider first θ̃ 6∈ Θmax, and fix θ ∈ Θmax arbitrarily. Then
λθ
t

λθ̃
t

→ ∞ by

Claim 3(b). Suppose that there is a subsequence (λt(ℓ))ℓ≥0 such that λθ̃
t(ℓ) ≥ ǫ for some ǫ > 0

and all ℓ ≥ 0. Since
λθ
t(ℓ)

λθ̃
t(ℓ)

→ ∞ as well, there is ℓ large enough such that
λθ
t(ℓ)

λθ̃
t(ℓ)

> 1
ǫ
: but then

Λθ
t(ℓ) > 1 for such ℓ: contradiction. Thus, for every ǫ > 0, eventually λθ̃

t < ǫ: that is, λθ̃
t → 0.

Next, consider θ̃ ∈ Θmax. By Claim 2, λθ̃
t > 0 and

∑
θ∈Θmax λθ

t > 0, and

λθ̃
t∑

θ∈Θmax λθ
t

=
1

∑
θ∈Θmax

λθ
t

λθ̃
t

=
1

∑
θ∈Θmax

λθ
0

λθ̃
0

=
λθ̃
0∑

θ∈Θmax λθ
0

= λ̄θ̃,

where the third inequality follows from Claim 3(b). Therefore,

λθ̃
t =

λθ̃
t∑

θ∈Θmax λθ
t

·
(
∑

θ∈Θmax

λθ
t

)
= λ̄θ̃ ·

(
1−

∑

θ 6∈Θmax

λθ
t

)
→ λ̄θ̃,

because, as was just shown above, λθ
t → 0 for θ 6∈ Θmax.

Finally, consider Claim 5. Fix g ∈ {f,m}. First, since 0 ≤ λθ,g
t ≤ λθ

t for all t ≥ 0, if

θ 6∈ Θmax then by Claim 4 λθ
t → λ̄θ = 0, and so λθ,g

t → 0 = λ̄θ,g as well. Thus, focus on the

case θ ∈ Θmax, so that by Claim 4 λ̄θ > 0.
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If
∑

θ′ λ̄
θ′qθ

′

= 1, then Eq. (A.35) and the fact that
∑

θ′ λ
θ′

t−1q
θ′ ∈ [0, 1] and 0 ≤ λθ,g

t−1 ≤
λθ
t−1 ≤ 1 for all θ imply that

λθ,g
t =

(
1−

∑

θ′

λθ′

t−1q
θ′

)
λθ,g
t−1 + λθ

t−1q
θ,g ∈

[
λθ
t−1q

θ,g, 1−
∑

θ′

λθ′

t−1q
θ′ + λθ

t−1q
θ,g

]

and both endpoints of the interval in the r.h.s. converge to λ̄θqθ,g by Claim 4 if
∑

θ′ λ̄
θ′qθ

′

= 1.

Furthermore, the same assumption implies that λ̄θqθ,g = λ̄θ,g, so λθ,g
t → λ̄θ,g.

Now consider the case 0 <
∑

θ′ λ̄
θ′qθ

′

< 1. (The set Θmax is non-empty, and since

q ∈ RΘ
+ \ {0}, there is θ+ ∈ Θmax with qθ

+
> 0; by Claim 4, λ̄θ′ > 0 for θ′ ∈ Θmax, so in

particular λ̄θ+ > 0; but then
∑

θ′ λ̄
θ′qθ

′ ≥ λ̄θ+qθ
+
> 0.) It is convenient to let qt =

∑
θ′ λ

θ′

t q
θ′

and q̄ =
∑

θ′ λ̄
θ′qθ

′

= limt→∞ qt, where the second equality follows from Claim 4. Thus, Eq.

(A.35) can be written as

λθ,g
t = (1− qt−1)λ

θ,g
t−1 + λθ

t−1q
θ,g. (A.42)

In addition, q̄ ∈ (0, 1).

We claim that, for all T ≥ 0 and t > T ,

λθ,g
t = λθ,g

T

t−1∏

s=T

(1− qs) + qθ,g
t−1∑

s=T

λθ
s

t−1∏

r=s+1

(1− qr). (A.43)

For t = T + 1, this follows from Eq. (A.42). Inductively, assume it holds for t − 1 > T .

Then, by Eq. (A.42) and the inductive hypothesis,

λθ,g
t = (1− qt−1)

[
λθ,g
T

t−2∏

s=T

(1− qs) + qθ,g
t−2∑

s=T

λθ
s

t−2∏

r=s+1

(1− qr)

]
+ λθ

t−1q
θ,g =

= λθ,g
T

t−1∏

s=T

(1− qs) + qθ,g
t−1∑

s=T

λθ
s

t−1∏

r=s+1

(1− qr),

as claimed.

Fix ǫ > 0 such that λ̄θ− ǫ > 0, q̄− ǫ > 0, 1− q̄+ ǫ < 1, and 1− q̄− ǫ > 0. This is possible

because λ̄θ > 0 and q̄ ∈ (0, 1), hence 1− q̄ ∈ (0, 1).

Since λθ
t → λ̄θ and qt → q̄, there is T ≥ 0 such that, for all t > T , λθ

t < λ̄θ + ǫ and
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qt > q̄ − ǫ. Hence, for such t > T , Eq. (A.43) implies that

λθ,g
t ≤λθ,g

T

t−1∏

s=T

(1− q̄ + ǫ) + qθ,g
t−1∑

s=T

(λ̄θ + ǫ)
t−1∏

r=s+1

(1− q̄ + ǫ) =

=λθ,g
T (1− q̄ + ǫ)t−T + qθ,g(λ̄θ + ǫ)

t−1∑

s=T

(1− q̄ + ǫ)t−1−s =

=λθ,g
T (1− q̄ + ǫ)t−T + qθ,g(λ̄θ + ǫ)

t−1−T∑

s=0

(1− q̄ + ǫ)s =

=λθ,g
T (1− q̄ + ǫ)t−T + qθ,g(λ̄θ + ǫ)

1− (1− q̄ + ǫ)t−T

q̄ − ǫ
→ qθ,g(λ̄θ + ǫ)

q̄ − ǫ
.

This implies that lim supt λ
θ,g
t ≤ qθ,g(λ̄θ+ǫ)

q̄−ǫ
. Since this must hold for all ǫ > 0, it must be that

lim supt λ
θ,g
t ≤ qθ,gλ̄θ

q̄
= λ̄θ,g.

Similarly, λθ
t → λ̄θ and qt → q̄ imply that there is T ≥ 0 such that, for all t > T ,

λθ
t > λ̄θ − ǫ > 0 and qt < q̄ + ǫ < 1. Then

λθ,g
t ≥λθ,g

T

t−1∏

s=T

(1− q̄ − ǫ) + qθ,g
t−1∑

s=T

(λ̄θ − ǫ)
t−1∏

r=s+1

(1− q̄ − ǫ) =

=λθ,g
T (1− q̄ − ǫ)t−T + qθ,g(λ̄θ − ǫ)

1− (1− q̄ − ǫ)t−T

q̄ + ǫ
→ qθ,g(λ̄θ − ǫ)

q̄ + ǫ
,

so lim inft λ
θ,g
t ≥ qθ,g(λ̄θ−ǫ)

q̄+ǫ
. Again, since this must hold for all ǫ > 0, lim inft λ

θ,g
T ≥ qθ,gλ̄θ

q̄
=

λ̄θ,g. Hence, λθ,g
t → λ̄θ,g. Q.E.D.

Next, we establish certain basic properties of the symmetric model considered in the

paper. Claims 1 and 3 characterize the set Θmax for this specification. Claim 2 ensures that

the parameterization satisfies the conditions in Theorem A.1.

Lemma A.1 Assume that, for every θ ∈ Θ, γθ, pθ,m and pθ,f are as defined in Section 2..

Then, for every φ ∈ (1
2
, 1), N even, γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
):

1. the set of maximizers of γθ · (pθ,m + pθ,f ) is {θm, θf} if ρ < ρ̄(φ,N) and {θ∗} if ρ >

ρ̄(φ,N).

2. 0 < γθ · [pθ,m + pθ,f ] ≤ 1.

3. there is N̄ > 0 such that, for all even N ≥ N̄ , the maximizers of γθ · (pθ,m + pθ,f ) are

θm and θf .
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Recall that ρ̄(·) is defined in Eq. (10).

Proof: Write

pθ,m = φ
∑N/2

n=1 θn(1− φ)N/2−∑N/2
n=1 θn · (1− φ)

∑N
n=N/2+1 θnφN/2−∑N

n=N/2+1 θn =

=φN/2+
∑N/2

n=1 θn−
∑N

n=N/2+1 θn(1− φ)N/2+
∑N

n=N/2+1 θn−
∑N/2

n=1 θn =

=φN/2(1− φ)N/2

(
φ

1− φ

)∑N/2
n=1 θn−

∑N
n=N/2+1 θn

.

Similarly

pθ,f = φN/2(1− φ)N/2

(
φ

1− φ

)∑N
n=N/2+1 θn−

∑N/2
n=1 θn

.

Then F (θ) ≡ γθ(pθ,m + pθ,f ) equals

γ0 ρ
∑

n θn/N · φN/2(1− φ)N/2



(

φ

1− φ

)∑N/2
n=1 θn−

∑N
n=N/2+1 θn

+

(
φ

1− φ

)−
∑N/2

n=1 θn+
∑N

n=N/2+1 θn


 .

Since Θ is finite, there exists at least one maximizer θ of F (·). We claim that, if θ

satisfies θn = θm = 0 for some n ∈ {1, . . . , N/2} and m ∈ {N/2 + 1, . . . , N}, then it is not a

maximizer. To see this, define θ′ by θ′ℓ = θℓ for ℓ ∈ {1, . . . , N} \ {n,m} and θ′n = θ′m = 1.

Then
∑

n θ
′
n >

∑
n θn, so for ρ > 1, γθ′ > γθ. On the other hand, the term in square brackets

is the same for θ and θ′ (and it is strictly positive). Hence, θ is not a maximizer of F (·). It
follows that the only candidate maximizers of F (·) have either θn = 1 for all n = 1, . . . , N/2,

or θn = 1 for all n = N/2, . . . , N , or both.

If θn = 1 for n = 1, . . . , N/2, then F (θ) = F (θ′), where θ′n = 1 for n = N/2 + 1, . . . , N

and θ′n = θn+N/2 for n = 1, . . . , N/2. Hence, it is enough to consider θ such that θn = 1 for

n = N/2+1, . . . , N . Let Θf be the collection of such types, and notice that it contains both

θf (for which θfn = 0 for n = 1, . . . , N/2) and θ∗ = (1, . . . , 1). We show that the maximizer

of F (·) on Θf is either θf or θ∗.

For each θ ∈ Θf , factoring out all terms not involving
∑N/2

n=1 θn, F (θ) is proportional to

ρ
∑N/2

n=1 θn/N ·



(

φ

1− φ

)∑N/2
n=1 θn

+

(
1− φ

φ

)∑N/2
n=1 θn


 .

Hence, F (θ) is proportional to F̃ (
∑N/2

n=1 θn), where F̃ : [0, 1
2
] → R+ is defined by

F̃ (x) = ρx
[(

φ

1− φ

)x

+

(
1− φ

φ

)x]
.
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The functions x 7→ ρ
x
N Φx =

(
ρ

1
N

)x
Φx =

(
ρ

1
N · Φ

)x
, for Φ = φ

1−φ
6= 1 and Φ = 1−φ

φ
6= 1

respectively, are non-constant and exponential, hence strictly convex on [0, 1
2
]. Hence, F̃ (·)

is also strictly convex on [0, 1
2
], so its maximum is either at 0 or at 1

2
. Correspondingly, F (·)

attains a maximum either at θf or at θ∗ on the set Θf .

To conclude the proof of Claim 1, we calculate the values attained by F (·) at these two

extremes:

F (θf ) = γ0
√
ρ · [(1− φ)N + φN ]

F (θ∗) = γ0ρ · 2φN/2(1− φ)N/2.

Dividing F (θ∗) and F (θf ) by γ0
√
ρφN/2(1 − φ)N/2 and comparing the resulting quantities,

we conclude that θ∗ is (uniquely) optimal iff

2
√
ρ >

[(
φ

1− φ

)−N
2

+

(
1− φ

φ

)−N
2

]

or equivalently

ρ >
1

4

((
1− φ

φ

)N
2

+

(
φ

1− φ

)N
2

)2

= ρ̄(φ,N), (A.44)

which is Claim 1.

For Claim 2, we show that (1− φ)N + φN ≤ 1 and φN/2(1− φ)N/2 ≤ 1
2
; this is sufficient,

because γ0 ∈ (0, 1) and ρ ∈ (1, 1
γ0
) by assumption, so also γ0

√
ρ ≤ γ0ρ < 1.

The function N 7→ (1 − φ)N + φN is strictly decreasing in N , so it is enough to prove

the claim for N = 2. In this case, (1 − φ)2 + φ2 = 1 − 2φ + φ2 + φ2 = 1 + 2φ(φ − 1) < 1,

because φ < 1. Similarly, N 7→ [φ(1− φ)]N/2 is decreasing in N , and for N = 2 it reduces to

φ(1− φ) = φ− φ2; this is concave and maximized at φ = 1
2
, where it takes the value 1

4
< 1

2
.

Finally, for Claim 3, as N → ∞, the first term in the rhs of Eq. (A.44) converges to

zero, but the second diverges to infinity. Thus, for N large, only θm and θf maximize F (·).
Q.E.D.

We now turn to the proofs of the main Propositions and Corollaries in the text.

Proof of Proposition 3 and Corollary 1: convergence of (λt)t≥0, (λ
m
t )t≥0 and (λf

t )t≥0

follows from Theorem A.1 and Claim 2 of Lemma A.1. Parts (a) and (b) follow from Claim

1 in Lemma A.1 and Claim 4 in Theorem A.1. Corollary 1 follows from Claim 3 in Lemma

A.1. Q.E.D.
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Proposition 2 follows from Proposition 3.

Proof of Proposition 4: Fix θ ∈ Θ, and define θsym by θsymn = θN+1−n for all n =

1, . . . , N . (Notice that, for some θ, it may be the case that θsym = θ.) We first claim that

aθ,mt + aθ
sym,m

t ≥ aθ,ft + aθ
sym,f

t . (A.45)

Notice that, if θsym = θ, the above inequality just says that aθ,mt ≥ aθ,ft .

Letm0 =
∑N/2

n=1 θ andm1 =
∑N

n=N/2+1 θn. By definition, p
θ,m = φm0(1−φ)N/2−m0φN/2−m1(1−

φ)m1 = φ(m0−m1)+N/2(1−φ)N/2−(m0−m1) = [φ(1−φ)]N/2
(

φ
1−φ

)m0−m1

, and similarly pθ
sym,m =

[φ(1−φ)]N/2
(

1−φ
φ

)m0−m1

. Moreover, since pf is defined with the roles of φ and 1−φ reversed,

pθ,f = pθ
sym,m and pθ,m = pθ

sym,f , so pθ,m + pθ,f = pθ
sym,m + pθ

sym,f . Finally, by construction

γθ = γθsym .

Suppose that m0 ≥ m1. Since φ > 1
2
, pθ,m ≥ pθ

sym,m. At time 0 we thus have λθ
0 = pθ,m ≥

pθ
sym,m = λθsym

0 > 0. Then, since qθ = γθ(pθ,m + pθ,f ) + γθsym(pθ
sym,m + pθ

sym,f ) = qθ
sym

, by

part 3(a) of Theorem A.1, for every t > 0,
λθ
t

λθ
t−1

=
λθsym

t

λθsym
t−1

, and hence
λθ
t

λθsym
t

=
λθ
t−1

λθsym
t−1

=
λθ
0

λθsym
0

≥ 1.

Thus, λθ
t ≥ λθsym

t for all t > 0 as well. Finally, letting γ̄ ≡ γθsym = γθ, for every t ≥ 1,

aθt = aθ,mt + aθ,ft = γ̄λθ
t−1(p

θ,m + pθ,f ) ≥ γ̄λθsym

t−1 (p
θsym,m + pθ

sym,f ) = aθ
sym,m

t + aθ
sym,f

t = aθ
sym

t .

All the inequalities in the above paragraph are strict if m0 > m1; they are reversed if

m0 ≤ m1; and hold as equalities if m0 = m1.

Now, regardless of the values of m0 and m1,

aθ,mt + aθ
sym,m

t ≥ aθ,ft + aθ
sym,f

t

⇔ γ̄(λθ
t−1p

θ,m + λθsym

t−1 pθ
sym,m) ≥ γ̄(λθ

t−1p
θ,f + λθsym

t−1 pθ
sym,f )

⇔ λθ
t−1[p

θ,m − pθ,f ] ≥ λθsym

t−1 [p
θsym,f − pθ

sym,m]

⇔ [λθ
t−1 − λθsym

t−1 ] · [pθ,m − pθ,f ] ≥ 0,

where the last step follows from pθ,m = pθ
sym,f and pθ,f = pθ

sym,m.

If m0 = m1, then both terms in square brackets equal zero, so equality obtains; in

particular, this is true if θ = θsym. If m0 > m1, then both terms are positive, if m0 < m1,

then both terms are negative. Thus, in any event, the last inequality, and hence Eq. (A.45),

holds; furthermore, if θ = θsym, then aθ,mt = aθ,ft .
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Now fix L ∈ {0, . . . , N}. Then
∑

θ:
∑

n θn=L

aθ,mt =
∑

θ:
∑

n θn=L,θ=θsym

aθ,mt +
∑

θ:
∑

n θn=L,θ 6=θsym

aθ,mt =

=
∑

θ:
∑

n θn=L,θ=θsym

aθ,mt +
1

2

∑

θ:
∑

n θn=L,θ 6=θsym

[aθ,mt + aθ
sym,m

t ] ≥

≥
∑

θ:
∑

n θn=L,θ=θsym

aθ,ft +
1

2

∑

θ:
∑

n θn=L,θ 6=θsym

[aθ,ft + aθ
sym,f

t ] =

=
∑

θ:
∑

n θn=L

aθ,ft .

The second equality follows from the observation that, restricting attention to types θ with
∑

n θn = L, also
∑

n θ
sym
n = L, so that adding aθ,mt + aθ

sym,m
t over all θ with θ 6= θsym counts

each type twice. The inequality follows from Eq. (A.45), which in particular implies that

aθ,mt = aθ,ft if θ = θsym. This inequality is strict if the second summation is non-empty, i.e., if

there is θ with
∑

n θn = L and θn 6= θN+1−n for some n, because the latter condition implies

θ 6= θsym. Finally, the last equality follows by repeating the first two steps backwards, for

F -group researchers. Q.E.D

Proof of Proposition 5: We begin with a preliminary result.

Lemma A.2 For all parameter values and initial conditions, and for all θ ∈ Θ and t ≥ 1,

λθ
t

λθ
t−1

= (1− at) + γθ(pθ,m + pθ,f );

and for t ≥ 2,
aθt
aθt−1

=
aθ,mt

aθ,mt−1

=
aθ,ft

aθ,ft−1

=
λθ
t−1

λθ
t−2

.

Proof: From Eq. (7), λθ
t = λθ,m

t + λθ,f
t = (λθ,m

t−1 + λθ,f
t−1)(1 − at) + γθ(pθ,m + pθ,f ), which

yields the first equation because λθ
τ > 0 for all θ and τ .

From Eq. (6), for t ≥ 2,

aθ,gt

aθ,gt−1

=
λθ
t−1γ

θpθ,g

λθ
t−2γ

θpθ,g
=

λθ
t−1

λθ
t−2

;

similarly,
aθt
aθt−1

=
λθ
t−1γ

θ(pθ,m + pθ,f )

λθ
t−2γ

θ(pθ,m + pθ,f )
=

λθ
t−1

λθ
t−2

.

Q.E.D.
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We now prove Proposition 5. ForN = 2 we only have 4 types, Θ = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Let aL,g =

∑
sum2

n=1θn=L a
θ,g and agt =

∑2
ℓ=0 a

ℓ,g
t . From Proposition 4, for all t, a1,mt > a1,ft ,

a2,mt = a2,ft , and a0,mt = a0,ft . Therefore, amt > aft , which implies that the weight on L = 1 for

accepted M researchers is

a1,mt

amt
= 1− a2,mt + a0,mt

amt
= 1− a2,ft + a0,ft

amt
> 1− a2,ft + a0,ft

aft
=

a1,ft

aft
.

Similarly, amt > aft and a0,mt = a0,ft , a2,mt = a2,ft imply

a0,mt

amt
<

a0,ft

aft
,

a2,mt

amt
<

a2,ft

aft
.

Moreover, we claim that, a2,gt > a0,gt . For t = 0, a2,g0 = a
(1,1),g
0 = p(1,1),mγ(1,1)p(1,1),g >

p(0,0),mγ(0,0)p(0,0),g = a
(0,0),g
0 = a0,g0 , because p(0,0),g = p(1,1),g but γ(1,1) > γ(0,0). Inductively,

from Lemma A.2,

a2,gt = a
(1,1),g
t = a

(1,1),g
t−1 · a

(1,1),g
t

a
(1,1),g
t−1

= a
(1,1,g)
t−1

(
1− at−1 + γ(1,1)(p(1,1),m + p(1,1),f

)
>

>a
(1,1,g)
t−1

(
1− at−1 + γ(0,0)(p(0,0),m + p(0,0),f

)
> a

(0,0,g)
t−1

(
1− at−1 + γ(0,0)(p(0,0),m + p(0,0),f

)
=

=a
(0,0,g)
t−1

a
(0,0),g
t

a
(0,0,g)
t−1

= a
(0,0),g
t = a0,gt .

Therefore,

0 <
a0,ft

a1,ft + a2,ft + a0,ft

− a0,mt

a1,mt + a2,mt + a0,mt

=
a0,ft

a1,ft + a2,ft + a0,ft

− a0,ft

a1,mt + a2,mt + a0,mt

<

<

(
a2,ft

a0,ft

)
·
(

a0,ft

a1,ft + a2,ft + a0,ft

− a0,ft

a1,mt + a2,mt + a0,mt

)
=

a2,ft

a1,ft + a2,ft + a0,ft

− a2,ft

a1,mt + a2,mt + a0,mt

=

=
a2,ft

a1,ft + a2,ft + a0,ft

− a2,mt

a1,mt + a2,mt + a0,mt

;

the first inequality follows from a1,ft < a1,mt and a0,ft = a0,mt and a2,ft = a2,mt , the next equality

from a0,mt = a0,ft , the second inequality from a2,ft > a0,ft > 0 and the fact that the difference

of fractions is positive, and the last equality from a2,mt = a2,ft .

The result then follows from a symmetry argument.

E[L|F ] =
0× a0,ft + a1,ft + 2a2,ft

aft

E[L|M ] =
0× a0,mt + a1,mt + 2a2,mt

amt
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which, since a1,gt = 1− a0,gt − a2,gt , implies

E[L|F ] = −1
a0,ft

aft
+ 1 +

a2,ft

aft

E[L|M ] = −1
a0,mt

amt
+ 1 +

a2,mt

amt

It follows that

E[L|F ]− E[L|M ] = −
(
a0,ft

aft
− a0,mt

amt

)
+

(
a2,ft

aft
− a2,mt

amt

)
> 0

Q.E.D

Detailed dynamics of the mass of M and F accepted agents. It is useful to

rewrite Equation (7) for each group g = m, f as follows:

λθ,m
t − λθ,m

t−1 = −λθ,m
t−1 at + λθ,m

t−1γ
θpθ,m + λθ,f

t−1γ
θpθ,m (A.46)

λθ,f
t − λθ,f

t−1 = −λθ,f
t−1 at + λθ,f

t−1γ
θpθ,f + λθ,m

t−1γ
θpθ,f (A.47)

Consider the dynamics of F -researchers in (A.47), for instance. The change in the mass of

F -researchers of type θ decreases due to replacement at the rate at, and it then increases

due to the young F -researchers who produce quality research and are matched with referees

from the F group who share their type and hence view them positively (λθ,f
t−1γ

θpθ,f ), plus

the young F -researchers who produce quality research and are matched with M -referees of

their own type (λθ,m
t−1γ

θpθ,f ). The asymmetry between the two dynamics (A.46) and (A.47)

is apparent in the last two terms of each. If θ is a type that is more prevalent among M -

researchers—for instance, θ = θm—then pθ,f will be small while pθ,m will be large. If the

current mass of M -researchers of type θ is large, then λθ
t−1γ

θpθ,m will act to further increase

the mass of M -researchers, while the respective term λθ
t−1γ

θpθ,f in the F -group dynamics

will lead to a smaller increase in the mass of type-θ F -researchers. In particular, if we start

from a situation in which all referees of type θ are in M -group, then, while they will accept

some F -researchers of type θ, they will accept a much larger mass of M -researchers.

This force is at play regardless of the parameter values, and for all types. However, its

implications for the limiting group (im)balance in the population depend upon whether or

not we are in a “meritocratic” scenario. If research characteristics have a limited effect on

the probability of quality research, as in Part (a) of Proposition 3, then θm and θf are the

only types that survive in the limit. These are also the types for which the difference in

proportions among young M - and F -researchers is greatest. Thus, in the scenario of Part

24



(a), the force thus described has the greatest effect, which is further reinforced if initially all

referees are in M -group. The result is that, in the limit, despite the fact that the mass of

young M - and F -researchers appearing at each time t is the same, the referees’ self-image

bias leads to a limiting population in which the majority of scholars are in M group.

By way of contrast, in the meritocratic scenario of Part (b) in Proposition 3, the type

that prevails in the limit is the efficient one, namely θ∗. In our symmetric model, the same

fraction of young M - and F -researchers are of type θ∗. Therefore, the effect described above

becomes more and more muted over time. Consequently, in the limit, the mass of M - and

F -scholars is the same.

The following Proposition formalizes the above discussion. We denote by Λm
t ≡∑θ λ

θ,m
t

and Λf
t ≡

∑
θ λ

θ,f
t the total mass of M - and F -scholars at date t; Λ̄m and Λ̄f are the

corresponding limiting quantities.

Proposition A.2 Assume that all referees are initially from the M -group, i.e., λ0 = pm.

(a) If ρ < ρ̄(φ,N), then the limiting masses are

(M -researchers of type θm): λ̄θm,m =
(φN)2

(φN + (1− φ)N)2
; (A.48)

(F -researchers of type θm): λ̄θm,f =
φN (1− φ)N

(φN + (1− φ)N)2
; (A.49)

(M -researchers of type θf ): λ̄θf ,m =
((1− φ)N)2

(φN + (1− φ)N)2
; (A.50)

(F -researchers of type θf ): λ̄θf ,f =
(1− φ)N φN

(φN + (1− φ)N)2
; (A.51)

with

λ̄θm,m > λ̄θm,f = λ̄θf ,f > λ̄θf ,m (A.52)

In addition, the total mass of M and F researchers are

Λ̄m = 1− Λ̄f =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N
+ 2

(
φ

1−φ

)N > 0.5. (A.53)

(b) If ρ > ρ̄(φ,N), then λ̄θ∗,m = λ̄θ∗,f = Λ̄m = Λ̄f = 1
2
.
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Proof of Proposition 6, A.2 and Corollary 2. For Part (a), since γθm = γθf =

γ0 (ρ)
N/2 and, by Proposition 3, Θmax = {θm, θf}, λ̄θ̃,m =

λθ̃
0p

θ̃,m

λθm
0 pθm,m+λθf

0 pθ
f ,m

for θ̃ ∈ Θmax, and

λ̄θ̃,m = 0 otherwise; a similar expression holds for λ̄θ̃,f . Equations (A.48) through (A.51)

then follow from the specification of pm and pf . Eq. (13) follows from Λ̄g = λ̄θm,g + λ̄θf ,g.

Part (b) follows from the fact that, by Proposition 3 part (b), Θmax = {θ∗} in this

scenario. Corollary 2 follows from Lemma A.1 Claim (3).

Proposition 6 consists of (b) and the last claim in (a) of Proposition A.2. Q.E.D.

Proof of Proposition 7: let Θ−1 = Θ and t(−1) = 0. Also let λm
0,0 = λm

1,0 = λm
0 ,

λf
0,0 = λf

1,0 = λf
0 , and λ0,0 = λ1,0 = λm

1,0 + λf
1,0. Finally, let Θ0 =

{
θ ∈ Θ : λθ

1,0 ≥ C
γθP

}
.

For j ≥ 0, say that Conditions C(j) hold if there is a set Θj ⊆ Θj−1, a period t(j) >

t(j − 1), and for τ = 0, . . . , t(j)− t(j − 1), vectors λm
τ,j, λ

f
τ,j, λτ,j ∈ RΘ

+ such that

(i) for 0 ≤ τ ≤ t(j)− t(j − 1), λm
τ,j = λm

t(j−1)+τ , λ
f
τ,j = λf

t(j−1)+τ , and λτ,j = λm
τ,j + λf

τ,j;

(ii) for 0 ≤ τ < t(j)− t(j − 1), λθ
τ,j ≥ C

γθP
for all θ ∈ Θj;

(iii) λθ
τ,j <

C
γθ(P−U)

for 0 ≤ τ ≤ t(j)−t(j−1) and all θ ∈ Θ\Θj, and λθ0
t(j)−t(j−1),j <

C
γθ0 (P−U)

for some θ0 ∈ Θj.

We claim that, for every k ≥ 0, if either k = 0 or k > 0 and Conditions C(k−1) hold, then

either Conditions C(k) hold as well, with Θk ( Θk−1 in case k > 0, or else there exist vectors

λm
τ,k, λ

f
τ,k, λτ,k ∈ RΘ

+ for all τ ≥ 1 such that (i) holds for j = k, and λθ
τ,j ≥ C

γθP
for all θ ∈ Θk.

In the latter case, if the sequences of such vectors converge, then limτ→∞ λm
τ,k = limt→∞ λm

t

and similarly for λf
τ,k and λτ,k.

Let λθ,g
0,k = λθ,g

t(k−1) for g = f,m; also let λ0,k = λm
0,k+λf

0,k. Let Θk =
{
θ ∈ Θ : λθ

0,k ≥ C
γθP

}
.

If k = 0, then Θ0 ⊆ Θ = Θ−1. Otherwise, C(k − 1) must hold, so λ0,k = λt(k−1) =

λt(k−1)−t(k−2),k−1. By (iii), if θ 6∈ Θk−1 then λθ
0,k = λθ

t(k−1)−t(k−2),k−1 <
C

γθP
, so θ 6∈ Θk as well;

firthermore, there exists θ0 ∈ Θk−1 such that λθ0
0,k = λθ0

t(k−1)−t(k−2),k−1 < C
γθP

. Therefore, if

k > 0, then Θk ( Θk−1.

Define qgk ∈ RΘ
+ \{0} for g = f,m by qθ,gk = γθpθ,g if θ ∈ Θk, and qθ,gk = 0 otherwise. Then

qθ,mk + qθ,fk ≤ 1 for all θ. Consider the sequences (λθ,g
τ,k)τ≥0 for g = f,m and (λθ

τ,k)τ≥0 defined

by Eqs. (A.35)–(A.36) for the vectors qfk , q
m
k .

Suppose first that there are τ̄ > 0 and θ0 ∈ Θk such that λθ0
τ̄ ,k < C

γθ0 (P−U)
. Let t(k) =

t(k − 1) + τ̄ . Then, for each group g = f,m, the dynamics in Eqs. (A.35)–(A.36) induced
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by the vectors qfk , q
m
k for the subsequence (λg

τ,k)τ=0,...,τ̄ coincide with those in Eq. (19) for

the subsequences (λg
t )t=t(k−1),...,t(k); thus, (i) holds for j = k. Furthermore, (ii) and the

second part of (iii) hold for j = k by the definition of τ̄ . For the first part of (iii) with

j = k, recall that by definition qθ,mk + qθ,fk = 0 for θ ∈ Θ \ Θk; hence, for all θ
′ ∈ Θ and all

θ ∈ Θ \Θk, q
θ,m
k + qθ,fk ≤ qθ

′

m,k + qθ
′

f,k. By part 3(a) in Theorem A.1, it must be the case that

λθ
τ+1,k/λ

θ
τ,k ≤ 1: otherwise,

∑
θ′∈Θ λθ′

τ+1,k >
∑

θ′∈Θ λθ′

τ,k = 1, which contradicts the fact that

λτ+1,k ∈ ∆(Θ) per Theorem A.1. Since by definition λθ
0,k < C

γθP
for θ 6∈ Θk, it follows that

also λθ
τ,k <

C
γθP

for τ = 0, . . . , τ̄ and for any such θ. Thus, in this case Conditions C(k) hold.

If instead λθ
τ̄ ,k ≥ C

γθ(P−U)
for all θ ∈ Θk, then for each group g = f,m, the dynamics in

Eqs. (A.35)–(A.36) induced by the vectors qm,k, qf,k for the subsequence (λg
τ,k)τ≥0 coincide

with those in Eq. (19) for the subsequence (λg
t )t≥t(k−1). Again, in this case (i) holds for

j = k. This completes the proof of the claim.

Since the set Θ is finite, there exists K ≥ 0 such that the induction stops—that is, λθ
τ̄ ,K ≥

C
γθ(P−U)

for all θ ∈ ΘK . Let Θ
max
k = argmax{qθ,mk +qθ,fk : θ ∈ Θ}. Since Θ0 ) Θ1 ) . . . ) ΘK ,

by the definition of the vectors qgk for g = f,m, also Θmax
0 ⊇ Θmax

1 ⊇ . . . ⊇ Θmax
K . Moreover,

for every k = 0, . . . , K − 1, and every θ ∈ Θmax
k , λθ

τ+1,k/λ
θ
τ,k ≥ 1 for 0 ≤ τ < t(k) − t(k);

otherwise, by part 3(a) in Theorem A.1,
∑

θ∈Θ λθ
τ+1,k <

∑
θ∈Θ λθ

τ,k = 1, which contradicts

the fact that λτ+1 ∈ ∆(Θ) per Theorem A.1.

Now assume that Θmax
0 ⊆ Θ0. Then, for every θ ∈ Θmax

0 ,

C

γθP
≤ λθ

0,0 ≤ λθ
t(1)−t(0),0 = λθ

0,1 ≤ λθ
t(2)−t(1),1 . . . ≤ λθ

0,K ,

so θ ∈ Θk for all k = 0, . . . , K, and thus Θmax
0 = Θmax

1 = . . . = Θmax
K ≡ Θmax. In addition,

again by part 3(a) of Theorem A.1, if θ, θ′ ∈ Θmax, then
λθ
τ+1,k

λθ
τ,k

=
λθ′

τ+1,k

λθ′
τ,k

for all k = 0, . . . , K−1

and τ = 0, . . . , t(k)− t(k−1), and for k = K and all τ ≥ 0. Rearranging terms,
λθ
τ+1,k

λθ′
τ+1,k

=
λθ
τ,k

λθ′
τ,k

for such k and τ . Therefore, (i) in Conditions C(0)...C(K) imply that

λθ
0,K

λθ′
0,K

=
λθ
t(K−1)

λθ′

t(K−1)

=
λθ
t(K−1)−t(K−2),K−1

λθ′

t(K−1)−t(K−2),K−1

=
λθ
0,K−1

λθ′
0,K−1

= . . . =
λθ
t(0)−t(−1),0

λθ′

t(0)−t(−1),0

=
λθ
0,0

λθ′
0,0

=
λθ
0

λθ′
0

.

Therefore, for θ ∈ Θmax = Θmax
K , from Theorem A.1 part (4),

λ̄θ = λ̄θ
K =

λθ
0,K∑

θ′∈Θmax λθ′
0,K

=
1

∑
θ′∈Θmax

λθ′
0,K

λθ
0,K

=
1

∑
θ′∈Θmax

λθ′
0

λθ
0

=
λθ
0∑

θ′∈Θmax λθ′
0

. (A.54)
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Similarly, for θ ∈ Θmax, part (5) in the same Theorem implies that

λ̄θ,m = λ̄θ,m
K =

λθ
0,Kq

θ,m
K∑

θ′∈Θmax λθ′
0,Kq

θ′
K

=
qθ,mK

∑
θ′∈Θmax

λθ′
0,K

λθ
0,K

qθ
′

K

=
qθ,mK∑

θ′∈Θmax
λθ′
0

λθ
0
qθ

′

K

=
λθ
0q

θ,m
K∑

θ′∈Θmax λθ′
0 q

θ′
K

,

(A.55)

and analogously for λ̄θ,f .

Statements (a.1)–(b) now follow. Recall that λ0 = pm. In (a.1), by assumption Θmax =

Θmax
0 = {θm, θf} ⊆ Θ0. Substituting λθm

0 = φN and λθf

0 = (1 − φ)N in Eq. (A.54) yields

λ̄θm = φN

φN+(1−φ)N
. Similarly, substituting for qgK , g = f,m, and qK = qfK + qmK in Eq. (A.55)

yields the same expression for λ̄θm,m as in Proposition 3, because θ ∈ Θmax implies that

qθ,gK = γθpθ,g; ditto for λ̄θm,f , λ̄θf ,m and λ̄θf ,f , and hence for Λ̄m.

For (a.2), Θmax = Θmax
0 = {θm}. This immediately implies that λ̄θm = λ̄θm

K = 1. Further-

more, from Eq. (A.55), Λ̄m = λ̄m,θm = λ̄m,θm

K = γθmpθ
m,m

γθm (pθm,m+pθm,f )
= pθ

m,m

pθm,m+pθm,f = φN

φN+(1−φ)N
,

as asserted. Finally, we compare this quantity with its counterpart in Eq. (13):

1 +
(

φ
1−φ

)2N

1 +
(

φ
1−φ

)2N
+ 2

(
φ

1−φ

)N =
(1− φ)2N + φ2N

[(1− φ)N + φN ]2
<

<
(1− φ)NφN + φ2N

[(1− φ)N + φN ]2
=

(1− φ)N + φN

(1− φ)N + φN
· φN

(1− φ)N + φN
=

φN

(1− φ)N + φN
= Λ̄m,

where the inequality follows from the assumption that φ > 0.5.

The analysis of (b) is analogous to that of (a.2), with θ∗ in lieu of θm; in this case,

pθ
∗,m = pθ

∗,f = φN/2(1− φ)N/2, so Λ̄m = λ̄θ∗,m = 1
2
.

The statements about tθ for θ 6∈ Θmax follow from the construction of t(0), . . . , t(K).

Q.E.D.

Proof of Proposition 8. For part 1, the key step is analogous to the proof of Proposition

4, modified to allow for endogenous entry. Let m0 =
∑N/2

n=1 θ and m1 =
∑N

n=N/2+1 θn.

By assumption, m0 > m1. By definition, pθ,m = φm0(1 − φ)N/2−m0φN/2−m1(1 − φ)m1 =

φ(m0−m1)+N/2(1− φ)N/2−(m0−m1) = [φ(1− φ)]N/2
(

φ
1−φ

)m0−m1

, and similarly pθ
sym,m = [φ(1−

φ)]N/2
(

1−φ
φ

)m0−m1

; since φ > 1
2
, pθ,m > pθ

sym,m. At time 0 we thus have λθ
0 = pθ,m >

pθ
sym,m = λθsym

0 . Moreover, since pf is defined with the roles of φ and 1 − φ reversed,

pθ,f = pθ
sym,m < pθ,m = pθ

sym,f .

Since γθsym = γθ, it follows that at time 0, if λθsym

0 > C
γθsymP

, then also λθ
0 > C

γθP
. In

addition, pθm+pθf = pθ
sym

m +pθ
sym

f . Thus, in the notation of Proposition 7, for t < min(tθ, tθ
sym

),
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both θ and θsym apply, and applying part 3(a) of Theorem A.1 to the relevant subsequence

of (λt)t≥0 as in the proof of Proposition 7,
λθ
t

λθ
t−1

=
λθsym

t

λθsym
t−1

, and hence
λθ
t

λθsym
t

=
λθ
t−1

λθsym
t−1

=
λθ
0

λθsym
0

> 1.

Thus, λθ
t > λθsym

t , so again, if λθsym

t > C
γθsymP

, then also λθ
t >

C
γθP

, i.e., tθ ≥ tθ
sym

. In particular,

if the inequality is strict and tθ
sym

< t < tθ, then researchers of type θ will apply at time t,

but those of type θsym will not.

For part 2, We have

Am
t − Af

t =
∑

θ:λθ
t≥ C

γθ
P

pθ,m −
∑

θ:λθ
t≥ C

γθ
P

pθ,f =

=
∑

θ

pθ,m1λθ
t≥ C

γθ
P −

∑

θ

pθ,f1λθ
t≥ C

γθ
P =

=
∑

θ

pθ,m1λθ
t≥ C

γθ
P −

∑

θ

pθ
sym,f1λθsym

t ≥ C

γθ
sym P =

=
∑

θ

pθ,m
(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
=

=
∑

θ:
∑N/2

n=1 θn>
∑N

n=N/2+1 θn

pθ,m
(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2

n=1 θn=
∑N

n=N/2+1 θn

pθ,m
(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2

n=1 θn<
∑N

n=N/2+1 θn

pθ,m
(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
=

=
∑

θ:
∑N/2

n=1 θn>
∑N

n=N/2+1 θn

pθ,m
(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2

n=1 θn>
∑N

n=N/2+1 θn

pθ
sym,m

(
1λθsym

t ≥ C

γθ
sym P − 1λθ

t≥ C

γθ
P

)
=

=
∑

θ:
∑N/2

n=1 θn>
∑N

n=N/2+1 θn

(pθ−pθ
sym

m ,m)

(
1λθ

t≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
≥ 0.

The third equality follows from the fact that θ 7→ (1−θn)
N
n=1 is a bijection. The fourth follows

from the fact that pθ
sym,f = pθ,f . To obtain the fifth, we break up the sum into types θ with

more (resp. as many, resp. fewer) characteristics between 1 and N/2 than between N/2 + 1

and N . For the sixth, observe that if a type θ has the same number of features between 1

and N/2 and between N/2 + 1 and N , then pθ,m = pθ
sym,m and so λθ

0 = λθsym

0 ; arguing as

in Proposition 8, λθ
t = λθsym

t for all t ≥ 0 (note that as soon as one type stops applying, so

does the other); but then, since also γθ = γθsym , the term in parentheses for such types is
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identially zero. In addition, we express the sum over θ’s for which
∑N/2

n=1 θn <
∑N

n=N/2+1 θn

iterating over types θ for which
∑N/2

n=1 θn >
∑N

n=N/2+1 θn, but adding up terms corresponding

to the associated symmetric types θsym. The seventh equality is immediate. Finally, the

inequality follows because, for θ such that
∑N/2

n=1 θn >
∑N

n=N/2+1 θn, the term in parentheses

is non-negative by Proposition 8, and in addition pθ>pθ
sym

m ,m. Q.E.D.
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