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1 Introduction

Algorithms guide an increasingly large number of high-stakes decisions, including criminal risk assess-

ment (Chohlas-Wood, 2020), resume screening (Raghavan and Barocas, 2019), and medical testing

(Price II, 2019). Alongside this rise of algorithmic decision-making is a concern that it can entrench

or worsen discrimination against legally protected groups (Angwin et al., 2016). This concern has

fueled a rich theoretical literature in computer science, where algorithmic discrimination is formalized

as the differential treatment of equally qualified individuals (Zafar et al., 2017; Berk et al., 2018).

With algorithmic recommendations for pretrial release decisions, for example, a risk assessment tool

may be racially discriminatory if it recommends white defendants be released before trial at a higher

rate than Black defendants with equal risk of pretrial misconduct.

Bringing the theory of algorithmic discrimination to data, however, is often hampered by a fun-

damental selection challenge. Data on an individual’s latent qualification for treatment may only

be available for a group of individuals who were endogenously selected for treatment by an existing

human or algorithmic decision-maker. In the pretrial setting, this challenge arises because pretrial

misconduct potential is only observed among the defendants who a judge chooses to release before

trial (Kleinberg et al., 2018; Lakkaraju et al., 2017). Such selection can both introduce bias in algo-

rithmic predictions and complicate the measurement of algorithmic discrimination, since unobserved

qualification cannot be conditioned on to compare white and Black treatment.

This paper develops new tools to measure racial discrimination in algorithmic predictions by

extending methods previously developed in Arnold, Dobbie and Hull (2020). We first show how the

fundamental selection problem can be solved by estimating four race-specific parameters: the average

qualification rates of white and Black defendants and the race-specific covariances of qualification and

algorithmic recommendations. In Arnold, Dobbie and Hull (2020) we show how the first set of mean

risk moments can be used to measure racial discrimination in individual judge decisions. Here we

extend this logic by showing how the additional race-specific covariances identify racial discrimination

in hypothetical algorithmic release recommendations.

We next show how the four key moments can be estimated by extrapolating reduced-form variation

across quasi-randomly assigned bail judges. In Arnold, Dobbie and Hull (2020) we use extrapolations

of the judge-specific misconduct rates for released white and Black defendants to estimate the mean

risk parameters. Here we use similar extrapolations of judge-specific second moments, of misconduct

and algorithmic recommendations for released white and Black defendants, to estimate the race-

specific covariances. We show how both sets of extrapolations can be conducted flexibly, without
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specifying a model of judge decision-making.

We illustrate this approach to measuring algorithmic discrimination in New York City (NYC),

home to one of the largest pretrial systems in the country. We find that a sophisticated machine

learning algorithm, which does not train directly on defendant race or ethnicity, recommends the

release of white defendants at a significantly higher rate than Black defendants with identical pretrial

misconduct potential. When calibrated to the average NYC release rate of 73 percent, the algorithm

recommends an 8 percentage point (11 percent) higher release rate for white defendants than equally

qualified Black defendants. This unwarranted disparity explains 77 percent of the observed racial

disparity in release recommendations, grows as the algorithm becomes more lenient, and is driven

by discrimination among individuals who would engage in pretrial misconduct if released. We find

a similar level of algorithmic discrimination with regression-based recommendations, using a model

inspired by a widely used pretrial risk assessment tool.

This paper adds to a recent empirical literature that uses quasi-experimental variation to test

for bias and discrimination in the criminal justice system. Arnold, Dobbie and Yang (2018) use the

release tendencies of quasi-randomly assigned bail judges to test for racial bias in a conventional linear

instrumental variables (IV) framework, while Marx (2018) uses a similar approach to test for racial

bias at the margin of police stops. Arnold, Dobbie and Hull (2020) show how quasi-experimental judge

assignment can be used to measure a more comprehensive measure of racial discrimination, which in-

cludes racial bias, statistical discrimination, and discrimination on seemingly non-race characteristics.

Other recent work in this literature includes Rose (2020) and Feigenberg and Miller (2020).1

Our paper also adds to theoretical and empirical work on algorithmic fairness in both computer

science and economics. We propose a measure of algorithmic discrimination that is closely related

to the idea of “conditional procedure accuracy equality” or “equalized odds” in the computer science

tradition (Zafar et al., 2017; Berk et al., 2018), and we show how our approach can be used to

quantify alternative unfairness measures such as “equality of opportunity” (Hardt, Price and Srebro,

2016) and “sufficiency” (Zafar et al., 2017). An important empirical consideration in this literature is

the “selective labels problem” (Kleinberg et al., 2018; Lakkaraju et al., 2017), which may induce racial

bias in algorithmic predictions. We show how this problem, which may also confound the measurement

of algorithmic discrimination, can be overcome in the pretrial bail context. Our paper also relates to a

recent literature on how algorithmic recommendations interact with human decision-makers; examples
1Rose (2020) shows that a policy reform that sharply reduced prison punishments for technical probation violations

nearly eliminated the racial disparity in incarceration without significantly increasing the disparity in reoffending rates,
suggesting that such violations are less informative predictions of risk for Black individuals on probation. Feigenberg
and Miller (2020) show that Black motorists in Texas are stopped at higher rates than white motorists without any
commensurate increase in contraband hit rates, suggesting that the racial disparity in search rates is inefficient.
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from the pretrial context include Stevenson and Doleac (2019) and Albright (2019).

Methodologically, this paper adds to a recent literature on estimating average treatment effects

(ATEs) with multiple discrete instruments (Kowalski, 2016; Brinch, Mogstad and Wiswall, 2017;

Mogstad, Santos and Torgovitsky, 2018; Hull, 2020). The average misconduct risk parameters can be

seen as race-specific ATEs, of pretrial release on pretrial misconduct, with a similar interpretation for

the covariance parameters. Importantly, our approach to estimating these ATEs does not impose the

usual assumption of first-stage monotonicity (Imbens and Angrist, 1994; Heckman and Vytlacil, 2005),

which has received recent scrutiny both in general (Mogstad, Torgovitsky and Walters, 2019) and in

the specific context of judge decision-making (Mueller-Smith, 2015; Frandsen, Lefgren and Leslie,

2019; Norris, 2019). Our approach is closely related to Hull (2020), who considers non-parametric ex-

trapolations of quasi-experimental moments in the spirit of “identification at infinity” in conventional

sample selection models (Chamberlain, 1986; Heckman, 1990; Andrews and Schafgans, 1998).

The remainder of the paper is organized as follows. Section 2 presents a general empirical frame-

work for defining and measuring algorithmic discrimination. Section 3 summarizes our data on pretrial

bail decisions and our algorithmic predictions of pretrial misconduct risk. Section 4 applies our frame-

work and presents our findings. Section 5 concludes.

2 Empirical Framework

2.1 Setting

We consider a binary classification problem, in which a population of individuals i is differentiated by

their race Ri ∈ {w, b} (either white or Black) and a latent variable Y ∗i ∈ {0, 1} which indicates their

qualification for a binary treatment. In the pretrial context, Y ∗i = 1 may indicate that defendant i

would engage in pretrial misconduct (i.e., fail to appear in court or be rearrested for a new crime) if she

were released before trial. In a medical testing context, Y ∗i = 1 may indicate the latent disease state of

patient i. The objective is to align decisions with qualification status: e.g., releasing defendants with

a low risk of pretrial misconduct or subjecting patients with a high risk of disease to costly testing.2

We suppose that an algorithm attempts to predict individual qualification from some observables

Xi and returns a treatment recommendation Ti ∈ {0, 1}. We leave the details of this algorithmic

recommendation process unspecified, requiring only the observability of Ti. In the pretrial context,

we may have Ti = 1[p(Xi) ≤ τ ] where Xi is a set of observed defendant and case characteristics, p(Xi)
2While we consider binary Y ∗i here, our approach can be extended to multivalued or continuous qualification states;

see Arnold, Dobbie and Hull (2020) for details.
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is a statistical (not necessarily unbiased) prediction of pretrial misconduct potential, and τ is a risk

tolerance. Here Ti = 1 indicates an algorithmic recommendation of pretrial release, with Ti = 0 for

defendants who are recommended to be detained before trial. We emphasize that the algorithm may

or may not train directly on race; i.e., Xi need not include Ri.

Building on Arnold, Dobbie and Hull (2020), we measure discrimination in the algorithmic recom-

mendations Ti by the implied treatment disparity among equally-qualified white and Black individuals:

∆ = E[E[Ti | Ri = w, Y ∗i ]− E[Ti | Ri = b, Y ∗i ]] (1)

The inner difference in ∆ compares the average treatment recommendation for white and Black indi-

viduals, holding fixed their true qualification Y ∗i . The outer expectation in ∆ averages this comparison

over the marginal qualification distribution. We say there is algorithmic discrimination against Black

individuals when ∆ > 0, that there is algorithmic discrimination against white individuals when

∆ < 0, and that there is no white/Black algorithmic discrimination when ∆ = 0. In the pretrial

context, ∆ > 0 may mean the algorithm recommends white defendants be released at a higher rate

than Black defendants with equal misconduct potential, on average.

Our definition of algorithmic discrimination relates to idea of “conditional procedure accuracy

equality” or “equalized odds” in the computer science literature (Zafar et al., 2017; Berk et al., 2018).

In the language of binary classification problems, this fairness condition imposes the equality of true-

and false-negative rates across race.3 Here ∆ is an weighted average of racial disparities in true-

negative rates δT
r = Pr(Ti = 1 | Y ∗i = 1, Ri = r) and false negative rates δF

r = Pr(Ti = 1 | Y ∗i =

0, Ri = r), where we interpret (as in the pretrial setting) Y ∗i = 1 as an adverse state:

∆ = (δT
w − δT

b )µ̄+ (δF
w − δF

b )(1− µ̄) (2)

where the weight µ̄ = E[Y ∗i ] is given by the average qualification rate in the population.4

Our ∆ measure also aligns with the proposed definition of labor market discrimination in Aigner

and Cain (1977), which compares the treatment of white and Black workers with the same objective

level of productivity. We analogously compare the recommended release rates of white and Black

defendants with the same objective potential for pretrial misconduct, Y ∗i . We show in Arnold, Dobbie
3An alternative measure of fairness, when Ti = 1[p(Xi) ≤ τ ], is the conditional independence of p(Xi) and Ri given

Y ∗i : see, e.g., Agarwal, Dudik and Wu (2019). The approach we develop here can be extended to measure deviations
from this condition, via similar extrapolations of reduced-form variation.

4Other notions of algorithmic fairness include the racial equality of false-negative rates only (Hardt, Price and Srebro,
2016) and the racial equality of positive and negative predictive values (Zafar et al., 2017). We show below how our
framework can also be used to quantify these alternative measures; see Kleinberg, Mullainathan and Raghavan (2017)
for a discussion of various inherent tradeoffs between them.
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and Hull (2020) that parameters like ∆ capture a broad notion of discrimination arising from both

accurate statistical discrimination (e.g., Aigner and Cain, 1977) and racially biased preferences or

beliefs (e.g., Becker, 1957; Bordalo et al., 2016). We further show that ∆ 6= 0 can arise either when

release recommendations are directly based on race (i.e., Ri is included in the algorithmic input Xi)

or because release decisions are based on observable characteristics that are correlated with race (i.e.,

variables correlated with Ri are included in the algorithm’s feature set Xi).5

Estimating algorithmic discrimination ∆ is often challenging because individual qualification Y ∗i

is often only selectively observed. Formally, we observe a censored outcome Yi = DiY
∗

i , where

Di ∈ {0, 1} indicates the treatment decision of an existing human or algorithmic decision-maker. In

the context of bail decisions, for example, pretrial misconduct potential Y ∗i is only observed among

defendants selected by a judge for release (Di = 1). Individuals who are detained before trial (Di = 0)

cannot engage in pretrial misconduct and so Yi = 0. In the medical testing setting, patients who are

tested (Di = 1) have their disease state revealed but untested patients do not. This nonrandom

selection can bias algorithmic predictions of Y ∗i , by causing p(Xi) = E[Y ∗i | Xi, Di = 1] to diverge

from accurate predictions E[Y ∗i | Xi].

Kleinberg et al. (2018) refer to the endogenous observability of Y ∗i in such settings as the “selective

labels problem.” They consider how algorithmic predictions of qualification can be compared to, and in

some cases improve, human decision-making in light of this problem. We instead consider how selection

complicates measurement of algorithmic discrimination and derive a new approach to overcome this

challenge. Formally, nonrandom selection may cause a feasible measure of discrimination,

∆S = E[E[Ti | Ri = w, Y ∗i , Di = 1]− E[Ti | Ri = b, Y ∗i , Di = 1] | Di = 1] (3)

to diverge from ∆.6 We next present our approach to this selection challenge.

2.2 Identification and Estimation

Our approach to estimating algorithmic discrimination proceeds in two steps. We first show that the

challenge of selectively observed qualification reduces to a challenge of identifying four race-specific

moments. These moments capture the average qualification rate for each race and how qualification
5A finding of ∆ 6= 0 may indicate unlawful discrimination in many settings. For example, Title VII of the 1964 Civil

Rights Acts prohibits employment decisions that have a disparate impact by race. In many other contexts, including
bail decisions, the Equal Protection Clause of the 14th Amendment prohibits the intentional unequal treatment of
equally-qualified white and Black individuals (Yang and Dobbie, 2020).

6Coston et al. (2020) discuss conditions for fairness metrics like ∆ to be identified by selected metrics like ∆S . These
conditions are typically strong and unlikely to hold in practice.
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covaries with the algorithmic recommendations within race. We use the fact that the true- and

false-negative rates which enter ∆ can be written:

δT
r = E[TiY

∗
i | Ri = r]

E[Y ∗i | Ri = r] = ρr

µr
(4)

and δF
r = E[Ti(1− Y ∗i ) | Ri = r]

E[(1− Y ∗i ) | Ri = r] = E[Ti | Ri = r]− ρr

1− µr
(5)

where µr = E[Y ∗i | Ri = r] denotes the average qualification rate among race-r individuals and

ρr = E[TiY
∗

i | Ri = r] captures the race-specific second moment of algorithmic recommendations

and individual qualification. The weights in ∆ can further be written µ̄ = µwpw + µbpb where pr =

Pr(Ri = r). Since these racial shares and the race-specific average recommendation E[Ti | Ri = r]

are identified, these expressions show that the missing information in ∆ are the four race-specific

parameters {µw, µb, ρw, ρb}. Algorithmic discrimination can thus be measured by estimating these

four parameters, without needing to measure individual qualification directly.

We next show how the key four moments (and thus ∆) can be estimated by extrapolating reduced-

form variation across as-good-as-randomly assigned decision-makers, such as bail judges in the pretrial

setting. Under random assignment, each judge j makes treatment decisions Dij among a comparable

group of individuals i of each race. We can therefore estimate a series of judge-specific misconduct rates

among the defendants, of each race, that a judge releases before trial, µ̃jRi
≡ E[Yi | Dij = 1, Ri] =

E[Y ∗i | Dij = 1, Ri], as well as a series of judges’ race-specific release rates πjRi
≡ Pr(Dij = 1 | Ri).

We show in Arnold, Dobbie and Hull (2020) how estimates of these differentially-selected samples of

race-specific average misconduct risk can be extrapolated towards judges with high release rates in

order to estimate the average misconduct risk parameter E[Y ∗i | Ri] = µRi
. Our insight here is that

the same logic can be applied to estimate the second moments ρRi . Instead of the released misconduct

rates, we estimate and extrapolate, for each race, the judge-specific released second moments ρ̃jRi
≡

E[TiYi | Dij = 1, Ri] = E[TiY
∗

i | Dij = 1, Ri] towards judges with high release rates.7

To build intuition for our estimation approach, it is helpful to first consider a hypothetical

“supremely lenient” bail judge j∗ who releases nearly all defendants assigned to her of each race.

This judge’s race-specific release rates are close to one, i.e., πj∗Ri
≈ 1, so by quasi-random assign-

ment her race-specific released first and second moments are both close to the unselected moments:

µ̃j∗Ri
≈ µRi

and ρ̃j∗Ri
≈ ρRi

. The decisions of a supremely lenient and quasi-randomly assigned

judge can therefore be used to estimate the four parameters that enter our discrimination measure.
7This second set of extrapolations is not needed to estimate discrimination in a judge’s own decisions, as in Arnold,

Dobbie and Hull (2020), since if Ti = Dij then ρRi
= E[DijY

∗
i | Ri] = E[Yi | Dij = 1, Ri]Pr(Dij | Ri) is directly

estimable for each judge j.
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In the absence of a supremely lenient judge, these parameters can instead be extrapolated from

the variation in µ̃jRi
and ρ̃jRi

across quasi-randomly assigned judges j within race. This approach

is analogous to a standard regression discontinuity design, in which average potential outcomes are

extrapolated to a treatment cutoff from nearby observations.8 Here, selected moments are extrap-

olated from quasi-randomly assigned judges to the release rate cutoff of one to estimate unselected

moments. Estimates may, for example, come from the vertical intercept of linear, quadratic, or local

linear regressions of the selected moment estimates on estimated release rates. Crucially, as discussed

in Arnold, Dobbie and Hull (2020), such extrapolation can be conducted flexibly without assuming a

model of judge decision-making or imposing the strong assumption of first-stage monotonicity often

used with quasi-random judge assignment.

3 Data

We analyze algorithmic discrimination in the NYC pretrial system, one of the largest in the country.

Bail conditions in NYC are set by a judge at an arraignment hearing, held shortly after an arrest.

Bail hearings usually last a few minutes. The judge receives detailed information on the defendant’s

current offense and criminal record and decides on one of several possible bail conditions. First, she

can release defendants who show minimal risk on a promise to return for all court appearances, known

broadly as release on recognizance (ROR). Second, she can require defendants to post some sort of bail

to be released. The judge can also send higher-risk defendants to a supervised release program as an

alternative to cash bail. Finally, she can detain defendants pending trial by denying bail altogether.

Bail judges are granted considerable discretion in determining who should be released before trial,

but they cannot discriminate against minorities and other protected classes. Judges may consider the

risk that defendants will not appear for a required court appearance (a so-called failure to appear, or

FTA) or that they will engage in new criminal activity if released.

Our analysis sample is drawn from the universe of NYC arraignments made between November

1, 2008 and November 1, 2013. We describe the construction of this sample in Arnold, Dobbie and

Hull (2020), where we also give more detail on the institutional background. The sample consists

of 595,186 cases involving 367,434 white or Black defendants. Each case is assigned to one of 268

judges, each of whom sees at least 100 cases. We drop cases where the defendant is not charged with

a felony or misdemeanor and cases that were disposed at arraignment or adjourned in contemplation
8Formally, this approach draws on recent advances in average treatment effect extrapolation with multiple discrete

instruments (Brinch, Mogstad and Wiswall, 2017; Hull, 2020) and a classic literature on identification “at infinity” in
sample selection models (Heckman, 1990; Andrews and Schafgans, 1998).
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of dismissal, which are likely to be dismissed by virtually every judge.9

Table 1 summarizes the analysis sample, both overall and by race. Panel A shows that 73.0 percent

of defendants are released before trial (Di = 1). The vast majority of pretrial releases are without

conditions (ROR), with only 14.4 percent of defendants being released by posting an assigned bail

amount. White defendants are more likely to be released than Black defendants (76.7 percent versus

69.5 percent release rate) but among released defendants, the distribution of release conditions is

virtually identical. Panel B of Table 1 shows that Black defendants are 4.9 percentage points more

likely to have been arrested for a new crime before trial in the past year compared to white defendants,

as well as 3.0 percentage points more likely to have a prior FTA in the past year. Panel C further

shows that Black defendants are 1.3 percentage points more likely to have been charged with a felony

compared to white defendants, as well as 3.6 percentage points more likely to have been charged with

a violent crime. Finally, Panel D shows that Black defendants who are released are 6.6 percentage

points more likely to be rearrested or have an FTA than white defendants who are released (though

the composition of such misconduct is similar). Importantly, and in contrast to the other statistics in

Table 1, these rates of pretrial misconduct (Y ∗i ) are only measured among released defendants.

Our approach exploits the quasi-random assignment of bail judges in NYC. As detailed in Arnold,

Dobbie and Hull (2020), NYC uses a rotation calendar system to assign judges to arraignment shifts

in each of the five county courthouses in the city, generating quasi-random variation in bail judge

assignment for defendants arrested at the same time and in the same place. Appendix Table A3 verifies

the conditional randomness in assignment by regressing leave-one-out estimates of judge leniency on

various defendant and case characteristics, controlling for court-by-time fixed effects. Most coefficients

in this balance table are small and not statistically significantly different from zero, both overall and

by defendant race, and joint F -tests fail to reject the null of quasi-random assignment.

Our approach further exploits first-stage variation in judge leniency. Appendix Table A4 verifies

that differential judge assignment meaningfully affects the probability an individual is released before

trial, by regressing Di on leave-one-out estimates of judge leniency and court-by-time fixed effects.

A one percentage point increase in the predicted leniency of an individual’s judge leads to a 0.96

percentage point increase in the probability of release, with a somewhat smaller first-stage effect for

white defendants and a somewhat larger effect for Black defendants.

Our baseline analysis measures racial discrimination in algorithmic release recommendations that

are based on machine learning predictions of pretrial misconduct potential. The predictions come from
9Appendix Table A1 compares the full sample of NYC bail cases to our estimation sample. Appendix Table A2

confirms that the quasi-random judge assignment variation we exploit in estimation is not systematically related to case
disposal or dismissal. Both tables are taken from Arnold, Dobbie and Hull (2020).
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a gradient boosted decision tree estimated in the sample of released defendants, following Kleinberg

et al. (2018). The features Xi include a number of characteristics of the current offense and prior

criminal history, but exclude certain demographic variables such as race, ethnicity, and gender. Ap-

pendix B.1 details our estimation of this model. The model yields algorithmic risk predictions p(Xi)

for each defendant i. We use these predictions to form release recommendations by Ti = 1[p(Xi) < τ ]

for different risk thresholds τ . Our benchmark analysis sets τ to equalize the recommended average

release rate and the actual NYC release rate of 73 percent.

Appendix Figure A1 shows that the model reliably predicts pretrial misconduct potential in the

sample of released defendants. We plot true misconduct risk against the risk predictions of the machine

learning model across 1,000 equal-sized bins of predicted risk, along with a local linear curve of best fit.

We next discuss how we evaluate racial discrimination in recommendations based on these predictions.

4 Results

4.1 Parameter Estimates

Figures 1 and 2 show our extrapolation-based estimation of the race-specific mean risk and second

moment parameters, µr and ρr, for the baseline algorithmic recommendations. The horizontal axis

of both figures shows estimates of judge- and race-specific release rates πjr, obtained from ordinary

least squares (OLS) estimates of

Di =
∑

j

αjWiZij +
∑

j

φjZij +X ′iβ + εi (6)

where Di indicates pretrial release of defendant i, Wi = 1[Ri = w] indicates that defendant i is

white, and the Zij indicate assignment of defendant i to judge j. The control vector Xi includes

court-by-time fixed effects that control for the level of quasi-experimental bail judge assignment; we

demean this vector in order to include all judge indicators. The vertical axis of Figure 1 shows the

corresponding estimates of judge- and race-specific misconduct rates among released defendants µjr,

obtained from OLS estimates of

Yi =
∑

j

δjWiZij +
∑

j

ψjZij +X ′iγ + ui (7)

among released (Di = 1) individuals. Finally, the vertical axis of Figure 2 shows the corresponding

estimates of judge- and race-specific second moments among released defendants ρjr, obtained from

9



OLS estimates of

TiYi =
∑

j

ωjWiZij +
∑

j

ϕjZij +X ′iθ + vi (8)

again among released individuals. These specifications leverage an auxiliary assumption of linear

conditional expectations of Dij and Y ∗i in order to tractably accommodate the conditional random

assignment of bail judges in this setting.10

Parameter estimates come from the vertical intercept, at one, of each race-specific extrapolation

of the quasi-experimental variation in these figures. We consider linear, quadratic, and local linear

extrapolations and report the corresponding parameter estimates in Panels A and B of Table 2.

Our mean risk estimates match those of Arnold, Dobbie and Hull (2020); in the most flexible local

linear extrapolation we estimate mean risk as µw = 0.346 and µb = 0.436, both with standard errors of

0.016.11 These estimates suggest that white defendants in the population are on average 0.9 percentage

points less likely to engage in pretrial misconduct. The corresponding local linear estimates of the

second moments are more similar, at ρw = 0.226 and ρb = 0.213, with standard errors of 0.012 and

0.017. We obtain broadly similar estimates with the linear and quadratic extrapolations. Released

misconduct rates across judges trend upwards with their release rates with a relatively constant slope,

while the relationship between released second moments and release rates is flatter.12

4.2 Algorithmic Discrimination

Panel C of Table 2 reports our estimates of algorithmic discrimination, ∆, for the different parameter

estimates in Panels A and B. We obtain the discrimination estimates by applying Equations (2),

(4), and (5) to the first-step parameter estimates. Our most conservative estimate comes from the

local linear extrapolation, which yields an estimate of ∆ = 0.079 with a standard error of 0.07. The

linear and quadratic extrapolations yield a slightly higher estimate of ∆ = 0.086 and ∆ = 0.080, with

standard errors of 0.003 and 0.011 respectively.

Figure 3 shows how our estimate of algorithmic discrimination varies with the risk threshold τ ,

which controls the algorithm’s average release rate, and compares these estimates to the unadjusted
10If Zi is independent of (Ti, Y

∗
i , Di1, . . . , DiJ , Ri) given Xi and E[TiY

∗
i | Dij = 1, Ri = r,Xi] = ωjr + X′iθ, then

E[TiYi | Ri, Zi, Xi, Di = 1] is linear in (WiZi1, . . . ,WiZiJ , Zi1, . . . , ZiJ , X
′
i)
′, as in Equation (8). The same logic holds

for Equations (6) and (7) under analogous linearity assumptions.
11We obtain standard errors by a bootstrapping procedure, in which first-step estimates from Figures 1 and 2 are

redrawn according to their estimated asymptotic distribution. Standard errors in second-step parameters like µr, ρr,
and ∆ are then given by the standard deviation the bootstrapped estimates. First-step asymptotics are robust to
two-way clustering by the defendant and judge.

12Appendix Figure A2 shows that the local linear parameter estimates imply a stronger (more negative) covariance
of true pretrial misconduct potential and algorithmic release recommendations. See Appendix B.3 for details.
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racial disparity in release rates. The baseline estimate of 7.9, at the average release rate in NYC, is

a large share (76.0 percent) of the unadjusted disparity (10.4 percentage points). The magnitude of

algorithmic discrimination rises as release rates fall, remaining a roughly equal share of the unadjusted

disparity. Only at thresholds that essentially release all defendants do we fail to find a statistically

significant level of algorithmic discrimination.

4.3 Robustness and Extensions

Appendix Figures A3 and A4 show that our finding of significant discrimination in algorithmic bail

decisions is not driven by the specific machine learning algorithm that predicts pretrial misconduct

risk. We obtain similar estimates of the second moments ρw and ρb, and correspondingly similar

(local linear) estimates of algorithmic discrimination ∆, using simpler regression-based predictions

of pretrial misconduct risk. These predictions, detailed in Appendix B.2, are inspired by a widely

used pretrial risk assessment tool originally developed by the Laura and John Arnold Foundation. At

the baseline release rate of 73 percent, we find a 6.7 percentage point disparity in the recommended

release rates of white and Black defendants with the same potential for pretrial misconduct. This

discriminatory disparity is again a large share (73.6 percent) of the unadjusted release rate disparity

in algorithmic recommendations (9.1 percentage points), again increases as release rates fall, and is

again statistically distinguishable from zero at all but the highest release rates.

Appendix Figure A5 shows how our baseline estimates of algorithmic discrimination compare with

naive estimates computed on the selected sample of release defendants (i.e., estimates of Equation

(3)). This comparison reveals the extent of bias due to selective labels. The selected ∆S estimates

are of similar magnitude as our selection-corrected ∆ estimates, and similarly increase with the al-

gorithm’s average leniency. At the baseline NYC release rate the selected estimate is lower by 1.2

percentage points, a difference just at the margin of conventional statistical significance levels. Thus,

while in theory the selective labels problem can induce bias in observable measures of algorithmic

discrimination, we find by computing ∆ in this setting that the scope for such bias is small.

Finally, Appendix Figures A6 and A7 compute alternative measures of discrimination in our base-

line algorithm. We first estimate the racial disparities in true- and false-negative rates that Equation

(2) show are averaged together in ∆. Racial equality in false-negative rates can be seen as satisfying

what is known in the computer science literature as “equality of opportunity” (Hardt, Price and Sre-

bro, 2016), meaning that qualified white and Black defendants without pretrial misconduct potential

are released at the same rate. Appendix Figure A6 shows a disparity in false-negative rates that is

11



large and roughly constant across different release rates, while the racial disparity in true-negative

rates (i.e., the release rate differential among defendants without misconduct potential) is only sta-

tistically significantly different from zero at low release rates. These results suggest that a measure

of “inequality of opportunity” (that δT
w − δT

b 6= 0) could fail to detect overall racial discrimination

(that ∆ 6= 0) in this setting. In Appendix Figure A7 we consider departures from what is known

in the computer science literature as “sufficiency” (Zafar et al., 2017), meaning the racial equality of

positive and negative predictive values (see Appendix B.3 for details). We estimate a positive and

relatively constant degree of “insufficiency” with our baseline parameter estimates, suggesting that

this alternative measure of algorithmic unfairness and our baseline ∆ measure qualitatively agree.

5 Conclusion

Algorithmic discrimination is an increasingly widespread concern in many settings, but its measure-

ment is often hampered by a fundamental selection challenge. We show that this challenge can be

overcome by estimating four race-specific parameters involving algorithmic recommendations and an

individual’s selectively observed qualification. We further show that these parameters can be estimated

by extrapolating reduced-form variation across as-good-as-randomly assigned decision-makers. We il-

lustrate this approach in the NYC pretrial setting, where we find large and pervasive discrimination

in algorithmic release recommendations that do not directly use information on race.

We conclude by noting that the methods we develop to study racial discrimination in algorith-

mic bail decisions may prove useful for measuring unfairness in several other high-stakes settings,

both within and outside of the criminal justice system. One key requirement is the quasi-random

assignment of decision-makers, such as judges, police officers, employers, government benefits exam-

iners, or medical providers. A second requirement is that an individual’s qualification of treatment

is measurable among a subset of individuals that the decision-maker endogenously selects. Mapping

these settings to the quasi-experimental approach in this paper can overcome fundamental selection

challenges and bring a large theoretical literature on algorithmic fairness to data.

12



References
Agarwal, Alekh, Miroslav Dudik, and Zhiwei Steven Wu. 2019. “Fair Regression: Quantitative
Definitions and Reduction-based Algorithms.” Proceedings of the 36th International Conference on
Machine Learning, 120–129.

Aigner, Dennis, and Glen Cain. 1977. “Statistical Theories of Discrimination in Labor Markets.”
Industrial and Labor Relations Review, 30(2): 175–187.

Albright, Alex. 2019. “If You Give a Judge a Risk Score: Evidence from Kentucky Bail Decisions.”
Unpublished Working Paper.

Andrews, Donald, and Marcia Schafgans. 1998. “Semiparametric Estimation of the Intercept of
a Sample Selection Model.” Review of Economic Studies, 65(3): 497–517.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. “Machine Bias.”
ProPublica Report.

Arnold, David, Will Dobbie, and Crystal S. Yang. 2018. “Racial Bias in Bail Decisions.”
Quarterly Journal of Economics, 133(4): 1885–1932.

Arnold, David, Will Dobbie, and Peter Hull. 2020. “Measuring Racial Discrimination in Bail
Decisions.” NBER Working Paper No. 26999.

Becker, Gary S. 1957. The Economics of Discrimination. University of Chicago Press.

Berk, Richard, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. 2018.
“Fairness in Criminal Justice Risk Assessments: The State of the Art.” Sociological Methods &
Research, 1–42.

Bordalo, Pedro, Katherine Coffman, Nicola Gennaioli, and Andrei Shleifer. 2016. “Stereo-
types.” The Quarterly Journal of Economics, 131(4): 1753–1794.

Brinch, Christian, Magne Mogstad, and Matthew Wiswall. 2017. “Beyond LATE with a
Discrete Instrument.” Journal of Political Economy, 125(4): 985–1039.

Chamberlain, Gary. 1986. “Asymptotic Efficiency in Semiparametric Models with Censoring.” Jour-
nal of Econometrics, 32(2): 189–218.

Chohlas-Wood, Alex. 2020. “Understanding Risk Assessment Instruments in Criminal Justice.”
Brookings Report.

Coston, Amanda, Alan Mishler, Edward H. Kennedy, and Alexandra Chouldechova.
2020. “Counterfactual Risk Assessments, Evaluation, and Fairness.” In Conference on Fairness,
Accountability, and Transparency. ACM, New York, NY.

Feigenberg, Benjamin, and Conrad Miller. 2020. “Racial Disparities in Motor Vehicle Searches
Cannot Be Justified by Efficiency.” NBER Working Paper No. 27761.

Frandsen, Brigham R., Lars J. Lefgren, and Emily C. Leslie. 2019. “Judging Judge Fixed
Effects.” NBER Working Paper No. 25528.

Hardt, Moritz, Eric Price, and Nathan Srebro. 2016. “Equality of Opportunity in Supervised
Learning.” Proceedings of the 30th Conference on Neural Information Processing Systems, 3323–
3331.

Heckman, James J. 1990. “Varieties of Selection Bias.” American Economic Review, 80(2): 313–318.

Heckman, James J., and Edward Vytlacil. 2005. “Structural Equations, Treatment Effects, and
Econometric Policy Evaluation.” Econometrica, 73(3): 669–738.

13



Hull, Peter. 2020. “Estimating Hospital Quality with Quasi-Experimental Data.” Unpublished Work-
ing Paper.

Imbens, Guido, and Joshua Angrist. 1994. “A Least Squares Correction for Selectivity Bias.”
Econometrica, 62(2): 467–475.

Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mul-
lainathan. 2018. “Human Decisions and Machine Predictions.” Quarterly Journal of Economics,
133(1): 237–293.

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. 2017. “Inherent Trade-Offs in
Algorithmic Fairness.” Proceedings of Innovations in Theoretical Computer Science, 43:1–43:23.

Kowalski, Amanda. 2016. “Doing More When You’re Running LATE: Applying Marginal Treatment
Effect Methods to Examine Treatment Effect Heterogeneity in Experiments.” NBER Working Paper
No. 22363.

Lakkaraju, Himabindu, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mul-
lainathan. 2017. “The Selective Labels Problem: Evaluating Algorithmic Predictions in the Pres-
ence of Unobservables.” Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 275–284.

Marx, Philip. 2018. “An Absolute Test of Racial Prejudice.” Unpublished Working Paper.

Mogstad, Magne, Alexander Torgovitsky, and Christopher R. Walters. 2019. “Identification
of Causal Effects with Multiple Instruments: Problems and Some Solutions.” NBER Working Paper
No. 25691.

Mogstad, Magne, Andres Santos, and Alexander Torgovitsky. 2018. “Using Instrumental
Variables for Inference About Policy-Relevant Treatment Parameters.” Econometrica, 86(5): 1589–
1619.

Mueller-Smith, Michael. 2015. “The Criminal and Labor Market Impacts of Incarceration.” Un-
published Working Paper.

Norris, Sam. 2019. “Examiner Inconsistency: Evidence from Refugee Appeals.” Unpublished Working
Paper.

Price II, W. Nicholson. 2019. “Risks and Remedies for Artificial Intelligence in Health Care.”
Brookings Report.

Raghavan, Manish, and Solon Barocas. 2019. “Challenges for Mitigating Bias in Algorithmic
Hiring.” Brookings Report.

Rose, Evan. 2020. “Who Gets a Second Chance? Effectiveness and Equity in Supervision of Criminal
Offenders.” Unpublished Working Paper.

Stevenson, Megan T., and Jennifer L. Doleac. 2019. “Algorithmic Risk Assessment in the Hands
of Humans.” Unpublished Working Paper.

Yang, Crystal, and Will Dobbie. 2020. “Equal Protection Under Algorithms: A New Statistical
and Legal Framework.” Michigan Law Review, 119(1): 291–396.

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez Rodriguez, and Krishna Gum-
madi. 2017. “Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification
without Disparate Mistreatment.” Proceedings of the 26th International Conference on World Wide
Web.

14



Figure 1: Extrapolating Released Misconduct Rates Across Bail Judges
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed effects. The figure also plots race-
specific linear, quadratic, and local linear curves of best fit, obtained from judge-level regressions that inverse-weight by
the variance of the estimated misconduct rate among released defendants. The local linear regressions use a Gaussian
kernel with a race-specific rule-of-thumb bandwidth.
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Figure 2: Extrapolating Second Moments Across Bail Judges
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against the uncentered second
moments of pretrial misconduct and algorithmic recommendations among the set of released defendants. Algorithmic
recommendations are from our baseline gradient-boosted decision tree model with a risk threshold calibrated to equalize
the average recommended release rate and the average release rate in NYC. All estimates adjust for court-by-time fixed
effects. The figure also plots race-specific linear, quadratic, and local linear curves of best fit, obtained from judge-level
regressions that inverse-weight by the variance of the estimated misconduct rate among released defendants. The local
linear regressions use a Gaussian kernel with a race-specific rule-of-thumb bandwidth.
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Figure 3: Discrimination in Algorithmic Bail Decisions

Average Release Rate in NYC
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Notes. This figure plots the range of unadjusted racial disparities in algorithmic release rate recommendations, for
different average release rates, along with the range of disparities due to racial discrimination. Algorithmic recommen-
dations are from our baseline gradient-boosted decision tree model. Disparities from discrimination are computed as
described in the text, using local linear estimates of the race-specific first and second moments. Dashed lines indicate
pointwise 95 percent confidence intervals, computed by the bootstrapping procedure described in the text.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants

Panel A: Pretrial Release (1) (2) (3)
Released Before Trial 0.730 0.767 0.695

Share ROR 0.852 0.852 0.851
Share Money Bail 0.144 0.144 0.145
Share Other Bail Type 0.004 0.004 0.004
Share Remanded 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.478 1.000 0.000
Male 0.821 0.839 0.804
Age at Arrest 31.97 32.06 31.89
Prior Rearrest 0.229 0.204 0.253
Prior FTA 0.103 0.087 0.117

Panel C: Charge Characteristics
Number of Charges 1.150 1.184 1.118
Felony Charge 0.362 0.355 0.368
Misdemeanor Charge 0.638 0.645 0.632
Any Drug Charge 0.256 0.257 0.256
Any DUI Charge 0.046 0.067 0.027
Any Violent Charge 0.143 0.124 0.160
Any Property Charge 0.136 0.127 0.144

Panel D: Pretrial Misconduct, When Released
Pretrial Misconduct 0.299 0.266 0.332

Share Rearrest Only 0.499 0.498 0.499
Share FTA Only 0.281 0.296 0.269
Share Rearrest and FTA 0.220 0.205 0.232

Total Cases 595,186 284,598 310,588
Cases with Defendant Released 434,201 218,256 215,945

Notes. This table summarizes the NYC analysis sample. The sample consists of bail hearings that were quasi-
randomly assigned to judges between November 1, 2008 and November 1, 2013, as described in the text. Information on
demographics and criminal outcomes is derived from court records as described in the text. Pretrial release is defined
as meeting the bail conditions set by the first assigned bail judge. ROR (released on recognizance) is defined as being
released without any conditions. FTA (failure to appear) is defined as failing to appear at a mandated court date.
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Table 2: Parameter and Discrimination Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Misconduct Risk (1) (2) (3)
White Defendants 0.338 0.319 0.346

(0.007) (0.022) (0.016)
Black Defendants 0.400 0.394 0.436

(0.006) (0.020) (0.016)

Panel B: Misconduct/Recommendation Second Moment
White Defendants 0.207 0.215 0.226

(0.006) (0.019) (0.012)
Black Defendants 0.202 0.160 0.213

(0.006) (0.016) (0.017)

Panel C: Algorithmic Discrimination
Release Rate Disparity 0.086 0.080 0.079

(0.003) (0.011) (0.007)
Notes. Panels A and B of this table summarize estimates of race-specific mean risk and second moments of misconduct

potential and the algorithmic release recommendation from different extrapolations of the variation in Figures 1 and
2. Panel C reports corresponding estimates of algorithmic discrimination, as defined in the text. Column 1 uses a
linear extrapolation of the variation, while column 2 uses a quadratic extrapolation and column 3 uses a local linear
extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at
the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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A Appendix Figures and Tables

Appendix Figure A1: Algorithmic Predictions of Pretrial Misconduct Risk
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Notes. This figure plots true pretrial misconduct risk against the risk predictions of our baseline gradient-boosted
decision tree algorithm among the set of released defendants in our sample. True risk is computed within 1,000 equal-
sized bins of predicted risk. The curve of best fit comes from a local linear regression with a Gaussian kernel and
rule-of-thumb bandwidth.
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Appendix Figure A2: Covariance of Pretrial Misconduct and Algorithmic Release Recommendations
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Notes. This figure plots the range of race-specific covariance between pretrial misconduct potential and algorith-
mic release recommendations for different average release rates. Algorithmic recommendations are from our baseline
gradient-boosted decision tree model. Covariances are computed by using local linear estimates of the race-specific first
and second moments. Dashed lines indicate pointwise 95 percent confidence intervals, computed by the bootstrapping
procedure described in the text.
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Appendix Figure A3: Extrapolating Regression-Based Second Moments Across Bail Judges
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against the uncentered second
moments of pretrial misconduct and algorithmic recommendations among the set of released defendants. Algorithmic
recommendations are from the regresison model described in the text with a risk threshold calibrated to equalize the
average recommended release rate with the average release rate in NYC. All estimates adjust for court-by-time fixed
effects. The figure also plots race-specific linear, quadratic, and local linear curves of best fit, obtained from judge-level
regressions that inverse-weight by the variance of the estimated misconduct rate among released defendants. The local
linear regressions use a Gaussian kernel with a race-specific rule-of-thumb bandwidth.
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Appendix Figure A4: Discrimination in Regression-Based Algorithmic Bail Decisions

Average Release Rate in NYC
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Notes. This figure plots the range of unadjusted racial disparities in algorithmic release rate recommendations, for
different average release rates, along with the range of disparities due to racial discrimination. Algorithmic recommen-
dations are from the regression model described in the text. Disparities from discrimination are computed as described
in the text, using local linear estimates of the race-specific first and second moments. Dashed lines indicate pointwise
95 percent confidence intervals, computed by the bootstrapping procedure described in the text.
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Appendix Figure A5: Quantifying the Bias from Selective Labels

Average Release Rate in NYC
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Notes. This figure plots our main discrimination estimates against a potentially biased measure of discrimination that
is estimated on the subsample of defendants released before trial. Algorithmic recommendations are from our baseline
gradient-boosted decision tree model. Disparities from discrimination are computed as described in the text, using local
linear estimates of the race-specific first and second moments. Dashed lines indicate pointwise 95 percent confidence
intervals, computed by the bootstrapping procedure described in the text.
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Appendix Figure A6: Decomposition of Algorithmic Discrmination
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Notes. This figure plots the range of racial disparities in true and false negative rates, for different average release
rates, which make up the disparities due to racial discrimination. Algorithmic recommendations are from our baseline
gradient-boosted decision tree model. Disparities are computed as described in the text, using local linear estimates of
the race-specific first and second moments. Dashed lines indicate pointwise 95 percent confidence intervals, computed
by the bootstrapping procedure described in the text.
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Appendix Figure A7: Measuring Discrimination by Sufficiency of Algorithmic Recommendations
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Notes. This figure plots the range of racial disparities in average positive and negative predictive values, or the
sufficiency of algorithmic release rate recommendations, for different average release rates. Algorithmic recommendations
are from our baseline gradient-boosted decision tree model. Disparities are computed as described in the text, using local
linear estimates of the race-specific first and second moments. Dashed lines indicate pointwise 95 percent confidence
intervals, computed by the bootstrapping procedure described in the text.
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Appendix Table A1: Descriptive Statistics by Sample

All Defendants White Defendants Black Defendants
Full Estimation Full Estimation Full Estimation

Sample Sample Sample Sample Sample Sample
Panel A: Pretrial Release (1) (2) (3) (4) (5) (6)
Released Before Trial 0.852 0.730 0.872 0.767 0.832 0.695

Share ROR 0.601 0.852 0.616 0.852 0.586 0.851
Share Disposed 0.301 0.000 0.274 0.000 0.327 0.000
Share Adjourned 0.191 0.000 0.199 0.000 0.183 0.000
Share Money Bail 0.068 0.144 0.070 0.144 0.066 0.145
Share Other Bail Type 0.332 0.004 0.314 0.004 0.348 0.004
Share Remanded 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.483 0.478 1.000 1.000 0.000 0.000
Male 0.822 0.821 0.831 0.839 0.813 0.804
Age at Arrest 31.819 31.969 31.540 32.055 32.080 31.890
Prior Rearrest 0.192 0.229 0.168 0.204 0.214 0.253
Prior FTA 0.085 0.103 0.071 0.087 0.099 0.117

Panel C: Charge Characteristics
Number of Charges 1.094 1.150 1.111 1.184 1.078 1.118
Felony Charge 0.184 0.362 0.181 0.355 0.188 0.368
Misdemeanor Charge 0.816 0.638 0.819 0.645 0.812 0.632
Any Drug Charge 0.347 0.256 0.342 0.257 0.352 0.256
Any DUI Charge 0.031 0.046 0.046 0.067 0.017 0.027
Any Violent Charge 0.072 0.143 0.062 0.124 0.081 0.160
Any Property Charge 0.217 0.136 0.209 0.127 0.226 0.144

Cases 1,358,278 595,186 656,711 284,598 701,567 310,588
Notes. This table summarizes the difference between the NYC analysis sample and the full sample of NYC arraign-

ments. The full sample consists of all bail hearings between November 1, 2008 and November 1, 2013. The analysis
sample consists of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and November
1, 2013, as described in the text. Information on demographics and criminal outcomes is derived from court records as
described in the text. Pretrial release is defined as meeting the bail conditions set by the first assigned bail judge. ROR
(released on Recognizance) is defined as being released without any conditions. FTA (failure to appear) is defined as
failing to appear at a mandated court date.
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Appendix Table A2: Judge Leniency and Sample Attrition

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Dropped from Sample 0.00007 0.00003 0.00012

(0.00012) (0.00013) (0.00014)
Court x Time FE Yes Yes Yes
Mean Sample Attrition 0.416 0.409 0.424
Cases 1,425,652 726,284 697,597

Notes. This table reports OLS estimates of regressions of judge leniency on an indicator for leaving the sample due
to case adjournment or case disposal and court-by-time fixed effects. The regressions are estimated on the sample of all
arraignments made in NYC between November 1, 2008 and November 1, 2013. Judge leniency is estimated using data
from other cases assigned to a given bail judge. Robust standard errors, two-way clustered at the individual and the
judge level, are reported in parentheses.
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Appendix Table A3: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants

(1) (2) (3)
White 0.00013

(0.00009)
Male 0.00003 0.00003 0.00004

(0.00014) (0.00019) (0.00018)
Age at Arrest -0.00011 -0.00015 -0.00008

(0.00004) (0.00006) (0.00005)
Prior Rearrest -0.00021 0.00006 -0.00042

(0.00011) (0.00018) (0.00015)
Prior FTA 0.00016 -0.00011 0.00036

(0.00016) (0.00024) (0.00023)
Number of Charges -0.00001 -0.00001 -0.00001

(0.00001) (0.00001) (0.00003)
Felony Charge 0.00025 0.00011 0.00039

(0.00020) (0.00023) (0.00025)
Any Drug Charge -0.00022 -0.00017 -0.00027

(0.00016) (0.00021) (0.00018)
Any DUI Charge 0.00045 0.00051 0.00008

(0.00027) (0.00032) (0.00045)
Any Violent Charge -0.00008 -0.00023 0.00001

(0.00023) (0.00033) (0.00025)
Any Property Charge -0.00033 -0.00028 -0.00036

(0.00018) (0.00019) (0.00027)
Joint p-value [0.10689] [0.29792] [0.10136]
Court x Time FE Yes Yes Yes
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of judge leniency on defendant characteristics. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned to
a given bail judge. All regressions control for court-by-time fixed effects. The p-values reported at the bottom of each
column are from F-tests of the joint significance of the variables listed in the rows. Robust standard errors, two-way
clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A4: First Stage Effects of Judge Leniency

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Judge Leniency 0.960 0.788 1.104

(0.025) (0.029) (0.033)
Court x Time FE Yes Yes Yes
Mean Release Rate 0.730 0.767 0.695
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on judge leniency. The
regressions are estimated on the sample described in Table 1. Judge leniency is estimated using data from other
cases assigned to a bail judge. All regressions control for court-by-time fixed effects. Robust standard errors, two-way
clustered at the individual and the judge level, are reported in parentheses.
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B Econometric Appendix

B.1 Algorithm Estimation Details

This appendix details our baseline algorithmic predictions of pretrial misconduct risk. We use a gra-

dient boosted decision tree model, based on the model Kleinberg et al. (2018) develop for the NYC

pretrial system. We use the same feature set Xi, which includes a total of 38 variables summarizing

prior criminal history, charge characteristics, and demographic variables such as the age of the defen-

dant. The outcome variable Yi is an indicator for pretrial misconduct, defined as either a failure to

appear or being arrested for a new crime.

Gradient boosting is an ensemble method that aggregates a number of “weak learners” in an it-

erative fashion. Here, the weak learners are decision trees, which divide the data through a sequence

of binary splits based on the feature set. The algorithm averages multiple decision trees built sequen-

tially on the data, with subsequent iterations up-weighting the observations predicted most poorly by

the preceding sequence of trees. The complexity of the gradient boosting algorithm depends on the

“depth” of each tree and a “shrinkage” parameter which governs how trees are averaged together.

Following Kleinberg et al. (2018), we choose the model hyperparameters by k-fold cross-validation

with five folds. We first select a random 80 percent sample of released defendants, which we take as

the training dataset. Applying the cross-validation procedure to this dataset yields an optimal tree

depth of 4 and shrinkage parameter of 0.05. We then use the full training set and the remaining 20

percent of released defendants (the test dataset) to fit the gradient boosted decision tree model with

these hyperparameters. Finally, we apply the model to the full sample (including defendants detained

before trial) to compute risk predictions p(Xi). We use the complete sample to estimate algorithmic

discrimination for consistency with Arnold, Dobbie and Hull (2020) and to maximize precision.

B.2 Alternative Regression-Based Risk Predictions

This appendix measures algorithmic discrimination in a simpler regression-based prediction of pretrial

misconduct risk, inspired by the Laura and John Arnold Foundation Public Safety Assessment tool

(LJAF PSA). The LJAF PSA is used in a number of states and cities to assist bail judges in making

pretrial release decisions. LJAF PSA scores are based on nine defendant and case observables: the

defendant’s age; an indicator for a violent crime charge; an indicator for a pending charge at the

time of offense; indicators for a prior misdemeanor, felony, or violent crime conviction; the number of

previous failures to appear over the last two years; an indicator for a failure to appear more than two
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years ago; and an indicator for prior incarceration.

We construct ordinary least squares risk predictions Ŷi by regressing, in the sample of released

defendants, an indicator for pretrial misconduct (either a failure to appear or being rearrested for a new

crime) on a set of observed characteristics based on the LJAF PSA inputs. For most characteristics,

we are able to match the inputs exactly. We do not observe whether a defendant has a pending charge,

however, so we exclude this input. We also do not observe prior incarceration, so we instead use an

indicator for prior arrest. As with the main algorithmic predictions, we use these Ŷi and a range of

risk thresholds τ to form release recommendations Ti = 1[Ŷi < τ ] for all defendants in the sample.

Appendix Figure A3 shows our extrapolation-based estimation of the key race-specific second

moments ρw and ρb when using the regression-based prediction of pretrial misconduct. Appendix

Figure A4 plots the corresponding range of estimated measures of algorithmic discrimination for the

regression-based prediction of pretrial misconduct. As with our baseline gradient boosted decision tree

algorithm, the regression-based algorithmic recommendations yield similar second-moment estimates

for white and Black defendants (of around 0.2) at the average release rate in NYC (73 percent). These

estimates and the common mean risk estimates yield a 6.7 percentage point disparity in the recom-

mended release rates of white and Black defendants with the same potential for pretrial misconduct.

This discriminatory disparity is a large share (73.6 percent) of the unadjusted release rate disparity

in algorithmic recommendations (9.1 percentage points), and a similar share as with our baseline

gradient boosted decision tree algorithm. We again find algorithmic discrimination over a wide range

of potential release rates, with the estimated ∆ statistically distinguishable from zero at all but the

highest release rates.

B.3 Alternative Discrimination Measures

This appendix shows how our estimates of race-specific parameters {µw, µb, ρw, ρb} can be used to

construct alternative measures of algorithmic discrimination in the NYC pretrial setting. We first

estimate race-specific covariances of misconduct potential Y ∗i and algorithmic release recommendations

Ti. We then estimate racial disparities in true- and false-negative rates, δT
r and δF

r , which enter our

average discrimination measure ∆. Racial equality in false-negative rates can be seen as satisfying

what is known in the computer science literature as “equality of opportunity” (Hardt, Price and Srebro,

2016), meaning that “qualified” white and Black defendants without pretrial misconduct potential are

released at the same rate. We also show that our estimates can be used to detect departures from what

is known in the computer science literature as “sufficiency” (Zafar et al., 2017), and what Kleinberg,
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Mullainathan and Raghavan (2017) refer to as “calibration,” meaning the racial equality of positive

and negative predictive values.

Appendix Figure A2 first plots our estimates of race-specific covariances of misconduct potential

and algorithmic release recommendations across a range of release rates. These estimates are obtained

by Cov(Y ∗i , Ti | Ri) = ρRi
−µRi

×E[Ti | Ri]. We tend to find a stronger (more negative) covariance for

Black defendants than white defendants. This results from the fact that we estimate a the higher mean

risk µRi for Black defendants than for white defendants, while we tend to obtain similar estimates of

the second moment ρRi
and somewhat higher release rates E[Ti | Ri] for white defendants.

Appendix Figure A6 next plots our estimates of racial disparities in true- and false-negative rates.

These estimates are obtained by the formulas for δT
r and δF

r in the main text. We find a disparity

in false-negative rates that is large and roughly constant across different release rates, where white

defendants with misconduct potential tend to be released at a higher rate than Black defendants with

misconduct potential. In contrast, the racial disparity in true-negative rates (i.e., the release rate

differential among defendants without misconduct potential) is only statistically significantly different

from zero at low release rates. These results suggest that a measure of “inequality of opportunity”

(that δT
w − δT

b 6= 0) could fail to detect overall racial discrimination (that ∆ 6= 0) in this setting.

Finally, Appendix Figure A7 plots estimates of algorithmic “insufficiency.” Paralleling our main

discrimination measure ∆, we define insufficiency as:

Σ = E[E[1− Y ∗i | Ri = w, Ti]− E[1− Y ∗i | Ri = b, Ti]]

Here, the inner difference compares the non-misconduct rate for white and Black defendants, holding

fixed the algorithmic recommendation Ti. The outer expectation averages this comparison over the

recommendation distribution. A finding of Σ > 0 indicates that white individuals tend to be less risky

than Black defendants with identical algorithmic recommendations. As with ∆, this measure can be

decomposed as:

Σ = (σR
w − σR

b )E[Ti] + (σD
w − σD

b )(1− E[Ti])

where σR
r = E[1−Y ∗i | Ri = r, Ti = 1] is the non-misconduct rate among released individuals of race r

and σD
r = E[1−Y ∗i | Ri = r, Ti = 0] is the non-misconduct rate among detained individuals of race r.

Here, σR
r can be interpreted as the negative predictive value of race r and 1− σD

r can be interpreted

as the positive predictive value of race r, such that Σ captures racial disparities in these values. To
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estimate Σ, we use this decomposition and the fact that:

σ+
r = 1− E[Y ∗i Ti | Ri = r]

E[Ti | Ri = r] = 1− ρr

E[Ti | Ri = r]

σ−r = 1− E[Y ∗i (1− Ti) | Ri = r]
E[(1− Ti) | Ri = r] = 1− µr − ρr

1− E[Ti | Ri = r]

We find a generally positive Σ across a wide range of algorithmic release rates when we use our esti-

mates of first- and second-moments as inputs to these formulas. White defendants tend to have lower

pretrial misconduct rates than black defendants conditional on the algorithm’s release recommenda-

tion. This result suggests that the insufficiency measure and our algorithmic discrimination measure

∆ qualitatively agree in this setting.
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