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1 Introduction

Land varies widely in its productivity and amenity value. It is difficult for people to live

or produce output in rugged mountains or deep deserts. Similarly, fertile soil, a moder-

ate climate, and access to the coast are conducive to settlement and economic activity.

Scholars have long recognized that differences in land characteristics might impact economic

outcomes. For example, Smith (1776) stresses the role of access to water transport in fa-

cilitating specialization and industrial development. Jones (1981) and Diamond (1997) are

among many authors who link the dynamics of long run economic growth to land charac-

teristics. Another obvious place in which land quality matters is in interpreting population

density, which is in turn a central measure in the thinking of economists regarding economic

growth, population size, agglomeration effects, and the role of natural resources in affecting

economic outcomes. For many purposes, though certainly not all, a measure of population

size relative to the ability of land to provide support for those people will be more relevant

than a simple calculation of people per unit area.

In this paper, we construct a novel measure of the quality of a unit of land, and document

several striking relationships between land quality, quality-adjusted population density, and

economic outcomes across countries, both contemporaneously and going back to the dawn

of modern economic growth. Our novel measure overcomes two main problems. First, land

quality has many dimensions, including agricultural suitability, coastal location, ruggedness,

and many dimensions of climate. Existing work (Binswanger and Pingali, 1988; Mellinger,

Sachs, and Gallup, 2000; Galor and Ozak, 2016) has tended to focus on one of these at a

time. Second, empirically assessing the effects of different land characteristics on outcomes

such as population density or output requires disentangling the effect of land quality from

that of country-level institutions that may be correlated with it, as stressed by Acemoglu,

Johnson, and Robinson (2001). To solve both of these problems we estimate a Poisson regres-

sion of population in quarter-degree longitude-latitude grid cells on a vector of geographic

characteristics and country fixed effects. We then use fitted values that suppress the fixed

effects to form a measure of land quality for each grid cell.1

1Nordhaus (2006) takes an approach similar to that in the current paper, regressing the logs of total
output, output per capita, and population at the level of one degree grid cells on country fixed effects and a
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Aggregating grid-cell land quality, we construct average land quality (ALQ) for every

country. Despite being measured at the country level, ALQ is by construction purged of

the effects of country-level institutions or other unobservables. Analogously, we construct

total quality-adjusted land area (QAA), and quality-adjusted population density (QAPD),

which is simply total population divided by the quality-adjusted area. Such measures can be

used to quantify intuitions about how land quality adjustments matter. For example, while

Canada and the USA have very similar areas, by our measure of quality-adjusted area, the

USA is 8.8 times as large as Canada. As part of our analysis, we also discuss the extent of

mismatch between countries’ current population and their quality-adjusted land areas, and

the flows of population that would be required to equalize this ratio across countries.

Examining the relationships between ALQ, QAPD, and current economic outcomes,

we establish three interesting facts. First, there is a strong and robust positive correlation

between countries’ average land quality and their level of income per capita. Second, there is

no statistical relationship between income per capita and conventionally defined population

density. And third, there is a strong negative correlation between income per capita and our

measure of quality-adjusted population density.

We then turn to study the historical evolution of income and population over the past

200 years. We show that the relationship between land quality and population density

was much stronger historically than it is today. The correlation of income per capita with

conventionally-defined population density, which is insignificant today, was significantly pos-

itive in the past, while the correlation between quality-adjusted population density and

income, which is negative today, was positive in the past. Notably, these facts are incon-

sistent with standard theories of economic development, natural resources, and population

growth. Models going back to Malthus and Ricardo, with more recent examples being Galor

and Weil (2000), Hansen and Prescott (2002), and Lucas (2002), predict that population in

a pre-industrial equilibrium will be proportional to natural resources, and give no reason to

think that the same should not be true of population following industrialization. The key

phenomenon that is present in the data but not predicted by existing theories is that there

set of geographic covariates. Our paper differs from his in its specification (log-linear vs. Poisson, as discussed
below), population data used, the set of geographic covariates, and most importantly in interpretation, in
focusing on re-scaling population density as a function of geographic characteristics.
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is a negative correlation between countries’ land quality and their level of population growth

over the last 200 years.

In the final section of the paper, we develop a model that can explain all of the observed

changes in the relationships among density, quality-adjusted density, and income over the

last 200 years. There are two key driving forces in our model. First, as noted above, the

takeoff into modern economic growth occurred earliest in countries with high land quality.

Second, in countries that experienced later takeoffs, the extent of population increase over

the course of industrialization was larger than in countries that took off earlier. The source

of this greater population multiplication was the rapid transfer of health technology from

leading to following countries. In our model, this larger population multiplier results in a

permanently higher ratio of population to natural resources in follower countries, and to

a persistent gap in income per capita, even when there is full convergence of productive

technology.

The rest of this paper is organized as follows. In Section 2, we discuss the data we use

as well as a simple model for estimating geographic impacts. Section 3 presents our basic

results in terms of geographic predictors and fitted values for land quality at the level of grid

cells. Section 4 presents our basic findings on average land quality, quality-adjusted area,

and quality-adjusted population density aggregated to the level of countries. This section

also examines the relationships between income per capita, on the one hand, and ALQ,

QAPD, and conventionally defined population density, on the other. Section 5 looks at the

historical relationship between land quality, population density, growth of income per capita,

and growth of population. Our model for explaining this historical evolution is presented in

Section 6. Section 7 concludes.

2 Data and Specification

In this section we first discuss our data on geographic characteristics and the spatial dis-

tribution of population, paying particular attention to the choice of population data. We

then present a simple model of how population is allocated within a country as a function

of geographic characteristics, which we use to motivate our empirical specifications.
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2.1 Geographic and Population Data

To measure land quality, our baseline specification combines geographic characteristics from

Henderson et al. (2018) with agro-climatic data provided by the U.N. Food and Agricultural

Organization’s Global Agro Ecological Zones version 4 dataset (FAO’s GAEZv4), all scaled

to the same quarter-degree grid squares (approximately 773 square km at the equator).2

From Henderson et al. we use elevation, ruggedness, an index of malaria transmission,

distance to the coast, and a set of four dummies indicating the presence of a coast, a navigable

river, a major lake, and a natural harbor within 25 km of a cell centroid. These variables

primarily reflect the potential to trade with other regions and countries. Next we add a

selection of 33 characteristics from GAEZ that provide information on the thermal regime,

moisture regime, and growing period of each grid square for the time period 1981–2010.3

Finally, we include suitability indices of 11 major crops for the time period 1971–2000 from

GAEZ.4 These latter two categories primarily reflect agricultural potential, but may also

have some amenity value. Finally, we control for latitude. Since our unit of analysis is a

latitude-longitude grid square, and grid square sizes decrease with distance from the equator,

latitude will mechanically affect our measure of the distribution of population density.5 These

2Data from Henderson et al. (2018) are slightly updated. The FAO’s GAEZ v4 dataset provides spatial
data on more than 180 variables relevant to crop production. These variables are organized into 6 main
themes: Land and water resources, agro-climatic resources, agro-climatic potential yield, suitability and
attainable yield, actual yields and production, and yield and production gaps. The data can be accessed via
the following link: https://gaez.fao.org/

3These 33 variables comprise the majority of continuous variables from Theme 2: Agro-climatic resources
of GAEZv4. We exclude variables that overlap in definition, are linearly dependent, assume irrigation,
indicate beginning dates, are missing data for a significant area of the world, or have a value of 0 for
more than 95 percent of observations. The variables that are dropped under these conditions are: annual
temperature amplitude, quarterly P/PET ratios, net primary production with irrigation, beginning date of
the longest component length of growing period, the beginning date of the earliest growing period, reference
evapotranspiration deficit, snow stock at the end of calendar year, soil moisture condition at the end of the
calendar year, and number of days with a maximum temperature of 45 degrees Celsius. We further exclude
the number of consecutive days with average precipitation greater than 45 mm and the average annual
maximum sum of precipitation on such days; these two variables have an exceptionally low ratio of the range
in the early agglomerators to the range in the late agglomerators (these categories are defined below).

4The 11 crops are the largest in terms of world calorie production: banana, cassava, maize, dryland
and wetland rice, soybean, sweet potato, sorghum, wheat, white potato, and yam. The suitability indexes
assume a subsistence-based farming system, rain-fed conditions, and no CO2 fertilization; they can be found
in Theme 4: Suitability and attainable yield of GAEZv4.

5This issue arises when there are points of intense density in space, such as cities and towns. A grid
square at the equator that contains a town and no other population will have half the density of a grid cell at
60 degrees latitude that contains a similar town, since the former grid square has half the area of the latter.
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53 variables are listed in Table A.3 of the Appendix. An alternate extended specification

adds 66 indicators defining classes from 5 climate classifications in GAEZ for the time period

1981–2010.6 These geographic data are available for 164 countries. While other exogenous

natural features are likely useful for human settlement, they are either hard to define, like

defendability, or measured based on highly endogenous search, like mineral deposits.

Our primary population dataset is the European Union’s Global Human Settlements

population layer (GHS-POP), which provides an estimate of population within each 30-arc-

second (approximately 1 square km) grid cell. These data are produced in two steps. First,

an initial estimate is taken directly from the Gridded Population of the World version 4

(GPWv4). GPWv4 in turn takes population estimates for administrative regions (poly-

gons), typically from censuses circa 2010, and allocates them to cells assuming a uniform

distribution. Its effective spatial resolution thus depends on what information individual

countries provide, with richer countries typically providing population data for finer regions,

down to enumeration units, or even block level data. Of 12.9 million input polygons world-

wide, 10.5 million are in the United States. There is substantial variation within countries

as well, with higher resolution in more densely populated regions.7

In the second step, GHS-POP reallocates GPWv4 estimates within administrative poly-

gons based on a companion dataset, GHS-BUILT, that defines built surface based on Landsat

30-meter resolution satellite data circa 2015. In the rare cases where no built areas are visible

in a region, it reverts to the GPWv4 estimates.8

GHS-POP’s use of building cover to redistribute people within census units is very likely

to provide more accuracy than GPWv4’s assumption of uniform density within large ad-

ministrative units. We however avoid more heavily modeled population datasets such as

LandScan (Rose and Bright, 2014), primarily due to endogeneity concerns. In the Ap-

pendix, we compare these three datasets in greater detail, including what they say about

6The 5 climate classifications included are thermal climates, thermal zones, classification by thermal
climates and thermal zones, multi-cropping class (rain-fed), permafrost classes, and a thermal classification
used in the fallow requirement function.

7A grid cell crossing a polygon boundary is assigned a population density that is the areally-weighted
average of its constituent polygons.

8More information about the GHS data can be found in Florczyk et al. (2019). GHS-POP is described
in Schiavina et al. (2019) and Freire et al. (2016). GHS-BUILT is described in Corbane et al., (2018 and
2019). GPWv4 is described in CIESIN (2017).
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the key relationship between GDP per capita and quality-adjusted density.

To calculate conventional population density, we follow GHS-POP and divide population

by land area from GPWv4, but we first aggregate both to quarter-degree grid squares to

match the spatial resolution of our geographic characteristics. We limit the analysis to

latitudes between 55 South and 75 North due to data availability. GHS-POP registers 40%

of our sample grid squares (35% of the sample area) as having no people, although other

information suggests many of these grid squares have some population.9 Non-zero values

begin at a value of 3 people per billion square kilometers. These two issues, many zeroes

and very small non-zero values, guide our choice of estimation strategy discussed towards

the end of the following section.

2.2 Estimating Land Quality

We outline a simple model of population allocation within a country that leads directly to

our econometric specification. Production in region (grid cell) i of country c is given by

Yi,c = (Ai,cZi,cBc)
1−αLα

i,c (1)

where Ai,c is a measure of land productivity, Zi,c is the land area, and Bc is a country-level

measure of productivity due to non-land factors (institutions, technology, etc.). Differences

in physical and human capital per worker could also be incorporated into Bc. Similarly,

allowing for agglomeration economies would not affect the key results of the model for our

purposes.10 Although the regions that we use are all quarter-degree squares of latitude and

9At least some of the grid squares that are reported in GHS as having zero population are clearly cases
of measurement error. Aligning the GHS data with Google Earth and Google Satellite View, we were easily
able to find many instances of obvious human habitation, including sheep stations, isolated farm houses,
and even some small villages. The largest example we found was the settlement of Tura, Krasnoyarsk Krai,
Russia, which Wikipedia lists as having a population of 5,535 in 2010. We believe that the primary driver
of this measurement error is the low (30 meter) resolution of the Landsat data used in GHS to distribute
population within administrative units.

10If we think that agglomeration economies come from density as in the classic Ciccone and Hall (1996)
paper or more modern papers such as Combes et al. (2017) and Henderson, Kriticos and Nigmatulina (2020),
then there should be a multiplicative argument on the right hand side of (1) equal to (Li,c/Zi,c)

η. In this
case, equation (9) is the same except the Xi,c term is multiplied by (1− α)/(1− α− η). Using 1− α = 0.25
or 0.33 from below and η = 0.04, which is typical in the literature (see Rosenthal and Strange, 2004, or
Combes and Gobillon, 2015), this factor is 1.19 or 1.14. While this affects the interpretation of the estimated
coefficients in (9), it does not affect the fitted values from this equation that we focus on below.
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longitude, they differ in their land areas both because lines of longitude converge away from

the equator and because parts of some grid squares are covered with water.

Total labor in the country is

Lc =
Nc∑

i=1

Li,c (2)

where Nc is the number of regions in country c. We assume that workers in a region are paid

their average product

yi,c =
(Ai,cZi,cBc

Li,c

)1−α

(3)

and that labor mobility within a country equalizes income among regions

yi,c = yc (4)

We can thus solve for the equilibrium distribution of workers using (2), (3), and (4):

Li,c =
Ai,cZi,c

Nc∑
i=1

Ai,cZi,c

Lc (5)

Combining the three previous equations, we can solve for the level of income per capita.

ln yc = (1− α)
(
lnBc − ln(

Lc∑
i∈c

AiZi

)
)

(6)

While we cannot observe Ai,c directly, we do observe a set of land characteristics X =

[X1, X2, ...] that we assume affect productivity11:

Ai,c = exp(Xi,cβ) (7)

Previous work (Nordhaus, 2006; Henderson, et al., 2018) estimated the parameters in equa-

tion (7) by taking logs and plugging into equation (5) with a log-additive error term:

11It is straightforward to allow these characteristics to also affect the amenity value of a location in addition
to productivity. Specifically, we can modify (4) so that mobility within a country equalizes the product of
income and amenities, rather than just income.
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ln(Li,c/Zi,c) = Cc +Xi,cβ + ǫi,c (8)

where Cc is a country fixed effect and ǫi,c is a stochastic error term. There are three key

problems with this log-linear specification, however.

First, 40% of grid squares in our data have zero reported population. While a strict

application of the model suggests there should be no zeros, we believe the volume of zeros

largely reflects measurement error (discussed above) as well as restrictions on where people

are permitted to live.12 A common approach to this problem is to replace these zeros with

a small non-zero value.13 Unfortunately, parameter estimates can be sensitive to the value

used for imputation, and are also sensitive to simply dropping zeros. Second, as seen in

Figures A1.A and A1.B, about 50% of grid squares have density values less than 0.135

people per square kilometer and about 75% have density less than 12 people per square

kilometer. Thus, beyond the problem of zero reported population densities, the specification

in (8) puts a lot of weight on regions with extremely low population densities. Given the

data construction process described above, it is highly unlikely that the differences between

e.g. 3 ·10−9 and 0.135 people per square kilometer are well-measured. Even if they were well-

measured, conceptually they are of less interest than what drives regions to have a density

of 12 versus 1000 people per square kilometer. According to the GHS data, 98.5% of the

world’s population lives in grid squares with density above 12 people per square kilometer.

Third, Santos Silva and Tenreyro (2006) show that OLS estimates of (8) are inconsistent

(and NLS inefficient) in the presence of heteroskedasticity, which is likely in our context.

For these reasons we estimate a Poisson model. The specific functional form is

E(Li,c/Zi,c | Cc, Xi,c) = exp(Cc +Xi,cβ) (9)

12According to the United Nations Environment Programme (2016), 14.7% of the world’s land area is in
“protected areas” such as national parks.

13For example, Henderson, et al. (2018), which examined lights data, assigned to every reported zero
observation the minimum non-zero value in the dataset. In Nordhaus (2006), where output per square
kilometer is the dependent variable, 3,170 of 17,409 grid squares in the regression sample have zero values
for the dependent variable. Nordhaus imputes values for 618 of these cells based on neighbors, and then
assigns the remainder a value of one before taking logs.

8



The Poisson specification is well-suited for outcome measures with many zeros and tiny

values. As shown in Appendix Figure A.2, predicted values of density from a Poisson speci-

fication are remarkably robust to using the two alternative population datasets noted above,

while log-linear predicted values are not. Similarly, our basic results on the relationship

between quality-adjusted population density and income per capita discussed in Section 4.3

are again remarkably similar across the three datasets under the Poisson specification with

or without censoring zeros and tiny values, while estimates of the log-linear specification are

wildly different (see Table A.2.)

The stochastic component of the Poisson model is crucial for addressing the contingent

nature of human settlement. There is a vast literature on multiple equilibria and accidents of

history with agglomeration (e.g. Krugman, 1991; Arthur, 1989; Davis and Weinstein, 2002).

More recent work has focused on dynamic development subject to stochastic processes that

yield particular, unique equilibria as a way of encapsulating these accidents (Michaels, Rauch,

Redding, 2012; Desmet and Rappaport, 2017). For example, in a model similar to ours but

with a more complex production process, Desmet and Rappaport envision regions as being

subject to initial large productivity/resource shocks and then to a series of accumulating

independent draws over time. These accidents are important to understanding why, for

example, the centre of Kolkata is not 50 kilometers further up or down the Hugli River or on

a completely different river in historical Bengal. In that particular case, an initial arbitrary

choice of a British East India Company employee, Job Charnock, and then a history of other

choices and accumulations over 300 years, anchored that location and induced high density.

Our reduced form specification summarizes the cumulative impact of such a succession of

shocks. Since we are assuming a Poisson specification overall, we effectively assume that

these shocks are a series of Poisson draws.

We estimate the parameter vector β in equation (9). The country fixed effects control for

factors like technology and national population relative to national land area. Identification

of the determinants of land quality comes solely from within-country variation. In other

words, β is not estimated by comparing the land characteristics of more and less densely

populated countries, but rather by comparing variation in land characteristics and population

density within countries. We judge a country as having high-quality land if it is endowed with
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more of the characteristics that predict higher within-country population density throughout

the world. Given our expression for Ai,c in equation (7), our estimate of grid square i’s land

quality is naturally the fitted value from (9), suppressing country fixed effects:

Qualityi,c = exp(Xi,cβ̂) (10)

3 Cell-level Results on Land Quality

We begin by looking at the explanatory power of equation (9). Poisson regression has no

perfect analog to the coefficient of determination (R2) in OLS. We follow Cameron and Wind-

meijer (1996) in reporting R2
DEV , which is based on the concept of deviance, the difference

between the model log-likelihood and the highest possible likelihood for a given dependent

variable. It is defined as:

R2
DEV =

∑
i

[yi ln(µ̂i/ȳ)− (µ̂i − yi)]

∑
i

yi ln(yi/ȳ)
(11)

where yi is the value of the dependent variable for observation i, µ̂i is the predicted value

for observation i, and ȳ is the average of yi.
14

In Table 1, we report R2
DEV for the basic specification and a set of alternatives for

a Poisson regression using the GHS-POP data.15 The first row of the table shows that

geography and country fixed effects alone each explain similar amounts of variation, but the

marginal effect of each is also very high. In the other rows, we examine the robustness of this

result with respect to three potential concerns. First, we experiment with dropping the six

countries with the largest land area, which contain 54.1% of grid squares and a large share

of within-country variation.16 Second, Henderson, et al. (2018) stress that the determinants

14This measure applied to Poisson models shares five desirable properties with R2 applied to OLS: it is
bounded within [0, 1]; never decreases with additional regressors; can be equivalently expressed based on sum
of residual squares or sum of explained squares; relates to joint significance tests of all the slope parameters;
and has an interpretation in terms of information content. Other typical pseudo-R2 measures for Poisson
models do not satisfy all these properties.

15In Appendix Table A.1 we report the explanatory power of geographic variables and country fixed
effects for the Poisson and log-linear specifications for GHS-POP, GPWv4 and LandScan, as well as versions
of GPWv4 and GHS-POP that are censored to match the minimum non-zero value in LandScan.

16The countries are Russia, Canada, USA, China, Brazil, and Australia. We choose six as our cutoff
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of agglomeration differed systematically between early- and late-agglomerating countries.

They show that geographic characteristics related to agriculture had a proportionally larger

impact on urbanization in the former group, while those characteristics related to trade had

a proportionally larger impact in the latter. Migration frictions also may remain larger in

the late-agglomerator countries. To test whether these considerations affect our analysis,

we re-run the population equation using two complementary sub-samples (early and late

agglomerators, based on urbanization in 1950) to estimate the weights on geographic factors.

Finally, we estimate the model on a set of countries in which more than 80 percent of the

population is descended from people who lived in the country 500 years ago (“Native” for

short), based on data from Putterman and Weil (2010).17 This sample comprises about 65%

of countries with 82% of world population. Throughout the rest of the paper we often focus

on these countries and either drop the others or control for a Native < 80% indicator. New

World countries, where native populations have largely been replaced over the last 500 years,

have systematically different population histories than countries of older settlement.

Table 1: Goodness of Fit Under Alternative Samples

Country
Only

Geography
Only

Both N

Full Sample 0.344 0.464 0.566 237,023
Exclude Six Large Countries 0.317 0.366 0.486 108,872
Early Agglomerators Only 0.328 0.526 0.571 134,211
Late Agglomerators Only 0.264 0.443 0.530 102,619

Native >80% 0.337 0.518 0.574 135,057

Notes: All regressions use the GHS dataset and Poisson specification. Goodness of fit measure is
R-dev-squared.

Table 1 shows that results are similar across these specifications. While row 2, which

drops the six largest countries, has lower overall R2
DEV in each of the columns, considerable

explanatory power remains. Rows 3 and 4 indicate that geography has a somewhat stronger

role for early agglomerators, but patterns for early and late are similar. Geography also

plays a somewhat stronger role when we exclude countries where the native population was

replaced over the last 500 years.

because there is a natural break in the distribution of country sizes between the sixth largest (Australia,
7, 692, 024 km2) and the seventh largest (India, 3, 287, 263 km2).

17The results reported later are insensitive to using alternative cutoffs or a continuous measure rather than
a dummy.
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These specifications use the base set of 53 covariates listed earlier. In Appendix B, we

experiment with extended sets of up to 951 covariates and a formal method for selecting which

ones to include in estimation using Lasso (Tibshirani, 1996). Lasso rarely drops our base

covariates, and implies that our 53-variable base specification does not have an overfitting

problem. Predictions of key variables used below, like country average land quality, are all

highly correlated across the different specifications. We thus limit the analysis to the 53 base

covariates for transparency.

Table A.3 in the Appendix shows the coefficient estimates from this baseline specifica-

tion.18 With some exceptions particularly among the crop suitability indices, almost all

coefficients are highly significant. As an example quantitative interpretation, the coefficient

of 0.43 on the coastal dummy implies that coastal cells have exp(0.43) = 1.54 times higher

population density than non-coastal cells, ceteris paribus. Given the subject of this paper,

we focus our interpretation on fitted values from this equation, rather than coefficients.

Specifically, the fitted values suppressing country fixed effects are what we define in (10) as

Quality. In our model, if the world were a single country, with the same technology and

institutions (B in equation (1)) and with perfect mobility of population, then population

density in each grid cell would be proportional to Quality.

Figure 1A shows actual population density and Figure 1B showsQuality, both at the level

of grid cells. The values are on different color scales because the range of Quality, a fitted

value, is naturally smaller. Visually, there are clear similarities between Quality and actual

population density, with high values for Quality in Europe, northern China, the River Plate

basin, and the Ganges delta, among other places. Not surprisingly, Quality does a worse job

of capturing agglomeration. In Figure 1A, there are more points of intense concentration

such as Mexico City, Shanghai, Delhi, or Guangzhou, which do not have particularly high

values of Quality in Figure 1B in comparison to surrounding areas.

18Reported standard errors relax the “equidispersion” assumption of classical Poisson estimation that the
variance of the dependent variable is equal to its mean, which is rejected in our data. The quasipoisson
model we implement assumes instead that variance is proportional to the mean and estimates the constant
of proportionality.
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Figure 1: Population Density and Land Quality

4 Country-level Aggregates

The remainder of the paper focuses on country-level aggregates of our cell-level measure of

land quality, exp(Xi,cβ̂). As explained above, β̂ is estimated solely using within-country

variation. Thus these aggregates are not constructed with any notion of cross-country rela-

tionships between land quality and population density, or any other country-level outcome,

already baked in. An individual country having a dense population does not necessarily

mean it has high land quality. Rather, a country is designated as having high land quality
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if it has characteristics that predict higher population density within-country on a global

basis.

4.1 Quality-Adjusted Area

Multiplying land quality from equation (10) by grid cell area produces what we call Quality-

Adjusted Area of a grid cell. We can similarly construct quality-adjusted area at the country

level, QAAc:

QAAc =

[ ∑
i∈W

Zi,c

∑
i∈W

exp(Xi,cβ̂)Zi,c

]∑

i∈c

exp(Xi,cβ̂)Zi,c (12)

where the term in brackets is a normalization so that QAAc across countries sums to the

actual area of the world (W ). In essence, QAAc is a country’s allocation of world land based

on its quality of land relative to the world average quality of land.

Figure 2b presents a cartogram in which each country’s area is proportional to its quality-

adjusted area from equation (12), vs. its actual size in Figure 2a. The corresponding numbers

are listed in Appendix Table C.1, columns 2 and 3. In comparing QAA with conventional

area, there are a number of interesting rescalings and rank reversals, many of which accord

with common sense. For example, in our sample (south of 75 degrees North latitude) Canada

has 97% of the conventional area of the United States, but only 11% of its quality-adjusted

area. Overall, the figure is notable for showing that Europe expands greatly in size, while

Africa contracts. The five countries with the highest quality-adjusted area are the United

States, Australia, China, Brazil, and Argentina.

For a corresponding perspective, we ask what each country’s population would be if

the world’s population were reallocated such that country populations were proportional to

quality-adjusted areas. This involves replacing the numerator of the term in square brackets

in equation (12), world land area, with total world population. Figure 3 shows actual (in

blue) and reallocated (in red) log populations for the 80 countries with the largest quality-

adjusted areas, with numbers taken from Table C.1. The distance between the red and blue

dots represents the proportional gain or loss this reallocation would entail. The five countries

14



Figure 2: Country Level Quality-Adjusted Area

(a) Countries by Land Area

(b) Countries by Quality-Adjusted Area

with the biggest gains in absolute population size would be Australia (adding 605 million),

Argentina (502 million), the United States (479 million), Brazil (341 million), and France

(129 million). By contrast, the countries with the biggest absolute declines following such a

reallocation would be India (losing 1.09 billion), China (903 million), Pakistan (167 million),

Nigeria (156 million), and Indonesia (149 million).
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Figure 3: Top 80 Countries by Fitted Population
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4.2 Average Land Quality

Next we can calculate average land quality of a country using normalized QAAc:

ALQc =
QAAc

Zc

(13)

where Zc =
Nc∑
i=1

Zi,c. Average land quality values are in column 1 of Appendix Table C.1.

Similar to the thought experiment above, if the world had uniform institutions/technology

and there was perfect international population mobility, then the population density of coun-

tries would be proportional to their average land quality. The five countries with the highest

average land qualities are the Netherlands, Denmark, Uruguay, Belgium and Portugal.

4.2.1 Average Land Quality and Population Density

A natural starting point for assessing our measure of land quality is to look at how it relates

to population density. Recall that land quality at the grid cell level is constructed from a

regression with country fixed effects, but that these fixed effects are suppressed in forming

the fitted values that measure land quality. Thus in principle it would be possible for the

fitted values to have a low or even negative correlation with actual population density. Figure

4 shows that looking across countries the correlation is in fact positive. Further below (Table

5) we show this result in regression form and discuss how it has changed historically.

4.2.2 Average Land Quality and Income per Capita

While a positive relationship between land quality and population density would be predicted

by just about any model, the relationship between land quality and income per capita is

more complicated. The idea that good geography should make a country richer goes back

to at least Smith (1776). But there has always been a logical problem with this view:

Since Malthus (1798), economists have understood that if population density increases the

congestion of natural resources and if population is endogenous, due to either migration or

a feedback from the standard of living to net reproduction, then better geography should

make a country or sub-national region have more people in it, but not make those people

better off. Looking within a country like the United States, this phenomenon is obvious.
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Figure 4: log Conventional Density and log ALQ

For example, the states of Idaho and South Carolina have almost exactly the same levels of

Gross State Product per capita, but differ in average land quality by a factor of 9.5 and in

population density by a factor of 7.6.

Empirically, a good deal of the literature supporting the contention that better geography

makes countries richer (e.g. Mellinger, Gallup, and Sachs, 2000) comes from cross-country

regressions of income per capita on geographic variables. Such evidence is hardly dispositive,

however, because of the well-known correlation of geography with institutions and colonial

history (e.g. Acemoglu, Johnson, and Robinson, 2001). Further, as we show below, several

existing measures of land quality that are not constructed from cross-country regressions

are actually negatively correlated with income per capita. We thus view the relationship

between land quality and income as worthy of both further empirical study and theoretical

exploration.

Examining the relationship between income and land quality requires us to reduce the

sample size from 164 to 148 countries. This is the main sample which we maintain in all

of the work that follows.19 Figure 5 shows a striking positive correlation between ALQ and

19We call the 148 countries our main sample. Eight of 164 countries do not have a GDP measure; 3
have area under 1500 sq km, approximately two cells, and therefore have no real within-country geographic
variation; and 10 have no Putterman-Weil index of the fraction of the current population descended from
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Figure 5: log GDP per capita and log ALQ

income per capita. It is notable that many of the outliers in this figure appear to be special

cases such as hydrocarbon producers (Qatar, Kuwait, Saudi Arabia, United Arab Emirates)

or small countries with large banking sectors (Switzerland, Luxembourg). Table 2 shows

corresponding regression results.20 For the reasons discussed above, we control for a dummy

that takes the value one where Native < 0.8.21 The key finding of Table 2 is that there is a

strong, positive relationship between ALQ and income per capita. The baseline elasticity of

0.43 in column (1) implies that a two standard deviation increase in log ALQ is associated

with a rise in GDP of 1.01 in log points, or about 170%.

The other columns of Table 2 focus solely on the agricultural dimension of land quality.

In column (2), we construct our measure of land quality starting from a grid cell regression

that includes only country fixed effects, latitude, and the 33 measures of land characteristics

people present 500 years ago, which we emphasize later. Several are missing more than one of these.
20Because ALQ and its variants defined below are generated regressors, their OLS standard errors are

inconsistent (Pagan, 1984; Murphy and Topel, 1985). To address this, we estimate bootstrapped standard
errors in all regressions that include them. Specifically, we sample countries with replacement, and then
estimate (9) on the set of all cells in the sampled countries. We use these estimates in (12) and (13) to
calculate ALQ for the sampled countries, and estimate the regression of interest for the same sample. We
do this 500 times to generate 500 sets of regression coefficients. The reported standard errors are the sample
standard deviations of these coefficient estimates.

21All coefficients change by less than 6% with the addition of the Native < 80% control.
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Table 2: Land Quality Measures and Income

(1) (2) (3) (4)
Dependent variable: log GDP per capita

Land quality
measure:

log ALQ log ALQ,
agricultural

log calories
per hectare

log land
suitability

Land quality 0.430∗∗ 0.270 -0.673∗∗∗ -0.0222
measure (0.158) (0.184) (0.168) (0.0462)

Native<80% 0.241 0.282∗ 0.250 0.277
(0.162) (0.133) (0.191) (0.204)

Constant 8.946∗∗∗ 8.895∗∗∗ 14.96∗∗∗ 8.638∗∗∗

(0.0878) (0.130) (1.501) (0.662)
Observations 148 148 146 148
R-squared 0.180 0.0542 0.0911 0.0133

Notes: Column (2) uses the analogue of our ALQ measure, but constructed from a grid-cell
regression that only includes country fixed effects, the 33 characteristics from GAEZ, the
11 suitability indices, and latitude. Column (3) is the log of million calories of agricultural
production potential per hectare per year at intermediate input technology, from Galor
and Ozak (2016). Column (4) calculates the log of land suitability from Ramankutty et al.
(2002). Standard errors are reported in parentheses. Standard errors in columns (1)-(3)
are bootstrapped. Details of the bootstrapping procedure are footnoted in Section 4.2.2.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

and 11 suitability indices from the GAEZ dataset. This purely agricultural measure has a

positive relationship with GDP per capita, although the effect is smaller in magnitude than

that of our full-fledged measure, and is not statistically significant. No positive association

exists between GDP per capita and two alternative measures of agricultural land quality:

calories of agricultural potential unit per area (Galor and Ozak 2016; column 3) and land

suitability for agriculture per unit area (Ramankutty et al. 2002; column 4).22 In fact, the

Galor-Ozak measure has a significantly negative relationship with GDP per capita. These

findings suggest, first, that our agricultural measures may provide a more nuanced assessment

of agricultural productivity than the uni-dimensional indices used in previous work, and

second, that the inclusion of additional geographic variables that go beyond agriculture,

such as ruggedness, elevation, and access to water for transport, is important for assessing

land’s overall quality.

Table 3 probes the robustness of this result that higher average land quality is associated

with higher income today to different specifications of the grid-cell regression that we used

to measure land quality. Column 1 shows our baseline result, where the elasticity of GDP

22This is the weighted average of the Ramankutty index for each grid square, where the weights are
grid-square areas.
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with respect to ALQ per capita is 0.43. Columns 2–4 correspond to rows 2–4 in Table 1. In

column 2, we drop the 6 largest countries in the grid square regression (equation (9)), but

still predict ALQ for them using the estimated coefficients. In column 3 we estimate land

quality parameters in a grid-cell regression run only in early agglomerating countries and

predict ALQ for all countries from those coefficients. Column 4 repeats this exercise for late

agglomerators, and column 5 for Native > 80% countries. In all these specifications, the

income-ALQ elasticity remains large, from 74% to 101% of the baseline.

Table 3: Robustness of ALQ and Income Relationship

(1) (2) (3) (4) (5)
Dependent variable: log GDP per capita

Grid cell
regression

Baseline Drop 6
Largest

Only Early
Agglomera-

tors

Only Late
Agglomera-

tors

Native >0.8

ALQ measure 0.430∗∗ 0.340∗∗∗ 0.320∗∗∗ 0.422∗∗ 0.440∗∗∗

(0.158) (0.0839) (0.0967) (0.144) (0.0826)

Native<80% 0.241 0.204 0.216 0.271∗∗∗ 0.241
(0.162) (0.288) (0.111) (0.0630) (0.174)

Constant 8.946∗∗∗ 8.951∗∗∗ 9.103∗∗∗ 9.071∗∗∗ 8.965∗∗∗

(0.0878) (0.116) (0.0823) (0.955) (0.197)
Observations 148 148 148 148 148
R-squared 0.180 0.108 0.175 0.278 0.195

Note: We restrict the sample in these regressions to exclude countries with areas below 1,500 km2.
Bootstrapped standard errors are reported in parentheses. Details of the bootstrapping procedure are
footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The findings of Tables 2 and 3 clearly show that countries with higher quality land are on

average richer. This in turn raises the question of why the prediction of the simple population

equilibrium model is not borne out, to which we return below.

4.3 Quality-Adjusted Population Density

Finally, we can use land quality to create a new measure of population density. We define

Quality-Adjusted Population Density (QAPDc) simply as country population divided by

normalized QAAc, or equivalently as conventional population density divided by ALQc:
23

23Ignoring the normalization in (12), QAPD can written as

QAPD =
Lc∑

i∈c

exp(Xi,cβ̂)Zi,c

.
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QAPDc =
Lc

QAAc

=
Lc

ZcALQc

=
PDc

ALQc

(14)

Column 7 of Appendix Table C.1 shows values of log QAPD, which is measured in units of

population per quality-adjusted square kilometer. For the world as a whole, QAPD is 56.6,

which is, by construction, the same as conventional population density for our geographic

sample covering most of the world. The five countries with the highest levels of quality-

adjusted population density are Kuwait (797), Rwanda (683), Burundi (553), Kyrgyzstan

(533), and Pakistan (517) (excluding the city-states of Hong Kong and Singapore, as well

as countries with populations of less than one million). The five countries with the low-

est QAPD are Uruguay (1.70), Australia (2.14), New Zealand (3.35), Namibia (3.54) and

Argentina (4.51). Among the other interesting findings in this table are that China, with

QAPD 2.9 times the world average, has noticeably lower quality-adjusted density than India,

which is 5.9 times the world average. The United Kingdom (37.6) and Germany (33.6) have

higher QAPD than the United States (22.6). However, the United States, despite being in

the New World, has higher quality-adjusted density than France (18.8) or Ireland (13.2).

Figure 6 compares conventional population density to QAPD in logs using our main 148-

country sample. The two measures of density are highly correlated, but there are notable

differences. For example, while Mongolia is the lowest density country in the world and the

Netherlands is one of the highest, the two countries have nearly identical levels of QAPD.

Figures 7A and 7B plot the bivariate relationships between GDP per capita and (re-

spectively) conventional population density and our measure of quality-adjusted population

density. Visually, there is little association between GDP per capita and conventional pop-

In our grid-cell level regression, the country fixed effect is given by (again, ignoring the normalization)

Ĉc = ln

( ∑
i∈c

Li,c

Zi,c

∑
i∈c

exp(Xi,cβ̂)

)
.

The difference between these expressions is that the expression for the fixed effect divides the items in the
numerator by grid square land area Zi before summing, while in constructing QAPD the Zi terms are in
the denominator sum. As noted earlier, these areas vary within a country both due to the convergence of
longitude lines away from the equator and the exclusion of surface water area. If all grid cells in a country had
the same area, the country fixed effect that we estimate would just be the log of quality-adjusted population
density, ignoring the normalization. In practice, the correlation of the fixed effect and the log of quality-
adjusted population density across countries is 0.98, so that the two measures are almost interchangeable.
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Figure 6: Conventional and Quality-Adjusted Population Density Across Countries

ulation density, while GDP per capita and quality-adjusted density appear to be negatively

correlated. It is also notable that the largest outliers in Figure 7b are again hydrocarbon

producers or small countries with large banking sectors.

Table 4: GDP per Capita, Population Density, and QAPD in 2010

(1) (2) (3) (4)
Dependent
Variable

log 2010 GDP per Capita

log Population 0.0360 0.0905
Density (0.0840) (0.116)

log QAPD -0.352∗∗∗ -0.515∗∗∗

(0.0962) (0.0921)

Native<80% 0.299 0.0259
(0.212) (0.205)

Constant 8.787∗∗∗ 8.553∗∗∗ 10.46∗∗∗ 11.17∗∗∗

(0.373) (0.503) (0.456) (0.396)
Observations 148 96 148 96
R-squared 0.0128 0.00648 0.138 0.212

Columns (2) and (4) restrict the sample to countries where Native is greater than or
equal to 80%. Standard errors are reported in parentheses. Standard errors in columns
3 and 4 are bootstrapped. Details of the bootstrapping procedure are footnoted in
Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 4 probes this result further in a regression context. As above, we control for the
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Figure 7: Density and GDP per Capita

(a) Conventional Population Density and GDP per Capita

(b) Quality-Adjusted Population Density and GDP per Capita
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Native < 0.8 dummy and present results excluding countries where Native < 0.8. The table

confirms that there is no correlation between conventional population density and income per

capita, but a strong negative relationship between QAPD and income per capita.24 Using

the coefficient in column (3) of the table, a decrease in the log of quality-adjusted density

by one standard deviation (1.29) is associated with an increase in GDP per capita of 57%.

This negative relationship betweenQAPD and income is surprising. As mentioned above,

existing models of the role of natural resources in economic development predict that pop-

ulation in a preindustrial equilibrium will be proportional to natural resources, and give no

reason to think that the same should not be true of population following industrialization.

Thus income and QAPD should have no correlation. If one thought that the source of

income differences among countries was differences in productivity or the quality of insti-

tutions, then with endogenous population, we would expect to see a positive relationship

between income and quality-adjusted density. It is true that one would expect to see a

negative correlation between QAPD and income if differences in population were generated

primarily by differences in fertility preferences. However, embracing this explanation would

raise the question of why countries with preference for high fertility have systematically lower

land quality than those with preferences for low fertility.25 Further, this story is inconsistent

with several of the historical regularities we show in the next section, most notably that the

currently observed income-QAPD relationship did not exist historically.

24In Table A.2 and the discussion in Appendix A, we explore the result in Table 4, column 3, using
the different sources of population data discussed in Section 2 and comparing a Poisson and log-linear
specification to Equation (9). Results for the Poisson are similar across data sets and specifications, but
log-linear results differ by data set and specification.

25Such a story also has a quantitative problem. Equation (6) implies that a regression of log income
on log QAPD would yield a negative coefficient equal in absolute value to the natural resource share in
the production function, (1 − α). Estimates of this share tend to have one-third as a maximum value (see
discussion in Appendix D). The coefficient on log QAPD in column 3 of Table 4, −0.352, is slightly larger in
absolute value than is consistent with this range. However, in column (4) of the table, focusing on countries
where the native population was not displaced, the coefficient (−0.515) is too large in absolute value to be
consistent with pure resource congestion. It is also notable that these coefficients are biased toward zero due
to measurement error.
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5 Historical Evolution of Population and Income

To assess the historical development of population and income we use data from the Maddison

project.26 The underlying source for this data is historical national and regional accounts,

wages, and other records. As an alternative to the Maddison data, we conduct a parallel

analysis using data from the Gapminder project. This covers a significantly larger number of

countries but relies much more heavily on statistical modeling and interpolation than does

the Maddison data. Corresponding to our Tables 5–9 are Appendix Tables C.2–C.6 using

Gapminder data. The patterns of results are the same in all cases.

5.1 The Effect of Land Quality on Density and Development

Figure 4 showed the relationship across countries between our measure of average land quality

and population density in data for 2010. Columns (1) and (4) of Table 5 show the same

relationship in regression form. It is hardly a surprise that the coefficient is highly significant.

Table 5: ALQ and Conventional Population Density

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
Dependent Variable log Population Density
Year 2010 2010 1820 2010 2010 1820
log ALQ 0.463∗∗∗ 0.515∗∗∗ 0.768∗∗∗ 0.498∗∗∗ 0.561∗∗∗ 0.891∗∗∗

(0.116) (0.134) (0.130) (0.117) (0.153) (0.129)

Native<80% -0.668∗ -0.611 -2.190∗∗∗

(0.263) (0.371) (0.513)

Constant 4.311∗∗∗ 4.241∗∗∗ 2.217∗∗∗ 4.311∗∗∗ 4.224∗∗∗ 2.172∗∗∗

(0.109) (0.171) (0.167) (0.109) (0.172) (0.171)
Observations 148 77 77 96 50 50
R-squared 0.254 0.289 0.563 0.313 0.385 0.577
Coefficient equality test

χ2(1) 9.26 10.69
p-value 0.002 0.001

Bootstrapped standard errors are reported in parentheses. Details of the bootstrapping procedure
are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

The first question we take up in this section is whether the nature of this relationship

has changed over time. Columns (2) and (5) of Table 5 show the regression of conventional

26Reported on the Gapminder website ( https://www.gapminder.org/tag/maddison/ ).
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density on ALQ in contemporary data for samples that match the countries for which Mad-

dison’s historical data are available. There is little change in the coefficient on ALQ from

Columns (1) and (4). Columns (3) and (6) then repeat the regression using population

density from 1820 as the dependent variable.

Using the 1820 data on population, the value of the coefficient on the log of land quality is

relatively close to one, and in Column (6) we cannot reject the coefficient being equal to one.

This is the value that we would expect in a simple model where population was proportional

to land quality. By contrast, the coefficient on land quality when we use modern population

data much smaller, significantly different from the 1820 value, and significantly different

from one. In other words, land quality had a bigger effect on density in the past than it does

today. An additional finding is that the coefficient on the dummy variable for Native < 80%

is negative and three times as large in absolute value in the 1820 data as it is in modern

data. This is consistent with the observation that countries in which native populations were

replaced were relatively underpopulated as of that year, and have been converging to the

density pattern of the rest of the world since then.

In a mechanical sense, the results in Table 5 suggest that population growth has been

faster in countries with low ALQ than in those with higher land quality—something that

we will look at directly in a later section. More generally, they suggest that there is a

relationship between land quality and the broad processes of economic development and

demographic transition which have produced large increases in population throughout the

world. We probe this issue more directly in the next section.

5.1.1 Average Land Quality and the Takeoff into Growth

A common observation is that today’s rich countries began to experience economic growth

before countries that are poorer. This idea is formalized by Lucas (2000), among many

others. In searching for an explanation of the positive relationship between average land

quality and current income, then, a natural starting point is to look at the relationship

between land quality and the timing of takeoff into modern growth.

To operationalize this idea we start by using the methodology of Costa, Kehoe, and

Raveendranathan (2016) to identify takeoff dates, which we update using Maddison project
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Figure 8: Takeoff Year and log ALQ

data. In their classification scheme, a country moves from stage 0 (Malthusian) to stage 1

(first time sustained growth) when it has experienced a 25 year period of income per capita

growth averaging 1% per year. Countries can revert from stage 1 to stage 0 if they have 25

years of slow growth, and can then take off again. We look at the first episode of takeoff.

Information on takeoff dates is available for 148 countries, of which 137 are in our main

sample.27 Figure 8 shows that there is a negative relationship between takeoff date and log

ALQ. That is, countries with better land on average took off earlier. Note that data on the

bottom edge of the figure are truncated at 1845 because that is 25 years after 1820, which is

the start of the income data used by Costa et al. Other horizontally-aligned groups of points

in the graph are also related to the differential availability of income data across countries.

Table 6A reports regression results using these data on takeoff year. Column 1 repeats the

regression of income on ALQ from Column 1 of Table 2, but for the slightly smaller sample

of countries where takeoff dates are available. The coefficient is almost unchanged. Column

2 then regresses takeoff dates on ALQ, producing a highly significant negative coefficient.

27The takeoff dates that we derive are mostly the same as in the Costa et al. paper. In all but three cases,
differences arise from updates of or extension to the GDP data. In three cases (Kuwait, the Netherlands,
and Qatar), we were unable to match their takeoff dates even using their underlying data. In the case of four
countries that were subsequently splintered — the Soviet Union, Ethiopia, Czechoslovakia, and Yugoslavia
— we calculate takeoff dates for the mother country and assign this date for all of the daughter countries.
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A one standard deviation reduction in log of ALQ predicts a delay in the takeoff date of 28

years. Comparing the country with the highest quality (Netherlands; logALQ = 2.82) to

the lowest (Niger, logALQ = −3.15), the predicted difference in takeoff dates is 140 years.

Column 3 shows in turn that takeoff date is a strong predictor of current income. Taking off

into growth one century earlier implies a current income advantage of a factor of 5.4. Finally,

Column 4 includes both land quality and takeoff date on the right hand side. Columns 5–8

repeat this analysis for countries where greater than 80% of the population is descended

from people present 500 years ago. Looking at the two “horserace” columns (4 and 8), the

coefficient on takeoff date is reduced in magnitude only slightly compared to when it was

entered alone on the right hand side, and it remains highly statistically significant. The

coefficient on ALQ falls by a much greater percentage of its value when entered alone on the

right hand side, and is no longer significant. This finding is suggestive of a mechanism in

which the most important channel by which land quality affects current income is through

its effect on the takeoff date.

5.1.2 Average Land Quality and Economic Development as of 1820

While the data that we use to measure takeoff dates begin in 1820, and thus the first takeoff

date is 1845, we know that in fact modern economic growth began in many places earlier

than that. One way to get a handle on this earlier growth is simply to look at levels of

income per capita as of that year. If at some point countries all had the same level of income

per capita, then a country being richer in 1820 is evidence of its having grown faster at

some point in history. Figure 9 illustrates the relationship between the ALQ and 1820 GDP

per capita using data from Maddison. There is a strong, positive correlation, as well as

significant variation in income. This strong correlation holds (although with less variation

in income) for the smaller sample of 14 countries where there is data for 1700.

Panel B of Table 6 pursues this point. The structure is the same as in Panel A, but this

time using the log of GDP per capita in 1820, rather than the takeoff date, as an indicator

of early development. Columns (1) and (5) show that there is a still a positive relationship

between average land quality and current income in this much smaller sample, though it

is only significant, at 10%, in the Native < 80% subsample. Columns (2) and (6) in turn
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Table 6: Economic Development and Land Quality

(a) ALQ and Takeoff Year

(1) (2) (3) (4) (5) (6) (7) (8)
Sample all exclude native< 80%
Dependent Variable log 2010 GDP Takeoff Year log 2010 GDP log 2010 GDP log 2010 GDP Takeoff Year log 2010 GDP log 2010 GDP
log ALQ 0.431∗∗ -19.97∗∗∗ 0.194 0.518∗∗∗ -20.61∗∗∗ 0.180

(0.166) (2.324) (0.188) (0.141) (1.966) (0.231)

Takeoff year -0.0139∗∗∗ -0.0119∗∗∗ -0.0188∗∗∗ -0.0164∗∗

(0.00172) (0.00264) (0.00158) (0.00557)

Native<80% 0.366∗ -1.441 0.364 0.349∗∗

(0.183) (9.267) (0.188) (0.134)

Constant 8.957∗∗∗ 1929.8∗∗∗ 35.86∗∗∗ 31.90∗∗∗ 8.955∗∗∗ 1929.8∗∗∗ 45.25∗∗∗ 40.55∗∗∗

(0.0742) (3.066) (3.303) (5.140) (0.0710) (3.063) (3.029) (10.82)
Observations 137 137 137 137 90 90 90 90
R-squared 0.200 0.212 0.368 0.395 0.275 0.279 0.553 0.578

Standard errors are reported in parentheses. Standard errors in columns 1-2, 4-6, and 8 are bootstrapped. Details of the bootstrapping procedure
are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

(b) ALQ and Historical GDP

(1) (2) (3) (4) (5) (6) (7) (8)
Sample all exclude native< 80%
Dependent Variable log 2010 GDP log 1820 GDP log 2010 GDP log 2010 GDP log 2010 GDP log 1820 GDP log 2010 GDP log 2010 GDP
log ALQ 0.207 0.223∗∗∗ -0.0903 0.260 0.260∗∗∗ -0.169

(0.160) (0.0417) (0.162) (0.136) (0.0344) (0.218)

log 1820 GDP, 1.196∗∗∗ 1.336∗∗∗ 1.356∗∗∗ 1.651∗∗

Maddison (0.201) (0.303) (0.247) (0.507)

Native<80% 0.0398 -0.0153 0.0738 0.0602
(0.267) (0.157) (0.174) (0.212)

Constant 9.710∗∗∗ 6.943∗∗∗ 1.371 0.437 9.679∗∗∗ 6.920∗∗∗ 0.236 -1.745
(0.241) (0.0449) (1.480) (2.218) (0.233) (0.0411) (1.798) (3.611)

Observations 49 49 49 49 33 33 33 33
R-squared 0.0893 0.348 0.429 0.440 0.124 0.453 0.500 0.528

Standard errors are reported in parentheses. Standard errors in columns 1-2, 4-6, and 8 are bootstrapped. Details of the bootstrapping procedure
are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

show that average land quality is a good predictor of GDP per capita in 1820. Columns (3)

and (7) show that GDP per capita in 1820 is a good predictor of GDP per capita in 2010.

Finally, columns (4) and (8) show that when both 1820 GDP and ALQ appear on the right

hand side, the former retains its magnitude and significance but the latter becomes smaller

and even slightly negative. The two panels of Table 6 are thus both consistent with a story

in which land quality affects the date of takeoff into growth, but has little effect on current

income through other channels.

Using other measures of early economic development or nascent takeoff into modern

growth reinforces the link of these phenomena with land quality. As stressed by Pomeranz

(2000), the region of the Yangtze River delta was marked by a level of technological and

economic development on par with the most advanced regions of Europe as of 1750. Defining
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Figure 9: ALQ and Historical GDP per Capita

the delta region to be the modern provinces of Anhui, Jiangsu, and Zhejiang plus the city

of Shanghai gives an area of 337, 265 km2, which is ten times the size of the Netherlands.

The log of average land quality for this region is 1.39, which would place it at the 87th

percentile in our sample of countries. By contrast, the log of ALQ for China as a whole is

-0.098. Similarly, in the late eighteenth century, Bengal was viewed as among the richest,

if not the richest, region in India, although modern economic historians continue to debate

exactly where it stood relative to Europe of the time.28 The region that was historical Bengal

is roughly congruent with modern Bangladesh and the Indian state of West Bengal. The

average land quality for this region is 1.04, which would place it at the 81st percentile of our

sample of countries. By contrast, the value of log ALQ for modern India as a whole is 0.237.

Using literacy as an indicator of early development paints a similar picture. Reis (2005)

gives values of literacy for males for European countries circa 1800, with the highest values

being the German states of Hesse (91%) and Lower Saxony (80%), the Netherlands (73%),

Scotland (65%), England (60%), and Belgium (60%). Land quality for all of these regions

and countries is quite high: Hesse (log ALQ of 1.59), Lower Saxony (2.12), Netherlands

28Parthasarathi (2005), Roy (2010).
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(2.82), Scotland (1.27), England (2.30), and Belgium (2.29).29

5.1.3 Historical Population Density and Income

Recall that in Table 4 we looked at the relationship between current income, on the one

hand, and conventional density and QAPD, on the other. The finding there was that as

of 2010, there was no significant relationship between income and population density, while

there was a significant negative relationship between income and quality-adjusted density.

Table 7 repeats this analysis on income and population from 1820. Columns 1–2 cover all

countries, while columns 3–4 are restricted to the sample where Native > 80%. The results

in Table 7 are dramatically different from Table 4. While modern income is significantly

negatively associated with QAPD, there is no significant association between 1820 income

and 1820 QAPD. However, in Table 7 there is a strong positive association between popu-

lation density in 1820 and income in 1820. By contrast, in modern data population density

and income are not significantly related.

Table 7: GDP per Capita, Population Density, and QAPD in 1820

(1) (2) (3) (4)
Dependent Variable log 1820 GDP per Capita, Maddison
log 1820 Population 0.119∗∗ 0.200∗∗∗

Density (0.0406) (0.0465)

log 1820 QAPD -0.0321 0.00760
(0.0553) (0.120)

Native<80% 0.290 -0.164
(0.152) (0.170)

Constant 6.742∗∗∗ 6.515∗∗∗ 7.146∗∗∗ 7.059∗∗∗

(0.105) (0.112) (0.142) (0.274)
Observations 49 33 49 33
R-squared 0.159 0.354 0.0150 0.000194

Columns (2) and (4) restrict the sample to countries where Native is greater than or
equal to 80%. Standard errors in parentheses. Standard errors in columns 3 and 4
are bootstrapped. Details of the bootstrapping procedure are footnoted in Section
4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

The emergence of a negative relationship between QAPD and income over the last 200

years is a significant (and we would argue, underappreciated) aspect of the process of global

29Reis gives the literacy number for “Saxony” rather than “Lower Saxony,” but the source he uses (Hofmeis-
ter et al., 1998) seems to refer to the latter. The log of ALQ for the states of Saxony, Lower Saxony, and
Saxony-Anhalt, taken together, is 2.03.
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economic growth. In the next subsection, we look directly at population growth, which is

what drove the change in QAPD, and is thus part of the story of the changing correlation

between QAPD and income. Then in Section 6, we present a model of the joint evolution of

income and population that generates both the historical and contemporaneous correlations

observed in the data.

5.2 Population Growth and its Determinants, 1820 to 2010

Finally, we bring together the analysis of the previous two subsections to examine the rela-

tionship between average land quality, takeoff dates, and population growth. Table 8 shows

regressions of the change in log population since 1820 on the year of takeoff in the Madison

dataset. As in many previous tables, we present results both controlling for Native < 0.8

and dropping observations in which the native population was replaced. The coefficient on

Native < 0.8 is large and significant, showing that population growth has been faster in

countries where the native population was largely displaced.

Table 8: The Effects of Takeoff Year on Population Growth

(1) (2) (3) (4) (5) (6) (7) (8)
Sample all exclude native< 80%
Dep. Var. Pop. Growth Takeoff Pop. Growth Pop. Growth Pop. Growth Takeoff Pop. Growth Pop. Growth
log ALQ -0.252∗∗ -19.39∗∗∗ -0.202∗ -0.333∗∗∗ -22.08∗∗∗ -0.232∗∗

(0.0936) (4.930) (0.0845) (0.0858) (3.208) (0.0890)

Takeoff year 0.00469∗∗ 0.00259∗ 0.00790∗∗∗ 0.00457∗

(0.00158) (0.00123) (0.00188) (0.00215)

Native<80% 1.624∗∗∗ -15.34 1.713∗∗∗ 1.664∗∗∗

(0.161) (8.601) (0.173) (0.188)

Constant 2.007∗∗∗ 1919.0∗∗∗ -7.058∗ -2.957 2.036∗∗∗ 1920.0∗∗∗ -13.19∗∗∗ -6.745
(0.116) (5.228) (3.057) (2.388) (0.114) (4.647) (3.616) (4.196)

Observations 75 75 75 75 49 49 49 49
R-squared 0.599 0.215 0.574 0.610 0.267 0.317 0.231 0.320

Standard errors are reported in parentheses. Standard errors in columns 1-2, 4-6, and 8 are bootstrapped. Details of the bootstrapping
procedure are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Columns (1) and (5) show that there is a strong negative effect of land quality on pop-

ulation growth. To interpret the magnitude of the effect, looking at the sample of countries

where the native population was not displaced, the coefficient on log ALQ is -0.341. An in-

crease of two standard deviations in log ALQ (for this sample of countries) is associated with
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a decline in annual population growth of 0.45 percentage points per year over this 190-year

period, which would in turn produce a difference in population size by a factor of 2.3.

Columns (2) and (6) replicate the finding of Table 6 (for this slightly different sample)

that land quality is also a good predictor of takeoff dates into modern growth, while columns

(3) and (7) show that takeoff dates in turn negatively predict population growth rates. The

coefficient in column (7), 0.0079, implies that a one century delay in takeoff is associated

with population growth higher by 0.42 percentage points per year over this 190-year period.

In Columns (4) and (8), the effect of ALQ remains sizable when takeoff year is included.

This result is different from our analysis of GDP growth, where including the takeoff year

reduced the coefficient on ALQ substantially, rendering it insignificant in some specifications.

This result is not surprising since takeoff year in this table is defined in terms of income

growth. As will be seen below in Table 9, when we look at an analogue of early takeoff

that is more appropriate to population, specifically, the speed with which life expectancy

increased, we find that it indeed dominates ALQ as a predictor of population growth.

6 Pulling Together the Pieces: An Illustrative Model

Sections 4 and 5 establish a number of empirical regularities regarding the interrelationships

of land quality, population growth, and income, both in the world today and historically.

In this section we develop a stylized economic-demographic model that encompasses these

regularities. We focus on the following regularities:

• Economic growth took off first in countries with high levels of land quality, and these

countries remain richest today.

• Population growth over the two centuries for which we have data is a negative function

of the level of average land quality.

• Historically, there was a positive relationship between income per capita and population

density, but no significant relationship between income per capita and quality-adjusted

density.
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• By contrast in the world today, there has been a reversal. There is a strong negative

relationship between quality-adjusted population density and income per capita, and no

significant relationship between conventionally defined population density and income

per capita.

The model is detailed in Appendix D; here we outline its features. The model extends

standard theories of population and economic growth by explicitly taking into account the

role of health technology in the demographic transition.

A starting point for any analysis of the relationship between land characteristics, popu-

lation, and economic growth is the Malthusian model. As argued by Galor and Weil (2000),

this model characterized economic-population equilibrium for most of human history. In

the steady state of a Malthusian model, differences in land quality affect population density

but do not affect the standard of living. The literature argues that sometime prior to the

Industrial Revolution, there was rough equality of income among countries, compared to

the vast income gaps we see today.30 We presume that, when time starts in our model, all

countries are in Malthusian steady states with the same income per capita.

Of course, the Malthusian model no longer characterizes most of humanity. The departure

from that equilibrium involved the dual processes of economic takeoff and demographic

transition. In the model of Lucas (2000), the richest countries in the world today are those

that took off first into modern economic growth. In Lucas (2000), there is a lead country that

takes off into growth, with trailing countries that take off at later dates, a characterization

we adopt. Although the Lucas model is silent on what factors determine a country’s takeoff

into growth, it is not a far stretch to associate that takeoff with land quality, via the route

of population density and its effect on technological progress.

6.1 Economic Growth

Land quality plays two roles in the model. First, it appears directly in the production

function as in Equation (1). In the Malthusian steady state prior to takeoff, conventionally

defined population density will just be proportional to land quality. Second, land quality

30Bourguignon and Morrisson (2002), Howitt and Weil (2010).
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determines the date of takeoff. Concretely, we set the relationship between ALQ and takeoff

to be the one estimated in the text, with a one log unit decrease in ALQ leading to a takeoff

that is 26 years later. Although we do not model it explicitly, we assume that the underlying

mechanism is through agglomeration and Marshallian externalities. Ciccone and Hall (1996)

first established a link between population density and productivity across US states. Recent

work has extended this result at a more microgeographic level, with papers estimating high

returns to increased density in China (Combes et al., 2020; Chauvin et al., 2017) and a

set of African countries (Henderson et al., 2021). A direct link between higher density and

increased innovation was established in Carlino et al. (2007), with a recent work by Roche

(2020) showing how dense urban neighborhoods foster innovation.

The next element of the model is technological progress, which we base on Lucas (2000).

Prior to takeoff in the lead country, technology is stagnant and equal everywhere in the

world. We then assume that, in the lead country, technology grows at a constant rate of

2% per year following takeoff. After their own takeoff dates, follower countries experience

faster technological growth: that baseline 2% per year plus a bonus proportional to the

gap between the lead country technology level and theirs. This spillover is important in

promoting convergence and narrowing the gap in technology levels over time.

These elements explain why countries with high land quality are the richest today, since

they started growing first, and technological convergence is not yet complete. They also

explain the positive relationship between income per capita and population density at the

beginning of our historical data in 1820. That year was after some countries (those with

higher quality land and denser populations) had begun their economic takeoffs, but before

less dense countries had done so.

However, the mechanism just described, on its own, cannot explain several facts regard-

ing population: first, that quality-adjusted population density is higher today in poor than

rich countries, and second, that population growth has been faster in countries with low land

quality than in countries with high land quality. One might have expected the population

history of late-takeoff countries (those with lower land quality) to simply parallel that of

early-takeoff countries but starting at a later date. However, this has not been the case.

Further, while a simple model of resource congestion could theoretically justify the negative
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correlation of current income per capita with quality-adjusted population density (for exam-

ple, if countries differed in their fertility preferences), our discussion in Section 4.3 suggested

that more was at work. And if countries differed exogenously in productivity, with popu-

lation responding positively to income, then we would expect to see a positive correlation

between income and quality-adjusted density, not the negative correlation we observe in the

data.

6.2 The Demographic Transition

To explain these facts, we need to model the process of demographic transition that has

paralleled economic growth in the last two centuries. Demographic transition refers specif-

ically to the transition from a regime in which fertility and mortality were both high and

roughly equal, toward one in which both of these vital rates are significantly reduced and

again roughly equal. In early developing countries, this process took about two centuries

and is mostly complete. But in late developers, the process is still ongoing.

6.2.1 Life Expectancy

In the interplay between the fertility and mortality rate, one key feature is that the decline

in mortality temporally precedes the decline in fertility, and the gap between the two is

responsible for the increase in population over the demographic transition, what Chesnais

(1990) refers to as the population multiplier.31 Further, the dominant driver of decline in

mortality is improvements in health technology (Deaton, 2014).32 In our model we follow

Deaton’s perspective that improvements in life expectancy primarily flowed from the same

scientific progress that allowed for higher productivity. We assume life expectancy in all

countries is 30 years prior to takeoff. In the lead country, life expectancy then increases in

a linear fashion at a rate of three months per year (Oeppen and Vaupel, 2002). Over two

centuries, life expectancy rises from 30 to 80 years.

31This population multiplier is defined by Chesnais (1990) as “the number by which the population is
multiplied during the transition between the pre-transitional phase (high mortality, high fertility) and the
post-transitional phase (low mortality, low fertility).”

32Also, a very significant component of fertility decline is a fall in desired family size due to changes in
the structure of the economy, including the return to skill, urbanization, and the gender wage differential as
discussed in Galor and Weil (2000), Dyson (2011), and Galor and Weil (1996).
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For a follower country, we model life expectancy as a weighted average of life expectancy

in the lead country and life expectancy that would be justified by the follower country’s

own productive technology. This allows for spillover of health technologies from the leader

to the follower, and for life expectancy in follower countries to rise before their economic

takeoffs. As in the literature, our modeling has the spillover from leader to follower of health

technologies being stronger than the spillover of productive technologies. Acemoglu and

Johnson (2007) show that convergence of life expectancy among countries is much faster

than convergence of income per capita. Similarly, “health miracles” in developing countries

have been far more common than “growth miracles” (Deaton, 2014).

Figure 10: Time to Get from Life Expectancy of 35 to 50

This rapid transfer of health technologies produced a demographic transition in which

mortality fell both more quickly, and at lower income levels, than had been the case in early

developing countries. We can illustrate the importance of this transfer of health technology

for population growth in our data. Figure 10 shows the length of time it took countries to

go from life expectancy at birth of 35 years to 50 years.33 Richer countries that reached

life expectancy of 35 in the 19th century generally took more than 100 years to reach life

expectancy of 50; those that reached 35 in the middle of the 20th century took less than half

33Source: Gapminder Life Expectancy (Ola Rosling), Version 9 (October, 2017).
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as long.34 This suggests late takeoff countries had high rates of health technology transfer

and adoption, lowering death rates.

Table 9 looks at the effect of this faster life expectancy gain on population growth. The

first column repeats the regression of population growth on average land quality, for the

sample of countries where life expectancy data are available. The second column then shows

the positive effect of land quality on “life expectancy improvement time” (the variable on the

vertical axis of Figure 10), which is highly statistically significant. Column (3) shows that

life expectancy improvement time, in turn, has a significant effect on the degree to which

population increased between 1820 and 2010. Column (4) shows that when both ALQ and

life expectancy improvement time are included on the right-hand side, the ALQ coefficient

falls by nearly half and loses significance, while the life expectancy improvement measure

remains highly significant, with a much smaller drop in magnitude.

Table 9: The Effects of Life Expectancy Improvement on Population Growth

(1) (2) (3) (4) (5) (6) (7) (8)
Sample all exclude native< 80%
Dependent Variable Pop. Growth LE Imp. Time Pop. Growth Pop. Growth Pop. Growth LE Imp. Time Pop. Growth Pop. Growth
log ALQ -0.254∗∗ 15.79∗∗ -0.152 -0.329∗∗∗ 21.14∗∗∗ -0.136

(0.0920) (4.862) (0.0896) (0.0833) (2.487) (0.105)

Life-expectancy -0.00800∗∗∗ -0.00646∗∗∗ -0.0114∗∗∗ -0.00915∗∗∗

Improvement Time (0.00162) (0.00181) (0.00176) (0.00234)

Native<80% 1.579∗∗∗ -20.60 1.426∗∗∗ 1.446∗∗∗

(0.173) (13.15) (0.169) (0.185)

Constant 2.024∗∗∗ 57.72∗∗∗ 2.439∗∗∗ 2.397∗∗∗ 2.052∗∗∗ 55.75∗∗∗ 2.653∗∗∗ 2.562∗∗∗

(0.104) (10.88) (0.151) (0.135) (0.104) (10.23) (0.158) (0.157)
Observations 77 77 77 77 50 50 50 50
R-squared 0.585 0.205 0.624 0.646 0.257 0.345 0.397 0.426

Standard errors are reported in parentheses. Standard errors in columns 1-2, 4-6, and 8 are bootstrapped. Details of the bootstrapping procedure
are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Columns 5–8 of the table repeat the exercise for the sample of countries where the native

population was not replaced, thus excluding countries where immigration played an impor-

tant role in population dynamics. Here the effect is even stronger. Using the estimate in

column (7) of the table, a one century speed-up in the time it took to get from life expectancy

34In fact, the data as shown actually understate this effect, since a number of countries had already passed
life expectancy of 35 years by 1800, which is when our data begin. A related fact is that increases in life
expectancy have been achieved at lower and lower levels of income over time. This is generally discussed
under the rubric of the Preston Curve. See Preston (1975) and Deaton (2014). Weil (2014), Figure 3.7,
shows that over the course of the 20th century, life expectancy at a fixed level of income per capita rose by
approximately 20 years
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of 35 to life expectancy of 50 led to a population increase that was larger by a factor of 3.1.35

6.2.2 Fertility

In the model, the fertility rate in the pre-takeoff period is set equal to the mortality rate. Fol-

lowing Hansen and Prescott (2002), for the lead country, we model the relationship between

income and fertility as being composed of three segments: First, there is an upward sloping

segment, in which higher income raises fertility. Then there is a downward sloping segment

in which higher income lowers fertility. Finally, above a fixed level of income, fertility is fixed

at the rate consistent with zero population growth. Hansen and Prescott model the specific

timing of onset of each segment, based on current income relative to the initial Malthusian

level. We follow them, with minor modifications.

In carrying over the analysis to countries that are not the lead country, we maintain the

effect of income on fertility calibrated to the lead country. Since these trailing countries

have lower mortality (for a given level of income) than does the lead country, they will in

turn experience faster population growth at any level of income than did the lead country.

We think of this change as being particularly appropriate for looking at population growth

in late-starting countries, which indeed experienced higher levels of peak population growth

than those that took off first.

6.2.3 Results

We summarize the results of our model with two figures. In both of them, the horizontal

axis measures the log of ALQ relative to the leader, which is normalized to zero. The low

value on the axis is −4.83, corresponding to a value of average land quality that is 1/125

that of the leader. This is a slightly smaller range of values than what we found in the data.

Figure 11A shows QAPD on the vertical axis. Each line corresponds to a cross section

of countries ordered by ALQ at the point in time indicated in the legend, measured as years

35These findings match results from Chesnais (1990), who showed the relation of the population multiplier
to the speed of transition and the gap between birth and death rates. He noted that countries and regions
that went through the transition later in time tended to reach higher maximal rates of population growth,
and also (in his limited data) showed that on average countries that started the transition later had larger
multipliers
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Figure 11: Model Results

(a) Quality-Adjusted Population Density

(b) Income per Capita
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since takeoff in the first country. The figure shows that there is a reversal over time in the

relationship between QAPD and land quality (there is a similar reversal in the relationship

between QAPD and income). Prior to any country taking off, quality-adjusted density

is equal in all countries as a result of the Malthusian mechanism. In the early years of

the simulation, countries that have taken off first experience more rapid population growth

due both to higher income and lower mortality than the trailing countries. As a result,

quality-adjusted density rises with income. However, once trailing countries do take off,

they experience faster population growth than did the leaders, as a result of which the

relationship between land quality and quality-adjusted population density changes sign. (For

the simulation shown, the peak rate of population growth in the last country to take off is

2.7% per year, compared to a peak rate of 2% per year in the first country to take off.)

Given our normalization of initial quality-adjusted density to be one, QAPD at any point

in time is equal to the “population multiplier,” that is, current population in a country as a

multiple of its population before the first takeoff. It is notable that countries that are late

to take off have permanently higher population multipliers. Since pre-takeoff population in

every country was proportional to land quality, this means that higher population relative

to land quality is a permanent feature of late-starting countries.

Figure 11B shows the log of income per capita on the vertical axis. In the early years

of the simulation, income rises only in countries that have taken off. In countries that

have not, income even falls slightly due to the spillover of health technology that raises

population growth without affecting productivity. The gap in income between high and low

ALQ countries reaches its peak around 150 years after the first country has taken off. Growth

in late takeoff countries is initially slowed by resource congestion due to rising population.

However, after a time, income in these trailing countries rises high enough that population

growth is reduced, while the force of technological catch-up (as in the Lucas model) remains.

However, unlike the Lucas model, late starting countries do not catch up all the way to

early starters. This is because, as mentioned above, the population multiplier relating post-

transition population to population in the Malthusian regime is higher in the countries that

started later, and thus late starting countries face a permanently higher level of resource

congestion than countries that took off first.
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7 Conclusion

In this paper we construct a new measure of land quality, which we define as the suitability of

a piece of land for human habitation and economic activity. Our starting point is a Poisson

regression of population density in quarter degree longitude-latitude grid cells on a vector of

geographic characteristics and country fixed effects. By incorporating these fixed effects, we

avoid bias from any correlation of country-level institutions with geographic characteristics.

The fitted values from this regression, suppressing the fixed effects, are our measure of

quality. This measure can then be aggregated to sub-national units, regions, or continents,

although for this paper we focus on countries.

The new country-level measures we create are quality-adjusted area (QAA), average land

quality (ALQ) and quality-adjusted population density (QAPD). The last is just the total

population of a country divided by QAA. We also establish a number of facts, some of which

are not unexpected and others of which are inconsistent with standard macro-demographic

models of historical economic growth.

Average land quality is highly correlated with population density, which is hardly sur-

prising. More interesting is that average land quality is correlated with income per capita.

We also find that income per capita is uncorrelated with conventionally measured population

density, but is strongly negatively correlated with QAPD.

Turning to historical data, we find that the effect of ALQ on population density in data

from 1820 was much stronger than the same effect measured in modern data. Further, while

population density is uncorrelated with income in modern data, it was positively correlated

with income in historical data, and similarly while there is a negative correlation between

income and QAPD in modern data, there is no correlation in historical data. The mechanism

that ties all of these facts together is that population growth since 1820 was systematically

higher in countries that have low values of ALQ. Finally, we find that average land quality is

a good predictor (with a negative sign) of the date on which countries took off into modern

economic growth, and further that once one controls for that takeoff date, the statistical

effect of ALQ on current income is greatly diminished.

Taken together, these facts are at variance with the predictions of standard theories of
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economic and population growth. Malthusian models of the pre-industrial period predict

that population will be proportional to natural resources, which is what we find. Models of

agglomeration can also explain why the takeoff of economic growth and the exit from the

Malthsuian equilibrium took place first in areas with better land and denser populations.

But neither of these mechanisms gives any reason to expect that population growth since

the exit from the Malthusian equilibrium would have been higher in countries that had lower

levels of resources, as we see in the data, and they thus provide no explanation for the signal

fact that quality-adjusted population density is negatively correlated with income. This

negative correlation could be explained if there were variation across countries in preferences

toward children, as in Lucas (2002), but we argue that the magnitude of the effect we find is

larger than this channel would justify. Finally, if productivity varied among countries (due

to e.g. to institutional quality or technology), standard models predict that there would

be a positive correlation between income per capita and QAPD, rather than the negative

correlation that we see in the data.

To explain all of the observed facts, we present a simple macro-demographic model where

the takeoff into modern economic growth occurred earliest in countries with high land quality,

for the agglomeration reasons just mentioned, and population growth over the course of

industrialization was larger in late-takeoff countries (those with lower land quality) because

of the transfer of health technology from countries that started to grow first. The model

predicts that a high ratio of population to resources will be a permanent feature of late takeoff

countries, even after they have fully caught up with the leaders in terms of productivity.

Beyond the analysis of historical income and population growth that we have undertaken

here, we expect that our new measures of land quality will be useful in many other contexts.

For example, having estimated the weights on different geographic characteristics in deter-

mining quality, we are in a position to discuss the effects of climate change on quality and

thus on the degree of population pressure on natural resources. Our measures of average

land quality and quality-adjusted area are useful for studying the effects of population pres-

sure on outcomes like food imports, political conflict or migration both within and between

countries, among other issues.36

36In a supplemental analysis (available upon request), we compare the results of regressing net food im-
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We certainly don’t expect that our measure of quality-adjusted population density will

displace conventionally-measured population density; rather, we see it as giving a com-

plementary perspective. For example, if one is interested in Marshallian externalities or

agglomeration effects, then a conventional measure of local density is appropriate since that

is more closely related to how far apart people live from each other and how easy it is for

them to interact. The same would be true if one were concerned about disease transmis-

sion. By contrast, if one is interested in the ecological services provided by the geo-physical

environment, then an adjusted measure like ours is more useful.
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Online Appendix

Appendix A: Comparison of population datasets and cell-level spec-

ifications

In this appendix we first compare the distribution of population density in our main popula-
tion data source, GHS-POP, to two alternatives, GPWv4 and LandScan. We then compare
regression results using our baseline Poisson specification and a log-linear alternative, us-
ing all three datasets — a total of six variants. Specifically, we compare goodness of fit
and fitted values in a regression of population on geographic characteristics. We also show
the robustness of one key result, the negative correlation between Quality-Adjusted Popu-
lation Density and income per capita, to the choice of dataset and specification. All three
global datasets report population counts for 30-arc-second by 30 arc-second pixels in Plate
Carrée (latitude/longitude) projection. The area of a pixel is 0.86 square km at the equator,
decreasing with the cosine of latitude.

The Gridded Population of the World version 4 (GPWv4; CIESIN 2017) is the sim-
plest of the three. The underlying data are population estimates for administrative regions
(polygons) from censuses circa 2010. When there is no census in exactly 2010, values are
extrapolated or interpolated from multiple censuses. Population is assumed to be distributed
evenly within an administrative region. GPWv4’s effective spatial resolution thus depends
on what information individual countries provide, with richer countries typically providing
data for finer regions, down to enumeration units, or even block level data . There is sub-
stantial variation within countries as well, with higher resolution in more densely populated
regions. Of 12.9 million input polygons worldwide, only 2.4 million are from outside the
United States. A grid cell crossing a polygon boundary is assigned a population density that
is the areally-weighted average of its constituent polygons.

The European Union’s Global Human Settlements population layer (GHS-POP; Schi-
avina et al. 2019; Freire et al. 2016) reallocates GPWv4 estimates within administrative
polygons based on a companion dataset, GHS-BUILT (Corbane et al., 2018, 2019) that
defines built-up pixels as seen in Landsat 30-meter resolution satellite data circa 2015. In
the rare cases where there is no built-up area visible in a region, it reverts to the GPWv4
estimates. Its land area measures are taken directly from GPWv4. More information about
the GHS data can be found in Florczyk et al. (2019).

LandScan uses a proprietary algorithm to provide population estimates based on a much
wider set of inputs that include census population data and satellite imagery at higher
resolution than Landsat. While the algorithm is not publicly documented and changes from
year to year, in the recent past input data have also included information on elevation,
slope, and land cover, as well as locations of road and rail networks, hydrologic features
and drainage systems, utility networks, airports, and populated urban places. LandScan
reports estimates of ambient population averaged throughout the day, whereas the other
two datasets report nighttime (residential) population estimates. A recent explanation of
LandScan for an academic audience can be found in Rose and Bright (2014).

We rely on GHS-POP as our primary source, and consider GPWv4 and LandScan for
robustness here. GHS-POP’s use of building cover to redistribute people within census units
is very likely to provide more accuracy than GPWv4’s assumption of uniform density within
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large administrative units.
LandScan aims to achieve the same goal of redistributing population based on built cover.

However, as noted, it uses other information in making assessments, including higher resolu-
tion satellite imagery. LandScan may thus do a better job of finding the built environment in
rural locations and it may have greater accuracy in dense but low income cities with coarse
population data.

However LandScan has four main drawbacks. First, it has historically used coarse census
data as a benchmark outside of the United States.37 While better satellite imagery can better
define the built environment, to convert that to population one still needs fine grained census
population data. Second and more importantly, LandScan’s algorithm uses physical features
like elevation directly to predict population density. This raises the possibility that our
regressions will end up simply predicting LandScan’s algorithm rather than true population
density. Third, LandScan’s algorithm changes from year to year and is not documented.
Finally LandScan measures the ambient population over the 24 hours of a day, making
inferences about where people work and for how many hours of the day, without, as we
understand it, much if any spatial economic census data which are unavailable for many
developing countries anyway. This seems likely to add error without benefit for our purposes.

Figure A.1 Panel A reports the cumulative distribution function (CDF) of log popula-
tion density according to the three datasets, with zeros in each dataset replaced with that
dataset’s minimum nonzero value before logging. In this and all other subnational empirical
work, our unit of analysis is a quarter-degree grid square, a 30-by-30 array of 30-arc-second
pixels.

The figure shows that the three data sets treat grid squares with tiny densities very
differently. For example GHS-POP registers about 40% of cells as having no people, with
nonzero densities starting at 0.0000000033/km2, while LandScan registers only about 24%
of grid squares at 0, with non-zero densities starting at about 0.0013/km2. By population
densities of about 50/km2 (exp(3.9)), the three lines converge, at which point about 85%
of pixels have been accounted for. Panel B of Figure A.1 analogously reports cumulative
population by density. It shows that less than 10% of the world population lives at a density
under 50/km2. However, since our unit of analysis is the grid square, these tiny densities
potentially play an important role.

We now further flesh out the log-linear specification, in order to compare it to our main
Poisson specification. Given the log-linear specification from (8), ln(Li,c/Zi,c) = Cc+Xi,cβ+
ǫi,c, the corresponding OLS estimate of the country constant is

Ĉc =
1

Nc

(∑

i∈c

ln
(Li,c

Zi,c

)
−
(∑

i∈c

Xi,cβ̂OLS

))
(15)

Our OLS estimate of cell i’s log population density when setting all the country fixed effects

to zero to equalize all factors that vary at the country level is
̂
ln(

Li,c

Zi,c
) = Xi,cβ̂OLS. The

37LandScan has not released details about its current census data, but as of its 2009 version: ”Outside the
USA LandScan used 79,590 administrative units for ambient modeling. By contrast, GPWv3 uses 338,863
units outside of the US.” Source: https://sedac.uservoice.com/knowledgebase/articles/41665-what-are-the-
differences-between-gpw-grump-and-la
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Figure A.1: Population Distributions by Grid Square Worldwide

analogous estimate of population density level is
L̂i,c

Zi,c
= exp(Xi,cβ̂OLS + ŝ2

2
) where ŝ2 is the

variance of the error term in the estimated equation (which we assume to be homoskedastic
across countries). Fitted national population is then:

L̂c =
∑

i∈c

exp(Xi,cβ̂OLS +
ŝ2

2
)Zi,c (16)

Finally, we can calculate the ratio of actual to expected population, where the latter is
based on the fitted value suppressing country fixed effects. This is what we have been calling
quality-adjusted population density.

QAPDc =

∑
i

Li,c

∑
i∈c

exp(Xi,cβ̂OLS + ŝ2

2
)Zi,c

(17)

An obvious problem with this approach is that, as discussed above, there are a significant
number of grid cells with zero measured population in our data. In implementing the log-
linear specification, we assigned to such cells the population density of the least dense non-
zero cell in the dataset before logging. We also experimented with creating versions of
the logged GPWv4 and GHS-POP datasets in which cells with zero density are assigned the
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minimum nonzero density value in LandScan. As shown in Figure A.1, LandScan’s minimum
value is much larger than the minimum non-zero density in the other two datasets.

Figure A.2: Predicted Values

(a) Poisson Specification

(b) Log Linear Specification
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Figure A.2 compares cell-level predicted values across the three datasets. Using the
Poisson specification (Equation (9)), Panel A shows that all three data sets give very similar
predicted values. This is because the Poisson specification makes little distinction between
cells that have moderately low density and those that have extremely low density. By
contrast, in Panel B, there are large differences across datasets when using the log-linear
specification (Equation (8)), driven by the differing treatments of low density regions.

Table A.1 reports goodness of fit measures for geographic variables, country fixed effects,
and both, analogously to Table 1, Row 1, for the six variants. In the first 3 rows zeros are
assigned their dataset-specific minimum non-zero value. In rows 4 and 5 zeros in GHS-POP
and GPWv4 are assigned the LandScan minimum value. Results across all data sets and
specifications are generally similar.

Table A.1: Goodness of Fit for Grid Cell Level Regressions

Log-linear Specification Poisson Specification
Country
Only

Geography
Only

Both Country
Only

Geography
Only

Both

GHS 0.359 0.537 0.597 0.344 0.464 0.566
GPW 0.551 0.520 0.758 0.390 0.504 0.620

LandScan 0.482 0.630 0.738 0.364 0.479 0.593
GHS Censored 0.411 0.574 0.658 0.344 0.464 0.566

GPW
Censored

0.557 0.606 0.800 0.390 0.504 0.620

Notes: The table reports R-squared values for the log-linear regressions annd R-dev-squared for the
Poisson specification.

Table A.2 reports ten variants of Table 4, column 3, each corresponding to a variant
reported in Table A.1. Log-linear results in columns 1, 3 and 5 vary enormously across
datasets, while Poisson results in columns 2, 4 and 6 do not. Columns 7–10 censor at the
Landscan minimum. Poisson results (columns 8 and 10) are also insensitive to this, while
log-linear results (columns 7 and 9) are much more sensitive.

Finally Table A.3 reports the main grid square Poisson estimation of equation (9).
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Table A.3: Grid square results on the geographic determinants of population

Baseline

Ruggedness (000s) -2.7e-06***
(1.2e-07)

Malaria (index) -0.0298***
(0.0027)

Abs(Latitude) 0.023***
(0.0037)

Elevation (m) -2.5e-04***
(4.2e-05)

Distance to coast (000 km) -7.7e-07***
(3.4e-08)

Coast dummy 0.434***
(0.0276)

Harbor dummy 0.829***
(0.0244)

Navigable river dummy 0.752***
(0.0291)

Lake dummy 0.808***
(0.146)

Adjusted LGP for evaluating agro-climatic constraints 3.3e-04
(2.1e-04)

Length of longest component LGP -0.0015
(0.0041)

Longest consecutive dry days in LGPt=5 -0.0021***
(1.1e-04)

Number of dry days during LGPt=5 0.0016***
(1.8e-04)

Total number of growing period days -2.08
(2.46)

Total number of LGP days in component LGPs > 20 days 1.73
(2.34)

Net primary production (rain-fed) 0.0059***
(5.5e-04)

Annual P/PET ratio (*100) 0.0022***
(3.9e-04)

P/PET (*100) for days with mean temperature > 5 deg. C -0.007***
(0.0011)

Seasonal P/PET ratio (*100) in summer 0.0038**
(0.0013)

Seasonal P/PET ratio (*100) in winter 0.0193***
(0.0031)

Number of consecutive days with average precipitation > 30 mm -0.0055
(0.0028)

Total number of rain days (days with precipitation > 1 mm) -6.9e-04
(8.1e-04)

Modified Fournier Index (mm) -8.2e-04*
(3.9e-04)

Annual precipitation (mm) 0.001**
(3.5e-04)

Mean max. sum of precipitation on consecutive > 30 mm average daily precipitation days -0.0083***
(0.0014)

55



Reference actual evapotranspiration (using AWC=100 mm/m) -6.5e-04
(3.9e-04)

Reference potential evapotranspiration (using AWC=100 mm/m) -0.0081***
(0.0014)

Number of days with max temperature > 35 deg. C 0.0506
(0.122)

Number of days with max temperature > 40 deg. C -3.8e-05***
(3.0e-06)

Number of days with min temperature < 0 deg. C -1.1e-04
(1.3e-04)

Number of days with min temperature < 10 deg. C 3.8e-04***
(3.4e-05)

Number of days with min temperature < 15 deg. C -.0227***
(.0022)

Number of days with mean temperature > 10 deg. C (LGPt=10) 0.0086**
(.0027)

Number of days with mean temperature > 5 deg. C (LGPt=5) -0.0031***
(6.3e-04)

Annual temperature amplitude (deg. C) -0.0019***
(3.8e-04)

Mean annual temperature (deg. C) -0.0011***
(3.0e-04)

Snow-adjusted cold temperature limit -0.0625***
(0.0127)

Temperature of coolest month (deg. C*100) 0.459***
(0.0347)

Annual temperature sum for days with mean temperature > 10 deg. C -0.0027***
(3.9e-04)

Annual temperature sum for days with mean temperature > 5 deg. C 0.0016***
(3.8e-04)

Air frost number -0.0011**
(4.3e-04)

Snow-adjusted air frost number 0.0038***
(7.7e-04)

Maize suitability index; low input, rain-fed, no CO2 fertilization 1.1e-05
(1.3e-05)

Dryland rice suitability index; low input, rain-fed, no CO2 fertilization -1.8e-06
(8.2e-06)

Wetland rice suitability index; low input, rain-fed, no CO2 fertilization 3.1e-06
(8.5e-06)

Wheat suitability index; low input, rain-fed, no CO2 fertilization -4.4e-06
(1.0e-05)

Cassava suitability index; low input, rain-fed, no CO2 fertilization -2.3e-05*
(1.1e-05)

Soybean suitability index; low input, rain-fed, no CO2 fertilization 4.5e-05***
(1.1e-05)

White potato suitability index; low input, rain-fed, no CO2 fertilization 2.0e-05
(1.2e-05)

Sorghum suitability index; low input, rain-fed, no CO2 fertilization 2.6e-05*
(1.0e-05)

Sweet potato suitability index; low input, rain-fed, no CO2 fertilization 5.5e-05***
(1.0e-05)

Yam suitability index; low input, rain-fed, no CO2 fertilization -1.5e-04***
(1.2e-05)
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Banana suitability index; low input, rain-fed, no CO2 fertilization 2.2e-05*
(9.9e-06)

Observations 237,023
R-dev-squared 0.566

Note: LGP is the length of the growing period; LGPt=n is the temperature growing period, which provides the
number of days with mean temperature over n degrees Celsius. P/PET is the ratio of precipitation to potential
evapotranspiration. Goodness of fit measure is R-dev-squared. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Appendix B. Choice of geographic variables

GAEZ provides more than a hundred variables that may be relevant to predicting land
quality or population density; the baseline specification adopted in the main text includes
only a limited subset of such variables. We verify that the baseline specification performs
sufficiently well compared to alternate combinations of covariates using the Least Absolute
Shrinkage and Selection Operator (Lasso) estimator.

Lasso is a regularization technique that adds a penalty term to coefficients. In the Poisson
context, it solves the following minimization problem (Friedman et al., 2010):

minβ −
1

N
l(β | X, Y ) + λ

N∑

i=0

|βi| (18)

where the log likelihood is

l(β | X, Y ) =
N∑

i=0

(yiβ
Txi)− eβ

T xi (19)

We fit Poisson models with Lasso on three sets of possible covariates: baseline specification,
expanded baseline specification, and fully interacted specification. The baseline is identical
to the specification used in the main text and includes 53 variables; the expanded baseline
adds to the baseline 66 climate class indicators for a total of 119 variables; and the fully
interacted specification adds to the expanded baseline the squares of all continuous non-crop
suitability variables as well as all nonzero two-way interactions between such variables for a
total of 951 variables.

In order to allow for random samples to be stratified by country, we restrict the sample
to countries that include more than 10 grid cells; this excludes Hong Kong, Liechtenstein,
Luxembourg, Palestine, and Singapore. The country grid data are then randomly split
into training and testing data so that we can assess the out-of-sample performance of each
specification. 10 sets of 75% training and 25% testing samples were generated.

We identify optimal values of λ and fit Poisson models via 5-fold cross-validated Lasso
for each specification on the 10 training sets. The folds are stratified by country, and country
fixed effects are not allowed to be excluded from the set of covariates. Two λs are defined
as “optimal”: the λ that yields minimum deviance and the largest λ with deviance within
one standard error of the optimum (1SE λ). The latter is used to select more parsimonious
models against overfitting, as per the “One Standard Error Rule.” Once the appropriate λs
are found, the fitted models for each specification are applied to the corresponding test set
to calculate the R2

DEV of out-of-sample predictions for each specification. Final fitted values
were then generated by using the optimal λ to refit the models on the full grid-cell dataset
that excludes countries with fewer than 10 grid cells. To generate comparison out-of-sample
predictions, we also fit each specification using the standard maximum-likelihood Poisson
regression on the 10 training sets.

Panels A and B of Appendix Table B.1 shows summary statistics for R2
DEV and the

number of covariates chosen from each specification over 10 sets of training and test splits.
We find that the out-of-sample R2

DEV for either s in all specifications are not notably different
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from that of the baseline regression estimated with standard Poisson. Lasso regressions rarely
drop any of the base 53 covariates. Compared to the baseline out-of-sample R2

DEV of 0.563,
the maximum out-of-sample R2

DEV from Lasso is 0.587, not a substantial improvement, given
the exponential increase in the number of covariates. It must be noted that plotted deviations
were extremely flat near the beginning of the tested λ sequences for most Lasso regressions;
it may be that the dimensions of our data are insufficient for Lasso.

The final fitted values generated for each specification are then aggregated on the coun-
try level. 10 variant ALQs are thus generated for each Lasso specification, for which we
calculate the pairwise correlation with the baseline ALQ. We further generate ALQs for
each specification fitted with the standard maximum likelihood Poisson, which do not differ
across the 10 runs. Panel C of Table B.1 displays the mean and standard deviation of these
pairwise correlation coefficients; these alternate specifications and use of Lasso yield results
that are highly correlated with the baseline specification ALQ used in the main text.
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Table B.1: Lasso Summary

A. Mean of Results from 10 Draws.

Nonlasso Min. Dev. Lasso 1SE Lasso
Specification Train Test Full # Coef. Train Test # Coef. Train Test # Coef.
Baseline 0.565 0.558 0.563 53 0.563 0.558 44.3 0.526 0.525 16.7
Expanded Baseline 0.574 0.566 0.572 119 0.572 0.566 79.2 0.536 0.536 28.4
Fully Interacted 0.693 0.616 0.674 951 0.644 0.587 265 0.588 0.568 83.6

Note: The Fully Interacted specification only includes 9 out of the 10 draws; the training-test split for
one draw generated nonsensical out-of-sample R2

dev results. Results of individual train-test draws are
available upon request.

B. Standard Deviation of Results from 10 Draws.

Nonlasso Min. Dev. Lasso 1SE Lasso
Specification Train Test Full # Coef. Train Test # Coef. Train Test # Coef.
Baseline 0.00666 0.0222 0.00144 0 0.0064 0.0214 1.77 0.013 0.0187 2.58
Expanded Baseline 0.00635 0.0216 0.00152 0 0.00632 0.0211 9.25 0.0124 0.0195 3.53
Fully Interacted 0.00283 0.0316 0.0104 0 0.00644 0.0467 35.5 0.0164 0.0214 23.3

Note: The Fully Interacted specification only includes 9 out of the 10 draws; the training-test split for one draw
generated nonsensical out-of-sample R2

dev results. Results of individual train-test draws are available upon request.

C. Summary Statistics of Pairwise Correlations With baseline log ALQ.

Specification Mean Standard deviation

Nonlasso
Baseline 1.000 0.000
Expanded baseline 0.992 0.000
Fully Interacted 0.817 0.000

Min. Dev.
Baseline 0.999 0.000
Expanded baseline 0.992 0.000
Fully Interacted 0.922 0.015

1SE Dev.
Baseline 0.891 0.030
Expanded baseline 0.918 0.019
Fully Interacted 0.952 0.007

Note: Pairwise correlations are of country-level log ALQ for the
main sample with baseline log ALQ in the main text. All specifi-
cations were estimated on the grid-cell dataset excluding countries
with 10 or fewer observations.
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Appendix C: Other Results

Table C.1 reports log Average Land Quality (ALQ), log conventional area, log Quality-
adjusted Area (QAA), log conventional population density, and log Quality-adjusted popu-
lation density (QAPD), for each country in the grid-cell-level estimation (Tables 1 and 2). It
also reports whether they appear in the country-level sample and the 1820 sample, and their
value of (Native < 0.8). Tables C.2-C.6, repeat Tables 5-9 in the text using the Gapminder
data.
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Table C.2: ALQ and Conventional Population Density, Gapminder

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
Dependent Variable log Population Density
Year 2010 2010 1820 2010 2010 1820
log ALQ (Poisson 0.463∗∗∗ 0.434∗∗∗ 0.713∗∗∗ 0.498∗∗∗ 0.488∗∗∗ 0.854∗∗∗

GHS) (0.116) (0.105) (0.138) (0.117) (0.110) (0.0984)

Native<80% -0.668∗ -0.633∗ -1.667∗∗∗

(0.263) (0.286) (0.270)

Constant 4.311∗∗∗ 4.309∗∗∗ 2.174∗∗∗ 4.311∗∗∗ 4.308∗∗∗ 2.172∗∗∗

(0.109) (0.109) (0.135) (0.109) (0.111) (0.135)
Observations 148 139 139 96 93 93
R-squared 0.254 0.236 0.485 0.313 0.294 0.551

Bootstrapped standard errors are reported in parentheses. Details of the bootstrap-
ping procedure are footnoted in Section 4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table C.4. GDP per Capita, Population Density, and QAPD in 1820, Gapminder

(1) (2) (3) (4)
Dependent
Variable

log 1820 GDP per Capita, Gapminder

log 1820
Population

0.0979∗ 0.173∗∗∗

Density,
Gapminder

(0.0399) (0.0235)

log 1820 QAPD, -0.0582 -0.0144
Gapminder (0.0427) (0.0788)

Native<80% 0.185∗∗ -0.0711
(0.0595) (0.0956)

Constant 6.608∗∗∗ 6.444∗∗∗ 6.948∗∗∗ 6.853∗∗∗

(0.139) (0.103) (0.0953) (0.135)
Observations 139 93 139 93
R-squared 0.0858 0.240 0.0222 0.000767

Columns (2) and (4) restrict the sample to countries where Native is greater than or
equal to 80%. Standard errors in parentheses. Standard errors in columns 3 and 4
are bootstrapped. Details of the bootstrapping procedure are footnoted in Section
4.2.2. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Appendix D: Illustrative Model

We present a simple macro-demographic model that captures the main mechanisms that we
think explain the data. Countries differ exogenously only in their levels of land quality. As
in Lucas (2000), there is a lead country that takes off into growth, with trailing countries
that take off at later dates. Unlike the Lucas model, where takeoff into growth is stochastic,
we model takeoff dates as a deterministic function of land quality.

Productivity in the lead country grows at a constant rate, while trailing countries, once
they experience takeoff themselves, benefit from a productivity spillover that leads to long-
run convergence of productivity levels. In addition, as discussed in the text, we allow for
a spillover of health technology from leaders to followers that is faster than the spillover of
productive technology.

Population growth is just the difference between fertility and mortality rates, both of
which are endogenous. Countries move from a Malthsuian equilibrium in which mortal-
ity and fertility are both high while income per capita and the size of the population are
both constant, through a demographic transition in which fertility and mortality fall while
population growth increases, into a post-transition equilibrium of constant population and
constantly growing income.

Land Quality and the Takeoff into Growth

Countries differ exogenously in their land quality, ALQi , which is constant over time. Land
quality plays two roles in the model. First, it appears directly in the production function. As
will be seen below, the determinants of population growth are such that prior to takeoff all
countries are in Malthusian steady states with income per capita normalized to one. In this
setting, conventionally defined population density will just be proportional to land quality.

The second role of land quality is in determining the date of takeoff. In the text, we show
that there is a strong empirical relationship between these variables. Although we do not
model it explicitly, we assume that the underlying mechanism here is through agglomeration
and Marshallian externalities. Concretely, we set the relationship between ALQ and takeoff
to be the one estimated in the text, with a one log unit decrease in ALQ leading to a takeoff
that is 26 years later.

We normalize the time of takeoff of the country with highest ALQ to be date zero. In the
figures below, we normalize the log of ALQ in the first country to take off to be zero, and
consider values of log ALQ in trailing counties as low as -4.83 (consistent with land quality
differing by a factor of 125. Recall that in our data, the log of ALQ ranges from a high of
2.82 (Netherlands) to a low of -3.15 (Niger).

Technology and Production

The model of technological progress is based on Lucas (2000) and Barro and Sala-i-Martin
(1997). Prior to takeoff in the lead country, technology is stagnant and equal everywhere in
the world. We normalize this level of technology as B = 1. In the lead country, technology
grows at a constant rate of gB following takeoff. Follower countries experience technological
convergence after their own takeoff dates:
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Bi,t+1

Bi,t

= (1 + gB) ·

(
Bl,t

Bi,t

)ρ

for ρ > 0 (20)

where Bl is the level of technology in the leading country.
In every country, output is produced with labor and a fixed quantity of quality-adjusted

land. From equations (3) and (5) in the main text, the level of GDP per capita in a country
is given by

yi,t = B1−α
i,t QAPDα−1

i,t (21)

where QAPD is quality-adjusted population density. Population growth is given by the dif-
ference between fertility and mortality rates. We do not explicitly consider the age structure
of the population or the ages at which childbirth and mortality take place. Life expectancy
(e0) is just the inverse of the mortality rate (m). The growth of population is thus given by
the equation

Lt+1 = Lt(1 + f −m) (22)

Mortality

We model life expectancy in the lead country as a function of time since takeoff. Pre-takeoff
life expectancy is set to 30 years. Oeppen and Vaupel (2002) show that in the period since
1840, life expectancy at birth in the country with the greatest longevity has increased at a
constant linear pace of 3 months per year. We implement this in equation (23):

e0,l = 30 + 0.25 · ln(Bl)/ ln(1 + gB) (23)

Given the constant exponential growth of B, there will be corresponding linear growth of life
expectancy. Over 200 years, life expectancy in the lead country rises from 30 to 80, which
is quite close to historical experience.

For trailing countries, we model life expectancy as being based on a combination of life
expectancy in the lead country and life expectancy that would be justified by productive
technology in the country itself, where the latter relationship is the same as in the lead
country:

e0,i = ω[30 + 0.25 · ln(Bi)/ln(1 + gB)] + (1− ω)e0,l (24)

The parameter ω embodies the spillover of health technologies from the leader to the follower,
and specifically, the extent to which this spillover of health technologies exceeds the spillover
of productive technologies that is embodied in Bi.

Fertility

The fertility rate in the pre-takeoff period is set so that when income per capita is equal to
1, fertility is equal to mortality, which in turn was set so that life expectancy was 30 years.
Specifically this implies f = m = 0.03333. Following Hansen and Prescott (2002), we model
the relationship between income and population growth as being composed of three segments:
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First, there is an upward sloping segment, in which higher income raises fertility. Then there
is a downward sloping segment in which higher income lowers fertility. Finally, above a fixed
level of income, fertility is set at the rate consistent with zero population growth. Hansen
and Prescott model the transition from the first to the second regime as occurring when
income is twice the level of the Malthusian steady state, and the transition from the second
to the third regime as occurring when income is 18 times the Malthusian steady state, with
all segments of the function being linear. They also model the peak population growth rate
(when income is twice the Malthusian level) as being 2% per year (or a doubling every 35
years, which is the time period in their model).

We copy this structure, with minor modifications. In our model, population growth
is a function of both fertility and mortality, with mortality changing following takeoff, as
described above. We then model the fertility function as having the same three segments as in
Hansen and Prescott, specifically choosing the slope parameters so that in the leading country
population growth is 2% when income per capita is (approximately) twice the Malthusian
level and 0% when income per capita is 18 times the Malthusian level.

ft =





0.03333 + γ1(yt − 1) if yt < y∗

0.03333 + γ1(y
∗ − 1) + γ2(yt − y∗) if y∗ ≤ y ≤ 18

mt if yt > 18

(25)

The level of income at which fertility begins to decline, y∗, is not set to 2, as in Hansen and
Prescott, because falling mortality leads population growth to continue to rise with income
over a range even as fertility is falling. Rather, we choose y∗, along with the other parameters
of the model, to hit a maximum population growth rate of 2% at an income level close to 2.

In carrying over the analysis to countries that are not the lead country, we maintain the
effect of income on fertility calibrated in the lead country. Since these trailing countries
have lower mortality (for a given level of income) than does the lead country, they will in
turn experience faster population growth at any level of income than did the lead country.
We think of this change as being particularly appropriate for looking at population growth
in late-starting countries, which indeed experienced higher levels of peak population growth
than those that took off first.

Parameterization

We set the weight on land in the production function to 0.25.38

The three parameters that describe fertility are chosen with the following values:

y∗ = 1.5

38Kremer (1993) uses one third as an upper-end estimate of land’s share for the economy as a whole, while
Hansen and Prescott (2002) assume a value of the fixed factor share of 30% for preindustrial economies.
Caselli and Coleman (2001) derive a value of 0.19 as land’s share in agriculture in the United States in the
twentieth century. All of these papers assume an elasticity of substitution between fixed factors and other
inputs (either for the economy as a whole, or within agriculture) of one. Ashraf, Lester, and Weil (2009),
using data from Caselli and Feyrer (2007), calculate resources shares in national income that are as high as
25% in many poor countries, and exceed 30% in a few.
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γ1 = 0.02

γ2 = −0.0018

Together these yield a maximum population growth rate of 2% when income is equal to
3.5 times its Malthusian level in the lead country. This doesn’t exactly match the Hansen
and Prescott specification, but it is as close as we could manage to come. These parameters
are also chosen so that there is no discontinuity in fertility in the lead country when income
crosses the threshold of y = 18.39

The parameter ω, which gives the weight on a country’s own technology vs. that of
the world leader in determining the mortality rate, is set at 0.25. We had no firm basis
for choosing this value, but did so in order to produce an increase in population in trailing
countries that seemed reasonable.

The value of gB, the growth rate of technology in the lead country, is chosen such that in
the steady state, with constant population, GDP grows at 2% per year. The final parameter
in our model is ρ in equation (20), which determines the speed of technological catch up
(for both productivity and health) among trailing countries. In Lucas (2000), the analogous
parameter has a value of 0.025. In our view, this value was too high, even for the setting
that Lucas was trying to describe. It implies that a country that takes off 200 years after
the leader will have an initial growth rate (of GDP per capita in his model; technology in
ours) of 12% per year. Lucas seems to have been swayed by the experience of a few countries
that had episodes of spectacular growth in the second half of the 20th century, but these are
unusual. In any case, to fit our model to the data, we choose a much lower value of 0.005,
implying slower catchup after takeoff.

The results of the model are presented in Figures 11 A and B.

39In trailing countries mortality rates are lower for any given level of income than in the leader, but we
model the fertility process in these countries as being the same as in the leader. Thus there is a discrete
downward jump in fertility in trailing countries when they cross the threshold of 18 times Malthusian income.
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