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1 Introduction

In many settings, there is a dearth of instruments, which hampers economists’ understanding

of causal relations (Ramey (2016); Stock and Watson (2016); Nakamura and Steinsson (2018);

Chodorow-Reich (2019)). We propose a general way to construct instruments: “granular instru-

mental variables” (GIVs). These instruments in turn allow researchers to establish causal relations

in a wide variety of economic contexts.

In the economies we study, many decisions are taken by a few large actors, such as firms,

industries, or countries, whose idiosyncratic shocks (e.g., productivity shocks) a↵ect the aggregate

ones.1 These idiosyncratic shocks at the firm, industry, or country level are valid instruments for

aggregate endogenous variables such as prices. We present a method to extract those idiosyncratic

shocks, which allows us to construct GIVs. The GIVs then allow us to estimate parameters of

interest.

We first illustrate the idea in a basic static setup with supply and demand (Section 2). It

is a classic setting, and we show how GIVs allow for a novel estimation procedure: they yield

an instrument that allows us to estimate the elasticities of both supply and demand. Indeed,

idiosyncratic demand shocks to large firms or countries give a valid instrument for demand change

– and thus allow one to estimate the elasticity of supply. They also allow us to estimate the

elasticity of demand: the idiosyncratic demand shock of a large firm impacts the price, which

changes the demand of other firms. We formalize these ideas and present a way to “optimally

extract” idiosyncratic shocks, thus constructing optimal GIVs.

Once the ideas are in place, we show in Section 3 how the procedure can be broadened to handle

many extensions, such as feedback loops, heterogeneity, and several exogenous factors. Section 4

gives a practical user’s guide.

Empirical illustrations We provide empirical results for two applications: sovereign yield spillovers

and the equilibrium of global crude oil markets.

First, we study sovereign yield spillovers in the Eurozone in 2009-2018. If a country has an

increase in its sovereign yield spread (i.e., the yield on its government debt minus the comparable

yield for German sovereign bonds), how much does that “spill over” to other Eurozone countries?

We present a simple model that allows us to think about that and delivers a theoretically-grounded

functional form for the shape of the spillovers. The modeling device we use is partial mutualization

of debt, and we argue that other devices are likely to give a similar reduced form. Then, we use

GIVs to estimate that spillover. Specifically, we extract idiosyncratic sovereign yield shocks and

trace the impact of an idiosyncratic shock of one country on the other countries’ yields. We find a

“multiplier” of 1.5 (where unity would signify the absence of spillovers). To interpret this, suppose

1Hence, economies are “granular”: their shocks are made of incompressible “grains” of economic activity, at the
firm, industry, or country level. This theme is laid out in Gabaix (2011), and developed in Acemoglu et al. (2012),
di Giovanni and Levchenko (2012), and Carvalho and Grassi (2019).
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that Italy su↵ers a bad idiosyncratic shock that makes its debt likelier to default, so that the market

value of Italy’s debt falls by one billion euros. The multiplier M ' 1.5 means that the aggregate

debt of all European governments falls by 1.5 billion euros: the spillover is an extra 0.5 billion euros

of losses in European sovereign debt markets.

Second, we use GIVs to estimate the short-term impact of demand and supply shocks in global

crude oil markets as a validation exercise. These multipliers, which depend on demand and supply

elasticities, have been studied extensively in the literature using structural VARs. To identify the

parameters of interest, the literature has relied on ordered VARs, sign restrictions with informative

priors, and narrative methods. We use country-level oil supply growth to construct the GIV,

after removing common factors using principal components and OPEC membership to construct

an OPEC-specific factor. We find that the multipliers identified by GIV fall within the range

documented in the literature.

This application also shows how GIVs can be used to identify parameters in structural VARs,

complementing an active literature that uses sign restrictions, as in Uhlig (2005), or narrative

restrictions combined with sign restrictions, as in Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and

Ludvigson et al. (2020).

Uses of GIVs GIVs allow to “democratize” and “automatize” instruments, especially in macro-

finance where they have been rare. In standard practice, finding an instrument is a heroic and

very ingenious a↵air. For instance, work on the “China shock” (the entry of China in the World

Trade Organization, studied in Autor et al. (2013)) depends on detailed historical knowledge and

applies only to a specific time period. With GIVs, we can have a more systematic way to obtain

instruments, that can apply more generally and over many time periods.

Once one thinks about causality and GIV procedures, the answers to many interesting questions

suddenly feel within reach. Several recent papers have already applied GIV procedures to identify

key parameters and elasticities of interest. Chodorow-Reich et al. (2021) study the multiplier of

idiosyncratic shocks to an insurer’s asset portfolio on the insurer’s equity valuation. Camanho et

al. (2020) study the impact of idiosyncratic shocks to fund-level rebalancing on exchange rates.

Galaasen et al. (2020) use GIVs to study how idiosyncratic shocks to firms impact banks, and how

this spills over to other (small, non-granular) firms borrowing from the same bank. In Gabaix and

Koijen (2020), we apply the methodology in this paper to measure the elasticity of the aggregate

stock market using idiosyncratic demand shocks to large investors or investor sectors. Schubert et

al. (2020) study the impact of concentration on wages and use idiosyncratic firm-level shocks to

instrument for concentration. Kundu and Vats (2020) estimate how idiosyncratic firm-level shocks

in one state a↵ect economic activity in other states via their transmission through the banking

system.

We sketch a few further potential applications here, hoping that they will inspire other re-

searchers to investigate these and related topics with the help of GIVs. In some cases, creative
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instruments have been uncovered and GIVs may be useful to sharpen the estimates or to extend

the estimates to other settings (e.g., other time periods, industries or countries).

The notion of doom loops is that when banks do badly, this will hamper the financial health

of the state (as the state may need to bail out banks), and hence will increase the yield on the

sovereign’s debt. This in turn will create a fall in bank returns and result in a “doom loop.” How

important are those doom loops quantitatively? Using the idiosyncratic returns of large banks,

GIVs allow us to estimate both channels, from banks to state and from state to bank. We plan to

pursue this application.

GIVs can be used to estimate the pass-through from exchange rates to real economic activity.

To take a concrete example, if the Turkish Lira appreciates, how does that a↵ect Turkey’s exports

and borrowing? One could handle that via idiosyncratic demand shocks by large investment funds

for the Turkish Lira.2

If there is an export boom, then what is the impact on the exchange rate, and the rest of the

economy? Idiosyncratic shocks to large exporters will be useful to answer that question, as recent

research has shown them to be very large (di Giovanni et al. (2014); Gaubert and Itskhoki (2020);

Kramarz et al. (2020)).

Do firm-specific hiring, investment, and innovations spill over to peer firms operating in the

same product market? That is, what is the sign and magnitude of strategic complementaries?

Idiosyncratic innovation shocks to some large players will help construct the GIV.

How much do the constraints of financial intermediaries (such as broker-dealers) matter for asset

prices? The GIV will rely on idiosyncratic shocks to intermediary wealth, which may be related to

shocks to other parts of the banks.

How do international macroeconomic shocks propagate? For instance, how does a boom in

Germany transmit to the rest of Europe? Using idiosyncratic shocks (di↵erentiating between pro-

ductivity and demand shocks) to countries will help us answer that question.

Likewise, how do regional “micro” shocks propagate into macro shocks? GIVs allow us to

measure that and to estimate a micro-to-macro multiplier.3

Related literature We relate to a number of literatures. We o↵er some brief pointers here, while

o↵ering a longer discussion in Section 8.2.

Instruments for macro. An active literature discusses identification strategies in macro (Ramey

(2016); Nakamura and Steinsson (2018); Chodorow-Reich (2019)). We add to it by proposing to

use GIVs, which are quite ubiquitous. There are lots of idiosyncratic shocks, and GIVs allow us to

construct them systematically.

Origins of aggregate fluctuations. A growing literature finds that a sizable amount of volatility

is “granular” in nature – coming from idiosyncratic shocks to firms or industries (Long and Plosser

2See Gabaix and Maggiori (2015) and Caballero and Simsek (2020) for models along those lines and Koijen and
Yogo (2019) for a methodology for asset demand systems.

3We are pursuing this last question in ongoing work.
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(1983); Gabaix (2011); Acemoglu et al. (2012); di Giovanni and Levchenko (2012); di Giovanni et

al. (2014); Baqaee and Farhi (2019); Carvalho and Grassi (2019); Pasten et al. (2020)). We provide

tools that can tease that apart in the presence of feedback loops. Datasets used in this literature can

be revisited, forming GIVs which allow us to investigate causal relations. Gabaix (2011) introduces

the notion of the “granular residual”, a weighted sum of proxies for idiosyncratic shocks, and shows

how idiosyncratic shocks to firms appear to explain about one third of GDP fluctuations. But that

paper does not take the crucial step of using this kind of concept as an instrument to measure

causal relations, for instance in a demand and supply setting.

The idea that we propose is in retrospect natural, so that we suspected it may have been

already introduced in the literature, perhaps in a forgotten paper from the 1950s. However, after

searching the literature and consulting with many experts, we did not find an earlier statement

of it. We are quite sure that this idea has not been systematically implemented in mainstream

economic applications. The idea of using idiosyncratic shocks as instruments to estimate spillover

e↵ects has been explored in several creative papers, as we discuss in more detail in Section 8.2,

such as Leary and Roberts (2014b), Amiti and Weinstein (2018), and Amiti et al. (2019). However,

the typical approach has been to use idiosyncratic shocks to variables that are excluded from the

main estimating equation to construct instruments. We instead use the idiosyncratic shocks in

the estimating equation directly. In addition, we allow for more flexible exposures to unobserved

common shocks in extracting idiosyncratic shocks.

Outline Section 2 presents a gentle introduction to the GIV framework, centered around a very

simple model of supply and demand. It highlights the core intuition. Section 3 contains the general

procedure. Section 4 gives a practical user’s guide. Section 5 presents simulations. Sections 6 and 7

give empirical applications. Section 8 presents a number of extensions and robustness checks, and

discusses more extensively the link with the rest of the literature. Section 9 concludes. Long proofs

are in the online appendix.

Notations We will use the following notations. For a vector X = (Xi)i=1...N and a series of

relative weights Si with
PN

i=1
Si = 1, we let

XE :=
1

N

NX

i=1

Xi, XS :=
NX

i=1

SiXi, X� := XS �XE, (1)

so that XE is the equal-weighted average of the vector’s elements, XS is the size-weighted average,

and X� is their di↵erence.

We also commonly use the notation ui for shocks that are uncorrelated and with variance �2

ui
.

Then, we will define the “inverse variance weights” or “pseudo-equal weights” (using that term to

5



highlight that they are a small variant of equal weights):

Ẽi :=
1/�2

uiP
j 1/�

2
uj

, (2)

which satisfy
P

i Ẽi = 1, and are equal to Ẽi =
1

N when all the �2

ui
are equal. ThenXẼ :=

PN
i=1

ẼiXi.

We also define �̃i := Si � Ẽi. Then, X�̃ = XS �XẼ will be the “granular residual” in a number of

settings. It is the size-weighted sample average of X minus the “inverse-variance” weighted sample

average of X. It will be an optimal proxy for idiosyncratic shocks.

We use the notation xe for an estimator of a variable x, or as a “proxy” for variable x, meaning

a variable close to x but not exactly equal to it, even asymptotically – we will make the di↵erence

clear. Lastly, we use ET for the sample temporal mean, ET [Yt] :=
1

T

PT
t=1

Yt; Ct for a vector of

controls; ◆ for a vector of 1’s; I for the identity matrix, of the appropriate dimension given the

context; V Y for the variance-covariance matrix of vector Yt (so V Y = E [YtY 0
t ] if Yt has mean zero);

and X ? Y to say that the random variables X and Y are uncorrelated.

2 The basics of GIV

We introduce the GIV idea by considering a very simple example with supply and demand. We

progressively extend it throughout the present section. The full GIV procedure is then outlined and

synthesized in Section 3. The step-by-step approach we take in this section is helpful, we think, to

progressively build an understanding of the GIV idea from its core to its more arduous extensions.

We discuss extensions in Section 8.

2.1 A very simple example with no feedback loop

2.1.1 Basic model

For clarity, we lay out a concrete economic model of the equilibrium in, for instance, the oil market.

Demand by country i at date t is Dit = Q̄Si (1 + yit), where Q̄ is the average total world production,

yit is a demand disturbance term, and Si is country i0s share of demand, normalized to follow
PN

i=1
Si = 1. The demand does not depend on the price for now: this is for simplicity, and because

it is a useful example of an economy without feedback loops. Once the basic ideas of the GIV are in

place, we will easily extend this simple model to the case of a non-zero demand elasticity in Section

2.2. The demand disturbance is assumed to be the sum of a common shock ⌘t and an idiosyncratic

shock uit:

yit = �i⌘t + uit. (3)

For now we consider the case with uniform loadings, �i = 1, but we will relax that soon.

All shocks are i.i.d. across dates for now (it is easy to relax that, see Section 4.2). Then, total
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world demand is Dt =
P

i Dit = Q̄ (1 + ySt), where ySt :=
P

i Siyit is the size-weighted average

demand disturbance. We suppose that supply is Qt = Q̄
�
1 + pt�"t

↵

�
, where pt = Pt�P̄

P̄
is the

proportional deviation from P̄ , which is thus the average price of oil. Then, to equilibrate supply

and demand (Dt = Qt (pt)), we must satisfy Q̄ (1 + ySt) = Q̄
�
1 + pt�"t

↵

�
. That is, the deviation of

the price from its average satisfies:

pt = ↵ySt + "t. (4)

It depends on the size-weighted average demand shock, ySt =
P

i Siyit.

Throughout this paper we will make the mild assumption that all our variables (such as ⌘t, "t, ut =

(uit)i=1...N) have finite second moments.

The classic problem is that we cannot estimate ↵ by OLS. Indeed, a direct regression of pt on

ySt (that is, a regression of the form pt = ↵ySt+ "t) would be biased, as "t and ⌘t (hence "t and ySt)

can be correlated.

However, suppose that we form the GIV:

zt := y�t = ySt � yEt =
NX

i=1

Siyit �
NX

i=1

1

N
yit. (5)

Then, we have, using uSt :=
PN

i=1
Siuit, uEt :=

PN
i=1

1

N uit, that

ySt =
NX

i=1

Siyit = ⌘t + uSt, yEt =
NX

i=1

1

N
yit = ⌘t + uEt,

so zt := ySt � yEt = (⌘t + uSt
)� (⌘t + uEt) satisfies

zt = uSt � uEt =: u�t. (6)

Note that zt := ySt � yEt is just constructed from observables. It is the di↵erence between the

size-weighted demand and the equal-weighted demand. Intuitively, it captures the “idiosyncratic

demand” by large units, as shown by zt = u�t.

We assume that the shocks uit are idiosyncratic, in the sense that:

E [uit"t] = 0 for all i, t. (7)

This “exogeneity” or “exclusion” assumption needs to be discussed in each economic application –

as we will below.4 Then, we have

E [zt"t] = 0 : Exogeneity, (8)

4The uit, ujt could be correlated. If we have disaggregated data for both supply and demand, we can relax
condition (7): see Section D.4.
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E [ztySt] 6= 0 : Relevance. (9)

Hence, zt = u�t is a valid instrument (and as Proposition 3 will show, an optimal one).5 We call it

a “granular instrumental variable” (GIV).

Given that pt � ↵ySt = "t, we have

E [(pt � ↵ySt) zt] = 0, (10)

that is, E [ptzt]� ↵E [yStzt] = 0, which gives the supply elasticity ↵, by

↵ =
E [ptzt]

E [yStzt]
. (11)

Indeed, in practice, we might estimate ↵ using sample means:

↵e
T :=

1

T

P
t ptzt

1

T

P
t yStzt

. (12)

We now state a formal proposition.6

Proposition 1 (Consistency of the GIV estimator in this example). Suppose that E [uit"t] = 0,

although the uit can have an arbitrary distribution, with mean 0 and finite variance. Form the GIV

estimator zt := y�t. Then, zt identifies the price elasticity, by ↵ = E[ptzt]
E[yStzt]

. In other terms, for fixed

N but as T ! 1, the GIV estimator ↵e
T :=

1
T

P
t
ptzt

1
T

P
t
yStzt

is consistent for the price elasticity ↵.

Precision of the GIV estimator We define the excess Herfindahl as h =
q

� 1

N +
PN

i=1
S2

i . In

the context of industries, for example, a higher h means that the industry is more concentrated: an

industry where all the firms have the same size features h = 0. The quantity h 2
h
0,
q

1� 1

N

i
will

prove to be analytically useful, since if (uit)i=1...N is a series of i.i.d. uncorrelated random variables

with mean 0 and common variance �2

u, then the volatility of the GIV zt = u�t is:

�u� = h�u. (13)

In particular, under a standard central limit theorem, an appropriately scaled and centered

version of the above GIV estimator is asymptotically normally for fixed N as T ! 1:

p
T (↵e

T � ↵)
d�! N

�
0, �2

↵

�
,

5The relevance condition is generically true, and otherwise assumes a very mild condition on the shares, see
Proposition 2 and Assumption 1.

6It holds under mild regularity conditions on the joint distribution of uit, ⌘t, "t given that the data are i.i.d. across
dates.
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where �2

↵ is the asymptotic variance. The next proposition states the conditions under which the

asymptotic variance of the estimator simplifies substantially (its proof is in Section C).

Proposition 2 (Precision of the GIV estimator in this example). If "t is homoskedastic conditional

on the uit’s, then the asymptotic standard deviation of the scaled and centered GIV estimator is

�↵ = �"
�u�

. If we assume further than the uit are i.i.d. with variance �2

u, then �u� = h�u and

�↵ =
�"
h�u

, (14)

where h is the excess Herfindahl:

h :=

vuut� 1

N
+

NX

i=1

S2

i . (15)

So in order to have a precise estimate (low �↵), we need: some large units (in order to have a

large excess Herfindahl h), and that idiosyncratic shocks are large compared to aggregate shocks

(large �u/�").

This simple example illustrates the basic idea. The reader might at this point have in mind a

number of questions and objections: What if the factor structure is non-trivial (for instance, we

don’t have �i = 1 in (3))? What if the demand is sensitive to price? Is the GIV that we constructed

the best instrument we can find? What happens if there are more feedback loops?

The next subsections are devoted to answering them in turn.

2.1.2 Optimality of the GIV weights

Above, we have shown that zt = y�t allows for identification, for a specific � = S � E. It is easily

verified that any GIV with weights � such that
P

i �i = 0 would work. Hence, we can seek an

optimal �. The � we proposed is actually optimal, as we formalize below.

Proposition 3 (Optimal weights � for the GIV y�t). Consider the GIV zt = y�t =
P

i �iyit, with

some weights �i with
P

i �i = 0. Call V u the variance-covariance matrix of the idiosyncratic shocks

uit. Then, in the basic supply and demand model of Section 2.1, the asymptotic variance of the

estimator ↵e
T in (12), which is �2

↵ = limT!1 Tvar (↵e
T � ↵), satisfies �2

↵ (�) =
�2
"E[y2�t]

E[ySty�t]
2 . The value

�̃ = S � Ẽ, Ẽ :=
(V u)�1 ◆

◆0 (V u)�1 ◆
, (16)

gives the optimal GIV estimator, in the sense that for any other � that is not collinear to �̃, the

asymptotic variance �2

↵ (�) is larger. When the shocks are i.i.d., this implies Ẽi =
1

N , and when

they are uncorrelated, this implies Ẽi :=
1/�2

uiP
j
1/�2

uj

, so that Ẽ may be called the “precision-weighted

quasi-equal” weights.
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Hence, the “essence” of the GIV is not to be “size-weighted minus value-weighted” idiosyncratic

shocks, but rather “size-weighted minus precision-weighted” (i.e. inverse-variance weighted when

shocks are uncorrelated) idiosyncratic shocks.7

There are two more ways in which the GIV is optimal. First, it is the optimally-weighted

GMM estimator.8 This implies that other combinations of idiosyncratic shocks (besides weighing

by �) would not help the precision of the estimator. Second, one can show that it is the maximum

likelihood estimator, if we assume that all shocks are Gaussian (see Section E). Still, the optimality

formulation of Proposition 3 is the simplest to use in other contexts.

2.1.3 Time-varying size weights

Suppose that we have a time-varying size Si,t�1, so that the demand increase is
P

i Si,t�1yit, with

E
⇥
uit (⌘t, "t)

0 (1, Si,t�1)
⇤
= 0. Then everything goes through without problems, replacing Si by Si,t�1

throughout. The basic GIV becomes: zt = ySt�1,t � yEt =
P

i

�
Si,t�1 � 1

N

�
yit.

2.1.4 Model with an enriched factor structure

An important extension is that the shocks might have a richer factor structure, with r factors, so

that instead of (3) we have:

yit =
rX

f=1

�fi ⌘
f
t + uit, (17)

or, in vector form:

yt = ⇤⌘t + ut, (18)

where ⇤ is a N ⇥ r matrix, and E [ut (⌘t, "t)] = 0.

Then, in order to construct a valid GIV we simply run a factor model – for example, via Principal

Component Analysis (PCA) – and, in essence, we extract the residuals uit to form the GIV. Calling

ǔit the residuals from regression (17), we form the GIV as the share-weighted average idiosyncratic

shock:

zt := S 0ǔt =
X

i

Siǔit. (19)

Let us see more precisely what happens “inside the model” when we do that. Suppose that

we know the � vectors (for example, they are country characteristics, or they have been estimated

by PCA, as we will detail later). Then, let Q be a N ⇥ N matrix projecting vectors onto a space

orthogonal to ⇤, so that Q⇤ = 0. Then, Qyt = Qut (to see that, premultiply (18) by Q). Hence,

7The fact that one wants to precision-weight variables is of course well-appreciated from the literatures on Bayesian
inference and generalized least squares.

8Any moment ET [(pt � ↵ySt) (uit � uEt)] = 0 is a valid GMM moment to identify ↵. It is easy to check that the
first-order condition of the e�cient GMM objective function involves size-weighting those moments, which is exactly
our GIV moment condition ET [(pt � ↵ySt) (uSt � uEt)] = 0.
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via PCA, estimating ⌘t in (17) yields the transformed residuals ǔt = Qut. Then, the GIV is formed

as:

zt := S 0ǔt = S 0Qyt = �
0yt = �

0ut, � := Q0S. (20)

Then, zt is a valid instrument, since it is composed of idiosyncratic shocks, as zt = �0ut. Since

pt � ↵ySt = "t and E [ut"t] = 0, we have E [(pt � ↵ySt) zt] = 0, which is (10).9

We now detail the value of the matrix Q – this is more advanced material and should be skipped

at the first reading. Let us say that we have estimated ⌘t in (18) by generalized least squares

with a weight matrix W of size N ⇥ N (one could use W = I, but typically it is optimal to take

W = c (V u)�1 for c an arbitrary constant).10 To represent this, we define two useful matrices, R⇤,W

and Q⇤,W , with respective dimensions r ⇥N and N ⇥N :

R⇤,W := (⇤0W⇤)�1 ⇤0W, Q⇤,W := I � ⇤R⇤,W . (21)

Roughly, Q is the projection on the space orthogonal to ⇤, and R is the projection on ⇤, with a

scalar product that depends on W .11

Constructing the GIV as (20) generalizes our basic example (3) (when W = I) and the het-

eroskedastic shock case of Section 2.1.2, with W = (V u)�1. Indeed, in that example with uniform

loadings we had ⇤ = ◆, W = I, Q = I�◆Ẽ 0, where Ẽ = W ◆
◆0W ◆ , hence E = ◆

N when W = I and E = Ẽ

defined in (16) when W = (V u)�1. So that ǔit = uit � uẼt, and the GIV was: zt = ǔSt = uSt � uẼt.

We therefore had � = Q0S = S � Ẽ.12

2.2 A simple demand and supply example with feedback loops

A simple model We next enrich the previous example, and consider a simple supply and demand

example that features a “loop.” Suppose that demand for some commodity (say, oil) is:

yit = �dpt + ⌘t + uit, (24)

9This shows that the GIV is valid and possible as long as � := Q0S 6= 0. This is a very mild assumption, as
discussed in Assumption 1. If � were close to 0, that would be picked up by very large standard errors.

10This is, we estimated ⌘t by min⌘e
t
kyt � ⇤⌘et k

2
W with kxk2W := x0Wx. W is assumed to be positive definite.

11They have a number of good properties that we record here (dropping the superscripts for simplicity):

Q⇤ = 0, R⇤ = I, Q0W⇤ = 0, (I �Q)W�1Q0 = 0, (I �Q0)WQ = 0, Q2 = 0, RW�1Q0 = 0. (22)

12This implies that �2
z = �2

uS
0QS if the uit are homoskedastic. For instance, if �i = (1, x̌i) with x̌E = 0, the

variance of the GIV is

�2
z = �2

u

✓
h2 � 1

N

x̌2
S

x̌2
E

◆
. (23)

This illustrates how controlling for more factors reduces the standard deviation of the GIV, hence (as in Proposition
2, which features a standard deviation of the estimator �↵ = �"

�z
), especially if x̌2

S is large and N is small. An
advantage of having lots of small firms (large N) is that they make the estimation of the common shocks ⌘t easier,

and hence increase the precision of the GIV estimator (that is, increase �2
z by shrinking the last term in (23), 1

N
x̌2
S

x̌2
E
).

11



and supply is

st = �spt + "t, (25)

where ⌘t, "t can be correlated. We can expect that the demand and supply elasticities (respectively

�d and �s) satisfy �d < 0 < �s. Again, to be more formal, yit, st, and pt are understood as percent

deviations from the average demand of country i, from supply, and from price, respectively.13,14

In equilibrium, supply equals demand, ySt = st, which gives the price

pt =
uSt + ⌘t � "t
�s � �d

. (26)

There is a “loop” because the demand shocks ⌘t and uit feed into the price pt, which then in turns

a↵ects demand. The equilibrium quantity produced is

st = ySt =
�suSt + �s⌘t � �d"t

�s � �d
. (27)

The classic problem of estimating supply and demand equilibrium quantity st and price pt is that

we cannot regress: st = �pt + "t, and hope to get � = �s, as "t and pt are correlated.

However, suppose that we form the GIV, as in (5):

zt := ySt � yEt. (28)

Given that

ySt = �dpt + ⌘t + uSt, yEt = �dpt + ⌘t + uEt,

we have:

zt = uSt � uEt =: u�t. (29)

As in the previous example, we assume that the shocks uit are idiosyncratic:

E [uit⌘t] = E [uit"t] = 0 for all i, t. (30)

Then, we have again a valid instrument:

E [zt"t] = E [zt⌘t] = 0 : Exogeneity,

E [ztpt] 6= 0 : Relevance.

13We take the model of Section 2.1, and simply set yit = �dpt + ⌘t + uit, where pt = Pt�P̄
P̄

is the proportional
deviation from the average.

14For simplicity, we set all constant additive terms to 0. With non-zero such terms, one can talk about quantities
and prices, rather than their deviations from the mean.
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Estimations of supply and demand elasticities by GIV The supply equation (25) implies

E [(st � �spt) zt] = 0, which gives the supply elasticity �s by

�s =
E [stzt]

E [ptzt]
. (31)

and the estimator is �s,e
T =

1
T

P
t
stzt

1
T

P
t
ptzt

.

Now, we want to estimate demand. For that, we make a stronger assumption: we assume that

the shocks uit are i.i.d. across i’s and not just dates (we will relax this later). Then, this implies15

E [uEtu�t] = 0. (32)

So, given this, we have: yEt � �dpt = ⌘t + uEt, and E
⇥�
yEt � �dpt

�
zt
⇤
= 0. This gives an estimate

of the demand elasticity �d,

�d =
E [yEtzt]

E [ptzt]
, (33)

and the estimator is �d,e
T =

1
T

P
t
yEtzt

1
T

P
t
ptzt

.

Estimation by OLS and interpreting it as a first- and second-stage IV estimator Let

us recast our GIV in the language of applied microeconomics, and estimate the parameters by

OLS (as we will often do in the general case). Much of this subsectionis very elementary, but for

completeness and future reference we spell it out. Recall that the solutions are:

pt =
1

�s � �d
uSt + "̇pt , st = ySt =

�s

�s � �d
uSt + "̇st ,

where the "̇pt , "̇
s
t are linear combinations of "t, ⌘t. So, if we run the OLS regression, with zt = u�t,

pt = bpzt + "pt , (34)

we estimate bp = 1

�s��d , which is the sensitivity of the price to the supply or demand shock. If we

run the OLS regression

ySt = bySzt + "st , (35)

we estimate byS = �s

�s��d = M.

In the language of applied microeconomics, one can view the “first stage” as a regression of the

15Indeed, in the i.i.d. case we have E [uEtu�t] = E
⇥
(
P

i
1
N uit)(

P
i �iuit)

⇤
= 1

N

P
i �i�2

u = 0 as
P

i �i = 0. Equation
(69) generalizes this to the non-i.i.d. case.
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price on the GIV (34), which yields the instrumented price

pet := bpzt. (36)

The “second stage” regresses supply on the instrumented price:

st = �spet + "st , (37)

which gives �s. Alternatively, one can run the “reduced form equation” (35), which estimates M.

The supply elasticity is given by: �s = byS
bp .

The demand elasticity is similar. In the second stage we regress equal-weighted demand on the

instrumented change in the price, pet :

yEt = �dpet + "yt , (38)

which gives the demand elasticity �d.16 Alternatively, we can estimate the reduced form equation

yEt = byEzt + "yt , which gives byE = �dM , and the demand elasticity is �d = byE
bp .

In practice, we will add controls to those regressions, including estimates of ⌘t recovered from

PCA. This improves the precision of the estimator, by absorbing some of the variance of the noise.

From M and bp, we can recover the elasticities �s and �d. This is exactly the same estimate as

the IV estimator, derived earlier in (31) and (33).17

Standard errors: When “weak instruments” are or are not a problem When estimating

via OLS (e.g. bp and M), the standard errors are reliably estimated by the usual OLS method,

even in small samples. When a ratio is implicitly performed (e.g. to estimate �d, �s), the two stage

least square (2SLS) procedure as in (37) will also give correct standard errors when the instrument

is strong enough. A traditional rule of thumb for the strength of the instrument (in the i.i.d.,

homoskedastic case) is that the F statistics (which is the squared t-statistic on bp) on the first

stage (34) should be greater than 10, and this advice is being progressively enhanced in current IV

research.18

2.3 Interpreting and diagnosing idiosyncratic shocks

What is an idiosyncratic shock? Mathematically, an idiosyncratic shock is plainly a random

variable uit such that Et�1 [⌘̃tuit] = 0, where ⌘̃t = (⌘t, "t) includes all the common shocks. But it

may be useful to discuss di↵erent types of economic settings that map into that definition.

16Here we used (32), which makes the OLS valid.
17Indeed, the OLS estimators are Me

T = ET [yStzt]
ET [z2

t ]
and beT = ET [ptzt]

ET [z2
t ]

. We have �s,eT = Me
T

beT
= ET [yStzt]

ET [ptzt]
, which is the

same as (31), as st = ySt in equilibrium.
18See the literature on weak instruments, such as Stock and Yogo (2005) and Andrews et al. (2019).
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In some cases it is quite clear – for example, a random productivity shock, or demand shock. But

there are more subtle types of idiosyncratic shocks. One is an “unexpected change in the loading on

a common shock”. For instance, suppose that OPEC decided to cut down production, which in the

language of our example is an aggregate ⌘t shock. If Saudi Arabia cuts down production by more

than anticipated, that is an idiosyncratic shock. Formally, if supply is yit = �spt+
�
�i + �̌it

�
⌘t+vit,

with Et�1

⇥
(1, ⌘̃t) �̌it

⇤
= 0, then uit = �̌it⌘t + vit is a bona fide idiosyncratic shock. To take another

example, suppose that we hear about a change in real estate prices in the economy, ⌘t, but that a

bank i was more exposed to it than anticipated: the market thought the bank’s equity would move

by �i⌘t, but it moved by rit =
�
�i + �̌it

�
⌘t for an expectational surprise �̌it with Et�1

⇥
(1, ⌘̃t) �̌it

⇤
= 0.

Then, the bank will have an idiosyncratic shock uit = �̌it⌘t as part of its total return rit.

Likewise suppose that the news is that a bank failed a stress test (while it was anticipated it

would pass the test). This is an idiosyncratic shock. However, the bank could have failed the test

because of some development in the macroeconomy ⌘t. Then, provided that the factor model allows

for a rich enough structure in ⌘t, the latter will be controlled for.

The volatility of idiosyncratic shocks can depend on the common shocks. Suppose that uit =

�tvit where �t and ⌘t could be correlated (for instance, �t could increase when |⌘t| is high), but

Et�1 [⌘̃t�tvit] = 0 (a su�cient condition is that vit independent of �t⌘̃t); then, uit is an idiosyncratic

shock in the sense that Et�1 [⌘̃tuit] = 0.

Thresholded and narrative GIVs In applications, it is possible to make further progress by

assessing the drivers of the top shocks narratively. One procedure is to simply select the top K

shocks by Si |ǔit| (where ǔit is the residual from factor analysis, e.g. ǔit = uit � uEt, and we select

across all actors i and dates t), and check in the news what happened on that day (and check that

the shocks are idiosyncratic indeed). We do that for some our applications. Formally, that means

that we formulate a “thresholded” GIV,

z⌧t =
X

i

⌧ (Siǔit) , (39)

using the thresholding function ⌧ (x) = x1|x|�b, which only keeps granular shocks bigger than b > 0.19

Then, the GIV procedure works using that “thresholded” GIV (see Section D.5). This thresholded

GIV might also be useful to assess non-linear e↵ects, for instance, in case of demand or supply

curves.

After examining those largest shocks by looking at the news, some shocks might be eliminated as

not idiosyncratic; we can call INt the set of shocks that are “narratively certified” to be idiosyncratic

19We adjust b to select a pre-specified expected number K of shocks that survive the thresholding.
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by this procedure, and form the alternative instrument

zNt =
X

i2IN
t

Siǔit. (40)

This is roughly what the “narrative” approach in the literature (e.g. Caldara et al. (2018)) does.

But the GIV procedure does help researchers even in the narrative context, since it automates the

“pre-selection” of the top K (perhaps K = 15) shocks, by selecting the events with the largest K

values in Si |ǔit|. Hence, researchers don’t need to know the whole history before selecting their

main events – the GIV gives them the most promising candidate events, and the detailed historical

search is simply restricted to K events. In addition, the factor analysis in the GIV gives controls

⌘et that are usable when running regressions, which increases the precision of estimators.

2.4 Over-identification test with multiple GIVs

Consider the model of demand with a single factor with heterogenous exposures

yit = �dpt + �i⌘t + uit,

and assume we obtained an estimate of the factor, ⌘et . We abstract from estimation error in the

factor in this section.

It is easy to get overidentifying tests with GIVs, because each ǔe
it is potentially a valid instru-

ment. One way to do that is to construct two di↵erent GIV instruments, z1t and z2t. These could

include size-weighted averages of all ǔe
it, a subset of the largest realizations of Si |ǔe

it|, or a subset of

narratively-checked shocks as in Section 2.3. Alternatively, z1t (respectively z2t) could be the size-

weighted sum of the shocks to odd-numbered (respectively even-numbered) entities, or z1t might be

based on idiosyncratic supply shocks and z2t on idiosyncratic demand shocks, as in Section D.4.20

Suppose we have constructed these two di↵erent GIV instruments, z1t and z2t. One can then

estimate separately the parameters of interest (e.g. �d) based on z1t and z2t, and see if they are

economically di↵erent. We can also do a formal test.21 In Gabaix and Koijen (2020), we provide an

example of such a procedure. There, the goal is to estimate the elasticity of the aggregate equity

demand curve using investor-level equity holdings data. After extracting the idiosyncratic shocks,

we form two instruments. We rank investors by size in each period, and form an instrument based

20Yet another GIV procedure is to use characteristics xit measurable at time t � 1 (e.g., firm size, or GDP per
capita, or a bank’s credit risk), and form the x-weighted GIV: zxt :=

P
i Siǔe

itxit. If the test fails, it’s probably the
case that xit is economically important and it should have been included as a factor loading in a larger factor model.

21We form the moment conditions as E [gt(✓)] = 0, where gt(✓) =
�
yEt � �dpt � �E⌘et

�
(z1t, z2t, ⌘et )

0 and ✓ =
(�d,�E).We can simply perform the Sargan-Hansen J�test for over-identifying moment conditions. The test statistic

is given by J = Tg0tWT gt !d �2
1, under the null, where WT =

⇣
1
T

PT
t=1 gtg

0
t

⌘�1
. If we have K instruments

zkt, k = 1 . . .K, then the procedure is the same, with gt(✓) =
�
yEt � �dpt � �E⌘et

�
(z1t, . . . , zKt, ⌘et )

0, and then
J !d �2

K�1.
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on the odd and even ranks. We show that the point estimates using either instrument are not

significantly di↵erent and that the two instruments are uncorrelated.22

2.5 Heterogeneous demand elasticities

We consider a generalization of the basic model to allow for heterogeneity in demand elasticities.

We start from

yit = �d
i pt + �i⌘t + uit, (41)

while the supply curve is the same as in (25).

We consider the parametric version of the model (Section D.2 of the online appendix considers

a non-parametric version, which is more complex). We suppose that the loadings are linear in the

characteristics Xit (a k-dimensional vector, with k in practice a small number, and the first entry

being a 1), so they can be expressed as:

�d
i = Xit�̇

d =
kX

`=1

Xi`t�̇
d
`

for some �̇d =
⇣
�̇d
`

⌘

`=1...k
to be determined. With X the N ⇥ k matrix of characteristics, this is

saying that we assume the parametric forms �d = X�̇d and � = X�̇ where �̇d and �̇ have dimension

k⇥ 1 and k⇥ r, recalling that ⌘t has dimension r⇥ 1. We want to evaluate �s and �̇d. Here is how

we proceed.

For each date t we run the cross-sectional regression of yit on Xit (potentially the generalized

least squares regression with weights W to be discussed soon):23

yit = Xitẏt + ǔit =
kX

`=1

Xi`tẏ`t + ǔit, (42)

and we get regression slopes ẏt = (ẏ`t)`=1...k, then collect the residuals ǔit. We next form the GIV

zt :=
P

i Siǔit as in (20). We then identify �s and �̇d instrumenting pt by zt, i.e. using the IV

moments:24

E [(st � �spt) zt] = 0, (43)

E
h⇣

ẏ`t � �̇d
`pt

⌘
zt
i

= 0 for ` = 1 . . . k. (44)

The identification of �s is valid for any weight matrix W (including the identity matrix, as in

22If there are missing common factors, then the instruments are likely correlated. This procedure therefore provides
an additional way to check for omitted common factors.

23That is, we use minẏt

P
i,j(yit �Xitẏt)Wij (yjt �Xjtẏt) to identify ẏt at each date.

24Alternatively, we can use the first stage and second stage language of Section 2.2. In practice, to increase
precision, we add controls to those regressions, including the estimates of ⌘t recovered from PCA.
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OLS) and that of �̇d is valid if we have the “inverse variance” weights W = c (V u)�1 for some

constant c.25 Section C.4 gives the derivations, and discusses how to estimate W if necessary.

2.6 Robustness to misspecification and threats to identification

The GIV procedure is robust to some forms of misspecification, and more fragile to others.

Robustness of the GIV We may keep only the shocks to some actors (in a set It), i.e. set

zt =
P

i2It Siǔe
it (with ǔe

it = uit � uEt), selecting for example the shocks to the top K entities, the

shocks for which we have data, or some subset of the entities based on size. Then again, everything

goes through.26 The estimator is still valid, just not the optimal GIV estimator.

The GIV also works if we have information only on some of the large actors (such as countries

or firms): one uses the idiosyncratic shocks of those actors for which we have data.

Suppose that we misspecify the vector S of sizes, for example by defining zt =
P

i S
�
i ǔ

e
it using a

wrong vector S�. Then, the IV is still valid, but the OLS can be biased. In our basic example of

Section 2.1, we still have E [(pt � ↵ySt) zt] = 0, so that the IV procedure (11) still works. Likewise,

in the more complex supply and demand case, the IV relations (31) and (33) still hold. But the

OLS relations are slightly biased.27

If we assume homogeneous coe�cients (e.g. on the elasticities of demand or supply), while in

fact they are truly heterogeneous, then again (assuming that ⌘t was well-estimated in the cross-

section) the IV estimates are correct, and so are the OLS estimates, except that we obtain the

equal-weighted averages of coe�cients. For instance, the IV estimates yield �s, �d
E, and the OLS

coe�cients are those corresponding to the interpretation that the elasticity of demand is �d
E rather

that �d
S. Section D.6 provides the derivations.

If we misspecify the variance of the uit (but keeping them uncorrelated), things are essentially

fine: as uE = Op

⇣
1p
N

⌘
, we do not need E [u�tuEt] = 0 to hold exactly, as the term E [u�tuEt] will

still be small, of order O
⇣

1p
N

⌘
, and will vanish for large N .

Threats to identification The threat to identification is that we might not control properly for

common factors. Indeed, zt = u�t+��⌘t��e
�
⌘et , so there is a danger that, even after controlling for

⌘et in the regression we will not completely eliminate the ��⌘t��e
�
⌘et error.

28 This danger is greater

when |��| is greater, i.e. when loadings are correlated with size (indeed, we are safe if �� = 0). This

25If we take W as the identity rather than the “ideal” W above, the error is typically quite moderate: for instance,
with X = ◆, it is only of order 1

N .
26For instance, we still have uSt = zt + "uS

t with zt ? "uS
t . Section D.5 gives for a formal analysis.

27Calling  = E[ztuSt]
E[z2

t ]
(which is 1 when S� = S), then the OLS above gives (in population) bp,e = bp and

Me = M . For some selection procedures (e.g. selecting the shocks to some pre-specified entities as we discussed),
we still have that  = 1, so that OLS is still valid.

28As we do control for ⌘et in the regression, the bias is due to the residual of ��⌘t � �e�⌘
e
t after controlling for ⌘et .
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is a small sample problem (with a large enough T,N we measure ⌘t,� accurately). Fortunately,

there are at least four approaches to handle this concern.

A first check, which we recommend, it to perform the over-identification test of Section 2.4,

based on some meaningful alternative GIVs zt, for example based on the shocks to some top actors,

or their even-odd ranking (as we do in Gabaix and Koijen (2020)).

Second, one can perform a formal test for the number of factors (Bai and Ng (2002); Onatski

(2009)), as we illustrate in Section 5. A missing factor may also be detected by testing the stability

of estimates across GIVs: as is common practice in the weak factors literature, one can verify the

stability of the estimates by adding one or two factors beyond what is recommended by formal tests

for the number of factors.29

A third approach is to opt for the narrative GIV of Section 2.3, and as we do in our empirical

applications below. If one checks the top, say, 15 events and they pass the narrative check, one can

record that we could not reject the hypothesis of a misspecified factor model. In a more purist way,

one could even restrict the GIV to those top events.

A fourth approach is to filter out “sporadic factors,” i.e. a factor ⌘t that a↵ects a few actors

special ways, but happens once in the sample, so is hard to detect with standard factor models.

Then, one removes the dates with such sporadic factors, after identifying them via a narrative check,

or via statistical methods as discussed in Section D.7. Section 6.6 provides an illustration of this.

3 General setup and multipliers

The previous section introduced the GIV in a simple context, with no loops or a single loop. We

now propose a more general setup with potentially several factors, arbitrary loop structure, and

rich heterogeneity. This section can be skipped when reading the paper for the first time and the

reader can continue with Section 4.

3.1 Framework

Consider the following model of stationary “actions” yit (such as employment, investment, TFP

shocks, returns, and so on) by “actor” i (e.g., a firm or industry i in a closed-economy setting, or a

country i in an international setting):

yit =
X

f

�fitF
f
t + uit + Cy

itm, (45)

where each F f
t is a factor, �fit are factor loadings, uit is an idiosyncratic shocks, and Cy

it is a vector of

controls that may include lagged demands and other characteristics. We could also add constants,

29We do that in Section 5 and in Gabaix and Koijen (2020).
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but we omit them for notational simplicity. Factor f follows:

F f
t = ↵fySt + ⌘ft + Cf

t m
f . (46)

It depends on an exogenous shock ⌘ft , and potentially on the mean action ySt, and on a set of controls

Cf
t (potentially di↵erent from Cy

it). Those controls may include, for instance, lagged values. We

assume that the “size” weights have been normalized to add to one,
P

i Si = 1.

We use the structure (45)-(46) because many economic models of interest follow this structure,

at least after linearization, so that the GIV allows to estimate some of their parameters.

We partition the factors into “exogenous factors”, where we know ↵f = 0, and “endogenous”

factors where ↵f may be non-zero. As in the rest of the paper, we make the mild assumption that

all our variables (e.g. ⌘ft , ut) have finite second moments

In the baseline case here we study the parametric case. We have some characteristics xit of

actors: for instance, depending on the application we know that the loading is an a�ne function of

log market capitalization, or the stock market beta of a bank, or OPEC membership. We also have

a priori knowledge that for some parameter �̇f to be estimated we have:

�fit = �̇f
0
+ �̇f

1
xf
it, (47)

This is consistent with the practice in modern finance in which risk exposures (betas) align with

characteristics (see e.g. Fama and French (1993)), so that parametric approaches are preferred, in

particular because they are more stable than non-parametric approaches.

We make the following identifying assumptions. For all f , i, the shocks uit are idiosyncratic:

E
h
uit

⇣
⌘ft , C

y
t , C

f
t , x

f
t

⌘i
= 0, (48)

but the ⌘ft may be correlated across f ’s, and ⌘ft may be correlated with the controls, Cy
t and CF

t .

The uit may have some correlation across i’s and can be heteroskedastic, as we discuss later. For

expositional simplicity we assume that all dates are i.i.d.

We rewrite model (45) in vector form:

yt = ⇤tFt + ut + Cy
t m, F f

t = ↵fySt + ⌘ft + Cf
t m

f , (49)

with ⇤t a N ⇥ r matrix, Ft a r⇥ 1 vector, Cy
t an N ⇥ c matrix, m is c⇥ 1, where c is the dimension

of the controls.30

30Our initial examples are particular cases of the general procedure.
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3.2 Multipliers

Solving the model gives ySt = ⇤StFt + uSt +Cy
Stm, that is, ySt = ⇤St↵ySt + uSt + "yt , where ↵ is the

vector stacking the ↵f ’s and "yt satisfies "yt ? ut. So, we can solve for the aggregate outcome ySt as

ySt =
uSt+"

y

t

1�⇤St↵
, that is,

ySt = Mt (uSt + "yt ) , (50)

where the multiplier Mt measures the total impact of shocks, after going through all feedback loops

(where we assume that the denominator is not 0):

Mt =
1

1� ⇤St↵
=

1

1�
P

f ⇤
f
St↵

f
. (51)

Hence, an idiosyncratic shock has an impact on the aggregate action ySt that is Mt times bigger

than its direct e↵ect. Also, the total impact of an idiosyncratic shock on factor f is:

F f
t = Mt↵

fuSt + "ft , (52)

where it again holds that "ft ? uSt. This shows intuitively, and we will prove formally below, that

our regressions will allow to identify Mt and Mt↵f .

In some cases, we may not observe all endogenous factors, F f
t . In this case, we still recover

the correct multiplier, Mt, and it should be interpreted as accounting for all feedback loops in the

economy, including those operating via the unobservable, endogenous factors. However, we can

obviously not estimate ↵f for those unobserved factors.

3.3 A formal identifiability result

We provide here formal conditions for identification, completing the simpler case of Section 2. We

study the parametric case. Section D.2 develops the full non-parametric version, estimating the

factors. We don’t have a priori information about the ⌘t, nor their variance V ⌘.

Assumption 1 (Condition for identification with GIV) The vector V uS is not spanned by the

factors loadings �f (where V u is the covariance matrix of ut).

Assumption 1 ensures that the GIV is not identically 0 (as zt := S 0Q(V u
)
�1,⇤

t ut, as in (20) and

(21)). Economically, this assumption seems like a mild restriction. It is generically satisfied.31,32

For simplicity, we shall make here a strong further Assumption 2, which can be relaxed.

31One case that does prevent this assumption to hold is the case where the variance would be inversely proportional
to size: then, GIV would fail, as then V uS = a◆ for some scalar a. Fortunately, in most contexts, variance may decay
a bit with size Si, but less violently than in 1/Si (see e.g. Lee et al. (1998) and the discussion in Gabaix (2011)).

32This also suggest that to control for size, one wants to use log size, but not absolute size.
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Assumption 2 (Known form of the variance matrix of the idiosyncratic shocks) The uit’s are

homoskedastic, or, more generally, the econometrician knows the matrix V u up to a proportionality

factor. In addition, V u is invertible.

Though this would be easy to relax, we assume that all shocks are i.i.d. over time, that ⇤St is

constant, so that Mt is constant. We assume that second moments are finite for all random variables⇣
⌘t, uit, ⌘

f
t , C

y
it, C

f
t , xit

⌘
.

We next state a formal identification result, which is proven in Section C.5.

Proposition 4 (Su�cient condition for identification with GIV) Consider the factor model above,

when N is fixed but T ! 1, and make Assumption 1 and 2. We assume the parametric case, where

we know the actor (e.g., firm or country) characteristics Xit. Then, we can identify ↵f and M by

GIV. Furthermore, the standard errors on M and ↵fM returned by OLS (using the GIV) in this

procedure are valid.

It may seem a bit surprising that the OLS standard errors are correct. The reason is that

the GIV is directly obtained from an exact formula (zt := S 0Q(V u
)
�1,⇤

t yt as in (20)), hence has no

estimation error. The standard errors are made explicit in the proof of Proposition 4.

Proposition 4 shows identification in the case with parametric factors. We conjecture that it

also holds for the case of non-parametric factors. As a partial substitute, we provide numerical

simulations that support the view that the procedure also works in the latter case. But given the

complexity of that case, we defer it to future research as one of the several interesting extensions

of the GIV.

4 A user’s guide

We summarize the above arguments in the form of a user’s guide. The arguments in this section

extend to multiple factors, as illustrated in Section 3.

4.1 User’s guide: basics

The model can be summarized by

yit = �dpt +mCy
it + ai + �it⌘t + uit, (53)

pt = ↵ySt +mpCp
t + b+ ⌘pt , (54)

where Cy
it and Cp

t are observable controls, which we assume to be scalar for notational conve-

nience but the arguments directly extend to vectors of controls. We also assume that shocks are

homoskedastic and discuss the extension to heteroskedastic shocks below. In outlining the basic
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algorithm, we consider the possibility that we have additional information on factor loadings, xit,

so that �it = �0 + �1xit for some factors, although this information is not required.

In describing the procedure, we refer to generic agent fixed e↵ects as ai and generic time fixed

e↵ects as bt. The basic algorithm is summarized by:

1. Panel regression: We estimate a panel regression with agent and time fixed e↵ects,

yit = ai + bt +mCy
it + y̌it.

We refer to the estimated residuals as y̌eit.

2. Factor estimation: If information on factor loadings is available, we estimate a first set of

factors using period-by-period cross-sectional regressions,

y̌eit = bt + xit⌘
x
t + eit,

and we refer to the estimated factors as ⌘x,et . In addition, we estimate nonparametric factors

using PCA on y̌eit and refer to the estimated factors as ⌘PCA,e
t .33 We stack the estimated

factors together in ⌘et =
⇣
⌘x,et , ⌘PCA,e

t

⌘
.

3. Multiplier estimation using OLS: We form Zt = y�t and estimate M = 1

1�↵�d and ↵M using

OLS,

ySt = Zt + �y⌘et + Cy
St�

Cy

+ aS +M"yt ,

pt = ↵MZt + �p⌘et + Cp
t �

Cp

+ b+ "pt .

The OLS standard errors on M and ↵M are correct in case we only have parametric factors

(see Proposition 4). In the case of nonparametric factors, the simulation results in Section 5

suggest that OLS standard errors remain reliable as well.

4. Elasticity estimation using instrumental variables: We estimate the elasticity ↵ using instru-

mental variables, where we use Zt as an instrument for ySt in (53). To estimate �d, we consider

the regression

yEt = �dpt +mCy
Et + �Et⌘

e
t + aE + uEt, (55)

33In case of principal components, we estimate
�
�̌, ⌘t

�
using (with kak =

p
a0a)

min
�̌,⌘t

1

NT

X

t

��y̌et � �̌⌘t
��2 ,

subject to the normalization 1
N �̌

0�̌ = I. The asymptotic theory for principal components analysis has been developed
in Bai (2003) and relies on N,T ! 1. Alternatively, one can rely on factor analysis in which N is finite and T ! 1,
and the asymptotic theory is developed in Anderson and Amemiya (1988) under a wide class of distributional
assumptions on the error terms and the factors. A variety of algorithms have been developed to extract latent
factors in the presence of missing data.
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and we use Zt as an instrument for pt. In case of elasticity estimates, standard weak instrument

concerns are relevant (Stock and Yogo (2005); Montiel Olea and Pflueger (2013); Andrews et

al. (2019)).

After estimating the parameters of interest using GIV, we recommend exploring the specification

tests in Section 2.6 to ensure that the procedure properly isolates idiosyncratic shocks. Depending

on the data available, one can for instance perform a narrative check, an over-identifying restrictions

test or explore the stability the estimates when adding additional factors.

4.2 User’s guide: extensions

Heteroskedasticity If there is heteroskedasticity, we compute

Ẽi =
�̄�2

iP
j �̄

�2

j

,

where �2

i = �2

i (yit) and �̄i = max (�i,⇥median (�j)), where  2 [0, 1]. The adjustment using the

max operator and the median ensures that very volatile entities do not distort the equal-weighted

average, while not putting too large of a weight on entities with very low volatilities. When there

is little dispersion, we do not adjust the inverse variance weights if  < 1, say,  = 0.75. In the

presence of heteroskedasticity, we use Ẽi in computing cross-sectional averages or in computing

cross-sectional regressions, which improves e�ciency.

Robustness to large idiosyncratic shocks In case there are large idiosyncratic shocks, which

is generally helpful in the context of GIV, this may influence the estimates of common factors,

including the equal-weighted average. One approach is to adjust for heteroskedasticity, as discussed

above. Alternatively, we can winsorize the data for the purposes of computing averages and factors.

This extension is particularly relevant when the cross-section is small. If we denote the winsorized

data by ywit , then in steps 1 and 2 of the user guide, we use ywit . In computing Zt, we form Zt =

ySt � ywEt. In step 4, we use ywEt in (55) as well.

Autocorrelated shocks We have assumed that the idiosyncratic shocks uit are i.i.d. It is easy

to form the GIV more generally: one replaces uit by ũit := uit � Et�1 [uit]. For instance, suppose

that the uit follow an autocorrelated process, uit = ⇢ui,t�1 + ũit, where ũit is i.i.d. Then, we form

the GIV based on the innovations ũit.

Heterogeneous demands elasticities When demand elasticities are heterogeneous, we apply

the procedure outlined in Section 2.5.
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At what level should one aggregate the data? What’s the impact of having aggregate

data? Suppose that firm i in industry k has an action (e.g. demand for oil in our basic example)

yikt = �i⌘t + ukt + uikt where ukt is a industry-level common shock, and ukit is a firm-level shock.

Then, aggregating at the industry k level with weights Sk
i (with

P
i2k S

k
i = 1), ykt =

P
i2k S

k
i yikt =

�k⌘t + ukt + uk,Skt with �k =
P

i2k S
k
i �i and uk,Skt =

P
i2k S

k
i uikt. So, the idiosyncratic industry

level shock is vkt = ukt + uk,Skt: it is the sum of the primitive industry-level shock ukt and the

sum of idiosyncratic firm-level shocks in industry k, uk,Skt. In general, it is of course better to

have disaggregated data, in part because a higher number of units N makes it easier to identify

the common shock ⌘t, which leads to a higher-precision GIV (as we saw in our discussion of (23)).

However, when the number of industries is large enough, there is little harm in having industry-level

aggregation, as the marginal impact of having more industries is small.

5 Simulations

We use simulations to illustrate the precision of granularly identified parameters depending on the

size of the sample (both N and T ), the degree of concentration, and the volatility of idiosyncratic

shocks relative to aggregate shocks. Also, we show that PCA can be used to remove common factors

and to estimate the idiosyncratic shocks.

5.1 Model

We start from the standard supply, ysit, and demand, ydt , model

ysit = �spt + �i⌘t + uit, ydt = �dpt + ✏t,

where �d < 0 < �s and E [⌘tuit] = E [✏tuit] = E [⌘t✏t] = 0. The model implies, with M = � �d

�s��d ,

pt =
M

�d
(uSt + �S⌘t � ✏t) , ysSt = MuSt +M�S⌘t + (1�M) ✏t.

5.2 Estimators and standard errors

To estimate M and M
�d , we can use standard OLS. To estimate M , we use

ysSt = a+My�t + ✓0⌘et + et, (56)

and to estimate M
�d , we use

pt = ap +
M

�d
y�t + ✓0p⌘

e
t + ept . (57)
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All standard OLS results apply if we observe the factors, ⌘t. However, we often do not directly

observe all factors. We consider the cases in which we know the factor loadings, �⌘i , and where

the loadings are unobserved and estimated using PCA. To provide a point of reference, we also

consider the case where we do not control for factors and impose that ✓ = ✓p = 0. In all cases,

we report the OLS standard errors to assess to what extent the OLS standard errors need to be

adjusted for the fact that we use ⌘et instead of ⌘t. Note that we allow for a vector of estimated

factors, ⌘et , as in practice we do not know the number of factors. To estimate the multiplier when

using PCA, we estimate the number of common factors using the procedure in Bai and Ng (2002)

by minimizing their ICp2(k) criterion, where k � 1. Also, we consider the possibility where we add

factors extracted using principal components to factors extracted based on known loadings. The

main conclusion is that adding additional factors does not distort the estimates in our simulations,

while not properly controlling for factors can lead to biased estimates.

To estimate the demand and supply elasticities, we can recover them from the estimates of M

and M
�d . However, as discussed before, this is equivalent to a 2SLS estimator using y�t as instrument

for price, while controlling in this case for the factors. Hence, the first stage corresponds to

pt = ap + ⇠y�t + ✓0p⌘
e
t + et,

and the second stage to estimate the demand elasticity is, with p̂t = aep + ⇠ey�t + ✓0p⌘
e
t ,

ydt = ad + �dp̂t + ✓0d⌘
e
t + edt ,

and for the supply elasticity

ysEt = as + �sp̂t + ✓0s⌘
e
t + est .

The standard weak instrument tests can be used to assess whether y�t is a su�ciently strong

instrument for price (Section 2.2). In this case, we report the 2SLS standard errors to assess

whether their accuracy is impacted by the fact that we estimate the common factors.

5.3 Calibration

In calibrating the model, we target (i) concentration, as measured by the excess Herfindahl, h =pP
i S

2

i � 1/N , and (ii) the ratio of the volatility of idiosyncratic shocks to the volatility of aggre-

gate supply shocks.

We set the demand and supply elasticities to �d = �0.3 and �s = 0.1, respectively. The size

weights are generated as ki = i�1/⇣ , Si = ki/
P

i ki, where ⇣ is chosen so that h 2 {0.2, 0.3}.34 For

the shocks, we assume ✏t ⇠ N (0, 0.062) and ⌘t ⇠ N (0, 1). To construct the loadings, we first draw

�̄ 2 RN from a uniform distribution, �̄ ⇠ U (0, 1). We scale �̄ so that the standard deviation of

34Here ⇣ is the power law exponent of the size distribution, see Gabaix (2009).
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Table 1: Cases considered in simulations. We calibrate the supply-and-demand model in Section
5 under seven alternative parameterizations. The parameters are the following: N is the cross-
sectional sample size; T is the number of simulated i.i.d. time periods; h is the excess Herfindahl that
we target in our simulation of the size weights (as described in Section 5.3); ⌧ is the targeted ratio
of the volatility of idiosyncratic shocks to the volatility of aggregate supply shocks; the multipliers
M = � �d

�s��d and M
�d are functions of the elasticities �d and �s of demand and supply with respect to

price. The final column reports the share of the price volatility that is due to idiosyncratic shocks
under each of the seven parameterizations.

Case N T h ⌧ M M
�d

% price vol. idiosyncratic

1 25 360 0.2 3 0.75 -2.5 12.6%

2 25 360 0.2 4 0.75 -2.5 20.4%

3 25 360 0.3 3 0.75 -2.5 19.1%

4 25 360 0.3 4 0.75 -2.5 29.5%

5 25 120 0.2 4 0.75 -2.5 20.4%

6 50 120 0.2 4 0.75 -2.5 16.1%

7 50 360 0.2 4 0.75 -2.5 16.1%

the aggregate supply shock equals 3%, V (�S⌘t) = �2S = 0.032, that is, � = 0.03
�̄S
�̄. We consider two

cases, namely where Corr (�, S) = 0 and Corr (�, S) = �20%.35 Lastly, we set �u = �S⌧ = 0.03⌧ to

target the ratio ⌧ of idiosyncratic shock volatility to aggregate shock volatility. We vary ⌧ 2 {3, 4} ,
N 2 {25, 50}, and T 2 {120, 360}.

The cases considered are summarized in Table 1. The final column reports the fraction of price

volatility that is due to idiosyncratic shocks, which ranges approximately from 10% to 30%, in line

with the recent literature on granularity that estimates the fraction of aggregate fluctuations that

can be traced back to idiosyncratic shocks.

5.4 Simulation results

The simulation results when Corr (�, S) = 0 are reported in Table 2. We consider four estimators.

In the case of M1, we assume that the loadings are known in estimating the factors; this is an ideal

case taken as a benchmark. In the case of M2, we use PCA to estimate the factors. In the case of

M3, we control for the factors estimated using the known loadings and PCA. This case is helpful

to see whether there is harm in the simulation from controlling for too many factors. In the case of

M4, we use no factors and just use ys
�t without any factors. Note that we do not advocate M4 in

practice: M4 simply shows that the GIV estimator can be biased if we do not properly control for

35Formally, we start from �̄ ⇠ U (0, 1). We then estimate the regression �̄ = a◆N + b̄
�
S � S̄

�
+ e and find b such

that �̃ = a◆N + bS + e satisfies Corr
⇣
�̃, S

⌘
= ⇢, the target correlation. This correlation equals ⇢ = bV (S)

�(S)�(�̃)
=

bV (S)

�(S)
p

b2V (S)+V (e)
, which provides the solution b = Sign (⇢)

q
⇢2

1�⇢2
V (e)
V (S) . We then scale �̃ to obtain the right volatility

of aggregate supply shocks, � = 0.03
�̄S

�̃.
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Table 2: Simulation results when Corr (�, S) = 0 based on 10,000 replications. The parameters
used in the di↵erent cases are summarized in Table 1. In particular, the data are generated from
a model in which M = 0.75, M

�d = �2.5, �d = �0.3, and �s = 0.1. GIV estimators M1,..., M4 are
described at the beginning of Section 5.4. For each estimator, we report the median, the mean, and
percentiles 2.5% (P2.5) and 97.5% (P97.5) in the simulated distribution of estimates. “Coverage” is
the fraction of estimates falling within the 95% confidence intervals constructed using OLS standard
errors (columns 1 through 8) or the 2SLS standard errors (columns 9 through 16).

M M

�d �d �s

Case Statistic M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.49 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.33 -0.34 -0.32 -0.34 0.11 0.12 0.11 0.11

1 P2.5 0.53 0.49 0.52 0.51 -3.81 -3.90 -3.86 -3.83 -0.65 -0.67 -0.67 -0.65 0.01 0.00 0.00 0.00

P97.5 0.98 1.01 0.99 0.99 -1.20 -1.11 -1.15 -1.17 -0.17 -0.17 -0.17 -0.17 0.27 0.32 0.28 0.30

Coverage 0.95 0.93 0.95 0.95 0.95 0.94 0.95 0.95 0.93 0.93 0.93 0.93 0.96 0.94 0.95 0.96

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.51 -2.51 -2.51 -0.31 -0.31 -0.32 -0.31 0.10 0.11 0.10 0.10

2 P2.5 0.60 0.56 0.59 0.58 -3.48 -3.54 -3.50 -3.52 -0.52 -0.52 -0.53 -0.52 0.04 0.02 0.04 0.03

P97.5 0.90 0.94 0.90 0.92 -1.54 -1.47 -1.51 -1.49 -0.20 -0.19 -0.19 -0.19 0.19 0.22 0.19 0.21

Coverage 0.95 0.90 0.95 0.95 0.95 0.93 0.95 0.95 0.94 0.94 0.94 0.94 0.96 0.91 0.96 0.95

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.51 -2.51 -2.51 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

3 P2.5 0.62 0.59 0.62 0.61 -3.27 -3.34 -3.29 -3.29 -0.44 -0.45 -0.45 -0.44 0.05 0.03 0.04 0.04

P97.5 0.88 0.92 0.88 0.89 -1.74 -1.68 -1.72 -1.72 -0.22 -0.22 -0.21 -0.22 0.17 0.21 0.18 0.18

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.90 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

4 P2.5 0.65 0.63 0.65 0.64 -3.15 -3.18 -3.17 -3.18 -0.42 -0.42 -0.42 -0.42 0.06 0.05 0.06 0.05

P97.5 0.85 0.87 0.85 0.87 -1.86 -1.81 -1.84 -1.84 -0.22 -0.22 -0.22 -0.22 0.15 0.17 0.15 0.16

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

5 P2.5 0.66 0.64 0.66 0.66 -3.01 -3.05 -3.02 -3.02 -0.38 -0.38 -0.39 -0.38 0.06 0.05 0.06 0.06

P97.5 0.84 0.86 0.84 0.84 -1.99 -1.95 -1.99 -1.98 -0.24 -0.24 -0.24 -0.24 0.14 0.16 0.15 0.15

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.49 -2.50 -2.50 -0.32 -0.33 -0.33 -0.33 0.11 0.11 0.11 0.11

6 P2.5 0.56 0.52 0.55 0.52 -3.71 -3.78 -3.74 -3.77 -0.64 -0.66 -0.65 -0.64 0.02 0.01 0.02 0.01

P97.5 0.94 0.98 0.95 0.97 -1.24 -1.16 -1.24 -1.20 -0.17 -0.17 -0.17 -0.17 0.22 0.26 0.22 0.26

Coverage 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.93 0.93 0.93 0.93 0.96 0.95 0.96 0.96

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

7 P2.5 0.64 0.62 0.64 0.62 -3.21 -3.27 -3.23 -3.24 -0.44 -0.44 -0.45 -0.44 0.06 0.05 0.06 0.05

P97.5 0.86 0.88 0.86 0.88 -1.78 -1.75 -1.77 -1.75 -0.22 -0.22 -0.22 -0.22 0.15 0.17 0.16 0.17

Coverage 0.95 0.91 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.91 0.95 0.95
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Table 3: Simulation results when Corr (�, S) = �20% based on 10,000 replications. The parameters
used in the di↵erent cases are summarized in Table 1. In particular, the data are generated from
a model in which M = 0.75, M

�d = �2.5, �d = �0.3, and �s = 0.1. GIV estimators M1,..., M4 are
described at the beginning of Section 5.4. For each estimator, we report the median, the mean, and
percentiles 2.5% (P2.5) and 97.5% (P97.5) in the simulated distribution of estimates. “Coverage” is
the fraction of estimates falling within the 95% confidence intervals constructed using OLS standard
errors (columns 1 through 8) or the 2SLS standard errors (columns 9 through 16).

M M

�d �d �s

Case Statistic M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Median 0.75 0.69 0.75 0.56 -2.49 -2.29 -2.50 -1.85 -0.30 -0.30 -0.30 -0.30 0.10 0.13 0.10 0.24

Mean 0.75 0.69 0.75 0.56 -2.50 -2.30 -2.50 -1.85 -0.33 -0.34 -0.33 -0.30 0.11 0.16 0.11 0.21

1 P2.5 0.52 0.41 0.51 0.29 -3.84 -3.72 -3.87 -3.23 -0.66 -0.74 -0.67 -0.97 0.01 0.01 0.00 0.07

P97.5 0.98 0.97 0.99 0.82 -1.17 -0.88 -1.13 -0.50 -0.17 -0.16 -0.17 -0.14 0.28 0.47 0.29 0.96

Coverage 0.95 0.88 0.95 0.67 0.95 0.93 0.95 0.84 0.93 0.93 0.93 0.92 0.96 0.97 0.95 1.00

Median 0.75 0.74 0.75 0.42 -2.51 -2.46 -2.51 -1.38 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.42

Mean 0.75 0.74 0.75 0.41 -2.51 -2.47 -2.51 -1.39 -0.31 -0.32 -0.32 0.00 0.10 0.11 0.10 -0.12

2 P2.5 0.60 0.56 0.59 0.19 -3.51 -3.50 -3.54 -2.48 -0.52 -0.53 -0.54 -1.05 0.04 0.03 0.04 0.17

P97.5 0.90 0.92 0.91 0.63 -1.52 -1.43 -1.49 -0.30 -0.19 -0.19 -0.19 -0.12 0.19 0.23 0.19 1.86

Coverage 0.95 0.91 0.95 0.08 0.94 0.94 0.95 0.41 0.93 0.93 0.94 0.92 0.96 0.94 0.96 0.72

Median 0.75 0.73 0.75 0.56 -2.51 -2.43 -2.51 -1.86 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.24

Mean 0.75 0.73 0.75 0.56 -2.51 -2.43 -2.51 -1.86 -0.31 -0.31 -0.31 -0.31 0.10 0.12 0.10 0.26

3 P2.5 0.62 0.56 0.61 0.39 -3.29 -3.26 -3.31 -2.68 -0.44 -0.45 -0.45 -0.52 0.04 0.04 0.04 0.12

P97.5 0.88 0.89 0.89 0.72 -1.73 -1.59 -1.69 -1.02 -0.22 -0.21 -0.21 -0.19 0.18 0.23 0.18 0.51

Coverage 0.95 0.88 0.95 0.29 0.94 0.93 0.94 0.62 0.94 0.94 0.94 0.94 0.95 0.92 0.95 0.55

Median 0.75 0.74 0.75 0.51 -2.50 -2.48 -2.51 -1.69 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.29

Mean 0.75 0.74 0.75 0.51 -2.51 -2.48 -2.51 -1.69 -0.31 -0.31 -0.31 -0.31 0.10 0.11 0.10 0.32

4 P2.5 0.65 0.62 0.64 0.34 -3.17 -3.16 -3.19 -2.44 -0.42 -0.42 -0.43 -0.51 0.06 0.05 0.06 0.16

P97.5 0.85 0.86 0.86 0.66 -1.85 -1.79 -1.82 -0.93 -0.22 -0.22 -0.22 -0.20 0.15 0.18 0.16 0.64

Coverage 0.95 0.91 0.95 0.07 0.94 0.94 0.95 0.36 0.94 0.95 0.95 0.94 0.95 0.92 0.95 0.11

Median 0.75 0.74 0.75 0.61 -2.50 -2.45 -2.50 -2.03 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.19

Mean 0.75 0.74 0.75 0.61 -2.51 -2.46 -2.51 -2.03 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.20

5 P2.5 0.66 0.62 0.66 0.49 -3.03 -3.02 -3.04 -2.59 -0.39 -0.39 -0.39 -0.41 0.06 0.06 0.06 0.12

P97.5 0.84 0.85 0.84 0.72 -1.98 -1.89 -1.96 -1.46 -0.24 -0.24 -0.24 -0.23 0.15 0.18 0.15 0.32

Coverage 0.95 0.88 0.95 0.25 0.95 0.93 0.95 0.57 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.29

Median 0.75 0.71 0.75 0.46 -2.49 -2.36 -2.50 -1.53 -0.30 -0.30 -0.30 -0.30 0.10 0.12 0.10 0.35

Mean 0.75 0.71 0.75 0.46 -2.50 -2.35 -2.50 -1.53 -0.33 -0.34 -0.33 -0.25 0.11 0.14 0.11 0.27

6 P2.5 0.55 0.47 0.55 0.21 -3.73 -3.64 -3.76 -2.84 -0.65 -0.71 -0.67 -1.27 0.02 0.03 0.02 0.12

P97.5 0.95 0.94 0.95 0.71 -1.22 -1.00 -1.21 -0.21 -0.17 -0.16 -0.17 -0.10 0.22 0.34 0.23 1.84

Coverage 0.95 0.90 0.95 0.35 0.95 0.94 0.95 0.68 0.93 0.93 0.93 0.91 0.96 0.97 0.96 0.97

Median 0.75 0.74 0.75 0.46 -2.50 -2.45 -2.50 -1.54 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.35

Mean 0.75 0.74 0.75 0.46 -2.50 -2.45 -2.50 -1.53 -0.31 -0.31 -0.31 -0.31 0.10 0.11 0.10 0.35

7 P2.5 0.64 0.61 0.64 0.30 -3.23 -3.21 -3.24 -2.31 -0.45 -0.45 -0.45 -0.61 0.05 0.05 0.05 0.19

P97.5 0.86 0.87 0.87 0.62 -1.77 -1.70 -1.76 -0.74 -0.22 -0.21 -0.21 -0.18 0.16 0.18 0.16 0.82

Coverage 0.95 0.91 0.95 0.03 0.95 0.94 0.95 0.29 0.95 0.94 0.95 0.93 0.96 0.93 0.95 0.16
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aggregate factors. The first four columns correspond to the estimates of M , the next four columns

to estimates of M
�d , the next four columns to estimates of �d, and the last four columns to estimates

of �s.

For each of the estimators, we report the median, the mean, and the 2.5% and 97.5% percentiles.

For each estimator, we also report its 95% coverage rate using OLS standard errors (columns 1 to

8) or the 2SLS standard errors (columns 9 to 16).

As is clear from all cases, the estimators are mean- and median-unbiased in the simulation.

Moreover, confidence intervals tighten when concentration increases (case 3 relative to case 1 and

case 4 relative to case 2) and when the volatility of idiosyncratic shocks increases (case 2 relative to

case 1 and case 4 relative to case 3). Naturally, the confidence interval tightens when we increase

N and T . The coverage is generally accurate and OLS standard errors only slightly overstate the

precision in the case of M2 in estimating M ; the 2SLS standard errors are somewhat small in small

samples in estimating �s.

It is tempting to conclude that using ys
�t as instrument, even without estimating the factors,

results in accurate and unbiased estimates of the parameters of interest. However, this is only the

case when Corr (�, S) = 0. To illustrate this, we consider a negative correlation between size and

exposures, Corr (�, S) = �20%.

The results are presented in Table 3. We now find a large bias in the case of M4, both in

terms of the mean and median. The coverage estimates are also heavily distorted. Intuitively, ys
�t

does not filter out aggregate shocks, and the exogeneity restriction is violated. This is why factor

estimates are required when loadings may be correlated with size. Even in the case where we have

no information about factor loadings (in the case of M2, which relies only on PCA), accounting for

common factors removes most of the bias and leads to much improved coverage estimates. When we

know the factor loadings (in case of M1), there is no bias and the coverage estimates are accurate. In

addition, combining the PCA estimate and the estimate using the known loadings results in almost

the same accuracy as M1. This simulation illustrates the importance of accounting for factors in

using GIV when loadings correlate with size.

6 Estimating sovereign yield spillovers

We study spillovers in sovereign yield markets in the Euro area as a first application of GIVs. We

focus on the transmission and amplification of idiosyncratic shocks during the European sovereign

debt crisis.
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6.1 Data

We use daily data on 10-year zero coupon yields from Bloomberg.36 The countries and Bloomberg

tickers that we use are listed in Table F.7 in Appendix F.4.37 We use data on general government

gross debt for each country from Eurostat.38 The sample is from July 2009 to May 2018.39

6.2 An empirical model of sovereign yield spillovers

Section F provides a fleshed-out economic model of sovereign yield spillovers, and we summarize its

empirical implications here. In that model, governments may default on their debt, and losses in

one country will be partially shared with other countries, implying that shocks to sovereign yields

in one country spill over to other countries and vice versa.40 We index countries by i. We define

the yield spread, yit, as the yield in country i relative to Germany’s yield. The model implies that

relative changes in yield spreads, rit :=
�yit
yi,t�1

, satisfy the following empirical model

rit = �rSt + �0i⌘t + uit, (58)

where the size weights are

Si,t�1 =
Bi,t�1yi,t�1P
j Bj,t�1yj,t�1

, (59)

with Bit the outstanding government debt of country i.

This structural model brings two lessons to the empirics. First, the proper “size” of country i

here is its “debt at risk”, Bi,t�1yi,t�1, the expected euro loss on its debt.41 Second, the spillover

impact is such that �yit
yi,t�1

, rather than �yit, depends linearly on �rSt. This means that a country

with almost no default risk should have almost no sensitivity of its yield �yit, as there is no risk

in the first place. This intuition is likely to hold in alternative models, and those models will then

imply a similar functional form.42

The interpretation of � and M = 1

1�� is that if a country su↵ers 1 billion euros in losses on its

debt because of some idiosyncratic bad news, then the aggregate debt of all European governments

36We use Bloomberg’s price variable PX LAST.
37The tickers that we use for di↵erent countries are the ones used by European Insurance and Occupational

Pensions Authority (EIOPA) to construct the regulatory yield curves of insurance companies and pension funds in
the European Union. For the final construction of the curves, EIOPA combines data on zero yields and swap curves,
while we only use the zero yields.

38https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=teina225.
39We remove days in which markets are closed, which is when none of the yields change on a given day, and

holidays.
40A natural extension would to be add the banking sector of each country. In addition, it would be interesting to

model the level of yields (i.e., the German yield) as well, which should go down as a result of safety e↵ects.
41This is under the risk-neutral measure, i.e. adjusting for the price of risk.
42Spillovers in sovereign bond markets may also operate via intermediaries. For instance, if losses in one country

impact the intermediaries’ constraints, then this can impact the pricing of bonds in other countries in which the
intermediaries are active. We strongly suspect that with that channel a functional form like 58 would still hold.
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falls by M = 1

1�� billions.43

It is essential to control for common factors ⌘t. It is well understood, see for instance Forbes and

Rigobon (2002), that omitted factors and endogeneity impact measures of spillovers and contagion.44

6.3 Estimation procedure

We estimate the model using the standard GIV procedure, accounting for heteroskedasticity. Em-

pirically, we use rit =
�yit

0.01+yi,t�1
to avoid problems when spreads get close to zero, yit ' 0.

1. We compute the rolling standard deviation of relative changes in yield spreads using the

trading days of the last two months, �t (rit). We then define45

�it = max (�t (rit) ,mt) , (60)

where mt = median (�t (rjt)), that is, the cross-sectional median at time t. We define the

Ẽ-weights as usual as Ẽi,t�1 =
1/�2

itP
i
1/�2

it

. We apply the max operator in (60) to avoid that the

Ẽ-weights put too much weight on a single country if yield spreads for that country happen

to be stable and close to zero. The main objective of adjusting for heteroskedasticity is to put

less weight on extremely volatile countries.46

2. We compute řit = rit � rẼt and adjust řit for heteroskedasticity, nit =
řit
�it

. We use PCA based

on nit, nit = �̌0i⌘t + ǔit, to estimate the factors, ⌘et .

3. We estimate the multiplier M = 1

1�� via the regression

rSt = k +Mr
�̃t + �0S⌘

e
t + et. (61)

To identify the largest shocks and to verify narratively that the shocks are truly idiosyncratic, we

run the weighted panel regression

rit � rẼt = c+ �0⌘et + uit,

43Indeed, suppose that country i has an idiosyncratic shock uit, so that that value of its debt falls by Vit =
Bi,t�1yi,t�1uit euros. As rSt = MSi,t�1uit, the value of all Eurozone sovereign debt falls by

Vt = (
X

j

Bj,t�1yj,t�1)rSt = (
X

j

Bj,t�1yj,t�1)Si,t�1Muit = MBi,t�1yi,t�1 = MVit.

44Caporin et al. (2018) study spillovers in European sovereign debt markets and show that quantile regressions
can be used to test for contagion if contagion is defined as a change in interlinkages. Our definition of contagion
(captured by a nonzero � in equation (58)) is very di↵erent from theirs.

45We compute the rolling standard deviation including the current observation. Given the objective to most accu-
rately estimate the time fixed e↵ect and the factor realizations, we want to account for the same-period realizations,
in particular given the fat-tailed distribution of yield changes.

46The results are quantitatively very similar when using �it = max (�t (rit) ,mt), with  = 0.75.
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Figure 1: Dynamics of sovereign yield spreads and size weights. The figure reports the yield
spreads, relative to Germany, for Italy, Spain, Greece, Ireland, Portugal, and France in the left
panel from September 2009 to May 2018. The spreads are based on 10-year zero-coupon bonds and
are constructed using data from Bloomberg. The right panel displays the size weights based on the
definition in (59) for the same countries and the same sample period.
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using the size weights. In this panel regression, ue
St is identical to the residual of the regression

r
�̃t = c+ �0

�̃
⌘et + ue

St. We discuss the largest |ue
St| in detail in Section 6.6.

6.4 Empirical results

We plot the dynamics of spreads, yit, in the left panel, and size weights, using the definition in

(59), in the right panel of Figure 1 for France, Greece, Ireland, Italy, Portugal, and Spain. The

sample is from September 2009 to May 2018. We distinguish three broad periods. First, from 2010

to 2012, the yield spread dynamics are driven by the European sovereign debt crisis. During 2015,

yield spreads in Greece widen once again, but the low-frequency dynamics in other countries are

more muted and spreads tighten in most countries. This period is characterized by political turmoil

in Greece related in part to negotiations of a bailout deal. During the last months of our sample,

there is a jump in Italian yields due to political uncertainty regarding budget plans following the

general election. We will revisit these episodes in more detail when analyzing the largest and most

influential idiosyncratic shocks in Section 6.6.

Table 4 reports the estimates of the multiplier, M . The first column regresses rSt on Zt = r
�̃t.

The second to the fourth column add principal components. The multiplier estimate drops after

adding the first principal component from 1.63 to 1.46, but then stabilizes and adding more principal

components does not impact the estimate of the multiplier in an economically meaningful way. In
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Table 4: Multiplier estimates of sovereign yield spillovers. The table reports the estimates of the
multiplier in (61). The first to the fourth column include zero to three principal components as
controls. In the final column, we re-estimate the model excluding Greece. In this table, Zt = r

�̃t and
PCit corresponds to the ith principal component that we extract based on řit

�it
. The size-weighted

average of relative yield spread changes, rSt, uses the size weights as defined in (59). The model is
estimated using daily data from July 2009 until May 2018.

rSt rSt rSt rSt rSt (excluding Greece)

Zt 1.632 1.456 1.433 1.488 1.426

(73.90) (44.09) (45.42) (46.48) (29.68)

PC1t 0.00215 0.00230 0.00192 0.00215

(7.13) (8.00) (6.67) (5.47)

PC2t -0.00332 -0.00330 -0.00160

(-14.85) (-14.95) (-6.35)

PC3t 0.00193 0.00249

(7.53) (6.50)

N 2264 2264 2264 2264 2264

R2 0.707 0.714 0.739 0.745 0.752

t statistics in parentheses

the final column, we omit Greece, which plays an important role during this period. However, using

the shocks from other countries does not impact the estimates in an economically meaningful way.

The high R-squared in the first column does not estimate the fraction of the variation in ag-

gregate yield spread changes that is due to idiosyncratic shocks, as r
�̃t is correlated with ⌘et . To

estimate the importance of idiosyncratic shocks, we regress rSt on ue
St, which provides exactly the

same point estimate of the multiplier as in the final column of Table 4. The R-squared of this

regression is 24%, implying that a quarter of the variation in aggregate yield spread changes is due

to idiosyncratic shocks.

The idiosyncratic shocks to relative changes in yield spreads are fat-tailed, as can be seen from

the left panel of Figure 2, which plots the time series of ue
St. The right panel of the same figure

plots ue
St (horizontal axis) against rSt (vertical axis). If there are no spillovers, � = 0, then the

multiplier is one and the points fall along the 45-degree line (the red dashed line). The fact that

the estimated slope is steeper, as indicated by the blue solid line, implies that there are significant

yield spillovers.
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Figure 2: Idiosyncratic shocks over time and aggregate yield changes. The figure shows the time-
series dynamics of ue

St in the left panel. We construct ue
St as the residual of a regression of r

�̃t on
⌘et . The right panel shows a scatter plot of ue

St (horizontal axis) against rSt (vertical axis). The
size-weighted average of relative yield spread changes, rSt, uses the size weights as defined in (59).
The series are constructed using daily data from July 2009 until May 2018.
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6.5 Interpretation of the coe�cients

We find a multiplier M = 1

1�� ' 1.5 and hence a spillover parameter � ' 1

3
.47 The interpretation

is as follows: suppose that Italy su↵ers a bad shock that makes its debt likelier to default, so that

the market value of Italy’s debt falls by 1 billion euros. The multiplier M ' 1.5 means that the

aggregate debt of all European governments falls by 1.5 billion euros – the spillover consists of

an extra 0.5 billion euros in expected losses in European sovereign debt markets. Note that the

expectation is under the risk-neutral measure, so could correspond to a higher likelihood of default,

or a higher price of risk for that default.48

6.6 Narrative GIVs

To further inspect the variation that the GIVs are exploiting to estimate the multiplier, we narra-

tively check the largest shocks in Table 5. In particular, we order the dates based on the size of

|ue
St|. To illustrate the relevance of the largest shocks, we re-estimate the model that includes three

principal components, that is, the fourth column of Table 4, using only the days with the largest k

shocks. In Figure 3, we show the multiplier estimate, alongside the 95%-confidence interval, where

47Here we use, omitting aggregate shocks, rit = �MuSt + uit, with rit =
�yit

yi,t�1
, and rSt = MuSt.

48To get some more intuition, consider that Italy, near the peak of the crisis, has a relative size of 0.4. Suppose
an idiosyncratic shock to Italy makes the Italian yield double (ui = 1 for i = Italy); that is, the Italian yield spread
goes from 2% to 4%. That makes the other yields go up by a relative value of �M ⇥ Si ⇥ ui = 0.5⇥ 0.4⇥ 1 = 0.2,
so that the average yield increases from 1% to 1.20%. In other terms, as the Italian yield spread goes up by 200bp,
the other countries’ yield spreads go up by 20bp, implying a “pass-through” of 0.1.
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Table 5: Summary of the largest idiosyncratic shocks and narratives. The table reports the proper-
ties of yield spread changes, �yit, on the 10 days with the largest realization of |ue

St| in Panel A. In
Panel B, we report the corresponding relative yield changes, rit =

�yit
0.01+yi,t�1

. In Panel C, we provide
the narratives associated with these events. The series are constructed using daily data from July
2009 until May 2018.

Panel A: Unscaled idiosyncratic shocks

Date Austria Belgium Finland France Greece Ireland Italy Netherlands Portugal Slovenia Spain

10-May-10 -0.08% -0.24% -0.07% -0.08% -3.87% -1.18% -0.43% -0.06% -1.62% -0.30% -0.62%

8-Aug-11 -0.03% -0.09% 0.00% 0.08% 0.01% 0.05% -0.66% 0.00% -0.10% -0.16% -0.73%

26-Oct-11 -0.05% -0.03% -0.03% -0.09% 3.11% 0.01% -0.02% -0.03% -0.15% 0.01% -0.04%

12-Mar-12 0.04% 0.04% 0.01% 0.05% -7.32% 0.00% 0.11% 0.01% 0.06% -0.04% 0.09%

3-Feb-15 -0.01% -0.01% -0.01% 0.00% -1.21% -0.02% -0.07% -0.01% -0.12% -0.06% -0.05%

29-Jun-15 0.05% 0.07% 0.03% 0.07% 3.21% 0.13% 0.36% 0.04% 0.48% 0.11% 0.36%

6-Jul-15 0.02% 0.04% 0.01% 0.03% 2.35% 0.06% 0.16% 0.01% 0.27% 0.03% 0.18%

10-Jul-15 -0.04% -0.05% -0.03% -0.05% -3.28% -0.10% -0.21% -0.04% -0.24% -0.23% -0.22%

13-Jul-15 -0.01% 0.01% 0.00% 0.01% -1.11% 0.00% 0.02% 0.00% -0.03% -0.01% 0.02%

29-May-18 0.07% 0.04% 0.03% 0.04% 0.36% 0.08% 0.49% 0.03% 0.20% 0.08% 0.17%

Panel B: Scaled idiosyncratic shocks

Date Austria Belgium Finland France Greece Ireland Italy Netherlands Portugal Slovenia Spain

10-May-10 -5.2% -14.2% -5.2% -5.9% -41.6% -29.5% -17.5% -4.8% -38.0% -12.8% -24.1%

8-Aug-11 -1.9% -3.1% 0.2% 4.4% 0.1% 0.6% -14.4% -0.3% -1.2% -4.0% -15.9%

26-Oct-11 -2.6% -1.0% -2.1% -4.3% 19.4% 0.2% -0.5% -2.3% -1.5% 0.3% -0.8%

12-Mar-12 1.9% 1.6% 0.8% 2.5% -31.7% 0.0% 2.8% 0.9% 0.5% -0.9% 2.2%

3-Feb-15 -1.2% -0.7% -0.7% -0.1% -11.5% -1.2% -3.0% -0.7% -3.7% -2.9% -2.0%

29-Jun-15 3.8% 5.0% 2.8% 5.1% 33.4% 6.9% 16.6% 3.1% 17.4% 4.7% 16.6%

6-Jul-15 1.8% 2.5% 0.7% 2.0% 18.9% 3.3% 6.8% 1.2% 8.6% 1.1% 7.7%

10-Jul-15 -3.0% -3.5% -2.2% -3.7% -22.1% -5.0% -8.8% -3.0% -7.6% -9.1% -9.0%

13-Jul-15 -0.5% 1.0% -0.2% 1.1% -9.6% 0.1% 1.0% 0.3% -0.9% -0.5% 1.1%

29-May-18 5.2% 2.6% 2.3% 2.9% 7.2% 5.0% 14.6% 2.3% 7.3% 4.7% 7.7%

Panel C: Narrative analysis

Date Event

10-May-10 Stock markets leap across Europe as EUR750bn eurozone rescue package is agreed

8-Aug-11 ECB decides to start buying Italian and Spanish bonds as part of the Securities Markets Program

26-Oct-11 EU leaders announced an agreement, including deal with private sector investors to take a 50% loss on Greek bonds

12-Mar-12 Greece Bailout Package Signed O↵ by EU Leaders

3-Feb-15 Greek government said to retreat from a demand for a debt writedown.

29-Jun-15 Greece closes banks

6-Jul-15 Greece bailout referendum on July 5th where voters reject austerity package

10-Jul-15 The Greek government submitted its highly anticipated plan for the country’s economic overhaul to bailout authorities

13-Jul-15 Greek PM Alexis Tsipras conceded to a further swathe of austerity measures and economic reforms

29-May-18 Italian political turmoil (snap election plus new budget plan) cause largest 1-day decline in Italian bonds in 25 years
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Figure 3: Multiplier estimates using an expanding window. The figure reports the estimates of
the multiplier in (61) using three principal components as controls. We estimate the model using
an expanding sample where the data are ordered by |ue

St|, that is, the magnitude of the idiosyn-
cratic shocks. The number of dates included is depicted on the horizontal axis, starting with 15
observations. The solid blue line corresponds to the point estimate and the dashed red lines to the
95%-confidence interval. The model is estimated using daily data from July 2009 until May 2018.
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we indicate the number of dates included on the horizontal axis (starting at 15 observations). The

estimate is stable for di↵erent samples but obviously standard errors tighten as the sample expands.

Panel A in Table 5 reports the yield changes on the 10 days with the largest realization of |ue
St|.

In Panel B, we scale the yield changes by 0.01 + yi,t�1. In Panel C, we provide the narratives.

If we inspect some of the largest shocks in Table 5, then is is clear that most of them are truly

idiosyncratic shocks. Examples include the decision by Greece to close all banks or the outcome

of the referendum. There are two shocks, however, on May 10, 2010 and August 8, 2011 that

involve actions by the ECB and hence are more likely aggregate shocks as opposed to idiosyncratic

shocks. Removing these dates does not impact our estimates, but illustrates the empirical relevance

of sporadic factors during times of crisis (see Section 2.6). Most of the shocks are associated with

Greece, although the final date corresponds to Italy.49

49Also following the end of our sample, many of the idiosyncratic shocks in recent months happened in Italy.
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7 Multipliers and elasticities in crude oil markets

7.1 Data

Our data construction follows the existing literature (Kilian (2009), Caldara et al. (2018), Baumeis-

ter and Hamilton (2019), henceforth BH19). The data on crude oil production are from the January

2019 Monthly Energy Review published by the U.S. Energy Information Administration (EIA). We

observe the monthly oil production for 20 countries from January 1985 until December 2015.50 The

selection of countries includes OPEC and non-OPEC members. In addition to the production data

of these 20 countries, we also observe the production by (current) OPEC and non-OPEC members

as well as the world’s production. We use the total non-OPEC production to construct a fictitious

country that produces the residual non-OPEC supply.51

We focus on estimating short-run (monthly) multipliers as well as demand and supply elasticities,

consistent with the literature. To construct innovations, we use a state vectorXt that includes lagged

(i) world supply growth, (ii) monthly oil price changes, (iii) changes in inventories, and (iv) growth

in industrial production. We use the data of BH19 for the latter three series.

7.2 Model

We model the supply growth of country i in period t as

�yit = ai + �s�pt + �0yXt�1 + �i⌘t + uit,

and model changes in aggregate oil demand (both in use and inventories) as

�dt = cd + �d�pt + �0dXt�1 + ✏t.

Market clearing, �ySt = �dt, implies

�pt = cp +
M

�d
uSt + �p0Ct, �ySt = cyS +MuSt + �y0Ct,

where M = � �d

�s��d 2 [0, 1] is the multiplier, and (�p, �y) are loadings on Ct = (⌘t, "t, Xt�1), and

whose precise values do not matter here.

Our goal is to estimate the short-run supply and demand elasticities, �s and �d (with presumably

�d < 0 < �s). The equations for aggregate supply and price changes are part of the VAR models

that are commonly used in the recent literature on oil prices and their impact on economic growth.

50We follow Caldara et al. (2018) and remove Gabon from the sample due to concerns about data quality. In
addition, we scale the supply of the USSR using the ratio of supply of the USSR to the supply of Russia to obtain a
continuous series and to avoid a sudden jump in the non-OPEC supply.

51This fictitious country includes the countries that were not part of OPEC during our sample.
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7.3 GIV estimation

The supply changes in a couple of months are extreme for some countries during supply disruptions,

and we therefore winsorize the growth rates at 2.5% and 97.5% across all countries and periods to

estimate �yEt = �ywEt, where �ywit denotes winsorized supply growth.52 We then estimate the

model using the following steps, which follows the procedure in Section 4:

1. Run a panel regression with country and time fixed e↵ects,53

�ywit = ai + bt +�y̌wit .

2. Use �y̌wit to estimate a parametric factor based on OPEC membership.54 Let IOPEC
it = 1 if a

country is an OPEC member in month t and IOPEC
it = 0 otherwise. We then estimate

�y̌wit = bt + IOPEC
it ⌘OPEC

t + eit,

and we denote the estimated factor by ⌘OPEC,e
t . We use �y̌wit also to separately estimate a

principal component, and we denote the estimated factor by ⌘PCA,e
t . We stack the estimated

factors together in ⌘et =
⇣
⌘OPEC,e
t , ⌘PCA,e

t

⌘
.

3. Estimate M
�d and M = � �d

�s��d using respectively, with Zt = ySt � ywEt,

�pt = ap +
M

�d
Zt + �⌘0p ⌘

e
t + �X0

p Xt�1 + ept , (62)

�ySt = aS +MZt + �⌘0S ⌘
e
t + �X0

S Xt�1 + eyt . (63)

4. Estimate the demand and supply elasticities using the following regressions, where we instru-

ment �pt using Zt,

�ySt = aS + �d�pt + �⌘0S ⌘
e
t + �X0

S Xt�1 + edt , (64)

�yEt = aE + �s�pt + �⌘0E ⌘
e
t + �X0

E Xt�1 + est . (65)

7.4 Empirical results

We report the estimation results of the multipliers M = 0.91 and M
�d = �1.97 in Table 6 alongside

both elasticities. The estimate of M
�d implies that a 1% decline in the global oil supply leads to a

1.97% increase in oil prices. The estimate of M implies that a 1% shock to supply leads to an overall

52To ensure growth rates are always defined, we set supply to one in case it drops to zero, which happens in seven
country-months.

53Note that the time fixed e↵ects absorb the controls, Xt�1, in this case.
54OPEC membership is largely stable during our sample except for Angola and Ecuador. We account for changes

in membership in estimating the factor.
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Table 6: Multiplier estimates in the oil market. The first column reports the estimate of M as the
coe�cient on Zt in (62). The second column reports the estimate of M

�d as the coe�cient on Zt

in (63). The third column reports the Two Stage Least Squares (2SLS) estimate of the demand
elasticity �d, see (64), and the fourth column the 2SLS estimate of the supply elasticity �s, see (65).
In both cases, we use Zt as an instrument for �pt. We suppress the coe�cients on the controls,
Xt�1, that include lagged (i) world supply growth, (ii) monthly oil price changes, (iii) changes in
inventories, and (iv) growth in industrial production. The t-statistics are based on OLS and 2SLS
standard errors in parentheses. We also report the t-statistics using standard errors that are robust
to heteroskedasticity and autocorrelation in brackets. We select the optimal lag length as in Newey
and West (1994). The sample is from January 1985 to December 2015.

ySt �pt ySt yEt

Zt 0.913 -1.974

(16.21) (-3.60)

[14.11] [-2.34]

⌘PCA
t -0.118 0.173 -0.0379 -0.126

(-15.29) (2.30) (-0.97) (-13.67)

[-11.71] [2.51] [-0.76] [-9.78]

⌘OPEC
t 0.409 -0.197 0.318 0.418

(15.07) (-0.75) (2.55) (14.35)

[8.92] [-0.72] [2.25] [7.89]

�pt -0.463 0.0438

(-3.54) (1.43)

[-2.52] [0.97]

N 370 370 370 370

R2 0.578 0.262
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reduction in oil supply of 0.91% as other countries step in to increase their supply in response to

higher prices. We estimate a demand elasticity of �d = �0.46 and a supply elasticity of �s = 0.044.

Changes in demand also include changes in inventories, which respond more elastically to changes in

prices (Kilian and Murphy (2014)). In parentheses, we report the t-statistics using OLS and 2SLS

standard errors. We also report the t-statistics with more conservative standard errors in brackets

that are robust to heteroskedasticity and autocorrelation. We select the optimal lag length as in

Newey and West (1994). Recall that while the multiplier estimates rely on standard OLS inference,

the elasticity estimates use instrumental variables. This is important, as the instrument for price is

quite weak, and we are therefore cautious when interpreting the elasticity estimates and emphasize

the multiplier estimates instead.

To put these estimates in perspective, we compare them to recent estimates in the literature and

find them to be in broad agreement. Indeed, Baumeister and Hamilton (2019) use sign restrictions

in combination with a Bayesian estimator to find supply and demand elasticities of 0.15 and �0.35,

respectively, with 68% credibility intervals of (0.09, 0.22) for the supply elasticity and (�0.51,�0.24)

for the demand elasticity. The point estimates imply multipliers of M = 0.7 and M
�d = �2. Kilian

and Murphy (2014) also combine sign restrictions and a Bayesian estimator with short-run supply

elasticities bounded at 0.025, 0.05, and 0.1, and corresponding demand elasticities ranging from

-0.44 to -0.47. For the 5% bound, the multiplier estimates equal M = �0.9 and M
�d = �2. Caldara

et al. (2018) use a narrative approach and estimate a supply elasticity of 0.08 (with a standard

error of 0.037) and a demand elasticity of -0.08 (with a standard error of 0.08), yielding multipliers

of M = 0.5 and M
�d = �6.3.

To further compare the GIV to instruments used in the literature, we juxtapose it to that

employed by Caldara et al. (2018). We construct our instrument as the residual from a regression

of y�t on Xt�1 and the two factors, ⌘et , and refer to it as u�t. If we regress it on the instrument

of Caldara et al. (2018), which is non-zero only during 14 months in this sample, we get a slope

coe�cient of 0.92, with a t-statistic of 13.5 and an R-squared of 94%. Moreover, if we restrict

ourselves to more extreme episodes by only using data when u�t, in absolute value, exceeds a

threshold, then the estimates of M
�d becomes more negative.55 A potential interpretation is that

demand becomes more inelastic in case of more extreme shocks, for instance, as inventories are

running low. This reconciles our estimates with those of Caldara et al. (2018).

In summary, the GIV estimator results in estimates that are in the range of estimates docu-

mented in the recent literature, thereby providing some external validation of GIVs as an approach

to estimating demand and supply elasticities. At the same time, the GIV procedure arguably

requires less domain-specific ingenuity than the previous studies we mentioned.

Several interesting extensions are worth exploring.56 First, we can estimate demand elasticities

55If we restrict |u�t| exceeding 0.5%, 1%, and 1.5%, the first-stage slope decreases from -1.97 to -2.19, -3.46, and
-4.76, respectively.

56We are grateful to Lutz Kilian for suggesting these potential extensions.
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for oil demand in production and oil demand in use (Kilian and Murphy (2014)). Second, Saudi

Arabia plays a key role within OPEC and steps in quickly in times of supply disruptions, for instance,

during the First Gulf War. One can use GIV to estimate a di↵erent supply curve for Saudi-Arabia

than for the other countries, and in particular allow Saudi Arabia to respond to the production by

other OPEC countries. Third, detailed country-level data on (net) imports and oil consumption

can be used to construct a second instrument that can be used to both sharpen the estimates and

to test for overidentifying restrictions. Fourth, one could use GIVs to explore non-linear demand

curves to understand the multipliers during large supply disruptions (see Section D.8).57

8 Discussion and extensions of the framework

8.1 Extensions

There are many ways to increase the number of setups in which the GIV idea can be applied. In

our experience, one can extend the GIV idea to many settings and generalizations.

Multidimensional GIV One can handle multidimensional “actions:” for instance, a firm could

have a shock that a↵ects both productivity and labor demand. A country could have a shock

that a↵ects both productivity and oil demand. Formally, the actions yit and shocks uit are now

multidimensional. The GIV idea goes through, and this is developed in Section D.1. We have seen

that with one GIV, we can estimate 1 + dF parameters (M , M↵f ), where dF is the number of

endogenous, observed factors. With q-dimensional actions, we have q GIVs, and we can estimate

q2 + qdF parameters, which correspond to M and ↵f .58 So, potentially many parameters can be

recovered with multidimensional “actions” by firms or countries.

GIV with a more complex matrix of influences The GIV can also be extended to non-

homogeneous influences in the context of loops. Suppose a model yit = �
P

j Gijyjt+�i⌘t+uit, i.e.,

in vector form

yt = �Gyt + ⇤⌘t + ut, (66)

with a given “influence” matrix G (in our baseline model, G = ◆S 0). We’d like to identify �, the

strength of linkages.

A simple generalization of our GIV is to define a “size” vector S := G0E. Then, left-multiplying

(66) by E 0, we get

yEt = �ySt + ⇤E⌘t + uSt.

The key moment is still E [(yEt � �ySt) zt] = 0, where the GIV is again zt = ySt � yEt in the simple

57One would interact with zt by, for example, the log previous-period price to see the elasticity at di↵erent prices.
58As uSt and ySt are q-dimensional, M = dyst

duSt
q⇥q dimensional, and each of the dF f

t
duS

= M↵f is also q-dimensional.
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case where ⇤ = ◆ and G◆ = ◆; see Section D.14 for the general case. Hence, GIV generalizes to

“spatial” models with common shocks (most spatial models do not have latent common shocks).59

Bayesian GIV Another extension is a Bayesian interpretation of the GIVs. This way, we can

interpret GIVs in a Bayesian framework – see Section E. In particular, this opens the possibility

of marrying GIV estimation with priors on other parameters. In the simplest cases with Gaussian

shocks, the maximum likelihood estimate is our GIV – confirming its optimality properties. At the

same time, the basic GIV doesn’t actually use normality assumptions.

Vector autoregressions with GIV One can do vector autoregressions with GIVs: if Yt =

AYt +Xt, one can use the GIV zt to instrument for some of the shocks to the innovations Xt, and

achieve partial or full identification. The GIV is then an “external instrument”, and one can follow

the methods spelled out in Stock and Watson (2018).60 One can also do Jordà (2005) style local

projections, regressing Et [Yt+h] = �tXt, and instrumenting some of the regressors Xt by a GIV.

Both methods give a way to do impulse responses with GIVs.

8.2 Comparison with Bartik instruments and other procedures

Comparison with Bartik instruments The GIV estimator shares some similarities with Bartik

instruments,61 but also major di↵erences To put it simply, Bartik instruments allow to estimate the

cross-sectional (or micro) sensitivities to shocks, but not aggregate sensitivities; whereas GIVs are

mostly designed to estimate aggregate (or macro) elasticities. Hence, they are complementary.

To see this, let us use the notation established earlier. Shift-share estimators aim to estimate

the coe�cients �f
1
in the structural equation yit =

P
f (�

f
0
+ �f

1
xit)F

f
t + ⌘yt + uit using xitg

f
t as an

instrument for xitF
f
t . In this notation, the “shares” are xit and the “shifters” are gft (for instance

gft could be the China shock, and be correlated with ⌘yt ). Shift-share estimators have been the

study of much recent econometric work including Goldsmith-Pinkham et al. (2020); Adao et al.

(2019); Borusyak et al. (2020). Borusyak et al. (2020) lay out su�cient identifying conditions for

the shift-share estimator to estimate the structural parameter. Shift-share estimators estimate �f
1

but are unable to estimate the mean e↵ect �f
0
.62 In contrast, the GIV estimator provides a general

strategy to estimate �f
0
if the shock F f

t is a↵ected by some large idiosyncratic shocks.

Procedures containing elements of GIVs A few papers have explored the idea of using id-

iosyncratic shocks as instruments to estimate spillover e↵ects, such as Leary and Roberts (2014b)

59See Brownlees and Mesters (2020) for a potential way to extend this approach when G is unknown.
60See Plagborg-Moller and Wolf (2020) for a recent development in this area.
61Known as “shift-share estimators,” they were first introduced in Bartik (1991) and popularized in Blanchard

and Katz (1992).
62If we have just one date, one can identify �f1F

f
t for that date t by a cross-sectional regression. Hence, a Bartik

approach is viable with just one cross-section, whereas the GIV needs a whole panel (fixed N , large T ).
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in the context of firms’ capital structure choice and Amiti et al. (2019) in the context of firms’ price

setting decisions. The structure of the estimating equations in these papers is similar to the model

that we consider here:63

yt = �ywt +mCt + ut,

where ywt = w0yt can be equally-weighted (Leary and Roberts (2014b)) or size-weighted (Amiti et

al. (2019)), depending on the weights w. Both papers use industry and/or year fixed e↵ects, which

can be viewed as a choice of controls or exogenous factors, ⌘t, to which all firms in a given industry

have the same exposure.

There are two main di↵erences compared to GIV. First, both papers use idiosyncratic shocks

to another variable than yt, say gt, to construct an instrument for ywt. Leary and Roberts (2014b)

use idiosyncratic stock returns and Amiti et al. (2019) use shocks to competitors’ marginal cost,

exchange rates, or export prices. We, instead, propose to use idiosyncratic shocks to yt rather than

another instrument (this way requiring fewer times series). Second, and related, we control for

heterogeneous exposures to common factors to extract the idiosyncratic shocks, which is important

in asymptotic theory and in practice in realistic samples (see Section 5).

A third di↵erence is specific to Leary and Roberts (2014b). GIVs crucially depend on the

di↵erence between size- and equal-weighted averages of variables. If the estimating equation depends

on equal-weighted averages, GIV cannot be applied. In most models, however, not all competitors

receive equal weight and larger firms, or perhaps firms that are closer in product space, receive a

larger weight.

Lastly, the use of model-based idiosyncratic shocks has some similarities with Amiti and We-

instein (2018), who extract bank supply shocks from Japanese data using a panel of fixed e↵ects,

and then estimate the sensitivity of aggregate investment to these shocks. However, unlike our

model, Amiti and Weinstein (2018) assume a uniform sensitivity to the aggregate shocks (�i⌘t with

�i = 1 for all i), and do not allow for feedback loops: shocks to banks a↵ect aggregate investment,

but aggregate investment does not circle back around to a↵ect individual bank behavior (so, they

assume ↵f = 0 in our notations). This is the key source of endogeneity in many of the models we

consider, and by tackling it we are able to estimate a richer set of parameters.

Other methods to estimate aggregate elasticities Rigobon (2003) introduces another method

that can be used to estimate spillover e↵ects and aggregate multipliers using time-variation in sec-

ond moments. If shocks are heteroskedastic and the structural parameters are stable across regimes,

then the di↵erent volatility regimes add additional equations to the system so that the structural

parameters can be identified. GIV does not require heteroskedasticity, but can accommodate it,

and is therefore complementary to identification methods that rely on heteroskedasticity.

63Amiti et al. (2019) study the price setting decision of firms. In their model, the pricing equation features two
endogenous variables, namely the same firm’s marginal cost and the size-weighted average of competitors’ prices. We
focus on the spillover e↵ects of competitors’ prices in our discussion in this section.
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Influence and the “reflection problem” The “reflection problem” (Manski (1993); Kline and

Tamer (2020)) studies a related form of contagion. The traditional literature does not use idiosyn-

cratic shocks in its identification strategies. Hence a GIV approach can be useful to complement

existing approaches. This is sketched in (66) and Section D.15 develops this in some detail.64

Other literatures In a tangentially related recent paper, Sarto (2018) uses factor analysis to

extract values of ⌘f (much as we do when we “recover” a factor ⌘f ). Take the basic example in our

paper. Then, Sarto does not identify ↵: even if ⌘ (the aggregate shock to demand) were perfectly

identified, that would not allow to estimate p. In the supply and demand example, Sarto would

identify the demand elasticity �d, but not the supply elasticity �s.

Spatial econometrics. In some applications of GIVs we have considered separately, growth in a

region a↵ects that of the other regions. So there is a similarity between our setup and that of spatial

econometrics (e.g. Kelejian and Prucha (1999)). However, the estimators are quite di↵erent. The

reason is that spatial econometrics studies the “local” influence (e.g. of neighboring cities on a city),

while GIVs study the global influence. Hence, the sources of variation, identifiability conditions and

methods are quite di↵erent. Certainly, the spatial literature has not identified, as we do, the GIVs

as a simple way to estimate elasticities in contexts such as supply and demand problems, and models

with feedback loops from banks to sovereign yields (and vice versa). Still, some of the sophisticated

techniques of the spatial literature might be used one day to enrich a GIV-type analysis.

Quasi-experimental instruments and identification by functional form A large literature

explores identification by functional form, where consistency of the estimator depends on functional

form or distributional assumptions. Classic examples include the Heckman (1978) selection model,

identification via heteroskedasticity, as in Rigobon (2003) and Lewbel (2012), and Arellano and

Bond (1991) and Blundell and Bond (1998) in the context of dynamic panel data models. The

typical concern with these approaches, compared to quasi-experimental instruments that are outside

of the model, is that the estimators are inconsistent when the model is misspecified.

In the case of GIVs, we generally start from a structural model that motivates the estimating

equation, as we will see in the empirical examples below. This prescribes the definition of the

size vector S and, in some cases, the characteristics that determine the exposures xit. To extract

idiosyncratic shocks, we rely on statistical factor models.65

Instead of viewing this last step as a merely statistical exercise that is hard to validate externally,

GIVs provide an empirical strategy to understand the economic drivers of the instrument by screen-

ing the top shocks narratively. By understanding the nature of the shock based on news coverage

(as in the narrative examination we just discussed), for instance, we can ensure that the shocks are

64Somewhat related, Graham (2008) explores the identification of peer e↵ects using conditional variance restrictions
on the outcomes by exploiting di↵erences in the sizes of the peer group. Intuitively, smaller peer group sizes lead to
a larger contribution of each individual peer on the peer component.

65We discuss the robustness of GIVs to various forms of misspecification in Section 2.6.
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truly idiosyncratic and interpretable. For instance, a large negative return associated with a failed

stress test of a bank in the context of doom loops, a negative supply shock in Kuwait and Iraq

during the First Gulf War, or a positive demand shock in China in the early 2000s in the context

crude oil markets, are all valid instruments. While alternative identification methods might rely on

functional form assumptions only, GIVs, by being able to screen the shocks economically, provide

a systematic way to construct instruments more in the spirit of quasi-experimental instruments.

8.3 When aggregate shocks are made of idiosyncratic shocks

We now discuss how GIVs extend to economies where aggregate shocks ⌘t are themselves made of

idiosyncratic shocks uit, as in Carvalho and Gabaix (2013). Take the basic supply and demand

model of Section 2.1. In the case without loops, we achieved identification provided that u�t ? "t;

we did not need u�t ? ⌘t, so aggregate demand shocks can be influenced by idiosyncratic shocks,

but not aggregate supply shocks.

If aggregate supply shocks are a↵ected by idiosyncratic shocks, the elementary strategy does

not work, but a variant does work. We suppose disaggregated supply and demand data (for the

commodity in question, e.g. oil) is available, at least for large countries. We model country i’s

supply and demand with the following the factor model:

ykit = �kpt + �ki ⌘
k
t + uk

it, (67)

where k = s, d indicates supply or demand, respectively. We allow E
⇥
us
itu

d
it

⇤
to be nonzero: for

instance, if the US has a “fracking shock” that a↵ects both supply and demand, it will be captured

by both us
it and ud

it for i = USA. This is a concrete case in which supply and demand shocks are

correlated: this happens via the correlations in country-level shocks. Suppose that this correlation

captures the common shocks, so that ⌘st ? ud
�dt (where �

d are the residual granular weights given

by the demand-side relative size): then, we can identify the elasticity of supply, via ud
�dt. Likewise,

if ⌘st ? us
�st then the GIV us

�st allows to estimate the supply elasticity �s. Section D.4 details this,

and gives more variants.

One can also consider an economy as a network (Long and Plosser (1983); Gabaix (2011);

Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019)). Under some

assumptions, one can obviate the network structure, for instance via aggregation theorems such

as Hulten’s theorem. This is developed in Section D.13. It shows that we can identify important

multipliers even if we have only crude proxies for the primitive shocks such as TFP. The GIV for a

general network is a rich topic, potentially for another paper – Section D.14 lays out some of the

basics.

In conclusion, one can often handle cases where aggregate shocks are made of idiosyncratic

shocks: then, some more disaggregated data and economic reasoning allows to use a GIV to estimate

macro parameters of interest.
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9 Conclusion

We developed granular instrumental variables (GIVs): we remark that idiosyncratic shocks o↵er

a rich source of instruments, and we lay out econometric procedures to optimally extract them

from aggregate shocks. Many econometric extensions might be useful, for instance with stochastic

volatility and various dimensions of autocorrelations. We leave those extensions to future research.

We provided two empirical applications. Many more applications seem within reach, and the

introduction listed some. We hope that GIVs will aid identifications in new settings and help

researchers investigate and understand causal relationships in the economy.
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C Proofs omitted in the paper

C.1 Variance facts

We will repeatedly use the fact that if (ui)i=1...N is a series of uncorrelated random variables with

mean 0 and common variance �2

u, then

E [u�uE] = 0, E
⇥
u2

�

⇤
= E [uSu�] = h2�2

u. (68)

Hence, the standard deviation of the granular residual u�t is proportional to the Herfindahl. In the

general heteroskedastic case, the quasi-equal weight vector is Ẽ = (V u
)
�1◆

◆(V u)
�1◆

. Then, for any � such

that ◆0� = 0, we have:66

E [u�uẼ] = 0. (69)

C.2 Proof of Proposition 2

The proof is quite elementary, and uses well-known ingredients. We have

↵e
T � ↵ =

ET [(↵ySt + "t) u�t]

ET [yStu�t]
� ↵ =

ET ["tu�t]

ET [yStu�t]
=

AT

DT
.

66Here is the proof. We have Ẽ = k (V u)�1 ◆ for k = 1
◆(V u)�1◆

. So

E [u�uẼ ] = E
h⇣

Ẽ0u
⌘
(u0�)

i
= Ẽ0E [uu0]� = Ẽ0V u� = k◆0 (V u)�1 V u� = k◆0� = 0,

as ◆0� = 0.
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Next, the law of large number gives:

DT = ET [yStu�t] !a.s. D,

with

D = E [yStu�t] = E [(⌘t + uSt) u�t] = E [uStu�t] = E [(u�t + uEt) u�t] = E
⇥
u2

�t

⇤
= �2

u�
.

For the numerator, the central limit theorem gives the convergence in distribution:

p
TAT !d N

�
0, �2

A

�
,

where (assuming that "t is homoskedastic conditional on the uit’s):

�2

A = E
⇥
"2tu

2

�t

⇤
= E

⇥
"2t
⇤
E
⇥
u2

�t

⇤
= �2

"�
2

u�
,

so that
�A
D

=
�"�u�

�2
u�

=
�"
�u�

=: �↵.

Hence, p
T (↵e

T � ↵) !d N
�
0, �2

↵

�
.

Finally, if u0
its are i.i.d. across i’s, then �u� = h�u, see (68).

C.3 Proof of Proposition 3

We have

↵e
T � ↵ =

ET [(↵ySt + "t) zt]

ET [yStzt]
� ↵ =

ET ["tzt]

ET [yStzt]
,

so the same proof as for Proposition 2 yields the asymptotic error

�↵ (�) =
�"�z

|E [yStzt]|
=

�"�z
|E [uStzt]|

=
�"

�yS |corr (uSt, zt)|
.

So, the best estimator zt = u�t maximizes the squared correlation C (�) := corr (uSt, u�t)
2:

max
�

C (�) subject to ◆0� = 0.

We next solve this problem.

Call V = V u the variance covariance matrix of the ui. We have:

C2var (uSt) =
E [uStu�t]

2

var (u�t)
=

(S 0V �)2

�0V �
.
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The problem is invariant to changing � into �� for a non-zero �. So, we can fix say S 0V � at some

value. Given this, we want the minimum value of �V �. So, we minimize over � the Lagrangian

L =
1

2
�0V �� b�0◆� c�0V S (70)

with some Lagrange multipliers b, c. The first order condition in �0 is: 0 = V �� b◆� cV S, i.e.

� = cS + bV �1◆.

Now, using ◆0� = 0 gives 0 = c+ b◆0V �1◆, i.e., with Ẽ := V �1◆
◆0V �1◆ ,

� = c
⇣
S � Ẽ

⌘
.

The factor c doesn’t a↵ect the results, (as � and c� give the same estimator ↵e
T ), so we may choose

c = 1.

C.4 Justification of the procedure in Section 2.5 for heterogeneous de-

mand elasticities

In vector notation, yt = �dpt + �⌘t + uit. We have

yit = �d
i pt + �i⌘t + uit = Xit

⇣
�̇dpt + �̇⌘t

⌘
+ uit,

i.e.

yt = Xt

⇣
�̇dpt + �̇⌘t

⌘
+ ut.

The more abstract way to think about the procedure in the main text is the following. We form

the matrices R and Q from (21) (using ⇤ = X) for any W at first, e.g. the identity matrix. We

define: ǔt := Qyt, so that ǔt = Qut and the GIV is zt := S 0ǔt. As a column of X is made of ones, we

also have zt = �0ǔt. Indeed, the cross-sectional regression of yit onXit identifies ẏt = �̇dpt+�̇⌘t+Rut,

and the residuals ǔit. We have ẏt = Ryt and ǔt = Qut.

Then, we identify �s using

E [(st � �spt) zt] = 0, (71)

which is valid for any W . Next, if we have W = c (V u)�1 for some constant c, we can also estimate

�̇d using the moment (which is r-dimensional):67

E
h⇣

ẏt � �̇dpt
⌘
zt
i
= 0. (72)

67To see this, we form Ryt = �̇dpt + �̇⌘t +Rut, and we have E [Rutǔ0
t] = E [Rutu0

tQ
0] = RV uQ0 = 0, because (22)

indicates that RV uQ0 = 0 if W = K (V u)�1.
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To see this, we form Ryt = �̇dpt + �̇⌘t + Rut, and we have E [Rutǔ0
t] = E [Rutu0

tQ
0] = RV uQ0 = 0,

because (22) indicates that RV uQ0 = 0 if W = c (V u)�1 for some scalar c.68

To determine V u, we propose the following procedure. We first pick some W (e.g. the identity).

Then we use the N moments to identify V u (they come from V ǔ = QV uQ0):69

E
⇥
ǔ2

ii

⇤
= (QV uQ0)ii .

Now that we have V u, we form W = (V u)�1, and use the associated Q = QX,W and R, we form a

new GIV zt := S 0QX,Wyt, and use those to identify �̇d via (72).

C.5 Proof of Proposition 4

We first prove the proposition in the case where there are no controls Citm and non-zero mean

values (so that m and the mean values do not have to be estimated). Once this is done, we treat

the case with controls and non-zero mean values.

A canonical decomposition The model can be written as:

yt = �⌘t + ◆ ((M � 1) uSt + "t) + ut, F f
t = ↵fMuSt + "ft (73)

We next derive a “canonical representation” that, at the cost of some overhead and concepts and

notations, will make the identifiability very crisp.

We take the constant � case to alleviate notation, but we could have a time-varying �t. We use

the Q and R matrices of (21), reproduced here:

R⇤,W := (⇤0W⇤)�1 ⇤0W, Q⇤,W := I � ⇤R⇤,W

where W will be specified soon and that we keep implicit here to alleviate notations.

We decompose � = �̌ + ◆�0, where �̌ = Q◆� is orthogonal to ◆ —using the scalar product

modulated by W , hA,Bi = A0WB for two vectors A, B: for instance, h◆0, �̌i = 0 by (22)).

This gives the following decomposition:

Proposition 5 (Canonical representation) When W = c (V u)�1 for some constant c >0, we define

� :=
�
Q�

�0
S, and we have the following “canonical representation”

yt = �̌⌘̇t + ◆yEt + ǔt, yEt = (M � 1) u�t + "̇t, F f
t = ↵fMu�t + "̇ft (74)

68If we take W as the identity rather than the “ideal” W above, the error in (72) is typically quite moderate: for
instance, with X = ◆, it is only of order 1

N .
69See Section D.10. We assume that V u can be characterized by N moments, e.g. that V u is diagonal. In the

more general version we would use more moments from the identity E [ǔtǔ0
t] = QV uQ0, and not just its diagonal

terms.
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with ǔt = Q�ut and u�t = S 0ǔt. Also, ǔt and u�t are uncorrelated with ⌘̇t, "̇t, "̇
f
t , but the ⌘̇t, "̇t, "̇

f
t

can be correlated between themselves; and �̌, ◆ and ǔt are all orthogonal (using the scalar product

hA,Bi = A0WB with W = (V u)�1). One advantage of this representation is that we have:

R�̌yt = ⌘̇t, yEt = R◆yt = (M � 1) u�t + "̇t Q�yt = ǔt (75)

with R and Q are the projection matrices defined in (21). Hence, we can recover ⌘̇t and ǔt by

simple projections. Finally we have the following ancillary relations, with "ut := R�ut uncorrelated

with ǔt, u�t, ⌘̇t, "̇t, "̇
f
t :

⌘̇t = ⌘t + "ut , "̇t = "t + (M � 1)�S"
u
t + �0⌘̇t, "̇ft = "ft + ↵fM�S"

u
t

Proof of Proposition 5 We decompose ut = Q�ut +
�
I �Q�

�
ut, so:

ut = ǔt + �"ut , "ut := R�ut (76)

Taking W = c (V u)�1 has the important consequence that ǔt (an N dimensional vector) and "ut (a r

dimensional vector) are uncorrelated. Indeed (dropping the superscript � in R and Q for simplicity)

E
h
ǔt

�
R�ut

�0i
= E

⇥
Qut (Rut)

0⇤ = E [Qutu
0
tR

0] = QE [utu
0
t]R

0 = QV uR0 = c�1QW�1R0 = 0

using (22). This is a generalization of our basic case that assumed uniform loadings on the aggregate

shock, R�ut = uEt, we had that uEt and ǔt were uncorrelated.

We have

uSt = S 0ut = S 0Qut + S 0�"ut = u�t + �S"
u
t

We start from (73):

F f
t = ↵fMuSt + "ft = ↵fM (u�t + �S"

u
t ) + "ft = ↵fMu�t + "̇ft

with "̇ft = "ft + ↵fM�S"ut .

In the same way, (73) gives

yt = �⌘t + ◆ ((M � 1) uSt + "t) + ut

= �⌘t + ◆ [(M � 1) (u�t + �S"
u
t ) + "t] + ǔt + �"ut

= �⌘̇t + ◆ [(M � 1) (u�t + �S"
u
t ) + "t] + ǔt with ⌘̇t = ⌘t + "ut

= �̌t⌘̇t + ◆ [(M � 1) (u�t + �S"
u
t ) + "t + �0⌘̇t] + ǔt as � = �̌+ ◆�0

= �̌t⌘̇t + ◆yEt + ǔt
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by defining

yEt = (M � 1) u�t + "̇t, "̇t = "t + (M � 1)�S"
u
t + �0⌘̇t

⇤
Note that ⌘t cannot be recovered without error by R�̌yt, but ⌘̇t can be. This is why the analysis

is easier in that space.

This leads to the following procedure.

An identification procedure

1. We set Q� as in (21), we construct the GIV zt := S 0Q�yt, which implies that zt = S 0Qut = u�t.

We recover exactly ⌘̇et := R�̌yt = ⌘̇t.

2. To estimate ↵f , we use the moment E
h⇣

F f
t � ↵fySt

⌘
zt
i
= 0, or, for more precision we can also

use E
h⇣

F f
t � ↵fySt � �f ⌘̇t

⌘
(zt, ⌘̇t)

i
= 0. We can also do OLS, e.g. run F f

t = ↵fMzt+�f ⌘̇t+et

(calling et a random variable uncorrelated with zt) and obtain an estimate of ↵fM .

3. We can also estimate M similarly, e.g. we can run the OLS yEt = (M � 1) zt + et, or even

ySt = Mzt + et. We can also add controls for ⌘et . Indeed, as R◆yt = (M � 1) zt + et, we can

regress: yEt = (M � 1) zt + �⌘̇t + e, with ⌘̇t as control.

Proposition 5 implies that we can write

yEt = (M � 1) zt + "̇t, ySt = Mzt + "̇t, F f
t = ↵fMzt + "̇ft (77)

with zt uncorrelated with "̇t and "̇
f
t uncorrelated. Hence the assumptions of OLS are satisfied: the

OLS standard errors are thus correct. The same holds if we control for ⌘̇t.

Those standard errors are easy to calculate, repeating the arguments of the proof of Proposition

2. For instance, (77) implies that the OLS estimator ↵̃f,e
T of ↵̃f := ↵fM satisfies

p
T
⇣
↵̃f,e
T � ↵̃f

⌘
d�!

N
�
0, �2

↵̃f

�
with

�↵̃f =
�"̇f

�z
, �z = E

⇥
u2

�t

⇤1/2
. (78)

Case with controls and non-zero mean values We treat the case where there are controls

Cy
it. A very similar argument applies when there are in addition controls CFmF in the factors, and

additive constants (so that terms do not need to have a zero mean) in all equations.

The model is then:

yt = �⌘t + ◆ ((M � 1) (uSt + Cy
Stm) + "t) + Ctm+ ut, F f

t = ↵fM (uSt + Cy
Stm) + "ft (79)

We call y̌t = R◆yt, i.e. y̌it = yit � yẼt is the cross-sectionally demeaned value. Given a candidate

value m, we construct ⌘̇t (m) := R�̌ (yt � Cy
t m) and the associated zt (m) := S 0Q� (yt � Cy

t m), as
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we do in Section 4.1. Define ✓ to be (m,M,↵) and ✓e to be the GMM estimator of ✓ associated

with the following moments:

E
⇥�
y̌t � x̌t⌘̇t (m)�mČy

t

�
WČy

t

⇤
= E [g1 (m)] = 0, (80)

E [(ySt �Mzt (m)� �y⌘̇t (m)) (zt (m) , ⌘̇t (m))] = E [g2 (✓)] = 0 (81)

E
⇥�
pt � ↵Mzt (m)� �f ⌘̇t (m)

�
(zt (m) , ⌘̇t (m))

⇤
= E [g3 (✓)] = 0. (82)

Under the regularity conditions we assumed,
p
T (✓e � ✓) converges in distribution a normal dis-

tribution with mean 0. Now, we notice that E
h
@g2(✓)
@m

i
= E

h
@g3(✓)
@m

i
= 0 (as @⌘̇t(m)

@m and @zt(m)

@m are

proportional Cy
t ). Then, by Theorem 6.1 of Newey and McFadden (1994), the standard errors on

M,↵ are the same as if we did not have to estimate m. This is precisely the case we worked out

above, which proved that the standard errors on M and ↵fM returned by OLS in this procedure

are valid when we do not have estimate m (or equivalently that m was known so that all Citm terms

were removed). So this proves that this claim (that the standard errors on M and ↵fM returned

by OLS in this procedure are valid) holds even when m needs to be estimated.70

D Complements

D.1 Multi-dimensional actions

Suppose now that the action yit and idiosyncratic noise uit are q�dimensional, for some q � 1. For

instance, yit’s components might be the growth rate, and the labor share of firms of firm i, and then

q = 2. Then, the general GIV procedure extends well, as we shall now see.

We call a 2 {1, . . . , q} (as in action) a component of y. We have:

ySat =
X

f

�aSa,fF
f + ua

Sat,

F f
t = ⌘ft +

X

a

↵f
ay

a
Sa,t,

We can also estimate M (hence
P

f ↵
f�f ), the ↵f . Indeed, for "t a composite of aggregate

shocks,

ySt = HySt + uSt + "t,

where

H = ⇤A =
X

f

�f↵f ,

with ⇤af = �aSa,f and Afa = ↵f
a matrices with dimensions q ⇥ r and r⇥ q respectively, so that H is

70Note that the estimation of m need not be e�cient: it is enough for the argument that the estimator of m be
consistent.
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q ⇥ q, and

uSt = (ua
Sat)a=1...q .

This implies

ySt = M (uSt + "t) , (83)

there the multiplier M is now a q ⇥ q matrix:

M = (I �H)�1 .

We will form a GIV:

zt = u�t,

which is q�dimensional: u� = (ua
�a
)a=1...q . We want, with Ea = Sa � �a,

E [uEtu
0
�t] = 0

i.e., for all a, b, Qab = 0, where

Qab := E
⇥
ua
Eatu

b
�bt

⇤
.

Let us focus on the case where uit, ujt are uncorrelated for i 6= j, but for a given i, ua
it, u

b
it can be

correlated (if a firm have a investment boom, it will likely hire more labor, so that the components

of its idiosyncratic shock in yit 2 Rq will be correlated.

We have:

Qab =
X

i

Ea
i �

b
iv

ab
i , vabi := E

⇥
ua
itu

b
it

⇤
. (84)

For simplicity, we will suppose that that there are vab and �2

i such that

vabi = �2

i v
ab. (85)

Hence, we can simply take Ei =
k
�2
i

with k = 1P
j
1/�2

j

and set, for all a, Ea
i = Ei and �a = Sa � Ea.

Then,

Qab =
X

i

k

�2

i

�b
i�

2

i v
ab = kvab

X

i

�b
i = 0,

so that we have achieved our goal that E [uEtu0
�t] = 0. In the more general case, other �a

i can

probably be found.

Given (83), we have

ySt = M (uSt + "t) = M (u�t + uEt + "t) ,

so

E [yStz
0
t] = ME [ztz

0
t] ,
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hence our estimator is

M = E [yStz
0
t]E [ztz

0
t]
�1 . (86)

Finally, we can also estimate ↵fM by regressing on zt:

F f
t = ⌘ft +

X

a

↵f
ay

a
Sa,t = ⌘ft + ↵fySt = ⌘ft + ↵fM (u�t + uEt + "t) ,

so �f = ↵fM (a row vector) obtains by simply regressing

F f
t = �fzt + "ft ,

and get �f = ↵fM , �f = E
h
F f
t z

0
t

i
E [ztz0t]

�1.

Extension: causal estimation of the actor-specific multiplier The following is a refinement.

We can also identify causally µi := �i↵ =
P

f �
f
i ↵

f . Indeed, use

u�t,�i := u�t � Su
i uit, (87)

which is the granular shock purged of a correlation with uit. Then, a shock uSt creates an impact
dFt

duSt

= M↵, hence an impact
dyit
duSt

= �iM↵.

Hence, we can identify µi, by regression

yit = µiMu�t,�i + �iCt+"yit, (88)

with some noise "yit. This is the average impact of a causal impact of idiosyncratic shocks of the

other entities on entity i.

D.2 Heterogeneous demand elasticities: Non-parametric extension

Non-parametric version for �d We present a variant of the procedure in Section 2.5, but now

with non-parametric heterogeneous demand elasticities �d
i . The model is

yt = �dpt + �⌘t + ut, (89)

We still assume parametric loading of unobserved factors ⌘.
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D.2.1 Recommended procedure

We premultiply (89) by Q = Q� and set x̌t := Qxt. So y̌t = �̌dpt + ǔt. With � = Q0S, we have

y�t = �d
�
pt + u�t. To ease on notations, we call  := �d

�
. Given a candidate estimate  c of  we

form the associated GIV: zt ( c) := y�t �  cpt.

If we have the correct zt, the following moments hold71,72, with bp = 1

�s��d
S

the coe�cient of the

first stage regression (34), pt = bpzt + "pt ,

E
⇥�
yt � �dpt

�
zt
⇤

= V u�, E [(pt � bpzt) zt] = 0 (92)

E
⇣

y̌it � �̌d
i pt

⌘2
�

= V ǔ
ii , E

⇥
z2t
⇤
= �0V u� (93)

which potentially allow to estimate, respectively, �d, bp (hence �s) the V u
ii and ��. Indeed, of we

know zt, we know �d and bp.73

We examine in more detail how to estimate  := �d
�
. Calling the true value zt ( ) = u�t, we

have E [z2t ] = �2

u�
, where �2

u�
= �0V u� is the theoretical variance of zt given in (93). So, we solve for

 c (a candidate answer for  ) so that the empirical variance of the GIV is equal to its theoretical

variance:

E
⇥
zt ( 

c)2
⇤
� �2

u�
= 0

i.e. E [p2t ] ( 
c)2 � 2E [y�tpt] c + E [y2

�t]� �2

u�
= 0. This is a quadratic equation in  c, which yields

two roots:74 a good (i.e. correct) root,  G =  , and a bad root,  B =  + 2E[z⇤
t
pt]

E[p2t ]
. Fortunately,

there is an economic way to determine which is the correct root. Calling G (resp. B) the estimation

with the good (resp. bad) root, one can show that:

bp,B = �bp,G, (94)

Hence, if we have a prior on the sign of of the first stage coe�cient bp (e.g. we know that bp > 0

71Indeed, we should have E
⇥�
yt � �dpt

�
zt
⇤
= E [utzt] = E [ut (u0

t�)] = V u�. Also, as ǔ = y̌��̌p, and V ǔ = QV uQ0.
72As a variant, we decompose into the equal weighted version, which gives �E : (we premultiply by Ẽ0)

E [(yẼt � �Ẽpt) zt] = 0 (90)

and the deviation from the mean, which gives �̌i via:

E
⇥�
y̌it � �̌ipt

�
zt
⇤
= (QV u�)i (91)

73We recommend starting from the parametric estimates of Section 2.5, which gives potentially good starting
values for �d,zt and V u.

74Indeed, calling  � :=  c �  the error, we have

0 = E
h
zt ( 

c)2
i
� �2

u�
= E

h�
z⇤t �  �pt

�2i� E
⇥
z⇤2t

⇤
= �2 �E [z⇤t pt] +

�
 �

�2 E
⇥
p2t
⇤
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in a demand and supply model), we can choose the correct root as the one yielding a positive bp in

the first stage.

D.2.2 Justification

Justification of the proposed procedure Consider an econometrician who would use the bad

root:

zBt = y�t � �B
�
pt = u�t + ��pt � �B

�
pt = zt � �pt, � = 2

E [ztpt]

E [p2t ]

This bad root satisfies E
⇥
zBt pt

⇤
= E [(zt � �pt) pt] = �E [ztpt], so:

E
⇥
zBt pt

⇤
= �E [ztpt] , E

h�
zBt
�2i

= E
⇥
z2t
⇤

(95)

Hence, when estimating bp in the “first stage” via E [(pt � bpzt) zt] = 0, the econometrician will

find:

bp,B =
E
⇥
ptzBt

⇤

E
h
(zBt )

2
i =

�E [ptzt]

E [z2t ]
= �bp,eG (96)

Hence, the coe�cient in the first stage will have the wrong sign. This allows to find the correct

root.

A more general argument We show how even with other procedures there are two roots for an

nonparametric model with heterogeneous elasticities, and that fortunately (as in our recommended

procedure) there is a simple economic way to identify the correct root. The model is, in vector

form:

yt = �⌘t + �pt + ut, pt = ↵ySt + "̇t

with ↵ = 1

�s , and we use notation "̇t as we wish to keep the simpler notation "t for later. So solving

for ySt = M (�S⌘t + �S "̇t + uSt), M = 1

1��S↵ , we get, for a properly defined "̈t (an unimportant

linear combination of "̇t and ⌘t), pt = ↵MuSt + "̈t, hence:

yt = �⌘t + �"̈t + ↵M�uSt + ut, pt = "̈t + ↵MuSt

We wish to estimate � and ↵M.

We consider the vector Yt = (y0t, pt)
0 stacking together yt and pt. Then, with Ut = (u0

t, 0)
0,

� = (�0, 1)0, ⇤ = (�0, 0)0, and adding a weight “0” to the last component of the vector S (extended

here to have 1 more component, with a mild abuse of notations) we have75

Yt = ⇤⌘t + �"̈t + ↵M�uSt + Ut (97)

75This idea of stacking together then yt and pt, with a “size 0” for the innovations to the price, could be fruitfully
used more generally.
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i.e., with  := ↵M�, and "t :=
1

↵M "̈t,

Yt = ⇤⌘t + "t + uSt = ⇤⌘t + "t + (I + S 0)Ut (98)

All the information is in V Y = E [YtY 0
t ]:

V Y = �2

⌘⇤⇤
0 + �2

"  
0 + �⌘" (⇤ 

0 + ⇤0) + (I + S 0)V U (I + S 0) (99)

= �2

⌘⇤⇤
0 + �  0 + b0 + b 0 + V U (100)

b = �⌘"⇤+ V US (101)

� = �2

" + S 0V US (102)

The idea for the multiplicity of roots in  is that we have a second degree equation in  , so that

can have multiple roots – like in the one-dimensional case. Let us next calculate the roots, which

will lead to a procedure to identify the correct root. Forming the vector a = �1

� b, we have

( � a) ( � a)0 = C :=
1

�

�
V Y � �2

⌘⇤⇤
0�+ aa0 (103)

Suppose that we have estimated all the parameters, and it remains to estimate  , i.e. solve in  c

(as in a candidate value for  ) the equation:

( c � a) ( c � a)0 = C

We know that this identity holds under the correct root, so that C = ( � a) ( � a)0. Now, there

are two solutions to equation XX 0 = DD0, with X the unknown vector and D a known vector:

X = D and X = �D. Hence, the two solutions are  c � a =  � a and  c � a = � ( � a). The

first one is the “good” root,  G =  , and the second one is the bad root

 B = 2a� (104)

Now, because ⇤p and Sp (i.e., the component of those vectors on the last coordinate, corresponding

to p) are both 0, we have bp = 0 (see 101) and thus ap = 0. So the component of the bad root on

the price is  B
p = 2ap � p = � p:

 B
p = � p (105)

This allows to distinguish between the two roots, as the right one has  p = ↵M and the other one

has  p = �↵M . Hence, if economic reasoning tells us the sign of ↵M (e.g., it is positive in a supply

and demand context), we can pick the good root by inspecting the sign of  p.
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D.2.3 Another procedure for the nonparametric estimation of heterogeneous demand

elasticities

Recall the model (89). We replace �d by � for simplicity:

yt = �pt + �⌘t + ut, (106)

Unlike earlier, we now do not assume parametric knowledge of �. We propose the following proce-

dure.

1. Guess a candidate for �, called �c, and W = (V u)�1 (initially, as it’s enough to know all those

up to a multiplicative factor, we might take �c = ◆, and W = I, or W = Diag (1/var (yit))).

We define Q� := Q�c,W , keeping W implicit in this step and the next. If �c = �, then

Q�yt =
�
Q��

�
⌘t +Q�ut (107)

2. We can apply the “singular factor analysis” procedure of Section D.11 to Q�yt (so, in the

notation of that section, G = Q�). This returns: �̌ := Q��, ⌘et , V
u, ǔt = Q�̌,�ut. We form

zt := S 0ǔt, and � :=
⇣
Q�̌,�

⌘0
S.

3. We estimate bp and � by (92). To gain some precision, instead of E [(yt � �pt) zt] = V u�, we

premultiply it by Q�̌,V �1
u , i.e. we solve for � in the moment:

E
h
Q�̌,V �1

u (yt � �pt) zt
i
= Q�̌,V �1

u V u� (108)

This is equivalent to controlling for the ⌘t in the regression.

4. Given this new estimates of � and V u, we go back to step 1-3, and loop until convergence.

This algorithm also applies to the parametric case where we know that �it = Xi�̇ (Section 2.5), but

keep the loadings � non-parametric. Then, in steps 1-2 we replace � by X, and in the last step we

replace � by X�̇ and estimate �̇.

D.3 Complements to the general procedure

The procedure can be simplified in some cases. When we have a long time-series. Recall

that

ySt =
X

f

�fStF
f
t + uSt. (109)

Hence, if all factors with �fSt possibly non-zero are observables and exogenous, we can measure the

�fSt by OLS with the regression above, and get uSt to be the residual. This is useful when we have
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high-frequency data (e.g. daily financial returns), which can give an acceptably small error.76

We can aggregate entities into categories . For this discussion, we replace “entity” by “firm”.

We could aggregate the firms into K > 1 sub-categories (e.g. industries – or even an arbitrary

categorization like “blue firms” and “red firms”) — then the above works, but interpreting the

partition i as “aggregate firm category i” rather than “firm i”. Indeed, (45) aggregates without

problem: if aggregate k is made of firm i 2 Ik, we just define the aggregate size of category k as

S[k] :=
P

i2Ik Si, the relative weight of firm i in category k as ![k]i =
Si1i2Ik

S[k]
, and the action factor

loading as value-weighted averages (y[k],t =
P

i ![k]i,tyit, ↵
f
[k] =

P
i ![k]i↵

f
i ). Then, the model works,

using those aggregated categories. What we do need is that categories have non-trivial idiosyncratic

shock (so that a “very small firms” category would not be valid, as it would have var (uit) ' 0).

D.4 When we have disaggregated data for both the demand and the

supply side

When we have disaggregated data for both the demand and the supply side, we can refine the

“exclusion restriction”. So far we assumed that E [uit"t] = 0, i.e. no covariance between idiosyncratic

demand and supply shock. If that’s not the case, we can also decompose each supply with a factor

model:

ykit = �kpt + �ki ⌘
k
t + uk

it, (110)

for type k = s, d for supply and demand. We allow E
⇥
us
itu

d
it

⇤
to be nonzero: for instance, if the US

has a “fracking shock” that a↵ects both supply and demand, it will be captured by both us
it and

ud
it for i = USA.

The price pt adjusts so that supply equals demand, ysSst = ydSdt (where Sd
i (resp. Ss

i ) is the

average fraction of demand (resp. supply) accounted by country i), i.e.

pt =
ud
Sd � us

Ss + �dSd⌘dt � �sSs⌘st
�s
Ss � �d

Sd

(111)

Then, we have two GIVs, based on supply and demand respectively:

zkt := �k0ykt = uk
�kt, (112)

for k = s, d (with �k = Sk � Ek in the basic case �k = ◆, and �k = Q�kSk in the general case). We

can also form the di↵erence:

zd�s
t := zdt � zst . (113)

Now, assume E
⇥
uk
it⌘

k0
t

⇤
= 0 for k, k0 in {s, d}. Then we have E

⇥�
ykEt � �kpt

�
zt
⇤
= 0 for zt equal

76Indeed, this time-series regressions gives an O
⇣

1p
T

⌘
error, which is good enough for large T . Using the cross

section, as in the basic procedure, gives an O
⇣

1p
TN

⌘
error.

66



to either zst or zdt , or some combination of them. The optimal instrument is zt = zdt � zst , as this is

the most correlated with the price (111) (this generalizes the reasoning of Proposition 3). We can

also use an overidentification test like in Section 2.4, based on the those two GIVs based on supply

and demand.

If we assume only that E
⇥
z`t⌘

k
t

⇤
= 0 for some (k, `), we can identify �k via E

⇥�
ykEt � �kpt

�
z`t
⇤
= 0.

D.5 When only some shocks are kept in the GIV

If we truncate the residuals, i.e. use

zt =
X

i

⌧ (Si (uit � uEt))

for the hard thresholding function

⌧ (x) = x1|x|�b

for some b > 0, then everything works too. Indeed, we have that ǔit := uit � uEt is orthogonal

to uEt. Let us assume that it is independent. In our basic example of Section 2.1, we still have

E [(pt � ↵ySt) zt] = 0, so that the IV procedure (11) still works. Likewise, in the more complex

supply and demand case, the IV relations (31) and (33) still hold.

Furthermore, the OLS estimates still hold. The key is that we can write:

u�t = zt + z<t ,

where ⌧< (x) = x1|x|<b, and z<t =
P

i ⌧
< (Siǔit), so that zt ? z<t . Hence, regressing u�t on this

truncated zt gives a coe�cient of 1, and all the analysis goes through.

D.6 When the researcher assumes too much homogeneity

Take the supply and demand example, and imagine that the econometrician assumes a homogeneous

elasticity of demand �d, even though there are in fact heterogeneous elasticities �d
i . What happens

then?

The model (24)-(25) becomes, for the demand:

yit = �d
i pt + �i⌘t + uit,

and for the supply

st = �spt + "t.
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As supply equals demand, ySt = st, which gives the price

pt =
uSt + �S⌘t � "t

�s � �d
S

. (114)

In this thought experiment, the econometrician assumes identical elasticities of demand across

countries, �d
i = �d. He runs a panel model for yit � yEt, and we assume that it’s large enough that

he can extract ⌘t, successfully.77 The GIV (we use the notation Zt rather than zt to denote the GIV

before controls by ⌘t) is then

Zt := y�t = �d
�
pt + ��⌘t + u�t =

✓
1 +

�d
�

�s � �d
S

◆
u�t + �Z ⌘̃t =

1

 
u�t + �Z ⌘̃t,

so

Zt =
1

 
u�t + �Z ⌘̃t,

1

 
=
�s � �d

E

�s � �d
S

, (115)

where 1

 = 1 in the common-elasticity case, ⌘̃t = (⌘t, "t, uEt) gathers the common shocks, and �Z is

a vector of loadings.

Hence, when we run the first stage

pt = bpZt + �p⌘t + "pt ,

we will gather

bp =
1

�s � �d
E

.

If we run

st = bsZt + �s⌘t + "st ,

we will estimate

bs =
�s

�s � �d
E

.

The ratio of the two coe�cients still gives �s. Likewise, the IV on the elasticity of demand will give

�d
E.

In the polar opposite case where ⌘t cannot be estimated or controlled for, then the simple

procedure becomes biased, however, as (115) shows. To fix it, one can estimate the model with

non-parametric coe�cients (Section D.2).

D.7 Sporadic factors

A potential issue is that of a “sporadic factor”, i.e. a factor ⌘t that a↵ects a few actors special

ways, but is not recurrent. An example would be a one-o↵ policy announcement by the European

77One of the factors, formally, will be pt. We assume that it is not included in the vector of factors ⌘t.
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Central Bank that they will buy both Italian and Spanish bonds, so that the truth is not that Italy

is a↵ecting Spain or vice-versa, but rather the ECB a↵ecting both.

One solution, besides the narrative check that we just detailed, would be to filter out days with

a high “sporadicity statistic” St that we now propose. Suppose that for each date we filter out

the idiosyncratic shocks ǔit. For each date and actor i we form bit =
ǔ2
it

�2
ui,t�1

, where a high bit is

an indicator of extra activity, and �2

ui,t�1
is a predictor of the volatility of uit. We may allow that

one entity has a large idiosyncratic shock, but if two (or more) do, this is suspicious, and possibly

the sign of a sporadic factor. So, calling b(2)t the activity of the second more active actor, we form

St = b(2)t.78 Over the entire sample, we might remove the days with anomalously high sporadicity

statistics, e.g. in the top 5% by that metric.

D.8 Nonlinear GIV

We imagine a nonlinear GIV. Suppose that instead of the simple st = �spt + "t (equation (25)) we

have a more complex

st = � (pt,�
s) + "t (116)

for � a nonlinear function. We can use the moment:

E [(st � � (pt,�
s)) zt] = 0 (117)

and can still identify a one-dimensional �s. For a higher-dimensional �s, we might add z2t as

instrument, though the instrument becomes weaker.

D.9 GIV for di↵erentiated product demand systems

We develop the basic ideas for the logit demand model and extend these ideas to the random-

coe�cients logit model as in Berry et al. (1995a) in the next subsection.79

D.9.1 Logit demand

The utility that household h derives from product i, for i = 0, ..., N, is given by80

Uhit = �it + ehit,

�it = ��pit + �0xit + ↵i + ⇠it,

78We could also sum over the most active K entities, excluding the most active one.
79We thank Robin Lee, Alex MacKay, and Ariel Pakes for very helpful feedback on this section.
80We use the log price, pit, instead of the price, Pit, in the formulation of �it to simplify some of the expressions,

but the basic logic extends to the case where �it depends on Pit.
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where ehit follows a Type-1 extreme-value distribution, pit denotes the log price, xit observable

characteristics, and E [⇠it] = 0. We refer to i = 0 as the outside option and normalize �0t = 0. This

model implies that the market share sit is the probability that a given household selects product i,

meaning that sit = P (Uhit > maxj 6=i Uhjt), and can be expressed as

sit =
exp(�it)PN
j=0

exp(�jt)
.

Firms set prices to maximize profits and we assume that each product is produced by a single firm,

which solves

max
Pit

Qit (Pit � Cit) ,

where Cit equals marginal cost and Qit = sitQt with Qt the total size of the market. The firm

optimally sets the price to

Pit =

✓
1� 1

✏it

◆�1

Cit,

where ✏it = �@ ln sit
@pit

, that is, the negative of the price elasticity of demand. The goal is to estimate

✓ = (�, �).

It is convenient to rewrite the model as

log

✓
sit
s0t

◆
= ��pit + �0xit + ↵i + ⇠it.

To identify �, it is commonly assumed that E [xit⇠it] = 0 and we maintain this assumption. However,

as prices respond to demand shocks, ⇠it, we cannot assume E [pit⇠it] = 0. There are three common

approaches to create instrumental variables in the demand estimation literature. First, variables

that capture variation in marginal cost, Cit, that is unrelated to demand shocks. Second, Berry et

al. (1995a) suggest to use the average of characteristics of other firms

zBLP
it =

1

N � 1

X

j,j 6=i

xjt,

which results in valid instruments under some assumptions (see Nevo (2000) and the references

therein).81 The resulting moment is E
⇥
zBLP
it ⇠it

⇤
= 0.82 Third, one can use panel data for the

same firm that operates in di↵erent locations. Under the assumption that demand shocks are

uncorrelated across locations, prices in other locations of the same firm will be valid instruments.

The intuition is that prices across locations share the same marginal cost but the demand shocks

are, by assumption, uncorrelated, see Nevo (2001).

81For other recent advances to construct instruments, see Sweeting (2013) and MacKay and Miller (2019).
82If a firm o↵ers multiple products, the average of characteristics of other products produced by the same firm can

be used as well.
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GIV provides an alternative by exploiting exogenous variation in markups due to idiosyncratic

demand shocks to large firms. We assume that demand shocks follow a factor model,

⇠it = ⌘t + uit, (118)

which can be extended to allow for heterogeneous exposures, i.e. replacing ⌘t by �i⌘t =
P

k �
k
i ⌘

k
t .

Also, we assume for simplicity that ⌘t and uit are i.i.d. over time, but the logic in this section can

be extended to persistent demand shocks (see also Sweeting (2013)).

We propose to use the GIV instrument as the weighted sum of idiosyncratic demand shocks of

the competitors:

zit =
X

j:j 6=i

s̄j,t�1ujt, (119)

where s̄j,t�1 is the average market share for product j up to time t � 1. This allows us to add a

moment condition

E [zit⇠it] = 0, (120)

which identifies �. Remember that we use E [xit⇠it] = 0 to identify �.

The intuition for why zit is a meaningful instrument is the following: if there is a high idiosyn-

cratic shock for Tesla cars (high ujt, with j being Tesla), this leads Ford (firm i) to reduce the price

of its cars (in this particular model, this is because the positive shock for Tesla cars reduces the

demand for Ford, which sees its market share sit falls, so that it wants to lower its price pit).

Generalizing this intuition, we sum over all the demand shocks of the competitors, zit =
P

j:j 6=i s̄j,t�1ujt, weighing them by size, i.e. market share. As in our general GIV, even a single

shock ujt is a valid instrument (for j 6= i). The size-weighted sum is simply a typically useful way

to pool those idiosyncratic shocks. It is optimal in our basic GIV, and is likely to be reasonably

close to optimal in this IO context. The same idea generalizes: e.g. using a weighted sum of the

idiosyncratic cost shocks, rather than demand shocks, of the competitors would also be a valid GIV

instrument.

A motivation for the weighting in (119) is as follows. Recall that in this simple model the

demand elasticity is

✏it = �(1� sit),

and also that @ log sit
@�jt

= �sjt, so that @ log sit
@ujt

= �sjt (controlling for the price pjt). This implies that

the direct impact of all idiosyncratic demand shocks to other companies on sit, and hence ✏it, is

X

j:j 6=i

@ log sit
@ujt

ujt = �
X

j:j 6=i

sjtujt. (121)

Hence, shocks to companies with larger market shares have a larger impact.
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D.9.2 Random coe�cients logit as in BLP

Berry, Levinsohn and Pakes (1995a) extend the standard logit model by allowing for random vari-

ation in the preference parameters

✓h = ✓ + ⌫h,

where ⌫h =
⇣
⌫�h , ⌫

�
h

⌘
and ⌫h ⇠ F⌫ (⌫;⇥), for some vector of parameters ⇥. The market share

equation modifies to

sit =

Z

⌫

shitdF⌫ (⌫;⇥) ,

where

shit =
exp

⇣
�it � ⌫�hpit + ⌫�0h xit

⌘

PN
j=0

exp
⇣
�jt � ⌫�hpjt + ⌫�0h xjt

⌘ .

To estimate the model, Berry (1994) suggests to recover �it from the market shares using a contrac-

tion mapping (see Nevo (2000) for an introduction). With �it in hand, we form moment conditions

as before to estimate (✓,⇥).

To construct a GIV instrument in this model, one can also use (119) as an instrument.

One can also refine it. For instance, we can recompute the total impact of idiosyncratic shocks

to other firms on the demand elasticity, which is now slightly more involved. The negative of the

demand elasticity, which enters into the pricing equation via the markup, is given by

✏it =

Z

⌫

⌫�h
shit
sit

(1� shit) dF⌫ (⌫;⇥) .

An approximation of the model around ✓h = ✓ yields the same weights as before, although it is

feasible to numerically calculate the optimal weights by computing

X

j,j 6=i

@✏it
@ujt

ujt.

This suggesting forming

zit :=
X

j:j 6=i

sij,t�1
ujt, (122)

where sij,t is

sij,t := �@ log sit
@ujt

. (123)

Indeed, in the homogeneous elasticity case, sij,t = sjt. This generalization to heterogeneous elasticity

allows to capture that if firms i and j tend to serve the same consumers (e.g., both sell family cars),

then the sij,t will be high, and ujt receives a high weight in the firm-i specific GIV zit.
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D.10 When the variance-covariance matrix of the u’s is estimated

In some cases, we’ll want to identify the matrix V u. We discuss this in Section 4.2. We add some

thoughts on extensions here.

A simple su�cient condition is the following.

Assumption 3 (Restriction on the admissible variance-covariance matrix of residual ut) (a) The

variance-covariance on ut is diagonal. (b) The function V 7! QV Q0 from the space of diagonal

matrices is injective.

Assumption 3(a) could be relaxed in number of ways.83 Other su�cient condition for identifi-

cation might be that V u is k�sparse, e.g. has at most k non-zero o↵-diagonal elements, for some

k, e.g. N � r2 (see also Zou et al. (2006)). Another is to allow for some correlation that depends

on the distance between entities i and j, perhaps via Gaussian processes (Rasmussen and Williams

(2005)). We conjecture that this proposition could be generalized in a number of ways, including in

the large T,N domain, using material such as Bai and Ng (2006). Doing this would however take

us too far afield.

Assumption 3(b) is equivalent to saying that knowing the variance-covariance matrix of the

residuals ǔt = Qut allows to get the variance of the ui’s. We have explored su�cient conditions on

the X for that to hold, but they are not particularly enlightening.84,85 We now show how to do that

in the most basic (and useful) case.

D.10.1 When the ui are uncorrelated (but heteroskedastic) and only ui � uE is mea-

sured

We suppose that the u0
is are uncorrelated, with variance �2

i = var (uit). We only measure ǔit =

uit � uEt. Here’s a bit of algebra to recover �2

i .

We define �2

E := 1

N

P
i �

2

i . We have:

var (uE) =
�2

E

N
, var (ǔit) = �2

i

✓
1� 2

N

◆
+
�2

E

N
(124)

83However, relaxations of Assumption 3 will still need to ensure some restrictions on the space of variance-
covariances allowed.

84If we estimate V u via V ǔ, we need: 1
2 (N � r) (N � r + 1) � N as the projection Q on a space of dimensions

N � r leaves only 1
2 (N � r) (N � r + 1) degrees of freedom. So in some cases with very small N one may want

another procedure to estimate V u, perhaps simply using the whole of V y.
85Note that a necessary (and often su�cient) conditions is that the number of parameters to be estimated is not

too big. Take the problem where we mostly are interested in estimating multiplier M , and have not extraneous
observable factors. Matrix V y gives 1

2N (N + 1) parameters. We want to estimate: the nV u (equal to N if we
assume a diagonal matrix V u, equal to 1 is we assume homoskedasticity), parameter M , and matrix V ⌘ (which has
1
2r (r + 1) degrees of freedom). If the factor model is parametric with Xit a r�dimensional vector, then we need:
1
2N (N + 1) � 1 + 1

2r (r + 1) + nV u .
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which implies:

�2

û,E :=
1

N

X

i

var (ǔit) = �2

E

✓
1� 1

N

◆
(125)

So, we can recover

�2

i =
var (ǔit)�

�2
û,E

N�1

1� 2

N

(126)

If the estimation has a small error, the optimal thing to do is to define E as E0in (518), and then

� = S � E.

D.10.2 A simple recovery procedure

More generally, suppose that we have ǔt = Qut for a known square matrix Q (e.g. that in (21)).

Suppose that we assume that V u is diagonal, and we know V ǔ. Call D and Ď the vectors with the

diagonal elements of V u and V ǔ, respectively, so that Di = var (ui) and Ďi = var (ǔi). Then we

have with the matrix Hij := Q2

ij, we have:86

Ď = HD (127)

Hence, when H is invertible (which is typically true), we can recover the variance of �2

ui
= Di by

D = H�1Ď.87 One disadvantage of this procedure is that it does not guaranty that Di is positive

(indeed, in (126), the right-hand side is not necessarily positive).

D.10.3 An MLE-based recovery procedure

Here is another procedure, which guaranties to recover positive �2

ui
. We suppose that we know

ǔt = Qut for a known matrix Q (e.g. that in (21), but not necessarily), do not know the underlying

ut. We want to recover V u, assumed to be diagonal. The dimensions of ut and ǔt are respectively

n and m, with potentially m 6= n. So Q has dimensions m⇥ n.

86Proof: Calling ei the vector with 1 at coordinate i and 0 elsewhere, we have V u =
P

j eje
0
jDj . As V ǔ = QV uQ0,

Ďi = e0iV
ǔei = e0iQV uQ0ei =

X

j

e0iQeje
0
jQ

0eiDj =
X

j

Q2
ijDj =

X

j

HijDj .

87Numerically, with in finite samples, we can get negative �2
ui

(see (126)). So, one can imagine variants that
guaranty positivity, e.g. adding a winsorization step, Di := max (Di, ⇠median (Dj)) for a low ⇠ such as ⇠ = 0.5.
Another procedure is to do

min
D

��Ď �HD
��2 subject to minDi � ⇠median(Dj)

or another constraints, e.g. Di � ⇠Ďi. Yet another variant is to minimize kV ǔ �QDiag (Di)Q0k2, subject to those
constraints.
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We do a singular value decomposition of Q. We call its rank k. We can write:

Q = UDV ⇤ (128)

where U and V are unitary matrixes with dimensions m ⇥ m and n ⇥ n respectively, and D is

rectangular diagonal with dimensions m ⇥ n, and V ⇤is the conjugate transpose. We order the

diagonal elements of D, di, so that the first d1, . . . , dk are non zero, while the remaining di’s are

zero. We set ⇡ :=
⇣
Ik⇥k 0k⇥(m�k)

⌘
and set B := ⇡U⇤, both with dimension k ⇥m. We define

ūt := Bǔt (129)

which is a k dimensional vector that gathers the useful k degrees of freedom in ǔt. While V ǔ was

singular, typically V ū has full rank. So, ūt = Mut with M = BQ.

To recap, we have ūt = Mut with M a k ⇥ n matrix of rank k  n. So, V ū = MV uM 0. We call

W ū = (V ū)�1 the theoretical inverse variance, V ū,e = 1

T

PT
t=1

ū0
tūt the variance of ūt. We assumed

that V u = Diag
�
�2

u1
, . . . , �2

un

�
. We assume that

1

2
k (k + 1) � n

The left-hand side is the number of degrees of freedom in V ū: it should be higher than the number

of parameters n we want to estimate for V u.

The log likelihood L is (we omit some constants in 2⇡, and use the notation |W ū| for the

determinant of W ū),

` :=
2L

T
= �ET [tr (ū0

tW
ūūt)] + ln |W ū| = � tr (ET [ūtū

0
t]W

ū) + ln |W ū|

` = � tr (V ū,eW ū) + ln |W ū| (130)

We recover V u by maximizing numerically ` over the �2

ui
> 0.

D.11 Singular Factor Analysis

We propose a tool useful in the advanced parts of this project: A way to do factor analysis with

singular matrices.

Suppose that we have an underlying factor model:

Y ⇤
t = ⇤⇤⌘t + ut,

where Y ⇤
t and ut have dimension N , and ⌘t dimension r, but we only observe:

Yt = GY ⇤
t
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for a known matrix G such that G2 = G (e.g. G could be a Q matrix as in (21)). But potentially

G has less than full rank, so that V Y is singular. We present a procedure to estimate V u (assuming

that it has some structure, here that it is diagonal), and also recover ⇤ := G⇤⇤ and a proxy for the

⌘t.

Projecting Yt in into a lower-dimensional yt We do an eigendecomposition of G. Calling K

the rank of G, we can write:

G = A�1DA (131)

where D =

 
IK 0

0 0

!
, and A�1 is the matrix whose columns are the corresponding eigenvectors of

G.88,89 We introduce ⇡ :=
⇣
IK 0

⌘
and set B := ⇡A, both with dimension K ⇥N . . We have90

D = ⇡⇡0, ⇡D = ⇡, B = ⇡A, BG = B, A�1⇡0B = G (132)

We call

yt := BYt (133)

which is a K dimensional vector that gathers the useful K degrees of freedom in Yt. While V Y was

singular, typically V y has full rank. With � := B⇤ (dimension: K ⇥ r) and vt := BGut = But

(dimension: K ⇥ 1) we have:

yt = �⌘t + vt (134)

Doing PCA on yt We have

V y = �V ⌘�0 + V v,

The first PCs in a PCA of V y will not be �, unless V v is proportional to the identity matrix.91

Ideally, we’d like then to estimate the PCA on Lyt = L�⌘t + Lvt, for L = k (V v)�1/2 (with k an

88We order the columns of A�1 with first the eigenvectors with eigenvalue 1, then those with eigenvalue 0.
89We found that Matlab could get lost, and return complex eigenvectors, even though G2 = G ensures that the

eigenvalues are 0 and 1, and all eigenvectors are real. One fix to this numerical implementation issue is the following.
We observe that in practice the G = Q�,W come from 21. Then, calling H = W�1/2,then G̃ = H�1GH is a
symmetric matrix, so that Matlab recognizes that the eigenvectors should be all real (to be numerically safe, we

entered it as
⇣
G̃+ G̃0

⌘
/2). Then, if e is an eigenvector of G̃ with eigenvalue k, He is an eigenvector of G̃ with the

sam eigenvalue k. This way, we recover real eigenvectors of G.
90Indeed, BG = (⇡A)

�
A�1DA

�
= ⇡DA = ⇡A = B, and

A�1⇡0B = A�1⇡0⇡AG = A�1DAG = GG = G.

91Indeed, if V v is proportional to the identity matrix, then V y� is proportional to �, so that the column vectors
of � are eigenvectors of V y (and PCA, which extracts the eigenvectors, will successfully recover �). But this is not
the case if V v is not proportional to the identity matrix.
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constant) because then the covariance of residuals Lvt will be proportional to the identity, and the

PCA will correctly recover L�. But we do not know V v: we need to estimate it.

This motivate the following algorithm. For an invertible matrix V of dimensions K ⇥K, call92

J(V ) := V �1/2

r
|tr (V )|

K
(135)

The trace (tr) factor is there so that the transformation V 7! J (V )V J (V ) keeps the “size” of V

(as measured by its trace) fixed:

tr (J (V )V J (V )) = trV (136)

Also, if V is proportional to the identity matrix I, then J (V ) = I.

So we can envisage the following scheme: We start with L0 = IK .

1. We do a PCA on ynt := Lnyt, so do ynt = Ln�⌘̇t + v̇nt and get the residuals, v̇nt.

2. We define ǔt := A�1⇡0L�1

n v̇nt. We note that v̇nt = QLn�,IKLnvt and vt = But, so that

ǔnt = qnut with matrix qn := A�1⇡0L�1

n QLn�,IKLnB. As the rank of � is r, matrix qn as

dimension N ⇥ N but only rank K � r. From V ǔn we obtain V u
n , using the procedure in

Section D.10.2, observing that ǔnt = qnut.

(a) We can use the procedure in Section D.10.2, but it does not guaranty that �2

ui
is always

positive. (Then, some winsorization can impose �2

ui
> 0).

(b) Alternatively, we can use the MLE procedure of Section D.10.3 which does guaranty that

�2

ui
is positive.93

3. Set Ln+1 := J (V v
n ), with V v

n := BV u
n B

0.

4. Iterate steps 1-4 until convergence (e.g.
��L�1

n+1
Ln � I

�� < 0.01). As a check, we note that

at convergence, V Lnvt = LnV v
nLn should be close to proportional to the identity matrix

(
��� LnV v

n Ln

tr(LnV v
n Ln)/K

� I
��� should be small).

The procedure returns V u,e = V u
n . It also returns the factors ⌘̇t (up to a rotation, as usual). We

also obtain an estimator of ⇤:

⇤e = A�1⇡0L�1

n (Ln�) (137)

where Ln� is estimated from the PCA in Step 1.94

92Given a positive definite matrix V , and ↵ a scalar, V ↵ is defined as follows. Do an eigendecomposition V =
P�P�1, where the columns of P are the eigenvectors of V , and � = Diag (�i) is the diagonal matrix with V ’s
eigenvalues. Then, we define V ↵ = PDiag (�↵

i )P
�1. We apply this to ↵ = � 1

2 .
93We can alternatively use the same procedure to v̇nt = QLn�,IKLnBut as the observed vector, rather than going

through the higher-dimensional ǔt as the measured vector.
94Indeed, then at convergence ⇤e = A�1⇡0� = A�1⇡0B⇤ = G⇤ = GG⇤⇤ = G⇤⇤ = ⇤, by (132).
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D.12 Full recovery when di↵erent factors have di↵erent “size” weights

In the basic model, we can identify ↵f , M = 1

1�
P

f
�f↵f , but not �f .

We give some conditions under which we can actually also identify the �f (in addition to ↵f

and M). We show here that this is the case if we assume that the size Sf di↵ers across all factors

f , and this knowledge is given to us (from a model).

Here we take the basic set up as in Section 3.1, in the simplified case where �fi = �f for all

“endogenous” factors, i.e. for the factors f such that ↵f 6= 0, the other exogenous factors ⌘ all have

an impact of 1:

yit = uit +
X

f

�fF f
t + ⌘yt , (138)

F f
t = ↵fySf ,t + ⌘ft . (139)

This implies

yt = ut + ◆
X

f

�fF f
t + ◆⌘yt = ut + ◆

X

f

�f
⇣
⌘ft + ↵fSf 0

yit
⌘
+ ◆⌘yt .

With “"k” denoting some combination of the various ⌘’s, and as usual M = 1

1�
P

f
↵f�f ,

yt =

 
I � ◆

X

f

�f↵fSf 0

!�1 �
ut + ◆"1t

�

=

 
I +M ◆

X

f

�f↵fSf 0

!
�
ut + ◆"1t

�

yt = ut +M ◆
X

f

�f↵fuSf ,t + ◆"yt , (140)

i.e., since that F f
t = ⌘ft + ↵fySf ,t this gives:

F f
t = ↵f

 
uSf ,t +M

X

g

�g↵guSg ,t

!
+ "ft . (141)

Hence, suppose that we extracted the ǔit = uit � uEt (following our usual procedure). Then, we

form

z�f t := Sf 0
ǔt = uSf t � uEt. (142)

Then, regressing F f
t on the various z�gt

F f
t =

X

g

bfgz�gt + "f,1t (143)
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(for "f1 some residual noise) yields a regression coe�cient:

bfg = ↵f (1f=g +M�g↵g) . (144)

This allows to recover everything, and with several overidentifying restrictions. Indeed,

bf :=
X

g

bfg = ↵f

 
1 +M

X

g

�g↵g

!
= ↵fM,

which identifies ↵fM . Next, for f 6= g,
bfg
bf

= �g↵g,

which gives �g↵g (and should be equal for all f), hence M . Hence, we obtained ↵fM , M and �g↵g

— hence all quantities: ↵f ,�f ,M .

D.13 Identification of the TFP to GDP multiplier in a production net-

work economy

Suppose a two-period model with a production network, as in Long and Plosser (1983); Gabaix

(2011); Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019). There

are both idiosyncratic TFP shocks ⇤̂it and a government reform that creates correlated shocks ⌘t
to TFP and change in labor supply L̂t. Utility is Ct� e⌘

L
t L1+1/�

t , so that � is the Frisch elasticity of

labor supply. So, as Ct = ⇤tLt, labor supply is L̂t = �
⇣
⇤̂t � ⌘Lt

⌘
,95 and GDP is Ŷt = L̂t + ⇤̂t, i.e.

Ŷt = m⇤̂t � �⌘Lt , m = 1 + � (145)

We seek to find the “GDP multiplier” m = 1 + �, so that a TFP of 1 percent translates into a

GDP increase of m percent.96

This is potentially a complicated problem, as for instance, in the Long and Plosser (1983) case

with input-output matrix A, output changes are Ŷt = (I � A)�1 ⇤̂ + L̂, so that output changes

are correlated in complicated ways. However, one can sidestep using this disaggregated production

data. We assume that TFP change in industry i is:

⇤̂it = �i⌘
⇤

t + uit. (146)

In the neoclassical equilibrium, TFP follows Hulten’s theorem, so is ⇤̂t =
P

i si⇤̂itwhere si is the

Domar weight (sales of industry i over GDP).

95The problem is maxLt ⇤tLt�e⌘
L
t L1+1/�

t , which leads to
⇣
1 + 1

�

⌘
L1/�
t = ⇤te�⌘L

t ,hence the announced expression.
96If more than one factor change, m has the broader interpretation of a multiplier between TFP and GDP.
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We can identify the multiplier m if we have disaggregated TFP data. In the simplest case, we

assume that industry-level productivities are available, and we get the residuals ue
it. Then, we can

identify the multiplier m by GIV.

We can identify the multiplier m if we have even crude proxies for disaggregated TFP. The same

procedure works (with less e�ciency) if our data is made of proxies for productivities ˆ̃⇤it growth

(where the tilde indicates that we deal with a proxy). An example could be growth of sales per

employee, or even the growth rate of sales. We assume a factor model

ˆ̃⇤it = �̃i⌘̃
⇤

t + ũit. (147)

The proxy is of better quality when the proxy’s idiosyncratic shock ũit has a high correlation with

the true idiosyncratic shock uit. Then, we extract the ũe
it from a factor model, form zt = ũe

St � ũe
Et

(with Si =
siP
j
sj
), and use the moment E

h⇣
Ŷt �m⇤̂t

⌘
zt
i
= 0, which identifies the TFP to GDP

multiplier m.

Using more general models (e.g. taking into account imperfections as in Baqaee and Farhi

(2020)) would be very interesting, but would be a new paper by itself. Indeed, even in that case

zt is likely to be a useful instrument, even though it won’t be the optimal one. In any case, those

examples show how GIV, with some economic reasoning, translate to more complex economies

where aggregate shocks can be made of idiosyncratic shocks.

D.14 When the influence matrix is not proportional to size

D.14.1 Position of the problem

Suppose a model

yit = �
X

j

Gijyjt + �i⌘t + uit, (148)

i.e.

yt = �Gyt + ⇤⌘t + ut, (149)

with a given “influence” matrix G. For instance, if we have an “industrial similarity” matrix H

with entries Hij (for instance Hij = 1 i↵ i and j are in the same industry, and 0 otherwise) we

might set

Gij =
HijSjP
k HikSk

.

In our basic setup G = ◆S 0. We’d like to identify �.

D.14.2 A simple approach

We study the model(149), where the factor loading ⇤ (an N ⇥ r matrix) is not necessarily equal to

◆ (but we keep imposing that the ⇤ spans ◆, i.e. there is a q such that ◆ = ⇤q). As before, ⌘t is a
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low-dimensional vector of factors.

First, we suppose that we have a first estimate of �, which we call �e. We will later iterate on

it. Then, we form:

ỹt (�
e) := (I � �eG) yt. (150)

If �e = �, then ỹt (�) = ⇤⌘t + ut. Hence, we run a factor analysis on ỹt (�e), which recovers ⇤ and

W = (V u)�1. We introduce Q as in (21) so that Q⇤ = 0 and set

ǔe := Qỹt (�
e) ,

so that at �e = �, ǔe
t = Qut. We observe that Gyt = G (I � �G)�1 ut + B⌘t for some B. This

suggests the following procedure.

We define the GIV zt as a vector (with dimension N):

zt := G (1� �eG)�1 ǔe
t = G (1� �eG)�1 Q (I � �eG) yt. (151)

Indeed that zt will imitate the movements of the idiosyncratic shocks on yt.

Our key moment is:97

E
⇥
(yt � �Gyt)

0 W uzt
⇤
= �, (153)

where � is a discrepancy term

� := tr
�
QG (1� �G)�1

�
. (154)

This yields an estimate of �.98

The discrepancy term � is often 0. For instance, in our basic example, G = ◆S 0 and Q◆ = 0,so

we have � = 0: the discrepancy was 0. Hence, (153) generalizes out basic GIV. Likewise, take the

case of a block-diagonal Gij = S(k)
j if i and j belong to industry k, and Gij = 0 otherwise, where

S(k)
j is the relative size of firm j in industry k (so

P
j2k S

(k)
j = 1). Also, assume that the vector of

characteristics have industry dummies. Then, QG = 0, and again � = 0.

97Here is the proof. At the right estimator � = �e,

zt = G (1� �G)�1 Q (I � �G) yt = G (1� �G)�1 Qut = Hut, (152)

for H = G (1� �G)�1 Q. We also have yt � �Gyt = ⇤⌘t + ut. This implies that

E
⇥
(yt � �Gyt)

0 Wuzt
⇤

= E
⇥
(⇤⌘t + ut)

0 WuHut

⇤
= E [tr (u0

tW
uHut)] = E [tr (WuHutu

0
t)] ,

= tr (WuHV u) = tr (HV uWu) = tr (H) .

98We have a fixed point: an initial �e gives an estimate of �; that’s then the new estimate �e, and we re-iterate
the process, until convergence.
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D.15 Identification of social interactions and the reflection problem

Superficially, there seems to be a contradiction between Section 8.2’s finding that we do achieve

identification, and Manski (1993)’s Proposition 2 and Bramoullé et al. (2009)’s Proposition 1,

which seem also to state the impossibility of identification. Bramoullé et al. (2009) analyze social

interactions of the type:

yt = �Gyt + �xt + �Gxt + "t (155)

with E ["t|xt] = 0. In their main result, they conclude that if the matrices I,G,G2 are not linearly

independent, then the system is not identified. However, in our setup G = ◆S 0 (where ◆ is a vector

of 1’s) so that G2 = G and we satisfy Bramoullé et al. (2009)’s condition that seems to guarantee

the impossibility of identification. However, we can identify the parameters, as we saw in Section

8.2. How do we solve that seeming contradiction?

The short answer is that Manski (1993) and Bramoullé et al. (2009) do not consider anything like

a GIV, as they immediately reason on averages based on observables, eschewing any exploration of

the noise. In contrast, GIVs are all about exploring some structure in the noise — the idiosyncratic

shocks of large entities. For instance Manski (1993) considers something akin to:

E [yt|xt] = �GE [yt|xt] + �xt + �Gxt, (156)

where all the noise has been averaged out.

Indeed, we do impose some structure, namely:

"it = ⌘t + uit, uit i.i.d., orthogonal to ⌘t, (157)

We could generalize to richer factor models, like in the body of the paper.

Second, we can generalize to the case where G2 = G (the case where G2 is a linear combination

of G and I is similar99), which seems to leads to the impossibility of identification in Bramoullé et

al. (2009). This is formalized here.

Proposition 6 (Identification achieved in the Bramoullé et al. (2009) setup). Suppose that G2 =

G, which is satisfied in our basic setup, but leads to the impossibility of identification in the

Bramoullé et al. (2009) setup without further assumptions. Suppose also the “simple noise struc-

ture” assumption (157). Suppose also the existence of two n-dimensional vectors S and � satisfying

G0S = S, G0� = 0, ◆0S 6= 0, �0S 6= 0. (158)

Then GIV is possible in that setup, i.e. with the GIV zt = �0yt, we can identify the coe�cients

(�, �, �).

99It can be reduced to that case by rescaling H = b0 + b1G with the right coe�cient, with H2 = H.
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In our basic setup, we had Si the relative sizes, and G = ◆S 0, � = S � ◆
N . Hence (158) is an

abstract generalization of our concrete conditions.

Hence, in many situations of interest we can be quite confident that condition (158) is satisfied.100

There could be another way to analyze social influence with a matrix of influence, like in Section

D.14.

In conclusion: our GIV approach gives some renewed hope for identification in the context of

social influence and reflection problems. Indeed, it provides a way to achieve identification where

it seemed impossible. Informally, this is by exploiting the idiosyncratic noise of “large players”.

Formally, and less intuitively, it is by exploiting a little bit of structure in the noise (so that there

is a low-dimensional common noise). Future research might profitably firm up the exact necessary

and su�cient conditions for this.

Proof of Proposition 6 The identification goes as follows. By rescaling S, we impose ◆0S = 1.

Define E := S � � (which is 1

N ◆ in our framework), and form

yEt = E 0yt, ySt := S 0yt,

which are our generalized “equal weighted” and “value weighted” averages – for more abstract

setting. Then, premultiplying (155) by �0 gives:

zt := �
0yt = �x�t + u�t.

Hence, estimating this by OLS we can obtain �, and var (u�t), so that we obtain also �2

u. Next,

yE = �yS + �xE + �xS + ⌘ + uE,

so that

E
⇥
(yEt � �ySt � �xEt � �xSt)

0 (z, xSt)
⇤
= (EuEtu�t, 0) . (159)

The right-hand side is known, as EuEtu�t = E 0��2

u, which is known. So, we have two unknowns �,

y and two equations: we can solve the system. The condition �0S = 0 ensures that E [yStzt] 6= 0. ⇤

D.16 Identification of the elasticity of substitution between capital and

labor / Elasticity of demand in partially segmented labor markets

Here we show how GIVs can estimate the elasticity of substitution between capital and labor; and

how the estimate the elasticity of demand in partially segmented markets. The first problem uses

the second one.
100As G2 = G, one can always find vectors �, S satisfying the first 3 conditions (provided n is big enough and G is

not the identity nor 0), and the last one is rather “generically” easy to satisfy.
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As a motivation, imagine that industry i has the CES production function101

Qit = Bit

✓
K

�i�1
�i

it + A
1
�i

it L
�i�1
�i

it

◆ �i

�i�1

(160)

The first order condition of the problem maxKit,Lit
Qit�RtKt�WitLit is A

1
�i

it

⇣
Lit

Kit

⌘� 1
�i = Wit

Rt
,i.e.

a demanded labor / capital ratio:
Lit

Kit
= Ait

✓
Wit

Rt

◆��i
(161)

We’d like to estimate the elasticity of substitution �i between capital and labor. This is the wage

elasticity of demand. GIV allow to estimate that, as we shall see.

Let us use our general notations, and define ydit = lnLit, pit = lnWit, Cit = lnKit, and �d
i = ��i

(as this is the elasticity of labor demand). Then, we can write (161) as:

ydit = �d
i pit + Cit + �di ⌘t + ud

it (162)

where Cit is a control, and as usual vector ⌘t is a common shock, and ud
it is a demand shock (those

in turn come from the productivity Ait). For notational simplicity we will drop it Cit, but this is

not important.

Now, log labor supply is modeled as:

ysit = �s
ipit �  ipSt + �si⌘t + us

it (163)

It is increasing in wage pit in industry i, and decreasing in the wage in the other industries (pSt).

One could imagine replacing  ipSt by a di↵erent average for each industry, and we will examine

that in an extension. But for now we keep the simple structure.

As supply equals demand in each market (ydit = ysit), we obtain the price of labor in each market

i:

pit =
 ipSt + ud

it � us
it +

�
�di � �si

�
⌘t

�s
i � �d

i

(164)

i.e.

pit = �ipSt + vit + �pi ⌘it (165)

when we define �i =
 i

�s
i
��d

i

, vit =
ud

it
�us

it

�s
i
��d

i

, �pi =
�d
i
��s

i

�s
i
��d

i

.

Problem (165) is a standard GIV. In the general case, we can estimate �i as in Section (D.2).102

So, we obtain �i and veit (the proxy for vit) in (165). We also form zit = zt � �u
i vit as in (453).

This is the GIV formed of the idiosyncratic shock of all industries but industry i. We will use the

101We thank Julieta Caunedo for prompting us to think about this identification problem.
102This procedure is much simplified if the �i and �pi are assumed to be constant. Then, we can just define

zt := p�t = pSt � pEt, so that zt = v�t and as pSt =
vSt+�p⌘s

t
1�� , regressing pSt = bzt + "pt yields b = 1

1�� .
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shock to those other industries, and their impact on the outside wage, as an instrument to estimate

labor demand. Indeed, we go back to the labor demand equation (162), and instrument for pit using

the zit
pit = bizit + "pit (166)

we estimate bi, and define peit = bizit the price in industry i instrumented by the changes in other

industries. We use the estimated ⌘et as controls, and run

ydit = �d
i p

e
it + Cit + �di ⌘

e
t + ud

it (167)

which yields a consistent estimate �d
i of the labor demand.

Extension We can extend (163) to

ysit = �s
ipit �  i

X

j

Gijpjt + �si⌘t + us
it (168)

where the “influence” matrix Gij capture the influence of the price in market j on market i. This

might be proxied by various measures of distance between the market. We can then use the material

in Sections 8.1 and D.14 to handle this case.

E A Bayesian perspective on GIVs

We will see that, under conditions of Gaussianity, our estimators are basically the MLE. As variables

may not be Gaussian, we keep the general exposition (showing identification) free of distributional

assumptions. If we assume that variables (uit, ⌘t) are Gaussian, then a Bayesian analysis can be

performed. We detail it here.

E.1 The general model: Bayesian version

Here we treat the general model of Section 3.1, in the case where the �it are the same, and equal

to 1, and all factors are observed (except the ⌘yt , as in yit =
P

f �
fF f

t + uit + ⌘yt ). The general case

with heterogeneous loadings is done later, in Section E.5, and uses much the same ideas.

The data D is D =
⇣
yt, F

f
t

⌘

f=1...dF ,t=1...T
, made of i.i.d. draws from a fixed distribution. To

simplify the notations, we’ll just denote by f the collection of all variables corresponding to factors

(without explicitly mentioning that f = 1 . . . dF ).

The solution of the system features:

ySt �My�t = by"t,

F f
t � ↵fMy�t = bf"t,

85



for some vector by, bf , and "t :=
⇣
uEt + ⌘yt , ⌘

f
t

⌘
.

Hence, we form: ✓ =
�
M,↵fM

�
; !V a parametrization of the relevant variance matrices – so the

variance matrix V u depends on !V (for instance, if V u is diagonal, !V is the vector of its diagonal

terms); ! =
�
✓,!V

�
the set of parameters to be estimated; E (!) =

V u(!V )
�1
◆

◆0V u(!V )
�1◆

the corresponding

quasi-equal weights vector, and form the key quantities:

Yt (!) :=
⇣
ySt �My�(!),t, F

f
t � ↵fMy�(!),t

⌘
. (169)

We also keep track of

y̌it (!) = yit � yE(!),t (170)

and stack those two vectors together as Xt (!), which contains all our information:

Xt (!) = (Yt (!) , y̌t (!)) . (171)

The key “trick to tractability” is to transform the data into that Xt.

There is an invertible matrix A (✓) such thatDt = A (✓)Xt. Hence, there is no loss of information

in usingXt as “conveniently processed” data, rather than the “unprocessed” dataDt. Hence, instead

of lnP (Dt|!), we’ll consider

lnP (Xt|!) = lnP (Dt|!) + ln |A (✓)| . (172)

The Jacobian |A (✓)| := detA is independent of all parameters !.103 Hence it can be discarded as

a constant in the calculations.

The key simplifying observation is that (under the correct model), E [y̌tyEt] = 0, so that Yt (!)

and y̌t (!) have zero covariance. Hence, the log likelihood decouples, and we have

�2 lnP (Dt|!) = Y 0
t (!)V

Y
�
!V

��1

Yt (!)+ y̌t (!)
0 �V y̌ (!)

��1
y̌t (!)+ln

��V Y
�
!V

���+ln
��V y̌

�� . (173)

As y̌t lives in a space of dimension N � 1 (as E 0y̌t = 0), the value of V y̌ is understood as being of

the corresponding dimensions, (N � 1)⇥ (N � 1).

Now, imagine that !V has already been estimated, and do only the optimization w.r.t. ✓. That

gives:

min
✓

ET

h
Y 0
t

�
✓,!V

�
V Y

�
!V

��1

Yt

�
✓,!V

�i
. (174)

The first order conditions are:

ET

⇥
(y�t, 0)

�
V Y

� �1Yt

⇤
= 0, ET

⇥
(0, y�t)

�
V Y

� �1Yt

⇤
= 0,

103First, go from Xt to D̃t = (Ft, ySt, y̌t), which is upper triangular with 1 on the diagonal, so has determinant 1;
second, go from D̃ to D, which is independent of the !.
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i.e. (given that 0 = ET

⇥
y�t

�
V Y

� �1Yt

⇤
=
�
V Y

� �1ET [y�tYt]) we have ET [y�tYt] = 0, yielding

ET

h
y�t

⇣
ySt �My�t, F

f
t � ↵fMy�t

⌘i
= 0. (175)

Those are precisely the first order conditions of the OLS estimation:

min
M

ET

⇥
(ySt �My�t)

2
⇤
, min

↵fM
ET

⇣
F f
t � ↵fMy�t

⌘2
�
. (176)

Hence, our GIV is also the MLE estimator of M,M↵f , when we have Gaussian distributions.

We can also go beyond MLE, and calculate full Bayesian posteriors. Then, the GIV gives an

easy way to do finite-sample Bayesian updating. Assuming again for simplicity that we know the

variance matrices, we have

lnP (✓|D) = lnP (✓)� 1

2

X

t

Yt (✓)
�
V Y

��1

Yt (✓) +K (D) , (177)

where K (D) ensures that the probability sums to 1.

The rest of this section examines instantiations and variants of the general idea we just saw.

E.2 The supply and demand model of Section 2.2

This model corresponds exactly to the general case, with a factor F f
t = pt, pt = ↵fySt + ⌘ft with

↵f = 1

�s and ⌘f = � "
�s . Then, everything goes through.

E.3 The basic example with self-loop of Section 8.2

We give a Bayesian treatment of this model of Section 8.2:

yit = �ySt + ⌘t + uit.

We are given Dt = yt. We wish to estimate M = 1

1�� . The vector of parameters of interest is

✓ = M :

Yt (!) = ySt �My�(!V ),t.

As in the general procedure, we set:

y̌it (!) = yit � yE(!V ),t (178)

and

Xt (!) = (Yt (!) , y̌t (!)) . (179)
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In the true model, we have Yt = M (uEt + ⌘t), so104

�2 lnP (Dt|!) =
Y 2

t (!)

�2

Y

+ y̌t (!)
0 �V y̌

�1
y̌t (!) + ln �2

Y + ln
��V y̌

�� .

Suppose first that we know the variance terms. Then, the MLE is simply to do

max
M

ET

⇥
Yt (!)

2
⇤
,

which is the identification condition we used, and it corresponds to running the OLS

min
M

ET

�
ySt �My�(!V )t

�2
.

Next, for the estimation of the variance terms, we optimize on �2

Y , V
y̌. Asymptotically, that gives

the true values.

E.4 The basic example without loop of Section 2.1.

We now detail the Bayesian version of our example in Section 2.1:

yit = ⌘t + uit, pt = ↵ySt + "t.

We’d like to estimate ↵ especially (or, in a Bayesian context, update our prior on ↵). This example

is actually a bit non-generic, as it endows the economist with a knowledge that �f = 0, which

creates some subtle changes: it features the “recovered” factor yEt, used as a regressor. We can also

write pt = ↵y�t + �yEt + "?t for some �.

The data D is a set of D = (yt, pt)t=1...T , assumed to be i.i.d. draws from a fixed distribution.

We call ✓ = (↵, �) the set of “key” model parameters, and !V , the parametrization of the

variance-covariance matrix V (u+⌘◆,") (e.g. if we assume that u is diagonal), the auxiliary parameter,

and ! =
�
✓,!V

�
the full set of parameters. The correct value is !⇤.

Given yt, pt, we form

Yt (✓) = pt � (↵y�t + �yEt)

and Xt (✓) = (Yt (✓) , yt). At the correct parameter !⇤,

Yt (✓
⇤) = "?t ,

which is defined in the analysis is the “enriched OLS estimator” that comes from running the

regression: pt = ↵y�t + �yEt + "?t . Hence, at the correct value, Yt and yt are uncorrelated. Call

V X (!) the variance-covariance matrix of Xt.

104The inverse of V y̌ is taken in the space of matrices operating on vectors orthogonal to E.
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We can start the Bayesian analysis:

P (!|D) / P (D|!)P (!)

and

lnP (D|!) =
X

t

lnP (Dt|!)

with

� 2 lnP (Dt|!) =
Yt (✓)

2

�2

"?
+ y

0

tV
y (W ) yt + ln �2

"? + ln |V y (W )| , (180)

where here |A| is the determinant of a matrix A.

Hence, the MLE estimator maximizes
P

t lnP (Dt|!) over ! = (✓,W ) . The problem for ✓ sepa-

rates as:

min
↵,�

X

t

Yt (✓)
2 ,

i.e.

min
↵,�

X

t

(pt � (↵y�t + �yEt))
2 ,

which is the “enriched OLS estimator” pt = ↵y�t + �yEt + "?t . This shows that, with Gaussian

distributions, the MLE is just our enriched GIV-OLS estimator.

Maximizing over the other parameters W will allow to recover the variance matrix (including

that of "t, ⌘t).

If we have a small sample, we can just update rather than do MLE. The above shows that the

“simplifying trick” is to form that statistic Yt (✓), which allows for an interpretable updating of the

parameters. For simplicity, suppose that we know the value of V y (W ) , and �2

"? .
105 However, we

have a prior on ✓ = (↵, �), perhaps Gaussian. Then, our posterior after observing the data D is:

lnP (✓|D) = lnP (✓)�
X

t

Yt (✓)
2

2�2

"?
+K (D) ,

where K (D) ensures that the probability sums to 1.

105Otherwise, we can update our knowledge of those, which is standard though tedious to lay out.
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E.5 Heterogeneous loadings

E.5.1 Bayesian model with heterogeneous loadings

Here we extend the basic model of this section to heterogeneous, nonparametric loadings. The

model is

yit =
X

f

�fF f
t + ⌘yt +

KX

k=1

�ki ⌘
k
t + uit, (181)

where now there are K unobserved factors, with unknown factors ⌘kt , and non-uniform loadings

�ki . As in the more basic Section E.1, we assume the existence of a factor ⌘yt with uniform loadings

(which can be taken to be uncorrelated with ⌘t), and factors F f
t are endogenous and observed. More

compactly, we can write the model as:

yt = �FFt + ◆⌘yt + �⌘t + ut. (182)

We will now see how this case can be reduced to the one of Section E.1. We define the theoretical

object:

ỹit := yit �
KX

k=1

�ki ⌘
k
t . (183)

Then, the results of Section E.1 apply to ỹt, conditional on (�, ⌘t). Equation (173) becomes:

� 2 lnP (Dt|!,�, ⌘t) = Ỹ 0
t (!)V

Ỹ (W )�1 Ỹt (!) + ˇ̃yt (!)
0
⇣
V

ˇ̃y (!)
⌘�1

ˇ̃yt (!) + ln
���V Ỹ (W )

���+ ln
���V ˇ̃y

���
(184)

with

Ỹt (!) :=
⇣
ỹSt �Mỹ�(W ),t, F

f
t � ↵fMỹ�(W ),t

⌘
, (185)

ˇ̃yit (!) = ỹit � ỹE(W ),t. (186)

So, given �, ⌘t, the procedure is as in Section E.1, applied to the tilde variables. In turn, suppose

that we have some priors on � (we’ll take them to be di↵use) and on ⌘t (we’ll normalize them to

be independent standard normals). Then, the full likelihood is:

P (Dt|!) = P (Dt|!,�, ⌘t)P (�, ⌘t) , P (�, ⌘t) = (2⇡)�K/2 e�
1
2⌘t⌘

0
t . (187)

So, we can estimate � and ⌘t by Bayesian methods, e.g the E-M method summarized in Section

E.5.2.

What the MLE gives It is worth pausing to see what the MLE does. Consider the MLE

estimator of M (keeping the ↵fM constant). It is as the analysis of (175) but in ỹt space, i.e. it is
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equivalent to running the OLS regression:

ỹSt = Mỹ�t + et, (188)

i.e.,

ySt � �S⌘t = Mzt + et, (189)

where

zt := z�t + z⌘t, z�t := u�t, z⌘t := ��t⌘t. (190)

This means that the MLE uses two primitive sources of shocks for identification (i) z�t := u�t,

which is the “pure” GIV, and (ii) z⌘t := ��t⌘t, which traces the ripple e↵ects of the aggregate shocks

⌘t on the aggregate action ySt, after controlling for the “direct” e↵ects (this is why ySt � �S⌘t is

on the left-hand side of (189)). Those are two economically very di↵erent styles of identification.

For economic clarity we find it useful to single out solely the “pure” GIV identification (i.e. regress

only on z�t rather than on z�t + z⌘t).

E.5.2 Maximum likelihood estimation with heterogeneous loadings

We consider the model with heterogeneous loadings

yt = �ySt◆+ �⌘t + ut,

where ut ⇠ N (0, Vu) and ⌘t ⇠ N (0, 1). Define �t(�) = yt � �ySt◆ = �⌘t + ut and note that the log

likelihood contribution of yt is

P (yt) = P (�t) + ln (1� �) .

The likelihood of �t can be computed e�ciently using the expectation-maximization (EM) algorithm.

The steps are as follows, and we refer to Ghahramani and Hinton (1997) for details, where subscripts

(n) refer to the n-th iteration of the algorithm.

• Expectation step

– E(n) [⌘t | �t] = �(n)�t,where �(n) = �0⌃�1 and ⌃(n) = �(n)�0(n) + Vu(n).

– E(n) [⌘2t | �t] = 1� �(n)�(n) +
�
E(n) [⌘t | �t]

�2
.

• Maximization step

– �(n+1) =
�P

t E(n) [⌘2t | �t]
��1P

t �tE(n) [⌘t | �t].

– Vu(n+1) =
1

T diag
�P

t �t�
0
t � �(n+1)E(n) [⌘t | �t] �0t

 
.
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The log likelihood can be computed as (omitting constants that do not depend on the parameters)

P(n) (�t) = �1

2
ln
��⌃(n)

��� 1

2
�0t⌃

�1

(n)�t,

and we iterate until convergence. To initialize the algorithm, we start from estimates of � and Vu

based on PCA.

F Microfoundations for the model of sovereign spillovers

In this model, spillovers happens because debt defaults are partially mutualized. This is a stand-in

for potentially much richer economics. For instance, contagion might work via GDP spillovers, or

the limited risk capacity of specialized arbitrageurs. Still, the specification that this model delivers

might be broadly similar, as we shall see.

F.1 Model setup

We make a number of simplifying assumptions. The safe interest rate is normalized to 0, and pricing

is risk neutral. Time is continuous in [0, T ]. We neglect the O (dt) terms, which are irrelevant for

the regression analysis we are interested in, i.e. will write df (Xt) = f 0 (Xt) dXt.106,107

Payo↵s are realized at a date T , which should be thought about as faraway. Country i’s out-

standing debt is Bi, and the value of the debt (per unit of face value) is thus:

Qit = Et

⇥
1� L+

iT

⇤
= e�(T�t)yit , (191)

where x+ := max (x, 0), yit is the yield spread over the safe interest rate (which we normalized to

0), and LiT is the relative “vulnerability” of the government’s bonds, defined as

LiT =
FiT

Bi
, (192)

where FiT is the value of potential losses from government defaults (in euros). We assume that FiT

follows:

FiT =  iTGiT , (193)

where  iT 2 [0, 1] is a propensity to pass on raw government fiscal losses GiT to bondholders. A

106Formally, we write all the di↵erential expressions dYt = atdZt modulo an equivalence by terms btdt (or, to be
pedantic, we quotient by the ring of expressions of the type btdt where bt is an adapted function). So, df (Xt) =
f 0 (Xt) dXt modulo dt, where we keep the “modulo dt” implicit.
107We only care, for the regressions, about the “dZt” terms, that depends on innovation to underlying Brownian

shocks dZt, as those are the loading detected by the regressions.
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financially virtuous country (say Germany) has  iT close to 0, and a laxer country has a high  iT .

To gain intuition, it is useful to think that most variation in yield spreads comes from the political

willingness to not pay bondholders,  iT .

This raw position GiT is in turn:

GiT = ViT � �F+

iT + �miFT , (194)

where ViT is a stochastic “latent loss”, and the total amount lost on bonds is:

FT =
X

i

F+

iT . (195)

Debts are partially mutualized with intensity � 2 [0, 1]: a fraction � of the loss F+

it is passed on to

other countries, with a share mi to country i (
P

i mi = 1, mi � 0). This mutualization creates the

sovereign yield spillovers.

To simplify the analysis, we assume that ViT is strictly positive with probability 1, so that FiT ,

GiT and LiT are all strictly positive with probability 1. This is less restrictive that it may appear:

losses could be very small. This is simply to make the analysis very tractable.

F.2 Model solution

Solving the model,

LiT =
 iT

Bi
(ViT � �FiT + �miFT )

=
 iT

Bi
(ViT � �BiLiT + �miBLT ) ,

with B =
P

i Bi and LT = FT

B , i.e.

LT =
X

i

Bi

B
LiT . (196)

We call ⇢i =
mi

Bi/B
, the ratio between country i’s mutualization sharemi and its debt share.108,109.

This leads to:

LiT =
 iT

1 + � iT

✓
ViT

Bi
+ �

mi

Bi
BLT

◆
.

108The ECB’s capital key, which defines the equity shares of member states in the ECB, is defined using 50% of
GDP shares and 50% of population shares. However, we do not focus exclusively on spillovers that operate via the
ECB and there may be other e↵ects via trade linkages, demand shocks from investors, et cetera. We maintain the
assumption that the losses, or exposures, to Eurozone-wide losses are proportional to GDP. Alternatively, we could
change the measure mi to be a function of both population and GDP shares.
109One can imagine ⇢i ' 1 as a simple baseline where most variations come from the political willingness  it.
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So, if we define

 iT =
 iT

1 + � iT
, (197)

we have:

LiT =  iT

✓
ViT

Bi
+ �⇢iLT

◆
. (198)

This shows the “contagion” in the space of vulnerabilities, LiT .

To move to yields, we do a Taylor expansion for small yield spreads, so that (191) gives:

yit = atEt [LiT ] , (199)

where

at =
1

T � t
(200)

is a slowly-varying parameter (as T is far from the interval of times t under study – so we’ll take

the approximation dat ' 0). We define  it = Et [ iT ], vit = atEt

h
ViT

Bi

i
. Also, we place ourselves

in the “quasi-static” regime, where all noises are small—see Section F.3 for details. Hence, (198)

becomes, in yield space:

yit =  it (vit + �⇢iySt) , (201)

where

ySt =

P
i Biyit
B

. (202)

This shows that the yield spread depends on a country-specific fundamental vit and a “spillover”

proportional to �. At the same time, for a very financially virtuous country with  it ' 0, the yield

spread is close to 0, so that yield contagion is close to 0: as the country is quite safe anyway, external

disruptions cannot move the yield much away from 0.

We have

dyit
yit

=
d it

 it
+

dvit
vit + �⇢iySt

+
�⇢iySt

vit + �⇢iySt

dySt
ySt

,

hence
dyit
yit

= dwit + �it
dySt
ySt

(203)

for dwit :=
d it

 it

+ dvit
vit+�⇢iySt

and for a coe�cient �it :=
�⇢iySt

vit+�⇢iySt

2 [0, 1]. In the simple benchmark

where all countries have a similar vit (fundamental government finances) but di↵er mostly in  it

(the propensity to absorb the shocks rather than pass it on to debt holders by defaulting) and

⇢i = 1, we have �it =
�ySt

vt+�ySt

.

Written another way, call

ỹit := ln yit. (204)
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Then, we have

dỹit = dwit + �itdỹS̃t, (205)

where

S̃it =
BiyitP
j Bjyjt

, (206)

dỹS̃t =
X

i

S̃itdỹit =
X

i

Biyit
dyit
yitP

j Bjyjt
=

dySt
ySt

. (207)

Hence, if we reason in “log yield spread” space, the proper weights are proportional to Biyit, i.e.

debt value times yield spread. This is the formulation that motivates our empirical specification

(58). In particular, if  it = 0, then the change is dyit = 0 always. The importance of the spillovers

is given by
P

j Bjdyjt, the change in the yield weighted by debt value, summed over all countries.

F.3 Quasi-static regime of stochastic processes

Suppose a stochastic process, governed by some noise size �, as in dYt = µ (Yt) dt + �v (Yt) dBt,

where Bt is a Brownian motion. The “quasi-static” regime is the one where � is very close to 0.

Then, things are much simpler to analyze, especially for non-linear processes, provided we accept

O (�2) approximations.

Indeed, consider that vector-valued process Yt (for t  T )

Xt = Et [F (YT )] (208)

where F is a C2 function. Then, in the quasi-static regime, we can write

Xt = F (Et [YT ]) +O
�
�2
�

(209)

i.e. we swap Et and F .110 So, that, assuming now that Yt is a martingale,

Xt = F (Yt) +O
�
�2
�

(210)

and

dXt = F 0 (Yt) dYt +O
�
�2
�

(211)

or, more informally (as we do in the economic part of this section),

dXt ' F 0 (Yt) dYt. (212)

110We do not formally prove this, as this is purely mathematical as opposed to economic. One could do it, e.g.
using the Clark-Ocone formula from the Malliavin calculus.
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Table F.7: Bloomberg identifiers of countries included in the sovereign yield model.

Country Government bond ticker ID Country Government bond ticker ID

Austria G0063Z BLC2 Curncy Ireland G0062Z BLC2 Curncy

Belgium G0006Z BLC2 Curncy Italy G0040Z BLC2 Curncy

Finland G0081Z BLC2 Curncy Netherlands G0020Z BLC2 Curncy

France G0014Z BLC2 Curncy Portugal G0084Z BLC2 Curncy

Germany G0016Z BLC2 Curncy Slovenia G0259Z BLC2 Curncy

Greece G0156Z BLC2 Curncy Spain G0061Z BLC2 Curncy

To work out a concrete example, take Yt = �Bt,and Xt = Et

⇥
eYT

⇤
. The exact values are:

Xt = eYt+
�
2

2 (T�t), dXt = XtdYt (213)

and the quasi-static approximation gives

Xt = eYt +O
�
�2
�
, dXt = eYtdYt +O

�
�2
�
. (214)

F.4 Details on the data

Table F.7 describes the tickers of the yields that we use in our empirical analysis.
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