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1 Introduction

During the unfolding COVID-19 pandemic U.S. banks have undergone unprecedented balance-

sheet expansions as a result of massive inflows into deposit accounts. Most dramatically, deposits

of US banks increased by $865 billion just in April 2020 alone. From Q4 2019 to Q1 2020, JP-

Morgan Chase experienced an increase of 18% of its deposit base, and the deposit liabilities of

Citigroup and Bank of America increased by 11% and 10%, respectively.1 Contrary to the conven-

tional wisdom, abundant funding liquidity did not benefit bank valuation or stimulate lending. The

banking sector is among the slowest sectors to recover from pandemic equity valuation lows.

We show that large deposit inflows are both an opportunity and a challenge for banks. De-

posit account is a source of cheap funding. Depositors accept relatively low interest rates under

banks’ deposit market power (Drechsler, Savov, and Schnabl, 2017) and for the convenience of

using deposits as means of payment.2 But the consequence of allowing depositors to freely move

funds in and out of their accounts is that banks cannot perfectly control the size of deposit base.3

Facing equity issuance costs (Myers and Majluf, 1984), banks are endogenously averse to

risk in its equity capital as in Brunnermeier and Sannikov (2014) and Klimenko, Pfeil, Rochet, and

Nicolo (2016). Therefore, deposit-flow shocks present a challenge to bank risk management. By

bringing in cheap funding, a positive (inflow) shock boosts the current earnings. However, it also

injects risk in the future earnings and trajectories of equity capital because it is uncertain whether

the new deposits will stay in the customers’ accounts or not. In contrast, a negative (outflow) shock

causes involuntary contraction of both risk and return on equity.

The equity K to deposit X ratio (denoted by “k ≡ K/X”) emerges as the key state variable

that drives the bank’s decisions. The numerator K represents the bank’s risk-taking capacity,

while the denominator X measures the size of deposits as cheap sources of financing and scales

the deposit-flow shocks. The ratio is endogenously bounded above by optimal dividend payout and

1See “U.S. Banks are ‘Swimming in Money’ as deposits increase by 2 trillion dollars amid the coronavirus” by
Hugh Son, CNBC June 21, 2020. Such deposit influx also happened in the financial crisis of 2007–2008.

2A recent literature incorporates the money premium into macroeconomic and banking models (Stein, 2012; DeAn-
gelo and Stulz, 2015; Krishnamurthy and Vissing-Jørgensen, 2015; Begenau, 2019)

3Payment activities are closely associated with the deposit risk (Freixas, Parigi, and Rochet, 2000; Bianchi and
Bigio, 2014; Parlour, Rajan, and Walden, 2020; Donaldson and Piacentino, 2019; Copeland, Duffie, and Yang, 2021).
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below by costly equity issuances. The bank’s endogenous risk aversion decreases in k. When k is

high, the bank has a sufficient equity buffer and can take advantage of deposits as cheap financing

(relative to bonds). When k is low, deposit inflows become problematic because the positive impact

on current earnings is overwhelmed by the concern over the uncertainty that new deposits transmit

into future earnings. When k is near the equity issuance (lower) bound, such concern is acute and

the marginal value of deposits to bank shareholders (“marginal deposit q”) turns sharply negative.

Moreover, deposit inflows may not induce more lending when k is low. The bank earns a

net interest margin, which can be decomposed into the risk premium from lending and the deposit

spread (the wedge between the risk-free bond rate and the lower deposit rate). Both sources of

profits are risky. The optimal lending policy is characterized by a formula akin to the portfolio

choice of Merton (1969), but with endogenous k-dependent coefficient of risk aversion. Deposit

inflows bring more cheap funding to lend but raise the endogenous risk aversion by lowering k.

By increasing deposit risk exposure, deposit inflows reduce the bank’s capacity to take on more

lending risk. Near the equity issuance (lower) bound for k, deposit inflows can therefore cause the

bank to scale back lending and allocate deposit inflows into risk-free bonds.

We model the deposit stock as a stochastic process partially controlled by the bank through its

deposit rate. Deposits are effectively long-duration debts as Drechsler, Savov, and Schnabl (2021)

have observed, but in our model, the maturities are random.4 The inability to fully control the size

of liabilities makes bank balance-sheet management conceptually very different from that of non-

depository intermediaries and nonfinancial firms. In our model and as documented by Drechsler,

Savov, and Schnabl (2017), the deposit base has random yet persistent flows. When k is high, the

bank raises deposit rate in an effort to attract more deposits, just like nonfinancial firms investing

in their customer base. In effect, the optimal deposit-rate policy resembles the investment policy

in Hayashi (1982). When k is low, risk concern dominates, so that the bank lowers its deposit rate

in an effort to forestall any unintended balance-sheet expansion due to deposit inflow shocks.

Another realistic feature of our model is a lower bound for the deposit rate. A natural bound

is zero, because depositors can always withdraw and hoard fiat money with a zero nominal return.

4There exists a large literature on the measurement of duration of bank assets and liabilities (Begenau, Piazzesi,
and Schneider, 2015; English, Van den Heuvel, and Zakrajšek, 2018; Begenau and Stafford, 2021).
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This lower bound is increasingly binding in the current low-rate environment (Heider, Saidi, and

Schepens, 2019). Although a lower bound is not required to generate endogenous risk aversion, it

further limits the bank’s ability to adjust the deposit flows, strengthening the mechanism. Once the

deposit rate hits the lower bound, the bank completely loses its ability to counteract deposit-inflow

shocks through further reduction of the deposit rate.

Our model provides a unified theory of bank’s deposit-taking, short-term borrowing, risky

lending, dividend payout, and equity issuances. We draw a sharp distinction between deposits and

short-term debt. With short-term debt, the bank can always choose to stop borrowing at maturity,

and therefore, does not face the problem of unwanted leverage. In contrast, deposits are long-term

contracts and do not have a well-defined maturity. Deposits leave the bank only when depositors

withdraw funds. When the equity capital-to-deposit ratio, k, is high, the bank issues short-term

debt to obtain additional leverage for lending. If k declines, the bank deleverages by reducing

short-term debt. And when k approaches the lower boundary of costly equity issuance, the bank

switches from issuing short-term bonds to holding risk-free bonds, thereby de-risking the asset side

of its balance sheet, given that the risk on the liability (deposit) side cannot be fully controlled.

To the extent that it is modeling deposit risk, the banking literature has done so only by

assuming illiquid bank assets and examining costly liquidation due to deposit outflows in a coordi-

nation failure (bank run) (Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005). Our model

departs from this framework: we assume that bank assets are liquid, but deposit risk still matters

under equity issuance costs. Both inflow and outflow shocks can be problematic as they cause,

respectively, involuntary expansion and contraction of earnings’ exposure to future deposit risk.

Our dynamic model allows a complete characterization of the nonlinear dynamics. Under

equity issuance costs, the marginal value of equity capital can be greater than one. The wedge

measures the shadow cost of financing friction. The marginal value of equity capital is equal to

one only at the dividend payout (upper) boundary of k, where the bank is indifferent between

retaining earnings or paying out dividends. At the peak of the stationary density of k, the marginal

value of equity capital is only slightly above one, which means that most of the time the bank does

not appear to be financially constrained. However, when k approaches the equity issuance (lower)
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boundary of k, the marginal value of equity capital shoots up dramatically. The strong concavity of

the value function with respect to k near the lower boundary causes a sharp increase in the bank’s

endogenous risk aversion. Near the lower boundary of k, deposit inflows can significantly raise

the likelihood of a costly equity issuance as it flattens the probability distribution of equity capital

by injecting more uncertainty into the future earnings. The bank therefore wants to deleverage and

turn away deposits, but can only go as far as setting the deposit rate at the lower bound.

A distinguishing feature of banks is that their leverage cannot exceed a regulatory maximum.

Leverage regulation makes deposit-taking more challenging. Due to the deposit-flow risk, a bank

does not have full control over its balance-sheet size and composition. Unexpected deposit inflows

increase leverage, so when the bank is undercapitalized, it has to incur equity issuance costs to

avoid violating the regulatory restriction. Leverage regulation does not cause endogenous risk

aversion in our model (the equity issuance costs do) but regulation amplifies it.

During the Covid-19 pandemic, U.S. banking regulators relaxed the supplementary leverage

ratio (SLR) requirement. Our model shows that this has the effect of stimulating lending and

deposit-taking. This policy move is particularly effective in a low interest rate environment, where

the deposit rate is stuck at lower bound so that banks are losing control of their leverage. However,

the stimulative effect of this policy move is short-lived. The relaxed leverage regulation implies

less frequent equity issuances over the long run. Given that the bank incurs less issuance costs,

it has a weaker incentive to boost earnings (through lending and deposit-taking) for shareholders

to break even in expectation. Tightening leverage requirements discourages lending and deposit-

taking in the short-run as it makes equity issuance more imminent, but over the long run, the bank

has to generate more earnings for shareholders to break even (as it pays equity issuance costs more

frequently), reaching for yield by loading on more risks in both lending and deposit-taking. Hence,

tightening leverage regulation, while successfully builds up bank capital by inducing more equity

issuances, fails its original purpose of taming risk-taking per unit of equity over the long run.5

5Kashyap, Stein, and Hanson (2010) argue that the impact of heightened leverage regulation on bank value should
be temporary, because in a deterministic environment, the bank pays the equity issuance costs once and then settles
on a lower leverage. We study a stochastic environment where under deposit and loan-return shocks, costly equity
issuance is recurrent. The issuance costs are thus reflected in bank value even away from the equity issuance boundary.
Tightening leverage regulation permanently reduces bank value by making costly equity issuance more frequent.
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Total leverage regulation (e.g., the SLR requirement in the U.S.) and risk-based capital re-

quirement play distinct roles in our model. Under the total leverage regulation, a deposit-inflow

shock can trigger costly equity issuance through an involuntary increase of bank leverage beyond

the regulatory maximum. In contrast, under risk-based capital requirement, a deposit inflow does

not trigger costly equity issuance as long as the bank invests the new deposits in risk-free bonds.

Therefore, risk-based capital requirement is a more targeted measure to limit risk-taking, because

its impact is isolated from banks’ inability to perfectly control deposit flows.

Finally, our model also sheds light on the critical role of the prevailing interest rate level r in

bank valuation and balance-sheet management. As in Drechsler, Savov, and Schnabl (2017), the

bank earns the deposit spread, r − i. When k is high, the bank raises deposit rate i to attract more

deposits. When k declines in the future (for example, following unexpected deposit inflows) the

bank will have more room to reduce i before hitting the deposit rate lower bound. Therefore, when

r is high, the bank has more flexibility in raising deposit rate in the high-k region without squeezing

the deposit spread too much. The distance between r and deposit rate lower bound essentially

determines the degree of flexibility to control deposit flows through adjusting the deposit rate. In a

low interest rate environment, the bank has less flexibility, so that the deposit marginal q declines.

Moreover, with a narrower deposit spread, r − i, the franchise (continuation) value is lower, so

that the bank becomes more aggressive in its shareholder payout. This speaks to the massive bank

stock buybacks in the last decade of low interest rates.

Literature. For deposits to serve as means of payment, the issuing bank must allow depositors

to move funds freely in and out of their accounts. The maturity of deposit contracts is not chosen

by the bank. It depends on depositors’ payment needs that are uncertain (Freixas, Parigi, and

Rochet, 2000; Bianchi and Bigio, 2014; Donaldson, Piacentino, and Thakor, 2018; Parlour, Rajan,

and Walden, 2020).6 Therefore, in a dynamic setting, a bank’s deposit stock retires stochastically

over time. Drechsler, Savov, and Schnabl (2021) emphasize the long duration of deposits as the

bank has to carry the deposits as long as its depositors do not withdraw. We also model deposits as

6Empirically, banks are exposed to large payment flow shocks (Furfine, 2000; Bech and Garratt, 2003; Denbee,
Julliard, Li, and Yuan, 2018; Choudhary and Limodio, 2017; Copeland, Duffie, and Yang, 2021).
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long-duration liabilities but our approach differs by introducing the randomness in deposit flow.

The key to our results is the bank’s lack of control of its deposit liabilities. The randomness in

leverage translates into uncertainty in the future trajectories of equity capital. As in Brunnermeier

and Sannikov (2014) and Klimenko, Pfeil, Rochet, and Nicolo (2016), equity issuance costs make

the bank averse to uncertainty in its equity capital. The endogenous risk aversion not only affects

deposit-taking but also drives risk-taking on the asset side of balance sheet.7 The bank takes more

risks when better capitalized, in line with the evidence (Ben-David, Palvia, and Stulz, 2020). This

suggests that risk-based capital requirement is effective in limiting the procyclicality in risk-taking

(Gersbach and Rochet, 2017). Our model also generates the empirical patterns in bank capital and

valuation (Mehran and Thakor, 2011; Minton, Stulz, and Taboada, 2019), deposit-to-total liability

ratio (Drechsler, Savov, and Schnabl, 2017), equity issuance and payout cyclicality (Adrian, Bo-

yarchenko, and Shin, 2015; Black, Floros, and Sengupta, 2016; Baron, 2020), comovement in loan

growth and deposit rate (Ben-David, Palvia, and Spatt, 2017), and occasionally binding capital

requirement (Gropp and Heider, 2010; Begenau, Bigio, Majerovitz, and Vieyra, 2019).

Dynamic banking models often differentiate deposits and short-term bonds in their interest

expenses and operation costs (Hugonnier and Morellec, 2017; Van den Heuvel, 2018; Begenau,

2019). In these models, banks do not face uncertainty in the size of deposit stock. Bianchi and Bi-

gio (2014), De Nicolò, Gamba, and Lucchetta (2014), Bigio and Sannikov (2019), and Vandeweyer

(2019) model deposits as one-period debts and the deposit-flow shocks as intra-period shocks, so

banks can freely adjust the deposit base every period without facing the problem of losing control

of leverage; in other words, shocks to banks’ deposit stock do not have persistent effects.

The macro-finance literature recognizes deposits as means of payment (Piazzesi and Schnei-

der, 2016; Drechsler, Savov, and Schnabl, 2018; Begenau and Landvoigt, 2018) but model de-

posits as short-term debts with yields reduced by a money premium (Stein, 2012; DeAngelo and

Stulz, 2015; Krishnamurthy and Vissing-Jørgensen, 2015; Greenwood, Hanson, and Stein, 2015;

Li, 2019; Begenau, 2019). Brunnermeier and Sannikov (2016) is notable exception. They model

deposits as infinite-maturity nominal liabilities and study the Fisherian deflationary spiral.

7While our model introduces the costs of issuing equity (Myers and Majluf, 1984), the link between equity and
risk-taking capacity is more general. For example, it arises from agency friction (He and Krishnamurthy, 2012, 2013).
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The traditional banking models focus on bank runs when it comes to banks’ commitment

to allow depositors to withdraw funds without prior notice (Diamond and Dybvig, 1983; Allen

and Gale, 2004b; Goldstein and Pauzner, 2005). A key model ingredient is the illiquidity of bank

assets, which causes the coordination failure among the depositors. Deposit outflow triggers inef-

ficient liquidation of assets, but deposit inflow is not a concern. To distinguish our model from the

literature, we allow the bank can freely adjust its assets so coordination failure does not happen.

The deposit risk matters because the deposit shocks feed into the trajectory of bank equity capital

and managing such risks is important under equity issuance costs.8 Even deposit inflow can be

problematic due to the uncertainty of whether the new deposits will stay or flow out in the future.

2 Model

We model the decisions of a single bank that maximizes risk-neutral shareholders’ value.9

Risky Assets. We use At to denote the value of the bank’s holdings of loans and other risky

assets at time t. Let r denote the risk-free rate. The value of risky assets evolves as follows:

dAt = At (r + αA) dt+ AtσAdWA
t . (1)

The parameter αA reflects the return from the bank’s expertise.10 The second term in (1) describes

the shock to the asset value (e.g., unexpected loan charge-offs), where σA is the diffusion-volatility

parameter andWA is a standard Brownian motion. The bank may adjust At at any time t.

8Bolton and Freixas (2000) and Allen, Carletti, and Marquez (2015) analyzed how banks’ equity issuance costs
affect the capital-structure decisions.

9Risk-neutrality can be reinterpreted as modelling under the risk-neutral measure by taking as exogenous a pricing
kernel (stochastic discount factor) that depends on the aggregate dynamics of the broader economy. Then the risk-free
rate, r, is the expected return under the risk-neutral measure of all financial assets that are traded by bank shareholders.

10The bank may have expertise in monitoring (Diamond, 1984), loan screening (Ramakrishnan and Thakor, 1984),
relationship lending (Boot and Thakor, 2000), restructuring (Bolton and Freixas, 2000), asset/capital management
and diversification (He and Krishnamurthy, 2012, 2013; Brunnermeier and Sannikov, 2014, 2016), collateralization
(Rampini and Viswanathan, 2018), and serving local credit markets (Gertler and Kiyotaki, 2010).
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Bonds. The bank can trade standard risk-free bonds and it is costless to do so. Let Bt denote the

value of bonds that the bank issues at t and will mature at t + dt. When Bt > 0, the bank issues

bonds (e.g., commercial papers) and incurs interest expenses of Btrdt over time interval dt. When

Bt < 0, the bank holds bonds issued by other entities (e.g., the government).

Deposits. At the core of our model is the law of motion of deposits. The deposit stock at time t,

which we denote by Xt, evolves as follows:

dXt = −Xt

(
δXdt− σXdWX

t

)
+Xtn (it) dt , (2)

whereWX
t is a standard Brownian motion. Let φdt denote the instantaneous covariance between

dWX
t and dWA

t . The flow that the bank cannot control is given by −Xt

(
δXdt− σXdWX

t

)
. As in

Freixas, Parigi, and Rochet (2000), Bianchi and Bigio (2014), Donaldson, Piacentino, and Thakor

(2018), and Parlour, Rajan, and Walden (2020), we interpret such flows as driven by payments.

When the depositors pay other banks’ depositors, outflow happens,
(
δXdt− σXdWX

t

)
> 0. When

the depositors receive cash or electronic payments from other banks’ depositors, the bank receives

inflow,
(
δXdt− σXdWX

t

)
< 0.11 The randomness is measured by σX .

The bank chooses the deposit rate, it, to adjust the flow via n (it) dt. Lowering the deposit

rate reduces the deposit flow, i.e., n′ (it) < 0, but such downward adjustment has a limit as it ≥ 0.

This lower bound is motivated by the fact that depositors can always withdraw dollar bills and earn

a zero return, which is an empirically relevant friction (Heider, Saidi, and Schepens, 2019) and

also emphasized by Drechsler, Savov, and Schnabl (2020) in the context of banking and inflation.

The deposit rate it can be below r, and the deposit demand function, n (it), depends on the

bank’s market power (Drechsler, Savov, and Schnabl, 2017) and the convenience yield that agents

derive from holding deposits as means of payment (Stein, 2012; DeAngelo and Stulz, 2015; Kr-

ishnamurthy and Vissing-Jørgensen, 2015; Nagel, 2016; Piazzesi and Schneider, 2016; Li, 2018).

For deposits to function as means of payment, depositors must be able to move funds in and out of

11The value of δX and σX largely depend on where the bank is in the payment network, and the payment flow
volatility σX can be significant in data (Denbee, Julliard, Li, and Yuan, 2018; Copeland, Duffie, and Yang, 2021).
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their accounts freely, and this exposes the bank to unhedgeable deposit shock in (2).

Following Hugonnier and Morellec (2017) and Drechsler, Savov, and Schnabl (2021), we

assume that the bank pays a flow costC (n (it) , Xt) dt, which captures the expenses of maintaining

the existing deposit franchise and serving new customers (∂C(n(it),Xt)
∂n(it)

> 0 and ∂C(n(it),Xt)
∂Xt

> 0).

In our model, deposits are essentially long-term debts with stochastic and partially control-

lable maturity, as shown in (2). Our treatment of deposits stands in contrast with the macro-finance

literature and dynamic banking literature that generally treats deposits simply as short-term debts.

We share with Drechsler, Savov, and Schnabl (2021) the view that the right to withdrawal does not

necessarily translate into a low duration of deposits as the deposit base is often sticky.

Payout and Costly Equity Issuance. The following identity summarizes the balance sheet:

Kt +Xt = At −Bt , (3)

where Kt is the bank’s equity capital. The long-term funding in the form of equity capital and

deposits finances the bank’s investment in risky assets (net off the funds from bond issuances).

The bank can pay out dividends that reduce Kt. We use Ut to denote the cumulative divi-

dends, so the amount of (non-negative) incremental payout is dUt. The bank can issue equity. Let

Ft denote the bank’s cumulative equity financing up to time t. The law of motion of Kt is given by

dKt =At
[
(r + αA) dt+ σAdWA

t

]
−Btrdt−Xtitdt− C (n (it) , Xt) dt− dUt + dFt . (4)

The first three terms on the right side record the return on risky assets, bond interest expenses if

Bt > 0 or interest income if Bt < 0, and deposit interest expenses. The fourth term is the cost of

running the deposit franchise. The last two terms are payout and equity issuance, respectively.

In reality, banks face significant external financing costs due to asymmetric information,

incentive issues, and transaction costs. A large empirical literature has sought to measure these

costs, in particular, the costs arising from the negative stock price reaction to the announcement of
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a new equity issue.12 Let Ht to denote the (undiscounted) cumulative costs of equity financing up

to time t. The bank maximizes the equityholders’ value. The objective function is given by

V0 = max
{A,B,i,U,F}

E
[∫ τ

t=0

e−ρt (dUt − dFt − dHt)

]
. (5)

We assume that shareholders are more impatient than creditors in that shareholders’ required rate

of return ρ is greater than r, a common assumption in dynamic corporate finance and macro-

finance models, e.g., DeMarzo and Fishman (2006) and Brunnermeier and Sannikov (2014) among

others.13 Let τ denote the stochastic stopping time of bank closure. Regulators shut down the bank

when its net worth, Kt, turns negative or it violates the regulatory requirements below.

Capital Requirement. Following Nguyen (2015), Davydiuk (2017), Van den Heuvel (2018),

and Begenau (2019), we introduce the capital requirement as follows:

At
Kt

≤ ξK . (6)

In accordance with Basel III capital standards, banks maintains a minimal ratio of capital to risk-

weighted assets of 7%.14 We set ξK equal to 1/0.07 = 14.3.15

12Explicitly modeling informational asymmetry would result in a substantially more involved analysis. Lucas and
McDonald (1990) provides a tractable analysis under assumption that the informational asymmetry is lasts one period.
Lee, Lochhead, Ritter, and Zhao (1996) document that for initial public offerings (IPOs), the direct costs (underwriting,
management, legal, auditing and registration fees) average 11.0% of the proceeds, and for seasoned equity offerings
(SEOs), 7.1%. IPOs also incur a substantial indirect cost due to short-run underpricing. An early study by Asquith and
Mullins (1986) found that the average stock price reaction to the announcement of a common stock issue was −3%
and the loss as a percentage of the new issue size was as high as −31% (Eckbo, Masulis, and Norli, 2007).

13This impatience can be microfounded by an exogenous Poisson exit rate that is equal to ρ− r.
14See Thakor (2014) for a review of the debate on bank capital and its regulations.
15Davydiuk (2017) and Begenau (2019) set ξK to be the sample average of the ratio of Tier 1 equity to risky

assets for the reason that banks typically maintain a buffer to prevent regulatory corrective action. In our model, the
buffer arises endogenously, so we set ξK to the regulatory threshold. In theoretical studies on banking regulations,
De Nicolò, Gamba, and Lucchetta (2014) calibrate the capital requirements to 4% and 12%, Hugonnier and Morellec
(2017) calibrate the thresholds to 4% , 7%, 9%, and 20% to investigate the effects of the proposal by Admati and
Hellwig (2013), and Phelan (2016) calibrates the threshold to 7.7% and 10.6% in a macroeconomic model.
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Supplementary Leverage Ratio (SLR). Banks in the U.S. face an SLR requirement since Jan-

uary 1, 2018. It supplements the capital requirement that can be vulnerable to manipulation

(Plosser and Santos, 2014). The SLR requirement targets the ratio of total assets (or liabilities)

to equity capital. When the bank issues bonds, i.e., B > 0, the leverage ratio requirement restricts

A/K, just as the capital requirement does:

A

K
=
K +X +B

K
≤ ξL ; (7)

when B < 0, the SLR requirement is given by

A−B
K

=
K +X

K
≤ ξL . (8)

The U.S. bank holding companies that have been identified as global systemically important banks

must maintain an SLR of greater than 5% (i.e., ξL = 20), and failing to do so triggers restrictions

on the capital distributions to shareholders and discretionary bonus payments to the management.

Discussion: the role of deposit risk. The traditional banking models emphasize the illiquidity of

bank assets, and the deposit risk manifests itself in a coordination failure and inefficient liquidation

of assets (Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005). To distinguish our model

from this literature, we assume that the bank’s risky asset, At, is freely adjustable in every instant

(i.e., liquid) and the bank can issue bonds so that the bank can always meet deposit withdrawal.

Therefore, a bank run does not happen in our model. Here the deposit risk is motivated by the

uncertainty in payment flows. As shown in (4), the drift of equity capital (Et [dKt]) is a function

of the deposit stock, Xt. Through the randomness in Xt, Et [dKt] becomes a stochastic process.

Without the deposit shock, the drift of Kt would be perfectly controlled by the bank through At,

Bt, and it, and the bank is only exposed to the risk in lending (i.e., dWA
t ). Under the deposit shock,

the bank faces both shocks to the realized equity growth (i.e., dWA
t ) and shocks to the expected

equity growth (i.e., dWX
t ). In the next section, we show that under the equity issuance costs, the

bank becomes effectively risk-averse, so jointly managing the two types of risks is important.
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3 Dynamic Banking

3.1 Bank Optimization

We derive the optimality conditions for the bank’s control variables and the Hamilton-Jacobi-

Bellman (HJB) equation for the value function. In the next subsections, we parameterizeC(n(it), Xt)

and n(it) to provide intuitive characterizations of the bank’s optimal policies.

State and Control Variables. The bank solves a dynamic optimization problem with two state

variables, deposit stock Xt and equity capital Kt. Let Vt denote the shareholders’ value at time t.

The bank chooses its loan portfolio size At, its position in bonds Bt, the deposit rate it, the payout

of dividends dUt, and the value of newly issued equity shares dFt to maximize the shareholders’

value The value function is a function of the state variables, i.e., Vt = V (Xt, Kt). To solve the

bank’s optimal decisions and value function, we need the laws of motion of state variables (i.e., (2)

and (4)) that show how the control variables affect their evolution. The deposit stock and equity

capital are slow-moving state variables that constitute the long-term funds of the bank. Given Xt

and Kt, the bank’s choices of At and Bt resemble a portfolio problem (Merton, 1969).16 Let πAt
denote the portfolio weight on loans, i.e., πAt (Xt +Kt) = At, so the weight on bonds is

(
πAt − 1

)
as implied by the balance-sheet identity (3). We now rewrite the law of motion for Kt as

dKt = (Xt +Kt)
[(
r + πAt αA

)
dt+ πAt σAdWA

t

]
−Xtitdt− C (n (it) , Xt) dt− dUt + dFt . (9)

Given the Markov nature of the bank’s problem, we suppress the time subscripts for X , K, and

control variables going forward to simplify the notations wherever it does not cause confusion.

The regulatory requirements translate into constraints on the bank’s control variables and

state variables. If the bank issues bonds (i.e., B > 0 or πA > 1), the capital requirement (6) and

16The bank may adjust the loan amountAt by selling loans. Technological progress on the reduction of information
asymmetries facilitates loan trading. The design of contract between loan buyers and originators alleviates the moral
hazard (reduced monitoring incentive) on the part of loan originators (Pennacchi, 1988; Gorton and Pennacchi, 1995).
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SLR requirement (7) are both restrictions on A/K so the bank faces A/K ≤ min {ξK , ξL} or

πA ≤ min {ξK , ξL}
(

K

X +K

)
. (10)

If the bank holds bonds (i.e., B ≤ 0 or πA ≤ 1), the capital requirement (6) is still a restriction on

the control variable πA,

πA ≤ ξK

(
K

X +K

)
, (11)

while the SLR requirement, now given by (8) instead of (7), stipulates a boundary in the space of

state variables X and K,
X +K

K
≤ ξL . (12)

Our numerical solution will show that the bank holds bonds for risk management when its

equity capital K is low relative to its deposit liabilities X . Therefore, given X , the bank has to pay

the issuance costs and raise equity when K declines significantly following negative shocks and

the SLR requirement (12) binds. In reality, equity issuance may happen before the constraint binds

because, once a bank is close to violating the constraint, regulators intervene and often restrict

managerial compensation or payout to shareholders. The newly introduced SLR requirement is a

boundary condition on the state variables and is an effective a tool to trigger bank recapitalization.

In contrast, the traditional capital requirement restricts the control variable πA (risk-taking).

The HJB Equation and Boundaries. When the bank does not pay out dividends (dU = 0) or

issue equity (dF = 0 and dH = 0), the HJB equation for the value function is

ρV (X,K) = max
{πA, i}

VX (X,K)X [−δX + n (i)] +
1

2
VXX (X,K)X2σ2

X (13)

+ VK (X,K) (X +K)
(
r + πAαA

)
+

1

2
VKK (X,K) (X +K)2

(
πAσA

)2
− VK (X,K) [Xi+ C (n (i) , X)] + VXK (X,K)X (X +K) πAσAσXφ

13



The optimality conditions on dividend payout and equity issuance specify the boundaries of (X, K),

denoted by
(
X, K

)
, the payout boundary and (X, K), the equity issuance boundary.

The bank pays out dividends only if the payout value overcomes the decrease of continuation

value, i.e., dU ≥ V
(
X,K

)
− V

(
X,K − dU

)
or in the differential form,

VK
(
X,K

)
≤ 1 . (14)

The optimality of payout also requires the following super-contact condition (Dumas, 1991):

VKK
(
X,K

)
= 0 . (15)

The bank raises equity and pays the issuance costs only when the increase of existing share-

holders’ value after issuance overweighs the new equity investment, dF , and issuance costs, dH

V (X,K + dF )− V (X,K) ≥ dF + dH , (16)

We assume that the issuance costs depend on both the issuance amount and the size of the bank,

i.e., dH = φ1dF + φ0X . We use the deposit base to measure the size of the bank, because, as we

will show shortly, the bank’s problem has a homogeneity property that significantly simplifies the

analysis and allows for an intuitive presentation of our results. Finally, the optimality of dF also

requires the following smooth-pasting condition

VK (X,K) = 1 + ψ1 . (17)

Equation (17) states that the marginal value of bank equity is equal to the marginal cost of issuance.

Equations (12) and (14)–(17) define the boundaries of (X, K) given the value function.

The HJB equation (13) solves the value function given the boundary conditions. The solution

structure is akin to the dynamic models of corporate liquidity and risk management under equity

issuance costs (e.g., Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and Villeneuve,

2011; Décamps, Gryglewicz, Morellec, and Villeneuve, 2017). Note that when characterizing
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the boundaries of (X, K), we do not consider bank closure. In our model, the bank does not

default on its debts because under (continuous) diffusive shocks, the bank can and will preserve the

positive continuation value for shareholders by immediately adjusting its balance sheet in response

to shocks so that τ = +∞ in (5). One implication is that deposits and bonds are risk-free, which

is in line with the fact that banking regulators often intervene before banks default on their debts.17

Homogeneity. We specify the cost of maintaining deposits and managing deposit flows as

C (n (i) , X) = c (n (i))X , (18)

where c (·) is an increasing and strictly convex function. Under this functional form and the previ-

ous specification of dH , the bank’s optimal choices of πA and i become univariate functions of the

equity capital-to-deposit ratio,

k ≡ K

X
, (19)

and the bank’s value function becomes V (X, K) = v(k)X . We demonstrate these results as

follows. First, given V (X, K) = v(k)X , we obtain the following derivatives

VK (X,K) = v′ (k) , VX (X,K) = v (k)− v′ (k) k

VKK (X,K) = v′′ (k)
1

X
, VXX (X,K) = v′′ (k)

k2

X
, VXK (X,K) = −v′′ (k) k

X
. (20)

Substituting these expressions into the HJB equation (13) and dividing both sides by X , we obtain

ρv (k) =max
πA,i

[v (k)− v′ (k) k] [−δX + n(i)] +
1

2
v′′ (k) k2σ2

X (21)

+ v′ (k) (1 + k)
(
r + πAαA

)
+

1

2
v′′ (k) (1 + k)2

(
πAσA

)2
− v′ (k) [i+ c (n(i))]− v′′ (k) k (1 + k) πAσAσXφ .

17For example, on November 21, 2008, the FDIC implemented the Temporary Liquidity Guarantee Program that
guarantee all newly issued senior unsecured debt and non-interest-bearing transaction accounts at FDIC-insured banks.
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Therefore, theX-scaled HJB equation (21) is an ordinary differential equation (ODE) for the

X-scaled value function, v(k). From this equation, we can solve πA and i as univariate functions

of k. In the next subsections, we will discusses the implications of these optimal choices in details.

The constraints (10) and (11) on πA translate to

πA ≤ min {ξK , ξL}
(

k

1 + k

)
if πA > 1 , (22)

and

πA ≤ ξK

(
k

1 + k

)
if πA ≤ 1 , (23)

respectively. And the SLR requirement (12) implies a lower boundary of k when πA ≤ 1:

k ≥ k ≡ 1

1− ξ−1L
− 1 if πA ≤ 1 . (24)

When k is low, our numerical solution features B < 0 (or equivalently, πA < 1), so k in (24) is a

lower (equity issuance) boundary of k. Let m ≡ dF/X denote the (scaled) equity issuance. The

equity issuance boundary conditions (16) and (17) are simplified as follows:

v (k +m)− v (k) = ψ0 + (1 + ψ1)m, (25)

and

v′ (k +m) = 1 + ψ1 . (26)

Let k denote the upper (dividend payout) boundary of k. The payout boundary conditions (14) and

(15) can be simplified as follows:

v′
(
k
)
= 1 , (27)

and

v′′
(
k
)
= 0 . (28)

Our numerical solution of v (k) is concave, so (27) and (26) imply that the bank pays out dividends
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when k is high and raise equity when k is low, i.e., k > k. Given k in (24), the boundary condi-

tions (25)–(28) and second-order ODE (21) solve the X-scaled value function, v (k), the optimal

issuance amount m, and the upper (dividend payout) boundary k. Note that the amount of divi-

dend payout is determined as follows: At k, any positive shocks to K (numerator of k) or negative

shocks to X (denominator of k) trigger payout, and the payout amount (i.e., the reduction in K) is

the amount needed to bring down k to k. In other words, k is a reflecting boundary of k.

In Appendix A, we provide a richer setup where, as in Drechsler, Savov, and Schnabl (2018),

the bank holds reserves and is subject to a regulatory reserve requirement. In this richer setup, our

results on the value of deposits and the optimal strategies of payout, equity issuance, risk-taking,

and deposit rate still hold.18 The only difference is that the reserve requirement generates another

lower bound for k. Therefore, the bank raises equity to meet either the SLR requirement binds

(i.e., at k given by (24)) or the reserve requirement binds. After the financial crisis, the liquidity

coverage ratio requirement replaces the role of reserve requirement with a more broadly defined set

of assets that can be easily traded intraday to settle interbank payments and other liquidity needs.19

3.2 The Main Mechanism: Equity Risk and Return

Under the equity issuance costs, the bank is effectively averse to risk in equity capital because,

when negative shocks deplete equity capital, the bank has to incur issuance costs and raise eq-

uity. To analyze the risk-return trade-off, we use the balance-sheet identity (3) to substitute out

bond financing, Bt, in the law of motion (4) of equity capital, and use (18), i.e., C (n (it) , Xt) =

c (n (it))Xt, to simplify the law of motion, so, in the interior region (where dUt = 0 and dFt = 0),

dKt

Kt

= rdt+
At
Kt

(
αAdt+ σAdWA

t

)
+
Xt

Kt

[r − it − c (n (it))]︸ ︷︷ ︸ dt
net deposit spread

. (29)

The first and second terms on the right side are standard in portfolio problems (Merton, 1973).

The bank’s net worth (equity capital) grows at a base rate r through the first term, while the excess
18Our solution of optimal reserve holdings resembles the classic money demand (Baumol, 1952; Tobin, 1956).
19Liquidity requirement in our model triggers costly equity issuance and thus its role is different from that in models

that emphasize the illiquidity of bank assets Diamond and Kashyap (2016); Carletti, Goldstein, and Leonello (2019).
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return αA from risky investments At comes with an additional risk (σA) per dollar invested. The

last term shows how deposit-taking contributes to return on equity. The bank may set a deposit

rate it below r, earnings a positive interest spread. And, the net deposit spread, r − it − c (n(it)),
reflects the cost of running the deposit franchise (Drechsler, Savov, and Schnabl, 2017).

Profits from deposit-taking are not risk-free. The expected growth rate of equity capital,

Et[dKt/Kt], is a function of the deposit stock Xt that evolves randomly (see (2)). The deposit

shocks transmit into equity dynamics, with the net deposit spread as a multiplier. When the equity

capital-to-deposit ratio, k = K/X , is low, the variation of Xt is large relative to Kt, so that the

deposit risk has a significant impact on equity dynamics. When k is high, the impact of deposit risk

is muted. Therefore, k is the key state variable that drives the dynamic balance-sheet management.

With a higher deposit base, Xt, deposit inflow shocks force the bank to earn more through the

net deposit spread and to bear more risk with respect to future equity growth rate. From bank

shareholders’ perspective, whether such involuntary expansion in both return and risk is desirable

depends on k. When k is low, deposit inflows may have an overall negative impact on bank

shareholders’ value and force the bank to become more cautious (even scale back risky lending).

Net interest margin—the spread between loan rate and deposit rate—is often used as a prof-

itability measure. It can be decomposed into the asset-side and liability-side (deposit) components

(Egan, Lewellen, and Sunderam, 2017). To earn the excess asset return αA, the bank has to in-

crease its exposure to the asset shock, dWA
t , which affects realized equity growth. Similarly, while

earning a net deposit spread the bank also loads on the deposit shock, dWX
t , which affects expected

equity growth. Under equity issuance costs, the bank balances the two sources of profits and risks.

3.3 Optimal Risky Investment

From the X-scaled HJB equation (21), we can solve πA. Using A
K

= πA(X+K)
K

= πA
(
1+k
k

)
, we

obtain the following formula for the risky loan-to-capital ratio:

A

K
=

αA
γ (k)σ2

A

+
σX
σA

φ , (30)
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In (30), γ (k) is a measure of endogenous risk aversion based on the value function:

γ (k) ≡= −v
′′ (k) k

v′ (k)
, (31)

This solution resembles Merton’s portfolio choice including both the mean-variance term

and the hedging-demand term. In the numerator, a higher excess return, αA, increases lending.

The bank’s incentive to lend is also strengthened when deposits are natural hedge when the asset-

side shock, dWA, and the liability-side (deposit) shock, dWA are positively correlated (φ > 0).

The bank’s risk-taking is state-dependent and only depends on k through γ (k). Even though

the bank evaluates the equityholders’ payoffs with a risk-neutral objective in (5), it is endogenously

risk-averse, i.e., γ (X,K) > 0, due to the equity issuance cost. When the effective risk aversion

is low, the bank chooses a high loan-to-capital ratio; when the effective risk aversion is high, the

bank reduces its risk exposure. In our numeric solution, we will show that γ (k) decreases in k, so

the equity buffer is high relative to the deposit liabilities.

The correlation between the loan return shock and the deposit flow shock, φ, induces a

hedging demand. The risk of deposit flow is essentially the bank’s background risk from the

perspective of portfolio management. When φ > 0, it captures the synergy between lending and

deposit-taking that has been studied extensively in the literature (e.g., Calomiris and Kahn, 1991;

Berlin and Mester, 1999; Kashyap, Rajan, and Stein, 2002; Gatev and Strahan, 2006; Hanson,

Shleifer, Stein, and Vishny, 2015). This hedging mechanism also echoes the finding of Drechsler,

Savov, and Schnabl (2021) that financing lending with deposits helps banks to hedge risk.20

3.4 Optimal Deposit Rate

When the bank increases the deposit rate by 1, it obtains new deposits with the marginal value

equal to VX (X, K)Xn′ (i), but it also reduces the return on equity capital through higher interest

payments on existing deposits, which is valued at VK(X, K)X , and through the marginal cost of

maintaining a larger deposit franchise, VK (X,K)Xc′ (n (i))n′ (i). The optimal deposit rate is

20The finding of Drechsler, Savov, and Schnabl (2021) focuses on interest-risk risk.
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implicitly defined by the condition that the marginal benefit is equal to the marginal cost:

VX (X, K)n′ (i)X = VK (X, K) [X +Xc′ (n (i))n′ (i)] . (32)

Rearranging the equation, we obtain:

c′ (n (i)) =
VX (X, K)

VK (X, K)
− 1

n′ (i)
=
v(k)− v′(k)k

v′(k)
− 1

n′ (i)
. (33)

Because c (·) is a strictly convex function and n(i) is an increasing function, the optimality

condition (33) implies that the optimal deposit rate increases in the ratio of marginal value of

deposits to marginal value of equity capital VX(X,K)
VK(X,K)

. Intuitively, when deposits are more valuable

relative to equity capital, the bank is willing to sacrifice return on equity for deposit-taking (via a

higher deposit rate). Moreover, when deposit flow is more responsive to the adjustment of deposit

rate, i.e., n′(i) is high, the bank is willing to set a high deposit rate.

Since deposits are at the core of our model, we sharpen the intuitions about the optimal

deposit rate by adopting the following functional forms. First, we specify n(i) as a linear function:

n (i) = ωi , (34)

where, as shown in (2), ω is the semi-elasticity of deposits stock X with respect to i. Next, we

specify the cost of attracting new deposits in a simple quadratic form

c (n(i)) =
θ

2
n (i)2 . (35)

These functional forms lead to a Hayashi style optimal policy for the deposit rate. In Hayashi

(1982), firms make investments in productive capital, while, in our model, the bank attracts depos-

itors by raising the deposit rate, building up its customer capital. Using (33), we obtain

i =

VX(X,K)
VK(X,K)

− 1
ω

θω
=

(
v(k)−v′(k)k

v′(k)

)
− 1

ω

θω
. (36)
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The difference between our optimal deposit-rate policy and Hayashi’s investment policy is two-

fold. First, it is not a single Tobin’s q that dictates the optimal decision but rather the ratio of

marginal deposit q, VX (X,K), to marginal equity q, VK (X,K) drives the optimal deposit rate.21

Second, through the ratio VX(X,K)
VK(X,K)

, our optimal deposit rate is state-dependent.

An interesting feature of the optimal deposit rate is that it hits the zero lower bound when

VX (X,K)

VK (X,K)
=
v(k)− v′(k)k

v′(k)
≤ 1

ω
. (37)

Once the deposit rate reaches zero, the bank cannot further decrease the deposit rate to reduce

deposits. Later we show that this restriction makes deposits undesirable, especially when the bank

is undercapitalized, and thus, is concerned of a high leverage from large deposits that amplifies the

impact of negative shocks on equity, increasing the likelihood of costly equity issuance.

When the deposit demand is more elastic, i.e., ω is high, the bank has to pay a higher deposit

rate, as shown in (36). However, given the value function, it is less likely for the condition (37) to

hold, because a high demand elasticity allows the bank to control the deposit flow more effectively

and thereby to avoid hitting the zero lower bound. This result suggests that the deposit-rate lower

bound is more acute a problem for larger banks with greater deposit market power or stickier

deposit base (i.e., smaller ω). Smaller banks with less deposit market power are less concerned of

the deposit-rate lower bound, but they have to pay higher interest rates to attract depositors.

4 Quantitative Analysis

4.1 Functional Form and Parameter Choices

For the functional forms of n(·) and c(·), we use (34) and (35) respectively.22 In Table 4 we report

our calibration and parameter choices. We set the unit of time to year and r to 1% in line with

21Related, Bolton, Chen, and Wang (2011) find the ratio of marginal value of productive capital to the marginal
value of cash drives a firm’s investment under adjustment costs. Kargar, Passadore, and Silva (2020) find the ratio of
marginal value of a subset of assets to the marginal value of wealth drives portfolio decisions under transaction costs.

22We also experiment with an alternative specification of quadratic n (i) that allows the deposit flow to be increas-
ingly sensitive to deposit rate as i approaches zero. The results are very similar and are available upon request.
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Table 1: PARAMETER VALUES

This table summarizes the parameter values for our baseline analysis. The unit of time is year.

Parameters Symbol Value
risk-free rate r 1%
discount rate ρ 4.5%
bank excess return αA 0.2%
asset return volatility σA 10%
deposit flow (mean) δX 0
deposit flow (volatility) σX 5%
deposit maintenance cost θ 0.5
deposit demand semi-elasticity ω 5.3
corr. between deposit and asset shocks φ 0.8
equity issuance fixed cost ψ0 0.1%
equity issuance propositional cost ψ1 5.0%
SLR requirement parameter ξL 20
capital requirement parameter ξK 14.3

the average Fed funds rate in the last decade. Shareholders’ discount rate ρ is set to 4.5% in line

with the commonly used value in dynamic corporate finance models.23 We set αA to 0.2% so that

the model generates an average return on assets (ROA) of 1.05%, close to the average ROA of US

banks in the last decade (source: FRED). Note that when k is large, the bank only holds risky assets

(and the asset value is At), but when k is small, the bank also holds risk-free assets (B < 0) and

the asset value is At − Bt. Therefore, the ROA is state-dependent. To calculate the average ROA

and other averages later, we use the stationary distribution of k. We set the asset return volatility,

σA, to 10% as in Sundaresan and Wang (2014) and Hugonnier and Morellec (2017).24

For the deposit dynamics, we set δX to 0% and σX to 5% following Bianchi and Bigio

(2014). We further set ω, the semi-elasticity of deposits to the deposit rate, to 5.3, an estimate

from Drechsler, Savov, and Schnabl (2017). The correlation between asset-side and liability-side

(deposit) shocks, φ, directly affectsA/K in (30) and is set to 0.8 so that the (stationary) probability

23One example is Bolton, Chen, and Wang (2011). This is also consistent with the dynamic contracting literature
(DeMarzo and Fishman, 2007; Biais, Mariotti, Plantin, and Rochet, 2007).

24Sundaresan and Wang (2014) in turn refer to the calculation of Moody’s KMV Investor Service.
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Figure 1: Marginal Value of Equity Capital and Bank Risk-Taking.

of a binding capital requirement is in line with the evidence (Begenau, Bigio, Majerovitz, and

Vieyra, 2019). As for the cost of maintaining deposit franchise, we set the maintenance cost

parameter, θ, to 0.5. With this value, the model generates an average deposit-to-total liabilities

ratio equal to 96% in line with the evidence (Drechsler, Savov, and Schnabl, 2017). We set the

proportional issuance cost parameter, ψ1, to 5% (Boyson, Fahlenbrach, and Stulz, 2016). The

fixed cost parameter, ψ0, is set to 0.1%, so the model generates an issuance-to-equity ratio of 1%

roughly in line with the evidence (Baron, 2020).25 The regulatory parameters were discussed in

Section 2.

4.2 Marginal Value of Equity Capital and Risk-Taking

The marginal value of equity capital, VK(K,M) = v′(k), should be equal to one without financial

frictions because the bank is indifferent between paying out one dollar and retaining one dollar of

earnings. In other words, precautionary savings do not add value without financial frictions. Under

the equity issuance costs, the marginal value of equity capital can be above one, and the wedge

between v′(k) and one widens as the bank approaches the boundary of equity issuance. Panel A

25The 1% is calculated across simulated issuance events. (Baron, 2020) document a cross-sectional average of 0.5%
(as of 2005) and, in the sample, 50% banks did not issue equity, so we double the number as our calibration target.
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of Figure 1 plots the marginal value of equity capital, v′(k), against the equity capital-to-deposit

ratio, k. At the equity issuance boundary of k, k, a value of v′(k) close to nine means that one

dollar of equity is worth nine dollars because of the imminence of costly equity issuance.26

The interior region ends at the endogenous payout boundary k. At that point the the marginal

value of equity capital is equal to one and bank has a sufficient amount of retained earnings, so

that it is optimal to pay out dividends to shareholders as they discount cash flows at a higher rate ρ

than r. Note that near the payout boundary, k, the marginal value of equity capital is close to one

and relatively insensitive to variations in k because, at that point, the likelihood of a large loss of

equity or a large deposit inflow that dramatically decrease k to the equity issuance boundary k is

low. In other words, distress in the form of costly equity issuing is a distant scenario near k.

Throughout the whole region of k, the marginal value of equity capital stays positive, which

implies that when the bank accumulates more equity capital, ceteris paribus, the bank shareholders’

value increases. This is in line with the empirical findings of Mehran and Thakor (2011) and

Minton, Stulz, and Taboada (2019) that bank value is positively associated with bank capital. In

the next subsection, we examine the marginal contribution of deposits to bank shareholders’ value

and discuss further the implications of our model on empircal analysis of bank valuation (Atkeson,

d’Avernas, Eisfeldt, and Weill, 2019). Moroever, our model predicts that the bank pays dividend

when equity capital is high relative to its deposit liabilities and raises equity when equity capital is

low. The procyclical payout and countercyclical equity issuance are consistent with the evidence

on bank equity management (Adrian, Boyarchenko, and Shin, 2015; Baron, 2020).

As shown in the solution of optimal loan-to-capital ratio, At/Kt, given by (30), the marginal

value of equity capital directly drives the bank’s risk-taking behavior through γ(k), the bank’s

endogenous relative risk aversion defined in (31). The decreasing marginal value of equity capital

in Panel A of Figure 1 suggests that γ (k) decreases in k, because as k increases, the concavity of

bank value in equity capital subdues quickly and, as k approaches k (the payout boundary), bank

value is almost linear in k with v′(k) close to one as previously discussed. Indeed, in Panel B of

Figure 1, we show that the loan-to-capital ratio increases in k. The bank obviously cannot exceed

26The proportional cost is only 5%, but due to the fixed cost, the marginal value of equity is much higher than 1.05.
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Figure 2: Stationary Probability Density and Cumulative Distribution Function of k.

the regulatory capital requirement (i.e., A/K ≤ ξK = 14.3), but it can expand its balance sheet

up to that limit. Our model predicts that risk-taking is procyclical. As equity capital increases

relative to deposits (as k increases), the bank expands its balance sheet, financing the expansion

through deposits and wholesale (short-term bond) funding. But when capital is depleted relative

to deposits, the bank de-risks. This is consistent with the findings of Ben-David, Palvia, and Stulz

(2020) that distressed banks decrease observable measures of riskiness.

Figure 1 reports the marginal value of equity capital and optimal loan-to-capital ratio given

any value of k. To understand the long-run behavior of this model, i.e., how much time the bank

spends in different regions of k, we examine the stationary density of k. Panel A of Figure 2 plots

the stationary probability density of k and Panel B plots the corresponding cumulative distribution

function (c.d.f.). While the probability mass is concentrated in the area where k is near the lower

boundary k, the marginal value of equity capital is only slightly above one (1.02) where the density

function peaks. However, even if for the majority of time the bank does not seem to be financially

constrained, the shadow value of equity rises dramatically when equity is depleted relative to the

bank’s deposit liabilities and k approaches k, the boundary of costly equity issuance, as shown in

Panel A of Figure 1. These results illustrate the sharp contrast between normal times, when the

bank is comfortably meeting its leverage requirements, and crisis times, when it is in danger of
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Figure 3: Long Run Distribution of Marginal Value of Equity Capital and Loan-Capital Ratio.

violating its leverage requirement and triggering equity issuance.

With the stationary distribution of the key state variable k, we now report the model predic-

tions on the distribution of marginal value of equity capital and loan-to-capital ratio. In Panel A

of Figure 3, we plot the marginal value of equity capital against the stationary c.d.f. of k (note

c.d.f. (k) = 0 and c.d.f.
(
k
)
= 1). The interval on the horizontal axis represents the fraction of

time that the bank spends in the corresponding region of v′(k) on the vertical axis. For example,

the bank spends 25% of the time with its marginal value of equity between 1.019 and 1.022. The

bank spends less than 5% of the time in the region where it is in danger of violating the leverage

requirement with v′(k) above 1.08. In other words, crisis states are rare but they cast a long shadow

over the bank’s management of its balance sheet. As the bank becomes better capitalized relative

to its deposit liabilities (as k increases), the marginal value of equity declines dramatically, so that

the bank value is concave in equity and the bank is endogenously risk averse.

In Panel B of Figure 3, we plot the optimal loan-to-capital ratio,At/Kt, against the stationary

c.d.f. of k. We show that capital requirement binds about 11% of the time (the horizontal part of the

curve on the right end). Capital requirement becomes relevant when the bank is well-capitalized

and the risk-taking incentive is strong. Such procyclicality suggests that capital requirement can

act as a macroprudential tool as suggested by Gersbach and Rochet (2017). In contrast, the SLR
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Figure 4: Deposit Marginal q and Deposit Rate.

requirement motivates the bank to replenish equity capital in bad times when its equity capital is

low relative to its deposit liabilities (see (24)). While capital requirement and SLR requirement

play distinct roles in our model, they both contribute to a form of parity between risk and capital

with the former restricting risk-taking given equity capital and the latter triggering capital raising.

4.3 Deposit Marginal q

Bank value depends on equity capital, K, and deposit stock, X . Panel A of Figure 4 plots the

marginal value of deposits (“deposit marginal q”), VX(X,K) = v(k)−v′(k)k. When the bank has

ample capital relative to deposits, i.e., when k is large, deposit marginal q is positive. However, it

turns sharply negative when k nears the lower boundary of costly equity issuance.

Deposits create value by allowing the bank to finance risky lending with relatively cheap

sources of funds. Therefore, deposit stock serves as a form of productive capital for the bank.

Intuitively, when the bank becomes better capitalized, it raises deposit rate to attract more deposits

for more risky lending. Panel B of Figure 4 shows that the deposit rate increases in k as the loan-

to-equity ratio does in Panel B of Figure 1. The positive comovement of loan growth and deposit

rate increase is consistent with the finding of Ben-David, Palvia, and Spatt (2017).

A key finding is that deposit marginal q declines sharply and can turn negative when the
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Figure 5: The Long Run Distribution of Deposit Marginal q and Deposit Rate.

bank’s equity capital is low relative to its deposit liabilities. The reason is that when k is near the

equity issuance boundary, k, deposits destroy value for the bank’s shareholders by forcing the bank

to sustain a high level of leverage that amplifies the impact of shocks on equity capital and makes

the costly equity issuance more likely. The bank may want to delever, turning away deposits by

lowering the deposit rate. However, as shown by Panel B of Figure 4, doing so has a limit, that is

the zero lower bound of deposit rate. In practice, banks are reluctant to impose negative deposit

rate on depositors. Consistent with our zero lower bound on the deposit rate, Heider, Saidi, and

Schepens (2019) find that the distribution of deposit rates of euro-area banks is truncated at zero.27

In Figure 5, we plot deposit marginal q and optimal deposit rate against the stationary c.d.f.

of k. Deposit marginal q is positive and larger than 0.185 in 81% of the time, but near the lower

boundary of costly equity issuance (i.e., c.d.f.(k) = 0), it can drop to −0.23. The deposit rate

hovers around the lower bound at zero, showing that the bank is very conservative in deposit-

taking. The deposits attracted by high rate today is helpful in financing lending (i.e., earning αA)

but can become burdensome when negative shocks deplete bank equity capital and k declines.

However, for a bank with sufficiently strong balance sheet, i.e., a higher value of the capital-to-

deposit ratio k, the bank is willing to offer more attractive deposit rate to attract depositors.

27Moreover, when the ECB lowers the policy rate, more deposit rates bunch at zero.
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Figure 6: Short-Term Debt and Total Leverage

Deposits are very different from short-term debt. For short-term debt, the bank can continu-

ously and freely adjust its debt level, and therefore, does not face the problem of unwanted debts.

However, deposit contracts do not have maturity. Deposits leave the bank only when depositors

withdraw dollar bills or make payments to those who hold accounts at other banks. As long as de-

positors are willing to hold deposits, the bank cannot turn away the existing depositors. Moreover,

the bank must accept any deposit inflow unconditionally, for example, when a depositor receives a

payment or deposits cash. Therefore, after hitting the zero lower bound, the bank can no longer de-

crease its deposit rate further to reduce deposit inflow and thus loses control of its leverage. When

the bank is sufficiently close to incur costly equity issuance (i.e., k is close to k), the marginal

value of deposits is negative for the bank’s shareholders as the bank loses control of its leverage.

Figure D.4 analyzes the the bank’s debt structure. Panel A plots the ratio of short-term debts

to deposits, B/X , against k and Panel B plots this ratio against the stationary c.d.f. of k to how

much time the bank spends in different regions of B/X . When capital is abundant relative to

deposits, the bank raises funds from short-term debts for risky lending, i.e., Bt > 0 when k is high.

As k increases, the bank becomes increasingly reliant on short-term debt as the source of financing

instead of deposits. The substitution from deposits to short-term debts reflects the bank’s concern

over the lack of control over deposit liabilities and the bank’s preference for more controllable
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short-term debts in spite of higher debt costs. In our solution, the deposit rate is below the cost

of short-term debt or the risk-free rate r (1%) (see Panel B of Figure 4). This result captures the

bank’s incentive to avoid deposit risk. Deposit risk management is a unique feature of our model

and is distinct from the standard loan risk management (dictated by the Merton-style formula (30)).

Panel A of Figure D.4 also shows that when the bank’s equity capital is low relative to

its deposit liabilities, the bank holds risk-free bonds to reduce the overall riskiness of its asset

portfolio, i.e., Bt < 0 when k is low. To avoid incurring the equity issuance costs, the bank

manages its exposure to both asset-return risk and deposit risk. When k declines, the optimal

deposit rate approaches the lower bound. Once the deposit rate hits the lower bound, the bank

loses control of its deposit liabilities and can no longer manage deposit risk. Therefore, the bank

focuses on reducing its exposure to asset-return risk, and doing so requires holding safe assets.

Our model reveals a new channel of safe asset demand. Undercapitalized banks demand

safe assets because deposits serve as means of payments and the uncertainty in payment flows

translates into deposit risk. Copeland, Duffie, and Yang (2021) provide evidence on such safe-

asset demand of banks. Our model shows that the demand is particularly strong in crises when

banks are undercapitalized. The government is in a unique position to supply safe assets. The

government is in a unique position to supply such assets. In a general equilibrium setting where

the interest rate r is endogenous, banks’ demand for safe assets is likely to push down r, reducing

the government’s financing cost. The government can take advantage of a lower borrowing cost,

issuing more debts to meet the banks’ demand and using the proceeds to stimulate the economy.

Empirically, we often observe banks holding safe assets and simultaneously issuing short-

term debts. In Appendix A, we follow Drechsler, Savov, and Schnabl (2018) to incorporate the

bank’s need to hold reserves and other liquid assets under payment settlement frictions (Furfine,

2000; Bech and Garratt, 2003; Ashcraft, McAndrews, and Skeie, 2011; Bianchi and Bigio, 2014).

This additional feature distinguishes safe assets and the bank’s own short-term debts.
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5 Leverage Regulation

The supplementary leverage ratio (SLR) is the U.S. implementation of the Basel III Tier 1 leverage

ratio. The SLR, which does not distinguish between assets based on risk, is conceived as a backstop

to risk-weighted capital requirements. In our model, the SLR plays the critical role of pinning down

the (lower) boundary of equity issuance for the state variable, k. In contrast, capital requirement

imposes a restriction on the control variable, πA, the loan-risk exposure, as previously discussed.

In response to the crisis provoked by the Covid-19 pandemic, U.S. banking regulators re-

laxed the supplementary leverage ratio (SLR) requirements. Jerome Powell, the Federal Reserve

Chairman, emphasized that the SLR provision is straining banks’ ability to handle large deposit

inflows. “Many, many bank regulators around the world have given leverage ratio relief,” Powell

said at a news conference following an FOMC meeting. “What it’s doing is allowing [banks] to

grow their balance sheet in a way that serves their customers.”28

To shed light on this decision, we examine the effects of relaxing the SLR requirement on

bank balance-sheet management and valuation. Relaxing the SLR stimulates lending immediately,

but contrary to the conventional wisdom, it leads to less risk-taking over the long run. Relaxing

the SLR also increases the deposit marginal q, helping the bank to absorb deposit influx like the

one we saw during the Covid-19 pandemic. However, if the deposit influx lasts for a long period

time, the deposit marginal q can fall below the level before the SLR is relaxed.

Our model shows that the equity issuance costs generate a reach-for-yield incentive, so tight-

ening the SLR actually causes the bank to be more aggressive in taking risk to earn the excess asset

return (αA) by increasing the frequency of costly equity issuance over the long run. Finally, our

model predicts a permanent decrease of bank shareholders’ value when the SLR is tightened.

5.1 Lending and Risk-Taking

The bank must raise equity and incur issuance costs in order to stay in compliance with the leverage

requirement, as shown in (24). In our model, the cost of financial distress or undercapitalization

28See “Fed’s Powell makes case why Congress should relax bank capital rule” by Hannah Lang, American Banker
July 29, 2020.
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Figure 7: The Impact of Relaxing the SLR Requirement on Bank Lending

is in the form of equity issuance costs instead of bankruptcy costs. Given that the bank only

faces small diffusive shocks, it can avoid insolvency by adjusting its balance sheet continuously,

but when k = K/X hits the lower boundary k – for example after an unexpected deposit inflow

that increases X – the bank must raise equity. This is a realistic approach as in practice, bank

insolvency is relatively rare, and recapitalization is often triggered by regulatory intervention.

Relaxing the SLR lowers k so that given the value of k, i.e., the current balance-sheet status,

costly equity issuance becomes a more distant event. A reduced likelihood of paying the equity

issuance costs makes the bank less risk-averse and thereby stimulates lending as shown in Panel A

of Figure 7 where we compare the loan-to-equity capital ratio, A/K, under the SLR requirement

equal to 5% (the baseline value) and 3% (the dashed line). Given k, A/K is higher when the

SLR requirement is lower. In both cases, A/K peaks at the level given by the risk-based capital

requirement (6). Note that it is not the SLR that causes risk aversion. Even without it, the bank

still has to raise equity when k falls to zero. It is costly but optimal to do so since the continuation

value is positive. The SLR simply pushes the equity issuance boundary k above zero.

Many are concerned that relaxing leverage regulations will cause the bank to take on more

risks over the long run.29 Consistent with this intuition, Panel A of Figure 7 shows that the payout

29When discussing the relaxation of SLR requirement, Fed chairman Powell emphasized that “This will not be a
permanent change in capital standards.” (see “Fed’s Powell makes case why Congress should relax bank capital rule”
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and equity issuance boundaries both shift leftward after the regulatory change. Relaxing the SLR

requirement makes the bank less risk-averse and maintain less equity (relative to deposit liabilities).

However, this does not necessarily imply a higher risk exposure per unit of equity capital over the

long run as shown in Panel B. Drawing the distinction between Panels A and B is important for

understanding the result. Panel A shows the impact of relaxing the SLR requirement given k,

which summarizes the current state of balance-sheet conditions of the bank. The move from the

solid line to the dashed line mimics the immediate effect of regulatory change. In contrast, Panel

B shows the long-run effect. The plot of A/K against the stationary c.d.f. of the state variable k

shows how much time the bank spends (horizontal axis) at different values of A/K (vertical axis).

Quite contrary to conventional wisdom, relaxing the SLR actually leads to a smaller risk exposure

per unit of equity capital over the long run as the dashed line is below the solid line in Panel B.

Every time the bank raises equity it pays the issuance costs. Therefore, over the long run the

bank must generate sufficient earnings to offset these costs. Relaxing the SLR requirement reduces

the frequency of costly equity issuance, so the amount of earnings that the bank needs to generate

declines. Therefore, the bank becomes less aggressive in earning the excess asset return, αA.

By the same logic, tightening leverage regulations can actually lead to more aggressive risk-

taking over the long run, as it means more frequent equity issuance. The bank has to engage in

more risk-taking per unit of equity to generate earnings (return on equity) that offset issuance costs.

Equity issuance costs generate a reach-for-yield incentive. Thus, tightening the SLR achieves the

purpose of incentivizing the bank to maintain more equity over the long run but fails to tame risk-

taking per unit of equity. The mechanism captures the real-world bankers’ focus on return on

equity and is similar to the channel of financial instability in Li (2019).30

In 2021, the U.S. banking regulators restored the SLR requirement to the pre-pandemic level.

Through the lens of our model, such a policy change incentivizes banks to expand risky lending

over the long run but to scale back risky lending in the short run. Form the perspective of impulse

response, our model predicts that banks’ incentive to lend declines immediately and then rises

by Hannah Lang, American Banker July 29, 2020).
30In Li (2019) presents a model of financial instability induced by government debt where the supply of government-

issued money-like securities (e.g., Treasury bills) squeezes banks’ profits from issuing money-like securities, so banks
become more aggressive in risk-taking to sustain earnings that can offset the costs of issuing equity over the long run.
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over time and settles eventually at a higher level. Therefore, the impact of this policy change

on economic recovery depends on how fast the demand for bank credit rebounds. If the credit

demand recovers slowly, the response of banks’ credit supply may very well match the demand.

However, if the credit demand rebounds sharply, for example, triggered by a speedy reopenning

of the economy under the availability of effective vaccines against Covid-19, then the response of

banks’ credit supply may lag the demand and slow down the overall economic recovery.

Discussion: SLR and capital requirement. When k is low and B < 0, the SLR requirement

implies a lower (equity issuance) bound on the state variable k (see (8)). When k is high andB > 0,

the SLR requirement becomes a restriction on the control variable, loan-to-equity capital ratio (see

(7)), just as the risk-based capital requirement does (see (6)). Under the current parameter values,

the capital requirement binds before the SLR when k is high, so in our model, the two regulations

play distinct roles: The SLR pins down the lowest amount of equity capital relative to deposits,

i.e., the lower bound of k, and the capital requirement restricts the risk exposure per unit of equity

capital. This seems to suggest that risk-based capital requirements are more direct in taming risk-

taking than the SLR. However, this conclusion relies on an important assumption that the riskiness

of loans, given by the parameter σA, is time-invariant. When loan risk is countercyclical, risk-

based capital requirements amplify the procyclicality of bank risk-taking (Repullo and Suarez,

2012). Moreover, risk weights are vulnerable to manipulation (Plosser and Santos, 2014). Because

our model is designed to focus on deposit risk and the bank’s imperfect control of balance-sheet

size and composition, we do not include the possibility of equilibrium bank failures in our model

and the associated externalities that motivate both the leverage and risk-based capital requirements.

Therefore, our analysis does not aim to provide a comprehensive evaluation of banking regulations.

5.2 Deposit Marginal q and Deposit Rate

One key motivation for relaxing the SLR during the Covid-19 pandemic is allowing banks to

accommodate the unprecedented deposit inflows without concerns over violating regulatory con-

straints. In Panel A of Figure 8, we plot the marginal value of deposits, VX(X,K) = v(k)−v′(k)k,

34



Figure 8: The Impact of Relaxing the SLR Requirement on Deposit Taking

before (solid line) and after (dashed line) the SLR requirement is reduced. To see the model predic-

tions, pick any value of k on the solid line and consider the vertical movement to the dashed line.

This mimics the immediate response of a bank to the regulatory change given its balance-sheet

condition (i.e., the value of k). The regulatory change achieves its intended purpose of stimulating

deposit-taking as the marginal value of deposits jumps up. The jump in deposit q is most significant

at the low values of k where the deposit q turns sharply negative before the regulatory change.

If the deposit influx continues after the regulatory change (for example, due to new rounds

of stimulus payments to households) and raises the bank’s deposit liabilities, X , faster than the

growth of its equity capital, K, via retained earnings, the bank moves along the dashed line to the

left in Panel A of Figure 9 and its deposit marginal q declines. Note that after the SLR is relaxed,

deposit marginal q is even more negative near the new and lower equity issuance boundary, because

the equity capital is now lower relative to deposits at the new issuance boundary so that the effects

of deposit inflows on k (= K/X) are greater. Once the deposit influx pushes deposit marginal q

into the negative territory, further relaxing the SLR becomes necessary to avoid the decline of bank

shareholders’ value as a result of deposit inflows.

We plot the deposit rate in Panel B of Figure 8. After the SLR requirement is reduced, the

bank sets a higher rate to attract deposits because the deposit q is higher. As a result, the region

35



Figure 9: The Impact of Relaxing the SLR Requirement on Bank Valuation

of k where the deposit-rate lower bound binds shrinks significantly. By the same logic, tightening

leverage regulation has the unintended consequence of making the deposit-rate lower bound a

more binding constraint for the bank. The bank controls the size of its deposit liabilities through

the deposit rate. When the deposit-rate lower bound is more binding, the bank has less control over

the size and composition of its balance sheet. This unintended consequence of leverage regulation

is a unique prediction of our model.

5.3 Bank Franchise Value

Finally, we examine the impact of the SLR requirement on bank shareholders’ value. Panel A of

Figure 9 shows a clear increase of bank franchise value (scaled by deposit stock), (V (X,K) −
K)/X = v(k) − k, when the SLR requirement is reduced. A higher shareholder value implies

that the bank is more eager to protect its continuation value, explaining why the marginal value of

equity is higher near the equity issuance boundary, as shown in Panel B.

Tightening leverage requirements results in a sizeable loss of bank shareholder value across

all values of k. Kashyap, Stein, and Hanson (2010) point out that the impact of tightening lever-

age requirements on bank shareholders’ value is temporary because shareholders pay the equity

issuance (dilution) costs once and then the bank will settle on a higher level of equity capital. This
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argument holds in a deterministic environment. In our model, uncertainty is the key. Either neg-

ative shocks to earnings due to loan losses (dWA < 0) or positive shocks to the stock of deposit

liabilities (dWX > 0) can reduce k = K/X and trigger costly equity issuance when k hits k.

Therefore, in a risky environment, the impact of leverage requirements on bank shareholder value

is no longer a one-time cost of raising equity. The cost is now recurring, and through shareholders’

rational expectations, is reflected in bank valuations even when k is away from k. Moreover, to

reduce the likelihood of incurring the equity issuance cost, the bank has to retain a higher level

of equity capital when the leverage requirement is tightened, which is also costly to shareholders

because dividend payouts are delayed. Overall, our result contributes to the ongoing debt on the

cost of equity capital regulations for banks (Admati, DeMarzo, Hellwig, and Pfleiderer, 2013).

6 Banking in a Low Interest Rate Environment

When the bank finances lending with deposits, it expects to earn a net interest margin (NIM), i.e.,

the spread between the expected loan return, r + αA, and the deposit rate, i. Earning the NIM

requires the bank to take on the asset-return risk and deposit flow risk, and risk management is cru-

cial under the equity issuance costs. We decompose the net interest margin into two components,

αA (lending expertise) and r− i.31 Our model emphasizes the deposit spread, r− i. In this section,

we show that the bank suffers in a low interest rate environment, because as r declines, it squeezes

the NIM and makes the deposit-rate lower bound a more binding constraint. In our model, the NIM

is not only a measure of profitability as the classic banking theories predict, but, more importantly,

the NIM reflects the bank’s flexibility in managing its deposit liabilities.

The bank increases the deposit rate when it is well-capitalized (i.e., k is high). Given the

deposit rate lower bound, the higher the bank can set its deposit rate in the high-k region, the more

flexibility it has to reduce deposit rate when k declines. However, raising the deposit rate increases

interest expenses and hurts earnings. Therefore, the bank faces a trade-off. It can sacrifices its
31The deposit spread reflects the bank’s deposit market power Drechsler, Savov, and Schnabl (2017) and the extent to

which depositors value the convenience of deposit accounts for payment activities. Motivated by the role of deposits
as means of payment, the deposit spread is also called money premium (Stein, 2012; DeAngelo and Stulz, 2015;
Krishnamurthy and Vissing-Jørgensen, 2015; Greenwood, Hanson, and Stein, 2015; Li, 2019; Begenau, 2019).
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Figure 10: Interest Rate Level, Bank Valuation, and Risk-Taking

earnings in the high-k region to gain flexibility of adjusting the deposit rate in the low-k region.

When the risk-free rate r is high, the bank can set a high deposit rate and still earn a positive deposit

spread r− i. When the risk-free rate r is low, the bank has less room to manipulate the deposit rate

without squeezing the deposit spread too much.

Therefore, the flexibility to adjust deposit rate and to regulate deposit flows depends on the

distance between r and zero, the deposit-rate lower bound. When r is high, the bank has more

flexibility in setting its deposit rate and thus is more in control of the size of its deposit liabilities.

In contrast, the bank in a low rate environment faces a greater challenge of managing its deposit

liabilities. This mechanism is consistent with the empirical findings. For example, Heider, Saidi,

and Schepens (2019) find that the distribution of deposit rates of euro-area banks is truncated at

zero and more deposit rates bunch at zero once the ECB lowers the policy rate.

Panel A of Figure 10 compares the bank franchise value under different risk-free rates and

shows that a higher r leads to a higher bank franchise value. In Panel B, we show that when r

increases, the bank reduces its risk exposure per unit of equity capital.32 The increase of franchise

value under a higher r results from more flexibility to adjust deposit rate rather than more aggres-

sive risk-taking to earn the loan spread, αA. Moreover, as shown in both Panel A and B, when r

32When r increases, the expected return from risky lending, r + αA in (1), also increases. When we adjust the
risk-free rate, we keep the loan spread constant in line with the evidence in Drechsler, Savov, and Schnabl (2021).
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Figure 11: Interest Rate Level, Deposit marginal q, and Deposit-Taking

increases, the bank sets the optimal payout boundary, k, at a higher value (i.e., the right ends of the

curves extend). This results shows that under a higher r, a higher franchise value incentivizes the

bank to retain more equity capital as a risk buffer. By the same logic, in a low rate environment,

the bank’s incentive to maintain equity capital is weaker and it pays out dividend at a lower k.

Panel A of Figure 11 shows that when r is higher, the deposit q is higher at all levels of k.

Deposits become more valuable when the bank can better control the deposit flows by adjusting

deposit rate. In Panel B of Figure 11, we plot the deposit rate. When r is higher, the bank is more

aggressive in raising deposit rate in the high-k region to preserve more flexibility for rate reduction

when k declines in response to negative earning shocks (dWA
t < 0) or positive deposit shocks

(dWX
t > 0). Under a higher r, the deposit rate lower bound becomes less binding.

Our model provides a rationale that links bank profitability and franchise value to the level

of interest rate. The mechanism is related to the channel of deposit market power in Drechsler,

Savov, and Schnabl (2017). In their paper, a higher risk-free rate makes cash, the deposit substitute,

becomes more expensive to hold, and this allows banks to raise deposit spreads, r−i, without losing

deposits to cash. Our specification of deposit flow (2) captures deposit market power through the

stickiness of deposit stock. When the bank adjusts deposit rate, the flow happens by the order of

dt. Different from Drechsler, Savov, and Schnabl (2017), we highlight the risk in deposit flow and
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the fact that a higher risk-free rate offers the bank more flexibility to manage such risk.

As shown in Panel B of Figure 11, a lower r implies less flexibility to set deposit rate, and

more importantly, a greater region of the state variable k where the deposit rate lower bound binds

and the bank completely loses control of its deposit stock. The banking literature has largely fo-

cused on the positive effect of low interest rate on risk-taking, which we revisits in our setting

(Panel B of Figure 10). Our paper puts more emphasis on the management of deposit risk. More-

over, our model predicts that in a low interest rate environment, the bank is more eager to pay out

to shareholders (i.e., set a lower k). This is consistent with the massive share repurchases done by

banks in the last decade of a low interest rate environment.

7 Conclusion

Deposit-taking is a double-edged sword. It provides relative cheap funds, but it also exposes the

bank to deposit-flow risk. The bank’s inability to fully control the size of its liabilities intro-

duces a new form of balance-sheet management, which is conceptually very different from that of

non-depository intermediaries and non-financial firms. Under equity issuance costs, the marginal

value of deposits can be drastically different for well-capitalized banks and undercapitalized (risk-

sensitive) banks. When a sequence of losses depletes a bank’s equity capital, the marginal q of

its deposits can turn sharply negative, meaning that deposit inflows hurt bank shareholders. Our

results stand in contrast with the existing banking literature that has mainly been concerned with

deposit outflows and bank runs under the illiquidity of banks assets.

Our model delivers a rich set of predictions on bank lending, payout to shareholders, equity

issuance, and the choice of leverage through deposit-taking and short-term borrowing. It sheds

light on recent regulatory developments, and the challenges of running a bank in a low rate environ-

ment. Our paper also contributes to the literature on theories of safe assets (Caballero, Farhi, and

Gourinchas, 2008; Gourinchas and Rey, 2016; Maggiori, 2017; Bolton, Santos, and Scheinkman,

2018; He, Krishnamurthy, and Milbradt, 2019; Brunnermeier, Merkel, and Sannikov, 2020). The

bank loses control of its leverage once it hits the deposit rate lower bound, so that it rebalances its
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asset portfolio towards risk-free assets in an effort to reduce the risk exposure of equity capital.33

The government is in a unique position to supply safe assets. In a general equilibrium setting

where the interest rate r is endogenous, banks’ demand for safe assets is likely to push down r. The

government can take advantage of a lower borrowing cost, issuing more debts to meet the banks’

demand and using the proceeds to stimulate the economy. The supply of safe assets is also essential

for sustaining r at a sufficiently high level so that banks have enough flexibility in adjusting their

deposit rate between zero and r. Government securities have long been recognized as money-like

instruments.34 Therefore, government debts can absorb part of the money demand and thereby

liberate banks from unwanted deposits and leverage, especially for the undercapitalized banks.

33Copeland, Duffie, and Yang (2021) provide evidence on the safe-asset demand of banks that is driven by the
regulatory liquidity requirement and uncertainty in payment flows.

34The monetary service of government liabilities is an old theme (Patinkin, 1965; Friedman, 1969). Recent con-
tributions include Bansal and Coleman (1996), Bansal, Coleman, and Lundblad (2011), Krishnamurthy and Vissing-
Jørgensen (2012), Greenwood, Hanson, and Stein (2015), Bolton and Huang (2016), and Nagel (2016).
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A An Extended Model with Liquidity Requirement

In this appendix, we enrich the decision environment of the bank. On the asset side of balance
sheet, the bank must hold assets that are more liquid than loans (Drechsler, Savov, and Schnabl,
2018). These assets can be reserves or other high-quality liquid assets (HQLA).

At time t, the bank chooses the value of liquidity holdings, denoted byRt. Liquidity holdings
pay an interest rate ι that is below the risk-free rate r. The bank is willing to pay the carry cost for
the benefits of having a more liquid asset portfolio, as shown in the law of motion of equity capital

dKt =At
[
(r + αA) dt+ σAdWA

t

]
−Btrdt−Xtitdt− C (n (it) , Xt) dt

− dUt + dFt +Rtιdt− S (Rt, Xt, At) dt . (A.1)

In comparison to (4), the last two terms are new. The interest income from liquidity holdings is
given byRtιdt. The last term, S (Rt, Xt, At), captures loss due to illiquidity of asset portfolio. This
specification is isomorphic to the following microfounded setup: a Poisson-arriving withdrawal of
a large amount of deposits can only be met by liquidity holdings and selling a large amount of
loans in exchange for liquidity incurs a fire-sale cost (Moreira and Savov, 2017; Drechsler, Savov,
and Schnabl, 2018). Accordingly, we assume SR (Rt, Xt, At) < 0, SX (Rt, Xt, At) > 0, and
SA (Rt, Xt, At) > 0. Note that in the main text, we only consider small (diffusive) deposit shocks.

The bank has to meet the regulatory requirement of liquidity holdings:

Rt ≥ ξRXt . (A.2)

This regulatory constraint can be motivated by the traditional reserve requirement or more recent
requirement on liquidity coverage ratio (Basel Committee on Banking Supervision, 2013). When
B < 0, the bank holds risk-free assets that pay interest rate r. Note that these assets are not part of
the liquidity holdings. Here we draw the distinction between liquid and illiquid safe assets in line
with the evidence that these assets offer different yields (Krishnamurthy, 2002; Nagel, 2016).

The bank has long-term funding equal to Xt + Kt. As in the main text, let πAt denote
the portfolio weight on loans, i.e., πAt (Xt +Kt) = At, and πRt denote the portfolio weight on
liquid assets, i.e., πRt (Xt +Kt) = Rt, so the weight on bonds is

(
πAt + πRt − 1

)
because Bt =
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At +Rt − (Xt +Kt). We can rewrite the law of motion for Kt in (A.1) as

dKt =(Xt +Kt)
[
r + πAt αA − πRt (r − ι)

]
dt+ (Xt +Kt)π

A
t σAdWA

t −Xtitdt

− C (n (it) , Xt) dt− S
(
πRt (Xt +Kt) , Xt, π

A
t (Xt +Kt)

)
− dUt + dFt . (A.3)

Accordingly, the HJB equation in the interior region where dUt = 0 and dFt = 0 is

ρV (X,K) = max
{πA,πR,i}

VX (X,K)X [−δX + n (i)] +
1

2
VXX (X,K)X2σ2

X (A.4)

+ VK (X,K) (X +K)
[
r + πAαA − πR (r − ι)

]
+

1

2
VKK (X,K) (X +K)2

(
πAσA

)2
− VK (X,K)

[
S
(
πR (X +K) , X, πA (X +K)

)
+Xi+ C (n (i) , X)

]
+ VXK (X,K)X (X +K) πAσAσXφ .

Risk-taking. The first-order condition for πA gives the following solution:

πA = min

{
αA + ε (X,K)σAσXφ− SA (R,X,A)

γ (X,K)σ2
A

(
X+K
K

) ,
K

ξK(X +K)

}
. (A.5)

While setting up πA = A/ (X +K) as the control variable is convenient for solving the model, it
is intuitive to express the solution in loan-to-capital ratio, i.e., A/K = πA (X +K) /K:

A

K
= min

{
αA + ε (X,K)σAσXφ− SA (R,X,A)

γ (X,K)σ2
A

,
1

ξK

}
. (A.6)

In comparison with (30), the only difference is that the numerator is deducted by SA (R,X,A).

Liquidity Holdings. When the liquidity requirement (A.2) does not bind, the optimality condi-
tion for πR equates the marginal cost of holding reserves, i.e., accepting the below-r rate of return
ι, and the marginal benefit of holding reserves to reduce the payment settlement cost:

r − ι = −SR
(
πR (X +K) , X, πA (X +K)

)
. (A.7)
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The reserve requirement can be rewritten as the following restriction on πR:

πR ≥ ξRX

(X +K)
. (A.8)

Next, we specify the functional form of S (R,X,A) that satisfies the properties that S (R,X,A)

decreases in R and increases in X and A:

S (R,X,A) =
1

2

(χ1X + χ2A)
2

R
. (A.9)

The numerator is convex in X and A while the denominator is linear in R. Therefore, to maintain
the same level of S (R,X,A), the bank will have to hold increasingly more liquidity as it expands
its balance sheet (i.e., increasesX andA). This captures the decreasing marginal return to liquidity
holdings that have been microfounded in various ways (Moreira and Savov, 2017).

Under this functional form of S (R,X,A), we obtain

SR (R,X,A) = −1

2

(
χ1X + χ2A

R

)2

. (A.10)

Therefore, the optimality condition for πRt implies that r − ι = 1
2

(
χ1X+χ2A

R

)2
, so rearranging the

equation we obtain the following reserve holding policy

R =
χ1X + χ2A√

2 (r − ι)
(A.11)

This liquidity holding policy is in the spirit of Baumol (1952) and Tobin (1956) who show that
the demand for liquidity is equal to the product of transaction costs (mapping to χ1 and χ2) and
transaction needs (mapping to X and A) divided by the square root of two times the carry cost.
As previously discussed, a microfoundation can be built for S (R,X,A) where the transaction or
liquidity needs of the bank arises from deposit withdrawal and depends the amount of relatively
illiquid assets (loans) in the portfolio that are subject to fire-sale losses.

Given the functional forms of S (R,X,A) and deposit maintenance costs in the main text,
the bank’s problem is homogeneous in X and its value function V (X,K) = v (k)X , where

k =
K

X
. (A.12)
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And, as in the main text, we simplify the expressions of the effective risk aversion in (31)

γ (k) =
−VKK (X,K)K

VK (X,K)
= −v

′′ (k) k

v′ (k)
, (A.13)

and the elasticity of marginal value of capital to deposits

ε (k) =
VXK (X,K)X

VK (X,K)
= −v

′′ (k) k

v′ (k)
, (A.14)

which happens to be equal to γ (k).
Next, we simplify the expression of loan-to-capital ratio, a measure of the bank’s risk-taking.

First, note that from (A.11), we obtain the marginal illiquidity cost of loans:

SA (R,X,A) = χ2

(
χ1X + χ2A

R

)
= χ2

√
2 (r − ι) , (A.15)

Using (A.15) and ε (k) = γ (k), we simplify the optimal loan-to-capital ratio:

A

K
= min

{
αA − χ2

√
2 (r − ι)

γ (k)σ2
A

+
σX
σA

φ ,
1

ξK

}
, (A.16)

The only difference from (30) is that in the numerator, we subtract αA by the marginal illiquidity
cost χ2

√
2 (r − ι). To make lending profitable, we impose the parameter restriction

αA > χ2

√
2 (r − ι) . (A.17)

Using these expressions, we can rewrite the HJB equation (A.4) as

ρv (k) = max
πA,πR,i

[v (k)− v′ (k) k] (−δX + ωi) +
1

2
v′′ (k) k2σ2

X (A.18)

+ v′ (k) (1 + k)
[
r + πAαA − πR (r − ι)

]
+

1

2
v′′ (k) (1 + k)2

(
πAσA

)2
− v′ (k)

1
2

(
χ1

1+k
+ χ2π

A

πR

)2

πR (1 + k) + i+ θ0 +
θ1
2
(ωi)2


− v′′ (k) k (1 + k)πAσAσXφ .
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To show that (A.18) is an ODE for v (k), we need to show that the control variables only
depend on k and the level and derivatives of v (k). First, by definition, πA = A/ (X +K), so we
obtain the following simplified expression for πA from (A.16):

πA =

(
A

K

)(
K

K +X

)
= min

{
αA − χ2

√
2 (r − ι)

γ (k)σ2
A

+
σX
σA

φ ,
1

ξK

}(
k

1 + k

)
. (A.19)

Rearranging (A.11), we can solve πR as a linear function of πA and the state variable k:

πR =
χ2√

2 (r − ι)
πA +

χ1

(1 + k)
√
2 (r − ι)

, (A.20)

so it also only depends on k and the level and derivatives of v (k). The deposit rate, still given by
(36) in the main text, only depends on VX (X,K) = v (k)− v′ (k) k and VK (X,K) = v′ (k).

After substituting the optimal control variables into the HJB equation, we obtained an ordi-
nary equation with the same boundary conditions discussed in the main text. The determination of
endogenous upper bound of k also follows the main text. The only difference is in the determina-
tion of endogenous lower bound of k, i.e., the equity issuance boundary.

Let kS denote the lower bound in (24) implied by the supplementary leverage ratio (SLR)
requirement. The liquidity requirement implies another lower bound kL. Substituting (A.20) into
the reserve requirement (A.8), we have

χ2√
2 (r − ι)

πA +
χ1

(1 + k)
√
2 (r − ι)

≥ ξR
(1 + k)

, (A.21)

Using (A.19) to substitute out πA and rearranging the equation, we have

min

{
αA − χ2

√
2 (r − ι)

γ (k)σ2
A

+
σX
σA

φ ,
1

ξK

}
k ≥

ξR
√

2 (r − ι)− χ1

χ2

. (A.22)

In our numeric solution, the right side increases in k (as γ (k) increases in k). Therefore, (A.22)
imposes a lower bound of k, denoted by kL. Therefore, we have

k = max {0, kS, kL} . (A.23)
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To sum up, introducing the bank’s needs to hold reserves or HQLA leads to three changes
in the solution. First, the new control variable, optimal liquidity-holding policy, is given by the
Baumol-Tobin style money demand (A.11). Second, in the optimal risk-taking policy (A.16), αA is
subtracted by the marginal illiquidity cost of loans. Third, the equity issuance boundary is defined
by (A.23) nesting considerations of liquidation, SLR requirement, and liquidity requirement.

Discussion: monetary policy transmission and interbank credit market. A direct implication
on monetary policy is that when the central bank increases the interest on reserves, ι, banks hold
more reserves and the reduced the settlement costs associated with loan creation leads to more
lending. As shown in (A.16), bank lending increases in ι. Changing ι may have other effects
through its impact on the interbank credit market (Bigio and Sannikov, 2019).

As shown in Panel A of Figure D.4, the bank switches from short-term borrowing to short-
term lending when its capital is too low relative to deposit liabilities. This suggests that as long
as bank are creditworthy, the interbank market is a counter-balancing force against the collapse of
lending in crisis. Given that undercapitalized banks are eager to lend on a risk-free basis, banks
can easily borrow in the interbank market to cover intra-period payment flow imbalance, effectively
facing lower costs of payment settlement, which in turn stimulates lending, as shown in (A.19).

Therefore, endogenizing the interbank market can lead to a potential mechanism that sustains
lending when banks are undercapitalized. The increased demand for safe assets translates into
abundant interbank credit, which stimulates lending by reducing payment settlement costs. Note
that this mechanism is active only if banks are creditworthy and interbank lending does not involve
exposure to counterparty default risks. In times of financial stress, the impact of government
guarantee can be amplified by this channel, because by taking the bank default risk off the table,
government guarantee activates the positive effect of interbank market on bank lending.
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Figure B.1: Deposit Demand Elasticity, Bank Valuation, and Deposit q

B Deposit Market Power and Bank Franchise Value

The deposit demand elasticity, ω, (the coefficient for n(i) = ωi appearing in (2)) determines how
responsive the deposit flow is to the variation of deposit rate . The higher the value of demand
elasticity the easier it is for the bank to manage its deposit liabilities. Panel A of Figure B.1 shows
that bank franchise value increases in ω. In Panel B, we plot the marginal q of deposits, which also
increases in ω. The optimal deposit rate depends on the marginal value of deposits and marginal
value of equity. In Panel A of Figure B.2, we show that the deposit rate i(k) is much higher under
a higher value of ω. This is consistent with the mechanism that a higher deposit marginal q tends
to drive up the deposit rate. In Panel B of Figure B.2, we plot the loan-to-equity capital ratio,
A/K. Under a higher deposit demand elasticity, the bank reduces risky lending because the higher
deposit rate drives up the cost of financing. In spite of earning less from the spread between the
loan return and the deposit rate, bank value still increases because deposit risk management is more
effective when the deposit flow is more responsive to changes in deposit rate.

A higher deposit demand elasticity is often associated with a more competitive deposit mar-
ket. Consistent with the findings of Drechsler, Savov, and Schnabl (2017), our model generates
a higher deposit rate when ω is higher. The traditoinal mechanism in the banking literature em-
phasizes the deposit demand side – when depositors are more price-sensitive, the bank has to set a
higher interest rate to attract depositors. This mechanism leads to the conclusion that competition
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Figure B.2: Deposit Demand Elasticity, Deposit-Taking, and Lending

erodes bank franchise value (Keeley, 1990).35 Our model predicts the opposite. When deposit
demand elasticity increases, bank franchise value increases. In our model, the increase in financ-
ing cost that results from a more elastic demand does have a negative impact on bank value, but
such impact is dominated by the positive impact of the bank having more control over its deposit
liabilities. Our focus is on the deposit supply side – when depositors are more price-sensitive, the
bank can regulate deposit flows more effectively through deposit rate, so deposit q increases and
the bank is more willing to pay a higher interest rate to depositors.

So far, our analysis seems to suggest that stronger deposit market power, represented by
a more elastic deposit demand, amplifies the challenge of deposit management and hurts bank
shareholders because the deposit base becomes less responsive to deposit rate. However, there
is another key aspect of deposit market power. Depositors at a bank with a large deposit market
share are more likely to send payments to and receive payments from depositors within the same
bank. Therefore, the bank is less concerned about the uncertainty in deposit flow that results
from depositors’ payment activities. In other words, a larger deposit market share translates into a
smaller value of σX . In Section C, we show that a smaller σX leads a higher bank value.

Our paper contributes to the literature on deposit market power (Drechsler, Savov, and Schn-
abl, 2017) by using two parameters, the deposit demand elasticity ω and the size of deposit-flow

35We refer the readers to the vast literature on how competition affects bank value (Petersen and Rajan, 1995;
Jayaratne and Strahan, 1996; Allen and Gale, 2004a; Boyd and De Nicoló, 2005; Bertrand, Schoar, and Thesmar,
2007; Erel, 2011; Scharfstein and Sunderam, 2016; Drechsler, Savov, and Schnabl, 2017; Liebersohn, 2017).
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uncertainty σX , to capture their distinct effects on bank value. The level of the risk-free rate r is
also key to the impact of deposit market power on bank value. To the extent that the bank can
exploit its deposit market power, it does so by earning the deposit spread r − i. In a low interest
rate (r) environment, the bank has limited freedom in adjusting the spread given that i has a lower
bound typically at zero. In contrast, a high r allows the bank to exploit its deposit market power
more by earning a larger deposit spread, r − i, and having more flexibility in adjusting the deposit
flow through the deposit rate i. We provide our analysis on the impact of r in Section 6.
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Figure C.3: Deposit Risk and Bank Valuation

C Deposit Risk, Interbank Market, and the Fintech Impact

The ratio of equity capital to deposits, k = K/X , drives risk management. It measures the bank’s
financial slack, i.e., the distance from costly equity issuance at k. The uncertainty in k is from both
asset-return shocks, which hits equity (the numerator K), and deposit-flow shocks, which hits the
denominatorX . Incomplete market is key. If the bank were able to perfectly insure against shocks,
effectively reducing σA and σX to zero, risk management would have not mattered at all even under
financial frictions (equity issuance costs).36 As an example, Figure C.3 shows that a reduction in
deposit-flow risk, σX , from 5% (baseline solid line) to 4% (dashed line) leads to higher franchise
value (Panel A) and incentivizes deposit-taking via a higher deposit rate (Panel B).

The interbank market is often seen as the place where banks hedge deposit shocks with each
other (Bhattacharya and Gale, 1987). Consider deposit flows that result from payments. When a
depositor sends a payment to another depositor at a different bank, the payer’s bank loses deposits
while the payee’s bank gains deposits. The payee’s bank can then lend to the payer’s bank. As a
result, a shock to the deposit stock is offset by a simultaneous shock to net interbank liabilities.
The payer’s bank experiences a negative deposit shock but, through the interbank loan, its inter-
bank liabilities increase. The payee’s bank experiences a positive deposit shock and increases its

36To be specific, consider fairly priced hedging contracts with mean-zero payoffs that are correlated with the shocks.
The bank will use such hedging contracts to fully unload the shocks to its risk-neutral counterparties (insurers) at zero
cost following the standard hedging argument in Merton (1973).
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interbank assets, so its position in net interbank liabilities decreases. If deposit shocks are purely
idiosyncratic, banks can commit to insure each other against deposit shocks via an interbank ar-
rangement that automatically offsets deposit shocks with commensurate changes in net interbank
liabilities. Such arrangements are common in deferred net settlement (DNS) systems.

If we may reinterpret X as the sum of net interbank liabilities and deposits, then X only
loads on the systematic shocks (i.e., σX declines) when the interbank hedging against idiosyncratic
shocks works perfect. In Figure C.3, the reduction of deposit risk captures the effect of interbank
hedging. In reality, a significant component of deposit shocks is systematic. For example, during
the Covid-19 pandemic, the deposit influx into the U.S. banking system is system-wide. More-
over, trading frictions in the over-the-counter interbank market make implementing this hedging
mechanism costly (Afonso and Lagos, 2015; Bianchi and Bigio, 2014). Finally, the commitment
of banks to lend to each other can break down in crises.37 Nevertheless, it is meaningful to ex-
amine the response of our model to the reduction of deposit risk possibly as a result of improved
interbank hedging (for example, due to technological advances (D’Andrea and Limodio, 2019)).

During the Covid-19 pandemic, banks’ holdings of high-quality liquid assets (HQLAs) in-
creased alongside with their deposit liabilities. Yet the deposit risk is still a concern. Holding
safe assets, i.e., lowering πA, reduces the bank’s exposure to loan-return shocks, but does not help
reduce the deposit risk. Interbank hedging works by netting off deposit shocks with commensu-
rate changes in net interbank liabilities. Therefore, the interbank market plays an essential role in
ameliorating the impact of deposit risk even when banks hold a large amount of HQLAs.

Finally, our results shed light on the impact of the entry of alternative payment service
providers on banks. Fintech firms, such as PayPal and Square, are actively reshaping the topology
of payment flows. Our model predicts that the resultant uncertainty in deposit flows (i.e., an in-
crease in σX) leads to lower bank franchise values and lower deposit rates as banks’ concern over
deposit risk management heightens. This channel complements the standard narrative that focuses
on banks losing customers. This narrative also suggests a decline of bank franchise value, but in
contrast to our prediction of lower deposit rates following an increase in σX , the narrative of banks
losing customers points to higher deposit rates that are necessary for banks to retain customers.

37In real-time gross settlement (RTGS) systems, interbank hedging against payment-flow shocks relies on an
overnight interbank market that can freeze in crises (Furfine, 2000; Bech and Garratt, 2003; Ashcraft et al., 2011).
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D Jump Risk

In this section, we extend our model to incorporate jump risk in bank asset return. The time
subscript t− denotes the pre-jump value of variables. The risky investment At− evolves as follows

dAt = At− (r + αA) dt+ At−σAdWA
t − At− (1− Zt)J A

t , (D.24)

where J A
t is a time-homogeneous Poisson counting process with the arrival rate λA and the re-

covery rate Zt is uniformly distributed between (1/ξL, 1] (which implies that the SLR requirement
rules out insolvency as intended). With (1) replaced by (D.24), the law of motion of Kt is

dKt =(Xt− +Kt−)
[(
r + πAt−αA

)
dt+ πAt−σAdWA

t − πAt− (1− Zt)J A
t

]
(D.25)

−Xt−it−dt− C (n (it−) , Xt−) dt− dUt + dFt .

The law of motion of Xt is the same as the baseline model (see (2)).
The value function still takes the form of v(k)X , where we suppress the time subscripts to

simplify the notations. The X-scaled value function, v(k), satisfies the following HJB equation:

ρv (k) =max
πA,i

[v (k)− v′ (k) k] [−δX + n(i)] +
1

2
v′′ (k) k2σ2

X (D.26)

+ v′ (k) (1 + k)
(
r + πAαA

)
+

1

2
v′′ (k) (1 + k)2

(
πAσA

)2
− v′ (k) [i+ c (n(i))]− v′′ (k) k (1 + k) πAσAσXφ

+ λAE
[
v(k̃)− v (k)

]
,

where k̃ denotes the post-jump value of k:

k̃ =
K̃

X
=
K − (X +K)πA(1− Z)

X
= k − (1 + k)πA(1− Z) . (D.27)

If k̃ < k, the bank raises external equity financing to stay in compliance with the SLR requirement:

v(k̃) = v (k +m)− ψ0 − (1 + ψ1)
(
m+ k − k̃

)
, (D.28)
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where the optimal m (i.e., the amount of equity raised in excess of the SLR requirement) satisfies

v′ (k +m) = 1 + ψ1 . (D.29)

As in the baseline model, k is equal to 0.05 under the SLR requirement ξL = 20.38

In our numerical solution, we adjust the value of αA upward by λAE[1− Zt] to compensate
the decline of expected return on risky investment due to the jump risk. Therefore, what changes
is the distribution of return but not the expected return. The jump risk essentially extends the left
tail. When the bank chooses πA, it takes into consideration the loading on the jump risk and the
potential negative consequence of costly equity issuance triggered by a low realization of Z.

Under the extra precaution, the bank takes on more risk in a less dramatic fashion than the
baseline model when k increases, As shown in Panel C of Figure D.4, the ratio of risky invest-
ment to equity capital rises more smoothly with k. Moreover, as in the baseline model, the bank
seeks a higher leverage when k increases by issuing bonds (i.e., increasing Bt), but the jump risk
incentivizes the bank to build up leverage more slowly. In Panel D of Figure D.4, the ratio of bond
liabilities to deposits increases more smoothly in k than the baseline solution. Finally, in Figure
D.4, the curves end at a higher level of k than the baseline solutions. The jump risk incentivizes
the bank to set a higher payout boundary of k and preserve a higher level of equity capital.

As discussed in Section 3.2, the bank profits from risky investment and deposit-taking. The
expected excess return on risky investment, αA, comes with a skewed distribution (generated by
both the Brownian shock, dWA

t , and Poisson shock, dJ A
t ). In contrast, to earn the net deposit

spread (defined in Section 3.2), the bank only loads on the Brownian shock, dWX
t . Therefore,

deposit-taking as a source of profits becomes more important under the jump risk in asset return.
Panel A of Figure D.4 shows that the deposit marginal q is higher than the baseline solution, and
Panel B shows that the bank is willing to pay a higher interest rate to attract deposits.

38Given k, the boundary conditions (25), (26) (same as (D.29)), (27), and (28) and second-order ODE (D.26) solve
the X-scaled value function, v (k), the optimal issuance amount m, and the upper (dividend payout) boundary k.
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Figure D.4: The Impact of Jump Risk in Loan Returns
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