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candidates' career concerns and institutions' focus on hiring faculty whose research will be 
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1. Introduction

The economics profession has long been male-dominated, though differences across fields do

exist. The Committee on the Status of Women in the Economics Profession (CSWEP), a

standing committee of the AEA since 1971,1 has been regularly documenting the progress

of female economists (or lack thereof): see Chevalier (2019). However, this phenomenon has

recently received renewed attention, possibly due to the very slow progress attained in the

last 15 years. Indeed, the top panel of Figure 1 shows that in this time span, while the

fraction of women in undergraduate economics majors increased to almost 40%, the fraction

of women PhD students and assistant professors was flat at roughly 30%. The bottom panel

shows that in the “top–10” schools, the fraction of women assistant professors even declined

to 19.8% by 2019. Gender imbalance is strong at every stage, from the applicant pool to

PhD programs, to their graduation rates, to differential promotion rates through the ranks.

Perhaps the most striking fact is that “[w]omen have been less likely to transition to tenured

associate or full professors, creating a leaky pipeline” (Chevalier, 2019, p. 14).2

There is a substantial literature that explores different factors that contribute to the lack

of female representation in economics; we review this literature in Section 8. In this paper we

provide a new model to highlight an additional and more subtle, but still powerful, source of

implicit bias that does not depend on stereotypes or discrimination, whether taste-based or

statistical. This bias is due to the combination of mild population heterogeneity in research

characteristics, and the tendency of scholars to use their personal research style to evaluate

others’ research output. Both assumptions find strong support in the data, as we discuss

below. Our model thus explains why female under-representation may persist in the long

run, even when reviewers apply gender-neutral criteria to evaluate others’ work.

More specifically, we consider an overlapping-generations model in which agents belong

to one of two groups: the M -group or the F -group. A new cohort of young M - and F -

researchers appear in every period, in equal proportions. Each researcher is characterized

by a set of characteristics. These include research approach (e.g. empirical or theoretical),

methodology (e.g. structural versus reduced form), field, topic, type of questions asked,

depth vs. breadth, writing style, ties to reality, policy relevance, and so on. All researchers,

old and young, are endowed with a subset of such desirable research characteristics. Such

research characteristics are randomly and symmetrically distributed in the population of

young researchers, with some of them slightly more common in the F -group and some others

1See https://www.aeaweb.org/about-aea/committees/cswep/about.
2This mirrors the well-documented fact that the gender wage gap is higher at the high end of the distri-

bution: see Blau and Kahn (2017), §2.2.
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Figure 1: Percentage of Women in Academia
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slightly more common in the M -group. These slight differences are also symmetric: that is,

for every characteristic that is slightly more common in the M -group, there is another that

is slightly more common, by the same measure, in the F -group, and conversely. As in the

data, we let between-group heterogeneity be far smaller than within-group heterogeneity.

Moreover, all research characteristics are equally valuable: each has the same positive effect

on the likelihood of quality research (i.e., that which accomplishes its objectives). This

implies that the distribution of the likelihood of quality research in the M and F populations
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is the same. We emphasize that we do not make any assumptions about the origins of these

distributional differences, which can very well be socially determined, but only that some

mild differences exist, as documented in the empirical evidence discussed below.

We assume that the quality of a young researcher’s output is objective and observable.

However, each young researcher who has produced quality work must also be evaluated by a

randomly matched member of the established population. This evaluator (hereafter, referee)

determines whether the young researcher can be made part of the established population

and thus become him- or her-self a referee. Each referee’s perceptions of young researchers’

research reflect a self-image bias (Lewicki, 1983): that is, they tend to use their own research

characteristics as yardstick to evaluate others’ research. At the same time, the referees’

evaluation is group-neutral: each given referee uses the same set of research characteristics

for young M and F researchers. If the referee’s evaluation is positive, the latter becomes a

recognized, permanent member of the population; otherwise, he or she leaves the model.

We first show that when research is evaluated on a large number of characteristics, even

mild between-group heterogeneity and self-image bias generate a persistent bias that favors

the research of young researchers who belong to the group that is initially larger, say the

M -group. Moreover, there is no convergence. While researchers from the F -group are also

successful, not only are they a minority: they are endogenously selected to be the ones whose

research characteristics are closer to the ones that are more prevalent among M -researchers,

thereby perpetuating the bias forward.

Intuitively, because the M -group is larger initially and referees use their own research

style to judge others, the M -group effectively “decides” on behalf of the whole society which

research characteristics are important and worthy of reward, and which are not. This is

despite the fact that, in our model, all research characteristics are equally conducive to

quality research, and therefore both groups are ex-ante symmetric in terms of the likelihood

to advance knowledge. Thus, valuable characteristics that are (mildly) more common among

the F -group, but also very common in theM -group, are vastly underrepresented in the steady

state. This implies a persistent loss of talent and knowledge, and a sub-optimal steady state.

Our model thus features gender-blind evaluations, and yet M -researchers are more likely

to meet with the approval of the profession than F -researchers who are their equal in terms

of objective quality. In a sense, the “bar” for F -researchers is higher. These results are

consistent with the evidence in Card, DellaVigna, Funk, and Iriberri (2020) who show that,

on average, there is no apparent gender difference in referees’ valuation of men- and women-

authored papers, although conditional on quality (proxied by citations post-publication)
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women-authored papers tend to be accepted less frequently than men’s.

Gender imbalance and loss of talent is exacerbated by candidates’ career concerns, as well

as institutions’ focus on hiring faculty based on the likelihood their research will meet with the

approval of the profession. To demonstrate the first point, we allow young agents from both

groups F and M to choose whether to pay a cost to become researchers, or enjoy an outside

option. We show that this endogenous choice tends to skew the distribution further towards

the M -group. Intuitively, anticipating a bias against their research characteristics, the mass

of F -agents who decide to pay the cost of entry shrinks over time, and eventually converges

to a smaller fraction of “applicants” than their M counterparts. If costs are sufficiently high,

characteristics (mildly) more common in the F -group disappear altogether. This intuitive

result can help explain why the applications of women to PhD programs in Economics are

low to start with: Chevalier (2019) reports that the female share of the entering cohort of

PhD students in 2018 was 33.2%, much higher than the 7.6% share in 1971, but actually

slightly lower than the share in 1994.

The second extension of our model assumes that hiring institutions bear a cost to hire a

young researcher, and receive a payoff from hiring those who later become recognized mem-

bers of the profession. Such payoff may be in terms of visibility, recognition, grant money,

and so forth. Crucially, institutions anticipate that new hires’ research will be reviewed by

established scholars who are affected by self-image bias. For this reason, hiring institutions

will skew the distribution of their hires towards characteristics more prevalent in the M -

group. The steady state in this extension of our model is the same as in the case of career

concerns. In other words, endogenous selection affects both the supply and the demand for

talent. In both cases, it skews the steady state towards the M group, and exacerbates the

loss of talent. This result may explain why “the share female falls as the research intensity

of the department increases (e.g. from top 20 to top 10)” (Chevalier, 2019, p. 14): compare

the top and bottom panels in Figure 1. Consistently with this interpretation, the two panels

show essentially no difference in the female share of teaching faculty.

In a further extension, we allow for different levels of seniority for established researchers.

We assume that senior researchers evaluate junior researchers, and both senior and junior

researchers evaluate new entrants. This mimics the career dynamics in academia. Our

results about the persistent bias in hiring carry through. Moreover, under suitable parameter

configurations, there is a “leaky” pipeline (cf. Chevalier, 2019): senior researchers are even

more biased towards characteristics prevalent in the M -group than junior researchers.

We finally investigate the impact of some policy actions. While other sources of gender
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bias may exist in practice (but see Card et al., 2020), the fact that self-image bias can also

lead to gender bias and especially talent loss may warrant different interventions. We first

investigate the impact of mentorship. We assume that each young researcher is matched with

a random advisor from the set of established researchers. Given self-image bias, such advisor

will advise the young researcher to become like him or her; the young researcher can do so by

paying a cost. We show that, while mentorship may achieve gender balance, it also accelerates

the convergence to a steady state with loss of F−group characteristics. Intuitively, mentors

are drawn from the dominant population, which—by our results—over-represents M−group

characteristics. Since referees are drawn from the same dominant population, it can be

profitable for young researchers to adopt their mentors’ characteristics. On one hand, this

makes it easier for young F–group researchers to achieve success. On the other hand, such

young researchers give up their own characteristics to acquire those more common in the

M−group. This exacerbates the loss of talent.

We then consider the impact of “affirmative action” policies. In particular, we study a

mandated requirement to accept the same number of F researchers as M researchers. Clearly,

such policy action mechanically brings about gender balance in the long run. However, we

also find that gender balance is reached while having all characteristics in the population

represented in the limit. Intuitively, increasing the F−group representation in hiring by

mandate also increases heterogeneity in the future pool of referees. This makes it more likely

that research characteristics (mildly) more prevalent across F researchers will be accepted.

The resulting steady state thus represents a wider array of research styles than the one

obtained from e.g. mentorship, and is thus beneficial to society.

Our results depend on two main assumptions: mild heterogeneity in research character-

istics between M researchers and F researcher, and the tendency of reviewers to use their

own research style to judge the importance and worth of others’ research output. Both

assumptions are grounded in the empirical literature.

First, there is a considerable body of research studying gender differences in cognitive

traits, preferences, and attitudes. Regarding cognitive traits, in general these differences

are small, in the sense that within-group differences are far larger than the between-group

differences. Hyde and Linn (2006) review the evidence on gender difference in mathematics

and science, and conclude that, even when statistically significant, such differences as mea-

sured by Cohen’s d (e.g. Cohen, 2013, §2.2), are small (e.g. d = 0.11 for high-schoolers).3

3For any attribute of interest, the quantity d equals the difference in means between the two samples
or populations (here, males and females), divided by the pooled standard deviation. In the cited reference,
Cohen suggests that values of d around 0.2 should be considered “small,” values around 0.5 “medium,” and
values around or above 0.8 “large.”
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Similarly, based on a meta-analysis of research on mathematics performance, males outper-

form females in “complex problem solving;” while more pronounced (d = 0.29) the effect

size is still relatively small. Larger differences exist in personality traits and preferences.

For instance, medium-sized effects are found for aggression (d between 0.40 and 0.60) and

activity level in the classroom (d = 0.49). Similarly, Hyde (2014) reports the following d

statistics of gender differences in the “big-5 personality traits,” earlier studied by Costa, Ter-

racciano, and McCrae (2001): among US subjects, there are small-to-moderate differences in

neuroticism (d = −0.40), extraversion (d = −0.21), openness (d = 0.30) and agreeableness

(−0.31), but a trivial difference in conscientiousness (d = −0.05). Within economics, Croson

and Gneezy (2009) provide a review of the experimental literature and find “robust differ-

ences in risk preferences, social (other-regarding) preferences, and competitive preferences.”

Borghans, Golsteyn, Heckman, and Meijers (2009) also find differences in risk aversion, but

less so on ambiguity aversion. Dittrich and Leipold (2014) find that women tend to be more

patient than men, and Dreber and Johannesson (2008) that males are more likely to lie in

order to secure a monetary gain; see also Betz, O’Connell, and Shepard (1989). Niederle

and Vesterlund (2010) review evidence showing that, relative to the general population,

the mathematics gender gap widens considerably when restricting attention to students at

the highest levels of math performance.4 They relate this to differential attitudes toward

competitiveness. Goldin (2014) reviews studies finding that the gender pay gap is largest

in professions where “working long hours” is especially rewarded; this suggests a (possibly

socially determined) preference for flexible work hours on the part of women.

As mentioned, we do not need to take a stand on the origins of these (small) distribu-

tional differences. Indeed, the evidence suggests that many of the traits for which a gender

difference exists may be socially determined—they are the result of cultural attitudes and

gender stereotyping. Guiso, Monte, Sapienza, and Zingales (2008) argue that gender dif-

ferences in math scores across countries, as measured by the PISA assessment, are largely

explained by broad measures of gender equality in those countries. Falk, Becker, Dohmen,

Enke, Huffman, and Sunde (2018) document variation in preference traits across 76 coun-

tries and find that women are more risk-averse than men in most countries; however, for

trust and patience, the correlation with gender is only significant for a subset of countries.

This suggests that cultural factors may partly account for gender differences in preference

traits. Andersen, Ertac, Gneezy, List, and Maximiano (2013) provide experimental evidence

indicating that the gender gap in competitiveness does not arise in a matriarchal society.

4Hyde (2014, p. 391) also reviews work documenting that, for traits such as mathematical ability, spatial
reasoning, and verbal ability, there is slightly greater variance among males than females; this might help
explain the finding that there are more males at the very top of the ability distribution—though, conceivably,
also at the very bottom.
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The second important assumption of our model is that each referee uses his/her own re-

search style characteristics to form his/her opinions of what constitutes important or worthy

research. The psychological literature on the “self-image bias” (Lewicki, 1983) suggests that,

when evaluating others, individuals tend to place more weight on positive attributes that

they themselves possess (or believe they possess). Hill, Smith, and Hoffman (1988) show

that this is true in particular when subjects are asked to select a partner in a competitive

game. Dunning, Perie, and Story (1991) argue that a similar principle is at work when judg-

ing social categories by means of prototypes (e.g., what makes a good economist?): “people

may expect the ‘ideal instantiation’ of a desirable social category to resemble the self in its

strengths and idiosyncracies” (p. 958). While this is often just a useful heuristic, it can

also reflect a “hidden agenda of self-affirmation” (Dunning and Beauregard, 2000). On the

other hand, Story and Dunning (1998) document a “rational” source for self-image bias and

self-serving prototypes: in their experiment, “those who received success feedback came to

perceive a stronger relationship between ‘what they had’ and ‘what it takes to succeed’ than

did those who received failure feedback” (p. 513). Translated to our environment, estab-

lished researchers view their personal success in research as evidence that their own research

characteristics are the right ones to produce quality research that, in addition, is valuable to

society. Hence, they use the same characteristics to evaluate the research of others.

A second possible interpretation of our assumption is that referees have preferences over

characteristics; in particular, they prefer candidates who share their own characteristics (e.g.

theorists like theorists, and empiricists like empiricists). Importantly, this preference does

not take group membership into account at all. Preferences are an intrinsic trait of a referee:

they do not arise out of the belief that one’s own characteristics are the ones that make a

good economist. This interpretation is consistent with our analysis. However, it implies that

referees do not value heterogeneity (e.g., theorists derive no benefit from interacting with em-

pirical researchers, and conversely). It also implies that referees do not take the candidate’s

objective productivity into account, and hence disregard the benefits that would accrue to

a department—or, in fact, from the profession as a whole—from hiring and advancing a

productive young researcher who however does not share their own characteristics.

Organization. Section 2. introduces our basic model. Section 3. provides a simple

numerical illustration, and Section 4. a more elaborate one that is closer to the data. Section

5. endogenizes entry (§5.1.) and hiring (§5.2.) decisions. Section 6. studies the case of junior

and senior researchers. We then turn to evaluate policy actions: Section 7.1. studies the

impact of mentorship and Section 7.2. discusses the impact of affirmative action policies.

Section 8. reviews the literature and Section 9. concludes.
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2. The Basic Model

We consider an overlapping-generations model in which unit masses of two groups of young

researchers, M -group and F -group, appear at discrete times t = 1, 2, . . .. Each researcher

i ∈ M ∪ F is endowed with a type drawn from a set Θ, and distributed heterogeneously

across M and F researchers. While systematic, these distributional differences may well

be small. Research output fully reflects the researcher’s type; in fact, we assume that the

characteristics of a paper written by a researcher of type θ are θ itself.

We adopt a particularly stark, symmetric environment in which each type corresponds to

a vector of N characteristics which can only take two values, 0 and 1: that is, Θ ≡ {0, 1}N .

(We consider a more general specification in the Appendix.) For θ ∈ Θ, 1 ≤ n ≤ N , and

i ∈ M ∪ F , we denote by θin the value of the n-th characteristic for agent i. We assume

that the number N of characteristics is even, and that their distribution among M and F

researchers is determined by a single parameter φ ∈ (1
2
, 1). Specifically:

• characteristics are mutually independent;

• for n = 1, . . . , N
2

, the probability that θin = 1 is φ for M -researchers and 1 − φ for

F -researchers; and

• for n = N
2

+ 1, . . . , N , the probability that θin = 1 is 1− φ for M -researchers and φ for

F -researchers.

For every θ ∈ Θ, let pθ,f (resp. pθ,f ) denote the fraction of types in the F (resp. M)

population of young researchers. Let pg = (pθ,g)θ∈Θ ∈ ∆(Θ) for g = f,m. Thus,

pθ,m =

N/2∏
n=1

φθn(1−φ)1−θn·
N∏

n=N/2+1

(1−φ)θnφ1−θn , pθ,f =

N/2∏
n=1

(1−φ)θnφ1−θn·
N∏

n=N/2+1

φθn(1−φ)1−θn .

(1)

The parameter φ can also be related to Cohen’s d statistic for an individual characteristic:

for n = 1, . . . , N
2

,

d =
E[θin|i ∈M ]− E[θin|i ∈ F ]

σpooled(θin)
=

2φ− 1√
φ(1− φ)

. (2)

For n = N
2

+ 1, . . . , N , the d statistic is the negative of the above expression. We will focus

our numerical exercises to φ close to 0.5, which implies that between-group heterogeneity is

small compared to within-group heterogeneity.
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We model each characteristic as a desirable research attribute, which makes it more

likely for the researcher to produce a quality paper. A “quality” paper is one that achieves

its stated goals—estimating a parameter of interest, establishing a causal effect, document-

ing a phenomenon experimentally, or proving a theorem. We assume that whether a paper

achieves its goals is observable and can be objectively determined; this may involve, for

instance, checking a formal argument regarding a theoretical claim or the application of a

statistical procedure, evaluating an experimental procedure for possible biases or ambigui-

ties, or ensuring that the formal results are clearly explained and interpreted, and that the

contribution is correctly placed within its literature.

Again, we adopt a simple symmetric specification: we fix γ0 ∈ (0, 1), ρ ∈ [1, 1
γ0

], and

assume that type θ = (θn)Nn=1 writes a quality paper with probability

γθ ≡ γ0 ρ
1
N

∑
n θn . (3)

Thus, γ(0,...,0) = γ0, and the probability of writing a quality paper depends solely on the

number of 1’s in
∑

n θn, with the maximum attained for γ(1,...,1) = γ0 ρ ∈ [γ0, 1]. The

parameter ρ reflects the relative abilities of researchers with different characteristics to write

a “quality” paper. If ρ = 1, for instance, then all types write a quality paper with probability

γ0, which entails that other factors will need to be used by referees in promoting researchers.

If ρ = 4, instead, it means that the best researcher γ(1,...,1) is four times more likely to produce

quality research than the worse researcher, with γ(0,...,0).

To sum up, the free parameters in our model are φ, γ0, ρ, and N .

2.1. Objective Refereeing

This section studies a benchmark system where the evaluation by established scholars is

objective and only depends on whether the paper is of sufficient quality or not, as described

in previous section. Since each young scholar with type θ produces quality research with

probability γθ, given in (3), this is also the probability with which the research is “accepted”

by referees. This probability increases with the number of desirable characteristics
∑

n θn.

This assumption captures the fact that a young scholar with many desirable characteristics

is more likely to produce quality research than another scholar with fewer desirable charac-

teristics. Still, even a scholar θ′ with
∑

n θ
′
n = 0 has probability γ0 > 0 to produce quality

research, perhaps by sheer luck. To sum up, in this setting, the referee is only certifying that

the research is of sufficient quality, that is, it reaches its goals.

For every type θ ∈ Θ, let aθ,mt and aθ,ft denote the mass of young researchers of group M
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and, respectively, group F of type θ that produce quality research and are thus “accepted”

at the end of period t:

aθ,gt = γθ · pθ,g, g ∈ {f,m}. (4)

Denote the total mass of accepted young researchers by at =
∑

θ∈Θ

∑
g∈{f,m} a

θ,g
t .

Denote λθ,gt the mass of established researchers of type θ and group g at time t. We

normalize the initial mass of all established researchers to one:
∑

θ

∑
g λ

θ,g
0 = 1.5 In order

to keep the mass of referees constant, we assume that each young agent whose research is

accepted replaces a randomly drawn established one. This is not necessary for the results

but keeps the analysis balanced. As we discuss in Section 2.2. below, this assumption is also

geared towards maximizing the impact of young researchers on the evolution of the system.6

The resulting dynamic is then described by the following equation:

λθ,gt = (1− at)λθ,gt−1 + aθ,gt , g ∈ {f,m}. (5)

The limiting behavior of this system is readily characterized. First, initial conditions

have no long-run effect. Eq. (4) shows that aθ,gt is time invariant for g ∈ {f,m}; hence, so

is aθt , and therefore at. Then, dropping time indices, for g ∈ {f,m},

λθ,gt = (1− a)λθ,gt−1 + aθ,g = (1− a)tλθ,g0 + aθ,g
1− (1− a)t

a
→ aθ,g

a
(6)

so the limiting fraction of M - to F -researchers is∑
θ a

θ,m∑
θ a

θ,g
=

∑
θ γ

θpθ,m∑
θ γ

θpθ,f
.

Second, in our symmetric model, for every type θ = (θ1, . . . , θN), there is a corresponding

type θ̄ = (θN/2+1, . . . , θN , θ1, . . . , θN/2) such that pθ,m = pθ̄,f and γθ = γ θ̄; hence, the above

fraction equals 1. This establishes the main result of this section: regardless of initial

conditions, the system converges to equal shares of M and F established researchers, and

the limiting type distribution is fully characterized by the probability of producing quality

research and the relative frequency of each type in the population of young researchers.

5 The fact that the total mass of established scholars (a stock) equals the mass of young M and F
researchers (flows) is of course not realistic, but immaterial for our analysis. Normalizing the stock of
established researchers to any positive number L yields the same predictions. Furthermore, L could be
calibrated, for instance, by matching the fraction of young researchers who are hired to data on the academic
job market (e.g., see Conley and Önder, 2014)

6We also considered a similar model with a fix retirement rate of existing researchers to be replaced
by cohorts of hired young researchers. The results are similar. The assumption in the text has one less
parameter and it is more favorable to an eventual convergence to group balance.
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Proposition 1 In the benchmark model with objective refereeing, regardless of the compo-

sition (λθ,m0 , λθ,f0 )θ∈Θ of the initial population of established researchers, we have

λθ,mt → γθpθ,m

a
, λθ,ft →

γθpθ,f

a
, and

∑
θ λ

θ,m
t∑

θ λ
θ,f
t

→ 1

2.2. Refereeing with Self-Image Bias

Our main model differs from the benchmark in Section 2.1. in that established researchers

(referees) not only evaluate young researchers on whether their research is of sufficient quality

(as in previous section), but they also use their personal research styles to guide their subjec-

tive judgement as to the “importance” or “relevance” of the candidate’s output. Specifically,

each young researcher i ∈M ∪F of type θi is now randomly matched to a referee r, who uses

his or her own characteristics θr to evaluate agent i’s work. Importantly, evaluation is anony-

mous and group-blind: it depends solely upon referee r’s own type θr and the characteristics

of researcher i’s output, which by assumption coincides with his of her type θi.

Consistently with self-image bias and the adoption of self-serving prototypes, referee r

rejects applicants whose type is far from his/her own set of characteristics. We make in fact

a stark assumption: referee r has a positive view of young agent i’s research if and only if

θr = θi. (We relax this assumption in the on-line appendix.) If agent i’s output is positively

evaluated, i becomes an established researcher, and will serve as referee for future cohorts

of young researchers.

As in previous section, each young researcher who enters the population of established

researchers randomly replaces an existing one. This assumption is the most favorable to

young researchers; in particular, if the initial referee population is predominantly made of

M -researchers, this assumption makes it easier for the dynamics to “push out” old M -

researchers and replace them with young F -researchers. In other words, this assumption is

most conducive to attaining group balance in the limit.

Let λθt = λθ,ft + λθ,mt be the total mass of established researchers of type θ at time t.

Retaining the notation of Section 2.1., the dynamics for the mass of young researchers of

type θ and group g that are accepted in round t is

aθ,gt = γθ · λθt−1 · pθ,g. (7)

Importantly, whether a young researcher is accepted or not depends solely on the type θ,

and not also on the group g. As in Equation (5), the total mass of established researchers
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of type θ and group g is given by

λθ,gt = λθ,gt−1 (1− at) + aθ,gt (8)

where as above at =
∑

θ

∑
g a

θ,g
t . Equations (7) and (8) indicate that there are two forces

at play. On one hand, the distribution of incumbent types impacts which research charac-

teristics are likely to be positively evaluated by referees. On the other hand, even among

incumbents, types that are more likely to produce quality research tend to be more prevalent.

As we shall demonstrate, the interplay of these two forces determines whether the system

ultimately attains the first-best outcome in Section 2.1., or if instead an inefficient outcome,

characterized by group imbalance, is reached.

2.3. Type Dynamics

We begin by studying the evolution of the mass of each type in the population. The following

proposition establishes the types that can potentially survive (i.e. have positive mass) in the

limit. All other types vanish over time.

Proposition 2 For every even N > 0, φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
), the sequences

(λt)t≥0, (λmt )t≥0, and (λft )t≥0, admit limits. Furthermore, only three types can potentially

survive in the limit: either

(i) the type most prevalent across M and, respectively, F researchers,

θm = (1, . . . , 1, 0, . . . , 0) and θf = (0, . . . , 0, 1, . . . , 1); or (9)

(ii) the type most likely to produce quality research,

θ∗ = (1, . . . , 1). (10)

Types θm and θf have frequency φN ; type θ∗ has frequency φN/2(1− φ)N/2, and is thus less

prevalent among both M and F researchers.

The fact that these three types are the only ones that can potentially survive reflects

the observation that both the distribution of entrants and the relative chances of quality

research determine the evolution of the system. Furthermore, not all three types can survive.

Except for knife-edge parameter choices, either θ∗ dominates in the limit and all other types

(including θm and θf ) disappear, or θm and θf dominate (and θ∗ disappears). Thus, one of

the two forces at play eventually prevails.
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In the next proposition, recall that the parameter ρ measures agents’ heterogeneity in

producing quality research (see equation (3)).

Proposition 3 Under the assumptions of Proposition 2, let λ̄ = limt→∞ λt and

ρ̄(φ,N) =
1

4

((
1− φ
φ

)N/2
+

(
φ

1− φ

)N/2)2

. (11)

(a) If ρ < ρ̄(φ,N), then only types θm and θf survive in the limit. In particular, if at time

0, all referees are in the M -group, so that λ0 = pm, then7

λ̄θ
m

=
φN

φN + (1− φ)N
>

1

2
; λ̄θ

f

= 1− λ̄θm . (12)

(b) If ρ > ρ̄(φ,N) then, regardless of the distribution of time-0 referees, only type θ∗

survives in the limit.

In part (a), the impact of research characteristics on the probability of producing a quality

paper, which is a function of ρ, is comparatively small. In this case, the dynamics of the

system are driven primarily by the initial conditions and the flows of young researchers. In

particular, if all referees are initially in the M -group, then in the limit M -researchers will

represent the majority—despite the fact that an equal mass of young M and F researchers

enters the model in every period, and that the research characteristics of both types are

equally conducive to quality research.

Interestingly, even type θ∗ disappears in this scenario, despite the fact that such type

has all desirable research characteristics. For instance, when a young researcher of type θ∗

is matched with a referee of type θm, the latter “disapproves of” the θ∗ traits from N/2 + 1

to N , even if they are objectively desirable. Similarly, a referee of type θf “disapproves of”

characteristics from 1 to N/2. The interpretation is simple once we remember that research

characteristics may also include e.g. research topics or methodologies.More generally, the

nature of self-image bias is exactly that each reviewer consider his or her traits as the

important ones, and discounts the other ones.

By way of contrast, part (b) characterizes a more “meritocratic” scenario in which re-

search characteristics significantly improve the chances of producing quality research. In this

case, regardless of the initial conditions, the system converges to an efficient steady state in

7What matters for the result to hold is that λ0 = pm; in principle, this may hold even if not all referees
are initially from the M group, but in practice, this is the case of interest here.
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which all researchers possess every research characteristics—regardless of their group. The

self-image bias is still at work in this scenario: referees still evaluate research according to

their own characteristics. However, in this scenario each characteristic is important enough

that, over time, referees themselves will tend to possess more and more of them, and hence

select in a “virtuous” way.

Taken together, parts (a) and (b) show that our simple symmetric model is capable of

generating both long-run outcomes that are affected by self-image bias, as well as merito-

cratic and unbiased outcomes. The next corollary shows that, however, that irrespective

of parameter values, if the number N of research characteristics is large enough, the bi-

ased outcome in part (a) of Proposition 3 will prevail—even if between-group differences are

arbitrarily small (i.e. if φ is close to 0.5):

Corollary 1 For any φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
),, if λ0 = pm, then

1. there exists N large enough such that outcome (a) of Proposition 3 realizes;

2. as the number of characteristics N →∞,

λ̄θ
m → 1.

Thus, a main take-away message of our model is that, if the number of research charac-

teristics is large, if the M–group dominates the initial population, its most prevalent type θm

will dominate in the steady state. Informally, M -researchers effectively determine on behalf

of society that the only important research characteristics are their own. The F -researchers

have no chance to grow to equality, even without any explicit bias against them.

In fact, if the initial population of referees is entirely from the M group, a basic force in

our model implies that young researchers from the F group are, in a sense, held to a higher

standard. Recall that, in our parameterization of objective quality γθ, all characteristics are

equally important. Now consider the set of all types θ that possess exactly L characteristics.

All such types have the same objective productivity, independently of group membership.

Yet, if the referees are initially all from the M group, the mass of accepted M -group re-

searchers of such types is always at least as large as for the F group. This is true even if

parameters are consistent with the “meritocratic” regime.

Proposition 4 Assume that initially λ0 = pm. For all even N , φ ∈ (1
2
, 1), γ0 ∈ (0, 1) and

ρ ∈ (1, 1
γ0

), and for every L ∈ {0, . . . , N},∑
θ:
∑
n θn=L

aθ,mt ≥
∑

θ:
∑
n θn=L

aθ,ft
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and the inequality is strict if there is θ ∈ Θ with
∑

n θn and θn 6= θN+1−n for some n.

That is, in aggregate, it is easier for young M -researchers researchers to be accepted than

for F -young researchers, controlling for objective quality, namely, the number of desirable

characteristics
∑

n θn = L; this is in line with the cited evidence in Card et al. (2020).

2.4. M- and F -Researcher Types in the Limit

Proposition 3 mostly concerns the distribution of researcher types irrespective of their group.

We now analyze how the mass of each type θ evolves among M - and F -researchers separately,

and also characterize group (im)balance in the limit.

To do so, it is useful to rewrite Equation (8) for each group g = m, f as follows:

λθ,mt − λθ,mt−1 = −λθ,mt−1 at + λθ,mt−1γ
θpθ,m + λθ,ft−1γ

θpθ,m (13)

λθ,ft − λ
θ,f
t−1 = −λθ,ft−1 at + λθ,ft−1γ

θpθ,f + λθ,mt−1γ
θpθ,f (14)

Consider the dynamics of F -researchers in (14), for instance. The change in the mass of

F -researchers of type θ decreases due to replacement at the rate at, and it then increases

due to the young F -researchers who produce quality research and are matched with referees

from the F group who share their type and hence view them positively (λθ,ft−1γ
θpθ,f ), plus the

young F -researchers who produce quality research and are matched with M -referees of their

own type (λθ,mt−1γ
θpθ,f ). The asymmetry between the two dynamics (13) and (14) is apparent

in the last two terms of each. If θ is a type that is more prevalent among M -researchers—for

instance, θ = θm—then pθ,f will be small while pθ,m will be large. If the current mass of

M -researchers of type θ is large, then λθt−1γ
θpθ,m will act to further increase the mass of

M -researchers, while the respective term λθt−1γ
θpθ,f in the F -group dynamics will lead to

a smaller increase in the mass of type-θ F -researchers. In particular, if we start from a

situation in which all referees of type θ are in M -group, then, while they will accept some

F -researchers of type θ, they will accept a much larger mass of M -researchers.

This force is at play regardless of the parameter values, and for all types. However, its

implications for the limiting group (im)balance in the population depend upon whether or

not we are in a “meritocratic” scenario. If research characteristics have a limited effect on

the probability of quality research, as in Part (a) of Proposition 3, then θm and θf are the

only types that survive in the limit. These are also the types for which the difference in

proportions among young M - and F -researchers is greatest. Thus, in the scenario of Part

(a), the force thus described has the greatest effect, which is further reinforced if initially all
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referees are in M -group. The result is that, in the limit, despite the fact that the mass of

young M - and F -researchers appearing at each time t is the same, the referees’ self-image

bias leads to a limiting population in which the majority of scholars are in M group.

By way of contrast, in the meritocratic scenario of Part (b) in Proposition 3, the type

that prevails in the limit is the efficient one, namely θ∗. In our symmetric model, the same

fraction of young M - and F -researchers are of type θ∗. Therefore, the effect described above

becomes more and more muted over time. Consequently, in the limit, the mass of M - and

F -scholars is the same.

The following Proposition formalizes the above discussion. We denote by Λm
t ≡

∑
θ λ

θ,m
t

and Λf
t ≡

∑
θ λ

θ,f
t the total mass of M - and F -scholars at date t; Λ̄m and Λ̄f are the

corresponding limiting quantities.

Proposition 5 Assume that all referees are initially from the M -group, i.e., λ0 = pm.

(a) If ρ < ρ̄(φ,N), then the limiting masses are

(M -researchers of type θm): λ̄θ
m,m =

(φN)2

(φN + (1− φ)N)2
; (15)

(F -researchers of type θm): λ̄θ
m,f =

φN (1− φ)N

(φN + (1− φ)N)2
; (16)

(M -researchers of type θf ): λ̄θ
f ,m =

((1− φ)N)2

(φN + (1− φ)N)2
; (17)

(F -researchers of type θf ): λ̄θ
f ,f =

(1− φ)N φN

(φN + (1− φ)N)2
; (18)

with

λ̄θ
m,m > λ̄θ

m,f = λ̄θ
f ,f > λ̄θ

f ,m (19)

In addition, the total mass of M and F researchers are

Λ̄m = 1− Λ̄f =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N

+ 2
(

φ
1−φ

)N > 0.5. (20)

(b) If ρ > ρ̄(φ,N), then λ̄θ
∗,m = λ̄θ

∗,f = Λ̄m = Λ̄f = 1
2
.
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The next proposition illustrates the limiting case as the number of research characteristics

N diverges to infinity:

Corollary 2 For all φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
), if λ0 = pm,

1. there exist N large enough such that case (a) in Proposition 5 realizes;

2. as N →∞, Λ̄m → 1 and Λ̄f → 0.

This reinforces and refines tho message of Corollary 1: in particular, for all parameter

values, as N increases, the fraction of M -researchers always dominates in the limit, and in

the limit converges to one.

2.5. Research Characteristics of Established F -Researchers

One further implication of Proposition 3 (see Eqs. 15 and 18) is that, in an environment in

which self-image bias prevails, the same limiting fraction of established F -researcher exhibit

types θm and θf . In other words, the research characteristics of established F -researchers are

“biased,” i.e., they are slanted towards the characteristics prevalent among M -researchers.

Corollary 3 In part (a) of Proposition 5,

0.5 =
λ̄θ

f ,f

λ̄θm,f + λ̄θf ,f
=

λ̄θ
m,f

λ̄θm,f + λ̄θf ,f
(21)

This result is in stark contrast with the assumption that θf is the prevalent type in each

cohort of young F -researchers. In other words, the selection mechanism makes the type most

prevalent among M -researchers, θm, be a frequent type in the established F−researchers

(50% of the time), even if such type only had (1−φ)N frequency in each population of young

F researchers.

The intuition is as follows. The fraction of M agents of type θf is small, and in the limit

most established agents are from the M group. This means that, although types θf are the

most prevalent in the F group, there are few type-θf referees that will accept their research.

On the other hand, while the fraction of types θm in the F group is small, there are many

potentially positive type-θm referees. The symmetry of our model implies that these effects

exactly balance out in the limit.
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Table 1: Type Frequencies in a Simple Example

pθm pθf
(0, 0) 0.2× 0.8 = 0.16 0.8× 0.2 = 0.16
θm = (1, 0) 0.8× 0.8 = 0.64 0.2× 0.2 = 0.04
θf = (0, 1) 0.2× 0.2 = 0.04 0.8× 0.8 = 0.64
θ∗ = (1, 1) 0.8× 0.2 = 0.16 0.2× 0.8 = 0.16

3. A Simple Numerical Example

To illustrate the results in the previous subsections, we first provide a simple example.

Consider the case in which agents have only two characteristics, so N = 2. Thus, we have a

set of four types

Θ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

In the notation of the preceding subsections, θm = (1, 0), θf = (0, 1), and θ∗ = (1, 1). We

will consider different choices for the parameters γ0 and ρ, but since γθ only depends upon∑
n θn, θm and θf have the same probability of producing quality research, and θ∗ is the

most likely type to do so.

To characterize the population of young researchers, we choose φ = 0.8. That is, 80% of

M -researchers have characteristic 1, but only 20% have characteristic 2; conversely, 80% of

F -researchers have characteristic 2, but only 20% have characteristic 1. The between-group

heterogeneity in this example is large and not realistic, and of course restricting attention to

only two research characteristics is just for simplicity. Our objective in this section is simply

to illustrate the patterns that our model can generate. Section 4. provides a numerical

analysis of a more realistic case, with much smaller between-group heterogeneity and a

larger number of research characteristics. M - and F -research output is characterized by the

frequencies in Table 1.

We first consider parameters γ0 and ρ for which self-image bias prevails. Specifically, we

let γ0 = 0.2 and ρ = 4. This implies that type θ∗ is twice as likely as types θm and θf to

produce quality research; in turn, these types are twice as likely as the worst type (0, 0) to

do so. Thus, research characteristics do matter in this scenario; however, it turns out that,

with φ = 0.8, by Proposition 3 self-image bias prevails:

ρ = 4 < 4.51625 = ρ̄(φ,N) =
1

4

((
0.2

0.8

)2/2

+

(
0.8

0.2

)2/2
)2

.

Part (a) of Proposition 3 states that, in the limit, only the two intermediate types have
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positive mass. So, in particular, the “best” researcher type (1, 1) disappears in the limit.

Furthermore, if λ0 = pm, then eventually θm = (1, 0) becomes the majority type; specifically,

λ̄(1,0) = λ̄θ
m

=
0.82

0.82 + 0.22
≈ 94%.

As may be expected, correspondingly, established researchers are predominantly M -type in

the limit: from Eq. (20) in Proposition 5, the fraction of M -researchers in the limit is

Λ̄m =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N

+ 2
(

φ
1−φ

)N =
1 +

(
.8
.2

)4

1 +
(
.8
.2

)4
+ 2

(
.8
,2

)2 ≈ 89%.

This is the case despite the fact that an equal mass of young M - and F -researchers appear in

every period, and also despite the absence of any explicitly group-biased evaluation of young

researchers. The result is driven solely by the initial condition and the referees’ self-image

bias. To give a sense of the dynamics of the system at finite times, the left panel of Figure

2 displays the evolution of the fraction of M - and F -researchers in the population (that is,

Λm
t and Λf

t ) over 100 periods, assuming that all established researchers at time t = 0 are

M -researchers (λ0 = pm) and that pm and pf are as in Table 1.

Despite the fact that both characteristics are important to produce quality research, this

dynamics tends to weed out those researchers who indeed possess both such characteristics

(their mass vanishes). Moreover, because the M -population dominates, and in such popula-

tion the second characteristic is under-represented, we end up with a self-perpetuating state

in which the dominant M -characteristic 1 is over-sampled at the expense of the dominant

F -characteristic 2.

Panel (b) of Figure 2 shows the total acceptance rates of symmetric types θm and θf

for M and F researchers: aθ
m,m
t + aθ

f ,m
t and aθ

m,f
t + aθ

f ,f
t (see Proposition 4). Despite the

identical quality of these researchers, the acceptance rate of M -researchers is far higher than

the acceptance rate of F -researchers.

Of interest is that established F -researchers are overly frequently of the type θm = (1, 0)

that is most prevalent among the M -group, consistently with Corollary 3. And, because

established F -researchers carry the characteristics of M -researchers, they will judge other F -

researchers just like M -referees do: they will exhibit an implicit bias against types prevalent

among F -researchers, downplaying characteristic 2 and instead putting excessive weight on

characteristic 1.

The left panel of Figure 3 shows the percentage of established F -researchers over time.

Recall that, by assumption, there are no F -researchers at time 0. Initially, intrinsic research
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Figure 2: Fraction of M and F Researchers and Acceptance Rates

(a) M and F researchers (b) Acceptance Rates

Fraction of M and F researchers (Panel a) and sum of acceptance rates of symmetric types

θm and θf for M and F researchers, i.e., aθ
m,m
t + aθ

f ,m
t and aθ

m,f
t + aθ

f ,f
t (Panel b). Initially

λ0 = pm. Parameters: φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

ability prevails, and type θ∗ is most prevalent among F -researchers that become established.

However, over time, types θm and θf dominate. In particular, even though φ2

(1−φ)2 = 0.64
0.04

= 16

times as many θf types as θm types appear among F -researchers in every period, this is

compensated by the fact that θm types are much more likely to be matched with referees of

the same type. In our symmetric model, these two effects exactly offset each other, and the

fraction of established θm and θf types is the same among F -researchers at each point in

time. This is in stark contrast with the asymmetry between θm and θf types in each young

F -cohort. On the other hand, the right panel of Figure 3 shows that the percentage of M -

researchers of type θm increases to one. Thus, the system “weeds” out the least productive

types θ = (0, 0), but it also weeds out the efficient type θ∗.

3.1. Convergence to Efficiency

Can the dynamics lead to convergence to equal shares of established M - and F -researchers,

even if one starts from an unbalanced initial population? Proposition 3 shows that this is the

case if agents’ differences in probability to produce quality research, ρ, is sufficiently high.

We continue to assume that the initial population is M -dominated: λ0 = pm, and that

N = 2 and φ = 0.8. However, we now take γ0 = 0.1 and ρ = 9. Thus, now type θ∗ is 3

times as likely to produce quality research as types θf and θm, who are themselves 3 times

as likely to do so as type (0, 0). Thus, the system is now more “meritocratic” than in our
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Figure 3: Types of Established F and M Researchers

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = pm. Parameters: φ = 0.8,
γ0 = 0.2, ρ = 4, N = 2.

previous numerical examples. Now

ρ = 9 > 4.25 =
1

4

(
0.2

0.8
+

0.8

0.2

)2

= ρ̄(0.8, 2),

so Proposition 3 part (b) implies that type θ∗ will dominate in the limit. Figures 4 and 5

illustrate the dynamics. In this case, the percentage of F -researchers indeed converges to the

50-50 symmetric configuration, and eventually, the same fraction of M - and F -researchers

is accepted. Moreover, the system is able to weed out those researchers that do not possess

both characteristics—i.e., the system “works.” Yet, Panel (b) in Figure 4 shows that, in the

short run, a greater mass of M researchers whose type is either θm or θf is accepted relative

to F researchers of the same types.

4. Many Characteristics

The previous section illustrated the dynamics and the implicit bias that arises from the case

with only two research characteristics. The bias was evident and extreme when we considered

a large difference in the distribution of each characteristic in the population—we assumed

φ = 0.8, so 80% of young M -researchers and 20% of young F -researchers were endowed with

characteristics 1, while the opposite was true for characteristics 2. This implies that Cohen’s

d statistic for each characteristic equals

d =
2φ− 1√
φ(1− φ)

=
0.6√
0.16

= 1.5,
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Figure 4: Fraction of M and F Researchers and Acceptance Rates with More Meritocracy

(a) M and F researchers (b) Acceptance Rates

Fraction of M and F researchers (panel a) and sum of acceptance rates of symmetric types,

θm and θf , and of type θ∗ for M and F researchers, i.e., aθ
m,m
t + aθ

f ,m
t , aθ

m,f
t + aθ

f ,f
t , aθ

∗,m
t

and aθ
∗,f
t (panel b). Initially λ0 = pm. Parameters: φ = 0.8, γ0 = 0.1, ρ = 9, N = 2.

Figure 5: Types of Established Female and Male Researchers with More Meritocracy

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = 1

2pm + 1
2pf . Parameters:

φ = 0.8, γ0 = 0.1, ρ = 9, N = 2.

which, as discussed in the Introduction, is excessively large for most characteristics likely

to be relevant to research activity. However, Proposition 3 shows that, if the number of

characteristics is sufficiently large, such extreme across-group differences are not required for

our conclusions to hold.

The relevant question is then how many research characteristics lead to quality research,
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and are taken into account by referees when they evaluate a candidate. We suggest that the

number of characteristics is actually large. The following is but a partial list: (i) Economic

motivation; (ii) “Nose” for good questions; (iii) Institutional knowledge; (iv) Ability to find

new data sources; (v) Solid identification strategy; (vi) Sophisticated empirical analysis;

(vii) Clever experimental design; (viii) Skilful theoretical modelling; (ix) Ability to highlight

insights, strategic effects, etc. (x) Mathematical sophistication, proof techniques, etc. (xi)

Ability to position within the literature; (xii) Ability to highlight policy implications; (xiii)

Presentation skills; (xiv) Ability to address questions from audience; (xv) Honesty;8 and so

on. Likely, there are many others. Perhaps some of these research traits are more important

than others, but as a first pass, it is indeed plausible that the positive or negative result of

a review depends on a combination of research characteristics, and not just a small number.

Second, here we only consider {0, 1}–valued characteristics for simplicity: either a re-

searcher possesses a trait, or he/she does not. In most cases, each characteristics has dif-

ferent degrees; this provide further scope for self-image bias, and hence amplify its impact.

For instance, a referee might like a style of research that combines theory and empirical

evidence, but not work that is either “hard-core theory,” or that, on the contrary, lacks any

theoretical underpinning.

The next example displays the dynamics of the fraction of established M - and F -

researchers in an environment with N = 10 characteristics. We set φ = 0.5742, so the

implied Cohen’s d is

d =
2× 0.5742− 1√

0.5742× (1− 0.5742)
= 0.3,

which is considered “small” and in line with the estimated group differences of the various

traits discussed in the introduction. As for γθ, we assume γ0 = 0.2 and ρ = 4. This

implies an ex-ante objective failure rate
∑

θ(1 − γθ)(pθ,f + pθ,m)/2 = 59%, which seems

plausible. In addition, the choice of ρ implies that researchers N is objectively four times

as productive as researcher 0, which is roughly in line with the evidence reported in Conley

and Önder (2014).9 The result is in Figure 6. As can be seen in Panel (a), eventually, the

system converges again to large disparity between M - and F -researchers. Eventually, the

percentage of F -researchers is below 10%, even if the distribution of characteristics is much

more similar across M and F types. Panel (b) plots the acceptance rates of all young M -

8For instance, some researchers may be more keen to “torture” the data than others, or search for variables
that lead to statistical significance. See e.g. discussion in Mayer (2009) and, on the impact of conflict of
interests on economic research, Fabo, Jancokova, Kempf, and Pastor (2020).

9These parallels with the data should be taken with a grain of salt, given that the data would reflect the
outcome of the model with self-image bias, and not just objective refereeing. On the other hand, we have
more degrees of freedom: recall that we normalized that mass of reviewers to 1, but we can choose another
mass L to match the failure rate from the data. See footnote 5.
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Figure 6: Fraction of M and F Researchers and Acceptance Rates with Ten Characteristics

(a) M and F researchers (b) Acceptance Rates

Fraction ofM and F researchers (Panel a) and sum of acceptance rates forM - and F researchers

of all types θ such that
∑
n θn = N/2 i.e.,

∑
{θ:

∑
n θn=N/2}

aθ,mt and
∑
{θ:

∑
n θn=N/2}

aθ,ft (Panel

b). Initially λ0 = pm. Parameters: φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

and F -researchers with types θ’s such that
∑

n θn = N/2, i.e., of the same quality as θm and

θf . As can be seen, controlling for objective quality, F -researchers are accepted far less than

M -researchers.

From Corollary 3, the limiting fraction of male researchers is

Λ̄m =
1 +

(
φ

1−φ

)2N

1 +
(

φ
1−φ

)2N

+ 2
(

φ
1−φ

)N =
1 +

(
0.5742
0.4258

)20

1 +
(

0.5742
0.4258

)20
+ 2

(
0.5742
0.4258

)10 ≈ 91%,

which is where the system converges in Figure 6.

5. Endogenous Entry

In this section we extend the model to consider the optimal choice of young researchers

on whether to undertake a research career (Section 5.1.) and the optimal choice of hiring

institutions on whether to hire young researchers (Section 5.2.).
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5.1. Endogenous Choice of Young Researchers

We now extend the model to consider the optimal choice of a potential researcher who can

choose between a career in research or an outside option, which we normalize to zero. We

assume that a prospective researcher must pay a utility cost C, which is identical across all

agents, in order to undertake a career in academia. Each agent knows his/her type θ and

also knows that the screening criteria are the ones illustrated in the previous section. We

assume that a young researcher who is hired obtains a payoff of P . If he/she is not hired,

the researcher’s overall payoff is thus −C as the researcher has to go back to the outside

option, but paid the utility cost C. What types of agents decide to pay the cost C and thus

take their chance with the academic career?

Given a distribution λθt of referees across all types θ ∈ Θ at time t, assume that each

young researcher decides whether or not to pay the cost C, then (upon deciding to pursue

an academic career) produces research, and is then evaluated—all at time t. An agent of

type θ then pays the cost to become a researcher if and only if

γθλθt (P − C) + (1− γθλθt )(−C) > 0. (22)

Consequently, the accepted mass of researchers is as follows: for g = f,m,

aθ,gt =

{
γθ · λθt−1 · pθ,g if γθλθt−1 ≥ C

P

0 otherwise
(23)

λθ,gt = λθ,gt−1 (1− at) + aθ,gt (24)

Expression (23) shows that if the mass of type-θ reviewers drops below C
γθP

at time t− 1,

both M and F young type-θ researchers will not “apply” at date t—they will choose not to

pay the cost to enter the profession. From Eq. (24), this implies that the total mass of such

types will decrease, at least weakly, because some type-θ established researchers will have to

retire in order to make room for researchers of other types who are accepted. In fact, the

mass of such types will decrease strictly, except in case no young researcher wants to apply.

While the presence of cutoffs makes the analysis slightly different from that of the basic

model in Section 2., Proposition 3 still suggests what the dynamics will look like. Set aside

the trivial case in which no type wants to apply (so that the limit distribution of types is just

λ0). Suppose first the condition in part (a) of Proposition 3 holds, so the only types that

survive in the limit of the basic dynamics are θm and θf . It turns out that the population

shares of these types increase monotonically. Hence, if, say, λθ
m

0 ≥ C
γθmP

at time t = 0, then

this will also be the case at all subsequent times. So, this type will continue to apply and
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its dynamic will be similar to the one in Section 2.. On the other hand, all other types

θ 6∈ {θm, θf} eventually vanish in the basic model. This suggests that, for each such type θ,

there is a time t(θ) such that λθt(θ) <
C
γθP

. Thus, young researchers of type θ stop applying

at time t(θ). This implies that the masses of type θm and θf increase faster relative to the

basic model, because fewer “retirements” are needed to make room for those types θ who no

longer apply but would have been hired if they had applied.

In this case, if both types θm and θf apply at date 0 (and thereafter), their limiting

masses will be the same as in Section 2.. However, since γθ
m

= γθ
f

= γ0
√
ρ and we assume

that the initial population consists solely of male researchers, λθ
m

0 = φN > (1−φ)N = λθ
f

0 , if

φN >
C

γ0
√
ρP

> (1− φ)N , (25)

young researchers of type θm apply at date 0 and thereafter, whereas those of type θf never

apply. In the limit, relative to the basic model, this leads to both a more pronounced

imbalance between M and F researchers and further talent loss, as the characteristics of

type θf are not represented at all.

On the other hand, if the condition in part (b) of Proposition 3 holds, one can again

obtain a balanced long-run population of established researchers. However, this requires

that type θ∗ be willing to apply. This is an additional constraint on efficiency that arises

under endogenous entry.

The following Proposition formalizes this discussion.

Proposition 6 For every even N > 0, φ ∈ (1
2
, 1), γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
), the sequences

(λt)t≥0, (λmt )t≥0, and (λft )t≥0 in Eqs. (23)–(24), admit limits. Furthermore, assume that

at time 0, all referees are from M -group, i.e., λ0 = pm, and let λ̄ = limt→∞ λt and Λ̄m =

limt→∞
∑

θ λ
m,θ
t . Then:

(a.1) If ρ < ρ̄(φ,N) and (1− φ)N ≥ C
γ0
√
ρP

, then the steady state is as in Proposition 3(a).

(a.2) If ρ < ρ̄(φ,N) and φN ≥ C
γ0
√
ρP

> (1 − φ)N , then only one type, θm, survives in the

limit, i.e. λ̄θ
m

= 1. In addition, the total mass of M researchers is

Λ̄m =
φN

φN + (1− φ)N
>

1 +
(

φ
1−φ

)2N

1 +
(

φ
1−φ

)2N

+ 2
(

φ
1−φ

)N . (26)

(b) If ρ > ρ̄(φ,N) and [φ(1−φ)]N/2 ≥ C
γ0ρP

, then the steady state is as in Proposition 3(b).
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In each of the above cases, if λ̄θ = 0, then there is tθ ≥ 0 such that λθt = 0 for all t ≥ tθ.

Part (a.1) and (b) of this proposition shows that if the cost C is low enough, then the the

steady state is the same as in the basic model in Section 2. for the same two conditions about

ρ, respectively. This is intuitive. The only difference is that all types other than surviving

ones drop out in finite time.

The interesting new part is (a.2). In this case, the only type that survives in the long-

run is θm, the most prevalent type in the M−population. In particular, θf now disappears.

Thus, the characteristics that are more frequent in the F−population, but also common in

the M -population, disappear altogether in the limit. In this case, endogenous entry greatly

exacerbates the loss of talent compared to the base case. Indeed, the total mass of M

researchers, Λ̄m, is now even larger than in its counterpart without endogenous entry, whose

expression is in Eq. (12) in Proposition 3. Thus, if the conditions in part (a.2) are satisfied,

the distribution of established researchers will be even more skewed towards the M group.

Parts (a.1)–(b) do not exhaust all possible cases; for instance, they do not analyze the

possibility that the first condition in part (b) holds, but the second does not—that is, θ∗ is

not willing to apply. The following section illustrates a stark instance of one such possibility.

The proof of the above Proposition in the Appendix provides a general characterization that

can be used to further explore different parametric choices.

5.1.1. Example of Group Imbalance due to Endogenous Entry

We first illustrate how endogenous entry can exacerbate group imbalance, provided the cost

of entry is not too small. Consider the parameterization in Section 4.. In our basic model, M -

researchers represent 91% of the overall population in the limit. If we add endogenous entry,

Proposition 6 shows that the steady state either remains the same, if the cost C is sufficiently

low, as in case (a.1), or it becomes even more skewed towards the M group, as in case (a.2).

In the latter case, the limiting fraction of M -researchers is Λ̄m = φN/(φN + (1−φ)N) = 95%

(we omit the figure for brevity).

Interestingly, endogenous choice may prevent convergence to group balance even when

group balance would in fact attain in the basic model. This situation is illustrated in Figure

7, which shows the fraction of M - and F -researchers with endogenous choice. We use the

same parameterization as in Section 4., except that the number of characteristics is N = 8

instead of N = 10. With these parameter values, Proposition 3 part (b) implies that the
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system will converge to an equal mass of M and F researchers, because

ρ = 4 > 3.61 = ρ̄(φ,N).

The solid and dashed lines in Figure 7 confirm this.

However, assume now that entry is endogenous; the payoff if a researcher is hired is

P = 1, 000, and the cost of entry is C = 3 (i.e. 0.3% of the payoff of becoming a researcher

over the outside option). Note that these parameters apply equally to M and F researchers.

The key point is that now the efficient type θ∗ (M or F ) does not want to apply at date 0:

λθ
∗

0 = pθ
∗,m = φN/2(1− φ)N/2 = 0.3574% < 0.3750% =

C

γθ∗P
.

Moreover, type θf (M or F ) also does not want to apply:

λθ
f

0 = pθ
f ,m = (1− φ)N = 0.1081% < 0.75% =

C

γθfP
.

On the other hand, type θm (M or F ) does:

λθ
m

0 = pθ
m,m = φN = 1.18% > 0.75% =

C

γθmP
.

Therefore, while other types are also willing to apply, type θm will prevail (cf. Lemma 1 in

the Appendix), which will lead to a severe imbalance between M and F researchers in the

limit, as shown in Figure 7. Indeed, in this case the talent loss is rather severe, as the only

surviving type θm = (1, ..., 1, 0, ...0) has none of the research characteristics that are (mildly)

more common in the F−population. Figure 8 shows that both F and M researchers are of

type θm in the long run.

To sum up, even if the basic environment is meritocratic, in the sense that even with self-

image bias, the differences in talents γθ across types are sufficient to eventually lead to group

balance, the introduction of endogenous entry introduces a bias in favor of M -researchers

which leads to an imbalance steady state. In this case, policies aimed at lowering the cost

C to choose the research career can lead to group balance in the long run.

5.1.2. Characterization of the Applicant Pool

Because of the variation in the population of research characteristics, Proposition 6 also has

implications on the mass of M - and F -applicants—that is, young researchers who decide to

apply for a job. These masses are, respectively,

Amt =
∑

θ:λθt≥
C

γθP

pθ,m and Aft =
∑

θ:λθt≥
C

γθP

pθ.,f
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Figure 7: Fraction of M and F Researchers with Endogenous Entry

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d = 0.3), γ0 = 0.2,
ρ = 4, N = 8, P = 1000, and C = 3.

Figure 8: Types of Established F and M Researchers with Endogenous Entry

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers with endogenous entry. θm =
(1, ..., 1, 0, ..., 0) dominates; all other types eventually vanish. Parameters: φ = 0.0.5742
(d = 0.3), γ0 = 0.2, ρ = 4, N = 8, P = 1000, and C = 3.

We obtain the following result: consider a type θ who has m0 characteristics numbered 1

through N/2 (i.e., “M -prevalent” features) and m1 characteristics numbered N/2+1 through

N (“F -prevalent” features), with m0 > m1. Associate with it a “symmetric” type θsym

who has m0 characteristics numbered n ∈ {N/2, . . . , N} and m1 characteristics numbered
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Figure 9: Endogenous entry: applicants

(a) M and F Applicants (b) Fraction of F Applicants

Total mass of M and F applicants (left) and fraction of F applicants (right). Parameters:
φ = 0.5742 (d = 0.3), γ0 = 0.2, ρ = 4, N = 8, P = 1000, and C = 3.

n ∈ {1, . . . , N/2}. For definiteness, define θsym so that θsym
n = θN+1−n for all n. Then, θ

applies whenever θsym does, but θ may apply when θsym does not. The following proposition

formalizes the argument and provides the limiting result:

Proposition 7 1. For each type θ ∈ Θ = {0, 1}N , consider the symmetric type θsym with

θsym
n = θN+1−n. Suppose that

N/2∑
n=1

θn >
N∑

n=N/2+1

θn.

Then, at any time t ≥ 0, if researchers of type θsym apply, so do researchers of type θ.

However, the reverse need not hold.

2. For every t, Amt ≥ Aft . Moreover, if λθ
m

0 > C
γ0
√
ρP

> λθ
f

0 ,then Aft ↓ 1− Λ̄m, where Λ̄m is

as in part (a.2) of Proposition 6.

Proposition 7 shows that M researchers in aggregate are more likely to apply than F

researchers. Moreover, self-selection pushes out F -researchers from the research pool and

eventually they do not apply.

Figures 9a and 9b show the total masses of M and F applicants and, respectively, the

percentage of F applicants over the total application pool. The parameter values are the

same as for Figure 7. Consistently with Corollary 7, the mass of M applicants is always

greater than that of F applicants; furthermore, the latter declines over time. The decline
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is not steady, but in steps, as there are sudden moves of types that decide not to apply

anymore. Furthermore, in the limit, the fraction of F applicants is of course given by the

fraction of F researchers of the only surviving type θm over the total:

lim
t→∞

Aft

Amt + Aft
=

pθ
m,f

pθm,f + pθm,m
=

(1− φ)N

φN + (1− φ)N
=

0.42588

.42588 + .57428
= 0.0838

5.2. The Endogenous Selection of Hiring Institutions

The previous section demonstrates that endogenizing the choice of entry into academia may

shrink the supply of talent. We now show that the a similar mechanism operates on the

demand side—that is, from the perspective of hiring institutions. When hiring decisions

are based on the expectation of academic success, the anticipation of self-image bias in

the refereeing process (Section 2.2.) induces institutions to hire only those types θ that can

produce research that is more likely to be “accepted” by the established refereeing population.

This leads to the same conclusions as in Section 5.1..

Specifically, consider the following alternative interpretation of the basic model in Section

2.2.. When a hiring institution evaluates a candidate, it takes into account whether or not

the candidate will produce quality work that the profession recognizes, or—in the language

of Section 2.2.—“accepts.” A candidate who is accepted by the profession yields a payoff

P to the institution; this reflects e.g. visibility, grant money, or increased ability to attract

top students to its programs. At the same time, hiring a candidate involves a cost C, which

may be monetary but may also reflect mentoring resources and/or opportunity cost. This

cost is borne by the institution whether or not the candidate is eventually accepted, and it

is the same for M and F researchers. If the candidate is eventually not accepted or if the

institution does not hire any candidate, the institution’s payoff is zero. Consistently with

Sections 2.1. and 2.2., a candidate of type θ produces quality work with probability γθ. The

key assumption concerns the probability that the candidate’s quality work is accepted by the

profession. Here, we reinterpret the key assumption of Section 2.2.: the hiring institution

anticipates that referees are subject to self-image bias, so that a type-θ researcher will be

accepted with probability γθ λθt at the end of time t.

Under these conditions, the institution hires an agent of type θ if and only if

γθλθt (P − C) +
(
1− λθtγθ

)
(−C) > 0 (27)

This is the same condition as in Equation (22) in the previous section. Thus, the mass of

established researchers λθt follows the system dynamics described by Equations (23) - (24).

Proposition 6 then applies and group imbalance and loss of talent obtains.
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Moreover, under the conditions of case (a.2) of Proposition 6, the system converges, in

finite time, to a steady state in which only type θm survives: λθ
m

t → 1. The implication

of this result is that, under these conditions, the hiring practice of institutions to only take

publication potential into account leads to a steady state in which type θf disappears, even

when such type would survive without endogenous selection. Again, this implies talent loss:

the research characteristics that are (mildly) more common in the F -population disappear.

We can also re-interpret the example in subsection 5.1.1. as a consequence of the hiring

practices of hiring institutions. In the absence of endogenous selection, the parametric

choices in that example lead to group balance, with both types θm and θf being represented

in the limit population of researchers. However, if we account for institutions’ desire to hire

only young researchers who are sufficiently likely to be accepted by the current population of

referees, then group imbalance (Figure 7) emerges. Again, in this example type θf disappears

completely (Figure 8).

This mechanism may explain the dynamics observed in the top and bottom panels of

Figure 1. First, from the top panel, the female representation of undergraduate students

with economics major has been rising over the past 15 years, reaching almost 40% by the

late 2010s. The same trend applies to non-tenure track faculty, for whom research promise is

not a primary consideration in the hiring decision. In contrast, not only has the percentage

of female faculty at the entry-level (assistant professor) rank been flat at 30% in the last

10 years (top panel), but, in so-called “top-10” schools, it has actually declined to 19.8%

(bottom panel).10 Yet, female teaching faculty in “top-10” schools hover around 40%, as in

the aggregate. These patterns are consistent with our model: when a hiring institution has

research as the guiding principle in hiring, it may tend to skew towards the characteristics

of the existing established profession, i.e. θm in our model.

6. Seniors and Juniors

We now extend the basic model (without endogenous entry) in a different direction, namely,

to the case in which there are different levels of seniority in the population of established

researchers, with the seniors judging the research of the juniors, before accepting them onto

their group. For instance, junior assistant professors may judge candidates from the rookie

market and senior professors judge both assistant professors and rookies.

To avoid introducing new symbols, we add a subscript “1” to denote the mass of junior

10We use the “top-10” schools terminology as per Chevalier (2019). The school names are not reported.
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established researchers, and a subscript ”2” for the senior established researchers. The

difference from the previous case is mainly the mass of candidates of each type θ at each

time t. For simplicity, we assume that, at time 0 and thereafter, the mass of seniors is fixed

at σ and the mass of juniors is 1−σ, so that the overall population of established researchers

has mass 1, as in previous sections. That is, for all t, we must have∑
θ

λθ1,t = 1− σ,
∑
θ

λθ2,t = σ.

The flows are similar to before: young researchers are evaluated by all, and juniors are

evaluated by seniors only. For each group g ∈ {f,m} and type θ ∈ Θ, the flows of juniors

aθ,g1,t and seniors aθ,g2,t evolve according to

aθ,g1,t = γθ · pθ,g · (λθ1,t−1 + λθ2,t−1) (28)

aθ,g2,t = γθ · λθ,m1,t−1 · λθ2,t−1. (29)

Again, we assume that current seniors are randomly replaced by newly promoted juniors,

and current juniors are randomly replaced by newly accepted young researchers. However,

we now must take into account the fact that juniors promoted to seniors leave the junior

pool. We thus obtain the dynamics

λθ,g1,t = λθ,m1,t−1

(
1− 1

1− σ
(a1,t − a2,t)

)
+ aθ,g1,t − a

θ,g
2,t (30)

λθ,g2,t = λθ,g2,t−1

(
1− 1

σ
a2,t

)
+ aθ,g2,t (31)

for g ∈ {f,m}, where aj,t =
∑

θ(a
θ,f
j,t + aθ,mj,t ) for j = 1, 2.

The dynamics are far more complex than in the base case. The online appendix high-

lights some basic insights via numerical simulations. Here we focus on the most interesting

case, namely, the fact that this extension can also account for the “leaky pipeline” pattern

highlighted in the CSWEP report (Chevalier, 2019) . Figure 10 provides a stark illustra-

tion: under the given parametric assumptions, group balance attains among juniors, but not

among seniors. A rough intuition is that the self-image bias may not be strong enough to

result in a prevalence of θm types among juniors, given the constant influx of new researchers

with a more balanced distribution of types. However, it may be strong enough if the candi-

dates’ types are themselves more biased towards the M researchers’ distribution—as is the

case for junior up for promotion to the senior rank.
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Figure 10: Leaky pipeline

Fraction of senior and junior M and F researchers, relative to σ (seniors) and 1− σ (juniors),
when λ0 = pm. Parameters: φ = 0.7, γ0 = 0.2, ρ = 4, N = 4 and σ = 0.5.

7. The Impact of Policy Action

In this section we discuss the impact of some policy actions that have been proposed to

address gender imbalance. In particular, we consider (i) the impact of mentoring (section

7.1.); and (ii) the impact of affirmative action (section 7.2.). In this section, we take it as

a running assumption that endogenous entry is not the cause of group imbalance, as in e.g.

subsection 5.1.1.. Indeed, in those cases, lowering the cost of entry C would fully solve the

problem. What can we do instead when the underlying reason is just self-image bias, i.e.

ρ < ρ(φ,N) in point (a) of Proposition 5?

7.1. The Impact of Mentoring

The adoption of mentoring to improve the prospects of female economists is one of the most

popular proposals. Indeed, there is evidence that mentoring does help increase the success

rate of female economists (Ginther, Currie, Blau, and Croson (2020)). We now investigate

the implications of mentoring in our model. First, a clarification: by mentoring we mean

policies aimed at helping young researchers (e.g., Ph.D. students) who have already decided

to pursue a career in economics. This is distinct from outreach, which aims at increasing

entry into the profession. We discuss outreach in Section 9..
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We assume that at the beginning of each period t every young researcher of type θ is

randomly matched with an advisor a of type θa drawn from the established group, whose

mass is λθ
a

t−1. Upon matching, the researcher of type θ can choose to pay a cost C(θ, θa) to

“become” of the same type of the advisor. Assuming again that P is the payoff from being

hired and U is the utility from an outside option, researcher θ will pay the cost if and only if

γθ
a

λθ
a

t−1 (P − C(θ, θa)) +
(
1− γθaλθat−1

)
(U − C(θ, θa)) > γθλθt−1P +

(
1− γθλθt−1

)
U

That is, a young researcher θ pays the cost if and only if

C̃(θ, θa) =
C(θ, θa)

P − U
< γθ

a

λθ
a

t−1 − γθλθt−1

In words, the increase in the probability of getting hired must be sufficiently high relative to

the cost of undergoing mentoring. For instance, if the right-hand-side was negative (type θ

is already likely to succeed), nobody of that type would pay such a cost.

We assume that the cost itself depends on the distance between the young researcher’s

type θ and the type of the advisor θa: The larger the distance and the higher the cost,

indicating that it will take a higher effort to “learn” to become a type that is likely to

be hired. Note that such distance may be high as the young researcher θ may have some

characteristics that are desirable from an objective standpoint, but that are not viewed as

important or relevant by the majority of established researchers. The cost, in that case, is

to “unlearn” what is deemed “irrelevant.” For instance, agent θ∗ = (1, 1, ..., 1) is far away

from θm = (1, ..., 1, 0, ..., 0) but in an environment such as the benchmark case in Section

2.2., researchers of type θ∗ disappear, and so it is in the interest of such researcher to rather

become of type θm.

The mass of young researchers from group g ∈ {f,m} of type θ who is accepted at time

t is then

aθ,gt = γθ λθt−1


pθ,g ∑

θa:C̃(θ,θa)≥γθaλθat−1−γθλθt−1

λθ
a

t−1

 +

λθt−1

∑
θ′:θ′ 6=θ,C̃(θ′,θ)<γθλθt−1−γθ

′λθ
′
t−1

pθ
′,g




(32)

The first term in brackets captures all of the young researchers of type θ from group g who

are matched with mentors of types θa (with probability λθ
a

t−1) and choose not to be advised

as the cost is too large; these young researchers thus remain of type θ. The inequality is

weak to reflect the fact that type θa = θ will also not want to pay the cost to “acquire” his

or her own current type. The second term in the bracket captures young g-researchers of

type θ′ 6= θ who are matched with a mentor of type θ (whose mass is λθt−1) and decide to
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Figure 11: Fraction of F and M Researchers with Costly Mentoring

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d =
0.3), γ0 = 0.2, ρ = 4, N = 10, cost function C(θ, θ′) = 0.0250

∑N
n=1(θn − θ′n)2.

be advised by them. The remaining dynamics for λθ,mt and λθ,ft are the same as in the main

model. Note that if C̃(θ, θa) → ∞ for all types (e.g. P → U) then the first term in the

bracket converges to pθ,m and the second to 0, returning to the original dynamics.

Figure 11 illustrates the dynamics resulting from Eq. (32), under the same parameters

as in Section 4. and a cost function C(θ, θ′) = β
∑N

n=1(θn − θ′n)2, with β = 0.025. Initially,

the dynamics are as in the base case, as all θθt are small and thus no young researcher wants

to pay the cost of mentoring. In this dynamics, as we know, θθ
m

t and θθ
f

t increase, with the

former increasing faster, as shown in the in the right panel of Figure 12. At some point, the

mass of λθ
m

t is sufficiently large to induce all young researchers, M and F , decide to pay the

cost and the system (nearly) jumps. The reason is that all young researchers now expect

that their advisor will likely be of type θm, which is also the type of established researchers

who will evaluate their research. They are thus happy to pay the cost and become like

their advisors. Moreover, we reach group balance, as all young M - and F -researchers decide

to become θm, and there are equal masses of them. However, the downside is that group

balance is achieved at the expense of weeding out valuable research characteristics that are

more prevalent among young F -researchers—there is, again, loss of talent.

If the cost function is such that maxθ′ C̃(θ′, θm) is large enough, however, then not all

young researchers want to switch to θm; only those who are sufficiently close to their ran-
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Figure 12: Types of Established F and M Researchers with Costly Mentoring .

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers with costly mentoring. We show the
masses of types θ∗ = (1, 1, ...., 1), θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initial
reviewers: λ0 = pm. Parameters: φ = 0.0.5742 (d = 0.3) , γ0 = 0.2, ρ = 4, N = 10; cost

function: C(θ, θ′) = 0.0250
∑N
n=1(θn − θ′n)2.

Figure 13: Fraction of F and M Researchers with High-Cost Mentoring

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742 (d = 0.3), γ0 = 0.2,

ρ = 4, N = 10. Cost function: C(θ, θ′) = 0.0750
∑N
n=1(θn − θ′n)2.

domly assigned advisor do. Thus, even though the cost function is the same for M - and

F -researchers, young M -researchers have systematically lower cost to switch to θm than for

F -researchers. In this case, the system still jumps, but the group imbalance persist forever,

as illustrated in the next example in Figure 13.
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In conclusion, this section shows in a world in which the M -population is initially large,

their most prevalent research characteristics θm become the standard for society. It follows

that it is on average less costly for M -researchers to transform themselves into θm-types

than for a F -researchers, as M -researchers are already “closer” to θm, the most prevalent

type of established researcher. So, mentoring helps compared to a world with no mentoring,

as shown in Figure 12, but it does not solve the basic problem that research characteristics

are dominated by M -types, which involves both loss of knowledge and need not even ensure

converge to group balance.

7.2. The Impact of Affirmative Action

A common policy to increase diversity is “affirmative action”, that is, the policy to increase

the representation of under-represented groups by mandate. We consider a simple rule in this

section: it each round, it is mandated that reviewers must accept in their group of established

researchers the same number of M and F researchers. We change just one assumption to

the dynamics in the benchmark case: namely, we assume

aθ,mt = kt γ
θ λθt−1 p

θ,m (33)

where kt is a scaling factor

kt =

∑
θ′ γ

θ′ λθ
′
t−1 p

θ′,f∑
θ′ γ

θ′ λθ
′
t−1 p

θ′,m

This scaling factor ensures that
∑

θ a
θ,f
t =

∑
θ a

θ,m
t . Figures 14 and 15 provide the dynamics

for this case. The affirmative action policy reaches group balance (and this is not surprising,

given the definition of kt) as well as diversity in research characteristics, as in the limit M

researchers are of type θm and F researchers are of type θf . Assuming that maximizing the

representation of research characteristics is beneficial to society, this policy appears superior

to mentoring, as it does not skew the distribution onto θm even when reaching group balance.

What is the intuition of the result? By allowing a larger representation of F researchers,

the refereeing population becomes more diverse without requesting the same researcher to

“change their type” to be more likely to be accepted by the profession. Note that refereeing

is still taking place, in the sense that a researcher of type θ must still be matched with a

reviewer of the same type to be accepted. Indeed, the main impact of affirmative action is

to affect the set of referees, which makes it possible to reward the research of talented F

researchers—those who possess a large number of characteristics, and are thus more likely

to produce quality research. It is still the case that F researchers who are not (objectively)

as productive will not survive in the limit and will be weeded out from the system.
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Figure 14: Fraction of F and M Researchers with Affirmative Action

Fraction of M and F researchers when λ0 = pm and there is an affirmative action policy that
requires to accept the same number of M and F researchers. Parameters: φ = 0.5742 (d = 0.3),
γ0 = 0.2, ρ = 4, and N = 10.

Figure 15: Types of Established F and M Researchers with Affirmative Action

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers when affirmative action requires
accepting the same number of M and F researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = pm. Parameters: φ = 0.0.5742
(d = 0.3), γ0 = 0.2, ρ = 4, and N = 10

8. Literature Review

There is a considerable body of research on the underlying reason of under-representation of

women in the economics profession. In their recent survey paper, Bayer and Rouse (2016)
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review the literature on both “supply-side” and “demand-side” factors. Among supply-side

factors, these authors argue that prior exposure to economics, as well as the performance

in introductory courses, and the lack of role models all have documented effects on the

gender imbalance in applications to Economics Ph.D. programs. On the other hand, the

evidence suggests that differences in math preparation do not explain a significant fraction

of the imbalance. On the demand side, Bayer and Rouse (2016) suggest that policy changes

in most academic institutions have diminished, if not completely removed, the impact of

explicit or statistical discrimination in recruiting Ph.D. students. At the same time, these

authors make a compelling argument that the literature suggests that an important role is

played by implicit bias and stereotyping. Among the studies they cite, Milkman, Akinola, and

Chugh (2015) fictional prospective students contacted 6,500 professors in 89 disciplines, at

259 institutions, inquiring about research opportunities prior to applying to a Ph.D. program.

Analogously to the pioneering study by Bertrand and Mullainathan (2004) (which was in a

labor-market setting), student names were randomly assigned to signal gender and race.11

Bayer and Rouse (2016) also review evidence from the natural and life sciences documenting

biases in hiring and gender stereotyping in recommendation letters. Finally, Bayer and Rouse

(2016) point to instances in which institutional policies may cause unintended biases in hiring.

Two of the examples they provide are especially notable. First, hiring only candidates who

have completed their Ph.D. in six years or less may discriminate against minority or female

candidates, who on average take longer to complete their doctoral studies. Second, extending

the tenure clock for new parents turns out to have a positive effect on male tenure rates, but

a negative effect (!) on female tenure rates.

All these findings point to a complex web of interrelated factors that contribute to cre-

ating and/or exacerbating the gender bias in the economics profession. In a more recent

contribution, Sarsons (2019)’s work on recognition for coauthored papers shows that, for

men, an additional coauthored paper has the same effect on the likelihood of tenure as a

solo-authored paper; however, for women, coauthorship entails a significant “discount fac-

tor,” especially if the coauthor(s) are men. We have already noted the nuanced evidence on

biases in the refereeing process documented by Card et al. (2020). The large body of research

on the gender pay gap and on the “glass ceiling” in other labor markets is also indirectly

relevant in our context: see e.g. Blau and Kahn (2017); Goldin and Rouse (2000); Goldin

(2014); Weber and Zulehner (2014); Aigner and Cain (1977); Lazear and Rosen (1990).

11Table 1 in Milkman et al. (2015) shows that, across almost all disciplines (with the exception of Fine
Arts), a higher proportion of emails from Caucasian males received a reply relative to emails from other
students, including women; the difference is largest in “business” (25% additional emails replied) and smaller
in the “social sciences,” (7%) which comprises economics. Unfortunately, the paper does not provide the
results for economics specifically.
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On the theoretical side, our model is related to the literature on statistical discrimination:

a relative recent survey is Fang and Moro (2011). One strand within that literature, originat-

ing from Phelps (1972), posits the existence of exogenous differences between groups, either

in the distribution of productivity (“Case 1”), or in the quality of signals about it (“Case

2”). In Case 2, the employer does not observe the productivity of individual applicants, but

receives a signal about it. Differential average treatment of the two groups can emerge either

through risk aversion of the employer (Aigner and Cain, 1977), investment in human capital

(Lundberg and Startz, 1983), or if hiring occurs in a tournament setting (Cornell and Welch,

1996). A recent contribution, Bardhi, Guo, and Strulovici (2019), revisits Phelp’s Case 1,

but assume that success or failure is observed over time and is informative about the worker’s

type. They show that, depending on the nature of the information, this may lead to large

differences in ex-post treatment of the two groups, even if ex-ante productivity differences

are small. Differently from this literature, we assume that, even though the distribution of

characteristics is slightly different in the M and F groups, the associated ex-ante distribu-

tions of productivity are the same. Furthermore, productivity is observed. In our model,

the standard statistical discrimination mechanism would not lead to gender imbalance.

Becker (2010)’s model of taste-based discrimination instead posits that employers may

have a preference for hiring members of one specific group. This is not the case in our model:

while referees only accept applicants whose research characteristics match their own, they

do not take group membership into consideration at all.

9. Conclusions and Policy Implications

Our model highlights a mechanism that endogenously perpetuates certain specific research

characteristics over time. This occurs through the reviewing process, as a consequence of re-

viewers’ self-image bias, i.e., the fact that reviewers use their own personal characteristics as a

guidance to judge others’ research output. Because we are agnostic about the characteristics

of male and female researchers (besides what the empirical literature suggests), the policy

implications we discuss cannot depend on specific interpretations of the characteristics.

Standard solutions to the gender bias problem may not be very effective in our model.

For instance, outreach programs to encourage members of a given group to apply to PhD

programs may prove ineffective. Such outreach program are akin to lowering the cost of

doing research (see Section 5.1.). While lowering the cost may indeed switch the path

towards convergence for some parameter configurations, as shown in Section 5.1.1., our basic

model in Section 2.2. assumes zero costs and yet, under the conditions of Proposition 3, (2.a),
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the gender bias persists. In particular, if reviewers evaluate others’ research on a multitude

of research characteristics, gender imbalance would persist.

Similarly, mentorship programs for female researchers will only be effective to increase

female representation in the profession insofar as they induce female researchers to adopt

those characteristics that are prevalent by the reviewer population (see Section 7.1.). While

this may improve female participation (as it has: see e.g. Ginther et al., 2020), it still

propagates the bias towards male research characteristics. This leads to under-representation

of valuable research characteristics relative to the efficient benchmark.

Because the problem is self-image bias, the best policy intervention must involve limiting

the ability of reviewers to use their own research style as a yardstick while judging others’

research. One solution is to provide strict guidelines in the refereeing process (while still

maintaining anonymity). Indeed, in light of Proposition 1 and 2, editors should guide referees

to limit the number of aspects of the submitted research paper they should focus on. For

instance, a journal may provide questionnaires with precise, pointed questions (e.g. is the

research paper correct? is the research topic relevant? why or why not?) and explicitly ask

referees to leave aside other judgemental elements that are most susceptible to self-image

bias. Dunning, Meyerowitz, and Holzberg (1989) provides suggestive evidence in support of

this approach.

Another solution is instead to change the reviewing process to include input from the full

distribution of researchers, as opposed to just the established ones. While radical as a pro-

posal, it would be reasonable to consider an editorial policy that requires young researchers

to participate in the evaluation process, or in fact, “oversample” young female researchers.

We leave such investigation to future research.

Finally, our model suggests a rationale for affirmative-action policies aimed at diversifying

the pool of reviewers. In our model, scientific progress requires a combination of all research

characteristics, regardless of whether they are more prevalent among males or females—

because all such characteristics are equally productive. We have shown that if males are

initially dominant, they will remain so, and research characteristics more prevalent among

females will be under-represented. Facilitating the promotion of young female researchers

directly counteracts this force, and can lead to a more balanced representation of research

characteristics in the steady-state population.
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This on-line appendix contains additional analysis and the proofs of our propositions.

A1. Additional Analysis and Results

A1.1. Balanced Steady State

In Section 3. we considered a simple numerical example with only two characteristics (N = 2),

which led to types Θ = {(0, 0), (0, 1), (1, 0), (1, 1)}. In that section, we showed that when

ρ < ρ(φ,N) and the initial population of referees is only from the M -group, λθ,m0 = pθ,m,

then the dynamics never converges. Here we now consider a different initial condition.

Indeed, the dynamics of the mass of each type depends upon their frequencies in the

population of young researchers, pm and pf , as well as the initial conditions λ0. In particular,

suppose that the initial mass of referees is composed of M - and F -researchers in equal

proportions: λ0 = 1
2
pm + 1

2
pf . One implication is that then the two M -prevalent and F -

prevalent types θm = (1, 0) and θf = (0, 1) both represent 34% of the initial mass of referees,

whereas the other two types (0, 0) and (1, 1) each represent 16% of the initial population.

While we can no longer invoke the results in Sections 2.2.-2.5., we can plot the dynamics

of the fractions of established M - and F -researchers, as well as those of established M -and

F -researcher types. (Theorem 1 in the Appendix characterizes the limiting behavior of the

system for arbitrary initial conditions and type distributions.)

Figures A.1 and A.2 display the results. The figures are self explanatory: an equal

proportion of M - and F -researchers is maintained throughout. However, importantly, type

θf (resp. θm) will eventually become prevalent among F -researchers (resp. M -researchers),

which means that established F - (resp. M -) economists are oversampled from those who

1



Figure A.1: Fraction of M and F researchers with Start from Equal Proportions

Fraction of M and F researchers when λ0 = 1
2pm + 1

2pf . Parameters: φ = 0.8, γ0 = 0.2, ρ = 4,
N = 2.

Figure A.2: Types of Established F and M Researchers with Start from Equal Proportions

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types θ∗ = (1, 1, ...., 1),
θm = (1, ..., 1, 0, ..., 0), and θf = (0, ..., 0, 1, ..., 1). Initially λ0 = 1

2pm + 1
2pf . Parameters:

φ = 0.8, γ0 = 0.2, ρ = 4, N = 2.

possess characteristic 2 (resp. 1). Furthermore, the efficient type θ∗ will disappear in the

limit.
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A1.2. Seniors and Juniors

In Section 6. we extended the basic model to include different levels of seniorities in the

established set of researchers, with seniors evaluating juniors before accepting them into

their group, and both seniors and juniors evaluating the young researchers. The analysis is

substantially more complex in this case, and we only rely on numerical simulations. The

following cases add up to the one discussed in the body of the paper.All the simulations in

this section assume equal fractions of juniors and seniors (σ = 0.5).

First, the presence of a second screening—and hence a second opportunity for self-image

bias to exert its influence—can exacerbate group imbalance in the senior rank, at least in the

short run. Figure A.3 demonstrates this. Model parameters are as in Figure 2, so in a single-

cohort environment significant group imbalance emerges. The same is true with two ranks;

however, in the short run, the imbalance is more pronounced in the senior rank. The reason

is that, in order to be promoted to the senior rank, a researcher must match with a referee of

the same type twice. Initially, both junior and senior referees have the same type distribution,

which by assumption coincides with that of M researchers. Hence, whatever effect is present

at the junior rank is compounded at the senior rank.1 The difference between the two ranks

vanishes in the long run because, as type θm becomes prevalent among established juniors

and seniors, promotion eventually is driven solely by objective research quality—matching

with a senior reviewer of the junior candidate’s own type is virtually guaranteed.

A more pronounced group imbalance can also arise, in the short / medium run, for

parameter values for which convergence is eventually attained. This is demonstrated in

Figure A.4, where we take φ = 0.6 rather than φ = 0.8. Again, the need to match with a

like type twice, coupled with the assumption that the initial population consists entirely of

M -researchers, leads to a lower representation of F researchers at the senior rank. However,

over time, type θ∗ prevails among juniors and seniors, so matching with like types is virtually

guaranteed; and since convergence is attained amongst juniors, it must obtain among seniors

as well.

A1.3. Similarity in Research Characteristics

In this section we extend the model to investigate the case in which referees accept researchers

who have characteristics close but not necessarily identical to their own. In particular, we

1In fact, the bias becomes stronger over time at the senior rank. The reason is that the initial population of
junior candidates up for promotion is characterized by types distributed as among male researchers, whereas
the initial population of young researchers applying for a junior position is balanced.

3



Figure A.3: More extreme imbalance for senior rank

Fraction of senior and junior M and F researchers when λ0 = pm. Parameters: φ = 0.8,
γ0 = 0.2, ρ = 4, N = 2.

Figure A.4: Convergence, but greater short-run imbalance among seniors

Fraction of senior and junior M and F researchers when λ0 = pm. Parameters: φ = 0.6,
γ0 = 0.2, ρ = 4, N = 2.
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assume that referee r of type θr accepts the research of young researcher θ if

D(θr, θ) =
∑
n

(θrn − θn)2 ≤ η (A.34)

where η is a non-negative integer. That is, referee θr treats candidate θ as “close enough” if

it differs from his or her own type in no more than η characteristics.

Our models so far correspond to η = 0. If instead η > 0, the dynamics for λθt are still as

in Eq. (8), but the mass aθ,gt of accepted researchers of type θ in group g ∈ {f,m} is given

by

aθ,gt = γθ
∑

θr:D(θr,θ)≤η

λθ
r

t−1 p
θ,g (A.35)

Unfortunately, obtaining general analytical results in this case seems difficult. Therefore, we

consider illustrative special cases.

A1.3.1. Connected Set of Types

The set Θ of types we have considered so far enjoys a special structure that is relevant to the

relaxed definition of “acceptance” in Eq. (A.34). For every η ≥ 1, and every pair θ, θ′ ∈ Θ,

there is a finite ordered list θ1, . . . , θK ∈ Θ such that θ1 = θ, θK = θ′, and D(θk, θk+1) ≤ η for

all k = 1, . . . , K − 1. In this sense, we say that Θ = {0, 1}N is η-connected for every η ≥ 1.

Of course, being 1-connected implies being η-connected for η > 1; we shall see in the next

subsection that a subset of {0, 1}N may be η-connected for some η > 1, but for any smaller

integer η′ (including η′ = 1).

With Θ = {0, 1}N , and for the parameter values used in the examples of Sections 3.

and 4., the relaxed acceptance criterion in Eq. (A.34) leads to convergence. For instance,

Figure A.5 illustrates the parameterization used in Section 4.. The dashed lines represent the

benchmark case η = 0, where there is no convergence. The dotted lines reflect the assumption

that referees accept young researchers that are closely similar to them: specifically, taking

η = 1. Notably, group balance obtains. (The solid lines are discussed in the next section.)

Moreover, we have not been able to find parameterizations for which convergence did not

occur. We conjecture that this is a general property of the special structure of the type space

Θ = {0, 1}N . Intuitively, a referee of type θ accepts a positive mass of young researchers of

similar, but not identical type θ′; these become referees in the following period, and accept a

positive mass of young researchers of type θ′′ that type-θ referees would reject; and so on. A

contagion argument suggests that, in the limit, the impact of self-image bias should vanish,

so that group balance should emerge.
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Figure A.5: Fraction of M and F Researchers under the Research Similarity Assumption

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742, which implied
d = 0.3, γ0 = 0.2, ρ = 4, N = 10, and, under research similarity, η = 1.

A1.3.2. Disconnected Set of Types

A subset of {0, 1}N may well be η-disconnected for some η. For a trivial example, {θm, θf}
is (N − 1)-disconnected, because each of the N coordinates of θf is different from the corre-

sponding coordinate of θf . A fortiori, it is η-disconnected for every η ≤ N − 1.

Intuition suggests that the contagion argument given above breaks down with a discon-

nected set of types. We now verify this intuition. The solid lines in Figure A.5 represent the

same parameterization as in the previous subsection, with η = 1, but applied to a state space

Θ obtained by randomly removing 15% of the elements of {0, 1}N and suitably renormalizing

probabilities. As expected, the system does not attain group balance in the limit.

A1.3.3. Endogenous Entry

Finally, return to the case in which Θ = {0, 1}N (a connected set of types) but consider

endogenous entry, as in Section 5.. In this case, even if the connected set of types would lead

to convergence (see subsection A1.3.1.), the endogenous entry prevents such convergence, as

shown in Section 5.1.1.. This is shown in Figure A.6. Again, the dashed lines and the dotted

lines show the total fraction of M - and F -researchers in the benchmark case (η = 0) and,
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Figure A.6: Fraction of M and F Researchers under Research Similarity and Endogenous
Entry

Fraction of M and F researchers when λ0 = pm. Parameters: φ = 0.5742, which implied
d = 0.3, γ0 = 0.2, ρ = 4, N = 10, and, under research similarity, η = 1.

respectively, the research similarity case (η = 1). The solid lines now show the the fraction

of M - and F -researchers under research simularity (η = 1) but with endogenous entry. The

intuition is the same as the one given in Section 5..

In sum, this section suggests that the main results of the paper are robust to a weaker

assumption about the referees’ selection mechanism.

A2. Proofs

We first characterize key features of the population dynamics for an arbitrary, finite set Θ

of types, with initial distribution λ0 ∈ ∆(Θ), such that λ0 = λm0 + λf0 for λm0 , λ
f
0 ∈ RΘ

+, and

per-period inflows qg = (qθ,g)θ∈Θ ∈ RΘ
+ \ {0}, for g ∈ {f,m}. It is also convenient to define

q = qm + qf . Then, for g ∈ {f,m}, the dynamics are given by

λθ,gt = λθ,gt−1

(
1−

∑
θ′

λθ
′

t−1q
θ′

)
+ λθt−1q

θ,g (A.36)

λθt = λθ,mt + λθ,ft . (A.37)
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The body of the paper focuses on the special case qθ,m = γθpθ,m, qθ,f = γθpθ,f .

Theorem 1 Assume that qθ ≤ 1 for all θ ∈ Θ. Then, for all t ≥ 0, λt ∈ ∆(Θ), and

λmt , λ
f
t ∈ RΘ

+. Moreover:

1. if λθ0 = 0, then λθt = 0 for all t ≥ 0;

2. if λθ0 > 0, then λθt > 0 for all t ≥ 0;

3. for θ, θ̃ ∈ Θ with λθ0 · λθ̃0 > 0:

(a)
λθt
λθt−1
− λθ̃t

λθ̃t−1

= qθ − qθ̃ for all t ≥ 1, and

(b) qθ > qθ̃ implies
λθt
λθ̃t
→∞, and qθ = qθ̃ implies

λθt
λθ̃t

= λ̄θo
λ̄θ̃o

for all t ≥ 0;

4. define the set

Θmax = {θ ∈ Θ : λθ0 > 0, θ ∈ arg max
θ′∈Θ

qθ
′} (A.38)

and let λ̄ ∈ ∆(Θ) be such that

λ̄θ̃ =

{
λθ̃0∑

θ∈Θmax λθ0
θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax :
(A.39)

then limt→∞ λt = λ̄;

5. define

λ̄θ̃,f =

{
λθ̃0q

θ̃,f∑
θ∈Θmax λθ0q

θ θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax
and λ̄θ̃,m =

{
λθ̃0q

θ̃,m∑
θ∈Θmax λθ0q

θ θ̃ ∈ Θmax

0 θ̃ 6∈ Θmax :
(A.40)

then limt→∞ λ
f
t = λ̄f and limt→∞ λ

m
t = λ̄m.

Proof: Eqs. (A.36) and (A.37) imply that

λθt =

(
1−

∑
θ′∈Θ

λθ
′

t−1q
θ′

)
λθt−1 + λθt−1q

θ. (A.41)

By assumption λ0 ∈ ∆(Θ). Inductively, suppose λt−1 ∈ ∆(Θ) and λmt−1, λ
f
t−1 ∈ RΘ

+.

Summing over Θ on both sides of Eq. (A.41) yields
∑

θ λ
θ
t = (1 −

∑
θ′ λ

θ′
t−1q

θ′)(
∑

θ λ
θ
t−1) +∑

θ λ
θ
t−1q

θ = (1−
∑

θ′ λ
θ′
t−1q

θ′)+
∑

θ λ
θ
t−1q

θ = 1. Furthermore, since λt−1 ∈ ∆(Θ),
∑

θ′ λ
θ′
t−1q

θ′ ∈
[minθ′ q

θ′ ,maxθ′ q
θ′ ] ⊆ [0, 1]; moreover, qθ ≥ 0 and λθt−1 ≥ 0, so Eq. (A.41) implies that

λθt ≥ 0 as well. By the same argument, qθ ≥ 0 and λθ,gt−1 ≥ 0 for g ∈ {f,m} imply λθ,gt ≥ 0

for g ∈ {f,m} as well by Eq. (A.36). Thus, λt ∈ ∆(Θ), and λgt ∈ RΘ
+ for each g.
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Claim 1 is immediate. For Claim 2, again we argue by induction. For t = 0, the claim

is trivially true. Inductively, assume λθt−1 > 0. By Eq. (A.41), since as was just shown

1 −
∑

θ′ λ
θ′
t−1q

θ′ ≥ 0, and the inductive hypothesis implies that λθt−1 > 0, if qθ > 0 then

λθt ≥ λθt−1q
θ > 0. Suppose instead qθ = 0. If

∑
θ′ λ

θ′
t−1q

θ′ = 1, then, since qθ
′ ≤ 1 for all

θ′ by assumption, and λt−1 ∈ ∆(Θ), it must be that λθ
′
t−1 > 0 implies qθ

′
= 1: but then

λθt−1 = 0, which contradicts the inductive hypothesis. Thus, 0 ≤
∑

θ′ λ
θ′
t−1q

θ′ < 1, so Eq.

(A.41) implies that λθt =
(
1−

∑
θ′ λ

θ′
t−1q

θ′
)
λθt−1 > 0.

For Claim 3, divide both sides of Eq. (A.41) for type θ by λθt−1, which is assumed to be

positive; this yields
λθt
λθt−1

= 1 + qθ −
∑
θ′

λθ
′

t−1q
θ′ . (A.42)

A similar equation holds for θ̃. This immediately yields 3(a). To derive 3(b), since λθ
′
t =

λθ
′

0 ·
∏t

s=1
λθ
′
s

λθ
′
s−1

for θ′ = θ, θ̃,

λθt

λθ̃
′
t

=
λθ0

λθ̃0
·

∏t
s=1

λθs
λθs−1∏t

s=1
λθ̃s
λθ̃s−1

=
λθ0

λθ̃0
·

t∏
s=1

λθs
λθs−1

λθ̃s
λθ̃s−1

=
λθ0

λθ̃0
·

t∏
s=1

λθ̃s
λθ̃s−1

+ qθ − qθ̃

λθ̃s
λθ̃s−1

=
λθ0

λθ̃0
·

t∏
s=1

1 +
qθ − qθ̃

λθ̃s
λθ̃s−1

 .

If qθ = qθ̃, then every term in parentheses equals 1, and the claim follows. If instead qθ > qθ̃,

recall that, by Eq. (A.42), for all s ≥ 1, since λs−1 ∈ ∆(Θ) and q ∈ [0, 1]|Θ|, λθ̃s
λθ̃s−1

≤ 1 + qθ̃.

Therefore, each term in parentheses is not smaller than 1 + qθ−qθ̃

1+qθ̃
> 1. It follows that

λθt

λθ̃
′
t

=
λθ0

λθ̃0
·

t∏
s=1

1 +
qθ − qθ̃

λθ̃s
λθ̃s−1

 ≥ λθ0

λθ̃0
·

(
1 +

qθ − qθ̃

1 + qθ̃

)t

→∞.

For Claim 4, consider first θ̃ 6∈ Θmax, and fix θ ∈ Θmax arbitrarily. Then
λθt
λθ̃t
→ ∞ by

Claim 3(b). Suppose that there is a subsequence (λt(`))`≥0 such that λθ̃t(`) ≥ ε for some ε > 0

and all ` ≥ 0. Since
λθ
t(`)

λθ̃
t(`)

→∞ as well, there is ` large enough such that
λθ
t(`)

λθ̃
t(`)

> 1
ε
: but then

Λθ
t(`) > 1 for such `: contradiction. Thus, for every ε > 0, eventually λθ̃t < ε: that is, λθ̃t → 0.

Next, consider θ̃ ∈ Θmax. By Claim 2, λθ̃t > 0 and
∑

θ∈Θmax λθt > 0, and

λθ̃t∑
θ∈Θmax λθt

=
1∑

θ∈Θmax
λθt
λθ̃t

=
1∑

θ∈Θmax
λθ0
λθ̃0

=
λθ̃0∑

θ∈Θmax λθ0
= λ̄θ̃,

where the third inequality follows from Claim 3(b). Therefore,

λθ̃t =
λθ̃t∑

θ∈Θmax λθt
·

( ∑
θ∈Θmax

λθt

)
= λ̄θ̃ ·

(
1−

∑
θ 6∈Θmax

λθt

)
→ λ̄θ̃,
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because, as was just shown above, λθt → 0 for θ 6∈ Θmax.

Finally, consider Claim 5. Fix g ∈ {f,m}. First, since 0 ≤ λθ,gt ≤ λθt for all t ≥ 0, if

θ 6∈ Θmax then by Claim 4 λθt → λ̄θ = 0, and so λθ,gt → 0 = λ̄θ,g as well. Thus, focus on the

case θ ∈ Θmax, so that by Claim 4 λ̄θ > 0.

If
∑

θ′ λ̄
θ′qθ

′
= 1, then Eq. (A.36) and the fact that

∑
θ′ λ

θ′
t−1q

θ′ ∈ [0, 1] and 0 ≤ λθ,gt−1 ≤
λθt−1 ≤ 1 for all θ imply that

λθ,gt =

(
1−

∑
θ′

λθ
′

t−1q
θ′

)
λθ,gt−1 + λθt−1q

θ,g ∈

[
λθt−1q

θ,g, 1−
∑
θ′

λθ
′

t−1q
θ′ + λθt−1q

θ,g

]

and both endpoints of the interval in the r.h.s. converge to λ̄θqθ,g by Claim 4 if
∑

θ′ λ̄
θ′qθ

′
= 1.

Furthermore, the same assumption implies that λ̄θqθ,g = λ̄θ,g, so λθ,gt → λ̄θ,g.

Now consider the case 0 <
∑

θ′ λ̄
θ′qθ

′
< 1. (The set Θmax is non-empty, and since

q ∈ RΘ
+ \ {0}, there is θ+ ∈ Θmax with qθ

+
> 0; by Claim 4, λ̄θ

′
> 0 for θ′ ∈ Θmax, so in

particular λ̄θ
+
> 0; but then

∑
θ′ λ̄

θ′qθ
′ ≥ λ̄θ

+
qθ

+
> 0.) It is convenient to let qt =

∑
θ′ λ

θ′
t q

θ′

and q̄ =
∑

θ′ λ̄
θ′qθ

′
= limt→∞ qt, where the second equality follows from Claim 4. Thus, Eq.

(A.36) can be written as

λθ,gt = (1− qt−1)λθ,gt−1 + λθt−1q
θ,g. (A.43)

In addition, q̄ ∈ (0, 1).

We claim that, for all T ≥ 0 and t > T ,

λθ,gt = λθ,gT

t−1∏
s=T

(1− qs) + qθ,g
t−1∑
s=T

λθs

t−1∏
r=s+1

(1− qr). (A.44)

For t = T + 1, this follows from Eq. (A.43). Inductively, assume it holds for t − 1 > T .

Then, by Eq. (A.43) and the inductive hypothesis,

λθ,gt = (1− qt−1)

[
λθ,gT

t−2∏
s=T

(1− qs) + qθ,g
t−2∑
s=T

λθs

t−2∏
r=s+1

(1− qr)

]
+ λθt−1q

θ,g =

= λθ,gT

t−1∏
s=T

(1− qs) + qθ,g
t−1∑
s=T

λθs

t−1∏
r=s+1

(1− qr),

as claimed.

Fix ε > 0 such that λ̄θ− ε > 0, q̄− ε > 0, 1− q̄+ ε < 1, and 1− q̄− ε > 0. This is possible

because λ̄θ > 0 and q̄ ∈ (0, 1), hence 1− q̄ ∈ (0, 1).
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Since λθt → λ̄θ and qt → q̄, there is T ≥ 0 such that, for all t > T , λθt < λ̄θ + ε and

qt > q̄ − ε. Hence, for such t > T , Eq. (A.44) implies that

λθ,gt ≤λ
θ,g
T

t−1∏
s=T

(1− q̄ + ε) + qθ,g
t−1∑
s=T

(λ̄θ + ε)
t−1∏

r=s+1

(1− q̄ + ε) =

=λθ,gT (1− q̄ + ε)t−T + qθ,g(λ̄θ + ε)
t−1∑
s=T

(1− q̄ + ε)t−1−s =

=λθ,gT (1− q̄ + ε)t−T + qθ,g(λ̄θ + ε)
t−1−T∑
s=0

(1− q̄ + ε)s =

=λθ,gT (1− q̄ + ε)t−T + qθ,g(λ̄θ + ε)
1− (1− q̄ + ε)t−T

q̄ − ε
→ qθ,g(λ̄θ + ε)

q̄ − ε
.

This implies that lim supt λ
θ,g
t ≤

qθ,g(λ̄θ+ε)
q̄−ε . Since this must hold for all ε > 0, it must be that

lim supt λ
θ,g
t ≤ qθ,gλ̄θ

q̄
= λ̄θ,g.

Similarly, λθt → λ̄θ and qt → q̄ imply that there is T ≥ 0 such that, for all t > T ,

λθt > λ̄θ − ε > 0 and qt < q̄ + ε < 1. Then

λθ,gt ≥λ
θ,g
T

t−1∏
s=T

(1− q̄ − ε) + qθ,g
t−1∑
s=T

(λ̄θ − ε)
t−1∏

r=s+1

(1− q̄ − ε) =

=λθ,gT (1− q̄ − ε)t−T + qθ,g(λ̄θ − ε)1− (1− q̄ − ε)t−T

q̄ + ε
→ qθ,g(λ̄θ − ε)

q̄ + ε
,

so lim inft λ
θ,g
t ≥

qθ,g(λ̄θ−ε)
q̄+ε

. Again, since this must hold for all ε > 0, lim inft λ
θ,g
T ≥

qθ,gλ̄θ

q̄
=

λ̄θ,g. Hence, λθ,gt → λ̄θ,g. Q.E.D.

Next, we establish certain basic properties of the symmetric model considered in the

paper. Claims 1 and 3 characterize the set Θmax for this specification. Claim 2 ensures that

the parameterization satisfies the conditions in Theorem 1.

Lemma 1 Assume that, for every θ ∈ Θ, γθ, pθ,m and pθ,f are as defined in Section 2..

Then, for every φ ∈ (1
2
, 1), N even, γ0 ∈ (0, 1), and ρ ∈ (1, 1

γ0
):

1. the set of maximizers of γθ · (pθ,m + pθ,f ) is {θm, θf} if ρ < ρ̄(φ,N) and {θ∗} if ρ >

ρ̄(φ,N).

2. 0 < γθ · [pθ,m + pθ,f ] ≤ 1.

3. there is N̄ > 0 such that, for all even N ≥ N̄ , the maximizers of γθ · (pθ,m + pθ,f ) are

θm and θf .
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Recall that ρ̄(·) is defined in Eq. (11).

Proof: Write

pθ,m = φ
∑N/2
n=1 θn(1− φ)N/2−

∑N/2
n=1 θn · (1− φ)

∑N
n=N/2+1 θnφN/2−

∑N
n=N/2+1 θn =

=φN/2+
∑N/2
n=1 θn−

∑N
n=N/2+1 θn(1− φ)N/2+

∑N
n=N/2+1 θn−

∑N/2
n=1 θn =

=φN/2(1− φ)N/2
(

φ

1− φ

)∑N/2
n=1 θn−

∑N
n=N/2+1 θn

.

Similarly

pθ,f = φN/2(1− φ)N/2
(

φ

1− φ

)∑N
n=N/2+1 θn−

∑N/2
n=1 θn

.

Then F (θ) ≡ γθ(pθ,m + pθ,f ) equals

γ0 ρ
∑
n θn/N · φN/2(1− φ)N/2

( φ

1− φ

)∑N/2
n=1 θn−

∑N
n=N/2+1 θn

+

(
φ

1− φ

)−∑N/2
n=1 θn+

∑N
n=N/2+1 θn

 .
Since Θ is finite, there exists at least one maximizer θ of F (·). We claim that, if θ

satisfies θn = θm = 0 for some n ∈ {1, . . . , N/2} and m ∈ {N/2 + 1, . . . , N}, then it is not a

maximizer. To see this, define θ′ by θ′` = θ` for ` ∈ {1, . . . , N} \ {n,m} and θ′n = θ′m = 1.

Then
∑

n θ
′
n >

∑
n θn, so for ρ > 1, γθ

′
> γθ. On the other hand, the term in square brackets

is the same for θ and θ′ (and it is strictly positive). Hence, θ is not a maximizer of F (·). It

follows that the only candidate maximizers of F (·) have either θn = 1 for all n = 1, . . . , N/2,

or θn = 1 for all n = N/2, . . . , N , or both.

If θn = 1 for n = 1, . . . , N/2, then F (θ) = F (θ′), where θ′n = 1 for n = N/2 + 1, . . . , N

and θ′n = θn+N/2 for n = 1, . . . , N/2. Hence, it is enough to consider θ such that θn = 1 for

n = N/2 + 1, . . . , N . Let Θf be the collection of such types, and notice that it contains both

θf (for which θfn = 0 for n = 1, . . . , N/2) and θ∗ = (1, . . . , 1). We show that the maximizer

of F (·) on Θf is either θf or θ∗.

For each θ ∈ Θf , factoring out all terms not involving
∑N/2

n=1 θn, F (θ) is proportional to

ρ
∑N/2
n=1 θn/N ·

( φ

1− φ

)∑N/2
n=1 θn

+

(
1− φ
φ

)∑N/2
n=1 θn

 .
Hence, F (θ) is proportional to F̃ (

∑N/2
n=1 θn), where F̃ : [0, 1

2
]→ R+ is defined by

F̃ (x) = ρx
[(

φ

1− φ

)x
+

(
1− φ
φ

)x]
.
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The functions x 7→ ρ
x
N Φx =

(
ρ

1
N

)x
Φx =

(
ρ

1
N · Φ

)x
, for Φ = φ

1−φ 6= 1 and Φ = 1−φ
φ
6= 1

respectively, are non-constant and exponential, hence strictly convex on [0, 1
2
]. Hence, F̃ (·)

is also strictly convex on [0, 1
2
], so its maximum is either at 0 or at 1

2
. Correspondingly, F (·)

attains a maximum either at θf or at θ∗ on the set Θf .

To conclude the proof of Claim 1, we calculate the values attained by F (·) at these two

extremes:

F (θf ) = γ0
√
ρ · [(1− φ)N + φN ]

F (θ∗) = γ0ρ · 2φN/2(1− φ)N/2.

Dividing F (θ∗) and F (θf ) by γ0
√
ρφN/2(1 − φ)N/2 and comparing the resulting quantities,

we conclude that θ∗ is (uniquely) optimal iff

2
√
ρ >

[(
φ

1− φ

)−N
2

+

(
1− φ
φ

)−N
2

]
or equivalently

ρ >
1

4

((
1− φ
φ

)N
2

+

(
φ

1− φ

)N
2

)2

= ρ̄(φ,N), (A.45)

which is Claim 1.

For Claim 2, we show that (1− φ)N + φN ≤ 1 and φN/2(1− φ)N/2 ≤ 1
2
; this is sufficient,

because γ0 ∈ (0, 1) and ρ ∈ (1, 1
γ0

) by assumption, so also γ0
√
ρ ≤ γ0ρ < 1.

The function N 7→ (1 − φ)N + φN is strictly decreasing in N , so it is enough to prove

the claim for N = 2. In this case, (1 − φ)2 + φ2 = 1 − 2φ + φ2 + φ2 = 1 + 2φ(φ − 1) < 1,

because φ < 1. Similarly, N 7→ [φ(1− φ)]N/2 is decreasing in N , and for N = 2 it reduces to

φ(1− φ) = φ− φ2; this is concave and maximized at φ = 1
2
, where it takes the value 1

4
< 1

2
.

Finally, for Claim 3, as N → ∞, the first term in the rhs of Eq. (A.45) converges to

zero, but the second diverges to infinity. Thus, for N large, only θm and θf maximize F (·).
Q.E.D.

We now turn to the proofs of the main Propositions and Corollaries in the text.

Proof of Proposition 3 and Corollary 1: convergence of (λt)t≥0, (λmt )t≥0 and (λft )t≥0

follows from Theorem 1 and Claim 2 of Lemma 1. Parts (a) and (b) follow from Claim 1 in

Lemma 1 and Claim 4 in Theorem 1. Corollary 1 follows from Claim 3 in Lemma 1. Q.E.D.

Proposition 2 follows from Proposition 3.
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Proof of Proposition 4: Fix θ ∈ Θ, and define θsym by θsym
n = θN+1−n for all n =

1, . . . , N . (Notice that, for some θ, it may be the case that θsym = θ.) We first claim that

aθ,mt + aθ
sym,m
t ≥ aθ,ft + aθ

sym,f
t . (A.46)

Notice that, if θsym = θ, the above inequality just says that aθ,mt ≥ aθ,ft .

Letm0 =
∑N/2

n=1 θ andm1 =
∑N

n=N/2+1 θn. By definition, pθ,m = φm0(1−φ)N/2−m0φN/2−m1(1−

φ)m1 = φ(m0−m1)+N/2(1−φ)N/2−(m0−m1) = [φ(1−φ)]N/2
(

φ
1−φ

)m0−m1

, and similarly pθ
sym,m =

[φ(1−φ)]N/2
(

1−φ
φ

)m0−m1

. Moreover, since pf is defined with the roles of φ and 1−φ reversed,

pθ,f = pθ
sym,m and pθ,m = pθ

sym,f , so pθ,m + pθ,f = pθ
sym,m + pθ

sym,f .

Suppose that m0 ≥ m1. Since φ > 1
2
, pθ,m ≥ pθ

sym,m. At time 0 we thus have λθ0 =

pθ,m ≥ pθ
sym,m = λθ

sym

0 > 0. Then, by part 3(a) of Theorem 1, for every t > 0,
λθt
λθt−1

=
λθ

sym

t

λθ
sym
t−1

,

and hence
λθt

λθ
sym
t

=
λθt−1

λθ
sym
t−1

=
λθ0

λθ
sym

0
≥ 1. Thus, λθt ≥ λθ

sym

t for all t > 0 as well. Finally,

γθ
sym

= γθ ≡ γ̄. Therefore, for every t ≥ 1,

aθt = aθ,mt + aθ,ft = γ̄λθt−1(pθ,m + pθ,f ) ≥ γ̄λθ
sym

t−1 (pθ
sym,m + pθ

sym,f ) = aθ
sym,m
t + aθ

sym,f
t = aθ

sym

t .

All the inequalities in the above paragraph are strict if m0 > m1; they are reversed if

m0 ≤ m1; and hold as equalities if m0 = m1.

Now, regardless of the values of m0 and m1,

aθ,mt + aθ
sym,m
t ≥ aθ,ft + aθ

sym,f
t

⇔ γ̄(λθt−1p
θ,m + λθ

sym

t−1 p
θsym,m) ≥ γ̄(λθt−1p

θ,f + λθ
sym

t−1 p
θsym,f )

⇔ λθt−1[pθ,m − pθ,f ] ≥ λθ
sym

t−1 [pθ
sym,f − pθsym,m]

⇔ [λθt−1 − λθ
sym

t−1 ] · [pθ,m − pθ,f ] ≥ 0,

where the last step follows from pθ,m = pθ
sym,f and pθ,f = pθ

sym,m.

If m0 = m1, then both terms in square brackets equal zero, so equality obtains; in

particular, this is true if θ = θsym. If m0 > m1, then both terms are positive, if m0 < m1,

then both terms are negative. Thus, in any event, the last inequality, and hence Eq. (A.46),

holds; furthermore, if θ = θsym, then aθ,mt = aθ,ft .
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Now fix L ∈ {0, . . . , N}. Then∑
θ:
∑
n θn=L

aθ,mt =
∑

θ:
∑
n θn=L,θ=θsym

aθ,mt +
∑

θ:
∑
n θn=L,θ 6=θsym

aθ,mt =

=
∑

θ:
∑
n θn=L,θ=θsym

aθ,mt +
1

2

∑
θ:
∑
n θn=L,θ 6=θsym

[aθ,mt + aθ
sym,m
t ] ≥

≥
∑

θ:
∑
n θn=L,θ=θsym

aθ,ft +
1

2

∑
θ:
∑
n θn=L,θ 6=θsym

[aθ,ft + aθ
sym,f
t ] =

=
∑

θ:
∑
n θn=L

aθ,ft .

The second equality follows from the observation that, restricting attention to types θ with∑
n θn = L, also

∑
n θ

sym
n = L, so that adding aθ,mt + aθ

sym,m
t over all θ with θ 6= θsym counts

each type twice. The inequality follows from Eq. (A.46), which in particular implies that

aθ,mt = aθ,ft if θ = θsym. This inequality is strict if the second summation is non-empty, i.e., if

there is θ with
∑

n θn = L and θn 6= θN+1−n for some n, because the latter condition implies

θ 6= θsym. Finally, the last equality follows by repeating the first two steps backwards, for

F -group researchers. Q.E.D

Proof of Proposition 5 and Corollary 2. For Part (a), since γθ
m

= γθ
f

= γ0 (ρ)N/2

and, by Proposition 3, Θmax = {θm, θf}, λ̄θ̃,m =
λθ̃0p

θ̃,m

λθ
m

0 pθm,m+λθ
f

0 pθ
f ,m

for θ̃ ∈ Θmax, and λ̄θ̃,m = 0

otherwise; a similar expression holds for λ̄θ̃,f . Equations (15) through (18) then follow from

the specification of pm and pf . Eq. (20) follows from Λ̄g = λ̄θ
m,g + λ̄θ

f ,g.

Part (b) follows from the fact that, by Proposition 3 part (b), Θmax = {θ∗} in this

scenario. Corollary 2 follows from Lemma 1 Claim (3). Q.E.D.

Proof of Proposition 6: let Θ−1 = Θ and t(−1) = 0. Also let λm0,0 = λm1,0 = λm0 ,

λf0,0 = λf1,0 = λf0 , and λ0,0 = λ1,0 = λm1,0 + λf1,0. Finally, let Θ0 =
{
θ ∈ Θ : λθ1,0 ≥ C

γθP

}
.

For j ≥ 0, say that Conditions C(j) hold if there is a set Θj ⊆ Θj−1, a period t(j) >

t(j − 1), and for τ = 0, . . . , t(j)− t(j − 1), vectors λmτ,j, λ
f
τ,j, λτ,j ∈ RΘ

+ such that

(i) for 0 ≤ τ ≤ t(j)− t(j − 1), λmτ,j = λmt(j−1)+τ , λ
f
τ,j = λft(j−1)+τ , and λτ,j = λmτ,j + λfτ,j;

(ii) for 0 ≤ τ < t(j)− t(j − 1), λθτ,j ≥ C
γθP

for all θ ∈ Θj;

(iii) λθτ,j <
C

γθ(P−U)
for 0 ≤ τ ≤ t(j)−t(j−1) and all θ ∈ Θ\Θj, and λθ0t(j)−t(j−1),j <

C
γθ0 (P−U)

for some θ0 ∈ Θj.

We claim that, for every k ≥ 0, if either k = 0 or k > 0 and Conditions C(k−1) hold, then
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either Conditions C(k) hold as well, with Θk ( Θk−1 in case k > 0, or else there exist vectors

λmτ,k, λ
f
τ,k, λτ,k ∈ RΘ

+ for all τ ≥ 1 such that (i) holds for j = k, and λθτ,j ≥ C
γθP

for all θ ∈ Θk.

In the latter case, if the sequences of such vectors converge, then limτ→∞ λ
m
τ,k = limt→∞ λ

m
t

and similarly for λfτ,k and λτ,k.

Let λθ,g0,k = λθ,gt(k−1) for g = f,m; also let λ0,k = λm0,k+λf0,k. Let Θk =
{
θ ∈ Θ : λθ0,k ≥ C

γθP

}
.

If k = 0, then Θ0 ⊆ Θ = Θ−1. Otherwise, C(k − 1) must hold, so λ0,k = λt(k−1) =

λt(k−1)−t(k−2),k−1. By (iii), if θ 6∈ Θk−1 then λθ0,k = λθt(k−1)−t(k−2),k−1 <
C
γθP

, so θ 6∈ Θk as well;

firthermore, there exists θ0 ∈ Θk−1 such that λθ00,k = λθ0t(k−1)−t(k−2),k−1 <
C
γθP

. Therefore, if

k > 0, then Θk ( Θk−1.

Define qgk ∈ RΘ
+ \{0} for g = f,m by qθ,gk = γθpθ,g if θ ∈ Θk, and qθ,gk = 0 otherwise. Then

qθ,mk + qθ,fk ≤ 1 for all θ. Consider the sequences (λθ,gτ,k)τ≥0 for g = f,m and (λθτ,k)τ≥0 defined

by Eqs. (A.36)–(A.37) for the vectors qfk , q
m
k .

Suppose first that there are τ̄ > 0 and θ0 ∈ Θk such that λθ0τ̄ ,k <
C

γθ0 (P−U)
. Let t(k) =

t(k− 1) + τ̄ . Then, for each group g = f,m, the dynamics in Eqs. (A.36)–(A.37) induced by

the vectors qfk , q
m
k for the subsequence (λgτ,k)τ=0,...,τ̄ coincide with those in Eq. (24) for the

subsequences (λgt )t=t(k−1),...,t(k); thus, (i) holds for j = k. Furthermore, (ii) and the second

part of (iii) hold for j = k by the definition of τ̄ . For the first part of (iii) with j = k, recall

that by definition qθ,mk + qθ,fk = 0 for θ ∈ Θ \ Θk; hence, for all θ′ ∈ Θ and all θ ∈ Θ \ Θk,

qθ,mk +qθ,fk ≤ qθ
′

m,k +qθ
′

f,k. By part 3(a) in Theorem 1, it must be the case that λθτ+1,k/λ
θ
τ,k ≤ 1:

otherwise,
∑

θ′∈Θ λ
θ′

τ+1,k >
∑

θ′∈Θ λ
θ′

τ,k = 1, which contradicts the fact that λτ+1,k ∈ ∆(Θ) per

Theorem 1. Since by definition λθ0,k <
C
γθP

for θ 6∈ Θk, it follows that also λθτ,k <
C
γθP

for

τ = 0, . . . , τ̄ and for any such θ. Thus, in this case Conditions C(k) hold.

If instead λθτ̄ ,k ≥ C
γθ(P−U)

for all θ ∈ Θk, then for each group g = f,m, the dynamics in

Eqs. (A.36)–(A.37) induced by the vectors qm,k, qf,k for the subsequence (λgτ,k)τ≥0 coincide

with those in Eq. (24) for the subsequence (λgt )t≥t(k−1). Again, in this case (i) holds for

j = k. This completes the proof of the claim.

Since the set Θ is finite, there exists K ≥ 0 such that the induction stops—that is, λθτ̄ ,K ≥
C

γθ(P−U)
for all θ ∈ ΘK . Let Θmax

k = arg max{qθ,mk +qθ,fk : θ ∈ Θ}. Since Θ0 ) Θ1 ) . . . ) ΘK ,

by the definition of the vectors qgk for g = f,m, also Θmax
0 ⊇ Θmax

1 ⊇ . . . ⊇ Θmax
K . Moreover,

for every k = 0, . . . , K − 1, and every θ ∈ Θmax
k , λθτ+1,k/λ

θ
τ,k ≥ 1 for 0 ≤ τ < t(k) − t(k);

otherwise, by part 3(a) in Theorem 1,
∑

θ∈Θ λ
θ
τ+1,k <

∑
θ∈Θ λ

θ
τ,k = 1, which contradicts the

fact that λτ+1 ∈ ∆(Θ) per Theorem 1.
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Now assume that Θmax
0 ⊆ Θ0. Then, for every θ ∈ Θmax

0 ,

C

γθP
≤ λθ0,0 ≤ λθt(1)−t(0),0 = λθ0,1 ≤ λθt(2)−t(1),1 . . . ≤ λθ0,K ,

so θ ∈ Θk for all k = 0, . . . , K, and thus Θmax
0 = Θmax

1 = . . . = Θmax
K ≡ Θmax. In addition,

again by part 3(a) of Theorem 1, if θ, θ′ ∈ Θmax, then
λθτ+1,k

λθτ,k
=

λθ
′
τ+1,k

λθ
′
τ,k

for all k = 0, . . . , K − 1

and τ = 0, . . . , t(k)− t(k−1), and for k = K and all τ ≥ 0. Rearranging terms,
λθτ+1,k

λθ
′
τ+1,k

=
λθτ,k

λθ
′
τ,k

for such k and τ . Therefore, (i) in Conditions C(0)...C(K) imply that

λθ0,K
λθ
′

0,K

=
λθt(K−1)

λθ
′
t(K−1)

=
λθt(K−1)−t(K−2),K−1

λθ
′
t(K−1)−t(K−2),K−1

=
λθ0,K−1

λθ
′

0,K−1

= . . . =
λθt(0)−t(−1),0

λθ
′
t(0)−t(−1),0

=
λθ0,0
λθ
′

0,0

=
λθ0
λθ
′

0

.

Therefore, for θ ∈ Θmax = Θmax
K , from Theorem 1 part (4),

λ̄θ = λ̄θK =
λθ0,K∑

θ′∈Θmax λθ
′

0,K

=
1∑

θ′∈Θmax

λθ
′

0,K

λθ0,K

=
1∑

θ′∈Θmax
λθ
′

0

λθ0

=
λθ0∑

θ′∈Θmax λθ
′

0

. (A.47)

Similarly, for θ ∈ Θmax, part (5) in the same Theorem implies that

λ̄θ,m = λ̄θ,mK =
λθ0,Kq

θ,m
K∑

θ′∈Θmax λθ
′

0,Kq
θ′
K

=
qθ,mK∑

θ′∈Θmax

λθ
′

0,K

λθ0,K
qθ
′
K

=
qθ,mK∑

θ′∈Θmax
λθ
′

0

λθ0
qθ
′
K

=
λθ0q

θ,m
K∑

θ′∈Θmax λθ
′

0 q
θ′
K

,

(A.48)

and analogously for λ̄θ,f .

Statements (a.1)–(b) now follow. Recall that λ0 = pm. In (a.1), by assumption Θmax =

Θmax
0 = {θm, θf} ⊆ Θ0. Substituting λθ

m

0 = φN and λθ
f

0 = (1 − φ)N in Eq. (A.47) yields

λ̄θ
m

= φN

φN+(1−φ)N
. Similarly, substituting for qgK , g = f,m, and qK = qfK + qmK in Eq. (A.48)

yields the same expression for λ̄θ
m,m as in Proposition 3, because θ ∈ Θmax implies that

qθ,gK = γθpθ,g; ditto for λ̄θ
m,f , λ̄θ

f ,m and λ̄θ
f ,f , and hence for Λ̄m.

For (a.2), Θmax = Θmax
0 = {θm}. This immediately implies that λ̄θ

m
= λ̄θ

m

K = 1. Further-

more, from Eq. (A.48), Λ̄m = λ̄m,θ
m

= λ̄m,θ
m

K = γθ
m
pθ
m,m

γθm (pθm,m+pθm,f )
= pθ

m,m

pθm,m+pθm,f
= φN

φN+(1−φ)N
,

as asserted. Finally, we compare this quantity with its counterpart in Eq. (20):

1 +
(

φ
1−φ

)2N

1 +
(

φ
1−φ

)2N

+ 2
(

φ
1−φ

)N =
(1− φ)2N + φ2N

[(1− φ)N + φN ]2
<

<
(1− φ)NφN + φ2N

[(1− φ)N + φN ]2
=

(1− φ)N + φN

(1− φ)N + φN
· φN

(1− φ)N + φN
=

φN

(1− φ)N + φN
= Λ̄m,

where the inequality follows from the assumption that φ > 0.5.
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The analysis of (b) is analogous to that of (a.2), with θ∗ in lieu of θm; in this case,

pθ
∗,m = pθ

∗,f = φN/2(1− φ)N/2, so Λ̄m = λ̄θ
∗,m = 1

2
.

The statements about tθ for θ 6∈ Θmax follow from the construction of t(0), . . . , t(K).

Q.E.D.

Proof of Proposition 7. For part 1, the key step is analogous to the proof of Proposition

4, modified to allow for endogenous entry. Let m0 =
∑N/2

n=1 θ and m1 =
∑N

n=N/2+1 θn.

By assumption, m0 > m1. By definition, pθ,m = φm0(1 − φ)N/2−m0φN/2−m1(1 − φ)m1 =

φ(m0−m1)+N/2(1− φ)N/2−(m0−m1) = [φ(1− φ)]N/2
(

φ
1−φ

)m0−m1

, and similarly pθ
sym,m = [φ(1−

φ)]N/2
(

1−φ
φ

)m0−m1

; since φ > 1
2
, pθ,m > pθ

sym,m. At time 0 we thus have λθ0 = pθ,m >

pθ
sym,m = λθ

sym

0 . Moreover, since pf is defined with the roles of φ and 1 − φ reversed,

pθ,f = pθ
sym,m < pθ,m = pθ

sym,f .

Since γθ
sym

= γθ, it follows that at time 0, if λθ
sym

0 > C
γθ

sym
P

, then also λθ0 >
C
γθP

. In

addition, pθm+pθf = pθ
sym

m +pθ
sym

f . Thus, in the notation of Proposition 6, for t < min(tθ, tθ
sym

),

both θ and θsym apply, and applying part 3(a) of Theorem 1 to the relevant subsequence of

(λt)t≥0 as in the proof of Proposition 6,
λθt
λθt−1

=
λθ

sym

t

λθ
sym
t−1

, and hence
λθt

λθ
sym
t

=
λθt−1

λθ
sym
t−1

=
λθ0

λθ
sym

0
> 1.

Thus, λθt > λθ
sym

t , so again, if λθ
sym

t > C
γθ

sym
P

, then also λθt >
C
γθP

, i.e., tθ ≥ tθ
sym

. In particular,

if the inequality is strict and tθ
sym

< t < tθ, then researchers of type θ will apply at time t,

but those of type θsym will not.
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For part 2, We have

Amt − A
f
t =

∑
θ:λθt≥

C

γθ
P

pθ,m −
∑

θ:λθt≥
C

γθ
P

pθ,f =

=
∑
θ

pθ,m1λθt≥ C

γθ
P −

∑
θ

pθ,f1λθt≥ C

γθ
P =

=
∑
θ

pθ,m1λθt≥ C

γθ
P −

∑
θ

pθ
sym,f1λθsym

t ≥ C

γθ
sym P =

=
∑
θ

pθ,m
(

1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
=

=
∑

θ:
∑N/2
n=1 θn>

∑N
n=N/2+1 θn

pθ,m
(

1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2
n=1 θn=

∑N
n=N/2+1 θn

pθ,m
(

1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2
n=1 θn<

∑N
n=N/2+1 θn

pθ,m
(

1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
=

=
∑

θ:
∑N/2
n=1 θn>

∑N
n=N/2+1 θn

pθ,m
(

1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
+

+
∑

θ:
∑N/2
n=1 θn>

∑N
n=N/2+1 θn

pθ
sym,m

(
1λθsym

t ≥ C

γθ
sym P − 1λθt≥ C

γθ
P

)
=

=
∑

θ:
∑N/2
n=1 θn>

∑N
n=N/2+1 θn

(pθ−p
θsym
m ,m)

(
1λθt≥ C

γθ
P − 1λθsym

t ≥ C

γθ
sym P

)
≥ 0.

The third equality follows from the fact that θ 7→ (1−θn)Nn=1 is a bijection. The fourth follows

from the fact that pθ
sym,f = pθ,f . To obtain the fifth, we break up the sum into types θ with

more (resp. as many, resp. fewer) characteristics between 1 and N/2 than between N/2 + 1

and N . For the sixth, observe that if a type θ has the same number of features between 1

and N/2 and between N/2 + 1 and N , then pθ,m = pθ
sym,m and so λθ0 = λθ

sym

0 ; arguing as

in Proposition 7, λθt = λθ
sym

t for all t ≥ 0 (note that as soon as one type stops applying, so

does the other); but then, since also γθ = γθ
sym

, the term in parentheses for such types is

identially zero. In addition, we express the sum over θ’s for which
∑N/2

n=1 θn <
∑N

n=N/2+1 θn

iterating over types θ for which
∑N/2

n=1 θn >
∑N

n=N/2+1 θn, but adding up terms corresponding

to the associated symmetric types θsym. The seventh equality is immediate. Finally, the

inequality follows because, for θ such that
∑N/2

n=1 θn >
∑N

n=N/2+1 θn, the term in parentheses

is non-negative by Proposition 7, and in addition pθ>p
θsym
m ,m. Q.E.D.
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