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Abstract

We examine the problem of setting optimal default options such as passively selected

contribution rates in employee-directed pension plans. Existing results suggest that a

simple rule of thumb, opt-out minimization, is optimal under special conditions, but

this result is fragile, and the literature does not provide a general analytic solution.

We demonstrate with considerable generality that weighted opt-out minimization is

approximately optimal, and we provide clear mathematical intuition for the robustness

of this result. We also identify surprisingly broad conditions under which unweighted

opt-out minimization is approximately optimal. We conduct simulations to evaluate

the accuracy of the approximation.

1 Introduction

Most decision problems implicitly or explicitly specify an option that serves as a default,

in the following sense: if the consumer fails to make a choice, whether intentionally or by

neglect, the default option will prevail. Default options may impact outcomes either because

active choice requires the expenditure of effort, or because the identity of the default alters

the psychology of choice. The ubiquity of default options gives rise to important normative

questions about the optimal design of “choice architectures” (Thaler and Sunstein 2008).

The literature has addressed these questions primarily in the context of setting default

contribution rates for 401(k) plans, where a collection of empirical studies have revealed

that changing the default option has a powerful effect on employees’ contributions (see

Madrian and Shea 2001, or Beshears et al. 2018 for a summary of the subsequent literature).

The same conceptual considerations arise in other contexts, including widely studied topics

such as asset allocation in investment portfolios (Agnew and Szykman 2005) and employee

health insurance plan choice (Handel and Kolstad 2015).

∗Bernheim: Department of Economics Stanford University Stanford, CA 94305-6072 and NBER, bern-
heim@stanford.edu. Mueller-Gastell: Department of Economics Stanford University Stanford, CA 94305-
6072, jonasmg@stanford.edu
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Discussions of optimal default options begin with Thaler and Sunstein (2003), who pro-

pose a simple rule of thumb: minimize the fraction of consumers who opt out of the default.

Their justification for the criterion is informal. The ensuing literature establishes that opt-

out minimization can indeed be welfare-optimal under highly specialized conditions. For

a setting in which workers differ with respect to ideal points and choice-rationalizing (“as

if”) opt-out costs, Goldin and Reck (2019) establish the optimality of opt-out minimization

under the following sufficient conditions: (i) as-if opt-out costs are “sufficiently normative”

(meaning that biases impacting opt-out decisions are not too large, so that differences be-

tween as-if and normative costs are limited), (ii) the utility derived from the action is a

convex, single-peaked, symmetric function that depends only on the difference between the

action and the worker’s ideal point, (iii) the distribution of ideal points is single-peaked

and symmetric, and (iv) ideal points are distributed independently of opt-out costs. Carroll

et al. (2009) consider a specialized dynamic model in which present focus, which they in-

terpret as a bias, causes workers to place excessive weight on opt-out costs. Their sufficient

conditions for the optimality of opt-out minimization are similar those in Goldin and Reck

(2020). Neither paper offers a general analytical characterization of optimal defaults for

settings that violate these conditions, and one is left with the impression that the result

may be fragile. Indeed, both studies find that opt-out maximization can also be optimal.

Curiously, analyses of empirically parametrized models suggests that opt-out minimiza-

tion may be a more generally attractive policy than these theoretical results appear to

imply. Bernheim, Fradkin, and Popov (2015) and Choukhmane (2019) find that the welfare-

maximizing and opt-out-minimizing default rates often coincide, even when the Goldin-Reck

assumptions are violated. Although the two can also diverge, “the Thaler-Sunstein opt-out-

minimization criterion yields small welfare losses even when it is suboptimal; hence it is a

reasonable rule of thumb” (Bernheim, Fradkin, and Popov 2015, p. 2800).

The current paper makes two main contributions. The first is to provide a general char-

acterization of approximately optimal defaults that links welfare maximization to weighted

opt-out minimization. Our notion of approximate optimization entails an extrapolation

from the limiting properties of the welfare-maximizing default options as the overall scale

of as-if opt-out costs becomes small. Focusing for the sake of concreteness on the problem of

setting a default contribution rate for a 401(k) pension plan, we consider enivronments with

multiple dimensions of worker heterogeneity: workers differ not only with respect to their

ideal points and as-if opt-out costs (as in Goldin and Reck 2019), but also with respect

to the magnitudes of their biases (i.e., the differences between their as-if and normative

opt-out costs) and the shapes of their continuation valuation functions. We impose no re-

strictions on correlations between these characteristics. Our main result demonstrates that

opt-out minimization yields approximately optimal outcomes when opt-out frequencies are

weighted according to the workers’ characteristics, with weights given by the simple formula

ω(η, β) ≡ η
(

1− 1
3β

)

, where η measures the worker’s level of opt-out costs relative to the
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population mean and β represents her bias. To obtain this general result, we impose only

a few mild technical restrictions along with a single-crossing requirement. We also pro-

vide straightforward mathematical intuition for the robustness of this result. Notably, our

general characterization applies regardless of whether as-if opt-out costs are “sufficiently

normative”: if pervasive biases are large (β < 1
3), our formula yields negative weights, in

which case opt-out minimization can turn into opt-out maximization. Consequently, our

analysis allows us to interpret the two polar cases identified in the literature – those for

which opt-out minimization is optimal, and those for which opt-out maximization is optimal

– as two sides of the same coin.

Given the focus of the previous literature, it is also important to investigate the cir-

cumstances under which unweighted opt-out minimization is approximately optimal. Our

second main contribution is to demonstrate that these circumstances are much broader

than previously thought. An immediate implication of our general characterization is that

unweighted opt-out minimization is approximately optimal if and only if it coincides asymp-

totically with weighted opt-out minimization using the weights indicated above. We show

that the solutions to these two problems coincide when ideal points are distributed in-

dependently of opt-out costs and biases. Thus, apart from our mild technical conditions

and the single-crossing requirement, we dispense with the highly restrictive Goldin-Reck

assumptions concerning continuation utility and distributions (labelled (ii) and (iii) above).

Because we consider additional dimensions of worker heterogeneity, we also demonstrate

that the approximate optimality of unweighted opt-out minimization does not require ideal

points to be distributed independently of parameters governing the properties of contin-

uation value functions, thereby limiting the scope of the assumption labeled (iv) above.

Moreover, we show that, under specified conditions, if the employer can impose budget-

neutral penalities for passive choice, then opt-out minimization, rather than opt-out maxi-

mization, is approximately welfare-optimal regardless of the degree of biases impacting the

agent’s decision, i.e., irrespective of whether opt-out costs are “sufficiently normative” (the

Goldin-Reck assumption labeled (i) above).1 We therefore conclude that the approximate

optimality of unweighted opt-out minimization depends primarily on whether ideal points

are distributed independently of opt-out costs and biases.

The preceding results pertain to settings in which the action choice is continuous and

1Bernheim, Fradkin, and Popov make a related point in arguing that the optimality of extreme unattrac-
tive defaults in settings with large biases may be artifactual, because it ignores the possibility of using
complementary policy instruments. Their simulations encompass the possibility that the employer can also
impose a dissipative penalty for passive choice, such as “red tape” requirements. In their simulations, the
employer never uses the default to incentivize active choice when such penalities are available. We depart
from Bernheim, Fradkin, and Popov by considering the natural possibility that the employer can estab-
lish non-dissipative fines; for example, the employer can collect fees from those who fail to choose actively,
and distribute the proceeds equally among all workers in the form of higher wages, thereby leaving profits
unchanged. As we explain in Section 3, dissipative and non-dissipative penalties are feasible in settings
where opting out involves implementation costs, but not in settings where it involves deliberation costs. It
is therefore important to emphasize that the pertinent literature studies the first type of settings, not the
second.
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there are no atoms in the distribution of ideal points. In some contexts, atoms may appear

at the boundaries of the opportunity set, or at special points on the interior of that set,

such as caps on 401(k) contributions eligible for an employer match. In other contexts, the

choice set may involve a small number of alternatives (possibly just two). We show that

our general characterization extends to these settings, with a small adjustment: the weight-

ing function that ensures the asymptotic equivalence of weighted opt-out minimization and

welfare-maximization is simply ω(η) = η. We explain this difference intuitively and discuss

its implications. Most notably, because the weight is always strictly positive, the opti-

mal strategy necessarily has the flavor of opt-out minimization rather than maximization,

irrespective of whether as-if opt-out costs are “sufficiently normative” (the Goldin-Reck

assumption labeled (i) above).

We illustrate our main convergence results by simulating optimal defaults in settings that

violate specific assumptions imposed in Carroll et al. (2009) and Goldin and Reck (2019).

These simulations also validate the asymptotic approximation by showing that the limiting

case provides a decent guide for a range of reasonable settings with larger opt-out costs

and, consequently, meaningful social stakes. We also use simulations to evaluate the cost

of pursuing unweighted opt-out minimization in settings where weighted and unweighted

opt-out minimization do not coincide.

Opt-out minimization has the advantage of being significantly easier to achieve in prac-

tice than explicit welfare maximization. Employers can determine the former through

“model free” experimentation or by using relatively simple surveys, while the latter requires

analytic sophistication. The approximate coincidence of opt-out-minimizing and welfare-

maximizing defaults therefore enhances the feasibility of optimizing policy. Weighted opt-

out minimization is also easy to implement but requires information on the joint distribution

of the pertinent characteristics.

The remainder of the paper proceeds as follows. Section 2 details the model. Section 3

demonstrates the asymptotic optimality of weighted opt-out minimization. Section 4 identi-

fies conditions under which unweighted opt-out minimization also coincides asymptotically

with welfare maximization. Section 5 explains how our analysis applies to settings with

normative ambiguity (as in the welfare framework of Bernheim and Rangel 2009). Sec-

tion 6 examines extensions to settings with bunching (arising, for example, from boundary

constraints or caps on matching provisions), and to decisions with finite opportunity sets.

Section 7 describes our simulations. We close in Section 8 with some brief thoughts about

directions for subsequent research. Abbreviated proofs appear in the Appendix.

2 The model

For concreteness and to promote interpretability, we depict the problem of interest as one of

selecting a default contribution rate for workers participating in an employer-base retirement
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savings plan. However, the model is sufficiently general to apply in a wide range of contexts.

2.1 Workers

We use x to stand for the contribution rate of a worker (“he”) newly eligible to participate

in a plan sponsored by his employer (“she”). The worker chooses x from a compact interval

X. The plan’s provisions specify a default contribution rate of D. We focus on the worker’s

initial choice between accepting the default and opting out to some x 6= D.

For the sake of tractability, we assume the worker’s utility is linear in income (m), and is

additively separable in income, the contribution rate (x), and the effort exerted to effectuate

opt-out (γI(x 6= D), where I(x 6= D) = 1 if x 6= D and 0 otherwise):

u(x,m;x∗, ρ, β, γ) = βV (x, x∗, ρ) +m− γI(x 6= D). (1)

Notice that the function V depends not only on x, but also on a parameter x∗ ∈ X, which

we interpret as the contribution rate the worker regards as ideal, in the sense that x = x∗

uniquely maximizes V (x, x∗,ρ). We also write V as a function of a parameter ρ that governs

properties such as curvature. Another important feature of equation (1) is that we apply

a weighting factor, β, to the utility derived from retirement contributions. We use this

parameter to introduce inclinations that the employer views as biases. We elaborate on the

interpretation of this parameter below when discussing the employer’s objectives.2 We allow

workers to differ with respect to x∗, ρ, β, and γ. We will write γ as the product of a relative

opt-out cost parameter, η, that differs across workers, and a common scaling parameter,

λ; thus, γ = λη. This formulation allows us to hold the distribution of relative opt-out

costs fixed while shrinking the average opt-out cost toward zero. To keep our notation as

compact as possible, we will write the worker’s characteristics, other than his ideal point,

as θ = (ρ, β, η).

We assume that the effort cost of opting out, λη, is independent of the option selected.

Consistent with other work on this topic (Bernheim, Fradkin, and Popov (2015), Carroll et

al. (2009), and Goldin and Reck (2019)), our analysis presupposes that opt-out costs reflect

effort the worker must expend to implement any selection other than D. For example, he

must inform himself about selection procedures, fill out forms, visit his employer’s personnel

office, and the like. We abstract from the interesting possibility that the worker must expend

cognitive effort to understand his own preferences (the function V (·, x∗, ρ)).

As explained in Bernheim, Fradkin, and Popov (2015), this formulation accommodates

dynamics, in that we can interpret V as a reduced form representing the worker’s perceived

continuation value. Because the original default, D, affects the continuation value only

2With this formulation, the bias applies to V but not to m, which may be appropriate if, for example, β
captures present bias and m is an immediate payment. Applying β to V (x, x∗, ρ) +m, rather than merely
V (x, x∗, ρ), would alter the formula for the optimal fine in Proposition 4, but would otherwise leave our
results unchanged.
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through the initial contribution, x, D does not appear as an argument of V . Accordingly,

when optimizing the default D, we do not have to contemplate direct effects through V .3

For one of our extensions, we assume that, in addition to specifying a default contribution

rate D, the plan may also provide workers with a lump-sum bonus, B, and specify a fixed

fine, K, that falls on those who make passive choices (i.e., accept the default). The purpose

of the fine will be to incentivize active choice; the purpose of the bonus will be to maintain

budget balance for the employer. To be clear, in a setting where workers must expend effort

to understand their own preferences, an incentive of this type might simply induce them

to go through the motions of opting out, for example by selecting an option that differs

only slightly from D without giving serious consideration to his choice. It is therefore

worth emphasizing that our results on optimal fines, like other results in this literature, are

applicable only in settings where implementation rather than deliberation is costly.

For simplicity, the employer levies fines and disburses bonuses at the same point in

time. Each worker is infinitessimal, and therefore ignores any effect of his own choice on

the magnitude of the bonus through the budget balance condition. These transfers flow to

and from the worker’s income. Because utility is linear in income, the level of the worker’s

baseline income (before fines and bonuses) is immaterial, so we take it to be zero.

The worker hence chooses x to maximize u(x,B − I(x = D)K;x∗, ρ, β, λη). When the

worker opts out (x 6= D), it is obviously in his interest to select x = x∗. Accordingly, we

can also treat him as choosing c ∈ {0, 1}, where these options lead to the following payoffs:

β [(1− c)V (D,x∗, ρ) + cV (x∗, x∗, ρ)]− cλη − (1− c)K +B

The worker therefore opts out of the default whenever

β (V (x∗, x∗, ρ)− V (D,x∗, ρ))
︸ ︷︷ ︸

:=∆(D,x∗,ρ)

≥ λη −K. (2)

Thus, the mass of agents who opt-out is given by Pr
[

∆(D,x∗, ρ) ≥ λη−K
β

]

. We define the

optimal opt-out function as follows: Cλ(D,x∗, θ) = 1 when expression (2) is satisfied, and

C(D,x∗, θ) = 0 otherwise. The worker’s optimized utility is then

Uλ(D,x∗, θ) =β [(1− Cλ(D,x∗, θ))V (D,x∗, ρ) + Cλ(D,x∗, θ)V (x∗, x∗, ρ)]

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B,

We assume that θ ∈
[
ρ, ρ
]
×
[
β, β

]
×
[
η, η
]
≡ Θ, where all of these bounds are finite, and

where β, η > 0. Let G(θ) denote the CDF governing the marginal distribution of θ across

3For settings in which V is a state evaluation function for some dynamic process, it is worth emphasizing
that our approximation involves taking the limit as the current opt-out cost approaches zero, holding future

opt-out costs constant. This construction allows us to treat V as a fixed function as we change λ.
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workers, and F (x∗ | θ) denote the CDF governing the distribution of x∗ conditional on θ.

We impose minimal restrictions on V :

Assumption 1. For all (x, x∗ρ) ∈ X2 ×
[
ρ, ρ
]
, (i) V (x, x∗, ρ) is real-valued and contin-

uous, and has continuous first through third derivatives with V11(x
∗, x∗, ρ) < 0, and (ii)

V12(x, x
∗, ρ) > 0.

Part (i) of Assumption 1 is a mild regularity condition. Because x = x∗ maximizes

V (x, x∗, ρ), we know that V11(x
∗, x∗, ρ) ≤ 0, so the final portion simply rules out the pos-

sibility that V is “too flat” at any optimum. Part (ii) is a single-crossing requirement.

This property is useful because it implies that the set of types who accept the default is an

interval. However, the arguments we use to prove our results appear to rely on this impli-

cation only as an analytic convenience. We therefore suspect that an even less restrictive

assumption would suffice.

We also impose the following restrictions on F and G:

Assumption 2. F and G are atomless distributions with well-defined densities. The fol-

lowing properties hold for F : (i) (Full Support) there exists fmin > 0 such that for f , the

density function of F , f(x∗ | θ) > fmin holds for all x∗ ∈ X, θ ∈ Θ; (ii) (Differentiability)

F is twice continuously differentiable with respect to x∗ and θ.

For notational convenience, we write probabilities and expectations over x∗ conditional

on θ as Prx∗|θ and Ex∗|θ. Without loss of generality, we normalize the total population size

to unity (
´

Θ dG(θ) = 1).

2.2 The employer

The employer (or planner) cannot distinguish among workers based on x∗, their ideals, or θ,

their other characteristics. Instead, she must select the default D and, when permitted, the

bonus B and the fine K, that apply uniformly to everyone. She makes this choice subject

to budget balance:

B = K Pr

[

∆(D,x∗, ρ) ≤
λη −K

β

]

. (3)

We can think of the employer as choosing D and K, where the resulting value of B is given

by equation (3).

The employer is a utilitarian: she seeks to maximize the aggregate value of workers’

utilities, attributing the same value to a dollar regardless of who receives it. However, she

may disagree with the workers concerning the assessment of their well-being at the moment

they decide whether to opt out of the default.4 We will assume that this disagreement is

limited to the normatively appropriate value of β, which she takes to be unity. Thus, to

4If workers are time-inconsistent, they may agree with the employer’s assessment of their opt-out decisions
at other points in time.
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the extent the worker’s β diverges from unity, the employer is of the opinion that cognitive

bias infects opt-out decisions.

One potential interpretation of β < 1 is that the employer believes workers are subject

to “present bias”: she thinks they place “too much” weight on effort costs, which are

immediate, compared with their utility from retirement income which is delayed.5 For

other interpretations of β, see Bernheim, Fradkin, and Popov (2015) and Goldin and Reck

(2019). A key feature of our framework is that the employer sees bias as pertaining to the

opt-out decision, rather than to the choice of x conditional on opting out. In other words,

she agrees that x∗ is the worker’s ideal choice.6 Whether this assumption is reasonable

depends on the context. For retirement savings accounts, companies implement changes in

contribution rates with a delay, so all consequences of contribution elections aside from effort

lie in the future. Thus, to the extent the employer believes workers are quasi-hyperbolic

discounters and interprets β as “present bias,” that bias would infect the opt-out decision,

but not the worker’s perceived continuation value (V ) nor the chosen contribution rate,

precisely as we assume.

Under the preceding assumptions, the employer evaluates the worker’s well-being ac-

cording the following function:

Ũλ(D,x∗, θ) =(1− Cλ(D,x∗, θ))V (D,x∗, ρ) + Cλ(D,x∗, θ)V (x∗, x∗, ρ)

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B.

In other words, she recognizes that bias (potentially) governs workers’ opt-out choices

through Cλ(D,x∗, θ), but she ignores the bias parameter β when evaluating welfare. Ag-

gregate utility for all workers is then given by E
[

Ũλ(D,x∗, θ)
]

(where the expectation is

taken over both x∗ and θ). That expression serves as the employer’s objective function.

3 The approximate optimality of weighted opt-out minimiza-

tion

In this section, we provide a general characterization of approximately optimal defaults that

establishes a connection between welfare maximization and weighted opt-out minimization.

Our main results show that, as λ → 0, for appropriate weights, rescaled versions of the

weighted opt-out frequency and of aggregate welfare both converge uniformly to the same

function, and consequently the defaults that maximize those functions also converge. For

the time being, we confine attention to settings in which the employer does not have the

ability to impose fines for passive choice (i.e., we fix K = B = 0).

5See Bernheim and Taubinsky (2018) for a critical discussion of this normative perspective.
6More specifically, she does not take issue with V , which reflects the worker’s understanding and assess-

ment of future consequences.
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3.1 Weighted opt-out minimization

Because the opt-out frequency for workers with characteristics θ, Prx∗|θ

[

∆(D,x, ρ) ≤ λη
β

∣
∣
∣ θ
]

,

converges to zero for all D and θ as λ → 0, we study the limiting properties of the weighted-

opt-out-minimizing defaults by progressively adjusting the scale of the objective function.

For this purpose, we define

Qλ(D, θ) ≡
Pr
[

∆(D,x, ρ) ≤ λη
β

∣
∣
∣ θ
]

2λ
1
2

For any weighting formula ω(θ), the overall opt-out frequency, rescaled by (2λ)−
1
2 , is then

Ωλ(D) =

ˆ

θ
ω(θ)Qλ(D, θ)dG(θ).

Our analysis focuses on a specific weighting formula:

ω(η, β) = η

(

1−
1

3β

)

.

Under our assumptions concerning continuity, bounds, and atomless distributions, it is easy

to check that, fixing λ, the (rescaled) opt-in frequency, Ωλ(D), varies continuously with

D. Accordingly, because X is compact, there exists a (possibly non-unique) default option,

DΩ (λ), that maximizes weighted opt-in (and minimizes weighted opt-out).

To characterize the limiting case as λ → 0, we define the approximate (rescaled) opt-out

frequency for workers with characteristic θ,

Q(D, θ) ≡

(
η

β

) 1
2

f(D | θ)

(

1

−1
2V11(D,D, ρ)

) 1
2

.

To understand why we interpret this expression as the approximate opt-out frequency for

workers with characteristics θ, notice that a worker’s perceived net benefit to opting out is

−1
2V11(D,D, ρ) (D − x∗)2 − λη

β to a second-order approximation. This expression implies

that workers will opt in as long as they fall within an interval with an approximate length

of 2
(
λη
β

) 1
2
(

1
− 1

2
V11(D,D,ρ)

) 1
2
. If this interval is small, then the density within it is roughly

constant at f(D | θ). Consequently, the product of these two terms approximates the opt-in

frequency. The function Q(D, θ) simply equals this product divided by a scaling factor,

2λ
1
2 .

To the extent Q(D, θ) approximates the (rescaled) weighted opt-out frequency for work-

ers with characteristics θ, the following function approximates the overall (rescaled) weighted

opt-out frequency:

Ω(D) ≡

ˆ

θ
η

(

1−
1

3β

)

Q(D, θ)dG(θ).
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Our analysis identifies a special role for the default rate D∗ that maximizes the approximate

rescaled (weighted) opt-in frequency:

D∗ ≡ argmax
D∈X

Ω(D)

As with DΩ (λ), existence follows directly from our assumptions. Cases with multiple max-

ima are non-generic and therefore of little interest. To avoid some technical complications,

we will therefore rule those cases out by assumption.

Assumption 3. D∗ is unique.

It is worth emphasizing that, even when Θ is degenerate, D∗ generally differs from the

point of maximal density, except in special cases (e.g., when the curvature of V is the same

at all ideal points).

Our first main result tells us that D∗ approximates the opt-out minimizing default rate

for small λ. The proof consists of establishing the intuitive property that the actual weighted

opt-out frequency, divided by the scaling factor 2γ
1
2 , converges uniformly to Ω(D) as λ → 0.

Proposition 1. The weighted opt-out-minimizing default option DΩ (λ) converges to D∗

as λ → 0.

3.2 Welfare-maximization

Our second main result tells us that D∗ also approximates the welfare-maximizing default

rate for small λ.

Proposition 2. The welfare-maximizing default option DL(λ) converges to D∗ as λ → 0.

Combining Propositions 1 and 2, we reach our central conclusion: the difference between

the weighted-opt-out-minimizing and welfare-maximizing default options vanishes as λ → 0.

To build intuition for this result, note that the employer’s problem – setting D to

maximize E
[

Ũ(D,x∗, θ)
]

– is equivalent to maximizing

Lλ(D) ≡ E
[

Ũλ(D,x∗, θ)− V (x∗, x∗, ρ)
]

,

which we interpret as the (negative of) total welfare loss relative to the ideal retirement

saving choice. For any given x∗, the term in brackets is either −λη (if the worker incurs

the opt-out cost and selects his optimal contribution rate) or V (D,x∗, ρ) − V (x∗, x∗, ρ) =

−∆(D,x∗, ρ) (if he accepts the default). We can therefore rewrite the objective function as

follows:

Lλ(D) = −
´

θ ληdG(θ) +
´

θ Pr
(

∆(D,x∗, ρ) ≤ λη
β | θ

)

×
[

λη − E
(

∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη
β

)]

dG(θ)

(4)
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Intuitively, inducing opt-out potentially creates a total welfare loss of −
´

θ ληdG(θ). Those

who opt in mitigate this loss, but only by the difference between λη and the average loss

associated with the utility difference between choosing x∗ and choosing D.

Now let’s think about maximizing Lλ(D) over D for a fixed value of λ. Plainly, the

−
´

θ ληdG(θ) term does not affect the argmax. The rest of the expression integrates the

product of the conditional opt-in frequency and another term involvingD. It is therefore not

immediately obvious why maximization of the weighted opt-in frequency (or minimization

of opt-out) should coincide with maximization of the entire expression. However, if it turned

out that the term in brackets was independent of D, then the welfare maximization problem

would be equivalent to weighted opt-out minimization. In point of fact, this property holds

generally in the limit as λ → 0.

Here we encounter a small technical complication: as λ → 0, the function Lλ converges

to the function L0, which maps all default rates to the same value. That property renders

the limiting optimization problem unenlightening. To learn about optimization with small

λ from the limiting case, we have to translate and rescale Lλ so that the objective function

neither collapses to a constant nor explodes to infinity as λ → 0. We therefore define the

following objective function:

Wλ(D) ≡
Lλ(D) +

´

θ ληdG(θ)

2λ
3
2

.

For any given λ, the maximizers of Lλ and Wλ obviously coincide. Moreover, when we use

Wλ, the optimal defaults for the limiting case approximate the optimal defaults for small

λ.

To visualize the limiting optimization problem, we can consider a second-order approx-

imation in x∗ for ∆(D,x∗, ρ). Recalling that ∆(x∗, x∗, ρ) = 0 for all x ∈ X, we see that

∆(D,x∗, ρ) is (approximately) a parabola with a minimized value of 0 at x∗ = D. Trun-

cating that parabola at the boundaries of the opt-in interval and taking the density to

be constant (to an approximation) over this interval, we see that the Ex∗|θ term is ap-

proximately the area beneath this truncated parabola divided by its width. It turns out

that this ratio is always λη
3β . Figure 1 illustrates the underlying mathematical principle. It

shows the parabola y = v (x∗ −D)2 (where v is an arbitrary constant) for x∗ in the interval

[D − t,D + t], which reaches a height of h = vt2 at the interval’s endpoints. A straightfor-

ward computation shows that the ratio of the shaded area B to the length of the interval

A equals h
3 , regardless of v. Returning to the objective function (equation (4)), and using

h = λη
β , we see that the bracketed term is approximately λη − λη

3β = λη
(

1− 1
3β

)

– in other

words, a positive constant – regardless of the second-order coefficient, which may vary with

D. It follows that, when λ is small, the welfare-maximization problem is approximately the

same as maximizing the weighted opt-in frequency with weights ω(η, β) = η
(

1− 1
3β

)

. The

formal proof uses the fact that the conditional opt-out probability divided by the scaling

factor 2γ
1
2 converges uniformly to Q(D, θ) as λ → 0 (as discussed above), as well as the fact

11



Figure 1: Second-order approximation to the conditional expectation

that the bracketed term divided by the scaling factor λ converges uniformly to η
(

1− 1
3β

)

.

Notably, our general characterization applies regardless of whether the weights implied

by the formula ω(η, β) = η
(

1− 1
3β

)

are positive or negative. If β > 1
3 , then all the weights

are positive, which means the employer tries to achieve low opt-out frequencies. If β < 1
3 ,

then all the weights are negative, which means the employer sets the default to achieve high

opt-out frequencies. If β < 1
3 < β, then some weights are positive while others are negative,

which means the employer tries to set the default to achieve low opt-out frequencies for

some groups of workers and high opt out frequencies for others. Consequently, our analysis

allows us to interpret the two polar cases identified in the literature – those for which opt-

out minimization is optimal, and those for which opt-out maximization is optimal – as two

sides of the same coin.

4 The approximate optimality of unweighted opt-out mini-

mization

Given the focus of the previous literature, it is also important to investigate the circum-

stances under which unweighted opt-out minimization is approximately optimal. The un-

weighted opt-in frequency is given by (2λ)−
1
2 ΩU

λ (D), where

ΩU
λ (D) =

ˆ

θ
Qλ(D, θ)dG(θ).
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Our analysis references both the opt-out minimizing default option, DU
Ω(λ) ≡ minD∈X ΩU

λ (D),

and the opt-out maximizing default option, dUΩ(λ) ≡ maxD∈X ΩU
λ (D). As with the weighted-

opt-out minimizing default option, DΩ (λ), existence follows directly from our assumptions.

In light of Propositions 1 and 2, we know that unweighted opt-out minimization is

asymptotically welfare-maximizing in settings where weighted and unweighted opt-out min-

imization coincide. A sufficient condition for this coincidence is that the weighted and un-

weighted opt-in frequencies are related by a fixed constant of proportionality. There are

two potential routes to ensuring that this proportionality requirement holds. The first is

to identify conditions under which the weight is the same for all workers. Unfortunately,

this route does not lead to useful insights, because ω(η, β) = η
(

1− 1
3β

)

is constant only if

there is no heterogeneity in η or β or if there is a fortuitous deterministic relationship be-

tween them (specifically, η ∝
(

1− 1
3β

)−1
). The second route is to identify conditions under

which the weighted opt-in frequency is separable into a component involving the character-

istics that determine the weights and a component involving the default D. Unfortunately,

Prx∗|θ

[

∆(D,x, ρ) ≤ λη
β

]

does not generally factor in this way.

The second route becomes more promising when we focus on the limiting case. Recall

that the (rescaled) weighted opt-in frequency, Ωλ(D), converges uniformly to Ω(D), which

we can write as follows:

Ω(D) =

ˆ

θ
η

(

1−
1

3β

)

Q(D, θ)dG(θ)

=

ˆ

θ

[

η

(

1−
1

3β

)(
η

β

) 1
2

]

f(D | θ)

(

1

−1
2V11(D,D, ρ)

) 1
2



 dG(θ)

We have divided the integrand into two bracketed components. The first depends only on

the parameters (η and β) that determine the weight, while the second depends on D. We do

not yet have the desired separability property, however, because f (D | θ) may depend on η

and β. Additionally, η and β may be stochastically related to ρ, which appears in the V11

term. However, both of these potential dependencies disappear if x∗ and ρ are distributed

independently of η and β. In that case, using h(η, β) to denote the density of the marginal

distribution of η and β, and using k(ρ) to denote the density for the marginal distribution

of ρ, we can write:

Ω(D) = Φ×

ˆ

ρ

f(D | ρ)

(

1

−1
2V11(D,D, ρ)

) 1
2

k(ρ)dρ

where

Φ =

ˆ

η,β
η

(

1−
1

3β

)(
η

β

) 1
2

h(η, β)dηdβ. (5)
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To demonstrate formally the asymptotic equivalence of weighted and unweighted opt-out

minimization under the stated independence assumption, we need to provide a character-

ization of the limiting unweighted opt-in frequency function. Using essentially the same

arguments as in the proof of Proposition 1, one can show that ΩU
λ (D) converges uniformly

to

ΩU (D) =

ˆ

θ
Q(D, θ)dG(θ)

A calculation analogous to the one provided above for Ω(D) then implies

ΩU (D) =

[
ˆ

η,β

(
η

β

) 1
2

h(η, β)dηdβ

]
ˆ

ρ

f(D | ρ)

(

1

−1
2V11(D,D, ρ)

) 1
2

dk(ρ)

Accordingly, we have

π × ΩU (D) = Ω(D), (6)

where

π = Φ

[
ˆ

η,β

(
η

β

) 1
2

h(η, β)dηdβ

]−1

.

Thus, the asymptotic weighted and unweighted opt-in frequencies are related by a positive

fixed factor of proportionality when Φ > 0, and by a negative fixed factor of proportionality

when Φ < 0. Applying Propositions 1 and 2, we see that unweighted opt-out minimization

is asymptotically welfare-optimal when Φ > 0. Alternatively, when Φ < 0, weighted opt-out

minimization involves negative weights for some or all workers, and as a result coincides

with unweighted opt-out maximization. In that case, unweighted opt-out maximization is

asymptotically welfare-optimal. The following proposition summarizes these observations:

Proposition 3. Assume x∗ and ρ are distributed independently of η and β. If Φ > 0,

then the unweighted opt-out-minimizing default option DU
P (λ) converges to D∗ as λ → 0.

If Φ < 0, then the unweighted opt-out-maximizing default option dUP (λ) converges to D∗ as

λ → 0.

Goldin and Reck (2020) also present a result on the optimality of opt-out minimization

(their Proposition 4). The environments they consider are more restricted, in that worker

heterogeneity is limited to x∗ and η. One of their sufficient conditions requires stochastic

independence of those two characteristics. Our result reveals that, when worker hetero-

geneity extends to β and ρ as well as x∗ and η, unweighted opt-out minimization may be

asymptotically suboptimal even when Goldin and Reck’s independence requirement holds.

We arrive at a more general condition that requires stochastic independence between x∗

and ρ on the one hand, and η and β on the other.

Applying Proposition 3 to settings with homogeneous β and ρ, we see that our focus

on approximate optimality allows us to establish the desirability of unweighted opt-out

minimization and maximization under conditions that are considerably more general than
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Goldin and Reck’s. In particular, our result dispenses with a collection of highly specialized

assumptions (specifically, that the utility derived from the action is a convex, single-peaked,

symmetric function that depends only on difference between the action and the worker’s

ideal point, and that the distribution of ideal points is single-peaked and symmetric), which

we replace with some relatively weak regularity requirements along with a single-crossing

property.

Notice that the integrand in the definition of Φ is positive when β > 1
3 . Thus, consistent

with Goldin and Reck’s (2020) Proposition 4, our Proposition 3 indicates that opt-out

minimization is optimal when opt-out costs are sufficiently normative; otherwise, opt-out

maximization is optimal. However, to the extent the employer can impose non-disappative

fines for passive choice, opt-out minimization becomes relatively more attractive.

To understand the preceding claim, we introduce a fine K(λ), which we allow to shrink

with the scale of opt-out costs. The opt-in condition becomes

∆(D,x∗, ρ) ≤
λη −K(λ)

β

Visualizing E
(

∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη−K(λ)
β

)

as the area beneath a truncated parabola

divided by the parabola’s width (and recalling that ∆(D,x∗, ρ) ≥ 0), we see that it equals

max
{

0, λη−K(λ)
3β

}

to a second-order approximation. It follows that

1

λ

[

λη − E

(

∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) <
λη −K(λ)

β

)]

converges uniformly to η − max
{

0, η−κ
3β

}

, where κ ≡ limλ→0
K(λ)
λ . Accordingly, for fixed

fines K(λ), welfare maximization coincides asymptotically with weighted opt-out minimiza-

tion using weights given by the formula

ωκ(η, β) ≡ η −max

{

0,
η − κ

3β

}

.

Now notice that, for any given η and β, the weight is increasing in κ. Indeed, if κ > η(1−3β),

then all of the weights are positive, which implies Φ > 0, and hence that unweighted opt-out

minimization is asymptotically optimal when x∗ and ρ are distributed independently of η

and β.

To illustrate why it may be optimal for the employer to set a positive fine for passive

choice, we specialize to settings in which worker heterogeneity is confined to x∗. The

following proposition characterizes the optimal fine and, by implication, the optimal bonus

for any fixed default option.

Proposition 4. Assume Θ is degenerate. Fixing D, the optimal fine is K∗ = (1− β)γ.

The intuition for Proposition 4 is that, by establishing a fine for passive choice equal to

the portion of active-choice costs that the worker ignores, (1− β) γ, the employer corrects
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the “internality” that would otherwise give rise to a welfare loss. The literature on Behav-

ioral Public Economics contains a collection of parallel results; see Bernheim and Taubinsky

(2018).

Conditional on setting the optimal fine and bonus for each D, the induced objective

function coincides with one for a setting in which β = 1. Consequently, solving for the

optimal default with arbitrary β conditional on the optimal fine is mathematically equivalent

to solving for the optimal default with β = 1 and no fine. The optimality of unweighted

opt-out minimization then follows immediately under the independence condition stated in

Proposition 3, regardless of whether as-if opt-out costs are “sufficiently normative.”

As a final observation, we note that if x∗ and ρ are distributed independently of η and

β, then asymptotically the unweighted opt-out minimizing and maximizing defaults do not

depend on the size of the fine. With the introduction of a fine, the asymptotic unweighted

opt-in frequency becomes

ΩU (D) =

[
ˆ

η,β

(

max

{

0,
η − κ

β

}) 1
2

h(η, β)dηdβ

]
ˆ

ρ

f(D | ρ)

(

1

−1
2V11(D,D, ρ)

) 1
2

dk(ρ)

As long as κ < η, the bracketed term is a positive constant, which means that the same

default D maximizes this expression regardless of κ. This property is logistically convenient,

because it implies that the employer can optimize the default by minimizing (or alternatively

maximizing) the opt-out frequency based on data from a regime in which it imposed no

fine. Because the size of the fine can determine whether minimization or maximization is

appropriate, the employer must still optimize the default and the fine simultaneously, but

the problem reduces to consideration of just two fine-invariant default alternatives.

5 Accommodating normative ambiguity

Depending on which psychological mechanisms β purportedly captures, there may be con-

troversy as to whether it constitutes a bias. Imagine, for example, that β parametrizes

time-inconsistency. Some studies advocate evaluating welfare based solely on forward-

looking choices, on the grounds that people suffer from “self-control problems” when making

decisions contemporaneously (see, e.g., O’Donoghue and Rabin 1999). However, this lan-

guage may reflect normative preconceptions rather than objective inferences. If people fully

appreciate experiences only in the moment and overintellectualize at arms length, their in-

the-moment choices, rather than the forward-looking choices, would be the ones that merit

deference. Absent an objective basis for adjudicating between these perspectives, there is

an argument for remaining agnostic and respecting both.

To accommodate normative ambiguity, Bernheim, Fradkin, and Popov (2015) deployed

the welfare framework developed in Bernheim and Rangel (2009) and elaborated in Bern-
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heim (2009; 2016; forthcoming) and Bernheim and Taubinsky (2018). Within that paradigm,

one can evaluate a change from policy p to p′ by computing two versions of equivalent vari-

ation: EVA, which is the smallest increment to income with p (that is, the smallest increase

or the largest reduction) such that the bundle obtained with p is unambuously chosen over

the bundle obtained with p′ (i.e., the individual would choose the first bundle over the

second in all decision frames), and EVB, which is the largest increment to income with p

(that is, the largest increase or smallest reduction) such that the bundle obtained with p′ is

unambiguously chosen over the bundle obtained with p. Despite the ambiguities implied by

inconsistent choices, one can say that the change is unambiguously worth at least EVA and

no more than EVB. Bernheim, Fradkin, and Popov (2015) provided a formal justification for

aggregating these welfare measures over populations of decision makers. For default-setting

problems with sophisticated present focus, they also showed that one calculates EVB by

treating β as a bias, as above. To determine EVA, one instead evaluates welfare according

to a slightly modified objective function that respects β:

Ũλ(D,x∗, θ) =(1− Cλ(D,x∗, θ))βV (D,x∗, ρ) + Cλ(D,x∗, θ)βV (x∗, x∗, ρ)

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B.

Surprisingly, for empirically parametrized opt-out models, Bernheim, Fradkin, and Popov

(2015) find that the same default option maximizes both EVA and EVB.

Our analysis provides insight into the mechanisms that drive this conclusion, and also

allows us to state precisely the conditions under which it holds (asymptotically). For EVA,

the welfare loss function becomes

Lλ(D) = −
´

θ ληdG(θ) +
´

θ Pr
(

∆(D,x∗, ρ) ≤ λη
β | θ

)

×
[

λη − βE
(

∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη
β

)]

dG(θ)

Replicating our earlier reasoning, we see that maximization of this objective function is

asympotically equivalent to minimizing weighted opt-out, using weights ω(η, β) = η
(
1− 1

3

)
,

rather than ω(η, β) = η
(

1− 1
3β

)

.

From these observations, it follows that maximization of EVA coincides (asymptotically)

with maximization of EVB, and consequently that the optimal default is robust with respect

to strategic ambiguity, as long as the same default achieves weighted opt-out minimization

with weights η
(

1− 1
3β

)

and η
(
1− 1

3

)
. This condition is obviously satisfied when there is

no heterogeneity in β (the case considered in Bernheim, Fradkin, and Popov 2015), provided

β > 1
3 . More generally, the result survives the introduction of heterogeneity with respect

to present focus as long as the distribution of β is independent of x∗, ρ, and η. Notice

that the latter condition does not require that η is independent of x∗ and ρ, which means

that weighted opt-out minimization may be normatively robust even when it diverges from
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unweighted opt-out minimization.

6 Extensions

Even though Assumptions 1 and 2 are relatively mild in a technical sense, they do not

fit all applications. One issue is that, in some practical settings, the distribution of ideal

options includes atoms. For example, in the context of 401(k)s, the possibility of exhausting

an employer’s matching contributions creates a kink point in the worker’s opportunity set,

which can lead to bunching at the kink point. One also typically observes bunching at zero,

the lower boundary. A second practical consideration is that the choice set is sometimes

finite. In this section, we consider these cases as extensions.

6.1 Bunching

We take the view that bunching usually results from a characteristic of the opportunity

set, such as a kink or a boundary, rather than from atoms in the underlying distribution

of workers’ characteristics. Accordingly, we model the ideal point, x∗(y), as depending on

some latent characteristic, y ∈ Y , where Y is a compact set. We assume there is a finite

set of disjoint non-degenerate intervals, Y1, ..., YN , where Yn =
[

y
n
, yn

]

, along with a set of

associated contribution levels, Z = {z1, ..., zN} ⊂ X, such that all values of y ∈ Yn map to

the same value, x∗(y) = zn. For example, y might represent the worker’s long-run discount

factor, and x∗ might be choices from a non-linear budget set, in which case the zn correspond

to kink points in an opportunity set, induced for example by a cap on employer matching

contributions, or alternatively zn might be a boundary point of X. We will assume that,

outside Y0 ≡ ∪N
n=1Yn, x

∗(y) is strictly increasing and differentiable with a derivative that is

uniformly bounded away from 0.

Consistent with these modifications, we now model continuation utility, V (x, y, ρ), as

depending on the latent characteristic y rather than the ideal point x∗(y), which is pre-

sumably specific to the opportunity set. Here it is important to avoid the assumption of

differentiability, precisely because an underlying kink in an opportunity set generally trans-

lates into a point of non-differentiability, which in turn produces the bunching assumed

above. Accordingly, we make the following weak assumption concerning V :

Assumption 4. For all (x, y, ρ) ∈ X×Y ×
[
ρ, ρ
]
, V (x, y, ρ) is real-valued, continuous, and

uniquely maximized at x = x∗(y).

Notice that Assumption 4 dispenses not only with our differentiability assumptions, but

also with the single-crossing property.

To conserve on new notation, we will use F to represent the distribution of y rather

than x∗. We can also make due with weaker assumptions concerning F :
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Assumption 5. F and G are atomless distributions with well-defined densities. There

exists fmax > 0 such that for f , the density function of F , f(y | θ) < fmax holds for all

y ∈ Y , θ ∈ Θ.

While Assumption 2 did not explicitly call out the existence of an upper bound on

f(x | θ), that property followed from the assumed continuity of the density as well as the

compactness of the sets X and Θ. Thus, Assumption 5 is unambiguously weaker than

Assumption 2.

Under these assumptions, the fraction of the population with an ideal point of zn ∈ Z

is

πn ≡

ˆ

θ

Pr (x∗(y) = zn | θ) dG(θ) =

ˆ

θ

[

F (yn | θ)− F (y
n
| θ)
]

dG(θ). (7)

Were we to assume full support (as in Section 2), we would have πn > 0. Here we will assume

only that there is some zn ∈ Z with πn > 0, which implies the existence of bunching. Notice

that the analog of expression (7) is 0 for any D /∈ Z.

Our analysis will focus on weighted opt-out minimization with weights ω(η) = η. The

weighted opt-in frequency is then

Ω̂λ(D) ≡

ˆ

θ
ηPr

(

∆(D,x∗(y), ρ) ≤
λη

β

∣
∣
∣
∣
θ

)

dG(θ)

Let DΩ̂ (λ) denote any default that maximizes this objective function.

For any D /∈ Z, it is easily verified that Ω̂λ(D) → 0 as λ → 0.7 Consequently, it

is natural to conjecture that, as λ → 0, the weighted opt-out minimizing default DΩ̂ (λ)

converges to z∗ ∈ Z, defined as argmaxz∈Z Ω̂(z), where (for z ∈ Z),

Ω̂(z) ≡

ˆ

θ
ηPr (x∗(y) = z | θ) dG(θ).

We will assume that z∗ is unique within Z, a property that holds generically.

Now we turn to welfare maximization. Equation (4), which defines the aggregate welfare

function L
λ
(D), is unchanged, except that we replace x∗ with x∗(y). Following the structure

of the arguments in Section 3.1, we define

Ŵλ(D) ≡
Lλ(D) +

´

θ ληdG(θ)

λ
.

Notice that we use a different scaling factor here, λ−1 rather than = (2λ)−
3
2 , to ensure that

the objective function neither explodes to infinity nor collapses everywhere to zero. The

reason for the change in scaling is that, here, some probabilities do not converge to zero.

Let DŴ (λ) be any welfare-maximizing default, given λ. Our objective is to characterize

the limiting behavior of DŴ (λ) as λ → 0.

7The convergence is not necessarily uniform, however, since there are values of D /∈ Z that are arbitrarily
close to points in Z.
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It is useful to rewrite the welfare function as follows:

Ŵλ(D) =
´

θ Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

×
[

η − 1
λE
(

∆(D,x∗(y), ρ) | ∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)]

dG(θ),

= Ω̂λ(D)−
´

θ Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

×
[
1
λE
(

∆(D,x∗(y), ρ) | ∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)]

dG(θ)

(8)

Now think about what happens to Ŵλ(D) as λ → 0. ForD /∈ Z, Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

→

0, so the second term (specifically, everything after Ω̂λ(D)) vanishes.8 In contrast, for

D ∈ Z, Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

need not vanish. The limiting behavior of the second

term then depends on the bracketed expression in the last line. In Section 3.2, we showed

that, with no bunching, that expression converges to λη
3β . In the current context, it converges

to zero. Intuitively, for such D = zn ∈ Z, as λ → 0, the fraction of workers choosing zn

for whom x∗(y) 6= zn converges to zero. The conditional expectation is therefore governed

entirely by workers for whom x∗(y) = zn. But for those workers, ∆(zn, x
∗(y), ρ) = 0. It is

therefore intuitive that Ŵλ(D)− Ω̂λ(D) converges to 0, and consequently that DŴ (λ) also

converges to D∗.

By articulating this intuition while attending to a number of technical issues, we prove

the following result:

Proposition 5. The weighted opt-out-minimizing default option DΩ̂ (λ) and the welfare-

maximizing default option DŴ (λ) both converge to z∗ as λ → 0.

Because the applicable weight is simply η, the asymptotically welfare-maximizing default

option does not depend on the distribution of the bias parameter, β. In this context, because

Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

converges to Pr (∆(D,x∗(y), ρ) = 0| θ), bias can only enter in

the limit through the bracketed term in the last line of equation (8). But as we have

explained, that term disappears in the limit. Several implications follow.

First, because the weight is simply the relative opt-out cost η, which is always positive,

we see that the welfare-maximizing strategy involves minimizing opt-out rather maximizing

it, even when the bias is severe. Consequently, in settings with bunching, we can dispense

entirely with the Goldin-Reck assumption that as-if opt-out costs are sufficiently normative,

at least asymptotically.

Second, in this context, the asymptotic optimality of unweighted opt-out minimization

only requires the independence of y (which stands in for x∗) and η. To understand this

assertion, notice that we can rewrite Ω̂(z) as follows:

8A technicality here is that it does not vanish uniformly.
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Ω̂(z) =

ˆ

η

η






ˆ

ρ

ˆ

β

Pr (x∗(y) = z | β, ρ)h(β, ρ | η)dβdρ




 k(η)dη

=

ˆ

η

ηPr (x∗(y) = z | η) k(η)dη,

where k(η) is the density for the marginal distribution of η, while h(β, ρ | η) is the density

for the joint distribution of β and ρ, conditional on η. If we assume y and η are independent,

then the probability term factors out, which means we are left with Ω̂(z) = Pr (x∗(y) = z),

the (limiting) unweighted opt-out frequency. Relative to the corresponding result in Section

4, we are able to dispense with all of the independence assumptions concerning β and ρ.

A comparison between Propositions 2 and 5 reveals an apparent tension: with no bunch-

ing, β appears in the weighting formula, but with even the tiniest amount of bunching, it

vanishes. This tension is resolved by the observation that the convergence of the bracketed

term to zero becomes slower and slower as the amount of bunching shrinks. When bunching

is barely detectable, this term resembles η
(

1− 1
3β

)

rather than η until λ is small enough

to cause the probability atom at the kink point to dominate the cumulative density within

any opt-in window containing the kink point.

An additional implication follows from the fact that β does not appear in the opt-out

frequency weights for settings with bunching: weighted opt-out minimization is normatively

robust (in the sense that the asymptotic maximizers of EVA and EVB coincide) even when

β is heterogeneous and correlated with x∗, ρ, and η.

6.2 Finite menus

To analyze environments with finite sets of alternatives, we modify the model of Section

2. For simplicity, we assume the action x takes on one of two values, 0 or 1. Our analysis

extends to settings with more than two discrete options in an obvious but tedious way, and

this simplification allows us to illustrate the applicable principles while avoiding uninstruc-

tive notational complexity. The problem of setting default options for choices with binary

alternatives is also of independent practical interest because it regularly arises in practice,

for example with respect to organ donation elections.

As before, we assume we can write continuation utility, V (x, x∗, ρ), as a function of the

action x, a characteristic x∗ governing the individual’s preferred option, and a characteristic

ρ governing the intensity of that preference. Here, however, x and x∗ belong to different

sets ({0, 1} and X, respectively), so we reinterpret x∗ as a latent characteristic rather than

an ideal point. The incremental continuation utility the individual derives from action 1

relative to action 2 is then
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C(x∗, ρ) = V (1, x∗, ρ)− V (0, x∗, ρ)

To the assumptions listed in the previous subsection (V real-valued and continuous), we add

that C(x∗, ρ) is strictly increasing in x∗. This assumption is simply a matter of arranging

latent types in order of increasing preference for option 1. We also assume that C(x, ρ) < 0

and C(x, ρ) > 0, so that some people strictly prefer each option. These assumptions plainly

imply the existence of some threshold value xT such that C(xT , ρ) = 0.

Next we define

∆(D,x∗, ρ) = max
{
0, (−1)1−DC(x∗, ρ)

}

In other words, when D = 0, ∆(D,x∗, ρ) equals C(x∗, ρ) truncated below at zero, while

if D = 1, it equals −C(x∗, ρ) truncated below at zero. This function has precisely the

same interpretation as in previous sections: it measures the difference between the utility

the individual derives from receiving his most preferred option, and the utility he derives

from receiving another specified alternative (which may or may not be his most preferred

option). It follows that the individual opts out of the default when ∆(D,x∗, ρ) > λη
β , exactly

as before.

As in the last subsection, our analysis will focus on weighted opt-out minimization with

weights ω(η) = η. The weighted opt-out frequency is then

Ω̃λ(D) ≡

ˆ

θ
ηPr

(

∆(D,x∗, ρ) ≤
λη

β

∣
∣
∣
∣
θ

)

dG(θ).

Let DΩ̃ (λ) denote any default that maximizes this objective function. It is easy to see that,

as λ → 0, Ω̃λ(D) converges to

Ω̃(D) ≡

ˆ

θ
ηPr

(
(−1)D (x∗ − xT ) ≤ 0 | θ

)
dG(θ)

Let D∗ be the default that maximizes Ω̃(D). It is straightforward to establish the existence

of some λΩ̃ > 0 such that, for λ < λΩ̃, we have DΩ̃ (λ) = D∗.

Even though we have altered our original model, equation (4) for Lλ(D) continues to

describe aggregate welfare. In parallel with the preceding subsection, we define

W̃λ(D) ≡
Lλ(D) +

´

θ ληdG(θ)

λ
,

which we can rewrite as

W̃λ(D) = Ω̃λ(D)−
´

θ Pr
(

∆(D,x∗, ρ) ≤ λη
β

∣
∣
∣ θ
)

×
[
1
λE
(

∆(D,x∗, ρ) | ∆(D,x∗, ρ) ≤ λη
β

∣
∣
∣ θ
)]

dG(θ).

As in the last subsection, we claim that the bracketed term converges to zero. Intu-
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itively, for either value of D, as λ → 0, the fraction of workers choosing zn for whom

(−1)D (x∗ − xT ) > 0, and hence for whom ∆(D,x∗, ρ) > 0, converges to zero. The condi-

tional expectation is therefore governed entirely by workers for whom (−1)D (x∗ − xT ) ≤ 0.

Because ∆(D,x∗, ρ) = 0 for those workers, the bracketed term converges to zero. It follows

that W̃λ(D)− Ω̃λ(D) converges to zero, which in turn means that W̃λ(D)− Ω̃(D) converges

to zero. An immediate implication is that there is some λW̃ > 0 such that, for λ < λW̃ , we

have DW̃ (λ) = D∗. Thus, the weighted opt-out minimizing default with weights ω(η) = η is

welfare-optimal for sufficiently small λ. While the preceding discussion omits some details,

they are easy to fill in, and indeed they involve simpler versions of the arguments used in

the proof of Proposition 5. Because the weights are the same as for settings with bunching,

the same conclusions follow.

As in the previous section, there appears some tension between Proposition 2 and the

conclusions we have just reached: with a continuous menu, β appears in the weighting

formula, but with any finite menu, no matter how fine, it vanishes. This tension is resolved

by the observation that the convergence of the bracketed term to zero becomes slower and

slower as the cardinality of the menu grows. With an astronomical but finite number of

alternatives, this term resembles η
(

1− 1
3β

)

rather than η until λ is small enough to exclude

all but a few alternatives from the opt-in window.

7 Numerical simulations

In this section, we illustrate our main convergence result by simulating welfare-maximizing,

weighted opt-out minimizing, and unweighted opt-out minimizing defaults in settings that

violate specific assumptions imposed in Carroll et al. (2009) and Goldin and Reck (2019).

These simulations also show that our limiting result provides a decent approximation for

settings with larger opt-out costs and, consequently, meaningful social stakes. We also

investigate the magnitude of the inefficiencies resulting from minimizing the unweighted

opt-out frequency, rather than the weighted opt-out frequency, in settings with correlations

between x∗, η, and β.

7.1 Parametrizations

Table 1 summarizes the various parametric specifications used in our main simulations. For

V , we employ a quadratic utility function, which exhibits the symmetry property imposed

in the prior literature, and an asymmetric linear-exponential utility function (Martinez-

Mora and Puy (2012)). For F , we examine a truncated Normal distribution that exhibits

the symmetry and single peakedness properties imposed in the prior literature, a highly

asymmetric distribution with a unique mode at a boundary value, and an asymmetric

bimodal distribution. In all simulations, the support of the ideal-point distribution is the

interval [0, 5]. Figure 2 depicts these alternatives.
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When introducing heterogeneity with respect to the bias and opt-out cost parameters,

for the sake of analytic tractability we assume βi ∈ {0.5, 0.8, 1} and ηi ∈ {0.5, 1, 2}. In

some settings we assume that βi, ηi, and x∗i are distributed independently, and in others we

allow for mild correlations among these parameters. Because the possibilities are virtually

limitless, we employ a simple correlational structure that allows us to explore the impact

of directional relationships between the variables. Our specific distributional assumptions

appear in Table 1.

7.2 Simulation results

Table 2 summarizes our main simulation results by comparing welfare-maximization to

weighted opt-out minimization.9 Each row represents a separate simulation. Columns

(1) through (5) provide details concerning the parametrization; Columns (6) through (13)

present pertinent simulation results for different values of the cost-scaling parameter λ.

For each simulation, we choose the value of the scaling-parameter to achieve the opt-out

frequencies listed at the top of the columns: 95%, 90%, 75%, and 40%.10 Converting values

of λ into their implied opt-out frequencies renders the size of the parameter more easily

interpretable.11

For each specification and opt-out frequency, the table reports the distance between

the welfare-maximizing default option DL(λ) and the weighted opt-out-minimizing default

option DΩ(λ), as well as the fraction of the potential welfare gain, ∆L(λ), achieved by the

opt-out-minimizing default option relative to a zero-default policy. Both of these metrics

require explanation. For each simulation, we first find the default DL(λ) that maximizes

welfare; to obtain DΩ(λ), we then minimize weighted opt-out for the same γ. The table

reports the absolute value of the difference between these two defaults, i.e., |DL(λ)−DΩ(λ)|.

To compute ∆L(λ), we first evaluate the welfare gain achieved by the welfare-optimal policy

relative to a baseline scenario in which the default is D = 0: Lλ (DL(λ))− Lλ(0). Next we

calculate the welfare gain achieved by the weighted opt-out minimizing policy relative to

the same baseline: Lλ (DΩ(λ)) − Lλ(0). We then define ∆L(λ) as the ratio of the second

welfare gain to the first, expressed as a percentage: ∆L(λ) = 100%Lλ(DΩ(λ))−Lλ(0)
Lλ(DL(λ))−Lλ(0)

.

9We performed all simulations using Python3 and Scipy. We employ the Limited-Memory approximation
to the Broyden–Fletcher–Goldfarb–Shanno algorithm with Simplex Box constraints. We employ a grid-
search over multiple starting points to ensure we reach a global maximum rather than one of potentially
many local maxima. We calculated all integrals numerically using quadrature. We employed a maximal
function value tolerance of 1e− 11 and maximal absolute quadrature error of 1e− 12.

10We select λ so that the opt-out rate under the welfare-maximizing default matches the stated target
rate. For the same λ, the opt-out minimizing default necessarily leads to lower opt-out rates.

11By way of comparison, in the sample studied by Choukhmane (2019), opt-out rates in a 401(k) pension
plan vary by tenure from about 20% to about 75%.
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Table 1: Utility Functions and Distribution Functions Used in Numerical Simulations
Name Function Parameterization

Quadratic V (x,D) = −α(x−D)2 α = 0.5

Linear-Exponential V (x,D) = − exp(α(x−D)) + α(x−D) + 1 α = 0.75

Table 1a): Utility functions used in the numerical simulations.

Distribution Mean Median Var. Max. Corr(x, η)

Truncated Normal
2.5 2.5 ≈ 0.911 2.5 −0.1531

f(x) = H ∗ φ (x− 2.5)

Right-peaked
3.3 ≈ 3.538 ≈ 1.389 5 −0.1608

f(x) = H ∗ x

Bimodal
≈ 2.408 ≈ 2.245 ≈ 0.583 {2, 3} −0.0942

f(x) = H ∗
(

1
(x−3)2+ 1

10

+ 1
(x−2)2+ 1

20

)

Table 1b): Probability density functions f(x) for the distributions used in the numerical
simulations. For all distributions, the range is x ∼ [0, 5] and H is a normalization constant
that ensures the density sums to 1. Var. displays the variance and Max. lists the (local)
maximand(s) of the distribution. “Corr(x, η)” refers to the correlation between x, the ideal
point, and η, the cost parameter, in the case of interdependence, as detailed in Table c).

Heterogeneity? Distribution of β Distribution of η

No Heterogeneity Pr[β = 0.8] = 1 Pr[η = 1] = 1

Independence
Pr[β = 0.5] = 1/3 Pr[η = 0.5] = 1/3

Pr[β = 0.8] = 1/3 Pr[η = 1] = 1/3

Pr[β = 1] = 1/3 Pr[η = 2] = 1/3

Interdependence
Pr[β = 0.5] =

{

0.5 x < 1.5

0.25 x ≥ 1.5
Pr[η = 0.5] =

{

0.5 x > 3.5

0.25 x ≤ 3.5

Pr[β = 0.8] =

{

0.5 x ∈ [1.5, 3.5]

0.25 otherwise
Pr[η = 1] =

{

0.5 x ∈ [1.5, 3.5]

0.25 otherwise

Pr[β = 1] =

{

0.5 x > 3.5

0.25 x ≤ 3.5
Pr[η = 2] =

{

0.5 x < 1.5

0.25 x ≥ 1.5

Table 1c): Types of heterogeneity studied in the numerical simulations: 1) no heterogene-
ity in β and η, 2) independent random heterogeneity in one or both of β and η, and 3)
heterogeneity in one or both of β and η, with dependence on x.
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Figure 2: Utility Functions and Distribution Functions for Numerical Simulations: Illustra-
tions

Figure 2a): Quadratic utility (in solid red) and linear-exponential asymmetric utility (in
dotted black) for defaults D ∈ [0, 5] given ideal point x∗ = 2.5.

Figure 2b): Density of ideal point x∗ over support x ∈ [0, 5] for the three distributions
studied: in solid red, the truncated Normal distribution, in dotted black, the right-peaked
distribution, and in dashed blue the bimodal distribution.
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Convergence and the quality of the approximation.

Focusing first on simulations in which heterogeneity is limited to ideal points, Part A of

Table 2 explores settings that violate specific assumptions imposed in Carroll et al. (2009)

and Goldin and Reck (2019). Several notable patterns emerge. First, we see numerical

corroboration of Proposition 2: in each case, when λ is low enough to produce an opt-out

frequency of 95%, DΩ(λ) and DL(λ) are nearly identical. The maximal difference between

the two, 0.0075, for the case of a right-peaked distribution and quadratic utility, is only

0.63% of the standard deviation of the ideal points x∗ under this distribution, and the

fraction of the potential welfare gain achieved through opt-out minimization, ∆L(λ), is

larger than 98% in all cases we consider.

Second, for higher opt-out costs (lower opt-out rates), the correspondence between the

two defaults remains close. With 75% opt-out, the maximal distance between DΩ(λ) and

DL(λ) (which again occurs for right-peaked preference distribution and quadratic utility),

0.0521, is only 4.4% of the standard deviation of x∗, and the corresponding weighted opt-

out minimizing default achieves 97.84% of the total attainable welfare improvement. Even

for the smallest opt-out percentage considered in the table, 40%, the approximations re-

main surprisingly good, with between 80% and 99.9% of welfare gain achieved across the

parameterizations.

Figure 3, which focuses on the specification with an asymmetric linear-exponential util-

ity function along with a bimodal ideal-point distribution, shows the relationship between

DΩ(λ) and DL(λ), as well as welfare losses, for λ yielding opt-out frequencies between

roughly 14% and 91%. The limiting approximation is extremely good for parameters that

produce opt-out rates above 50%, and remains reasonably good even with higher opt-out

costs (lower opt-out rates).

Additional dimensions of heterogeneity.

The rest of Table 2 introduces various forms of heterogeneity. We allow η and x∗ to vary

independently across workers in Part B, and introduce correlation between them in Part E.

Parts C and F are analogous, with β varying rather than η. We allow all three parameters

to vary independently across workers in Part D, and introduce correlations among them in

Part G. None of these changes produce meaningful divergences between the limiting values

of the welfare-maximizing and weighted opt-out minimizing defaults. Moreover, we see only

small divergences and modest inefficiencies from weighted opt-out minimization even when

opt-out costs are high enough to produce opt-out frequencies as low as 40%: despite allowing

for full interdependent heterogeneity, the weighted opt-out minimizing default captures at

least 84% of the achievable welfare gains and above 95% in three of the five simulation cases
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Figure 3: Illustration of welfare-maximizing and weighted opt-out-minimizing defaults.
Simulations for a case in which the utility function is linear-exponential with asymmetry
factor α = 0.75, the present bias parameter is β = 0.8, opt-out costs are homogeneous, and
the ideal-point density is bimodal with peaks at 2 and 3. The main panel shows the welfare-
maximizing default DL(λ) and the weighted opt-out minimizing default DΩ(λ), plotted for
λ yielding opt-out frequencies between 14% and 91% for the welfare-maximizing default.
Detail Panels 1 and 2 reproduce the main panel at higher resolution for opt-out frequencies
closer to unity (λ close to zero), zooming in on the y-axis. The bottom panel displays the
percentage of the potential welfare gain achieved through the weighted opt-out-minimization
policy DΩ(λ) .
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Unweighted opt-out minimization

In Table 3 we present the analogous simulation results for unweighted opt-out minimization.

In other words, instead of finding the weighted opt-out minimizing default DΩ, we find the

unweighted opt-out minimizing default DU
P for a given combination of the cost scaling

factor λ and the specified utility function, distribution of x, and individual cost and bias

parameters η and β. For cases with no heterogeneity, and with independence between

η, β,and x∗, the simulation results match those in Table 2 for weighted opt-out minimization:

weighted and unweighted opt-out minimization perform equally well relative to the welfare

maximizing default option, just as our analytical results imply.

For cases involving non-independence between the distributions of x and η and/or β, un-

weighted opt-out minimization still performs comparably to weighted opt-out minimization.

The percentage of the maximal welfare gain captured is slightly smaller in some instances

and slightly higher in others, depending on parameterization and cost scaling factor λ.

A case with strong correlation between ideal points and opt-out costs

Proposition 3 tells us that unweighted opt-out minimization is asymptotically optimal as

long as x∗ and ρ are distributed independently of η and β. In the preceding simulations,

it also performs well when η and β are mildly correlated with x∗ (correlation coefficients

ranging from −0.09 to −0.16). We now show through an additional simulation that a suffi-

ciently strong correlation between x∗ and η can significantly erode the limiting performance

of the unweighted procedure. However, weighted opt-out minimization continues to maxi-

mize welfare in the limit (as Proposition 2 guarantees), and the asymptotic approximation

remains accurate even with relatively low opt-out rates.

For the case depicted in Figure 4, we introduce a strong correlation between η and

x∗ (correlation coefficient of 0.8).12 In particular, we assume the population falls into ten

groups indexed i ∈ 1, . . . , 10, each with equal mass. The cost scaling factor for each group,

ηi, simply equals i. Ideal points are Normally distributed with means µi = 5 i
11 . Thus,

the ideal point for group 10 is ten times as large as for group 1, and group 10 faces ten

times the opt-out cost of group 1 for any given λ. For all workers, we assume β = 0.8 and

take the continuation utility function to be quadratic (with the same curvature) around the

ideal point. The top panel of the figure shows the welfare-maximizing, unweighted opt-out

minimizing, and weighted-opt-out-minimizing default options at various opt-out frequencies.

Because unweighted opt-out minimization attaches too much importance to the workers with

low as-if opt-out costs, it prescribes default contribution rates that are too low compared

to the welfare maximizing defaults. In contrast, weighted opt-out minimization coincides

with welfare maximization in the limit, and approximates the welfare-optimal solution to a

high degree of accuracy at much lower opt-out rates.

12Note that the relevant consideration is the absolute magnitude of the correlation coefficient, not the
sign.
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Figure 4: Weighted and unweighted opt-out minimization converge to different limits.
Simulations for a case in which the population consists of ten groups, indexed by i ∈
1, . . . , 10, each with equal mass. For group i, ideal points are Normally distributed with
mean µi =

5i
11 , and the cost scaling factor is ηi = i, so that ideal points and opt-out costs

are strongly correlated. The top panel displays the welfare-maximizing default DL(λ),
the weighted opt-out minimizing default DΩ(λ), and the unweighted opt-out minimizing
default DU

P (λ), plotted for λ that yield opt-out frequencies between 14% and 96% under
the welfare-maximizing default. The bottom panel displays the percentage of the potential
welfare gain achieved through the weighted opt-out-minimization policyDΩ(λ), and through
the unweighed opt-out minimization policy DU

P (λ). The correlation between the ideal point
and the cost parameter in this case is 0.7939.
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The bottom panel of the figure shows how weighted and unweighted opt-out minimiza-

tion perform relative to true welfare optimization. As in Figure 3 above, we express the

welfare gain achieved through weighted and unweighted opt-out minimization as a fraction

of the greatest possible gain. (In each case, we measure the gain relative to setting a default

rate of zero.) Weighted opt-out minimization performs extremely well: it acheives more

than 99% of the potential welfare gain as long as the opt-out rate exceeds 51%. In contrast,

unweighted opt-out minimization does not achieve 95% of the potential welfare gain at for

any opt-out rate.

8 Conclusion

In this paper, we have shown that, in addition to providing a practically implementable

criterion for setting default options, opt-out minimization also has a solid and general

normative foundation. In this concluding section, we briefly mention some potential avenues

for future work.

Further explorations of generality could usefully test the limits of our conclusions. The

following two issues merit additional scrutiny. First, while the framework used here po-

tentially accomodates many types of decision-making biases (Goldin and Reck 2019), other

important classes of bias may require different formulations. As an example, the model of

mechanistic (as opposed to optimal) inattention in Bernheim, Fradkin, and Popov (2015)

involves a different formulation. Second, as noted in Section 2, the literature has concep-

tualized opt-out costs as arising from the mechanics of implementation, rather than from

deliberation. Because the latter mechanism seems plausbile in many settings, it merits

further study. One can imagine a class of models in which the worker starts with a diffuse

prior over the best option and can refine that prior by acquiring a costly signal. A worker

whose prior aligns insufficiently with the default will incur the cost of signal aquisition, and

then potentially opt out depending on what the signal reveals. It would be of interest to

examine the robustness of our conclusions to these types of possibilities.

Finally, because default options are ubiquitous features of real-world choices, it is worth

examining applications other than contribution rates in employee-directed pension plans.

Some applications may raise issues that call for new modeling wrinkles and lead to additional

insights.
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Mathematical Appendix

We begin with a lemma that simplifies our analysis by guaranteeing that the set of ideal

points for which workers opt in (that is, accept the default) is an interval.

Lemma 1. For any given D, there is a unique interval [xl (D, θ, λ) , xh (D, θ, λ)] con-

taining D such that the worker weakly prefers the default to opt-out if and only if x∗ ∈

[xl (D, θ, λ) , xh (D, θ, λ)]. This preference is strict on the interior of the interval, and the

worker is indifferent at any boundary of the interval that is interior to X.

Proof. Consider any x1 < D and x2 ∈ (x1, D). Then

∆(D,x1, ρ) = V (x1, x1, ρ)− V (D,x1, ρ)

= [V (x1, x1, ρ)− V (x2, x1, ρ)] + [V (x2, x1, ρ)− V (D,x1, ρ)]

> V (x2, x1, ρ)− V (D,x1, ρ) = −

D̂

x2

V1(z, x1, ρ)dz

> −

D̂

x2

V1(z, x2, ρ)dz = V (x2, x2, ρ)− V (D,x2, ρ) = ∆(D,x2, ρ)

where the first inequality follows from the optimality of x1 for a worker with ideal point

x1, and the second follows from single crossing (V12 > 0) (Assumption 1, (iii)). It follows

that opt-out from D by x2 implies opt-out from D byt x1, and opt-in to D by x1 implies

opt-in to D by x2. An analogous argument establishes that a symmetric property holds for

x1 > D and x2 ∈ (D,x1). Furthermore, △(D,x, ρ) inherits continuity from V . Thus, the

opt-in set is a closed interval with indifference at the boundaries (whenever they are interior

to X) and strict preference on the interior. @

Lemma 2. Qλ (D, θ) is continuous in D and converges uniformly to Q(D, θ) as λ → 0.

Proof. Continuity of Qλ follows from the continuity of V and G. For subsequent reference,

define v11 = maxx∈X,ρ∈[ρ,ρ] V11(x, x, ρ). Because X× [ρ, ρ] is compact and V11 is continuous,

the maximum is well-defined. Adding the fact that V11(x, x, ρ) < 0 for all (x, ρ) ∈ X× [ρ, ρ],

we see that v11 < 0. Further, using Taylor’s theorem, we know there is some x̃(D,x, ρ) ∈

[min{D,x},max{D,x}] such that

∆(D,x, ρ) = −
1

2
V11(x̃(D,x, ρ), x, ρ)(D − x)2
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It will then be convenient to define

d(D,x, ρ) ≡ −
1

2
V11(x̃(D,x, ρ), x, ρ).

We note for subsequent reference that, trivially, x̃(D,D, ρ) = D, which implies d(D,D, ρ) ≡

−1
2V11(D,D, ρ).

The proof of uniform convergence proceeds in a series of steps. The arguments reference

the opt-in window, S(D, θ, λ) ≡ [xl(D, θ, λ), xh(D, θ, λ)], identified in Lemma 1. Through-

out, we use the symbol ⇉ to denote uniform convergence.

Step 1: For each λ > 0, there exists ν(λ) > 0 with limλ→0 ν(λ) = 0 such that, for all

D ∈ X, θ ∈ Θ, and x ∈ S(D, θ, λ), we have |D − x| ≤ ν(λ).

We establish the claim by constructing the requisite function:

ν(λ) ≡ max
(D,θ)∈X×Θ, x∈S(D,θ,λ)

|D − x|

Because the objective function is continuous and the contraint set is compact, the maximum

exists.

To complete Step 1, we must prove that limλ→0 ν(λ) = 0. Our strategy is to show that,

for all ε > 0, there exists λ∗(ε) such that λ < λ∗(ε) implies |D − x| < ε for all (D, θ) ∈ X×Θ

and x ∈ S(D, θ, λ). For such λ, it must then be the case that ν(λ) < ε.

For any ε > 0, we define Ψ(ε) ≡
{
(D,x, ρ) ∈ X2 ×

[
ρ, ρ
]∣
∣ |D − x| ≧ ε

}
and σ(ε) ≡

min(D,x,ρ)∈Ψ(ε)∆(D,x, ρ). Existence of σ(ε) follows from continuity of the objective function

and compactness of the constraint set. Because we have assumed that ∆(D,x, ρ) > 0

whenever D 6= x, we know that σ(ε) > 0. Let λ∗(ε) ≡
βσ(ε)

η > 0. For λ < λ∗(ε),

any x ∈ S(D, θ, λ) satisfies ∆(D,x, ρ) ≤ λη
β < λ∗(ε)η

β = σ(ε). But then we must have

(D,x, ρ) /∈ Ψ(ε), which means |D − x| < ε, as desired.

Step 2: There exists a function δ(λ) with limλ→0 δ(λ) = 0 such that for all D ∈ X,

θ ∈ Θ , and x ∈ S(D, θ, λ), we have

|f(D | θ)− f(x | θ)| < δ(λ) (9)

and

|d(D,D, ρ)− d(D,x, ρ)| < δ(λ). (10)

First consider f . Because F is twice-continuously differentiable and X and Θ are com-

pact, f is Lipschitz-continuous on X × Θ. Accordingly, there exists Mf > 0 such that

|f(D | θ)− f(x | θ)| < Mf |D − x|. In Step 1, we showed that |D − x| ≤ ν(λ) for all D ∈ X,

θ ∈ Θ, and x ∈ S(D, θ, λ). Therefore |f(D | θ)− f(x | θ)| < Mfν(λ) for all D ∈ X, θ ∈ Θ,

and x ∈ S(D, θ, λ).

Now consider d. Because V has continuous third derivatives and X and Θ are compact,

V11(D,x, ρ) is Lipschitz-continuous on X2×Θ. It follows that there exists M1 > 0 for which
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|V11(y, x, ρ)− V11(x, x, ρ)| < M1 |y − x| . (11)

as well as M2 > 0 for which

|V11(x, y, ρ)− V11(x, x, ρ)| < M2 |y − x| . (12)

Consequently,

|d(D,D, ρ)− d(D,x, ρ)| = 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,D, ρ)|

= 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,x, ρ) + V11(D,x, ρ)− V11(D,D, ρ)|

≤ 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,x, ρ)|+ 1

2 |V11(D,x, ρ)− V11(D,D, ρ)|

< M1 |x̃(D,x, ρ)− x|+M2 |D − x|

≤ (M1 +M2) |D − x| ,

(13)

where the second inequality follows from (11) and (12), and the final inequality follows from

the fact that x̃(D,x, ρ) ∈ [min{D,x},max{D,x}]. In Step 1, we showed that |D − x| ≤

ν(λ) for x ∈ S(D, θ, λ). Substituting into (13), we obtain |d(D,D, ρ)− d(D,x, ρ)| <

(M1 +M2) ν(λ) for x ∈ S(D, θ, λ).

To complete Step 2, we simply define δ(λ) ≡ max {Mf , (M1 +M2)} · ν(λ).

Step 3: Proof of the lemma.

From Step 2, we know that for all x ∈ S(D, θ, λ), we have

d(D,D, ρ)− δ(λ) < d(D,x, ρ) < d(D,D, ρ) + δ(λ)

Because d(D,D, ρ) ≥ −v11
2 > 0 and limλ→0 δ(λ) = 0, there exists λc such that λ < λc

implies d(D,D, ρ) − δ(λ) > 0 for all D ∈ X, ρ ∈
[
ρ, ρ
]
. It follows that, for λ < λc and all

x ∈ S(D, θ, λ),

0 < (d(D,D, ρ)− δ(λ)) (D − x)2 < ∆(D,x, ρ) < (d(D,D, ρ) + δ(λ)) (D − x)2

Accordingly, ∆(D,x, ρ) ≤ λη
β (i.e., x ∈ S(D, θ, λ)) implies (D − x)2 <

(
λη
β

)
1

d(D,D,ρ)−δ(λ) ,

and ∆(D,x, ρ) > λη
β (i.e., x /∈ S(D, θ, λ)) implies (D − x)2 >

(
λη
β

)
1

d(D,D,ρ)+δ(λ) . Thus,

S(D, θ, λ) ⊂

(

D −

((
λη

β

)
1

d(D,D, ρ)− δ(λ)

) 1
2

, D +

((
λη

β

)
1

d(D,D, ρ)− δ(λ)

) 1
2

)

(14)

S(D, θ, λ) ⊃

(

D −

((
λη

β

)
1

d(D,D, ρ) + δ(λ)

) 1
2

, D +

((
λη

β

)
1

d(D,D, ρ) + δ(λ)

) 1
2

)

(15)

Using these inclusion relations and along with the fact that f(D | θ)− δ(λ) < f(x | θ) <

f(D | θ) + δ(λ) for all x ∈ S(D, θ, λ), we then have
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2 (f(D | θ) + δ(λ))
((

λη
β

)
1

d(D,D,ρ)−δ(λ)

) 1
2

> Pr
[

∆(D,x, ρ) ≤ λη
β

∣
∣
∣ θ
]

> 2 (f(D | θ)− δ(λ))
((

λη
β

)
1

d(D,D,ρ)+δ(λ)

) 1
2

It thus follows that

(f(D | θ) + δ(λ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)−δ(λ)

) 1
2

> Qλ(D, θ)

> (f(D | θ)− δ(γ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)+2δ(λ)

) 1
2

As λ → 0, both sides converge to the same value: f(D | θ)
((

η
β

)
1

− 1
2
V11(D,D,ρ)

) 1
2
= Q(D, θ).

Therefore we know that Qλ(D, θ) converges pointwise to Q(D, θ).

To show that convergence is uniform, notice first that, by construction, Q(D, θ) lies

within the same bounds. We consider the difference between the upper and lower bounds

on Qλ(D, θ) and Q(D, θ):

ξ(D, θ, λ) = (f(D | θ) + δ(λ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)−δ(λ)

) 1
2

−(f(D | θ)− δ(γ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)+δ(λ)

) 1
2

> 0

Notice that this expression is increasing in f(D) and η, and decreasing in −V11(D,D, ρ)

and β. Because we have assumed that f is continuous, it obtains a maximum, fmax, on the

compact set X ×Θ. Thus,

ξ(D, θ, λ) <

(
η

β

) 1
2



(fmax + δ(λ))

(

1

−1
2v11 − δ(λ)

) 1
2

− (fmax − δ(λ))

(

1

−1
2v11 + δ(λ)

) 1
2



 ≡ ξ̄(λ)

The right-hand side of this expression converges to 0 as λ → 0, and does not depend upon

D or θ. Therefore, we have Qλ(D, θ) ⇉ Q(D, θ). @

Proof of Proposition 1 We claim that Ωλ(D) ⇉ Ω(D). To prove the claim, we write:

|Ωλ(D)− Ω(D)| ≤

ˆ

θ
η

∣
∣
∣
∣
1−

1

3β

∣
∣
∣
∣
|Qλ(D, θ)−Q(D, θ)| dG(θ)

≤ η̄φξ̄(λ)

where φ ≡ max
{∣
∣
∣1− 1

3β

∣
∣
∣ ,
∣
∣
∣1− 1

3β

∣
∣
∣

}

, and ξ̄(λ) is defined in the proof of Lemma 2. Uniform

convergence follows from the fact that ξ̄(λ) → 0 as λ → 0. Because Ωλ(D) ⇉ Ω(D) and
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Ω(D) is bounded on X,13 we know that the maximizers of Ωλ(D) converge to the maximizer

of Ω(D). Proposition 1 follows. @

Our next result concerns the limiting behavior of the following function:

Zλ(D, θ) ≡
E

[

∆(D,x, ρ) | θ,∆(D,x, ρ) ≤ λη
β

]

λ

Lemma 3. Zλ(D, θ) converges uniformly to η
3β as λ → 0.

Proof. Because 0 < E

[

∆(D,x, ρ)| θ,∆(D,x, ρ) ≤ λη
β

]

< λη
β for all λ, we know that

Zλ(D, θ) is bounded between 0 and η
β . Observe that:

Zλ(D, θ) =
E

[

∆(D,x, ρ)| θ,∆(D,x, ρ) ≤ λη
β

]

λ
=

E

[

∆(D,x, ρ)1
∆(D,x,ρ)≤λη

β

| θ

]

λPr
[

∆(D,x, ρ) ≤ λη
β | θ

] (16)

The denominator equals 2Qλ(D, θ)λ
3
2 .

Defining δ(λ) and λc as in the proof of Lemma 2, Step 3, as long as λ < λc (i.e., so that

d(D,D, ρ)− δ(λ) > 0 for all D ∈ D, ρ ∈
[
ρ, ρ
]
), the numerator of (16) is bounded above by:

E

[

∆(D,x, ρ)1
∆(D,x,ρ)≤λη

β

| θ

]

≤

D+
((

λη
β

)

1
d(D,D,ρ)−δ(λ)

) 1
2

ˆ

D−
((

λη
β

)

1
d(D,D,ρ)−δ(λ)

) 1
2

(d(D,D, ρ) + δ(λ)) (D − x)2 (f(D | θ) + δ(λ)) dx

=
1

3
(f(D | θ) + δ(λ))(d(D,D, ρ) + δ(λ))

(
λη

β

) 3
2

(

2

(d(D,D, ρ)− δ(λ))
3
2

)

=
2

3
Q(D, θ)

(

1 +
δ(λ)

f(D | θ)

)(

1 +
δ(λ)

d(D,D, ρ)

)

λ
3
2

(
η

β

)(

1−
δ(λ)

d(D,D, ρ)

)− 3
2

where the inequality in the first line follows from (9), (10), and (14) (given that the integrand

is strictly positive). It then follows from (16) that

Zλ(D, θ) ≤
1

3

(
Q(D, θ)

Qλ(D, θ)

)(

1 +
δ(λ)

f(D | θ)

)(

1 +
δ(λ)

d(D,D, ρ)

)(
η

β

)(

1−
δ(λ)

d(D,D, ρ)

)− 3
2

≡ Zλ(D, θ)

13This claim follows from the fact that f and η are bounded above, while V11 and β are bounded away
from zero.
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With f(D | θ) and d(D,D, ρ) bounded below by fmin > 0 and −1
2v11 > 0, respectively, it is

immediate that 1+ δ(λ)
f(D|θ) ⇉ 1, 1+ δ(λ)

d(D,D,ρ) ⇉ 1, and 1− δ(λ)
d(D,D,ρ) ⇉ 1 as λ → 0. From Lemma

2, we also know that Qλ(D, θ) ⇉ Q(D, θ). Because V11 is continuous, V11(D,D, ρ) achieves

a minimum, call it v11, on the compact set X ×
[
ρ, ρ
]
. Thus, 0 < fmin

(
η

β

) 1
2
(

1
− 1

2
v11

) 1
2
≤

Q(D, θ) ≤ fmax
(

η
β

) 1
2
(

1
− 1

2
v11

) 1
2
. In light of these bounds, it is straightforward to check

that Q(D,θ)
Qλ(D,θ) ⇉ 1 as λ → 0. Putting these observations together, we have Zλ(D,λ) ⇉ η

3β

as λ → 0.

We use a similar strategy to derive a lower bound on Zλ(D, θ). Because limλ→0 δ(λ) = 0,

there exists λf such that λ < λf implies fmin > δ(λ). As long as λ < λf (which ensures

f(D | θ)− δ(λ) > 0 for all D ∈ X), the numerator of (16) is bounded below by:

E

[

∆(D,x, ρ)1
∆(D,x,ρ)≤λη

β

| θ

]

≥

D+
((

λη
β

)

1
d(D,D,ρ)+δ(λ)

) 1
2

ˆ

D−
((

λη
β

)

1
d(D,D,ρ)+δ(λ)

) 1
2

(d(D,D, ρ)− δ(λ)) (D − x)2 (f(D | θ)− δ(λ)) dx

A parallel argument then implies that

Zλ(D, θ) ≥
1

3

(
Q(D, θ)

Qλ(D, θ)

)(

1−
δ(λ)

f(D | θ)

)(

1−
δ(λ)

d(D,D, ρ)

)(
η

β

)(

1 +
δ(λ)

d(D,D, ρ)

)− 3
2

≡ Zλ(D, θ)

Reasoning as for the upper bound, we have Zλ(D, θ) ⇉ η
3β as λ → 0.

Because the upper and lower bounds both converge uniformly to η
3β , we can infer that

Zλ(D, θ) ⇉ η
3β as λ → 0. @

Proof of Proposition 2 Notice that we can rewrite the function Wλ(D), which we

defined in Section 3.2, as follows:

Wλ(D) ≡

ˆ

θ

Qλ(D, θ) [η − Zλ(D, θ)] dG(θ)

It follows that

Wλ(D)− Ωλ(D) =

ˆ

θ

Qλ(D, θ)

(
η

3β
− Zλ(D, θ)

)

dG(θ),

Choosing λ sufficiently small so as to insure δ(λ) < min
{
−1

4v11, f
max
}
, we have
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0 < Qλ(D, θ) < (f(D | θ) + δ(λ))

(
η

β

) 1
2
(

1

d(D,D, ρ)− δ(λ)

) 1
2

< 4fmax

(
η

β

) 1
2
(

1

−v11

) 1
2

≡ C

Consequently,

|Wλ(D)− Ωλ(D)| ≤

ˆ

θ

C

∣
∣
∣
∣
Zλ(D, θ)−

η

3β

∣
∣
∣
∣
dG(θ).

According to Lemma 3, Zλ(D, θ) ⇉ η
3β , which means that for any ε > 0, there exists λε > 0

such that
∣
∣
∣Zλ(D, θ)− η

3β

∣
∣
∣ < ε for all λ < λε. But then we have

|Wλ(D)− Ωλ(D)| ≤

ˆ

θ

CεdG(θ) = Cε.

It follows that Wλ(D) − Ωλ(D) ⇉ 0 as λ → 0. Because Ωλ(D) ⇉ Ω(D), we then have

Wλ(D) ⇉ Ω(D). Because Ω(D) is bounded on X (see the proof of Proposition 1), we know

that the maximizers of Wλ(D) converge to the maximizer of Ω(D). Proposition 1 follows.

@

Proof of Proposition 4 In light of (4), we can write the total loss associated with any

value of γ and policy (D,K,B) as follows:

L(D, γ,K,B) =

xh

(

D, γ−K
β

)

ˆ

xl

(

D, γ−K
β

)

[∆(D,x)−B +K] dF (x)+

ˆ

x/∈
(

xl

(

D, γ−K
β

)

,xh

(

D, γ−K
β

))

[γ −B] dF (x).

From equation (3), we know that B =
´ xu

xl
KdF (x). It follows immediately that

L

(

D, γ,K,

ˆ xu

xl

KdF (x)

)

=

xh

(

D, γ−K
β

)

ˆ

xl

(

D, γ−K
β

)

[∆(D,x)− γ] dF (x) + γ.

Notice that the integrand is strictly negative for x ∈ (xl (D, γ) , xh (D, γ)) and strictly

positive for x /∈ [xl (D, γ) , xh (D, γ)]. It follows immediately that the optimum for any D

involves setting K = (1− β)γ, as claimed. @

Proof of Proposition 5 Define the opt-in set for given D, θ, λ.

S(D, θ, λ) ≡

{

y ∈ Y | ∆(D, y, ρ) ≤
λη

β

}
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Because we have not assumed single-crossing, we cannot guarantee that S(D, θ, λ) is an

interval. However, we can still begin with essentially the same step as in the proof of

Lemma 2.

Step 1: For each λ > 0, there exists ν(λ) > 0 with limλ→0 ν(λ) = 0 such that, for all

D ∈ X, θ ∈ Θ, and y ∈ S(D, θ, λ), we have |D − x∗(y)| ≤ ν(λ).

We establish the claim by constructing the requisite function:

ν(λ) ≡ max
(D,θ)∈X×Θ, y∈S(D,θ,λ)

|D − x∗(y)|

Because the objective function is continuous and the contraint set is easily shown to be

compact, the maximum exists.

To complete Step 1, we must prove that limλ→0 ν(λ) = 0. Our strategy is to show

that, for all ε > 0, there exists λ∗(ε) such that λ < λ∗(ε) implies |D − x∗(y)| < ε for all

(D, θ) ∈ X ×Θ and y ∈ S(D, θ, λ). For such λ, it must then be the case that ν(λ) < ε.

For any ε > 0, we define Ψ(ε) ≡
{
(D, y, ρ) ∈ X × Y ×

[
ρ, ρ
]∣
∣ |D − x∗(y)| ≧ ε

}
and

σ(ε) ≡ min(D,y,ρ)∈Ψ(ε)∆(D, y, ρ). Existence of σ(ε) follows from continuity of the objective

function and compactness of the constraint set. Because we have assumed that ∆(D, y, ρ) >

0 whenever D 6= x∗(y), we know that σ(ε) > 0. Let λ∗(ε) ≡
βσ(ε)

η > 0. For λ < λ∗(ε),

any y ∈ S(D, θ, λ) satisfies ∆(D, y, ρ) ≤ λη
β < λ∗(ε)η

β = σ(ε). But then we must have

(D,x, ρ) /∈ Ψ(ε), which means |D − x∗(y)| < ε, as desired.

Throughout the remaining steps of this proof, we will focus on λ sufficiently small so

that, for all z, z′ ∈ Z, [z − ν(λ), z + ν(λ)] ∩ [z′ − ν(λ), z′ + ν(λ)] = Ø. (This is possible

because Z is a finite set.) For any such λ, we will define Zν(λ) ≡ ∪z∈Z [z − ν(λ), z + ν(λ)]

and Xν(λ) ≡ X \ Zν(λ).

Step 2: limλ→0DΩ̂(λ) → z∗.

Recalling our assumption that the derivative of x∗(y) is uniformly bounded away from

zero outside Y0, we know there exists δ > 0 such that dx∗(y)
dy > δ for y ∈ Y \ Y0. Using Step

1, we then have:

Ω̂λ(D) ≤







ηfmax 2ν(λ)
δ if D ∈ Xν(λ)

Ω̂(z) + ηfmax 2ν(λ)
δ if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z

Let

ε∗ =
1

2

[

Ω̂(z∗)− max
z∈Z\z∗

Ω̂(z)

]

> 0.

We know there exists λ∗ such that, for all λ < λ∗,

ν(λ) <
δε∗

2ηfmax
.

For such λ, we have
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Ω̂λ(D) ≤







ε∗ if D ∈ Xν(λ)

Ω̂(z) + ε∗ if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z \ z∗

Now we claim that if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z \ z∗, then Ω̂λ(D) ≤

Ω̂λ(z
∗) − ε∗. By the definition of ε∗, we have Ω̂(z∗) ≥ Ω̂(z) + 2ε∗ for z ∈ Z \ z∗. From

the definitions of Ω̂ and Ω̂λ, we know that Ω̂λ(z
∗) ≥ Ω̂(z∗). Combining these inequalities,

we have Ω̂λ(z
∗) − ε∗ ≥ Ω̂(z) + ε∗. But we have just shown that, for such D, we have

Ω̂(z) + ε∗ ≥ Ω̂λ(D). Combining the last two inequalities yields the desired conclusion.

Next we claim that if D ∈ Xν(λ), then Ω̂λ(D) < Ω̂λ(z
∗). We know from the last claim

that, for z ∈ Z \ z∗, we have Ω̂λ(z) ≤ Ω̂λ(z
∗)− ε∗. Furthermore, Ω̂λ(z) > 0. It follows that

Ω̂λ(z
∗) ≥ Ω̂λ(z) + ε∗ > ε∗ ≥ Ω̂λ(D) for such D.

Putting these two claims together, we conclude that, for λ < λ∗, we must have

DΩ̂(λ) ∈ [z∗ − ν(λ), z∗ + ν(λ)]

(because we have shown that any other D yields a lower value of the objective function

than z∗). Letting λ → 0, we see that DΩ̂(λ) → z∗.

Step 3: limλ→0WΩ̂(λ) → z∗.

Equation (8) tells us that

Ŵλ(D) = Ω̂λ(D)−
´

θ Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

×
[
1
λE
(

∆(D,x∗(y), ρ) | ∆(D,x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)]

dG(θ),

from which it follows immediately that Ŵλ(D) ≤ Ω̂λ(D) for all D ∈ X.

We now claim that limλ→∞ Ŵλ(z
∗) = Ω̂(z∗). Because the probability term in the

integrand is bounded between 0 and 1, we can demonstrate this claim by showing that the

bracketed term in the integrand converges uniformly to zero. Using the fact that

E

(

∆(z∗, x∗(y), ρ) | ∆(z∗, x∗(y), ρ) ≤
λη

β

∣
∣
∣
∣
θ

)

≤
λη

β
≤

λη

β
,

we have

1
λE
(

∆(z∗, x∗(y), ρ) | ∆(z∗, x∗(y), ρ) ≤ λη
β

∣
∣
∣ θ
)

≤ 1
λ

0×Pr(∆(z∗,x∗(y),ρ)=0|θ)+
(

λη
β

)

Pr
(

0<∆(z∗,x∗(y),ρ)≤ λη
β

∣

∣

∣
θ
)

Pr
(

∆(z∗,x∗(y),ρ)≤ λη
β

∣

∣

∣
θ
)

< 2ηfmaxν(λ)
δβ Pr(x∗(y)=z∗|θ) ,

which implies the desired convergence property.

The preceding argument implies that there is some λ0 ∈ (0, λ∗) such that, for λ > λ0,
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we have Ŵλ(z
∗) ≥ Ω̂λ(z

∗)− ε∗. It follows that, for all D 6= [z∗ − ν(λ), z∗ + ν(λ)], we have

Ŵλ(D) ≤ Ω̂λ(D) < Ω̂λ(z
∗)− ε∗ ≤ Ŵλ(z

∗).

We then have, for λ < λ0,

DŴ (λ) ∈ [z∗ − ν(λ), z∗ + ν(λ)] .

Letting λ → 0, we see that DŴ (λ) → z∗. @
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