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Abstract

We examine the desirability of opt-out minimization, a well-known
and simple rule of thumb for setting default options such as passively
selected contribution rates in employee-directed pension plans. Existing
results suggest that this strategy is welfare-optimal only under highly re-
strictive assumptions. In this paper, we dispense with those assumptions
and demonstrate far more generally that opt-out minimization is approx-
imately optimal. Our main results require only a small number of weak
regularity conditions. We also conduct simulations to evaluate the accu-
racy of the approximation, as well as the robustness of our conclusions
with respect to additional dimensions of heterogeneity. We conclude that
opt-out minimization is not only practical, but also has a solid and general
normative foundation.

1 Introduction

In standard consumer theory, a decision problem consists of a menu of alterna-
tives. The consumer’s choice depends on the contents of the menu and nothing
else. In practice, there is always some item on the menu that serves as a de-
fault option, in the following sense: if the consumer fails to make a choice,
whether intentionally or by neglect, the default option will prevail. Standard
theory ignores default options because it presumes they have no bearing on the
consumer’s opportunities or preferences. But if the implementation of a choice
requires the expenditure of effort, the identity of the default option materially
impacts the contents of the opportunity set. In addition, default options may
create psychological framing effects that trigger behavioral responses.

The ubiquity of default options gives rise to important normative questions
about the optimal design of “choice architectures.” Indeed, Thaler and Sun-
stein (2008) point to the manipulation of default options as a core strategy for
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“nudging” people towards better choices.1 The literature has addressed these
questions primarily in the context of setting default contribution rates for 401(k)
plans, where a collection of empirical studies have revealed that changing the
default option has a powerful effect on employees’ contributions (see Madrian
and Shea (2001), or Beshears et al. (2018) for a summary of the subsequent
literature). It is worth emphasizing, however, that the same conceptual consid-
erations arise in other contexts, including widely studied topics such as asset
allocation in investment portfolios (Agnew and Szykman 2005) and employee
health insurance plan choice (Handel and Kolstad 2015).2

Within the economic literature, discussions of optimal default options begin
with Thaler and Sunstein (2003), who propose a simple rule of thumb: minimize
the fraction of consumers who opt out of the default. They do not attempt to
justify the criterion formally, and the ensuing literature establishes that opt-out
minimization is welfare-optimal only under special conditions. Carroll, Choi,
Laibson, Madrian, and Metrick (2009) consider a model in which present focus,
which they interpret as present bias, causes workers to place excessive weight
on opt-out costs. Under restrictive assumptions about the distribution of ideal
points (uniform in a given interval) and the utility function (losses are a fixed
quadratic function of the distance from the ideal point), they show that the
optimal default is either opt-out minimizing (for small bias and low dispersion
of preferences), an “offset-default” that forces some of the distribution into ac-
tive choice (for small bias but wide preference dispersion), or an extreme choice
that forces active decision making on all agents (for large bias). Goldin and
Reck (2019) consider a related model that admits a more general interpretation
of the bias parameter and its normative significance. Under similarly restric-
tive assumptions about the distribution of ideal points (symmetry and single-
peakedness) and the utility function (loss is a fixed symmetric and concave
function of the distance from the ideal point), they prove a similar result: there
exist both parameterizations under which forcing active choice is optimal and
ones under which opt-out minimization is optimal. In both cases, the opt-out
minimizing default option is also the mean, median, and mode of the ideal-point
distribution. Thus, neither study reveals whether opt-out minimization is de-
sirable per se in these settings, or merely because it coincides with these other
distributional features.

A somewhat different message emerges from Bernheim, Fradkin, and Popov
(2015). Instead of proving formal characterization results under specialized as-
sumptions, they examine the welfare effects of default options in empirically

1Bernheim and Taubinsky (2018) question the classification of variations in defaults as
nudges. In their taxonomy, a nudge is a change in the decision frame that does not change
opportunities. As noted above, if opting out is costly, changing the default does alter the
opportunity set, and hence it is not a nudge.

2While the existing literature has examined these issues primarily in contexts involving
government-regulated employee benefits, it is worth emphasizing that they arise in many
other contexts. A few examples illustrate the diversity of potential applications: the default
of equal division governs the allocation of assets for those who die intestate, “boilerplate”
legal contracts serve as defaults for many business transactions, and airlines sometimes make
default seat assignments when processing new reservations.
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parametrized models. In many instances, they find that the welfare-maximizing
and opt-out-minimizing default rates coincide. In other instances, the two di-
verge meaningfully. On the surface, these findings appear to corroborate the
impression one draws from Carroll et al. and Goldin and Reck, that the optimal-
ity of opt-out minimization is a special and fragile result. However, Bernheim,
Fradkin, and Popov also find that “the Thaler-Sunstein opt-out-minimization
criterion yields small welfare losses even when it is suboptimal; hence it is a
reasonable rule of thumb” (Bernheim, Fradkin, and Popov 2015, p. 2800). In
addition, Bernheim, Fradkin, and Popov argue that the optimality of extreme
unattractive defaults in settings with large biases may be artifactual, because it
ignores the possibility of using complementary policy instruments. Their simula-
tions encompass the possibility that the employer can also impose a dissipative
penalty for passive choice, such as “red tape” requirements. In their simula-
tions, the employer never uses the default to incentivize active choice when such
penalities are available.

These studies leave two critical questions unanswered. First, is the approxi-
mate optimality of the opt-out minimizing default noted in Bernheim, Fradkin,
and Popov a general property, or does it too depend on highly specialized as-
sumptions? Second, how is the approximate optimality of opt-out minimization
affected by the availability of penalties for passive default? With respect to the
second question, we depart from Bernheim, Fradkin, and Popov by considering
the natural possibility that the employer can impose non-dissipative penalties
for passive choice – in other words, the employer can collect fees from those who
fail to choose actively, and distribute the proceeds equally among all workers in
the form of higher wages, thereby leaving profits unchanged.3

Our analysis yields a surprisingly general case for the opt-out-minimization
criterion. We consider a model closely related to those studied in Carroll
et al. (2009), Bernheim, Fradkin, and Popov (2015), and Goldin and Reck
(2019), but we dispense with restrictive assumptions involving symmetry, single-
peakedness, and the like. Instead, we impose only a limited set of technical reg-
ularity conditions. We start by characterizing the limit of opt-out-minimizing
default options as opt-out costs shrink to zero.4 Then we characterize the limit
of welfare-maximizing default options, and show that the two are the same.
For settings in which the employer believes biases infect the worker’s opt-out
choices, we characterize the optimal fine, and then demonstrate that, subject
to the imposition of the fine, the same limiting result obtains. We then use
numerical simulations to address two limitations of our analysis. First, we
show that our characterization of optimal policy for the limiting case provides
a decent approximation for settings with meaningful social stakes. Second, we
examine the robustness of our conclusions with respect to the introduction of

3As we explain in Section 3, dissipative and non-dissipative penalties are feasible in set-
tings where opting out involves implementation costs, but not in settings where it involves
deliberation costs. It is therefore important to emphasize that the pertinent literature studies
the first type of settings, not the second.

4Choukhmane (2019)argues that prior literature on the size of opt-out costs has systemat-
ically overestimated these costs and finds “as-if” opt-out costs of around $250.
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additional and potentially important dimensions of worker heterogeneity that
are not in our basic model. The main lesson from the simulations is that the
limiting result generally serves as a good guide, and that opt-out-minimization
is approximately optimal.

Opt-out minimization has the advantage of being significantly easier to
achieve in practice than explicit welfare maximization. Employers can deter-
mine the former through “model free” experimentation or by using relatively
simple surveys, while the latter requires analytic sophistication. The approxi-
mate coincidence of opt-out-minimizing and welfare-maximizing defaults there-
fore enhances the feasibility of optimizing policy.

The remainder of the paper proceeds as follows. Section 2 details the model.
Section 3 develops our formal results, and Section 4 describes our simulations.
We close in Section 5 with some brief thoughts about directions for subsequent
research.

2 The model

For concreteness and to promote interpretability, we depict the problem of in-
terest as one of selecting a default contribution rate for workers participating
in an employer-base retirement savings plan. However, the model is sufficiently
general to apply in a wide range of contexts involving default options.

2.1 Workers

We use x to stand for the contribution rate of a worker (“he”) newly eligible to
participate in a plan sponsored by his employer (“she”). The worker chooses x
from a compact interval X. The plan’s provisions specify a default contribution
rate of D. We focus on the worker’s initial choice between accepting the default
and opting out to some x 6= D.

We assume the worker’s utility is additively separable in the contribution
rate (x), income (m), and the level of effort exerted to effectuate opt-out (c).
For the sake of analytic tractability, utility is linear in income and additively
separable in effort. Thus:

u(x, x∗,m, c) = β [V (x, x∗) +m]− Γ (c). (1)

Several remarks concerning equation (1) are in order.
First, notice that the function V depends not only on x, but also on a

parameter x∗, which we interpret as the contribution rate the worker regards
as ideal, in the sense that x = x∗ uniquely maximizes V (x, x∗). The ideal
contribution rate varies across the population, and its distribution is given by
F , a CDF, with density f .

Second, our model presupposes that opt-out is costly because the worker
must expend effort to implement any selection other than D. For example,
he must inform himself about selection procedures, fill out forms, visit his em-
ployer’s personnel office, and the like. Consistent with other theoretical work
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on this topic (Bernheim, Fradkin, and Popov (2015), Carroll et al. (2009), and
Goldin and Reck (2019)), we abstract from the interesting possibility that the
worker must expend cognitive effort to understand his own preferences (the
function V (·, x∗)). Accordingly, the effort level, c, is a binary variable, where
c = 0 indicates that the worker has accepted the default, and c = 1 indicates
that he has taken the necessary steps to opt out. We adopt the normalization
that Γ(0) = 0, and we define γ = Γ(1), which represents the utility penalty
associated with the effort of opting out.

Third, we apply a weighting factor, β, to the utility derived from retire-
ment contributions and money. We use this parameter to introduce inclinations
that the employer views as biases. We elaborate on the interpretation of this
parameter below when discussing the employer’s objectives.

In addition to specifying a default contribution rate D, the plan may also
provide workers with a lump-sum bonus, B, and specify a fixed fine, K, that
falls on those who make passive choices (i.e., accept the default). The purpose
of the fine will be to incentivize active choice; the purpose of the bonus will be
to maintain budget balance for the employer. To be clear, in a setting where
workers must expend effort to understand their own preferences, an incentive of
this type might simply induce them to go through the motions of opting out, for
example by selecting an option that differs only slightly from D without giving
serious consideration to his choice. It is therefore worth emphasizing that our
results on optimal fines, like other results in this literature, are applicable only
in settings where implementation rather than deliberation is costly.

For simplicity, the employer levies fines and disburses bonuses at the same
point in time. Each worker is infinitessimal, and therefore ignores any effect
of his own choice on the magnitude of the bonus through the budget balance
condition. These transfers flow to and from the worker’s income. Because utility
is linear in income, the level of the worker’s baseline income (before fines and
bonuses) is immaterial, so we take it to be zero.

The worker chooses x to maximize u(x, x∗, B − (1 − c)K, c), subject to the
constraint that c = 0 if x = D and c = 1 otherwise. When the worker opts out
(x 6= D), it is obviously in his interest to select x = x∗. Accordingly, we can
also treat him as choosing c ∈ {0, 1}, where these options lead to the following
payoffs:

β [(1− c)V (D,x∗) + cV (x∗, x∗)]− cγ − (1− c)K +B

The worker therefore opts out of the default whenever

β (V (x∗, x∗)− V (D,x∗))︸ ︷︷ ︸
:=∆(D,x∗)

≥ γ −K. (2)

Thus, the mass of agents who opt-out is given by Pr
[
∆(D,x∗) ≥ γ−K

β

]
. We

define the optimal opt-out function as follows: C(D,x∗) = 1 when equation (2)
is satisfied, and C(D,x∗) = 0 otherwise. The worker’s optimized utility is then
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U(D,x∗) =β [(1− C(D,x∗))V (D,x∗) + C(D,x∗)V (x∗, x∗)]

− C(D,x∗)γ − (1− C(D,x∗))K +B,

To prove our analytical results, we require V and F to satisfy a handful of
regularity properties. For V , we invoke the following assumption:

Assumption 1 The following properties hold for V : (i) (Differentiability) V
has well-defined and continuous first through third derivatives; (ii) (Concavity)
V (y, x) is strictly concave in y, and there exists vmin > 0 such that V11(y, x) <
−vmin for all y, x ∈ X; (iii) (Single Crossing) V12(y, x) > 0.

We also assume that F , the CDF for x∗, possesses the following regularity
properties:

Assumption 2 The following properties hold for F : (i) (Full Support) there
exists fmin > 0 such that for f(x), the density function of F , f(x) > fmin

holds for all x ∈ X; (ii) (Differentiability) F has well-defined and continuous
first and second derivatives.

2.2 The employer

The employer (or planner) cannot distinguish among workers based on x∗, their
ideals. Instead, she must select values of the default D, the bonus B, and the
fine K, that apply uniformly to everyone. She makes this choice subject to
budget balance:

B = K Pr

[
∆(D,x∗) <

γ −K
β

]
. (3)

Because utility is quasi-linear in income, varying B leaves the right-hand side
unchanged. Thus, we can think of the employer as choosing D and K, where
the resulting value of B is given by equation (3).

The employer is a utilitarian: she seeks to maximize the aggregate value of
workers’ utilities. However, she may disagree with the workers concerning the
assessment of their well-being. In particular, she evaluates each worker’s utility
based on the assumption that the normatively correct value of β is unity. Thus,
to the extent that β 6= 1, she is of the opinion that decision bias infects opt-out
decisions.

One potential interpretation of β < 1 is that the employer believes workers
are subject to “present bias:” she thinks they place “too much” weight on
effort costs, which are immediate, compared with retirement income, fines, and
bonuses, which are all delayed.5 Other interpretations are also possible; see
Bernheim, Fradkin, and Popov (2015) for an extended discussion. A key feature
of our framework is that the employer sees the bias as pertaining to the opt-out
decision, rather than to the choice of x conditional on opting out. In other words,

5See Bernheim and Taubinsky (2018) for a critical discussion of this normative perspective.
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she agrees that x∗ is the worker’s ideal choice. Whether this assumption is
reasonable depends on the context. For retirement savings accounts, companies
implement changes in contribution rates with a delay, so all consequences of
contribution elections aside from effort are in the future. Thus, to the extent
the employer believes workers are quasi-hyperbolic discounters and interprets
β as “present bias,” that bias would affect the opt-out decision, but not the
chosen contribution rate, precisely as we assume.

Under the preceding assumptions, the employer evaluates the worker’s well-
being according the following function:

Ũ(D,x∗) = [(1− C(D,x∗))V (D,x∗) + C(D,x∗)V (x∗, x∗)]

− C(D,x∗)γ − (1− C(D,x∗))K +B.

In other words, she recognizes that bias (potentially) governs workers’ opt-out
choices through C(D,x∗), but she ignores the bias parameter β when evaluating

welfare. Aggregate utility for all workers is then given by Ex∗

[
Ũ(D,x∗)

]
. That

expression serves as the employer’s objective function.

3 Analytic characterization of optimal defaults

Our analysis proceeds in three steps, all of which focus on the limit as opt-out
costs become small. First we characterize the opt-out minimizing default option.
Second, under the assumptions that the employer shares workers’ normative
judgments (β = 1) and is unable to impose fines for passive choice (K = 0), we
prove that the optimal policy entails approximate opt-out minimization. Third,
allowing for the possibility that the employer believes bias infects the workers’
opt-out decisions (β 6= 1), we prove that the optimal policy entials approximate
opt-out minimization along with positive fines and bonuses, and that the optimal
fine is in fact zero when there is no normative disagreement (β = 1). Because
these results all pertain to a limiting case, we undertake numerical simulations
in Section 4 to assess the generalizability of our conclusions to settings with
substantial (unbiased) effort costs, and also to address complexities not included
in our basic model.

In addition to stating and discussing our main results, we also illuminate
their logic by providing partial proofs in the text. The proofs are partial in the
sense that they rely on four lemmas for which we provide intuition in the text,
but (due to their technical nature) prove in the appendix.

We begin with a lemma that simplifies our analysis by guaranteeing that the
set of ideal points for which workers opt in (that is, accept the default) is an
interval. This property is a simple consequence of Single Crossing (Assumption
1, part (iii)). For the purpose of this lemma, we define τ ≡ γ−K

β (recalling that

the worker opts out iff ∆(D,x∗) ≥ τ).

Lemma 1 For any given D, there is a unique interval [xl (D, τ) , xh (D, τ)]
containing D such that the worker weakly prefers the default to opt-out if and
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only if x∗ ∈ [xl (D, τ) , xh (D, τ)]. This preference is strict on the interior of the
interval, and the worker is indifferent at any boundary of the interval that is
interior to X.

3.1 Opt-out minimization

As a preliminary matter, we establish existence of an opt-out minimizing default
option. To be clear, we interpret opt-out minimization as pertaining to settings
with no bias or fines for passive choice (β = 1, K = 0). Under our assumptions,
it is easy to check that the opt-in frequency, Pr[∆(D,x) < γ], varies continuously
with D given any γ. Accordingly, there exists a (possibly non-unique) default
option, DP (γ), that maximizes opt-in (and minimizes opt-out).

Our aim is to study the limiting behavior of the opt-out-minimizing default
option. A natural strategy would be to examine the limit of the functions
Pr[∆(D,x) < γ] as γ → 0, and to characterize the maximum of the limiting
function. That strategy is problematic because Pr[∆(D,x) < γ] coverges to zero
for all D. Therefore, to study the limiting behavior of the opt-out-minimizing
defaults, it is helpful to rescale the objective function. As γ shrinks, we need
to progressively scale it up just enough so that the resulting function neither
collapses to 0 nor explodes to infinity. As it turns out, we accomplish this
objective through the following normalization:

Q(D, γ) ≡ Pr[∆(D,x) < γ]

2γ
1
2

To characterize opt-out-minimizing defaults for small γ, we study howQ(D, γ)
behaves in the limit as γ → 0. The mass of workers who fall within the opt-in
interval depends on two features of the model: (i) the width of that interval,
which reflects the curvature of V , and (ii) the densities of the points in the
window. Taking a second-order approximation of 4(D,x) around x = D (and
noting that the first-order term is identically zero), we have

4(D,x) ≈ −1

2
V11(D,D) (D − x)

2

Because workers at the boundaries of the opt-in interval are indifferent be-
tween opting in and opting out (as described in Lemma 1), we know that

− 1
2V11(D,D) (D − xi)2 ≈ γ for i = l, h. We can use this relationship to ap-

proximate the width of each half-interval:

|D − xi| ≈
(

γ

− 1
2V11(D,D)

) 1
2

The full length of the opt-in interval is approximately twice the preceding term,
while the density within the interval, for small γ, is roughly constant at f(D). To
approximate the opt-in frequency, we multiply these terms together. Dividing
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once again by 2γ
1
2 to match the scale of Q(D, γ), we arrive at the following

normalized approximation of the opt-in frequency:

Q̃(D) ≡ f(D)

(
1

− 1
2V11(D,D)

) 1
2

The preceding intuitive derivation motivates the conjecture that Q(D, γ)
converges to Q̃(D) for small γ. The following lemma proves this conjecture and
establishes that convergence is in fact uniform in D:

Lemma 2 Q (D, γ) converges uniformly to Q̃(D) as γ → 0.

Now we define the opt-out-minimizing default rate, D∗, according to the
limiting opt-in probability function, Q̃(D):

D∗ ≡ arg max
D∈X

Q̃(D)

Given the compactness of X along with our continuity assumptions, the maxi-
mum exists. Cases with multiple maxima are non-generic and therefore of little
interest.6 To avoid some technical complications, we will therefore rule those
cases out by assumption.7

Assumption 3 D∗ is unique.

It is worth emphasizing that D∗ is not necessarily the point of maximal density.
If the curvature of V is the same at all ideal points – in other words, if V11(x, x)
does not vary with x – then plainly D∗ maximizes f . However, we will not
impose this curvature restriction.

In light of the fact that Q (D, γ) ⇒ Q̃(D) (Lemma 2) and the fact that
Q̃(D) is bounded on X,8 it follows immediately that the maximizers of Q (D, γ)
converge to the maximizer of Q̃ (D). Thus we obtain our characterization of the
limit of opt-out-minimizing default options:

Proposition 1 The opt-out-minimizing default option DP (γ) converges to D∗

as γ → 0.

6Starting from settings with multiple maxima, there are always small perturbations of f
or V that yield uniqueness. Starting from settings with unique equilibria, sufficiently small
perturbations of f and V preserve uniqueness. Precise formulations of these assertions require
considerable technical detail and are largely orthogonal to our main line of analysis.

7Non-uniqueness of D∗ would raise the possibility that opt-out-minimizing and welfare-
maximizing defaults might converge to different maximizers of Q̃(D), and hence not to each
other. We conjecture that suitably defined sets of ε-optima would nevertheless coincide in the
limit.

8This claim follows from the fact that f is bounded above and V11 is bounded away from
zero.
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3.2 Optimal default options with no bias and no fines

Next we characterize optimal defaults for small γ. For the purpose of this
section, we assume the employer treats the worker’s opt-out choices as unbiased
(β = 1), and we exclude the use of fines for passive choice (K = 0). In the next
section, we show that with β = 1, the employer would not use fines even if they
were available.

The employer’s problem, setting D to maximize Ex∗ [U(D,x∗)], is obviously
equivalent to maximizing

L(D, γ) ≡ Ex∗ [U(D,x∗)− V (x∗, x∗)] ,

which we interpret as the total welfare loss relative to the ideal outcome. For any
given x∗, the term in brackets is either −γ (if the worker incurs the opt-out cost
and selects his optimal contribution rate) or V (D,x∗)−V (x∗, x∗) = −∆(D,x∗)
(if he accepts the default). It follows that we can rewrite L(D, γ) as follows:

L(D, γ) =− (1− Pr [∆(D,x) < γ]) γ (4)

− Pr [∆(D,x) < γ]Ex∗ [∆(D,x) | ∆(D,x) < γ]

Under our assumptions, it is easy to check that this objective function varies
continuously with D. Accordingly, there exists a (possibly non-unique) default
rate DL (γ) that minimizes the welfare loss on the compact set X.

Our aim is to study the limiting behavior of the welfare-maximizing default
option. Once again, a natural strategy would be to examine the limit of the
functions L(D, γ) as γ → 0, and to characterize the maximum of the limiting
function. The problem, as with the case of Pr[∆(D,x) < γ], is that L(D, γ)
coverges to zero for all D. Therefore, to study the limiting behavior of the
welfare-maximizing defaults, it is helpful to rescale the objective function. In
this instance, to ensure it neither collapses to 0 nor explodes to infinity, we need
to both translate and rescale it. In particular, we define:

W (D, γ) ≡ L(D, γ) + γ

γ
3
2

Obviously, for any given γ, the maximizers of L and W coincide.
To make progress with our characterization, we employ the following decom-

position:

W (D, γ) ≡ Q(D, γ) [1− Z(D, γ)]

where

Z(D, γ) ≡ Ex∗ [∆(D,x) | ∆(D,x) < γ]

γ

We have already studied the limiting behavior of Q(D, γ), so here we examine
the limiting behavior of Z(D, γ). The following lemma provides the key step
for proving our main result:
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Lemma 3 Z(D, γ) converges uniformly to 1
3 as γ → 0.

Because we have made no parametric assumptions, the uniform convergence
of Z to a constant may seem surprising. To build intuition, consider the case
where ∆(D,x) is quadratic, so that ∆(D,x) = −v0(D− x)2 for some scalar v0,
and F is uniform, so that the density is some constant, f0. For convenience,
normalize the action so that D = 0. In that case,

Ex∗ [∆(D,x) | ∆(D,x) < γ]

γ
=

´√γ/v0
−
√
γ/v0

v0x
2f0dx

γ
´√γ/v0
−
√
γ/v0

f0dx

=

2
3v0f0

(
γ
v0

) 3
2

2γf0

(
γ
v0

) 1
2

=
1

3

To visualize this property, picture a parabola that achieves a minimum at the

origin and that passes through the points
(√

γ/v0, γ
)

and
(
−
√
γ/v0, γ

)
. Then

the area under the parabola on the interval
[
−
√
γ/v0,

√
γ/v0

]
constitutes one-

third of the area of the rectangle
[
−
√
γ/v0,

√
γ/v0

]
× [0, γ]. The intuition for

the lemma, which asserts that this property is general for small γ, is simply that
utility is approximately quadratic and density is approximately constant within
a small neighborhood of D.

At this point, we know that Q (D, γ)⇒ Q̃(D) (Lemma 2) and 1−Z(D, γ)⇒
2
3 (Lemma 3) as γ → 0. With Q̃(D) and Z(D, γ) bounded, we therefore have

W (D, γ) ≡ Q(D, γ) [1− Z(D, γ)] ⇒ 2
3 Q̃(D) on the compact set X. It fol-

lows that the maximizers of W (D, γ), and hence of L(D, γ), converge to the
maximizer of Q̃ (D). Thus we obtain our characterization of the limit of welfare-
maximizing default options:

Proposition 2 Assuming β = 1 and restricting K = B = 0, the welfare-
maximizing default option DL(γ) converges to D∗ as γ → 0.

Combining Propositions 1 and 2, we reach our main conclusion: the differ-
ence between the opt-out-minimizing and welfare-maximizing default options
vanishes as γ → 0. As noted in Section 4.2, it is straightforward to extend this
result to settings with heterogeneity in the opt-out cost γ, provided x∗ and γ
are uncorrelated.

3.3 Optimal default options with bias and fines

The final step in our theoretical characterization of optimal defaults is to extend
the analysis to cases with arbitrary β while also allowing for fines and bonuses.
With β < 1, the employer believes workers are excessively reluctant to make
active choices. One way to incentivize active choice is to set an unattractive
default. Carroll et al. (2009) show that this alternative is in fact optimal when
the decision bias is sufficiently severe, but their analysis does not contemplate
a role for fines. In our setting, the employer can in principle incentivize active

11



choice through various combinations of unattractive defaults and fines. We prove
that the problem is separable, in the sense that the optimal policy addresses
bias exclusively through fines, and then sets the default to balance the costs to
opt-outs and opt-ins exactly as in settings with no bias.

Formally, we decompose the general problem into two parts: first, we deter-
mine the optimal fine and bonus for arbitrary D; then we optimize over D. The
following lemma characterize the optimal fine and, by implication, the optimal
bonus for any fixed default option.

Lemma 4 Fixing D, the optimal fine is K∗ = (1− β)γ.

The intuition for Lemma 4 is that, by establishing a fine equal to the portion
of costs that the worker ignores ((1− β) γ), the employer corrects the “internal-
ity” that would otherwise give rise to a welfare loss. The literature on Behav-
ioral Public Economics contains a collection of parallel results; see Bernheim
and Taubinsky (2018).

Conditional on setting the optimal fine and bonus for each D, the objective
function reduces to the same one analyzed in the proof of Proposition 2. Indeed,
this property emerges directly from the arguments in the proof of Lemma 4.
Consequently, solving for the optimal default with arbitrary β conditional on
the optimal fine, call it Dβ

L(γ), is mathematically equivalent to solving for the
optimal default with β = 1 and no fine. Combining Lemma 4 with Proposition
3, we therefore arrive at the following extension of our main analytic result:

Proposition 3 For arbitrary β and optimal fines, the welfare-maximizing de-
fault option Dβ

L(γ) converges to D∗ as γ → 0.

It is important to emphasize that, in this setting, we interpret D∗ as the default
rate that minimizes opt out conditional on setting the optimal fine, K∗, rather
than the opt-out-minimizing default rate with K = 0. With that interpretation
in mind, we reach the general conclusion that, when fines are feasible, the dif-
ference between the opt-out-minimizing and welfare-maximizing default options
vanishes as γ → 0. Notice that Prop 3 extends Prop 2 for the case of no bias,
in that it shows the robustness of the latter result to the availability of fines,
which are not used in the optimum.

4 Numerical simulations

In this section, we use numerical simulations to address two limitations of the
preceding analysis. First, we have characterized optimal policy for small γ. As
γ converges to zero, the stakes implicated by the policy question also become
vanishingly small. It is therefore important to determine whether our character-
ization of optimal policy for the limiting case provides a decent approximation
for settings with meaningful social stakes. Second, for the sake of tractability,
we have assumed that heterogeneity among workers is limited to their ideal
points. It is also likely that workers differ in terms of the cost of opt-out, γ,
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and the bias parameter, β. Of greatest concern is the possibility that hetero-
geneity in β could overturn Lemma 4 in ways that undermine the implications
of Proposition 3. The main lesson from the simulations is that the limiting
result generally serves as a good approximation, and that opt-out-minimization
is approximately optimal.

4.1 Parametrizations

To conduct numerical simulations, we must replace the general functions V
and F with parametric specifications. For V , we consider two alternatives: a
quadratic utility function, which exhibits the symmetry property imposed in
the prior literature, and an asymmetric linear-exponential utility function.9 For
F , the CDF for the distribution of ideal points, we examine three alternatives:
1) a truncated Normal distribution, which exhibits the symmetry and single
peakedness properties imposed in the prior literature, 2) a highly asymmetric
distribution with a unique mode at a boundary value, and 3) an asymmetric
bimodal distribution. Across all simulations, the support of the ideal-point
distribution is the interval [0, 5].

Some of our simulations add heterogeneity with respect to β and γ. Extend-
ing the model to settings with heterogeneous γ requires us to revisit the techni-
cal definition of vanishing opt-out costs. Specifically, we define a worker-specific
opt-out proclivity parameter, ηi, which we assume is distributed according to
some CDF, G, with bounded support. We then introduce a scaling parameter
γ, such that the opt-out cost for worker i, call it γi, equals γηi. This formula-
tion allows us to examine the case of vanishing heterogeneous opt-out costs by
letting the common scaling parameter shrink to zero. In effect, this formulation
preserves the pattern of heterogeneity as opt-out costs decline. For the sake
of numerical tractability, we model heterogeneity in β and η by restricting at-
tention to settings with three potential present-bias factors and three potential
opt-out proclivities: βi ∈ {0.5, 0.8, 1} and ηi ∈ {0.5, 1, 2}.

In our basic simulations with heterogeneity in present bias and/or opt-out
costs, we assume that βi, ηi, and x∗i are distributed independently, and that the
marginal distributions of βi and ηi are uniform. However, in some simulations,
we allow for correlations among these parameters. Because the possibilities are
virtually limitless, we employ a simple correlational structure that allows us
to explore the impact of directional relationships between the variables. Inter-
preting a higher ideal point x∗ as a higher savings rate, it is natural to assume
that workers with smaller ideal points, on average, are more present biased and
have higher opt-out proclivities. Specfically, conditional on x∗ < 1.5, half the
workers have βi = 0.5 and/or ηi = 2 (depending on which parameters exhibit
heterogeneity); conditional on x ∈ [1.5, 3.5], half have βi = 0.8 and/or ηi = 1;
and conditional on x > 3.5, half have βi = 1 and/or ηi = 0.5. In each case, the
rest of the workers divide equally between the remaining parameter values.

9For a discussion of analytical properties and illustrative uses of linear-exponential utility
functions, see Martinez-Mora and Puy (2012).
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Table 1 summarizes the various parametric specifications and Figure 1 illus-
trates the distributions and utility functions used in the analysis.

4.2 Simulation results

Table 2 summarizes our simulation results.10 Each row represents a separate
simulation. Columns (1) through (5) provide details concerning the parametriza-
tion; Columns (6) through (13) present pertinent simulation results for different
values of the cost-scaling parameter γ. For each simulation, we choose the
value of the scaling-parameter to achieve the opt-out frequencies listed at the
top of the columns: 95%, 90%, 75%, and 40%.11 Converting values of γ into
their implied opt-out frequencies renders the size of the parameter more easily
interpretable.12

For each specification and opt-out frequency, the table reports the dis-
tance between the welfare-maximizing default option DL(γ) and the opt-out-
minimizing default option DP (γ), as well as the fraction of the potential welfare
gain, Ω(γ), achieved by the opt-out-minimizing default option relative to a
zero-default policy. Both of these metrics require some explanation.

First we clarify the interpretation and measurement of DP (γ). In Section
3, we interpreted D∗ in settings with bias (β 6= 1) as the limiting opt-out-
minimizing default rate conditional on setting the optimal fine, K∗. It is there-
fore appropriate to use a parallel definition for DP (γ). Notably, Lemma 4 as-
sures us that the optimal fine is independent of D. However, with heterogeneous
biases, the optimal fine can vary with D. Accordingly, we interpret DP (γ) more
generally as the opt-out-minimizing default rate conditional on setting the op-
timal fine for each D. Thus, for each simulation, we first find the default DL(γ)
and fine K∗ that maximize welfare, then we minimize opt-out for the same γ
using the value of K∗ obtained in the previous step. In Table 2, we then report
the absolute value of the difference between the two defaults thus computed,
|DL(γ)−DP (γ)|.

To compute Ω(γ), we first evaluate the welfare gain achieved by the welfare-
optimal policy relative to a baseline scenario in which the default is non-participation
(D = 0): L (DL(γ), γ) − L(0, γ). Next we calculate the welfare gain achieved
by the opt-out minimizing policy relative to the same baseline: L (DP (γ), γ)−
L(0, γ). We then define Ω(γ) as the ratio of the second welfare gain to the first,

10We performed all simulations using Python3 and Scipy. We employ the Limited-Memory
approximation to the Broyden–Fletcher–Goldfarb–Shanno algorithm with Simplex Box con-
straints. We employ a grid-search over multiple starting points to ensure we reach a global
maximum rather than one of potentially many local maxima. We calculated all integrals
numerically using quadrature. We cross-checked all results in Julia using the COBYLA im-
plemented in the NLopt package, with multiple starting points. We employed a maximal
function value tolerance of 1e− 11 and maximal absolute quadrature error of 1e− 12.

11We select γ so that the opt-out rate under the welfare-maximizing default matches the
stated target rate. For the same γ, the opt-out minimizing default necessarily leads to lower
opt-out rates.

12By way of comparison, in the sample studied by Choukhmane (2019), opt-out rates in a
401(k) pension plan vary by tenure from about 20% to about 75%.
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Table 1: Utility Functions and Distribution Functions Used in Numerical Sim-
ulations

Name Function Parameterization

Quadratic V (x,D) = −α(x−D)2 α = 0.5

Linear-Exponential V (x,D) = − exp(α(x−D)) + α(x−D) + 1 α = 0.75

Table 1a): Utility functions used in the numerical simulations.

Distribution Mean Median Variance Maximand(s)

Truncated Normal
2.5 2.5 ≈ 0.911 2.5

f(x) = H ∗ φ (x− 2.5)

Right-peaked
3.3 ≈ 3.538 ≈ 1.389 5

f(x) = H ∗ x

Bimodal ≈ 2.408 ≈ 2.245 ≈ 0.583 {2, 3}
f(x) = H ∗

(
1

(x−3)2+ 1
10

+ 1
(x−2)2+ 1

20

)
Table 1b): Probability density functions f(x) for the distributions used in the
numerical simulations. For all distributions, the range is x ∼ [0, 5] and H is a
normalization constant that ensures the density sums to 1.

Heterogeneity? Distribution of β Distribution of η

No Heterogeneity Pr[β = 0.8] = 1 Pr[η = 1] = 1

Independence
Pr[β = 0.5] = 1/3 Pr[η = 0.5] = 1/3

Pr[β = 0.8] = 1/3 Pr[η = 1] = 1/3

Pr[β = 1] = 1/3 Pr[η = 2] = 1/3

Non-independence
Pr[β = 0.5] =

{
0.5 x < 1.5

0.25 x ≥ 1.5
Pr[η = 0.5] =

{
0.5 x < 1.5

0.25 x ≥ 1.5

Pr[β = 0.8] =

{
0.5 x ∈ [1.5, 3.5]

0.25 otherwise
Pr[η = 1] =

{
0.5 x ∈ [1.5, 3.5]

0.25 otherwise

Pr[β = 1] =

{
0.5 x > 3.5

0.25 x ≤ 3.5
Pr[η = 2] =

{
0.5 x > 3.5

0.25 x ≤ 3.5

Table 1c): Types of heterogeneity studied in the numerical simulations: 1) no
heterogeneity in β and η, 2) independent random heterogeneity in one or both
of β and η, and 3) heterogeneity in one or both of β and η, with dependence on
x.
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Figure 1: Utility Functions and Distribution Functions for Numerical Simula-
tions: Illustrations

0 1 2 3 4 5
D

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ut
ilit

y

Quadratic Utility, for x * = 2.5
Linear-Exponential Utility, for x * = 2.5

Figure 1a): Quadratic utility (in solid red) and linear-exponential asymmetric
utility (in dotted black) for defaults D ∈ [0, 5] given ideal point x∗ = 2.5.
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x
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f(x
)

Truncated Normal
Right-Peaked
Bimodal

Figure 1b): Density of ideal point x∗ over support x ∈ [0, 5] for the three
distributions studied: in solid red, the truncated Normal distribution, in
dotted black, the right-peaked distribution, and in dashed blue the bimodal
distribution.
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expressed as a percentage: Ω(γ) = 100%L(DP (γ),γ)−L(0,γ)
L(DL(γ),γ)−L(0,γ) .

The accuracy of the limiting approximation

The first step in our simulation analysis is to ask whether the theoretical char-
acterization of optimal policy (from Section 3), which describes the limiting
case, provides a reasonable approximation for settings with meaningful social
stakes. Pertinent results appear in Part A of Table 2, which encompasses simu-
lations in which heterogeneity is limited to ideal points. Several notable patterns
emerge. First, we see numerical corroboration of Proposition 2: in each case,
when γ is low enough to produce an opt-out frequency of 95%, DP (γ) and
DL(γ) are nearly identical. The maximal difference between the two is 0.0005
(which occurs for right-peaked preference distribution and quadratic utility),
which corresponds to only 0.04% of the standard deviation of the ideal points
x∗, and only 0.01% of its total range. The percent of the potential welfare gain
achieved through opt-out minimization, Ω(γ), is larger than 99.99 in all but one
case.

Second, for higher opt-out costs (lower opt-out rates), the correspondence
between the two defaults remains close. With 75% opt-out, the maximal dis-
tance between DP (γ) and DL(γ) (which again occurs for right-peaked preference
distribution and quadratic utility) is 0.0161, which corresponds to only 1.4% of
the standard deviation of x∗ and only 0.27% of its range. In that simulation, the
opt-out minimizing default achieves 99.83% of the total attainable welfare im-
provement. In other distribution/utility specifications the percentage of welfare
gain achieved by opt-out minimization is even greater. For the smallest opt-out
percentage considered in the table, 40%, the approximations remain surprisingly
good. The largest difference between DP (γ) and DL(γ) is just under 0.4, which
represents less than a third of a standard deviation, and in every case opt-out
minimization achieves at least 87.5% of the potential welfare gain; in fact, it
achieves more than 98% of the potential gain for two of the five specifications.

Figure 2, which focuses on the specification with an asymmetric linear-
exponential utility function along with a bimodal ideal-point distribution, shows
the relationship between DP (γ) and DL(γ) for γ ∈ [5e − 4, 0.25], which yields
opt-out frequencies between roughly 18% and 92%. Even with relatively low
opt-out frequencies (high opt-out costs), the divergence between the two default
rates is modest, and the percentage of the total potential welfare gain achieved
through opt-out minimization is high for parameters that produce opt-out rates
above 50%. An interesting feature of the figure is that neither the percent-
age welfare gain achieved nor the absolute distance between the two defaults is
monotonic in the welfare-maximizing opt-out percentage. As that percentage
rises from 20% and 45% (due to declining opt-out costs), we observe diver-
gence between the two defaults and a reduction in the percentage welfare gain
achieved. However, as we increase the welfare-maximizing opt-out rate further,
the two metrics behave as predicted by the theorem: for small cost parameters
(i.e., large opt-out rates), the two defaults converge, and opt-out minimization
leaves only a trivial portion of the potential welfare gains unrealized.
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Figure 2: Illustration of welfare-maximizing and opt-out-minimizing defaults.
The main panel shows the welfare-maximizing default DL(γ) and the opt-
out minimizing default DP (γ) (where the latter is conditional on the welfare-
maximizing fine K∗), plotted for γ ∈ [5e − 4, 0.25], which yields opt-out fre-
quencies between 18% and 92% for the welfare-maximizing default. The utility
function is linear-exponential, with asymmetry factor α = 0.75, the preference
density is bimodal with peaks at 2 and 3. The present bias parameter is β = 0.8
and opt-out costs are η = 1 for all agents. Detail Panels 1 and 2 reproduce the
main panel at higher resolution for opt-out frequencies closer to unity (γ close
to zero) and with a zoomed-in y-axis. The bottom panel displays the percentage
of the potential welfare gain achieved through the opt-out-minimization policy
(DP (γ),K∗) .
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Additional dimensions of heterogeneity

The second step in our simulation analysis is to ask whether our main findings
are robust with respect to the additional dimensions of heterogeneity.

We begin with heterogeneity in the opt-out cost parameter η. To the extent
η is unrelated to x∗, the population consists of a set of η-indexed subgroups
that are otherwise identical. If every group’s opt-out cost converges to zero via
the common scaling factor γ, then the group-specific optimal default options all
converge to D∗, and hence the population-wide optimal default rate should also
converge to D∗. Accordingly, the cases of greatest concern are those in which η
and x∗ are correlated.

Part B of Table 2 exhibits results for simulations in which the η terms
are heterogeneous but uncorrelated with x∗, while Part E displays results for
simulations in which these terms are correlated. For some specifications, small
discrepancies between DP (γ) and DL(γ) remain when opt-out costs are low (so
that the welfare-maximizing opt-out rate is 95%), but those differences are no
greater than 0.0075 assuming independence, and 0.0092 assuming correlation
(respectively, less than 0.6% and 0.8% of the standard deviation of x∗). In all
of these simulations, the opt-out minimizing default captures more than 99% of
the potential welfare gain. Even for the smallest opt-out percentage considered
in the table, 40%, the largest difference between DP (γ) and DL(γ) is just under
0.3, which represents roughly one-quarter of a standard deviation, and in every
case opt-out minimization achieves more than 94% of the potential welfare gain.

Next we turn to heterogeneity in β. Assuming the fine is optimized for
workers with some intermediate value of β, those with high β will opt out too
much and those with low β will opt out too little. Increasing (resp. reducing) D
will tend to increase (resp. decrease) opt-out for those with low values of x∗, and
decrease (resp. increase) opt-out for those with high values of x∗. Consequently,
it is reasonable to conjecture that the desirability of shifting D in either direction
from D∗ depends on the existence of correlation between x∗ and β, a possibility
that our simulations encompass.

Part C of Table 2 exhibits simulation results for specifications with hetero-
geneity in β but without correlation between β and x∗, while part F studies cases
with correlation. Once again, we see only modest divergence between DP (γ)
and DL(γ) for large opt-out costs (i.e., with a welfare-maximizing opt-out rate
of 40%). The largest such distance, 0.370, represents less than one-third of the
standard deviation of x∗. Moreover, opt-out minimization achieves at least 89%
of the potential welfare gain, and in five of the ten simulations that fraction ex-
ceeds 98%. The modest discrepancies between DP (γ) and DL(γ) shrink rapidly
as opt-out costs fall (and opt-out frequencies rise). For example, in simulations
with a 75% opt-out rate, the difference is always less than 0.13 (roughly 11%
of a standard deviation), and opt-out minimization achieves more than 96% of
the potential welfare gains in every simulation.

Parts D and G of Table 2 exhibit simulation results for specifications with
heterogeneity in both β and η, respectively without and with correlation between
β and η on the one hand and x∗ on the other. In terms of the magnitudes of the
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discrepancies between DP (γ) and DL(γ) and the values of Ω(γ), the results are
similar to those displayed in Parts B, C, E, and F of the table, which pertain
to simulations with heterogeneity in either η or β, but not both.

5 Conclusion

In this paper, we have shown that, in addition to providing a practically imple-
mentable criterion for setting default options, opt-out minimization also has a
solid and general normative foundation. In this concluding section, we briefly
mention some potential avenues for future work.

Further explorations of generality could usefully test the limits of our con-
clusions. The following two issues merit additional scrutiny. First, while the
framework used here potentially accomodates many types of decision-making
biases (Goldin and Reck 2019), other important classes of bias may require dif-
ferent formulations. As an example, the model of mechanistic (as opposed to
optimal) inattention in Bernheim, Fradkin, and Popov (2015) involves a differ-
ent formulation. Second, as noted in Section 2, the literature has conceptualized
opt-out costs as arising from the mechanics of implementation, rather than from
deliberation. Because the latter mechanism seems plausbile in many settings,
it merits further study. One can imagine a class of models in which the worker
starts with a diffuse prior over the best default rate and can refine that prior
by acquiring a costly signal. A worker whose prior aligns insufficiently with
the default will incur the cost of signal aquisition, and then potentially opt out
depending on what the signal reveals. It would be of interest to examine the
robustness of our conclusions to these types of possibilities.

Finally, because default options are ubiquitous features of real-world choices,
it is worth examining applications other than contribution rates in employee-
directed pension plans. Some applications may raise issues that call for new
modeling wrinkles and lead to additional insights.
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A Mathematical Appendix

In this appendix, we prove the four lemmas stated in the main text. The proofs
of the three proposition follow directly from the lemmas by the arguments given
in the text.

Proof of Lemma 1
Consider any x1 < D and x2 ∈ (x1, D). Then

∆(D,x1) = V (x1, x1)− V (D,x1) = −
D̂

x1

V1(z, x1)dz

> −
D̂

x2

V1(z, x1)dz > −
D̂

x2

V1(z, x2)dz = V (x2, x2)− V (D,x2) = ∆(D,x2)

where the first inequality follows from the concavity of V (Assumption 1, (ii))
(which ensures V1(z, x1) < 0 for z ∈ (x1, D)), and the second follows from single
crossing (V12 > 0) (Assumption 1, (iii)). It follows that opt-out at x2 implies
opt-out at x1, and opt-in at x1 implies opt-in at x2. An analogous argument
establishes that a symmetric property holds for x1 > D and x2 ∈ (D,x1).
Furthermore, 4(D,x) inherits continuity from V . Thus, the opt-in set is a
closed interval with indifference at the boundaries (whenever they are interior
to X) and strict preference on the interior. @

Proof of Lemma 2
The proof proceeds in a series of steps. The first step references the opt-in

window, S(D, γ) ≡ [xl(D, γ), xh(D, γ)]. Throughout, we use the symbol ⇒ to
denote uniform convergence.

Step 1: |S(D, γ)|⇒ 0 as γ → 0.
Using Taylor’s theorem, we know there is some x̃(D,x) ∈ [D,x] such that13

∆(D,x) = −1

2
V11(x̃(D,x), x)(D − x)2

It will be convenient to define

d(D,x) ≡ −1

2
V11(x̃(D,x), x)

so that ∆(D,x) = d(D,x) (D − x)
2
. Under part (ii) of Assumption 1, we have

d(D,x) > vmin

2 > 0 for all D, x.
Next define

S0(D, γ) ≡ [D − ω(γ), D + ω(γ)]

where

ω(γ) ≡
(

2γ

vmin

) 1
2

13In applying the theorem, we have used the fact that V1(x, x) = 0.
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We claim that S(D, γ) ⊂ S0(D, γ). Consider any x ∈ S(D, γ). Then, using our
exact second-order approximation, we have d(D,x)(D−x)2 < γ. Using the fact

that d(D,x) > vmin

2 for all D,x, we see that vmin

2 (D − x)2 < γ. It then follows
immediately that x ∈ S0(D, γ).

Now observe that

|S(D, γ)| ≤
∣∣S0(D, γ)

∣∣ ≤ 2ω(γ).

Notice that this term vanishes uniformly over D as γ → 0.
Step 2: There exists a function δ(γ) with limγ→0 δ(γ) = 0 such that, for all

D ∈ X and x ∈ S(D, γ), we have

|f(D)− f(x)| < δ(γ) (5)

and
|d(D,D)− d(D,x)| < δ(γ) (6)

.
First consider f . Because F is twice-continuously differentiable and X is

compact, f is Lipschitz-continuous on X. Accordingly, there exists Kf > 0 such
that |f(D)− f(x)| < Kf |D − x|. In Step 1, we showed that |D − x| ≤ ω(γ) for
x ∈ S(D, γ). Therefore |f(D)− f(x)| < Kfω(γ) for x ∈ S(D, γ).

Now consider d. Because V has continuous third derivatives and X is com-
pact, V11 is Lipschitz-continuous on X2. Accordingly, there exists Kv > 0 such
that

|d(D,D)− d(D,x)| = 1

2
|V11(x̃(D,x), x)− V11(D,D)| < Kv |D − x̃(D,x)| (7)

For x ∈ S(D, γ), we have x̃(D,x) ∈ [D,x] ⊆ S(D, γ), where the set inclu-
sion follows from Lemma 1. In Step 1, we showed that |D − x′| ≤ ω(γ)
for x′ ∈ S(D, γ). Setting x′ = x̃(D,x) and substituting into (7), we obtain
|d(D,D)− d(D,x)| < Kvω(γ) for x ∈ S(D, γ).

To complete Step 2, we simply define δ(γ) ≡ max {Kf ,Kv} ·ω(γ).
Step 3: Proof of the lemma.
From Step 2, we know that for all x ∈ S(D, γ), we have d(D,D) − δ(γ) <

d(D,x) < d(D,D) + δ(γ). It follows that, for such x,

(d(D,D)− δ(γ)) (D − x)2 < ∆(D,x) < (d(D,D) + δ(γ)) (D − x)2

Accordingly, ∆(D,x) < γ implies (D − x)2 < γ
d(D,D)−δ(γ) , and (D − x)2 >

γ
d(D,D)−δ(γ) implies ∆(D,x) > γ. Thus,

S(D, γ) ⊂

(
D −

(
γ

d(D,D)− δ(γ)

) 1
2

, D +

(
γ

d(D,D)− δ(γ)

) 1
2

)
(8)

S(D, γ) ⊃

(
D −

(
γ

d(D,D) + δ(γ)

) 1
2

, D +

(
γ

d(D,D) + δ(γ)

) 1
2

)
(9)
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Using these inclusion relations and along with the fact that f(D) − δ(γ) <
f(x) < f(D) + δ(γ) for all x ∈ S(D, γ), we then have

2 (f(D) + δ(γ))

(
γ

d(D,D)− δ(γ)

) 1
2

> Pr[∆(D,x) < γ] > 2 (f(D)− δ(γ))

(
γ

d(D,D) + δ(γ)

) 1
2

It thus follows that

(f(D) + δ(γ))

(
1

−V11(D,D)− 2δ(γ)

) 1
2

> Q(D, γ) > (f(D)− δ(γ))

(
1

−V11(D,D) + 2δ(γ)

) 1
2

.

As γ → 0, both sides converge to the same value: f(D)
(

1
d(D,D)

) 1
2

= Q̃(D).

Therefore we know that Q(D, γ) converges pointwise to Q̃(D).

To show that convergence is uniform, notice first that Q̃(D) lies within the
same bounds. We consider the difference between the upper and lower bounds
on Q(D, γ) and Q̃(D):

ξ(D, γ) = (f(D)+δ(γ))

(
1

−V11(D,D)− 2δ(γ)

) 1
2

−(f(D)−δ(γ))

(
1

−V11(D,D) + 2δ(γ)

) 1
2

> 0

Notice that this expression is increasing in f(D) and decreasing in −V11(D,D).
Because we have assumed that f is continuous, it obtains a maximum, fmax,
on the compact set X. Thus,

ξ(D, γ) < (fmax + δ(γ))

(
1

vmin − 2δ(γ)

) 1
2

− (fmax − δ(γ))

(
1

vmin + 2δ(γ)

) 1
2

The right-hand side of this expression converges to 0 as γ → 0, and does not
depend upon D. Therefore, we have Q(D, γ)⇒ Q̃(D). @

Proof of Lemma 3
Because 0 < E [∆(D,x)|∆(D,x) < γ] < γ for all γ, we know that Z(D, γ) is

bounded between 0 and 1. Observe that:

Z(D, γ) =
E [∆(D,x)|∆(D,x) < γ]

γ
=
E
[
∆(D,x)1∆(D,x)<γ

]
γ Pr [∆(D,x) < γ]

(10)

The denominator equals Q(D)γ
3
2 .

Defining δ(D) as in the proof of Lemma 2, as long as γ is sufficiently small
to ensure δ(γ) < vmin, the numerator of (10) is bounded above by:

E
[
∆(D,x)1∆(D,x)<γ

]
≤

D+( γ
d(D,D)−δ(γ) )

1
2ˆ

D−( γ
d(D,D)−δ(γ) )

1
2

(d(D,D) + δ(γ)) (D − x)
2

(f(D) + δ(γ)) dx
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=
1

3
(f(D)+δ(γ))(d(D,D)+δ(γ))γ

3
2

(
1

(d(D,D)− δ(γ))
3
2

+
1

(d(D,D) + δ(γ))
3
2

)

=
1

3
Q̃(D)

(
1 +

δ(γ)

f(D)

)(
1 +

δ(γ)

d(D,D)

)
γ

3
2

((
1− δ(γ)

d(D,D)

)− 3
2

+

(
1 +

δ(γ)

d(D,D)

)− 3
2

)
where the inequality in the first line follows from (5), (6), and (8) (given that
the integrand is strictly positive). It then follows from (10) that

Z(D, γ) ≤ 1

3

(
Q̃(D)

Q(D, γ)

)(
1 +

δ(γ)

f(D)

)(
1 +

δ(γ)

d(D,D)

)
(

1− δ(γ)
d(D,D)

)− 3
2

+
(

1 + δ(γ)
d(D,D)

)− 3
2

2


≡ Z(D, γ)

With f(D) and d(D,D) bounded below by fmin > 0 and vmin > 0, respectively,

it is straightforward to check that 1+ δ(γ)
f(D) ⇒ 1, 1+ δ(γ)

d(D,D) ⇒ 1, and 1− δ(γ)
d(D,D) ⇒

1 as δ → 0. From Lemma 2, we also know that Q(D, γ)⇒ Q̃(D). Because V11is
continuous, −V11(D,D) achieves a maximum, call it vmax, on the compact

set X. Thus, 0 < fmin
(

1
vmax

) 1
2 ≤ Q̃(D) ≤ fmax

(
1

vmin

) 1
2 . In light of these

bounds, it is straightforward to check that Q̃(D)
Q(D,γ) ⇒ 1 as δ → 0. Putting these

observations together, we have Z(D, γ)⇒ 1
3 as γ → 0.

Similarly, as long as γ is sufficiently small to ensure δ(γ) < min
{
vmin, fmin

}
,

the numerator of (10) is bounded below by:

E
[
∆(D,x)1∆(D,x)<γ

]
≥

D+( γ
d(D,D)+δ(γ) )

1
2ˆ

D−( γ
d(D,D)+δ(γ) )

1
2

(d(D,D)− δ(γ)) (D − x)
2

(f(D)− δ(γ)) dx

A parallel argument then implies that

Z(D, γ) ≥ 1

3

(
Q̃(D)

Q(D, γ)

)(
1− δ(γ)

f(D)

)(
1− δ(γ)

d(D,D)

)
(

1− δ(γ)
d(D,D)

)− 3
2

+
(

1 + δ(γ)
d(D,D)

)− 3
2

2


≡ Z(D, γ)

Reasoning as for the upper bound, we have Z(D, γ)⇒ 1
3 as γ → 0.

Because the upper and lower bounds both converge uniformly to 1
2 , we can

infer that Z(D, γ)⇒ 1
3 as γ → 0. @

Proof of Lemma 4
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In light of (4), we can write the total loss associated with any value of γ and
policy (D,K,B) as follows:

L(D, γ,K,B) =

xh(D, γ−Kβ )ˆ

xl(D, γ−Kβ )

[∆(D,x)−B +K] dF (x)+

ˆ

x/∈(xl(D, γ−Kβ ),xh(D, γ−Kβ ))

[γ −B] dF (x).

(11)
From equation (3), we know that B =

´ xu
xl

KdF (x). It follows immediately that

L(D; γ) =

xh(D, γ−Kβ )ˆ

xl(D, γ−Kβ )

[∆(D,x)− γ] dF (x) + γ.

Notice that the integrand is strictly negative for x ∈ (xl (D, γ) , xh (D, γ)) and
strictly positive for x /∈ [xl (D, γ) , xh (D, γ)]. It follows immediately that the
optimum for any D involves setting K = (1− β)γ, as claimed. @
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