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1 Introduction

The growth of passive investing over the recent decades has been explosive. Total assets in index
mutual funds and exchange-traded funds (ETFs) rose from $400 billion in 2000 to $8.5 trillion in
2019, a larger than twentyfold increase. As of 2019, the assets managed by equity index mutual
funds and ETFs accounted for 50 percent of assets managed by all US equity funds, and for 15
percent of the US stock market as a whole. The S&P500 index attracts the bulk of equity index
investing: as of 2019, 42 percent of equity index mutual funds were tracking that index.'

Index funds provide households with a low-cost option to invest in financial markets. Their
effects on equilibrium asset prices and market efficiency are less well-understood. Suppose, in the
spirit of the CAPM, that index funds track the market portfolio, and that portfolio is held by
the average of active funds. If households switch from active funds uniformly into index funds,
then there should be no effect on asset prices. If instead passive investing grows because more
households access financial markets, then the market risk premium should drop. Hence, asset
prices should rise and expected returns should drop, and these effects should be more pronounced
for high CAPM-beta assets.

In this paper we study theoretically and empirically how the growth of passive investing im-
pacts stock prices. On the empirical side, we find that flows into equity index funds have sharply
different effects than the CAPM-implied ones. Flows raise disproportionately the prices of large-
capitalization stocks in the S&P500 index relative to the prices of the index’s small stocks. Hence,
flows are associated with a low return of a portfolio of small minus large index stocks. Conversely,
flows predict a high future return of the small-minus-large index portfolio. These effects run counter
to the CAPM because small stocks have higher CAPM beta than large stocks.? We find additionally
a strong size effect, namely, small stocks earn higher average returns than large stocks even after
adjusting for CAPM beta. Moreover, this effect is confined to stocks within the S&P500 index.

On the theoretical side, we show that in the absence of noise traders (or when these traders hold

the index), flows into passive funds have the CAPM-implied effects. In the presence of noise traders,

!These data are from Page 39 and Table 42 of the 2020 Investment Company Institute Factbook, and from Page
9 of the 2012 Investment Company Institute Factbook.
2See, for example, Fama and French (1992).



however, the effects differ sharply and align with our empirical findings. Intuitively, stocks in high
demand by noise traders are overvalued and enter with high weights into indices that weigh stocks
proportionately to their market capitalization. Conversely, stocks in low demand are undervalued
and enter with low weights. Hence, funds that track value-weighted indices overweight stocks in
high noise-trader demand and underweight stocks in low demand, compared to the weights they
would choose under portfolio optimization. When these funds experience inflows, they undertake
investments that exacerbate the price distortions.

Our model is set up in continuous time and builds on Buffa, Vayanos, and Woolley (2020).
Agents can trade one riskless asset, whose return is exogenous and constant over time, and mul-
tiple risky assets, whose prices are determined endogenously in equilibrium. Agents are of three
types: experts, who can invest in the riskless asset and in the risky assets without any constraints;
non-experts, whose risky-asset portfolio must track an index; and noise traders, who generate an
exogenous demand for the risky assets that is constant over time. An increase in the measure of
non-experts corresponds to more households accessing financial markets through index funds. An
increase in the measure of non-experts accompanied by an equal decrease in the measure of experts
corresponds to households switching from active into index funds.

In equilibrium, assets in high noise-trader demand trade at a high price. For these assets,
volatility per share is also high, and so is the price impact of buying additional shares. Hence, an
increase in the measure of non-experts, which triggers asset purchases, generates a larger percentage
price increase for the assets in high noise-trader demand. An increase in the measure of non-experts
that is accompanied by an equal decrease in the measure of experts generates an even stronger effect
in the same direction. Indeed, assets in high noise-trader demand attract less investment by experts
and are, therefore, less affected by a drop in the experts’ demand.

The relationship between noise-trader demand, volatility and price impact is easiest to under-
stand in the case where an asset is in such large demand that experts must short it in equilibrium.
A positive shock to the asset’s expected dividends causes the asset’s price to rise. The experts’
short position thus becomes larger and carries more risk. As a consequence, experts become more
willing to unwind their position and to buy the asset. Their buying pressure amplifies the price

rise, resulting in high volatility per share. The high volatility causes, in turn, high price impact.



Indeed, experts accommodate additional purchases of the asset by holding an even larger short
position. This exposes them to even more volatility, causing the price to rise with demand in a
convex manner.

We summarize our theoretical results into four hypotheses: (1) flows into index funds are
associated with a low return of a portfolio of small- relative to large-capitalization index stocks,
and predict a high future return of that portfolio; (2) flows into index funds raise the concentration of
index weights, as measured by the cross-sectional standard deviation or the Herfindahl-Hirschman
index, and conversely high concentration predicts a high future return of the small-minus-large
index portfolio; (3) the rise in index investing in the recent decades is associated with a high
average return of the small-minus-large index portfolio; and (4) this size effect is weaker for stocks
not in the index. We test the four hypotheses by taking the index to be the S&P500, and the
flows to be into index mutual funds and ETF's that track that index. We refer to these institutions
collectively as index funds. Our sample period is 2000-2019.

To test the first hypothesis, we examine how the return of the small-minus-large index portfolio
relates to contemporaneous and to lagged flows into index funds. Consistent with the model, we find
a negative relationship between the return and contemporaneous flows, and a positive relationship
between the return and lagged flows. The observed relationships are stronger when market volatility
is high, which is also consistent with the model.

To test the second hypothesis, we examine whether changes in the concentration of index
weights are positively related to flows into index funds. Consistent with the model, we find a
positive contemporaneous relationship between flows and changes in concentration. We further
examine whether changes in concentration relate to the subsequent return of the small-minus-large
index portfolio. High concentration of index weights could be a manifestation of large flows into
index funds or of high noise-trader demand for some index stocks, both of which are positively
related to the future return of the small-minus-large index portfolio. Consistent with the model,
we find a strong positive relationship between changes in concentration and the future return of
the small-minus-large index portfolio.

To test the third hypothesis, we form portfolios based on index weights. The decile portfolio

of lowest index weight stocks earns an average return of 10% per year above the decile portfolio of



highest index weight stocks. This difference cannot be explained by differences in CAPM beta.
The “within S&P500” size effect that we find differs from the traditional size effect (Banz (1981),
Fama and French (1992)) in important ways. First, the index weight-based portfolio spans (explains
away the abnormal returns of) the Fama and French SMB size portfolio, but not vice-versa. Second,
despite the previous findings of a strong January seasonality in returns of small stocks, we find no
evidence that the within S&P500 size effect exhibits a January seasonality. Third, and consistent
with the fourth hypothesis, while a stock’s weight in the S&P500 index is a strong and negative
predictor of its future return, such a relation is not statistically significant for non S&P500 index
stocks. Interestingly, for the period 1964-2000 when indexing was less prevalent, the relationship
between market capitalization and subsequent returns was similar for the two groups of stocks.
Our paper relates to various strands of the literature on mutual funds and indexing. One strand
examines empirically the effects of index additions, deletions and rebalancings. Harris and Gurel
(1986) and Shleifer (1986) find that when stocks are added to the S&P500 index, their prices rise,
with the effect being partly temporary. Goetzmann and Garry (1986) likewise find a price drop for
deleted stocks.® Barberis, Shleifer, and Wurgler (2005), Greenwood (2008) and Boyer (2011) find
that inclusion in an index renders stocks more correlated with the index. Our work differs because
we examine the effects of flows into index funds rather than of changes in index composition.
Another strand of related literature examines the effects of institutional flows. Most of these
papers focus on institutions as a whole or on actively managed mutual funds. Badrinath, Kale,
and Noe (1995) and Sias and Starks (1997) find that institutional trading can explain lead-lag
patterns in stock returns. They attribute their findings to institutions reacting to information
before other investors do, an explanation also supported by the findings in Chakravarty (2001).
Nofsinger and Sias (1999) and Wermers (1999) find that institutional trading is positively related

to contemporaneous stock returns and predicts positively future returns over a six-month to one-

3Subsequent papers on how index weight changes affect price levels include Beneish and Whaley (1996) and Lynch
and Mendenhall (1997), who find that part of the effect occurs after weight changes are announced and before they
are made; Kaul, Mehrotra, and Morck (2000) and Chang, Hong, and Liskovich (2015), who use mechanical index
adjustments to rule out explanations other than price pressure; Wurgler and Zhuravskaya (2002) and Petajisto (2011),
who find a larger effect for stocks with higher idiosyncratic risk; Chen, Noronha, and Singal (2004), who find a more
lasting effect for additions than for deletions; Greenwood (2005), who finds that index rebalancings affect not only
those stocks whose weight changes but also the stocks that covary highly with them; and Pandolfi and Williams
(2019) who examine how rebalancings of sovereign bond indices affect bond yields and exchange rates.



year horizon. Griffin, Harris, and Topaloglu (2003) and Sias, Starks, and Titman (2006) find that
the contemporaneous relationship remains positive in higher frequencies. Dasgupta, Prat, and
Verardo (2011) find that the predictive relationship turns negative over horizons longer than two
years. Coval and Stafford (2007) find that institutional trading in response to extreme flows is
associated with strong price reversals even over shorter horizons. A key question in these papers
is whether institutional trading causes price movements or whether it merely reflects them, either
by leading them, if institutions are better informed, or by lagging them, if institutions are positive
feedback traders. The evidence on price reversals is supportive of a causal relationship, i.e., price
pressure. Price pressure lies at the core of our analysis as well. Our analysis differs because it
concerns flows into index funds.

Relatively few papers study the effects of index fund flows. Goetzmann and Massa (2003) find
that investors sell index mutual funds after market declines, and these flows are positively related
to contemporaneous index returns but do not predict returns over the following week. More recent
papers focus on ETF flows. Closest to our work is Ben-David, Franzoni, and Moussawi (2018),
who find that trading by passive ETFs tend to destabilize the prices of the stocks they hold. Our
analysis differs because we focus on how index fund flows affect price levels in the cross section.

A final strand of related literature is theoretical. In Vayanos and Woolley (2013), active funds
exploit noise-trader induced price distortions. When investors move from active into index funds,
assets in high noise-trader demand become more expensive, while assets in low demand become
cheaper. Our model generates larger effects of index flows on assets in high noise-trader demand
even when the flows come from outside the asset market. In Kapur and Timmermann (2005) and
Cuoco and Kaniel (2011), asset managers receive a fee that depends on their performance relative to
an index, and in Brennan (1993), Basak and Pavlova (2013), Buffa and Hodor (2018) and Kashyap,
Kovrijnykh, Li, and Pavlova (2020), managers derive direct utility from their performance relative
to an index. These papers show that managers’ concerns with relative performance induce them to
buy assets in the index, causing their prices to rise. In our model, flows into index funds also cause
prices to rise, with the effect being stronger for assets with high index weights. In Chabakauri
and Rytchkov (2020), flows into index funds cause asset return volatilities to decline and have

ambiguous effects on return correlations.



2 Theory

Our model builds on Buffa, Vayanos, and Woolley (2020, BVW), who examine how limits on asset
managers’ deviations from market indices affect equilibrium prices. We focus on the special case of
BVW where the limits are infinitely tight, i.e., managers must track indices perfectly. We extend
BVW by allowing for a more general index and by examining how changes in the measure of index
investors affect prices. We first present our version of the BVW model and solve for equilibrium
prices. We then perform comparative statics on how changes in the measure of index investors

affect prices and expected returns, and derive our empirical hypotheses.

2.1 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to
r > 0. There are N risky assets. Asset n = 1,.., N pays a dividend flow D,,; per share and is in

supply of n, > 0 shares. The dividend flow D,,; follows the square-root process

dDpi = Ky, (D - Dnt) dt + oy, V DydByy, (21)

where D and {Kn,On}tn=1,. N are positive constants and By is a Brownian motion. Setting the
long-run mean of the dividend flow to a value D common across assets is without loss of generality
because we can redefine the number 7,, of shares of each asset. For simplicity, we take the Brownian
motions {Bpt}n=1,. n to be mutually independent, thus assuming that assets have independent
cashflows.

Denoting by Sy; the price of risky asset n, the asset’s return per share in excess of the riskless
rate is

dRS" = Dpidt + dSps — 7Spdt, (2.2)

nt —

and the asset’s return per dollar in excess of the riskless rate is

ARl Dydt + dS,
ARy, = it _ Dwdi +dSu ) (2.3)
Snt Snt




We refer to dR;" as share return, omitting that it is in excess of the riskless rate. We refer to dR;
as return, omitting that it is per dollar and in excess of the riskless rate.

Agents are competitive and form overlapping generations living over infinitesimal time intervals.
Each generation includes agents of three types. Experts observe the dividend flow and the supply of
all risky assets, and can invest in the riskless asset and in the risky assets without any constraints.
These agents can be interpreted as investors who invest with active managers. Non-experts do not
observe the dividend flow and the asset supply, and their risky-asset portfolio must track an index.
These agents can be interpreted as investors who invest with passive managers.* Noise traders
generate an exogenous asset demand, which is constant over time.

We denote by Wi, and Wo; the wealth of an expert and a non-expert, respectively, by z1,; and
zont the number of shares of risky asset n that these agents hold, and by u; and ps these agents’
measure. We denote by 7/, the number of shares of asset n included in the index. A non-expert thus
holds 29,y = A, shares of asset n, where A is a proportionality coefficient that the agent chooses
optimally. We denote by u,, the number of shares of asset n held by noise traders, and assume that
Uy, is smaller than the asset’s supply 7.

The index does not include some assets, possibly small-capitalization ones, and weighs the
remaining assets proportionately to their capitalization. We refer to the included and non-included
assets as index and non-index assets, respectively. Denoting by Z the set of index assets, n/, = 0 for
n ¢ Z. Since the weights of index assets n € Z are proportional to capitalization, included supply
7., and actual supply 7,, are proportional. Without loss of generality, we set them to be equal.

Experts and non-experts born at time t are endowed with wealth W. Their budget constraint

is

N N N
AW, = (W -y zmtSt> rdt+ Y zing(Dedt + dSp) = Wrdt + Y zimd R, (2.4)

n=1 n=1 n=1

where dW;; is the infinitesimal change in wealth over their life, ¢ = 1 for experts, and i = 2 for

4Agents’ choice to invest with active or passive managers could result from trading off the superior returns of
active managers with their higher fees, in the spirit of Grossman and Stiglitz (1980).



non-experts. They have mean-variance preferences
Ey(dW;) — gVart(dmt) (2.5)

over dWy, where p is a risk-aversion coefficient. The objective (2.5) can be derived from any VNM

utility u, as can be seen from the second-order Taylor expansion

1
w(W + dWy) = u(W) 4+ ' (W)dWi; + §u”(W)dW{i + o(dW3). (2.6)
Maximizing the conditional expectation of (2.6) is equivalent to maximizing (2.5), with p = —%.

Non-experts, who do not observe {Dy;}n—1 n, maximize the unconditional expectation of (2.6),

which is equivalent to maximizing that of (2.5). The latter expectation is
E(dWi) — gVar(dWit), (2.7)
because with infinitesimal wealth changes, E [Var,(dRS?)] = Var(dR3}).5

2.2 Equilibrium

We look for an equilibrium where the price S,; of risky asset n is a function of the asset’s div-
idend flow D,;. Denoting that function by S, (D) and assuming that it is twice continuously

differentiable, we can write the share return dRS? as

dR3" = Dydt + dSy(Dpt) — 7S (Dpt)dt

5We can write E [Vart(def{)} as
2
B [van(arih)] = B [m [(arity’] - [Bearih] ]

Since the first term in the square bracket is of order dt and the second of order dt?, we can keep only the first term
and find

& [Var, (@) = B [ [(aryt)?]| = & [@ry?]
We likewise find

Var(dR:f) = B[R] - [E@r:)] =& [@rih?].



_ 1
= |Dpt + /{n(D - Dnt)S;I(Dnt) + io}%DntS”(Dnt) - TSn( nt dt + OnvV ntS nt dBnta

(2.8)
where the second step follows from (2.1) and Ito’s lemma.
Using the budget constraint (2.4), we can write the objective (2.5) as
N p N
> zimBe(dRSY) -5 Z: > Var,(dR:M).
Experts maximize (2.5) over positions {zin¢}n=1,.n. The first-order condition is
E¢(dRS") = pz1nVary(dRD). (2.9)

The expected share return E,(dR:?) is the drift term in (2.8), and the share return variance
Vart(deZ@) is the square of the diffusion term. Non-experts maximize (2.7) over positions {zont }n=1,.. N

that satisfy 2o, = An,. This amounts to maximizing

N N
Z A E (dez}tL> - g Z () *Var(dR;) )
n=1 n=1

over \. The first-order condition is

N
Z n, E(dR") = pA Z(ng)QVar(dejg). (2.10)
n=1

Market clearing requires that the demand of experts, non-experts and noise traders equals the

supply coming from asset issuers:

1210t + 2Ty, + Uy = . (2.11)

— Mn—pa N, —Un

Solving for zi,¢ o

, and substituting into the first-order condition (2.9) of experts, we



find the following ordinary differential equation (ODE) for the function S,,(Dnt):

_ 1 _ A /o U
Dr+tin(D=Dt) S5 (Drt) + 5,07 Dt Sy (Dt ) =1 (D) = p “iunn 202 DS (Dnt)?. (2.12)
We look for an affine solution to the ODE (2.12):

Sn(Dnt) = ano + an1Dnt, (2.13)

where (ano,an1) are constant coefficients. Substituting (2.13) into (2.12) and identifying terms,
we compute (ano, an1). Substituting the affine solution into the first-order condition (2.10) of non-

experts, we compute A, completing our characterization of the equilibrium.

Proposition 2.1. In equilibrium, the price of risky asset n is given by Sp(Dnt) = ano + an1Dnt,

with
ano = @anlD (214)
T
2
CL’I’Ll = — , (215)
r+ Kknp + \/(r + Hn)Q + 410’771*%##0%

and where A > 0 solves

N
Znn 2= N+ p2) () (2.16)
n=1

The price depends on (My, Op, My Un, 11, 2) only through %ai, and is decreasing and

convex in that variable.

Nn— 2 AN, —Un o2

Nn—H2 A —Un
1 ©1 n

The dependence of the price on 02 is key for our analysis. The quantity
is the risk-adjusted net supply (RANS) of asset n that each expert holds in equilibrium. RANS
is equal to the supply 7, coming from the issuer, minus the demand usAn), and w, coming from

non-experts and noise traders, respectively. It is expressed in per-capita terms by dividing by the

measure g of experts, and is adjusted for risk by multiplying by o2. An asset n in small RANS

10



trades at a high price. Moreover, its price is highly sensitive to changes in the dividend flow D,,;.
Indeed, consider the extreme case in which RANS is negative, so experts are short the asset. An
increase in D,; tends to raise the asset’s price because it raises expected dividends. At the same
time, dividends become riskier due to the square-root specification of D,;. Since experts hold a
short position, the increase in risk makes them more willing to unwind their position and to buy
the asset. This amplifies the price rise. Thus, holding constant the volatility of dividends through
the parameter o2, assets in small RANS have high volatility per share.

The negative relationship between RANS and price is more pronounced for smaller values of
RANS, i.e., the price is a decreasing and convex function of RANS. Intuitively, convexity arises
because of the negative relationship between RANS and volatility per share holding o2 constant.
Since assets in small RANS have higher volatility per share than assets in large RANS, experts
require a larger price rise to accommodate a decline in RANS when RANS is small than when it is

large.

2.3 Comparative Statics

Our main comparative statics exercise is to increase the measure uo of non-experts holding the
measure 1 of experts constant. This exercise can be interpreted as a increase in asset-market
participation by households through index funds. We also perform an alternative exercise to increase
w2 holding the measure p1 4 o of experts and non-experts constant. This exercise can interpreted
as a switch by households from active to index funds. We examine how these changes affect the
size (market capitalization) of different risky assets, and the relationship between size and expected

returns.

2.3.1 Measuring Size and Expected Returns

We begin by constructing our measures of size and expected returns. We measure size by weight

in a capitalization-weighted portfolio. The weight of an asset n in a portfolio of assets in a set S is

nnSn(Dnt)
ZmGS nmsm(Dmt)

(2.17)

Wnt =

11



The weight wy,; varies over time because dividend flows do. With a large number of assets m in
S, independence of dividend flows D,,; and linearity of S,,(Dy,:) imply that the denominator of
(2.17) is 3,,cs MmSm(D) plus smaller-order terms.% Hence, the unconditional expectation of wi;

is approximately

N Sn (D)
E (wy) ~ _
Mn
T’+Nn+\/(r+ﬁn)2+4p%0%
- T ; (2.18)
ZmGS

!
T+”m+\/(T+Hm)2+4PWU$n

where the second equality follows by using (2.13) and the values of (ang,an1) in Proposition 2.1.
We refer to E(wyt) as index weight when the portfolio consists of the index assets (S = Z) and by
non-index weight when the portfolio consists of the non-index assets.

The unconditional expected return of risky asset n is

d sh
E(dRn:) =E (Rm>

Nn —H2 >\77;L_un 2

2t htin ;2 D,
= a2 E ( ! ) dt. (2.19)

7 Kn T
T+/€n+\/(r+ﬁn)2+4pn”_“2’u#o‘% w D+ Dt

where the second equality follows by keeping only the drift term in (2.8) and replacing it by its value
in (2.12), and the third equality follows by using (2.13) and the values of (ang,a,1) in Proposition
2.1. We use E(wy) and E(dR,,;) to measure portfolio weight and expected return in the propositions

derived in Sections 2.3.2 and 2.3.3.

2.3.2 Increase in Market Participation

When the measure ps of non-experts increases, their aggregate investment ps A in the index rises and

so do the prices of all index assets. Prices of non-index assets do not change because non-experts

5Denoting the number of assets in S by M, Zmes NmSm(Dmt) is equal to ZmGS NmSm (D), which is of order M,
plus a term which is of order v/ M, plus smaller-order terms.

12



do not invest in them.

Proposition 2.2. Suppose that the measure ps of non-experts increases, holding the measure py
of experts constant.

e The prices and expected returns of non-index assets do not change.
e Non-experts’ aggregate investment poX in the index rises.

o The prices of all index assets rise and their expected returns drop.

To derive cross-sectional implications for index assets, we focus on two polar opposite cases. In
the first case, all index assets have identical characteristics except for noise-trader demand. That
case captures a market where noise-trader demand is the main driver of cross-sectional variation.
We refer to it as the noise-trader model. In the second case, noise-trader demand for each index
asset is proportional to the asset’s supply. That case is equivalent to noise traders being absent
from the market and to supply being reduced proportionately across all index assets (i.e., multiplied
by a scalar smaller than one and equal across assets). For that reason, we refer to it as the no
noise-trader model. The two models differ in some of their predictions for expected returns and
their response to fund flows. Our empirical results are consistent with the noise-trader model, and

hence with the notion that index weights are biased.

Proposition 2.3. Suppose that all assets in the index have identical characteristics except for their
noise-trader demand (N, kn,0n) = (N, k,0) for alln € Z). Consider index assets n,m € I with
asset n being in larger demand (uy > up,).
o Asset n has higher index weight than asset m (E(wpt) > E(wme)) and earns lower expected
return (E(dRn:) < E(dRmt)).
o When the measure uo of non-experts increases, holding the measure 1 of experts constant:
— The price of asset n rises more in percentage terms than the price of asset m.

— The expected return difference E(dRyt) — E(dRyt) between assets m and n increases.

When all index assets have identical characteristics except for noise-trader demand, an asset

n in higher noise-trader demand than an asset m is in smaller risk-adjusted net supply (RANS).

13



Asset n must earn a lower expected return than asset m so that experts are induced to hold its
smaller RANS, and hence trades at a higher share price (S, > Syu¢). It has higher capitalization
because of its higher share price and because all assets are in the same number of shares. Hence,
when cross-sectional variation is driven only by noise-trader demand, index weight and expected
return are negatively related.

When there are flows into index funds, assets n and m experience a equal increase in demand (in
terms of number of shares) because the index includes an equal number of shares of both. Because
the price is convex in RANS (Proposition 2.1) and asset n is in smaller RANS than asset m, its
price rises more in percentage terms. Moreover, asset n’s expected return drops more, and hence

the difference in expected returns between assets m and n becomes larger.

Proposition 2.4. Suppose that for all assets in the index, noise-trader demand is proportional to
asset supply (u, = Un, with U < 1 for all m € T) and mean-reversion is the same (k, = k for
all n € T). Consider index assets n,m € I, with asset n being in smaller risk-adjusted supply
(77710721 < Tlmff%)-

o Asset n earns lower expected return than asset m (E(dRpt) < E(dRpt)). It has higher index

weight than asset m (E(wpt) > E(wpme) ) if

- 7“—!-/{—1-\/7“—}—/6 +4pU=thin 52

(2.20)

Nm (=D)im o
m T’+/<;—|—\/7"+n )2 4 dp—tn s Om

o When the measure puo of non-experts increases, holding the measure 1 of experts constant,
— The price of asset n rises less in percentage terms than the price of asset m.

— The expected return difference E(dRy) — E(dRyt) between assets m and n decreases.

When noise-trader demand is proportional to asset supply, an asset n in smaller risk-adjusted
supply than an asset m is also in smaller RANS. (Supply and net supply are proportional because
non-experts invest in the index and absorb a fixed fraction of the difference between supply and
noise-trader demand.) Asset n must earn a lower expected return than asset m so that experts are

induced to hold its smaller RANS, and hence trades at a higher share price (Sp: > Sp¢). It can
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have a higher or lower capitalization (number of shares times share price) depending on its supply.
If the smaller risk-adjusted supply of asset n is due to its smaller supply, then asset n has a lower
index weight. If instead it is due to lower risk, then asset n can have a higher index weight.

Suppose that there are flows into index funds. If asset n is in smaller supply than asset m,
then it experiences a smaller increase in demand (in terms of number of shares) because the index
includes fewer shares of asset n than of asset m. Because of the lower demand for asset n, that
asset’s price rises less in percentage terms than the price of asset m. The same conclusion holds
if asset n is less risky than asset m because a given increase in demand affects its price less. In
both cases, asset n’s expected return drops less than asset m, and hence the difference in expected
returns between assets m and n becomes smaller.

The effects of flows in Proposition 2.4 are in line with the CAPM. Indeed, since agents have
mean-variance preferences and there are no noise traders, the expected returns of the assets in the
index are given by the CAPM. Since asset n earns a lower expected return than asset m, it has a
lower CAPM beta. Hence, Proposition 2.4 implies that flows into index funds raise the price of the

low CAPM-beta asset n less than of the high CAPM-beta asset m.

2.3.3 Switch from Active to Passive

When the measure po of non-experts increases, holding the measure 1 + po of experts and non-
experts constant, all assets are affected, including non-index ones. Non-index assets drop in price
because there are fewer experts to invest in them and non-experts do not pick up the slack. To
characterize the cross-sectional effects, we focus on the same two special cases as in Section 2.3.2,
generalizing their definitions to include non-index assets. We derive counterparts of Propositions
2.3 and 2.4 in the Appendix (Propositions A.1 and A.2), and summarize them below.

Under the noise-trader model, an increase in po holding 1 + 2 constant has the same effects as
in Proposition 2.3: index assets in high noise-trader demand rise in price more in percentage terms
than index assets in low demand, and their relative expected return drops. Two mechanisms drive
these effects. As in Proposition 2.3, index assets in high noise-trader demand are more affected by
the rise in the demand of non-experts because the price is convex. Moreover, the same assets are less

affected by the drop in the demand of experts, because being in higher noise-trader demand they

15



attract less investment by experts. The difference in expected return between non-index assets in
high and low noise-trader demand moves in the same direction as for index assets. The movement
is smaller, however, under plausible sufficient conditions derived in Proposition A.1, because the
effect through non-expert demand (and price convexity) is absent.

Under the no noise-trader model, an increase in ps holding p; 4+ ps constant does not affect
index assets. This is because, in line with the CAPM, experts and non-experts hold the index,
and their total measure does not change. On the other hand, because demand for non-index assets
drops, and more so for assets in larger supply, the effects on those assets are the reverse of those in
Proposition 2.4. In particular, the difference in expected return between non-index assets in high

and low RANS rises.

2.3.4 Empirical Hypotheses

Our empirical hypotheses follow from the noise-trader model, analyzed in Propositions 2.3 and
A.1. Hypothesis 1 concerns the relationship between flows into index funds and the return of
small- relative to large-capitalization index assets. According to each of Propositions 2.3 and A.1,
index assets in higher noise-trader demand (i) have higher index weight, (ii) experience a higher
percentage price increase following flows into index funds, and (iii) experience a larger decline in
their future expected return following flows into index funds. Combining (i) and (ii) yields the
first statement in Hypothesis 1. Combining (i) and (iii) yields the second statement. The third
statement follows because the effects of flows on prices in Propositions 2.3 and A.1 converge to zero

when the volatility parameter o goes to zero.

Hypothesis 1. Flows into index funds during Period t are:

o Negatively related to the return of small- minus that of large-capitalization index assets during
Period t.
e Positively related to the return of small- minus that of large-capitalization index assets during

Periods t' > t.

These effects are stronger during times of high market volatility.

Hypothesis 2 concerns the relationship between the concentration in index weights on the one
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hand, and flows and returns on the other. Concentration reflects the extent to which the index
weight of large-capitalization index assets exceeds that of small-capitalization ones. In our empirical
analysis, we use two measures of concentration: the cross-sectional standard deviation of index
weights, and the Herfindahl-Hirschman Index of index weights.

Since flows into index funds cause the price of large-capitalization index assets to rise more in
percentage terms than the price of small-capitalization ones, they raise concentration. This yields
the first statement in Hypothesis 2. The second statement follows because high concentration can
arise following flows into index funds or following changes to noise-trader demand that make it
more heterogeneous across assets (higher for assets in high demand, and lower for assets in low
demand). In both cases, the future expected return of small-capitalization index assets increases

more relative to that of large-capitalization ones.

Hypothesis 2. High concentration of index weights during Period t is:
o Positively related to flows into index funds during Period t.
e Positively related to the return of small- minus that of large-capitalization index assets during

Periods t' > t.

Hypothesis 3 concerns the unconditional relationship between market capitalization and ex-
pected return for index assets. According to each of Propositions 2.3 and A.1, index assets in high
noise-trader demand have higher index weight than assets in low demand. Moreover, the former

assets earn lower expected return. Combining the two results yields Hypothesis 3.

Hypothesis 3. Small-capitalization index assets earn higher average return than large-capitalization

index assets.

Hypothesis 4 compares the relationship between market capitalization and expected return for
index and for non-index assets. This relationship is negative for index assets, and becomes more
negative following flows into index funds. Hence the rise in indexing should generate a more negative
relationship between market capitalization and expected return for index assets than for non-index

assets.

17



Hypothesis 4. The average return difference between small- and large-capitalization assets is

higher for index assets than for non-index assets.

Hypotheses 1-3 cannot hold simultaneously in the no noise-trader model. Suppose that assets
in lower risk-adjusted supply have higher index weight (i.e., (2.20) holds) and hence are the large-
capitalization assets. Proposition 2.4 implies that these assets experience a lower percentage price
increase following flows into index funds, contradicting Hypothesis 1. Suppose instead that assets
in lower risk-adjusted supply are the small-capitalization assets. Proposition 2.4 implies that they

earn lower expected return, contradicting Hypothesis 3.

3 Empirics

We test Hypotheses 1-4 by taking the index to be the S&P500, and the flows to be into index
mutual funds and ETFs tracking that index. The S&P500 index attracts the bulk of equity index
investing. We refer to index mutual funds and ETFs tracking the S&P500 index as index funds.
By considering only flows into index funds, we exclude the broader groups of institutions whose
performance is benchmarked against the S&P500 index. For example, many active managers are
evaluated against the S&P500 index or face tracking-error constraints limiting their deviation from

that index. We focus on index funds because it is easier to measure their assets.

3.1 Descriptive Statistics

Our data on stock returns and firm accounting variables come from the Center for Research in
Security Prices (CRSP) and Compustat. Our data on assets and flows for index mutual funds
tracking the S&P500 index come from the Investment Company Institute (ICI). ICI does not
report data on S&P500 ETFs. We instead collect those data from CRSP. CRSP reports data on
domestically listed ETFs. We include in our analysis only plain-vanilla ETFs, excluding alternative
ETFs such as leveraged ETFs, inverse ETFs and buffered ETFs. Our ETF sample consists of the
SPDR S&P 500 ETF Trust, the iShares Core S&P 500 ETF, and the Vanguard S&P 500 Index
Fund ETF, which collectively account for almost all of the plain-vanilla S&P500 ETF market.

Table 1 reports descriptive statistics for our main variables, for the sample of S&P500 stocks
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and the period July 2000 to June 2019. The descriptive statistics in Panel A of Table 1 concern
firm-level variables. The average stock earns an average monthly return of 0.91%, with a standard
deviation of 9.76%. It has an average market capitalization of $27 billion and an average index
weight of 0.18%. The distributions of market capitalization and index weight are skewed to the
right, with high skewness and kurtosis. In the Fama-MacBeth regressions, we use the natural
logarithm of index weight (log(IndexWeight)), which has skewness and kurtosis closer to zero.
We estimate a stock’s CAPM beta by regressing the stock’s monthly excess return on the excess
return of the S&P500 index on a rolling five-year basis. The average stock has CAPM beta close
to one. For each stock, we also compute the industry-adjusted book-to-market (BM) ratio, using
the procedure of Fama and French (1992) and Daniel, Grinblatt, Titman, and Wermers (1997);
the return momentum, measured by the past one-year return skipping the most recent month
(Ret_12,_2), following Jegadeesh and Titman (1993); and the short-term return reversal, measured
by the past one-month return (Ret_1).

In our sample period, the growth of index funds was substantial. As shown in Figure 1, the
assets of index funds more than tripled, growing from less than $500 billion in July 2000 to more
than $1.5 trillion in July 2019. As a result, the funds’ ownership of S&P500 stocks more than
doubled, expanding from 2.5% to more than 6%. Because index fund holdings exhibit a secular
trend during our sample period, we focus on fund flows in our empirical tests.

The descriptive statistics in Panel B of Table 1 concern aggregate variables, sourced at a quar-
terly frequency. The variables are: index fund holdings, fund flows, and the concentration of index
weights. We define index fund holdings at the end of quarter ¢ as the ratio of the value of index

fund net assets to the value of the S&P500 index (i.e., the combined value of the S&P500 firms):

$IndexAssets;

IndexFund; = $SP500
t

We use two measures of index fund flows. The first is the change in index fund holdings between

the end of quarters ¢ — 1 and ¢:

Flow; ; = IndexFund; — IndexFund;_1.
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The second is dollar flows in quarter ¢ divided by the index value at the end of that quarter:

$Flow;

Flows, = —~ 0%t
W2t = $5P500;

ICI reports dollar flows into index mutual funds, so we use that direct measure. ICI does not report
dollar flows into ETF's, so we infer these indirectly from CRSP using the change in ETF net assets

and the ETF return as:

$ETFFlow, = $SETF Assets; — SETF Assets;_1 x (1 + ETF Rety).

We measure concentration of index weights at the end of quarter ¢ by the cross-sectional stan-
dard deviation of index weights (Dispersion;) or alternatively by the Herfindahl-Hirschman Index

(HHT,).

3.2 Time-Series Relationships

Hypotheses 1 and 2 concern the time-series relationships between index fund flows and concentration
of index weights, respectively, with the return spread of the small-minus-large index portfolio. We
construct that portfolio in each quarter by forming decile portfolios based on size, with Decile 1
containing the smallest stocks in the S&P500 index (i.e., the stocks with the smallest index weights),
and Decile 10 containing the largest stocks (i.e., the stocks with the largest index weights). The
small-minus-large index portfolio consists of a long position in the stocks in Decile 1 combined with
an equal short position in the stocks in Decile 10. We construct that portfolio in both equally-

weighted and value-weighted terms.

3.2.1 Index Fund Flows

We test Hypothesis 1 using the regression specification:

SMBSPi,t = Q4 j + Yi,j,contemp X Flo'wj,contemp,t + Yi,j,past X Flowj,past,t + €i,g,ts
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where SM Bgp;; is the return of the small-minus-large S&P500 index portfolio in quarter ¢, with ¢ =
ew if the return is computed in equal-weighted terms, and ¢ = vw if the return is computed in value-
weighted terms; Flow; contemp,t are contemporaneous index fund flows, with j = 1,2 corresponding
to the two measures of flows; and Flow;pqs,; are past index fund flows. Hypothesis 1 implies

Yi,j,contemp < 0 and Yi,jpast > 0.

We define contemporaneous flows in quarter ¢ to also include flows in the previous quarter:
Flowj,contemp,t = FlOwjﬂg -+ FlOwjﬂg_l.

We define past flows to include flows in more distant quarters going back to one year and a half:

6
Flow;j past,t = E Flowj;i—;.
i=2

We include the previous quarter into contemporaneous flows to account for lags between flows and
trade. For example, when ETF sponsors accept cash from authorized participants (APs) to create
new ETF shares, they may not purchase the constituent securities immediately. Similarly, when
APs redeem ETF shares, ETF sponsors return the constituent securities to APs but APs may not
sell the securities immediately.

Table 2 shows the regression results. For both equal- and value-weighted returns, and for both
measures of flows, we find the pattern of regression coefficients consistent with Hypothesis 1.

The coefficient 7; j contemp On contemporaneous flows is negative across the four specifications
in Columns 1-4. The effects are statistically significant and economically large. For example, a
one standard deviation increase in Flow1 contemp,t is associated with a contemporaneous decline in
the return of the equally weighted small-minus-large index portfolio by 3.56% per quarter.” Hence,
flows into index funds tend to drive up the prices of large stocks in the S&P500 index by more than
the prices of small stocks in that index.

It is, of course, possible that a negative v; j contemp reflects reverse causality. Suppose that large

stocks in the S&P500 index perform well. Since they are the main driver of the index, the index

7A one standard deviation increase in Flow1,contemp,t 15 0.14% (= 0.10% X \/5) Multiplied by the slope coefficient
-25.47, it yields an effect of -3.56%.

21



performs well too. If investors are performance-chasers, then they invest more in the index. This
gives rise to a negative relationship between index fund flows and the return of the small-minus-
large index portfolio. To partly address this concern, we include the index return in the regressions.
The regression results remain similar.

The coefficient 7; j past On past flows is positive across the four specifications in Columns 1-4. It
is statistically significant, however, only for Flows pgst+ (Columns 3-4). That effect is economically
large. For example, a one standard deviation increase in Flows pest predicts an increase in the
future return of the equally weighted small-minus-large index portfolio by 2.82% per quarter.®

Our model implies that the relationship between index fund flows and the return of the small-
minus-large index portfolio should be stronger when volatility is high. In Columns 5-8 of Table 2,
we perform the same regressions as in Columns 1-4 for quarters when VIX is above average. In all
specifications, the results are consistent with Hypothesis 1 and are statistically significant despite
a smaller sample. Moreover, their economic significance strengthens. In particular, the coefficient

Vi,jpast o0 past flows is four times as large for Flows contemp,r and twice as large for Flows past,t-

3.2.2 Concentration of Index Weights

We test the first part of Hypothesis 2 using the regression specification

AConcentration; = o + v X Flowj.contemp,t + €t

where Concentration; is the concentration of index weights at the end of quarter ¢, measured by
Dispersion; or HHI;, and Flow; contemp,t are contemporaneous index fund flows, with j = 1,2.
The regression also includes the lagged equal- or value-weighted return of the small-minus-large
index portfolio, to control for momentum. The first part of Hypothesis 2 implies v; > 0.

Table 3 shows the regression results. The coefficient v; is positive and statistically significant
across all four specifications. This finding is consistent with the first part of the Hypothesis 2
that flows into index funds increase the concentration of index weights. It is also consistent with

Hypothesis 1 and the findings in Table 2, which indicate that flows into index funds are associated

8A one standard deviation increase in Flows past,t is 0.20% (=0.09% x +/5). Multiplied by the slope coefficient
14.01, it yields and effect of 2.82%.
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with a low return of the small-minus-large index portfolio. The lagged return of the small-minus-
large index portfolio is not statistically significant in the regressions.

We test the second part of Hypothesis 2 using the regression specification

SMBgpii = a; + Vit—n x Concentrations—n + €; 4,

where SM Bgp;+ is the return of the small-minus-large S&P500 index portfolio in quarter ¢, with
1 = ew if the return is computed in equal-weighted terms, and ¢ = vw if the return is computed in
value-weighted terms; and Concentration;_,, is the concentration of index weights in quarter ¢t —n,
measured by Dispersion;_, or HHI;_,. The coefficient v;;_, represents the predictive effect of
index concentration on the returns on the small-minus-large index portfolio n quarters ahead. The
second part of Hypothesis 2 implies 7; ¢, > 0.

Table 4 shows the regression results. The coefficient ~; ;—, is positive and statistically significant
across all four specifications. These results support the second part of the Hypothesis 2 that
concentration of index weights predicts the future return of the small-minus-large index portfolio.
The effects are economically large. For example, Column 1 shows that a one standard deviation
increase in Dispersion; predicts an increase in the return of the equally weighted small-minus-large
index portfolio two quarters ahead by 4.17% (= 0.03% x 139.2), with an adjusted R? of 19.1%.
Column 2 shows that HHI; has a similar predictive power for the future return of the small-
minus-large index portfolio. The predictive power of concentration carries through for six to seven

quarters ahead.

3.3 Unconditional Averages

Hypotheses 3 and 4 concern the unconditional averages of returns. Hypothesis 3 compares the
unconditional averages of returns across small and large stocks in the index. Hypothesis 4 examines

how this comparison differs across index and non-index stocks.
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3.3.1 Size Effect for Index Stocks

A simple way to test Hypothesis 3 is to form portfolios based on index weights for stocks in the
S&P500 index. At the end of each June from 2000 to 2018, we form decile portfolios based on size,
with Decile 1 containing the smallest stocks in the index (i.e., the stocks with the smallest index
weights), and Decile 10 containing the largest stocks (i.e., the stocks with the largest index weights).
We compute equal- and value-weighted returns on the ten portfolios and on the small-minus-large
index portfolio that buys stocks in Decile 1 and shorts stocks in Decile 10.

Table 5 shows a sizable return spread between small and large index stocks. On an equal-
weighted basis, stocks in Decile 1 earn average excess returns of 1.16% per month, while stocks in
Decile 10 earn 0.37% per month. The resulting return spread of 0.79% per month is statistically
significant at the 1% level. On a value-weighted basis, the return spread is even larger, 0.81% per
month.

The return spread between small and large index stocks cannot be explained by differences in
CAPM beta. After controlling for CAPM beta, the return spread (i.e., the spread in CAPM alpha)
becomes 0.58% per month on an equally-weighted basis, and 0.61% per month on a value-weighted
basis.

The “within S&P500” size effect that we find is reminiscent of the traditional size effect identified
by Banz (1981) and Fama and French (1992), among others. We explore the relationship between
the two effects through a series of tests.

A first test is to examine whether the payoff space of SM Bgp spans the payoff space of the
Fama and French SM Bprp factor designed to capture the equity size effect, or vice versa. We
do this by regressing the equal- or value-weighted return of SM Bgp on the return of SM Bpp,
and testing whether the intercept (alpha) is statistically different from zero. We then reverse the
regression and perform the same test on the new intercept.

Columns 1-4 of Table 6 show the results. When regressing SM Bgp on SM Brp, the alpha is
0.57% and 0.59% per month for SM Bgpe,, and SM Bgp., respectively. Both alphas are statisti-
cally significant. By contrast, when regressing SM Brr on SM Bgpew and SM Bgpy,, the alpha

is approximately -0.04% per month and statistically insignificant. These results indicate that the

24



small-minus-large index portfolio spans the traditional size factor, but not the other way around.

A second test is to examine whether the “within S&P500” size effect exhibits a strong January
seasonality, as previous papers document for the traditional size effect. Columns 5-8 of Table 6
show that the large average returns on the small-minus-large index portfolio are not associated
with a January seasonality. The intercepts in the regressions of SM Bgpe, and SM Bgpy, on
the January indicator variable are 0.76% and 0.77% per month, respectively, both statistically
significant; the slope coefficients for the January dummy are 0.42% and 0.54%, respectively, both
statistically insignificant. For SM Bpp, the intercept is 0.17% and the slope coefficient for the
January dummy 0.44%, both statistically insignificant.

To put the findings in Table 6 in historical perspective and connect them to previous papers,
we perform the same regressions for an earlier sample period ranging from July 1964 to June 2000.
The findings, reported in Table 7, show an entirely different picture. The returns on SM Bgpew,
SM Bspyyw, and SM Brp are closely related, rendering the alphas from the spanning tests statis-
tically insignificant. Moreover, there is a strong January seasonality that dominates the average
returns on SM Bgpew, SM Bgpyw, and SM Brp. In non-January months, the average returns are
statistically insignificant, but in January, the returns are sizable. The historical evidence reinforces
the notion that the “within S&P500” size effect that we identify is distinct from the traditional

size effect.

3.3.2 Size Effect for Index versus Non-Index Stocks

To test Hypothesis 4, we divide the universe of stocks available in CRSP and Compustat into two
sets: S&P500 index stocks and non S&P500 index stocks. For an index stock, we compute its index
weight by dividing the stock’s market capitalization by the total capitalization of the stocks in the
index. For a non-index stock, we compute an analogous portfolio weight, by dividing the stock’s
market capitalization by the total capitalization of non-index stocks. We then use the Fama and
MacBeth (1973) cross-sectional regression to test if the relationship between portfolio weight and
future returns is more negative within index stocks.

We start with index stocks. At the end of each June from 2000 to 2018, we compute the index

weight of each stock and use it to predict the stock’s monthly returns in the subsequent 12 months
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from July to next June. As additional predictors, we use the stock’s CAPM beta, industry-adjusted
book-to-market (BM) ratio, return momentum measured by the past one-year return skipping the
most recent month (Ret_12,_2), and short-term return reversal measured by the past one-month
return (Ret_q).

We report the results in Panel A of Table 8. Columns 1-5 shows univariate regressions of
stock return on each of the five predictors. Index weight is strongly negatively related to future
return, and is the only predictor that is statistically significant. Column 6 shows a multivariate
regression of stock return on all five predictors. After controlling for CAPM beta, book-to-market
ratio, return momentum and short-term return reversal, the negative relationship between index
weight and future return strengthens, with the t-statistic increasing from —2.95 in the univariate
regression to —3.45. It is noteworthy that the “within S&P500” size effect is distinct from the value
effect, as proxied by BM. For S&P500 stocks, index weight is a strong predictor of future returns
but BM is not.

We repeat the exercise with non-index stocks, and report the results in Panel B of Table 8.
Column 1 shows that the relationship between portfolio weight and future return is negative but
statistically insignificant, with a t-statistic of -0.80. In terms of economic significance, the slope
coefficient on portfolio weight among stocks outside the S&P500 index is only one fifth of that
among S&P500 stocks. Among other predictors, only short-term return reversal is statistically
significant.

We next test whether the mean of the Fama-MacBeth regression coefficient for Log(IndexW eight)
in Column 6 of Panel A (Yrndeaweight) equals that for Log(Port folioW eight) in Column 6 of Panel
B (Yportfolioweight). Consistent with Hypothesis 4, equality of the two coefficients is rejected, at
the 5% significance level.

To put the findings in Table 8 in historical perspective, we perform the same regressions for
an earlier sample period from July 1964 to June 2000. The findings, reported in Table 9, differ
from those in Table 8 in two important ways. First, the relationship between portfolio weight
and future return for non-index stocks is negative, statistically significant and close to that for
index stocks. The multivariate regression coefficients for index and non-index stocks are -0.118 and

-0.119, respectively, as shown in Column 6 of Panels A and B. This finding is consistent with the
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finding in Section 3.3.1 that SM Bgsp and SM Brr tend to be indistinguishable from each other in
the spanning test in the earlier sample. Second, the “outside S&P500” size effect diminishes over
time: the slope coefficient changes from -0.119 to 0.002, essentially becoming non-existent. On the
other hand, the “within S&P500” size effect increases over time: the slope coefficient changes from

-0.118 to -0.171, strengthening by almost one half.

3.3.3 Anomalies in the S&P500 Index

Our finding of a strong negative relationship between index weight and future return among stocks
in the S&P500 index is surprising for two reasons. First, S&P500 stocks are liquid and widely
followed by security analysts and institutional investors. Hence, there are reasons to believe that
they are efficiently priced. Consistent with this conjecture, the cross-sectional association between
the “anomaly” variables and stock returns tends to be stronger in small and micro-cap stocks (see,
e.g., Fama and French (2008)). Second, several studies have documented that the efficiency of the
stock market has increased over time, in the sense that some return anomalies seem to have gone
away (see, e.g., McLean and Pontiff (2016); Green, Hand, and Zhang (2017)). For example, Green,
Hand, and Zhang (2017) argue that only 12 out of 94 stock characteristics identified in previous
literature as predicting returns have predictive power for non-microcap stocks over the period 1980
to 2014. Against this backdrop, our post-millennium finding for a strong “within S&P500” size
effect is surprising.

To provide more context for our finding, we examine the predictive power of the 12 stock
characteristics identified by Green, Hand, and Zhang (2017) in our sample. We exclude two of
the characteristics that they identify, book-to-market ratio and short-term return reversal, as they
are examined in Table 8. This leaves us with 10 characteristics: cash holdings (cash), changes in
6-month momentum (chmom), changes in analyst coverage (chnanalyst), earnings announcement
returns (aer), number of earnings increases (nincr), ratio of R&D expenditures to market value
(rdve), return volatility (retvol), volatility of share turnover (std_turn), share turnover ratio (turn),
and number of zero trading days (zerotrade). We include three additional characteristics, following
Fama and French (2015): corporate investment and two proxies for profitability, gross profitability

(gma) and operating profitability (operof).
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We perform Fama-MacBeth regressions for the 13 characteristics, similar to the regressions in
Table 8. The results, shown in Table 10, indicate that for stocks in the S&P500 index, none of the

13 characteristics predicts returns over the period 2000 to 2019.

4 Conclusion

We study theoretically and empirically how the growth of passive investing impacts stock returns.
In a CAPM world, flows into equity index funds would not affect stock prices if the flows represent
a uniform switch from active to index funds. If instead the flows represent new investment in
the stock market, they would raise stock prices, with the impact being stronger for high CAPM-
beta stocks. We instead find empirically that flows into funds tracking the S&P500 index raise
disproportionately the prices of large-capitalization stocks in the index relative to the prices of the
index’s small stocks. Moreover, the flows predict a high future return of the small-minus-large
index portfolio. We find additionally a strong “within S&P500” size effect: a small-minus-large
portfolio of S&P500 stocks earns ten percent per year, while the return of the counterpart portfolio
of non-S&P500 stocks is smaller and statistically insignificant.

Our theoretical model generates results in line with our empirical findings when noise traders do
not hold the index, distorting prices away from the CAPM. When prices are distorted, weights of
value-weighted indices are biased, and flows into index funds exacerbate the distortions. Intuitively,
stocks in high demand by noise traders are overvalued and enter with high weights into value-
weighted indices. Conversely, stocks in low demand are undervalued and enter with low weights.
Hence, funds that track value-weighted indices overweight the former stocks and underweight the
latter, compared to the weights they would choose under portfolio optimization. When these funds
experience inflows, they undertake investments that exacerbate the distortions.

Our results suggest that passive investing and benchmarking can have important effects on
market efficiency, and hence on the allocation of capital in the economy.” The strength of these
effects can depend on the design of indices and on the decisions by passive funds on which indices

to track. Examining these issues seems an interesting direction for future research.

9Kashyap, Kovrijnykh, Li, and Pavlova (2020) explore the links between benchmarking and investment decisions
by firms.
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Figure 1: Assets of S&P500 Index Funds

This figure plots the value of the assets of mutual funds and ETFs tracking the S&P500 index over the period June
2000 to June 2019. The red line represents the ratio of index fund net assets to index value (left y-axis). The blue
bars represent index fund net assets in millions of dollars (right y-axis). The data come from CRSP and ICI.
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Figure 2: Value of $1 Invested in Small and Large Stocks in the S&P500 Index
This figure plots the value of $1 invested at the end of June 2000 in the bottom 10% of S&P500 stocks based on
market capitalization (small stocks, blue line) and in the top 10% of S&P500 stocks (large stocks, red line). The

portfolios are rebalanced annually at the end of each subsequent June and are liquidated in June 2019.
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Table 1: Descriptive Statistics

This table shows descriptive statistics for the main variables in our sample from July 2000 to June 2019. Panel
A includes the following firm-level variables: monthly stock return in percent, market capitalization in millions of
dollars, weight of a stock in the S&P500 index in percent, CAPM beta, industry-adjusted book-to-market ratio, and
return momentum (cumulative return from month ¢ — 12 to month ¢ — 2) for stocks in the S&P500 index. Panel B
includes the following aggregate variables: index fund holdings (ratio of S&P500 index fund net assets to index value),
changes in index fund holdings (Flow:), dollar flows into index funds divided by index value (Flows2), cross-sectional
standard deviation of S&P500 index weights (Dispersion), and Herfindahl-Hirschman Index (HHI) of S&P500 index
weights. The variables in Panel B are sourced at a quarterly frequency and are multiplied by 100.

Panel A: Firm-Level Variables

Mean Std Dev  25th Pctl 50th Pctl 75th Pctl Skewness Kurtosis

Mounthly Return (R; x 100)  0.91 9.76 -3.75 1.06 5.62 0.46 10.93
Market Cap ($millions) 27,393 51,383 5,9021 11,827 25,305 5.71 50.56
Index Weight (x100) 0.18 0.32 0.04 0.08 0.16 5.05 34.25
Log(Index Weight) -7.05 1.10 -7.79 -7.16 -6.41 0.47 0.37
Beta 1.03 0.63 0.59 0.95 1.36 1.04 2.16
Industry-Adjusted BM -0.46 0.51 -0.74 -0.53 -0.27 3.37 31.28
Momentum (R;_12¢—2) 0.10 0.34 -0.08 0.09 0.26 1.93 23.41

Panel B: Time-Series Variables (Quarterly, x100)

Index Fund Holdings 4.17 1.08 3.40 4.11 4.88 0.46 -0.57
Floun 0.05 0.10 0.00 0.04 0.10 0.51 3.44
Flows 0.03 0.09 -0.02 0.02 0.07 0.27 3.73
Dispersion 0.35 0.03 0.32 0.34 0.37 0.38 -0.79
HHI 0.81 0.11 0.72 0.79 0.88 0.52 -0.63
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Table 3: Index Fund Flows and Concentration in Index Weights

This table shows the relationship between S&P500 index fund flows and changes in the concentration of index weights.
Panel A shows the results for Flowi contemp; Panel B for Flows contemp. We use two measures of concentration of
index weights: the cross-sectional standard deviation (Dispersion) and the Herfindahl-Hirschman Index (HHI). We

use the lagged return of the small-minus-large index portfolio as a control variable.

Panel A: Flowi contemp

(1) (2) (3) (4) (5) (6)
ADispersion AHHI  ADispersion AHHI  ADispersion AHHI
Flowi contemp 0.0282 0.104 0.0271 0.100 0.0268 0.0992
(2.97) (2.97) (2.89) (2.96) (2.84) (2.91)
L.SMBgpew -2.29e-05 -2.19e-05
(-0.18) (-0.05)
L.SM Bgpyw -4.55e-05 -0.000108
(-0.35) (-0.23)
Intercept -3.99e-05 -0.000151 -3.46e-05 -0.000130 -3.37e-05 -0.000127
(-2.47) (-2.53) (-2.09) (-2.18) (-2.03) (-2.12)
Observations 76 76 75 75 75 75
R? 0.106 0.112 0.107 0.110 0.109 0.112

Panel B: Flows contemp

(1) (2) (3) (4) (5) (6)
ADispersion AHHI  ADispersion AHHI  ADispersion AHHI
Flows contemp 0.0209 0.0758 0.0226 0.0836 0.0225 0.0831
(1.99) (1.95) (2.23) (2.28) (2.22) (2.26)
L.SMBgpeyw -7.75e-05 -0.000224
(-0.61) (-0.49)
L.SM Bgpyw -0.000105 -0.000330
(-0.80) (-0.69)
Intercept -2.25e-05 -8.60e-05 -1.77e-05 -6.79e-05 -1.70e-05 -6.52e-05
(-1.55) (-1.61) (-1.23) (-1.31) (-1.18) (-1.25)
Observations 76 76 75 75 75 75
R? 0.051 0.049 0.070 0.071 0.073 0.074
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Table 4: Concentration in Index Weights and the Return of the Small-Minus-Large
Index Portfolio

This table shows the relationship between concentration of index weights and the future return of the small-minus-
large index portfolio. In Columns 1-4 we measure concentration by Dispersion, and in Columns 5-8 we measure

concentration by HHI. The regressions are univariate, and we use concentration lagged up to eight quarters.

) 2) () (4) (5) (6) (M (8)
SMBspew SMBspyw SMBspew SMBspyw SMBgpew SMBspyw SMBspew SMBspyw
Specification  Dispersion Slope Coefficients Adj. R? HHI Slope Coefficients Adj. R?

(1) L1. 133.3 133.7 0.169 0.185 L1. 38.46 38.63 0.174 0.191
(3.85) (4.07) (3.92) (4.15)

(2) L2. 139.2 133.5 0.191 0.198 L2. 40.23 38.58 0.198 0.205
(4.12) (4.22) (4.21) (4.31)

3) L3. 101.8 98.00 0.105 0.110 L3. 28.80 27.69 0.104 0.109
(2.89) (2.96) (2.88) (2.95)

(4) L4. 75.94 80.81 0.058 0.074 L4. 20.97 22.43 0.055 0.071
(2.08) (2.37) (2.02) (2.31)

(5) L5. 95.98 100.6 0.094 0.116 L5. 27.19 28.53 0.093 0.115
(2.67) (3.00) (2.66) (3.00)

(6) L6. 86.15 89.88 0.080 0.099 L6. 24.50 25.57 0.080 0.099
(2.43) (2.73) (2.43) (2.73)

(7) L7. 67.45 69.19 0.050 0.060 L7. 19.06 19.54 0.050 0.059
(1.88) (2.07) (1.87) (2.06)

(8) L8. 50.78 55.14 0.028 0.038 L8. 14.16 15.46 0.027 0.037
(1.38) (1.61) (1.36) (1.59)
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Table 5: Size Effect for S&P500 Index Stocks

This table shows the average monthly return and CAPM alpha in percent for decile portfolios formed on the basis
of stocks’ weights in the S&P500 index. Specifically, at the end of each June from 2000 to 2018, we sort stocks in
the index into ten portfolios according to their market capitalization-based index weights, with Decile 1 containing
the stocks with smallest index weights, and Decile 10 containing the stocks with largest index weights. We compute
equal- and value-weighted returns on the ten portfolios. We also compute SM Bgsp, the difference in returns between

stocks in deciles 10 and 1.

Panel A: Equal-Weighted Portfolio Returns

Low 2 3 4 ) 6 7 8 9 High SMBgp

Average 116  1.00 0996 0.878 0.993 0.716 0.792 0.601 0517 0372  0.790
(2.38) (2.68) (2.63) (2.57) (3.12) (2.34) (2.63) (1.94) (1.64) (1.27)  (2.48)
CAPM o 0487 0459 0437 0371 0521 0255 0.323 0.119 0.0197 -0.0886  0.576
(1.86) (2.64) (2.65) (2.61) (3.86) (2.17) (3.53) (1.26) (0.23) (-1.06)  (1.97)

Panel B: Value-Weighted Portfolio Returns

Average  1.13 0987 0987 0876 0981 0.717 0.788 0.602 0504 032  0.813
(2.41) (2.64) (2.62) (2.56) (3.08) (2.36) (2.63) (1.94) (1.60)  (1.10) (2.54)
CAPM o 0479 0447 0431 0368 0.508 0.257 0.321 0.118 0.00805 -0.13  0.608
(1.94)  (2.56) (2.64) (257) (3.79) (2.21) (3.52) (1.25) (0.09) (-1.36) (2.05)
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Table 6: S&P500 Size Factor and Fama-French Size Factor

This table shows the relationship between the S&P500 size factor, defined as the return of the small-minus-large
index portfolio in equal- and value-weighted terms (SM Bgspew and SM Bspyw, respectively), and the Fama and
French SMB factor (SM Brr). Columns 1-4 present the results of spanning tests. Columns 5-7 test for the January
seasonality. We use monthly returns from July 2000 to June 2019.

) (2) 3) (4) (5) (6) (7)

Spanning Test January Seasonality
SMBSPew SMBSPew SMBFF SMBFF SMBSPew SMBSPew SMBFF
SMBrr 1.101 1.081
(10.72) (10.31)
SMBspew 0.306
(10.72)
SM Bgspyw 0.296
(10.31)
January 0.415 0.542 0.435
(0.36) (0.47) (0.72)
Intercept 0.567 0.594 -0.0389 -0.0378 0.756 0.768 0.167
(2.18) (2.23) (-0.28) (-0.27) (2.27) (2.29) (0.95)
Observations 228 228 228 228 228 228 228
Adj. R? 0.334 0.317 0.334 0.317 -0.00385 -0.00346 -0.00215
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Table 7: S&P500 Size Factor and Fama-French Size Factor in the Earlier Period
This table shows the same information as Table 6 for the period July 1964 to June 2000.

(1) (2) 3) (4) () (6) (7)

Spanning Test January Seasonality
SMBspew SMBspew SMBrr SMBrr SMBspew SMBspew SMBrrp
SMBrpr 1.027 0.986
(20.01) (19.20)
SMBspew 0.470
(20.01)
SM Bspyw 0.468
(19.20)
January 5.770 5.100 2.260
(7.11) (6.34) (3.97)
Intercept 0.138 0.197 0.0514 0.0289 -0.112 -0.00699 0.036
(0.81) (1.15) (0.44) (0.24) (-0.48) (-0.03) (0.22)
Observations 432 432 432 432 432 432 432
Adj. R? 0.481 0.460 0.481 0.460 0.103 0.0832 0.0331
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Table 8: Size Effect for S&P500 Index Stocks Versus for Non-Index Stocks

This table shows the relationship between stock characteristics and future stock returns. Panel A uses the stocks in
the S&P500 index and Panel B uses non-S&P stocks. IndexWeight is the weight of a stock in the S&P500 index;
PortfolioWeight is the weight of a stock in a hypothetical value-weighted portfolio of stocks not in the S&P500
index. The results are obtained using Fama-MacBeth cross-sectional regressions on monthly returns from July 2000
to June 2019.

Panel A: S&P500 Stocks
(1) (2) (3) (4) (5) (6)

Log(IndexWeight) -0.185 -0.171
(-2.95) (-3.45)

Beta -0.152 -0.322
(-0.55) (-1.40)

BM 0.100 -0.067
(0.88) (-0.67)

Reti_12,4—2 -0.334 -0.405
(-0.60) (-0.83)

Ret;_1 -0.518  -1.487
(-0.44) (-1.62)

Intercept -0.426  1.044 0.948 0.621 0.822  -0.338
(-1.15)  (5.00) (2.86) (2.11) (2.79) (-0.92)

Adj. R? 0.011  0.058 0.008 0.044 0.026 0.114

Panel B: Non-S&P500 Stocks

(1) (2) 3) (4) (5) (6)

Log(PortfolioWeight) -0.037 0.002
(-0.80) (0.04)

Beta -0.132 -0.15
(-0.66) (-0.87)

BM 0.085 0.035
(1.11) (0.53)

Reti_ 1242 -0.234 -0.266
(-0.75) (-0.92)

Rety_4 -2.224  -2.437
(-3.06) (-4.15)

Intercept 0.592 1.094 1.019 0.816  0.981  0.948
(0.83)  (4.97) (2.92) (248) (2.97) (1.87)

Adj. R? 0.006 0.023 0.002 0.013 0.01 0.044

PT(7I7LdexWeight = 'YPortfolioWeight) = 0.0131
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Table 9: Size Effect for S&P500 Index Stocks Versus for Non-Index Stocks in the Earlier
Period
This table shows the same information as Table 8 for the period July 1964 to June 2000.

Panel A: S&P500 Stocks

(1) 2 6B ¢ () (6)

Log(IndexWeight) -0.096 -0.118
(-2.11) (-2.84)

Beta 0.127 0.029
(0.67) (0.18)

BM 0.019 0.035
(0.62) (1.25)

Reti_12,1—2 0.883 0.705
(3.39) (3.08)

Ret:_; -3.227  -4.642
(-4.75)  (-7.87)

Intercept 0.501 1.080 1.203 1.086 1.265  0.339
(1.63)  (5.66) (5.15) (4.81) (5.41) (1.07)

Adj. R? 0.018 0.03 0.001 0.027 0.016 0.076

Panel B: Non-S&P500 Stocks

(1) (2) (3) (4) ) (6)

Log(PortfolioWeight) -0.118 -0.119
(-2.68) (-2.78)

Beta 0.132 0.082
(0.86) (0.59)

BM 0.075 0.062
(4.56) (4.31)

Rett_m,t_g 1.046 0.977
(5.67) (6.48)

Rety 4 -4.347 -5.342
(-8.67)  (-12.65)

Intercept 0.212 1.158 1.290 1.106 1.287 0.058
(0.51) (7.28) (4.93) (4.52) (4.98) (0.14)

Adj. R? 0.012  0.023 0.001 0.017 0.01 0.054
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Appendix

A  Proofs

Proof of Proposition 2.1. Substituting the affine price function (2.13) into the ODE (2.12), we
find

_ — oA, —u
Dyt + fin(D — Dyt)ant — 1(ano + an Dnt) = p ann " 52 Dpya’,. (A1)

Equation (A.1) is affine in D,,;. Identifying the terms in (A.1) that are linear in D, yields

“o2al, + (r+ Kn)ans — 1 =0. (A.2)

Tin — MZ)‘W;z —Uu
p
K1
Equation (A.2) is quadratic in a,;. When 1, — pa\n), — u, > 0, the left-hand side is increasing
for positive values of a,1, and (A.2) has a unique positive solution, given by (2.15). When 7, —
A1, — u, < 0, the left-hand side is hump-shaped for positive values of a,1, and (A.2) has either
two positive solutions (including one double positive solution) or no solution. When two solutions
exist, (2.15) gives the smaller of them, which is the continuous extension of the unique positive

solution when 7, — uoAn,, — u, > 0. Identifying the constant terms in (A.1) yields
kDap1 — Tapy =0,

whose solution is (2.14).

— Mn—MK2 >\774L+Un 2
= — 0
M1 n

Equations (2.13) and (2.14) imply that the price is decreasing and convex in z

if a,1 is. Equation (2.15) implies that a,; is decreasing and convex in z if the function

1

U(z) = ———
(=) A+vB+Cxz
is, where (A, B, C') are positive constants. The function ¥(z) is decreasing because its derivative

C 1
2VB+Cz (A+VB+C2)°

V' (z) =
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is negative. Since, in addition, ¥'(z) is increasing, ¥(z) is convex.

The unconditional expectation of the share return dR:? is

E(dRS}) = E[E(dR3)]

_ 1
=E [Dme + k(D — Dyt)S),(Dit) + 50,21Dmg5"(Dm) — 17Sn(Dnt) | dt

— oA —
—E [p"“ “2#1’7“ " 52 DeS! (D )| dt (A.3)
— o\ — _
= I T2 " 202 gy (A4)
251

where the second inequality follows from (2.8), the third from (2.12), and the fourth from (2.13).

The unconditional variance of the share return dR:? is

2Dy (Do)

= 02Dad?,dt, (A.5)

where the second inequality follows from (2.8), and the third from (2.13). Substituting (A.4) and

(A.5) into (2.10), we find

N N — pp, — u al

~ N —

> M” Tapy =AY (n))%an, (A.6)
n=1

n=1

which we can rewrite as (2.16). Since 1, > uy,, (2.16) implies A > 0.

An equilibrium exists if (2.16), in which {ap1}n=1,. ~5 are implicit functions of A defined by
(2.15), has a solution. For all non-positive values of A, both sides of (2.16) are well-defined because
the positivity of 1, — uaAn), — u,, ensures that (A.2) has a solution for a,;. Moreover, the right-hand
side of (2.16) is positive, and exceeds the left-hand side which is non-positive. An equilibrium exists
if both sides of (2.16) remain well-defined for a sufficiently large positive value of A that renders

them equal. If there are multiple solutions A to (2.16), then we take the smallest. O
Lemma A.1 shows that an asset’s unconditional expected return is increasing and concave in
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the asset’s RANS.

Lemma A.1l. The unconditional expected return E(dRy;) that risky asset n earns in equilibrium

depends on (1, T, Ty, n, pi1, f12) only through —2Vatn ;2

m =, and 1s increasing and concave in

that variable.

Proof of Lemma A.1. Equation (2.19) implies that E(dR,;) is increasing and concave in z =

Tn— 2 N1y +n o2

o = if the function

z

(=) = A++B+Cz

is, where (A, B, (') are positive constants. (The same constants as in the definition of ¥(z) in the

proof of Proposition 2.1.) The function ®(z) is increasing because its derivative

B+&=
A+ \/BJrQC'z
(A+VB+Cz)°

P'(z) =

is positive. Since, in addition,

B+ A B
(I)/(Z) — A + \/B+ZCZ _ A + % B + CZ + 2v/B+Cz

(A+VB+Cz)° (A+vVB+C2)° (A+VB+Cz)"

and both functions in the sum are decreasing, ®'(z) is decreasing, and hence ®(z) is concave. [J

Proof of Proposition 2.2. For a non-index asset n’, 7/, = 0. Equations (2.13)-(2.15) imply that

the asset’s price is

2

St (Dyre) = (%D + Dt> . (A7)

T+ K + \/(7“4—/1”)2 +4p%a%

Equation (2.19) implies that the asset’s expected return is

2p77,n/ — Uy, 0_2 D
E (dR,y;) = i E <M nt > dt. (A.8)
T+’£n+\/(r+f€n)2+4p%0}% 7D+Dnt
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Hence, the asset’s price and expected return do not change when pus increases.

To show that psX increases in ug, we write (2.16) as

N
Yt [0 = wn = A + p2)my] aiy = 0. (A.9)

n=1

Setting M = ug ), we write (A.9) as

N
2777/1 |:77n — Un — M <Ml + 1> 774 ail = 07 (AlO)
n=1 H2

and view the left-hand side of (A.10) as a function of M rather than A. At the smallest solution \ of
(2.16), the derivative of the left-hand side of (A.9) with respect to A is negative (since the smallest
solution is positive and the left-hand side of (A.9) is positive for A\ = 0). Hence, the derivative of
the left-hand side of (A.10) with respect to M is also negative at that solution. Since a,; depends
on (p2, A) only through M, the derivative of the left-hand side of (A.10) with respect to pa (holding
M constant) is

N

My
Z 2 (772)20%1 > 0.
H3

n=1

Hence, the derivative of M with respect to o is positive, which means that ps increases in .

wgi decreases in po for index assets (77, > 0), Proposition 2.1 implies that the

Since
price of these assets increases in po, and Lemma A.1 implies that these assets’ expected return

decreases in 2. O

Proof of Proposition 2.3. When (n,,0,) = (1,0) for all n € Z, RANS for an index asset n is

N—peN) —Un o (1= p2A)n —up o
M1 H1

Since RANS decreases in u,, Lemma A.1 and k, = « for all n € 7 imply E(dR,:) < E(dRp:).
Moreover, (2.18) and (1, kn,0n) = (1, K, 0) for all n € Z imply E(wp:) > E(wpe).

When ps increases, (2.13)-(2.15) imply (through the same calculations as when differentiating

48



the function ¥(z) defined in the proof of Proposition 2.1) that the price of asset n changes by

A(p2) 4pnmos
QSrg( ) _ duz  m 5 (@D—I—Dt) :
12 \/(T+Ii) +4pwgz{r+ﬂn+\/r+ﬁ) +4pnnzuwa%} r
and the percentage change is
A(p2) 2pmn07
1 98u(Du) _ RTETE
Snt(Dnt) — Opa \/(r + kn)? + 4,0777" H2 X1y o2 {T + K + \/(r + Kkn)2 + 4,07""_“23:7;1_1‘" o

(A.11)

Moreover, (2.19) implies (through the same calculations as when differentiating the function ®(z)

defined in the proof of Lemma A.1) that the expected return of asset n changes by

(r+n ) +2p”ln H2)\7ln*uno_2

A(p2) 2pnnoy Iy n

) r—+Kp+
OE(dRyt) B L2 g \/(r+nn +4pw02 ( D,

a,U/Q B KT"-D + Dt

)dt. (A.12)

2
[r + kin + \/ + kin)? + dpTtziatn U%}

Using (9, kn,on) = (,k,0) for all n € 7 to simplify (A.11) and (A.12), we find that when

1o increases, the percentage change in the price of asset n and the change in that asset’s expected

return are
A(p2) 2pno?
1 8Snt(Dnt) o 8“7527;7710
D - )
Snt( nt) 8#2 \/(T"‘K/) +4p(1 MQ)‘)'W unO.Q |:7’+I€+ \/ +4p(1 UQ:I)W uno.2:|
(A.13)
d(dm)\) gp not r K+ (r+r)? +2p(1—u2:1)n7un 2
12 Iz a- >\) un
omny " L e ()
6H2 %D + Dy ’

2
[r+n+\/r+,§ +4p(1u2>\)77ung2]

respectively. Equation (A.13) implies that the price of asset n rises more in percentage terms than
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the price of asset m if the function

1

2su®) = T (At VBT O9)

is decreasing, where (A, B, (') are positive constants. Since the denominator is increasing, ®g,(z)
is decreasing. Equation (A.14) implies that the expected return difference E(dR,,;) — E(dRy:)

between assets m and n increases if the function
B+ Sz Cz

A+ \/B+2Cz
(A+ VB+Cz)°

@Ru(z)

is decreasing, where (A, B, C) are positive constants. Since ®p,(z) = ®’(z) for the concave function

®(z) defined in the proof of Proposition 2.2, ® g, (z) is decreasing. O

Proof of Proposition 2.4. When u,, = Un,, for all n € Z, (2.16) implies

1—
_1-v (A.15)
M1+ p2
Using u, = Un, and (A.15), we can write RANS for an index asset n as
/
n - Un 1- n

1 M1+ p2

Since 7,02 < nmo2,, Lemma A.1 and ,, = & for all n € Z imply E(dR,;) < E(dR,,;). Moreover,
(2.18), (A.16) and ky, = K imply E(wp:) > E(wn) if (2.20) holds.
Using u,, = Uny, and k,, = & for all n € Z to simplify (A.11) and (A.12), we find

) A(pu2X) 2pmno2

1 OSnt(Dnt iz 11

Snt (Dnt) a,u2

(=U)mn 2 -0y 2|
\/(T—FI{) +4p—n i On |:T+I€—|—\/T‘—|—I{ +4pr—n e

(A.17)
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2 A-U)nn 2
(r+r)"+2p pitug 70

A=U)nn
\/(T+H)2+4p M1+H7; 072‘] ]E( Dnt >dt,

2 5D+ D
[r T \/('r + k)2 + 4p=tmn a,%] r "

A(p2) 2pmno?
OE(dR.) ™ "
Opia

r+ K+

(A.18)

p1+p2

respectively. Equation (A.17) implies that the price of asset n rises less in percentage terms than

the price of asset m if the function

z

VB+Cz(A+VB+Cz)

@Sn(z) =

is increasing, where (A, B, C) are positive constants. Since

z VB 4+ Cz

® -
su(2) B1C:  A+B:C2

and both functions in the product are increasing, ®g,(2) is increasing. Equation (A.18) implies

that the expected return difference E(dR,,:) — E(dR,;) between assets m and n decreases if the

function
B+<z
o (A + \/B+ZCZ>
@Rn(z) =

(A+VB+Cz)°

is increasing, where (A, B, C) are positive constants. Since

B (2) z x[ VB +Cz rx At B+&
z) = ——
fon B+Cz " [A+VB+C> VB +Cz
and all three functions in the product are increasing, ®,(z) is increasing. O

Proposition A.1l. Suppose that all assets in the index are in the same supply (n, = n for all
n € Z), all assets not in the index are in the same supply, which can differ from that of index assets
(M =7 for alln’ ¢ T), and (kp,0n) = (k,0) for all n. Consider assets n,m € I, with asset n
being in larger noise-trader demand (u, > u, ), and assets n’',m’ & T, with asset n’ being in larger

noise-trader demand (Ups > Upy ).
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o Asset n' has higher non-index weight than asset m' (E(wy) > E(wpyt)) and earns lower

expected return (E(dRy) < E(dRy)).
o When pa increases, holding py + pa constant:

— The price of asset n rises more, or drops less, in percentage terms than the price of asset
m.

— The expected return difference E(dRyt) — E(dRyt) between assets m and n increases.

— The price of asset n' drops less in percentage terms than the price of asset m/'.

— The expected return difference E(dRy,) — E(dR,¢) between assets m' and n’ increases.

— The expected return difference B(dRy,) — E(dRy) increases more than E(dR,) —
E(dR,,;) under the sufficient conditions (i) 7 —un > n(1 = p2X) —u, and (i) up — upy, >

U/ — Uy -

The conditions ensuring that E(dR,,) — E(dR,:) decreases more than E(dR,, ;) — E(dR,) are
(i) net supply for the index assets in high noise-trader demand is smaller than for their non-index
counterparts, and (ii) the spread in noise-trader demand is larger for index than for non-index assets.
Condition (ii) is plausible if index assets are mostly high-capitalization ones, with large numbers
of shares. Condition (i) is plausible even if index assets are high-capitalization ones because the

demand by non-experts reduces their net supply.

Proof of Proposition A.1. When (n,/,0,/) = (7,0) for all n’ ¢ Z, RANS for a non-index asset
n' is %02. Since RANS decreases in u,, Lemma A.1 and k,» = & for all n’ ¢ Z imply E(dR,;) <
E(dRnt). Moreover, (2.18) and (1, kp/, o) = (7, 5, 0) for all n’ ¢ T imply E(wy¢) > E(wpy).

The counterparts of (A.11) and (A.12) when uo increases holding pq + po constant are

2p05 (O(p2d) _ mp—pednn—us
1 OSnt(Dnt) B ( Opa M 1 )
Sut(Dne) - Opa \/(r + k)2 + 4p7""7“23l’7’/f“” o2 [r + Kkp + \/(7" + k)2 + 4p7"”7“2::7’/f“" JEL}

(A.19)
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!
Nn—p2AN, —Un 2

B - r_ (r+hn)2+2p n—F2In—tn ;2
s (s, —mmttn [ i
8]E(ant) o \/(T-‘rﬁn +4p%1]"710% E( -Dnt )dt
o AR KD 4 Dy )
H2 |:7"+Hn+ \/(r+f<ﬂn)2+4pnnu2:\#0%} T + Dnt
(A.20)

respectively. Moreover, the derivative of the left-hand side of (A.10) with respect to ug holding

w1 + pe and M constant is

Hence, p2) increases when pg increases holding pq + pe constant. Using (0, kn, 0p) = (1, k, o) for

all n € T to simplify (A.19) and (A.20), we find

2p02 <3(M2A)77 (- M2>\)TI un)

1 OSnt(Dnt) fi1 D2
Spi(D d B N Ni—tn 2|
nt(Dnt) H2 \/(r + k)2 —1—4417(1 “Qm)" Un 52 [r—l— K+ \/ +4p(1 “2“1)7’ 4 02}
(A.21)
5 (r+r)242 (A=paM)n—un 2
2po (8(”’2)‘) _ (17“2)‘)777“‘”) r+ K+ P M1
H1 Oz H1 (rr)24pAmt2n—un ;o
OE(dRy;) P 1 E < D, > @t
9 T 2 ED+ D ’
NZ |:T + K + \/ T + Iﬁ} + 4p(1:u‘2lj‘1)nu"0-2:| T nt
(A.22)

respectively. Equation (A.21) implies that the price of asset n rises more, or drops less, in percentage
terms than the price of asset m if the function ®g,(z) defined in the proof of Proposition 2.3 is
decreasing and the function ®g,(z) defined in the proof of Proposition 2.4 is increasing. Equation
(A.22) implies that the expected return difference E(dR,,:) — E(dR,:) between assets m and n
increases if the function ®g,(z) defined in the proof of Proposition 2.3 is decreasing and the
function ® g, (2) defined in the proof of Proposition 2.4 is increasing. Both properties are shown in

the proof of Propositions 2.3 and 2.4.
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The counterparts of (A.19) and (A.20) for non-index assets are

2p(n,,r 7un/)ai,

]. 8Sn’t(Dn’t) _ /,11
Sn't(Dn/t) 8[12 \/(T+Iin) +4p77n/ U,J,[Tle‘in +\/T+I€n) +4p77n/ U1 2J
(A.23)
2p(r]n/7un/)ai, R, (r4rp)? +2p% 2
P«% n n/
aE(an/t) _ \/(T+I€n/)2+4P70,21/ B < ,Dn/t ) g (A24)
Opa %D + Dyt ’

2
R vy

respectively. Using (9., kn/,0n/) = (7, Kk,0) for all n’ ¢ T to simplify (A.23) and (A.24), we find
that when ps increases holding pq + uo constant, the percentage change in the price of asset n’ and

the change in that asset’s expected return are

2p(7 =y )o”
1 asn/t(Dn/t) _ ,u%
Sn/t(Dn/t) 8/‘62 \/(T + /<;>2 + 4[)%02 |:7’ + Kk + \/(r -+ H)Q + 4P%O—2
(A.25)
M S (r+n)2+2p%02
w i
a]E(anlt) 1 \/(T+R)2+4Pn uln o? Dy
’ ) = Elsp ., )9 (A.26)
" (7 + )2 + 4pT 2] ; it

respectively. Equation (A.33) implies that the price of asset n’ drops less in percentage terms than
the price of asset m' if the function ®g,(z) defined in the proof of Proposition 2.4 is increasing.
Equation (A.34) implies that the expected return difference E(dR,,+) — E(dR,,;) between assets m’
and n' increases if the function ®g,(z) defined in the proof of Proposition 2.4 is increasing. Both
properties are shown in the proof of Proposition 2.4.

Equations (A.26) and (A.22) imply

OE(dRyi)  OE(dRw) _ OE(dRy:)  OE(dRy)

Opz Opa Op2 Op2
1 — o) — um, 1— o)y — uy,
@¢M<( f2A)n >—@m(( f122)1 >
[ fi1

o4



_ N [QR“ <(1 — H2A)n — um> . <(1 — H2A)n — un)]

Opio M1 H1

> By, <” Mi"”) — ®py ("“”’). (A.27)

M1

Since PR, (z) is decreasing, u, > u,, and (“ 2)‘) > 0, (A.27) holds under the sufficient condition

1 — o) — up, 1— s N — un N — Uy 1 — Uy
@Rn(( f12\)1 >—<I>Rn<( 2 A)n ) > (77 >_(I)Rn (n )
M1 M1 M1 H1

which we can write as

A—paM)n—um Ny,
M1 / K1 12
>
oy Dl (2)dz > /n%l D, (2)dz
M1 K1

"7*"1"/ +un—um

@/ o ,Rn<z+(1—u2/\)77—un—(77—unf))dzz/nm e (A29)

1 N=Up,r
K1 K1

Equation (A.28) holds under the sufficient conditions in the proposition, provided that ®pg,(2) is
increasing and concave. Indeed, ® g, (2) increasing and , — Uy, > Up’ — Uy, imply that the left-hand

side of (A.28) is not smaller than

T (1 = pa ) — un — (7 — up)
/7 . Py <z + " dz. (A.29)

K1

Moreover, ®g,(z) concave and 7 — un > (1 — ) — u,, implies that (A.29) is not smaller than
the right-hand side of (A.28).
In the proof of Proposition 2.4 we show that ®g,(z) is increasing. To show that ®g,(z) is

concave, we write it as

B+Cz
<A + \/B-i—ZC'z)

®
nl2) = (A+VB+Cz)
_ (A + f%) (A + \/W)
2(A+VB+C2)? 2(A+VB+Cz)°
z zA

T 2(A+VB+Cz) 2B 1 Cs(A+ VBT C3) (4.30)
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=d(2) + gfbsn(z) (A.31)

where the third equality follows if B = A2, a property that holds in the instances where we define
PRy (2), and the functions ®(z) and Pg),(2) are defined in the proofs of Lemma A.1 and Proposition
2.4, respectively. In the proof of Lemma A.1 we show that ®(z) is concave. Therefore, ®g,(2) is

concave if ®g,(2) is concave. The derivative of ®g,(2) is

B+&z
()= DA

(B+Cz) (A+VB+Cz)

- B+A\f§%§z . B+A¢%
 2AB+C2) (A+VBFC2)” 2B+Cz) (A+VBTC2)
_ A . B
2(B+C2) (A+vVB+Cz)  2(B+Cz)2(A+VB+Cz)

where the third equality follows if B = A?. Since both functions in the sum are decreasing, @fgn(z)

is decreasing, and hence ®g,(2) is concave. O

Proposition A.2. Suppose that noise-trader demand is proportional to asset supply (u, = Unp,
with U < 1 for alln). Consider assets n',m’' ¢ T, with asset n' being in smaller risk-adjusted supply
(02 < M 02,).
o Asset n' earns lower expected return than asset m’ (E(dR,¢) < E(dRp)).
o When us increases, holding p1 + po constant:
— The prices and expected returns of index assets do not change.
— The price of asset n' drops less in percentage terms than the price of asset m/'.

— The expected return difference B(dRy,t) — E(dR,¢) between assets m’ and n' increases.
Proof of Proposition A.2. When u,, = Un,, RANS of a non-index asset n’ is

M =t o (L= U)o (A.32)
M1 H1

Since nn/ag, < nmrafn,, Lemma A.1 and k,y = & for all n’ ¢ Z imply E(dR,;) < E(dR)-

56



When pg increases holding g + po constant, (A.16) implies that the net supply of an index
asset n does not change. Hence, (2.13)-(2.15) imply that the asset’s price does not change, and
(2.19) implies that the asset’s expected return does not change.

Using u, = Unyy and K,y = k for all n’ ¢ T to simplify (A.23) and (A.24), we find

20(1-U)n,02,
1 aSn’t<Dn’t) o om

Sn/t(Dn/t) 8”2 \/(T""K/) +4p(1 U)Un / |:T+K/+ \/ T+ I‘i +4p(1 U)nn O-n/:|

n

(A.33)
(1 U)U /
20(1—U)n, 102, (r+r)*+2p— 20?2,
. o( —ui—nn e+ K+ \/(r+n) +4p<1 U)n/ 2 D
((9 wt) _ 7 E(w :tD >dt, (A.34)
2 [HH\/TH +4p<1U>nnUg,} . nt

respectively. Equation (A.33) implies that the price of asset n’ drops less in percentage terms than
the price of asset m' if the function ®g,(2) defined in the proof of Proposition 2.4 is increasing.
Equation (A.34) implies that the expected return difference E(dR,,,/;) — E(dR, ;) between assets m’
and n' increases if the function ®g,(z) defined in the proof of Proposition 2.4 is increasing. Both

properties are shown in the proof of Proposition 2.4. O
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