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ABSTRACT

Does social distancing harm innovation? We estimate the effect of non-pharmaceutical 
interventions (NPIs)—policies that restrict interactions in an attempt to slow the spread of disease
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cities during the 1918 flu pandemic. Difference-in-differences estimates show that cities adopting 
longer NPIs did not experience a decline in patenting during the pandemic relative to short-NPI 
cities, and recorded higher patenting afterward. Rather than reduce local invention by restricting 
localized knowledge spillovers, NPIs adopted during the pandemic may have better preserved 
other inventive factors.
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1 Introduction

Knowledge spillovers in cities are a key input in the production of new ideas. Urban densities

promote interactions that recombine existing ideas into new ones (Marshall, 1890; Jacobs, 1969;

Lucas, 1988; Romer, 1990; Glaeser, 1999). Nearby inventors are more likely to cite each other

and create similar inventions, suggesting that proximity encourages knowledge flows (Jaffe

et al., 1993; Murata et al., 2014; Ganguli et al., 2020). Moreover, inventors in dense cities

create more novel patents, suggesting that cities are the engines of innovation (Carlino et al.,

2007; Packalen and Bhattacharya, 2015; Berkes and Gaetani, forthcoming).

Widespread adoption of non-pharmaceutical interventions (NPIs)1 by local and national

governments to slow the spread of COVID-19 has limited social interactions in cities, potentially

reducing the benefits of density. While the extent and duration of NPIs during the COVID-

19 pandemic are unprecedented, similar interventions were adopted historically to control the

spread of diseases such as the 1918 influenza pandemic. Whether these temporary measures

have long-lasting impacts on cities’ fortunes, aggregate invention rates, and economic growth is

important for evaluating possible future NPI policies and for understanding economic recovery

following pandemics.

We shed light on these questions by estimating the effect of NPIs during the 1918 pandemic

on local patenting rates in a sample of 50 large US cities. These 50 cities accounted for 21%

of the population and 39% of all patent filings in the US in 1910. Surprisingly, we find that

cities that adopted longer NPIs did not experience a larger decline in patenting rates relative

to cities with shorter NPIs. Instead, cities that adopted longer NPIs saw an increase in their

patenting rates after the pandemic ended.

Our analysis combines high-frequency, city-level data on patenting rates and NPI durations.

We construct a city–month panel of issued patents from the Comprehensive Universe of US

Patents (CUSP, Berkes, 2018), which describes the city of each inventor, filing and award

dates, technology class, and ownership status for the near-universe of US patents since 1836.

We combine these data with the types and lengths of NPIs adopted by 50 large US cities during

the 1918 pandemic. We extend the database of city NPIs of Markel et al. (2007) by collecting

data for seven additional cities from an updated version the same archival source, the Influenza

Archive 2.0 (2016). The resulting database is a balanced city–month panel, 1910–1926.

We estimate the effect of NPIs on patenting rates (the number of patents issued divided

by the city’s population) during and after the pandemic using a difference-in-differences (DD)

design. We classify cities into two groups: long-NPI cities (the treatment group) with cumu-

lative NPI durations of more than 90 days, and short-NPI cities (the control group) with NPI

1Examples of NPIs include mask mandates, social distancing, school and business closures, public gathering
bans, and isolation and quarantine of infected people.
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durations of less than 90 days.2 We find that patenting rates increased in long-NPI cities by

7–12% after the pandemic ended (April 1919) relative to short-NPI cities. During the pan-

demic (September 1918–March 1919), long NPI cities had smaller and statistically insignificant

increases in relative patenting rates.

One identification challenge is that longer NPIs may have been adopted by faster-growing

cities that could have experienced larger increases in patenting in the absence of the pandemic.

This concern is attenuated by normalizing our outcome variable in per capita terms. Addi-

tionally, our data allow tests for differential pre-trends between the two groups of cities. We

find no evidence of differences in patenting rates between long- and short-NPI cities in the

pre-pandemic years. Our preferred specification includes city–month, Census-region–year, and

month–year fixed effects. These fixed effects control for time-invariant factors that may contrib-

ute to patenting activity (e.g., universities), national trends, local seasonal trends, and regional

shocks. Finally, our results are robust to different specifications, including “leave-one-out” es-

timates that drop one city at a time. Taken together, the pre-trend analysis and alternative

estimates suggest that our results are unlikely to be driven by omitted factors or unobserved

trends.

Longer NPIs did not, on net, reduce patenting rates by limiting social interactions. Instead,

those interventions may have had positive effects on inventive activities through other channels.

Previous research suggests that NPIs had small to moderate effects in reducing city mortality

rates (Markel et al., 2007; Correia et al., 2020; Chapelle, 2020; Clay et al., 2018; Barro et al.,

2020). By saving lives, longer NPIs may have preserved labor inputs into invention. Further,

by favoring a coordinated response to the pandemic, longer NPIs may have reduced uncer-

tainty, anchored expectations, and preserved intangible or organizational capital, increasing

post-pandemic invention.

We provide additional evidence on potential mechanisms. First, we find that longer NPIs

had larger positive effects on patenting rates for grants with multiple inventors and grants

owned by external assignees.3 These types of patents may reflect more complex invention

processes and may also rely more on social interactions. Second, we find that patenting rates in

emerging fields such as electricity and mechanical engineering benefited most from longer NPIs.

Those emerging fields may reflect greater technological and market risk. Our interpretation is

that longer NPIs did not reduce capacity for riskier and more complex invention. Instead,

by reducing mortality and overall uncertainty, NPIs may have facilitated access to financial

resources and preserved the intangible or organizational capital required for invention.

2We also estimate directly the impact of NPI duration in days on patenting rates.
3Patents owned by external assignees are often sponsored by a corporate or industrial R&D lab (Nicholas,

2010; Buzard et al., 2017).
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2 Historical Background and Conceptual Framework

The 1918 influenza pandemic was brief and severe. In the US, the first sporadic outbreaks

occurred in the spring and summer of 1918, confined mostly to soldiers. The second wave,

beginning in September 1918, was more serious. This wave was responsible for most of the

pandemic’s deaths in the US. Markel et al. (2007), studying 43 US cities, report that the

first flu cases occurred in September, with one city (Philadelphia) reporting a case in late

August, and two cities reporting their first cases in early October. Mortality accelerated in late

September to early October, and excess deaths peaked in late October to early November. A

third wave started in January 1919 and ended in April 1919, the month that we define as the

end of the pandemic.4

In response to the pandemic, US cities adopted a variety of NPIs directed at restricting social

interactions to limit the spread of the disease. Markel et al. (2007) classify those measures

into three categories: public gathering bans, school closures, and isolation and quarantine

of confirmed and suspected cases. The earliest NPIs were enacted in mid-September 1918,

although some cities did not enact NPIs until mid-October. There was significant variation

across cities in the type and duration of those interventions. In our 50 cities sample, the total

number of days of NPIs of all types ranged from 28 to 170 days (see Appendix Table A.2).

What was the likely effect of NPIs on invention? NPIs may shift both invention supply and

demand, so the sign of their equilibrium effect is theoretically ambiguous and likely depends

on the time horizon. In the short run, NPIs might depress patenting rates by reducing labor

inputs (inventors work less), capital inputs (businesses invest less), and idea inputs (inventors

are deprived of social interactions). However, if NPIs save lives, they might increase labor

inputs and preserve intangible or organizational capital in the medium or long run. The effect

of NPIs on idea inputs is also unclear since inventors in short-NPI cities might respond by

voluntarily limiting social interactions to decrease their risk of infection.

On the supply side, NPIs might reduce short-run labor inputs to inventive activities through

quarantine measures but increase them in the medium run by increasing health and reducing

mortality. NPIs adopted during the flu pandemic appear to have reduced mortality. Markel

et al. (2007) and Correia et al. (2020) find that NPIs reduced peak mortality and cumulative

excess mortality. Chapelle (2020) finds that NPIs significantly reduced mortality in 1918, but

these reductions were partially offset with higher mortality in subsequent years. Finally, Clay

et al. (2018) and Barro et al. (2020) find smaller effects of NPIs in reducing mortality that

are statistically insignificant. Because death rates for adults between the ages of 18 and 44

during the 1918 influenza were unusually high and the average patentee in this period was 41

years old (Sarada et al., 2019), illness and mortality among likely inventors might have directly

4See Beach et al. (2020) for more details on the historical context.
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incapacitated labor devoted to inventive activities, resulting in fewer patents.5 By saving lives,

NPIs may have increased labor inputs to inventive activities in the medium run.6

There is evidence that the 1918 pandemic disrupted the production of intermediate inputs

and capital flows. Industrial production and coal production dropped (Velde, 2020). The textile

and lumber sectors also declined (Bodenhorn, 2020). Correia et al. (2020) document widespread

business disruption and uncertainty during and in the aftermath of the pandemic. Disruption

in economic activity may induce a loss of accumulated intangible or organizational capital

(Rubenstein, 1962), and overall uncertainty may reduce incentives for business investment. By

favoring a coordinated response to the pandemic, NPIs could mitigate this effect by better

preserving organizational or intangible capital and stabilizing business expectations.

Financial markets were also stressed by the 1918 pandemic. For example, heavy claims

against life insurance companies led to their exit from the market for high-grade railroad bonds.7

Long-NPI cities may have better stabilized access to inputs and capital markets.8 If they did,

then inventors in long-NPI cities, particularly in risky technologies, may have had better access

to critical factors in the medium run.

The 1918 pandemic likely reduced social interactions. Limits on social interactions may

hinder local invention by reducing localized knowledge spillovers (Jaffe et al., 1993; Carlino

and Kerr, 2015; Catalini, 2018; Atkin et al., 2020). Andrews (2019) provides evidence that

Prohibition reduced invention by reducing interpersonal communication, especially informal

interactions. NPIs implemented during the 1918 flu pandemic may have had similar effects

by shutting down workplaces, schools, bars, and other social gathering places. However, the

types and lengths of NPIs adopted during the 1918 pandemic suggest limited long-run effects

on patenting through a social interaction channel. First, Markel et al. (2007) report that the

NPIs were generally short-lived, with the median duration across categories of interventions

between one and six weeks. Second, the most common types of NPIs—school closures—seem

less likely to affect the kind of informal knowledge flows inventors rely on. Third, differences

between cities with short and long NPIs might be muted if inventors in cities with short NPIs

voluntarily avoided social interactions to reduce their infection risk.

On the demand side, pandemics may reduce demand for invention by reducing income.

Barro et al. (2020) find that real incomes declined by 6-8% in the average country during the

5Labor scarcity was likely a major contributor to business disruption in 1918 (Correia et al., 2020). Garrett
(2009) finds increases in wages in areas with higher mortality, consistent with labor shortages.

6Inventors might also have been motivated by non-market factors, such as priority credit or prestige among
peers (Merton, 1957; Stephan, 1996). NPIs may have also helped preserve the value of these factors.

7Cortes and Verdickt (2020) document that financial difficulties for life insurance companies around the
1918 pandemic were attenuated by increasing demand for life insurance products, larger issuance of equity, and
increased prudential regulation.

8Correia et al. (2020) find evidence of a positive relationship between the adoption of NPIs and local assets
of national banks in the aftermath of the pandemic.
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1918 flu pandemic. However, the market for inventions is likely regional or even national in

scope. For this reason, it seems unlikely that there were large effects of NPIs on invention

through local demand channels.

In sum, NPIs during the 1918 pandemic might have reduced patenting in the short run

by reducing labor inputs, capital inputs, and idea inputs. But these negative short-run effects

may have been limited by the type and short duration of most NPIs. In the medium run, by

increasing health and reducing mortality, NPIs may have preserved inventor labor supply and

organizational capital, increasing patenting rates.9

3 Data

We construct a new city–month panel on NPIs and patenting rates. We start with data on NPI

length for 43 cities from Markel et al. (2007). We extend this database by seven additional cities

using the Influenza Archive 2.0 (2016), an update of the archive that Markel et al. (2007) used

to construct their original sample. One virtue of expanding the Markel et al. (2007) sample is

that our new panel includes fast-growing cities in the western and southern US (see Appendix

Table A.1). Systematic information on the duration of NPIs is limited to the 50 cities in our

expanded sample.

We construct a city–month panel of ever-granted patents from CUSP (Berkes, 2018). CUSP

includes the near-universe of patents issued by the US Patent and Trademark Office. We select

patents for which at least one inventor resides in our sample of 50 cities. We construct a city-

specific patent count variable by dividing each grant by the number of co-inventors and assign

the corresponding fraction to each city–month observation. Importantly, CUSP includes the

application filing date for each patent that was subsequently granted, allowing us to assign

patents to the month of application versus the month of issue. Thus, we are able to more

closely measure the date of invention.

Across our 50-city sample, the average monthly patenting rate by city (patent count per

100,000 population) ranges from 0 to 28, with an average of 5.19 (see Appendix Table A.2).

This amounts to an average of 27 patents per city per month, most of which are from single-

inventor patents. The average duration of NPIs is 85.2 days, with a minimum of 28 and a

maximum of 270. The share of cities classified as longer NPI cities (treatment group) is 0.36.10

Figure 1 shows the mean log monthly patenting rates for long- and short-NPI cities between

January 1916 and December 1920.11 The dashed lines show residualized log monthly patenting

9There is no evidence of pandemic-related effects in the number of filed applications or in lengthy discussions
of staffing and turnover (see the 1918 or 1919 Annual Reports of the Commissioner of Patents).

10We also collect and use city total populations, compositions by race and sex, and literacy rates from historical
US Censuses 1900–1930. Intercensal values are linearly interpolated between the Aprils of each Census year.

11As explained in the introduction, long-NPI cities have cumulative NPI durations of more than 90 days.
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after removing city-specific seasonality (with month-of-year fixed effects). To better visualize

the underlying patterns, the solid lines show smoothed values of the residualized series estimated

by local polynomial regression (with a bandwidth of 1.5 months on either side).

A few key patterns emerge from Figure 1. Before September 1918, both long- and short-

NPI cities had similar trends in monthly patenting rates. Monthly patenting rates peaked in

early 1917 and declined thereafter until late 1918. These declines may reflect US entry into

World War I and the mobilization of resources and labor for the war effort.12 Both long- and

short-NPI cities show sharp rebounds in patenting rates starting around October or November

1918. Short-NPI cities briefly exhibit higher patenting rates in mid-1919. However, through

the end of 1920, long-NPI cities show persistent increases in patenting rates compared with

short-NPI cities. We explore these patterns in depth next.

4 Empirical Framework

We use difference-in-differences (DD) to estimate the causal effect of NPIs on city patenting

rates. Figure 1 shows the timeline of the pandemic and defines the time periods in our analysis.

We define before September 1918 as the Pre-treatment period. In some specifications, we

partition this Pre-treatment period into a Before period, from the beginning of the sample

until one year before the pandemic started (August 1917), and a Baseline period covering the

year before the pandemic (September 1917 - August 1918). The Post-treatment period begins

in September 1918, consistent with the onset of the most devastating wave of the pandemic

and the implementation of earliest NPIs. We divide the Post-treatment period into a During

period, covering the seven months during the pandemic peak (September 1918 through the end

of March 1919), and an After period, from April 1919 to the end of the sample.

There are two important features of the patenting data that the empirical model needs to

account for. First, there are a substantial number of zeros in city–month patenting. Second,

because patent filing is relatively rare, there is greater heteroskedasticity in smaller cities with

less patenting. To address these issues, we use a Poisson Pseudo-Maximum Likelihood (PPML)

estimator. PPML accommodates zero-valued outcomes, efficiently handles heteroskedasticity,

and is robust to misspecification (the true density does not need to be Poisson), and inference

can easily account for overdispersion and clustering.

The baseline DD specification that compares outcomes pre- and post-pandemic makes the

following conditional mean assumption for patenting rates:

Short-NPI cities have cumulative NPI durations of less than 90 days.
12There may also have been some suppression of defense-related patent applications, though such efforts were

much more systematic in World War II (Gross, 2019).
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E

[
Ycmt

Pcmt

]
= exp (δcm + δmy + δry + β · g(NPIc)× 1[Post 9/18]) , (1)

where Ycmt and Pcmt are the number of (ever-granted) patents filed and population in city c

during month m and year t, respectively. The indicator 1[Post 9/18] equals one in the Post-

treatment period. Since the 1910s and 1920s saw rapid social and economic changes, we test

the robustness of our results to alternative choices for the starting and ending years.

In our preferred specification, we include city–month fixed effects to control for time-

invariant drivers of inventive activities specific to a city, such as proximity to transportation

networks (Perlman, 2016; Agrawal et al., 2017) or the presence of local universities (Kantor

and Whalley, 2014; Andrews, 2020), and for possible differences in seasonality of patenting

across cities. We also include month–calendar-year fixed effects to control for national trends

in patenting, and Census-region–year fixed effects to control for the differential evolution of

patenting trends in the North, South, Midwest, and West13 driven by factors such as the Great

Migration of African-Americans from the South to Northern cities (Collins and Wanamaker,

2014) or growing industrialization of the West (Kim and Margo, 2004).14

The primary treatment is a function g() of the number of days of NPIs imposed by each city.

We focus on a binary treatment indicator that compares across cities with shorter and longer

NPIs (NPI duration of 90 days or more), but we also report estimates when the treatment is

defined as the number of days of NPI in each city. The goal of the analysis is to identify the

causal effect of NPI length on the local patenting rate, as represented by the parameter β.

Identification of β requires that the error term in Equation (1) is uncorrelated with g(NPIc)×
1[Post 9/18], conditional on the controls and fixed effects included in the regression. This can

be interpreted as the standard parallel trends assumption: patenting outcomes in short-NPI

cities provide a valid counterfactual for patenting outcomes in long-NPI cities, in the absence of

longer restrictions. Therefore, as is common with DD designs, we test the identifying assump-

tion by probing the robustness of the estimates to different sets of fixed effects and city-level

time-varying controls that may predict invention rates (e.g., educational attainment trends).

We also investigate differences in pre-trends.

Our application follows the standard DD model with one treatment group, one control

group, and a single time period where treatment status changes in the treatment group. In

such models, the DD estimand identifies the average treatment effect on the treated even in

13Andrews and Whalley (2020) describe the economic geography of innovation in the US over the last 150
years.

14Knowledge flows declined between US and German scientists during World War I (Iaria et al., 2018). One
concern is that the resumption of these knowledge flows after the war might be spuriously correlated with
the adoption of NPIs, perhaps driven by the local share of residents of German descent. Since immigrants
by country of origin are strongly clustered within the US (Abramitzky and Boustan, 2017), our inclusion of
Census-region–year fixed effects is likely to absorb this correlation.
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presence of treatment effect heterogeneity (Card and Krueger, 1994; Abadie, 2006), unlike

DD estimands in more complicated settings (e.g., de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2018).

We also report estimates from an extended DD specification that mimics Equation (1) but

divides the Pre-treatment period into Before and Baseline periods, as well as the Post-treatment

period into During and After periods:

E
[
Ycmt

Pcmt

]
= exp (δcm + δmy + δry + g(NPIc)×
{βP · 1[Pre 9/17] + βD · 1[9/18− 3/19] + βA · 1[Post 4/19]})

(2)

This specification allows us to directly test for differences in pre-trends and to highlight dy-

namic effects of longer NPIs on innovation During versus After the pandemic. While we remain

agnostic about the duration window for dynamic effects after the pandemic, we focus on the

sample period from 1/1916 to 12/1920 in our preferred specification to avoid possible confound-

ing factors long before or after NPIs were implemented. Nevertheless, we also present estimates

varying time windows around the pandemic below.

5 Results

Table 1 reports the estimates of β from Equations (1) and (2). These PPML estimates can

be interpreted as the effect of NPI length on log patenting rates (i.e., in percentage terms).

Panels A-D present estimates for two different functional form assumptions on g(·) and two

different specifications of the DD model. Columns (1) to (3) introduce different sets of fixed

effects in the regression models while columns (4) to (7) consider alternative time windows for

the sample. Standard errors clustered by city are reported in parentheses (as in the rest of the

empirical analysis).

The results in Panel A show that long-NPI cities had higher patenting rates than short-NPI

cities. The simple DD estimates range from 0.056 to 0.093 log points, which we interpret as

increases in the monthly patenting rate of 5.6% to 9.3%.15 All these estimates are statistically

significant at the 5% level; the choice of fixed effects and starting and ending years is mostly

inconsequential. In our preferred specification in column (3) that includes city–month, Census-

region–year, and month–calendar-year fixed effects, the effect of long NPIs on patenting rate is

7.4%, with a 95% confidence interval ranging between 1.7% and 13.1%.16

15We follow the convention of interpreting log point differences as approximating percentage differences in
the rest of the paper.

16Since cities in our sample adopted NPIs of varying duration, the comparison between long-NPI (treat-
ment) and short-NPI cities (control) follows a fuzzy difference-in-differences design (de Chaisemartin and
D’Haultfœuille, 2018). In the Appendix, we show that simple fuzzy-DD corrections yield estimates of NPI
effects that are larger than those reported in Table 1.
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The extended DD estimates in Panel B confirm this result. An added result is that the

positive effect on NPI length on invention is largely driven by the period After the pandemic

ended, versus During the pandemic (although this difference is not statistically significant).

Importantly, the extended DD estimates also show no statistically significant evidence of pre-

pandemic differences in patenting rates across treatment and control cities. This result supports

the main identifying assumption underlying Equations (1) and (2).

Panel C presents the same analysis as in Panel A, but for a specification where NPI length

enters linearly in number of days (divided by 30 for ease of interpretation). The results in

Panel C confirm the findings in Panel A. Cities with more months of NPIs had higher monthly

patenting rates in the period during and after the pandemic. The extended DD results in Panel

D further confirm the absence of significant pre-trend differences across cities with differing

NPI length and that the NPI effect on patenting rate primarily operates through an impact on

patenting rates in the After -pandemic period.

In order to more flexibly investigate pre- and post-pandemic differences in patenting rates

between long- and short-NPI cities, we also estimate event-study variants of Equation (1) and

(2). Figure 2 reports these results. To proceed, we aggregate the data to an annual frequency

and shift the start of each year by four months earlier so that no years cover both pre- and post-

pandemic months (e.g., 1918 sums patents over September 1917–August 1918). The top panel

shows coefficient estimates on the binary long-NPI treatment interacted with year indicators,

while the bottom panel interacts the continuous measure of cumulative NPI days with year

indicators. The shifted year of September 1917 to August 1918 is the reference category and

the regression models for Figure 2 include city and year fixed effects. Both specifications of NPI

length show little evidence of pre-trend differences, as the point estimates (black circles) are

small and the 95% confidence intervals (in gray) always include zero. Beginning in 1919 (i.e.,

9/18–8/19), however, these estimates become larger and positive, and significantly different

from zero in about half the years. (Pooling their effects results in estimates similar to those in

Table 1).

5.1 Robustness analysis

We briefly discuss the results of robustness analyses reported in Appendix Table A.3. Odd-

numbered columns report simple DD model estimates, and even-numbered columns report

extended DD model estimates. All models are based on the specification of column (3) in Table

1. Taken together, the evidence in Appendix Table A.3 confirms our main finding in Table 1

that longer NPI periods led to a positive and statistically significant increase in patenting rates.

In particular, the results are robust to using only the original 43-city sample of Market et al.

(2007) (columns 3 and 4), to the inclusion of linear time trends interacted with city-specific
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indicators of human capital from the 1910 Census (columns 5 and 6), and to controlling for city-

levels indicators of pandemic severity (columns 7 and 8). Adding linear time-trend interacted

with city-specific NPI length or city-specific linear time trends to the baseline specification

leads to a 35% to 55% increase in the standard errors, but does not meaningfully change the

magnitude of the estimates of the NPI effect (columns 9 and 10).

We also perform a jackknife-like exercise and report the estimated coefficients for 50 spe-

cifications based on Equation (1) where each specification drops one city from the estimation

sample. Appendix Figure 2 shows that the specifications with the binary treatment are stable

across jackknife samples and robust to dropping any city, while the specifications with the

number of days in NPIs as the treatment variable are also mostly stable and retain statistical

significance in all but two cases.

Finally, in Appendix Figure A.3 we investigate the robustness of our main estimates to

alternative thresholds to define long- and short-NPI cities. We consider a series of regressions

where the threshold in days of NPIs to switch from “short” to “long” varies from a low of 41

days to a high of 154 days (the 10th and 90th percentiles in the NPI duration distribution,

respectively). The results indicate that for a range of thresholds from 78 days or greater to 143

days or greater, the corresponding estimates are similar in magnitude to those in Table 1 and

statistically significant.

5.2 Interpretation and Further Results

Table 2 Panel A shows the estimated effect of NPIs separately by inventor status (single versus

multiple investors) and by patent ownership status (patents owned by the inventors themselves

versus other assignees such as firms or universities). This analysis helps characterize possibly

heterogeneous effects of NPIs on different types of inventions. Throughout Table 2, we focus

only on our preferred specification (city–month, month–calendar-year, and Census-region–year

fixed effects, sample period of 1916–1920, and binary long-NPI treatment).

The simple DD estimates indicate that long NPIs increased invention rates across most

categories of inventor status and patent ownership. However, this pattern is substantially

stronger for teams of multiple inventors. Column (2) reports a 20% higher patenting rate for

multiple inventor patents overall (irrespective of patent ownership) in long-NPI cities, compared

with 6.2% for single inventor patents. The estimates in Columns (7) and (8) further show a

larger effect for multiple-inventor patents with an assignee.

Though the extended DD results are not as precisely estimated, a few observations bear

noting. First, we once again fail to reject the null hypothesis of no pre-trend differences between

long- and short-NPI cities. Second, invention dynamics vary between single- and multiple-

inventor patents. For single-inventor patents, long NPIs increase patenting rates primarily
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After the pandemic. For multiple-inventor patents, long NPIs tend to increase patenting rates

both During and After the pandemic, with larger effects During the pandemic (although the

differences between During and After are not statistically significant).

These results provide preliminary evidence on the channels that link NPI length with in-

creased patenting during and after the flu pandemic. Because multiple-inventor patents were

not negatively affected in long-NPI cities During the pandemic, reductions in social-interaction

inputs to patenting do not seem to have been so large as to produce, on net, a decline in

invention. Instead, our results suggest that NPIs may have better preserved inventive factors

important for coordinating inventing teams or organizations. Collaborative invention remained

heightened After the pandemic in long-NPI cities.

The results by assignee status further support the interpretation that coordination or or-

ganizational factors may have been better preserved in long-NPI cities. Long NPIs led to nearly

twice the increase in patents with an assignee compared with patents without an assignee. This

suggests that NPIs may have reduced business uncertainty or preserved organizational capital.

In fact, the increasing effect sizes moving to the right in Columns (5)–(8) of Table 2 Panel

A point to an ordering of these impacts: there is no statistically significant effect for single-

inventor, no-assignee patents; there is a small significant effect for single inventors associated

with an assignee; there are larger effects for multi-inventor patents without an assignee; and

the largest effects are for multi-inventor patents with an assignee.

Table 2 Panel B reports estimates of the effect of NPI length on patenting rates for dif-

ferent technology classes. We use the 8 main patent categories in the Cooperative Patent

Classification, labelled A through H; example of classes include “Human necessities” (Class

A), “Mechanical engineering” (Class F), and “Electricity” (Class H). The effect of NPI length

on invention varies across technology classes. We find statistically significant positive impacts

of longer NPIs in the baseline DD models for Class D (Textiles and paper), Class F (which

includes Mechanical engineering, Lighting, and Heating), and Class H (Electricity). For the

other classes, the simple DD estimates are not statistically significant. The extended DD res-

ults broadly reflect similar patterns, although with reduced precision (in particular for classes

with lower average monthly patenting rates).

Two of the three technology classes that saw increased patenting in response to longer NPIs

(classes F and H) were rapidly expanding and gaining importance in the invention landscape

in the 1910s and 1920s, at the expense of shrinking fields, such as class A (which includes

Agriculture) (Berkes et al., 2020). Although there are several possible interpretations of this

finding, a plausible hypothesis is that longer NPIs may have reduced business uncertainty and

stabilized local financing conditions. Emerging fields were likely characterized by a higher de-

gree of technological and market risk, making the access to the necessary resources difficult and
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the presence of a healthy system of financial intermediation critical for invention.17 Correia

et al. (2020) survey contemporaneous news, documenting that the pandemic generated con-

siderable stress on the financial markets. However, they find that national banks’ assets grew

more in cities with longer NPIs after the pandemic (although the difference is not statistically

significant). Insofar as national banks’ assets partly reflect the strength of the local banking

sector, an improvement in the conditions of financial intermediation and an overall decrease

in economic uncertainty can explain the larger positive response of invention to NPIs in newly

emerging, and possibly more risky, technological domains.

6 Discussion and conclusions

This paper analyzes the effect of NPIs on invention using difference-in-differences and panel

data on patenting rates and NPI duration for 50 large US cities. Cities that responded to

the 1918 flu pandemic with longer NPIs did not experience a relative decline in patenting

rates during the pandemic. On the contrary, long-NPI cities experienced significantly higher

patenting rates in the years after the pandemic ended. Longer NPIs had even larger positive

effects when considering patents with multiple inventors, patents owned by external assignees,

and patents in rapidly expanding technological fields.

These findings contribute new evidence on the economic consequences of the 1918 pandemic

(Beach et al., 2020). Previous research has focused on contemporaneous measures of economic

activity, such as manufacturing employment (Correia et al., 2020, Lilley et al., 2020). Analysis

of longer-run impacts of the pandemic is confounded by a deflationary recession in 1920–1921.

In contrast, we study patenting rates, which link current activity to future productivity growth

(Kelly et al., forthcoming). In this sense, our findings provide the first evidence of the effects

of NPIs on factors affecting long-run economic growth.

Why did restrictions on interactions and activity during the 1918 pandemic not cause a

reduction in patenting rates? Modern evidence suggests that personal interactions are an im-

portant factor in innovation (Atkin et al., 2020; Boudreau et al., 2017). Historically, reduced

social interactions during Prohibition had significant negative effects of patenting rates (An-

drews, 2020). Two factors reconcile our results with previous findings. First, the most common

NPI in 1918 was school closure (Markel et al., 2007). Compared with business closures or

public gathering bans, school closures seem least likely to hinder the interactions that matter

for invention. Second, even in the absence of mandated closures or social distancing, people in

short-NPI cities may have voluntarily limited their own social interactions to reduce their risk

17Nanda and Nicholas (2014) show that during the Great Depression measures of local bank distress were
associated with lower firm-level patenting rates and a shift towards more incremental and less risky inventions.
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of exposure.18 Rather than challenging the evidence on the importance of in-person contacts for

invention, our results suggest that NPIs might have helped prevent a decline in patenting rates

by reducing mortality, decreasing uncertainty, and preserving intangible and organizational

capital, without disproportionately hindering knowledge flows in cities.

Although both the 1918 flu pandemic and the 2020 COVID-19 pandemic featured conta-

gious respiratory viruses and the adoption of NPIs to slow the spread of disease, a few factors

complicate direct comparison. First, modern communication technologies might be a substi-

tute for many of the social interactions that favor idea flows. Second, the two pandemics were

markedly different in overall mortality and extent of public health response. NPIs in 1918 were

shorter and less extensive than the ones implemented in 2020. These factors make it difficult

to extrapolate from the positive effects of NPIs in 1918 on patenting rates to the present day.

What can we learn from history, then? Our evidence suggests that the decrease in local

interactions constitutes only part of the effect of NPIs on invention rates. These results highlight

the importance of considering the impact of NPIs on invention rates through a wide range of

channels. The sign of the combined effect is ultimately determined by the behavioral, economic,

and public policy forces that shape the relative strength of those channels.

18Goolsbee and Syverson (2020) find that during the COVID-19 pandemic, mandatory mobility restrictions
in the US explain only a small fraction of the observed decline in overall consumer traffic. Individual choices
seem to have played a more important role in reducing mobility.
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Figure 1: Monthly Patenting Rates in Short- and Long-NPI Cities

Figure 1 reports residualized log monthly patenting rates after removing city-specific sea-
sonality with month-of-year fixed effects (dashed lines). The average residualized monthly
patenting rate for long- (short-)NPIs cities is shown in blue (orange). The solid lines are
smoothed values of the residualized series estimated by local polynomial regression with a
bandwidth of 3 months. Figure 1 also provides the timeline of the pandemic and defines
the critical time periods that underlie our analysis. The Pre-treatment period corresponds
to the period before September 1918, which we also divide into the Before period (from the
beginning of the sample until one year before the pandemic started (August 1917)), and
the Baseline period (September 1917 - August 1918). The Post-treatment period begins in
September 1918 and is split into a During period (the period of seven months during which
the flu was most active (September 1918 through the end of March 1919)), and an After
period (from April 1919 to the end of the sample).
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Figure 2: Event Study Analysis (Aggregated to Shifted Years)

Figure 2 reports estimates from event-study variants of Equation (1) and (2). The city-
month data on NPIs and patenting rates is aggregated to an annual frequency represented
by shifted years (where the start of each year is shifted by four months to the left (e.g.,
so that 1918 includes September of 1917 to August of 1918)). The top panel shows the
coefficient estimates on the binary measure of treatment (cumulative NPIs longer than 90
days) interacted with year indicators, while the bottom panel reports the same for the
continuous measure of cumulative days of NPIs (divided by 30). The regression models
include city and year fixed effects, and the shifted year corresponding to September of 1917
to August of 1918 is the reference category. Point estimates are shown by the black circles,
and the 95% confidence intervals (dashed lines in gray) are based on city-level clustering.
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Table 1: Effect of NPI Length on Patenting Rate

(1) (2) (3) (4) (5) (6) (7)

NPI Length = 1[NPIs > 90 Days]

Panel A. Simple DD
Post Pandemic × NPI Length 0.056* 0.065* 0.074* 0.067* 0.093* 0.088* 0.086*

(0.027) (0.027) (0.029) (0.032) (0.044) (0.041) (0.044)
Panel B. Extended DD

Before Pandemic × NPI Length 0.013 0.007 0.012 0.017 0.014 0.018 0.032
(0.027) (0.027) (0.033) (0.036) (0.032) (0.036) (0.038)

During Pandemic × NPI Length 0.049 0.040 0.058 0.063 0.068+ 0.070+ 0.069+
(0.041) (0.041) (0.040) (0.039) (0.040) (0.039) (0.039)

After Pandemic × NPI Length 0.068* 0.076* 0.088* 0.085* 0.106* 0.106* 0.117**
(0.033) (0.032) (0.035) (0.035) (0.050) (0.049) (0.045)

NPI Length = Days of NPIs ÷ 30

Panel C. Simple DD
Post Pandemic × NPI Length 0.017+ 0.020* 0.024* 0.022* 0.032+ 0.031+ 0.030+

(0.010) (0.010) (0.011) (0.011) (0.018) (0.017) (0.017)
Panel D. Extended DD

Before Pandemic × NPI Length 0.008 0.006 0.008 0.009 0.010 0.009 0.009
(0.010) (0.010) (0.011) (0.013) (0.011) (0.014) (0.015)

During Pandemic × NPI Length 0.016 0.011 0.018 0.020 0.023+ 0.023+ 0.023+
(0.014) (0.014) (0.013) (0.013) (0.014) (0.013) (0.013)

After Pandemic × NPI Length 0.023+ 0.026* 0.032* 0.032* 0.040+ 0.040+ 0.040*
(0.013) (0.013) (0.016) (0.016) (0.022) (0.022) (0.020)

Fixed Effects
City X - - - - - -
Month-Year X X X X X X X
City-Month - X X X X X X
Region-Year - - X X X X X

Sample coverage
begins January of 1916 1916 1916 1913 1916 1913 1910
ends December of 1920 1920 1920 1920 1923 1923 1926

N 3000 3000 3000 4800 4800 6600 10200

Notes: Table 1 reports DD estimates of the effect of NPI length on patenting rates. The sample includes the
50 cities for which we have information on NPI length (see Appendix Table A.1). The dependent variable
is the patenting rate (patents filed/population) in a city-month. The treatment variable is an indicator of
NPI length: a binary indicator for NPI period longer than 90 days (Panels A and B) or the number of days
of NPIs divided by 30 (Panels C and D). All specifications are estimated using a Poisson Pseudo-Maximum
Likelihood (PPML) with the exposure variable set to a linear interpolation of city population. The estimated
coefficients can be interpreted as a percentage change in the patenting rate. Standard errors are clustered
by city. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 2: Effect of NPI Length on Patenting Rate by Co-Inventor and Assignee Status, and by
Patent Technology Class

(1) (2) (3) (4) (5) (6) (7) (8)
Single Single Multiple Multiple

Single Multiple No With Inventor, Inventor, Inventors, Inventors,
Panel A: By Co-Inventor & Assignee Status Inventor Inventors Assignee Assignee No Asgn. W/ Asgn. No Asgn. W/ Asgn.

Simple DD
Post Pandemic × NPI Length 0.062+ 0.200*** 0.055 0.101* 0.046 0.085* 0.163* 0.259*

(0.033) (0.055) (0.042) (0.041) (0.045) (0.041) (0.075) (0.117)
Extended DD

Before Pandemic × NPI Length 0.012 0.011 0.046 -0.037 0.048 -0.040 0.033 -0.022
(0.034) (0.125) (0.031) (0.056) (0.034) (0.061) (0.116) (0.214)

During Pandemic × NPI Length 0.039 0.271** 0.053 0.069 0.040 0.040 0.235 0.337
(0.044) (0.102) (0.059) (0.067) (0.059) (0.066) (0.148) (0.227)

After Pandemic × NPI Length 0.078* 0.188+ 0.092+ 0.081+ 0.085 0.067 0.169+ 0.218
(0.035) (0.109) (0.051) (0.045) (0.055) (0.041) (0.102) (0.216)

Mean of Dep. Variable 24.80 2.41 15.84 11.39 14.72 10.37 1.34 1.40

(1) (2) (3) (4) (5) (6) (7) (8)
Class A Class B Class C Class D Class E Class F Class G Class H

Human Operat.; Chemist.; Textiles; Fixed Mech.
Panel B: By Patent Class Necessit. Transport. Metal. Paper Construct. Engr. Physics Electric.

Simple DD
Post Pandemic × NPI Length 0.012 0.056 -0.078 0.240* -0.074 0.148** 0.169 0.213***

(0.070) (0.041) (0.153) (0.116) (0.082) (0.053) (0.114) (0.061)
Extended DD

Before Pandemic × NPI Length 0.069 -0.023 0.032 0.099 0.239* -0.080 -0.150+ 0.264
(0.058) (0.060) (0.136) (0.213) (0.112) (0.076) (0.085) (0.179)

During Pandemic × NPI Length 0.153+ -0.001 -0.010 0.098 0.207 0.201+ -0.247* -0.080
(0.081) (0.057) (0.166) (0.266) (0.157) (0.103) (0.114) (0.179)

After Pandemic × NPI Length 0.023 0.055 -0.079 0.344+ 0.046 0.069 0.170 0.494***
(0.079) (0.067) (0.146) (0.192) (0.125) (0.082) (0.145) (0.122)

Mean of Dep. Variable 4.76 9.43 1.57 1.11 1.86 5.00 2.52 2.56

Notes: Table 2 reports DD estimates of the effect of NPI length on patenting rates by co-inventors and by assignee status (Panel 2A) and by patenting
class (Panel 2B). The sample includes the 50 cities for which we have information on NPI length and covers the period January 1916 to December
1920. The dependent variable is the patenting rate (patents filed/population) in a city-month. The treatment variable is a binary indicator for NPI
period longer than 90 days. All specifications are estimated using a Poisson Pseudo-Maximum Likelihood (PPML) with the exposure variable set to a
linear interpolation of city population and include month-by-year, city-by-month of year, and region-by-year fixed effects. The estimated coefficients
can be interpreted as a percentage change in the patenting rate. Sample size is 3000 city-months before removing collinear fixed effects. Standard
errors are clustered by city. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Appendix

A1 Additional Details on Data Sources

We provide additional details related to the data collection and processing below. The summary

statistics for the key variables in our analysis (primary sample window of January 1916 to

December 1920) are shown in Table A.2.

A1.1 Comprehensive Universe of US Patents (CUSP)

Data on the number of patents filed by date at the city level are taken from the Comprehensive

Universe of US Patents (CUSP). For the analysis in this paper, these data represent the near

universe of the filing date (by city) of all ever-granted patents. Details on the procedure

behind the data collection and georeferencing can be found in Berkes (2018). CUSP contains

information on technology classes (as they appear on the USPTO website in June 2016), name

and location (at the city level) of inventors and assignee, filing date, and issue date. The

estimated coverage of this data set is above 90% in each year between 1836 and 2010.

Some patents have multiple inventors whose locations are not in the same city. For patents

with N ≥ 2 inventors, we assign 1/N of the patent to each city associated with an inventor.

Because more than 90% of the patents have a single inventor, and inventors for many multi-

inventor patents are often in the same city, the precise way that we assign multi-inventor patents

makes little difference.

A1.2 Extending the Markel et al. (2007) Sample

Markel et al. (2007) provide the standard data set for NPI length during the 1918 pandemic.

Their data includes the sum of days of enforcement for each type of NPIs in 43 cities for which

they obtained a complete history of NPIs and weekly influenza data. The limiting factor is

availability of weekly influenza data (Beach et al., 2020).

We use the 43 cities included in Markel et al. (2007) and add seven cities for which there is

systematic historical documentation of responses to the 1918 pandemic in the Influenza Archive

2.0 (2016), an extension of the historical data collected in support of Markel et al. (2007). These

seven cities are Atlanta, GA; Charleston, SC; Dallas, TX; Des Moines, IA; Detroit, MI; Salt

Lake City, UT; and San Antonio, TX. Whereas the 43 original cities in Markel et al. (2007)

were primarily located in the Northeast and Upper Midwest, five of these seven additional cities

are in Southeast and West.

We collect the number of days of school closures and public gathering bans for these seven
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cities. If there were multiple closure events, we sum the days across events. We report the

information for the seven additional cities in the table below, and show the distribution of NPI

length in 5-day bins for the full sample of 50 cities in Figure A.1. Importantly, there appears

to be a substantial gap in NPI length around 90 days; no city has NPI length between 82 and

99 days. We view this as a natural gap in the distribution and define our binary definition

of treatment around 90 days of NPI length. We assess sensitivity to this threshold in Section

A2.1.

NPI Lengths for Seven Additional Cities not Included in Markel et al. (2007)

Days of Days of Public Mandatory Total Long
City School Closure Gathering Bans Quar. & Isol. NPI Days NPI

Atlanta 27 19 No 46 No
Charleston 37 32 Unknown 69 No
Dallas 18 23 Unlikely 41 No
Des Moines 46 10 No 56 No
Detroit 11 18 Unknown 29 No
Salt Lake City 60 81 Some 141 Yes
San Antonio 45 36 Unknown 81 No

Markel et al. (2007) also include a third category to create their measure of total NPI days:

mandatory isolation and quarantine (I&Q) requirements. We were not able to conclusively

document legal requirements for I&Q for the seven additional cities, as the historical record

covering I&Q appears sparser than those for other categories of NPIs. We were able to estab-

lish that Iowa had a statewide regulation banning mandatory I&Q, and Atlanta chose not to

implement such measures. Salt Lake City likely had mandatory I&Q measures, but the period

of coverage is unknown. On at least one date (10/14/1918), Dallas’ health officer decided not

to request the power to dictate I&Q. For Dallas and the other three cities, we are unable to

determine whether mandatory I&Q measures were ever implemented.

We note several reasons why the NPI data limitation in the additional seven cities is unlikely

to meaningfully influence our estimates of the impact of NPI length on patenting rates. First

and foremost, our preferred measure of NPI duration discretizes NPI length for periods longer

or shorter than 90 days. The contribution of mandatory I&Q to total NPI length is likely less

than the school closures or public gathering bans (as discussed below), and so it is unlikely

that adding a few days to total NPI length would switch any short-NPI cities to long-NPI

cities. Furthermore, short-NPI cities generally had shorter NPIs in all categories. Nevertheless,

we test the robustness of our main estimates to varying the threshold of the number of NPI

duration in days to separate between short- and long-NPI cities in Figure A.3 below.
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Second, mandatory I&Q measures appear to have been unpopular and used less commonly

than other measures. Table 2 of Markel et al. (2007) is a bit difficult to parse, but appears to

indicate that mandatory I&Q measures are used in fewer instances than other measures and

combinations of measures, and when used alone, are used for relatively short periods of time.

Moreover, at least one state (Iowa) banned mandatory I&Q measures as a violation of civil

liberties, leading us to believe that they were relatively unpopular.

We also show that our primary results hold when considering only the 43 cities in Markel

et al. (2007). Columns (3) and (4) in Appendix Table A.3 replicate the Table 1 analysis

and show that the estimated coefficient magnitudes in the 43 city and the 50 city samples are

similar. Appendix Figure A.2 further documents the robustness of our main results to dropping

individual cities from the estimation sample.

A1.3 Other data sources

We augment our estimation sample with city-level data on total population from the historical

US Decennial Censuses, 1900-1930. Intercensal values are linearly interpolated between the

Aprils of each Census year. We also construct city-level controls for literacy rates (share of the

population that could both read and write) and schooling (share of the population enrolled in

school) in the 1910 Decennial Census.

A2 Alternative Results and Robustness

A2.1 Sample Composition and Treatment Definition

Our sample of 50 cities with NPI length information includes an heterogeneous mix of cities at

the time of the 1918 pandemic, from larger ones like New York City and Chicago to relatively

smaller cities such as Des Moines and San Antonio (See Appendix Table A.1). We use a

jackknife approach to test if our main results are driven by the inclusion or exclusion of any

single city in the sample. Figure A.2 shows 50 estimated coefficients obtained by alternately

leaving one city out of the estimation sample (jackknifing). The figure reports the estimated

coefficients for both the binary and continuous NPI length models as in Table 1, column (3).19

The top panel shows jackknife replicates for binary treatment sorted by the duration of NPI

length (in days) for the omitted city. All estimates of the effect of longer NPIs on patenting

rates range between 0.06 and 0.09 and are statistically significant at the 5% level as in Table 1

(with the exception of 1 sub-sample out of 50, shown by the blue cross). Similarly, the bottom

19This specification includes city-by-month of year and Census-region–year fixed effects and uses the data
from 1916–1920).
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panel shows jackknife replicates for the continuous measure of treatment (number of days of

NPI divided by 30). The resulting estimates range between 0.02 and 0.03 and in 44 out of

the 50 samples are generally statistically significant at the 5% level. Importantly, across both

panels there is no systematic evidence of a correlation between the jackknife replicates and NPI

length.

From the jackknife replicates reported in Figure A.2, it is straightforward to calculate jack-

knife estimates of treatment effects by averaging the 50 leave-one-out estimates. For the binary

treatment measure we obtain an estimate of 0.074 with a standard error of 0.035 while for the

continuous measure of treatment we obtain an estimate of 0.024 with a standard error of 0.014.

Overall the evidence in Figure A.2 is similar to the main results in column (3) of Table 1, and

indicates that these results are stable across the jackknife sub-samples and that no single city

has a great leverage on our estimates, which is reassuring given the small number of cities in

our sample.

Next we investigate the robustness of our estimates based on the binary treatment to chan-

ging the threshold in the number of days that separates long- and short-NPI cities. That is,

we want to ensure that our results are not driven by the choice of 90 days of cumulative NPI

length to separate long- and short-NPI cities.

Appendix Figure A.3 reports estimates of β from Equation (1) (along with the 95% confid-

ence intervals) from a series of regressions where the threshold in days of NPIs to switch from

“shorter” to “longer” varies from 41 days (the 10th percentile in the NPI duration distribution)

to 154 days (the 90th percentile in the NPI duration distribution). Throughout the regression,

models are based on the preferred specification of column (3) in Table 1. The results indicate

that for a range of thresholds from 78 days or greater to 143 days or greater, the corresponding

estimates of β are similar in magnitude to those in Table 1 and statistically significant. Es-

timates based on treatment group thresholds at the lower end (most cities in treatment group)

and upper end (few cities in treatment group) are less precise.

A2.2 Addressing Potentially Confounding Covariates and Trends

Columns (5) and (6) in Appendix Table A.3 estimate the same set of models as Table 1

using the binary specification of treatment, but include controls for literacy and schooling.

Since education may be linked to invention, this specification investigates whether controlling

for differences in educational attainment across cities alters our baseline results. Data on

educational attainment at the city level during the early 20th century are limited. We draw on

two variables available from the 1910 Census: the share of the adult population that is literate,

and the share of the total population enrolled in school. Since we are concerned that these

measures of education after the pandemic may reflect a response to the pandemic (and thus
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be ‘bad controls’), we include them in the models with a linear time trend interacted with the

1910 shares of these variables.

The results in Appendix Table A.3 indicate that adding these measures of education does

not meaningfully alter our baseline results. There are two main findings: First, the coefficients

on NPI length in columns (5) and (6) are very similar to the baseline estimates (columns (1)

and (2)) and remain statistically significant at the 5% level. Second, the coefficient estimates

on the trends in education are themselves not statistically significant (estimates not reported).

This suggests that cities with relatively higher levels of education before the pandemic were

not already on a path of increased invention.

Columns (7) and (8) in Appendix Table A.3 are based on the preferred specification in Table

1, but include an additional interaction between an indicator pandemic severity at the city level

and indicators for the Post period (Simple DD model), and indicators for the Before, During,

and After periods (Extended DD model). To measure pandemic severity at the city level, we

use the log of excess pneumonia and influenza mortality per 100,000 population during the 24

weeks from September 8, 1918, through February 22, 1919, as reported in Markel et al. (2007).

Therefore the estimation sample is based on the 43 cities in Markel et al. (2007), not the 50

cities sample that underlies Table 1.20 The results in Appendix Table A.3 show that adding the

interactions with city-level pandemic severity does not alter our baseline estimates of the effect

of NPIs on patenting rates. Moreover, the interactions with pandemic severity themselves are

imprecisely estimates and statistically insignificant (estimates not reported).

Finally, we provide two tests that control for heterogeneous trends in patenting rates across

cities. Specifically, in columns (9) and (10) of Appendix Table A.3 we add a linear time-

trend interacted with city-specific NPI length (column (9)) and city-specific linear time trends

(column (10)). Both tests allow pre-trends to vary across cities, but absorb a substantial

amount of variation in the data. This is evident when examining the estimated standard errors

which are inflated by 35% and 55% when compared to those in column (1). The doubling of the

standard errors in column (10) is due to the fact that allowing for city specific time trends adds

49 additional coefficients to be estimates, relative to the model in column (1). Importantly,

however, the magnitudes of the point estimates in columns (9) and (10) are very similar to

those in column (1), mitigating concerns about differential trends across cities contaminating

the baseline estimates.

A2.3 A Fuzzy Difference-in-Differences Interpretation

All cities included in our sample implemented NPIs which varied in duration. Because the bin-

ary measure of treatment splits cities with strictly positive NPI durations into two groups (short-

20Unfortunately, the weekly mortality data in Markel et al. (2007) does not extend past February 1919.
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and long-NPIs), our approach is similar to a fuzzy difference-in-differences design (de Chaise-

martin and D’Haultfœuille, 2018).21 Put differently, both the treatment group (long-NPI cities)

and the control group (short-NPI cities) are exposed to NPIs, but exposure is longer in the

treatment group. A simple approach to tackle fuzzy DD designs is to use a Wald-like estimator

of treatment effects where the DD estimate for the outcome is divided by the DD estimate for

the treatment.22

In our setting, this Wald-like DD estimator would estimate the effect of maximum observed

NPI length relative to no NPIs as:

β̂
1

170
(E[NPI|NPI ≥ 90]− E[NPI|NPI < 90])

,

where β̂ is one of the standard DD estimates based on the binary measure of treatment (e.g., as

reported in Table 1) and 170 is the maximum observed NPI length in our sample. In the sample

of 50 cities we obtain the following quantities: E[NPI|NPI ≥ 90] = 141.1 and E[NPI|NPI <
90] = 53.7, so the denominator of the Wald-like difference-in-differences estimator is 0.514.

Applying this scaling factor to the unadjusted DD estimates in Table 1, would essentially

double our estimates of the impact of long NPIs on patenting rates.

However, more structure is required for this simple approach to be valid in our context. We

highlight two key considerations. First, the local average treatment effect must be the same

in the treatment and control groups. In our setting this means that the average effect of an

extra day of NPI in the long-NPI cities (treatment group) is the same the average effect of

an extra day of NPI in the short-NPI cities (control group). While this is untestable, we can

provide suggestive evidence for the assumption by documenting the stability of the Wald-like

DD estimator on subsets of our sample. To proceed, we compute the same Wald-like DD

estimator as above, but exclude cities with NPI length between 50 and 90 days.23 We expect

that this estimate—which is based on a comparison between cities in the upper and lower

terciles of the NPI length distribution—should be larger than our baseline estimate. Indeed,

this alternative estimate of β̂∗ based on the sample that omits the middle tercile of the NPI

length distribution is 0.117 (with a standard error of 0.039). This provides evidence for the

monotonicity of the estimated treatment effect, which implies that the local average treatment

effect is roughly equivalent between treatment and control groups.

Second, one must assume that there is no discrete change in expected outcomes based on

21A fuzzy difference-in-differences model is akin to a standard difference-in-differences model except that the
treatment increases in both the treatment and control groups in the post period, but it increases more in the
treatment group.

22The fuzzy DD estimator proposed by (de Chaisemartin and D’Haultfœuille, 2018) cannot be applied in our
setting due to the nonlinear nature of our DD estimator (Poisson Pseudo-Maximum Likelihood).

23Note that E[NPI|NPI < 50] = 41.2.
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a small “ε” increase above the minimum value of the support of the treatment variables (here,

zero days of NPIs). This is unlikely in our setting: NPIs involve substantial civic effort and

probably effect the salience of the disease environment. A shutdown of even one day is likely

much more similar to a shutdown of two days than of zero days.

We conclude from this exercise that some extrapolation of our baseline results outside the

range of observable NPI lengths is not unreasonable. Applying a standard Wald-like DD estim-

ator to account for the fuzzy nature of our treatment and control group definitions produces a

corrected DD estimate that is slightly larger, but qualitatively similar to preferred estimates in

column (3) of Table 1.
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Figure A.1: Distribution of NPI Length Across 50 Cities
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Figure A.2: Leave-One-Out Estimates of the Effect of NPI Length on Patenting Rates

Figure A.2 shows 50 estimated coefficients obtained by alternately leaving one city out of
the estimation sample and estimating the DD parameter β as in Equation (1). The top
panel is for the binary treatment specification and the bottom panel is for the continuous
NPI model. In both cases, the specification includes city-by-month of year and Census-
region–year fixed effects and uses the data from 1916–1920). The estimates are sorted by
the duration of NPI length (in days) for the omitted city. Inference is based on city-level
cluster-robust methods. 32



Figure A.3: Estimated Effect of NPIs on Patenting Rates Across Central 80% of Possible
Cutoffs for Binary Treatment Definition

Appendix Figure A.3 reports estimates of β from Equation (1) from a series of regressions
where the threshold in days of NPIs to switch from “shorter” to “longer” varies from 41
days (the 10th percentile in the NPI duration distribution) to 154 days (the 90th percentile
in the NPI duration distribution). The underlying regression models include city-by-month
of year and Census-region–year fixed effects and are estimated on the 1916–1920 period
sample. The vertical bars represent the 95 % confidence intervals from inference based on
city-level cluster-robust methods.
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Table A.1: NPI Duration and Population by City

City Days of NPIs Pop. (1910) Source

Albany, NY 47 100,253 Markel et al. (2007)
Atlanta, GA 46 154,839 Influenza Archive 2.0
Baltimore, MD 43 558,485 Markel et al. (2007)
Birmingham, AL 48 132,685 Markel et al. (2007)
Boston, MA 50 670,585 Markel et al. (2007)
Buffalo, NY 49 423,715 Markel et al. (2007)
Cambridge, MA 49 104,839 Markel et al. (2007)
Charleston, SC 69 58,833 Influenza Archive 2.0
Chicago, IL 68 2,185,283 Markel et al. (2007)
Cincinnati, OH 123 363,591 Markel et al. (2007)
Cleveland, OH 99 560,663 Markel et al. (2007)
Columbus, OH 147 181,511 Markel et al. (2007)
Dallas, TX 41 92,104 Influenza Archive 2.0
Dayton, OH 156 116,577 Markel et al. (2007)
Denver, CO 151 213,381 Markel et al. (2007)
Des Moines, IA 56 86,368 Influenza Archive 2.0
Detroit, MI 29 465,766 Influenza Archive 2.0
Fall River, MA 60 119,295 Markel et al. (2007)
Grand Rapids, MI 62 112,571 Markel et al. (2007)
Indianapolis, IN 82 233,650 Markel et al. (2007)
Kansas City, MO 170 248,381 Markel et al. (2007)
Los Angeles, CA 154 319,198 Markel et al. (2007)
Louisville, KY 145 223,928 Markel et al. (2007)
Lowell, MA 59 106,294 Markel et al. (2007)
Milwaukee, WI 132 373,857 Markel et al. (2007)
Minneapolis, MN 116 301,408 Markel et al. (2007)
Nashville, TN 55 110,364 Markel et al. (2007)
New Haven, CT 39 133,605 Markel et al. (2007)
New Orleans, LA 78 339,075 Markel et al. (2007)
New York City, NY 73 4,766,883 Markel et al. (2007)
Newark, NJ 33 347,469 Markel et al. (2007)
Oakland, CA 127 150,174 Markel et al. (2007)
Omaha, NE 140 124,096 Markel et al. (2007)
Philadelphia, PA 51 1,549,008 Markel et al. (2007)
Pittsburgh, PA 53 533,905 Markel et al. (2007)
Portland, OR 162 207,214 Markel et al. (2007)
Providence, RI 42 224,326 Markel et al. (2007)
Richmond, VA 60 127,628 Markel et al. (2007)
Rochester, NY 54 218,149 Markel et al. (2007)
Salt Lake City, UT 141 92,777 Influenza Archive 2.0
San Antonio, TX 81 96,614 Influenza Archive 2.0
San Francisco, CA 67 416,912 Markel et al. (2007)
Seattle, WA 168 237,194 Markel et al. (2007)
Spokane, WA 164 104,402 Markel et al. (2007)
St Louis, MO 143 687,029 Markel et al. (2007)
St Paul, MN 28 214,744 Markel et al. (2007)
Syracuse, NY 39 137,249 Markel et al. (2007)
Toledo, OH 102 168,497 Markel et al. (2007)
Washington, DC 64 331,069 Markel et al. (2007)
Worcester, MA 44 145,986 Markel et al. (2007)
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Table A.2: Summary Statistics on Patents and NPIs

Mean SD Min p25 p50 p75 Max N

Outcome Variables
Patenting Rate (per 100,000 population) 5.19 3.17 0 2.91 4.86 6.89 27.58 3000
Patents 26.95 50.58 0 5.5 13 25.5 392.67 3000
Single-inventor patents 24.8 46.89 0 5 12 23 366 3000
Multi-inventor patents 2.15 4.05 0 0 1 2.5 37 3000
No-assignee patents 15.84 29.81 0 3 8 15.5 258.5 3000
Patents with assignees 11.10 21.62 0 1 4.5 11 172 3000

Treatment Variables
Days NPIs 85.18 45.59 28 49 65.5 1232 170 50
1[NPIs > 90] 0.36 0.48 0 0 0 1 1 50
Excess Death Rate (Markel et al. 2007) 505.5 138.2 210.5 410 522.9 591.8 806.8 43

Notes: The sample period is 1916-1920. All variables are defined at the city-month level for the 50 cities in
the main sample, except the city-level measure of pandemic severity which is only available for the 43 cities
in Markel et al. (2007). The outcome variables are patenting rates (per 100,000 population), constructed
from all patents filed and subsequently granted, taken from CUSP. Patents are assigned to cities based on
the inventors’ city of residence. Multi-authored patents are proportionally assigned in a way that reflects
the share of inventors residing in each city. The treatment variables are the number of days of NPIs, a
binary indicator for NPI periods longer than 90 days, and a city-level measure of the severity of the 1918
pandemic (excess death rate). The NPI variables are observed for the 50 cities of the main sample while
the excess death rate is measured in only the 43 cities in Markel et al. (2007). See Appendix Table A.1
for the complete list of 50 cities.
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Table A.3: Robustness Analysis

Preferred Add Add
Specification Only 43 literacy & pandemic Add
(Column 3 Markel et al. schooling severity time
in Table 1) (2007) cities controls (43 cities) trends

NPI Length = 1[NPIs > 90 Days] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Post Pandemic × NPI Length 0.074* 0.058* 0.063* 0.066* 0.074+ 0.063
(0.029) (0.028) (0.029) (0.029) (0.039) (0.045)

Before Pandemic × NPI Length 0.012 0.008 0.017 0.017
(0.033) (0.027) (0.033) (0.031)

During Pandemic × NPI Length 0.058 0.051 0.054 0.061
(0.040) (0.042) (0.039) (0.038)

After Pandemic × NPI Length 0.088* 0.076* 0.080* 0.080*
(0.035) (0.032) (0.035) (0.033)

Time Trend × (Days of NPIs)/30 -0.000
(0.005)

City Time Trends - - - - - - - - - X
N 3000 3000 2580 2580 3000 3000 2580 2580 3000 3000

Outcome variable is a weighted measure of patents filed in a city in a month with the characteristics given for each column. All
specifications are estimated using PPML with the exposure variable set to a linear interpolation of city population; coefficients can
be interpreted as representing a percentage change in the patenting rate. All models include month-by-year, city-by-month of year,
and region-by-year fixed effects, and all samples begin January 1916 and end December 1920. Literacy and schooling controls are the
share of the population that could both read and write and the share of the population that was enrolled in school, respectively, in the
1910 Census, interacted with a linear time trend. Pandemic severity is the log maximum excess death rate as reported in Markel et al.
(2007), interacted with the post period in column 5 and with Before, During, and After periods in column 6. Standard errors clusterd
by city. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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