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1 Introduction

Assignment mechanisms are commonly used to allocate scarce resources without using

monetary transfers. Examples include public schools, public housing, and organ allo-

cation. An influential theoretical and a growing empirical literature study the design

of these mechanisms. In this literature, notions of efficiency derived from choices are

central to evaluating a design. This desideratum often differs from objectives empha-

sized by policymakers. As examples, school districts emphasize student achievement

and organ transplant systems emphasize patient survival.

Because canonical choice-based mechanisms are not designed with these outcomes in

mind, it is unclear whether they perform well on this dimension. Choices made by agents

who may not be well-informed about the benefits of various options and co-ordination

failures may undercut this objective.1 If so, a planner who can dictate assignments based

on benefits estimated using extensive administrative data on outcomes may be able to

do better. On the other hand, agents may also have private information about the likely

outcomes and using a choice-based mechanism may serve policymakers’ objectives.

This paper evaluates the assignment mechanism used to allocate kidneys from deceased

donors on the basis of survival outcomes. We compare the performance and distribu-

tional consequences of the mechanism to two benchmarks: the survival maximizing

assignment and the random assignment. We also assess the role of choice by examining

its relationship to survival and considering alternatives that dictate assignments using

observables alone.

We make several methodological and empirical contributions here. First, we build on

the literature on Roy selection to analyze a joint model of choices and outcomes in an

assignment mechanism. We show how to identify and estimate the effects of counterfac-

tual assignments by using variation generated by the mechanism and instruments that

only affect choices but are excluded from outcomes. Second, we estimate the Life-Years

from Transplantation (LYFT), defined as the difference between median survival with
1Moreoever, in the kidney allocation context that we study below, surgeons who advise patients

may suffer from agency problems that can misalign decisions relative to maximizing survival outcomes.
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and without a transplant, as a function of patient/donor-specific observed and unob-

served characteristics. Third, using these estimates we compare the mechanism used in

practice to alternative assignments to assess its performance and identify the scope for

further improvements.

Organs from deceased donors are a scarce and valuable resource that need to be al-

located efficiently. Approximately 100,000 patients suffering from kidney failure are

currently waiting for a life-saving transplant. Only one-sixth receive a transplant in a

typical year, and thousands die while waiting.

When a kidney becomes available, patients on the waitlist are offered the organ in

a priority order. Patients may choose to reject an offer in order to wait for a more

preferable one. This decision may therefore depend on the perceived benefits of a

transplant from the offered organ. Weconsider the decision to accept or refuse an

offer along with the potential survival outcomes and then incorporate the potential for

selection.

Our model has three components. The first component models the choices patients

make as a function of the patients’ and organs’ attributes; the second governs patient

survival without a transplant; and the third models post-transplant surivival with the

offered organ. Our method allows for unobserved attributes that are correlated across

the equations.

The model can generate selection into transplantation along three important margins

from the perspective of evaluating assignments. Transplanted patients can be selected

on untransplanted survival, post-transplant survival from an average kidney, or patient-

kidney match-specific survival. Selection on these margins can be induced for two

reasons. First, the priority types and waiting times built into the mechanism induce

selection. For example, the mechanism prioritizes patients who have waited longer,

thereby selecting patients with high untransplanted survival into transplantation. Sec-

ond, patient choice may induce selection. Organs that are particularly well-suited to a

patient may be more likely to be accepted by that patient.

These sources of selection create an identification challenge because they may be driven
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by unobservables. We prove that our model is non-parametrically identified if two

sources of variation are available. The first source of variation is randomness in the offers

made to a given patient, conditional on the patient’s priority-type in the mechanism.

This source of variation allows us to compare the outcomes of patients whose final

assignments differed due to variation in which organs were offered to them. Therefore,

this source of variation identifies a local-average treatment effect – a difference between

the survival outcomes for the select group of patients whose assignment is affected by

an offer.

An important limitation of using only this first source of variation is that it does

not readily allow us to predict survival from counterfactual assignments. Doing so is

necessary in order to consider changes in the set of patients who are transplanted or

changes in the kidneys to which a patient is matched. To fill this gap, we show that

an instrument that shifts choices while holding the (distribution of) outcomes fixed can

be used to identify the model. A related approach has been used in other settings by

Geweke et al. (2003); Heckman and Navarro (2007); Walters (2018); Hull (2018); van

Dijk (2019) to correct for selection and to estimate marginal treatment effects Heckman

and Vytlacil (2005). For our application, we use variation in scarcity across geography

and time after showing that our measures are balanced on patient-specific observables.

We estimate the model using a Gibbs’ sampler similar to Geweke et al. (2003).

Our estimates suggest that choices and assignments are positively correlated with sur-

vival outcomesdue to both observed and unobserved factors. Patients are more likely

to accept kidneys that result in longer survival and those with match-specific benefits.

These patterns are also reflected in the final transplants: transplanted patients have a

higher LYFT from the average organ as compared to untransplanted patients. Taken

together, these results suggest that prior approaches that do not account for selection

on unobservable factors (e.g. Wolfe et al., 2008, 2009) yield biased estimates.

Next, we benchmark this assignment from the perspective of a planner interested in

maximizing survival effects as measured by LYFT. We focus on survival as an objective
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because it is a focal outcome in our empirical context.2 We compare the observed

assignment to alternatives ranging from a random assignment to one that maximizes

LYFT by reallocating patients and donors. The latter represents the maximum LYFT

achievable by assigning patients to organs. Because distributional constraints may limit

the ability to select which patients get a transplant, we also consider an alternatives

that assigns organs to different patients while fixing the set of transplanted patients.

Finally, we measure the LYFT increase that can be achieved by a planner who can

dictate assignments based on observed patient and donor characteristics.

Our results suggest that the mechanism does better than random allocation, but that

there is significant room for improvement. A random assignment yields an average

LYFT of 7.87, much lower than an average of 8.78 in the mechanism used during our

sample period. Compared to a random assignment, the equilibrium assignment selects

patients who benefit more from the transplant and matches these patients to donors

who are more suitable for them.

Most of this gain in LYFT comes from allowing patient choice. Assignment to patients

based on existing priority rules without allowing for choice only achieves an average

LYFT of 8.01. However, LYFT could be increased to 13.84 by changing the assignment.

A significant portion of these gains can be achieved if a planner can dictate assignments

using observables in our dataset. The drop from the optimal assignment suggests that

choice may not be dispensible if the unobserved types are private information.

These improvements in LYFT have important distributional consequences that may

present real-world challenges. Specifically, we find that realizing higher LYFT requires

transplanting patients who are relatively healthy and will live longer without a trans-

plant. Such re-distribution is necessary because we find that benefits from transplant

and survival without a transplant are strongly correlated, and most of the heterogeneity

in LYFT is across patients. Therefore, the planner faces a dilemma between maximizing

survival benefits and transplanting urgently sick patients.
2Observe that there is no natural numeraire good that is transferable in the organ allocation context.

This fact poses challenges to utilitarian objectives that are often justified based on a Kaldor-Hicks
criteria.
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Related Literature

This paper contributes to several literatures. We provide an alternative perspective for

evaluating assignments to the literature studying assignment mechanisms (Abdulka-

diroglu and Sönmez, 2003; Pathak, 2017). This literature typically uses student pref-

erences as the welfare-relevant object. For example, the empirical literature, which

has focused on school choice problems, uses a willingness to travel measure for welfare

comparisons (see Agarwal and Somaini, 2020, for a survey).

A large theoretical literature has studied the design of living donor kidney exchanges

(e.g. Roth et al., 2004, 2007). Despite growth in this market, kidney exchanges account

for less than ten percent of all kidney transplants (see Agarwal et al., 2019a). The most

closely related paper,on deceased donor organ assignment (Agarwal et al., 2019b), uses

a decision-theoretic notion of welfare by comparing a change in the mechanism to an

equivalent increase in donor supply.

Our work contributes a quasi-experimental approach to a medical literature that con-

structs LYFT measures (Wolfe et al., 2008), which are commonly used to guide organ

policy design3 and to calculate cost savings from transplantation. Few papers within

economics study survival outcomes, focusing instead on the total number of transplants

(see Teltser, 2019; Dickert-Conlin et al., 2019, for exceptions).

Our paper also relates to recent approaches that leverage quasi-experimental variation

in school choice mechanisms to estimate school quality (e.g. Abdulkadiroglu et al.

2011; Abdulkadiroglu et al., 2017). The focus of this literature has been to estimate a

local average treatment effect. In our context, this estimand would preclude analyzing

outcomes from alternative assignments because the set of compliers would change. Our

model explicitly incoporates choices in the mechanism as a means to estimate the

distribution of effects.

The techniques we use build on a large literature studying selection models (Roy, 1951;

Heckman and Honore, 1990). Our methods are most closely related to papers that
3The U.S. considered a priority system based on LYFT in the past, and the U.K. uses a “transplant

benefit score” to allocate kidneys (Watson et al., 2020).
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combine outcomes with choice models to correct for selection when estimating treatment

effects (e.g. Geweke et al., 2003; Heckman and Navarro, 2007; Walters, 2018; Hull, 2018;

van Dijk, 2019). In particular, Geweke et al. (2003) use a Gibbs’ sampling in a model

that allows for selection on gains, and Heckman and Navarro (2007) study a setting with

dynamic treatments. Our use of a Bayesian approach is, as far as we know, new in the

literature on estimating survival models with quasi-experimental variation (e.g. Abbring

and Van den Berg, 2003). The main difference relative to the aforementioned papers is

that we use our methods to estimate heterogenous treatment effects in order to evaluate

alternative assignments.4 This requires us to simultaneously estimate selection on three

margins: baseline outcomes, average outcomes under an assignment, and match-specific

effects. Our results avoid relying on identification at infinity arguments by combining

variation in the offers received by an agent with a choice shifter.

Overview

Section 2 describes the institutions, introduces the data, and presents descriptive ev-

idence. Section 3 explains the model. Section 4 outlines the instruments. Section 5

demonstrates our identification results and specifies the empirical model that we take

to the data. Section 6 explores our estimates. Section 7 presents our results on LYFT

generated by the mechanism, and section 8 compares it to alernatives. Section 9 con-

cludes.

2 Background, Data, and Descriptive Evidence

This section begins with the basics of kidney transplation before describing the alloca-

tion system. We then detail our data and present key descriptive facts to motivate our

study.
4Evaluating counterfactual treatment assignment is related to recent work by Kitagawa and Tetenov

(2018), who study the statistical properties of assignments that maximize treatment outcomes con-
ditional on observable covariates in a setting without selection on unobservables. A difference in our
setting is that treatments are also differentiated.
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2.1 Institutional Features

2.1.1 Basics of Kidney Transplantation

Approximately 750,000 patients are afflicted with End-Stage Renal Disease (ESRD) in

the United States (USRDS, 2018). Medicare provides these patients, irrespective of

age, with near universal coverage for costs related to ESRD. This program cost the

federal government $35.4 billion in 2016, accounting for 7.2 percent of overall Medicare

paid claims (USRDS, 2018) or approximately 1 percent of the federal budget.

Transplantation is considered the best treatment for ESRD and is estimated to extend

an average patient’s life by approximately seven years for a patient who is more than

50 years old and eleven years for a young adult (Wolfe et al., 2008). In addition, a

transplant also saves on expensive dialysis treatment. Current estimates suggest that

each transplant is expected to save $195,000 – $400,000 over the life of a transplanted

patient, depending on insurance status (Irwin et al., 2012; Held et al., 2016; USRDS,

2018). These estimates are based on survival models that control for patient and donor

characteristics and a comparison of healthcare costs for patients with and without a

transplant. Our methods improve the estimates of the former set of components by

relying on quasi-experimental variation.

There is significant potential for heterogeneity in survival effects along several important

dimensions, even amongst compatible patient-donor pairs.5 First, survival both with

and without a transplant can differ based on the patient’s health conditions. Some

patients may tolerate dialysis better than others. Similarly, the underlying cause of

kidney disease and other co-morbidities can affect a patient’s post-transplant survival

prospects. Second, donor quality can significantly influence transplants. For example,

the circumstances of the donor’s death, kidney function, and the donor’s heath prior to
5To receive a kidney transplant, the patient must be considered biologically compatible with the

donor. Compatibility requires that a patient does not have a pre-existing immune response to the
donated organ’s cells. After transplantation, medications can limit new immune responses. We hold
medical practices related to determining compatibility and post-transplant management as constant
when we measure survival benefits. Danovitch (2009) provides further details about kidney biology
and medical practices.
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death are considered important determinants of organ quality. Finally, there are match-

specific factors that affect post-transplant survival. Examples include size and weight

match as well as tissue-protein similarity between patient and donor. Our methods will

estimate the effects of these factors on life-year benefits.

2.1.2 The Allocation of Deceased Donor Kidneys

The allocation of organs from deceased donors is organized using a prioritized waiting

list through which patients receive offers when an organ becomes available and may

choose to accept or reject it. This allocation system is co-ordinated using a system

called UNet. It collects detailed information about the donor’s medical history and

organ characteristics and transmits it to biologically compatible patients who are being

offered the kidney. Each donor’s kidneys are allocated to the highest-priority patients

on the waitlist who are willing to accept the organs.

Prior to 2014, patient priority in the kidney assignment system was based primarily

on waiting time and tissue-type similarity between the patient and donor. Specifically,

each kidney is first offered to patients with a perfect tissue-type match, then to patients

from the local area in which the organs were recovered, then regionally, and finally

nationally.6 Within each priority group, the points system is based on tissue type

similarity, whether or not the patient is pediatric, patient sensitization, and waiting

time (see OPTN, 2014, for details).

A new kidney allocation system aimed at improving survival benefits was implemented

on December 4, 2014. The most important change gives greater priority to the healthiest

patients for the highest quality organs because these patients are believed to have the

largest survival benefit from these organs. In addition, the system also increases priority

for extremely hard to match patients and reduces emphasis on wait time. We refer the

reader to OPTN (2017) for a detailed description of the priorities and points used.
6The local regions are defined along state boundaries in most cases with exceptions to make sure

that a metropolitan area is not split into two regions. This was done, in part, because some regions
did not want to disadvantage their patients if others had a high demand for organs. Local allocation
also helps reduce the amount of time an organ needs to be preserved using specialized equipment while
outside the donor’s body.
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Using survival models that control for patient and donor covariates, Israni et al. (2014)

predict that this change should increase post-transplant survival and improve access

for highly sensitized candidates.

There are two features of the kidney allocation system that are worth highlighting.

First, unlike the assignment systems for some other organs (for example, livers), the

kidney assignment system does not use patient urgency to determine priority. Second,

patients who reject an offer remain on the list and may choose to accept the next offer

with no penalty in priority for refusing an offer.

2.2 Data and Descriptive Analysis

2.2.1 Data Sources

This study uses data from the Organ Procurement and Transplantation Network (OPTN).

The OPTN data system includes data on all donors, wait-listed candidates, and trans-

plant recipients in the US, submitted by the members of the OPTN. The Health Re-

sources and Services Administration (HRSA), U.S. Department of Health and Human

Services provides oversight to the activities of the OPTN contractor.

The data include detailed information on patient and donor characteristics, survival,

and graft failure outcomes from the Standard Transplantation Analysis and Research

dataset. They also include all offers made by the system and accept/reject decisions

from the Potential Transplant Recipient dataset. These data are populated using in-

formation gathered in UNet and forms submitted by transplant centers from patient

follow-ups after a transplant is performed.

We restrict attention to patients who first joined the kidney waiting list between Jan-

uary 1st, 2000 and December 31st, 2010.7 From this set, we exclude patients who needed

multiple organ transplants and those that received a living donor kidney. Correspond-

ingly, we only use data on donor offers and acceptance decisions for these patients.
7For patients with multiple listings, we keep the earliest registration if the patients never received

a transplant; otherwise, we keep the earliest registration with transplant record.
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The data allow us to measure survival outcomes using information on patient death

merged from social security records and transplant center reports. These records are

consistently populated until December 31st, 2015.8 For patients without death records,

we use information from the waitlist for untransplanted patients and from annual post-

transplant follow-ups for transplanted patients to construct a censored measure of pa-

tient survival.

2.2.2 Descriptive Analysis

Patients and Donors

Table 1: Patient Characteristics
Table 1: Patient Characteristics and Outcomes

All Patients

Mean S.D. Mean S.D.

New Patients per Year 15956 8393

Panel A: Outcomes

Died by Year Five (%) 27.4 44.6 9.3 29.1

Survived Five Years (%) 64.2 47.9 86.2 34.4

Censored by Year Five (%) 8.4 27.7 4.4 20.6

Transplanted by Year Five (%) 47.2 49.9 89.7 30.4

Panel B: Characteristics

Age at Registration 51.4 14.2 48.9 15.2

On Dialysis at Registration (%) 77.3 41.9 75.1 43.2

Diabetic Patient (%) 42.9 49.5 33.4 47.2

BMI at Registration 28.2 5.9 27.6 5.7

Received Deceased 
Donor Transplant

Notes: 202,364 patients registered their first wait list listing between 2000 and 2010. 
Transplant records and survival data are available through 12/31/2015. Patients from whom 
we do not observe death are censored, which observed survival duration computed differently 
for each patient based on the dates and status when we last observe the patient. Outcomes 
presented in Panel A are measured by time are since registration. 

Notes:
Sample includes 175518 patients who registered between 2000 and 2010. Transplant and survival data are available
through 12/31/2015. Patients for whom we do not observe death are censored. The observed survival duration is
computed based on the date and status of the patient when we last observe her. See A.4 for detailed computation of
observed survival. Durations presented in Panel A are time since registration.

Patients on the waiting list face extreme scarcity, with a significant portion of patients

dying while waiting for a transplant. Table 1 describes the sample of patients and

their transplant and survival outcomes. An average of 15956 patients from our sample

registered each year on the kidney waiting list. Panel A shows that 27.4% of patients
8Our data use agreement allows for periodic updates, which we plan to include in future iterations

of the paper.
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who join the list die within five years of registering, while only 47.2% receive a transplant

during this time period. The chances of receiving a transplant decline after the first

five years as only 54% of the full sample of patients ultimately receive a deceased donor

kidney. The remaining patients either still await a kidney or leave the list.

Panel B shows that patients receiving a transplant from a deceased donor are younger

and appear to have been in better health at the time of registration. Transplanted

patients are less likely to be on dialysis at the time of registration, are less likely to be

diabetic, and have a lower body mass index. These observations are consistent with

long waiting times and the hypothesis that differences in these characteristics correlate

with longer survival without a transplant.

Table 2: Donor Characteristics
Table 2: Donor Characteristics and Kidney Recipient Outcome

All Donors Any Kidney Discarded

Yes No

Mean S.D. Mean S.D. Mean S.D.

Number of Donors per Year 6181 1169 5012

Median Number of Offers per Donor 51 482 40

Average Number of Offers per Donor 543.5 1927.9 1890.5 3684.3 229.3 946.7

Donor Age 39.2 18.4 52.0 16.6 36.2 17.5

Cause of Death -- Head Trauma (%) 39.7 48.9 19.5 39.6 44.5 49.7

Hypertensive Donor (%) 28.6 45.2 55.4 49.7 22.4 41.7

Donor Creatinine 1.2 1.0 1.4 1.1 1.1 0.9

Non-Heart Beating Donor (%) 7.9 26.9 10.4 30.6 7.3 26.0
KDPI 0.5 0.3 0.8 0.2 0.4 0.3

Notes: Panel A contains statistics for donors whose kidneys were recovered between 2000 and 2010.Notes: Sample includes deceased donors offered between 2000 and 2010 to patients in the sample.

Patients exercise choice despite scarcity, often rejecting undesirable organs. Table 2

shows that across donors, the mean number of biologically compatible offers is 543.5, but

the median is much lower, at 51. This skewed distribution arises because undesirable

kidneys are rejected by many patients, while desirable kidneys are accepted quickly.

Indeed, 18.9% of donors have at least one viable kidney discarded. Organs from these

donors were refused by an average of 1890.5 patients.

Predictors of organ quality are correlated with number of offers and discards in expected

ways. Table 2 summarizes select donor characteristics by the allocation outcome for a

donor’s kidneys. Donors whose kidney(s) was/were discarded are older, less likely to
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die of head trauma, more likely to be diabetic or hypertensive, have higher creatinine

levels (an indicator of lower kidney function), and more likely to have donated after

cardiac death. The transplantation community aggregates these and other indicators

of quality into the Kidney Donor Profile Index (KDPI), which is the percentile of the

estimated quality of a donor’s organ. 9

Survival

Our study will focus on survival as the primary outcome of interest for several reasons.

First, this outcome is arguably the most important one from the perspective of the

patient and also the policy-makers. Predicted LYFT from observational models was

explicitly used by the OPTN Kidney Transplantation Committee to evaluate proposed

designs. As we will show below, ESRD patients who do not receive a transplant have

a life expectancy of about half of those that do. Second, moving an ESRD patient

from dialysis to transplantation saves on expensive dialysis treatment. While we do

not directly evaluate this component, future research can use our estimates to revisit

cost-benefit analyses. Third, this outcome can be measured relatively easily. The other

most commonly discussed effect is on quality of life, which is hard to quantify.

Figure 1 shows survival curves for patients who receive a transplant and those who

do not using the (non-parametric) Kaplan-Meier estimator. We separate the survival

curves for young and old patients (above/below the median age of 54) and for donors

that had at least one kidney discarded, which indicates that the transplanted organ was

likely undesirable. The vertical dashed lines depict the average waiting time for organs

from the two donor types. Donors who had at least one kidney discarded are much

more likely to have undesirable organs as compared to those that did not. Indeed, the

average waiting time for a patient who receives a kidney from a donor without a discard

is higher than that for a donor with a discard.

These survival curves show that transplanted patients live significantly longer than pa-
9See https://optn.transplant.hrsa.gov/resources/guidance/

kidney-donor-profile-index-kdpi-guide-for-clinicians/.

https://optn.transplant.hrsa.gov/resources/guidance/kidney-donor-profile-index-kdpi-guide-for-clinicians/
https://optn.transplant.hrsa.gov/resources/guidance/kidney-donor-profile-index-kdpi-guide-for-clinicians/
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Figure 1: Patient Survival

Notes: The figure shows Kaplan-Meier survival curve for young and old patients (above/below the median age of 54)
who registered on the waitlist between 2000 and 2010. Survival with transplant is measured as time since registration.

tients who do not receive a transplant. Moreover, these survival curves are substantially

different for young versus old patients and for patients transplanted with a desirable

versus undesirable organ. Only about half of the young patients who do not receive

a transplant survive more than 7.9 years, but more than half of the young patients

who receive a transplant from a donor with desirable organs live past 16 years. These

statistics are 5.4 and 11.3 years, respectively, for older patients, indicating that older

patients have shorter half-lifes both with and without a transplant. In fact, some young

patients survive more than eighteen years, which is rare for an older patient.10 For both
10In our sample, 61.2% young patients and 21.0% old patients who received a desirable organ survived

more than 16 years. We cannot track survival outcomes for any longer than sixteen years because the
earliest cohort in our study registered in the year 2000, and our survival data are up to date as
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groups of patients, a transplant using an undesirable organ is associated with half-lives

that are shorter by about a year or more.

Taken together, these observations point to the potential for choices and assignments

to be correlated with survival outcomes. Choices are important because discards occur

only when many patients have refused the organ. Next, we turn to a model that

incorporates these sources.

3 A Model of Decisions and Outcomes

Our model considers assignment mechanisms in which objects, indexed by j, are as-

signed to agents, indexed by i. When an object arrives, offers are made to agents on

a waiting list who must decide to accept or reject it. These decisions translate into

an assignment, and an outcome is realized. We now describe the mechanism, observed

outcomes, and the primitives of our model in further detail.

3.1 Assignment Mechanism and Observed Outcomes

Objects arrive sequentially, their index j denotes their arrival order, and the mechanism

assigns each one as follows. It orders agents on the waiting list according to a priority

score that may be object specific and depend on the time that an agent has waited.

Offers are made in priority order and each agent may decide to accept or reject the

object. We denote acceptance with Dij = 1. Objects are assigned to the highest

priority agents that accept the offer. The mechanism may elicit multiple decisions at

once, but agents may not be skipped. Finally, agents that have been assigned an object

are removed from the list. Other agents may also leave the list.

Now consider the set of objects that are feasible for a given agent. Holding fixed the

decisions of the other agents, define Ji to be the sequence of objects offered to agent i

of December 31, 2015. This fact also motivates our focus on median survival half-lives instead of
expected life-years – the former does not depend on the right-tail of survival outcomes. This focus is
also consistent with prior work measuring the life-year benefits from transplantation (see Wolfe et al.,
1999, 2008, for example).



15

if the agent refuses all offers made to her and the agent participated in the mechanism

indefinitely. Because we allow agents to depart from the list prior to assignment due

to death or other reasons, an agent may only receive a subset of offers. Let J̃i be this

subset. That is, J̃i is an ordered set of objects that the agent would have been offered

prior to departure from the list if she refused all objects.

The object that an agent is assigned depends both on the feasible set of objects and

her decisions. Specifically, let Tij = 1 denote agent i being assigned object j. Indexing

objects in sequence of arrival, we have that

Tij =
∏

j′<j, j′∈J̃i

(1−Dij′)Dij,

where Dij = 1 if agent i accepts object j. Therefore, each agent i is assigned to the

first object that she accepts from the set J̃i.

The outcomes we observe are determined by whether or not an agent is assigned and

to which object she is assigned. The observed outcome is

Yi =
∑
j∈J̃i

TijYij +
1−

∑
j∈J̃i

Tij

Yi0,
where Yij is the outcome of agent i from being assigned object j, and Yi0 is the outcome

for agent i if the agent is not assigned any object.

This formulation abstracts away from potential truncation of the observed survival

outcome for simplicity of notation. That is, if agent i is assigned to object j then we

observe Yij. Otherwise, we observe Yi0. In our empirical context, we observe a censored

survival outcome for some set of patients. For these patients, we will be able to deduce

that Yi > Ȳi, where Ȳi is the censoring time. Our approach will account for the fact that

we have access to censored data on outcomes. Throughout, we will make the standard

assumption that the duration for censoring is independent of the true duration (see

equation 20.22 in Wooldridge, 2010).
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3.2 Latent Outcomes and Decisions

There are three key sets of primitives in our model:

Unassigned Outcome: The outcome for agent i if the agent is not assigned any object

is given by

Yi0 = g0 (xi, νi,0) , (3.1)

where xi ∈ Rdx are agent-specific observables; νi,0 ∈ R denotes a vector of agent-

specific unobservables; and Yi0 ∈ R.

Assignment Outcome: The outcome of agent i from being assigned object j is given

by

Yij = g1 (qj, xi, νi,1, εij,1) , (3.2)

where xi ∈ Rdx is a vector of agent-specific observed characteristics; qj ∈ Rdq

denotes the type for each object j; νi,1 ∈ R denotes a vector of agent-specific

unobservables; εij,1 ∈ R denotes unobservables that are agent- and object-specific;

and Yij ∈ R.

The main restriction for the purposes of our application is that the survival curve

for a given patient does not evolve over time.11 That is, the agent-level unobserved

heterogeneity terms νi1 and νi0 do not vary with time. It is difficult to relax this

restriction because we only observe a single survival outcome for each patient (see Unkel

et al., 2014; Heckman and Navarro, 2007). The model and our empirical specification

do allow for survival to depend on time waited prior to transplant since xi and qj can

include the dates on which patient i and organ j arrive.

Decision Equation: We model the acceptance decision as

Dij = gD (qj, xi, zi, νi,D, εij,D) ∈ {0, 1} (3.3)

11Since Yij and Yi0 denote survival outcomes in our application, they can be written as arising from
survival models with time-varying hazard rates that depend on unobservables.
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where Dij = 1 denotes accept; νi,D ∈ R denotes unobserved selectivity of agent i;

εij,D ∈ R is a shock that is specific to the agent and the object; and zi ∈ Rdz are

observables that influence the decision on an agent. Without loss of generality,

we assume that gD is non-increasing in vi,D and non-decreasing in εij,D.

The primary restriction in the choice model is that an agent’s decision does not depend

directly on the specific decisions of other agents or on the feasible set J̃i. Nonetheless,

the model does accomodate agents refusing an offer in expectation of the future offers

the agent may receive in equilibrium. Although we do not need to commit to a spe-

cific equilibrium model of choice, Agarwal et al. (2019b) describe an optimal stopping

problem that yields our decision equation as the optimal choice rule. Specifically, an

offer is accepted if the (perceived net present) value from accepting the organ exceeds

the option value of waiting.

The main difference between Xi and Zi is that the latter is excluded from the outcome

equations described above.12 For example, Zi could include variables that influence this

decision, say through the distribution of future offers, but is unrelated to the benefits of

accepting the given organ. This exclusion restriction, combined with Assumption 1(i)

below, introduces instruments in the model that we will use in the empirical strategy.

Identification results and the specific instruments Zi used in our application are further

discussed in Section 4.

Throughout the paper, we will make the following assumptions:

Assumption 1. (i) {εij}j, νi, and Zi are mutually independent conditional on xi and

(qj)j.

(ii) The random vector νi = (νi,0, νi,1, νi,D) is distributed iid across i.

(iii) The random vector εij = (εij,1, εij,D) is distributed iid across i and j.

Assumption 1(ii) and 1(iii) above are currently without loss of generality but will imply

restrictions when we restrict the functions g0 (·), g1 (·), and gD (·). In our specifications,
12We use uppercase letters to denote the random variables that describe the process of sampling

from the patient population and reserve lowercase letters to denote their realized values.
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dependence between the components of νi and the components of εij will allow Yij and

Yi0 to be correlated with each other and with Dij.

3.3 Sources of Selection

The model allows for selection on three dimensions: untransplanted survival Yi0; sur-

vival from the average transplant Ȳi = 1
J

∑
j Yij; and selection on match-specific survival

Yij − Ȳi. There may be selection on these dimensions due to either choice or the mech-

anism.

Selection due to choice occurs if agents’ choices Dij are correlated with survival out-

comes Yi0 or Yij. For example, such selection occurs if patients with higher expected

survival without a transplant due to unobserved health conditions are more selective.

This type of selection can occur due to either observables or unobservables. For exam-

ple, if E (Yi0|νi,D, xi) varies with xi or νi,D there is selection on untransplanted outcomes.

Similarly, patients may be more likely to accept an organ with an idiosyncratic survival

benefit. These sources of selection are generalized versions of Roy (1951) selection.

Selection due to the mechanism occurs for two reasons, even after conditioning on

decisions Dij. First, an organ that arrives after the patient’s survival outcome without

a transplant is not feasible. Therefore, J̃i can only include organs that arrive prior to the

untransplanted survival duration, Yi0. This fact results in selection on untransplanted

survival via both xi and νi0 because these attributes may be correlated with transplanted

survival. Second, J̃i depends on the priorities and the set of patients on the waiting list,

which also affects which transplants occur. For example, priority is given to patients

who have a perfect tissue-type match with the kidney because these patients may have

idiosyncratically large survival benefits.13 Similarly, priority for waiting time implies

that transplanted patients may have larger than average values of survival without a

transplant, Yi0, which may be correlated with transplanted survival, Yij.

Because some of these sources of selection can be driven by unobservables, comparing
13Organs with a perfect tissue-type match are significantly less likely to cause a adverse immune

response, resulting in greater survival benefits.
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survival with and without a transplant can yield biased estimates of the causal effect of

a transplant. Both sources result in Tij being correlated with unobserved factors that

determine outcomes. The aim of the instruments discussed in Section 4 is to address

the resulting endogeneity concerns.

4 Instruments

Our solution to the selection problems discussed above requires two sources of variation.

We describe each of these in turn. Section 5 will formally prove identification under

these two sources of variation.

4.1 Conditionally Independent Potential Offers

The first source of variation we will exploit arises from randomness in the objects offered

to an agent. Recall that Ji is the sequence of offers to agent i if the agent refuses all

offers made to her and participated in the mechanism indefinitely. We will impose the

following assumption on Ji:

Assumption 2. The sequence of offers Ji is conditionally independent of (νi, εi) given

xi.

This assumption is satisfied if xi controls for a sufficiently rich set of agent types such

that the remaining variation in potential offers for an agent is independent of unob-

served determinants of outcomes and decisions. The assumption parallels the exclusion

restriction required for instrument validity.

We now argue that this assumption is plausible in our setting on theoretical and empir-

ical grounds. Our theoretical justification is based on the mechanism used to allocate

deceased donor kidneys and the assumptions on the model made above. The set Ji
depends only on the kidneys that arrive after a patient registers on the waiting list, the

decisions of other patients on the waiting list, and determinants of the agent’s priority

and points on the list. It does not depend on the specific decisions made by agent
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i. Our knowledge of the mechanism allows us to construct rich controls xi for each

patient’s priority. Conditional on these controls, the remaining variation in Ji is only

due to the stochastic arrival of organs and the decisions of agents other than i. It is

plausible to assume that the former is independent of (νi, εi) because organ availability

depends primarily on deaths in the local area. And, as we argued in Section 3 above,

the latter is independent of (νi, εi) in a natural equilibrium model of the the waiting

list.

While we will use the full set of offers to estimate the model, we now use a specific

function of Ji to investigate this source of variation. To do this, we construct a set of

desirable donors that are achievable for patient i in the two years following the patient’s

registration. Specifically, we calculate whether a patient, denoted i, would be placed

above the patient in the 10th position on the list for a given donor. A patient is highly

likely to receive an offer for an organ from such a donor because only 22.7% of deceased

donors are offered to fewer than ten patients. We then calculate the number of donors

in a given category that satisfy this criteria for each patient in the two years following

the patient’s registration date.14

The variation in this variable comes from two sources: variation in the organs that

arrived in the two years following patient i’s registration and variation in the patients

on the waiting list when the organ arrived. Moreover, the results below use fixed effects

to control for differences in a patient’s priority, geographical area, and time trends. We

therefore need to argue that Assumption 2 is satisfied for this variable conditional on

these controls. We claim that the first source of variation is independent of patient

i’s decisions because specific patients are not considered in organ donation decisions.

The second source of variation is also plausibly exogenous because a given patient’s

decision is unlikely to affect the priority of the patient ranked in the tenth position.15

14We include a donor in the calculation irrespective of whether the patient accepted a prior offer or
departed from the list during the period. Throughout, we restrict attention to blood type-compatible
donors that arrived in the same donor area and assume a fixed waiting time of two years.

15The only potential effect is if patient i, in our sample, accepts a kidney that would otherwise have
been accepted by another patient who would been pivotal in determining whether i would be in the
top ten positions for a different donor.
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Consistent with these claims, Table D.5 in the appendix shows that our measures are

not significantly correlated with the vast majority of various patient characteristics (age,

diabetes, female, height, and weight).

Given this exclusion restriction, we now turn to showing how this measure of a patient’s

potential offers is related to transplant and survival. These correspond to the first-stage

and reduced-form relationships in a linear instrumental variables model. Columns (1) to

(4) in Table 3 present estimates from linear probability models to examine the relation-

ship between the number of potential top 10 offers from donors that are either above or

below median quality (as measured by KDPI) and transplant outcomes. Columns (5)

and (6) show the survival effects of these potential offers using estimates from a Cox

proportional hazards model. All models include fixed effects for the patient’s donor

service area (DSA), year of registration, blood type, and determinants of priority.

The first conclusion from Table 3 is that potential offers strongly influence whether or

not a patient receives a transplant as well as the type of organ transplanted. Columns

(1) and (2) show that the number of offers in both donor categories are positively related

to the probability of a transplant, whether or not we control for a rich set of patient

characteristics. Columns (3) and (4) show that the type of organ transplanted depends

on the number of potential offers from the corresponding type of donor. Specifically, a

patient with a greater number of potential offers from above median quality organs is

more likely to receive a transplant from such an organ. Conversely, the probability of

a transplant from a below median organ decreases with more offers from above median

quality organs. An analogous relationship holds for offers from below median quality

donors. The F-statistic is large and much higher than the conventional cutoff of 10

used to assess whether an instrument is strong (Stock and Watson, 2012). Therefore,

the evidence points to a strong first-stage relationship.

The second conclusion from Table 3 is that having a high potential number of offers

from organs that are above median quality, as measured by KDPI, improves survival.

Column (5) shows results that do not control for patient characteristics. Offers from

higher quality organs reduce the hazard rate of departure, thereby increasing survival.
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Table 3: Top 10 offers: First StageKDPI log(1+num) cond FS+RF

Transplant Hazard Rate

Any Kidney Any Kidney KDPI <= 50%

(1) (2) (3) (4) (5) (6)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% 0.0322*** 0.0334*** 0.0439*** -0.0105*** -0.0163* -0.0321***

(0.00441) (0.00441) (0.00306) (0.00287) (0.00730) (0.00736)

KDPI > 50% or Missing 0.0303*** 0.0297*** -0.0128*** 0.0425*** 0.0000307 -0.00321

(0.00475) (0.00478) (0.00314) (0.00294) (0.00711) (0.00715)

DSA FE, year FE, and blood type FE x x x x x x

Control for Pediatric at Listing x x x x x x
CPRA Category Controls x x x x x x

Patient Characteristics x x x x

F-statistic 93.20 92.23 108.0 130.6

Number of Observations 132715 131105 131105 131105 132715 131105

R-Squared 0.210 0.219 0.171 0.065

KDPI > 50% or 
Missing

Notes: * p<0.05, ** p<0.01, *** p<0.001. The sample restricts to patients who registered between 2000 and 2008
because the instrument is calculated using offers in the two years post registration. Columns (5) and (6) use the Cox
proportional hazards model. Survival duration is measured since the date of registration. All regressions control for
donor service area (DSA) fixed effect, registration year fixed effect, blood type fixed effect, an indicator for pediatric
at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration.
Patient characteristics include an indicator for female; indicators for age 18-35, 35-50, and 50-65; indicators and linear
controls for dialysis time 1-3, 3-5, 5-10, and >10 years; and an indicator for diabetes. Standard errors, clustered by
DSA, registration year, and blood type in Columns (1) through (4), are in parentheses. F-test tests against the null
hypothesis that the coefficients on the instruments are zero.

However, both columns suggest that potential offers from a lower than median quality

organ do not affect survival. Column (6) shows that this relationship is robust to

controlling for patient characteristics. Under Assumption 2, these relationships can

only occur through the transplant a patient ultimately receives. Therefore, together

with the results in columns (1) to (4), the results suggest that patients that receive an

above median quality kidney have improved survival outcomes significantly.

4.2 A Choice Shifter: Scarcity

The second source of variation that we leverage is based on instruments that alter an

agent’s acceptance decision but are independent of latent outcomes. In the model, the

variables zi affect the decisions, Dij, but are excluded from the functions g1 (·) and

g0 (·). Moreover, Assumption 1(i) requires that, conditional on xi, (νi, εi) is distributed
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independently of zi. Therefore, these instruments are useful in identifying the model

as they can be used to vary the selectivity of patients while holding survival outcomes

fixed.

The instruments that we construct for our setting are motivated by the observation

that patients face an optimal stopping problem (Agarwal et al., 2019b). Therefore,

two otherwise identical patients who place different option values on waiting will make

different acceptance decisions even when offered the same type of organ. In particu-

lar, patients who expect greater transplant opportunities in the future (lower scarcity)

should be less willing to accept a given kidney than otherwise identical patients with

fewer opportunities (higher scarcity). The scarcity instruments we need to construct

must be correlated with decisions but independent of latent outcomes.

We construct two measures of scarcity as choice shifters. The first is a predictor of

offers a patient can expect in the future. Fix an offer for donor j made to patient i

in the calendar quarter tij. Consider the set of offers made in the four quarters before

tij to other patients in a comparison group consisting of other patients with the same

blood type as i that registered in the same DSA as i. We count the subset of offers

made to this group of patients when they had the same number of waiting time priority

points as patient i when she received the offer for donor j. The second is a predictor

of donor supply, which is constructed analogously to the first but counts the number of

donors instead.

Our analysis will include fixed effects for the DSA, blood-type, and the calendar year of

the assignment. Therefore, both instruments exploit variation in the relative scarcity

of organs in a patient’s location while controlling for secular trends across locations.

In order to evaluate the assumption that (νi, εi) are distributed independently of zi,

conditional on xi, we investigated whether variations in our measures of scarcity sig-

nificantly correlate with the characteristics of patients that register in a given year.

Reassuringly, Table D.6 in the appendix shows that our scarcity instruments are not

significantly correlated with patient characteristics (age, diabetes, female, height, and

weight). The threat to the instrument therefore needs to be a DSA-specific trend in
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scarcity that correlates with outcomes for some reason that is not reflected in patient

characteristics.

Table 4: Scarcity Instruments: First Stageall KDPI FS+RF

Page 1

Acceptance Hazard Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(1 + No. Donors) -0.0632*** -0.0480*** -0.0361*** -0.0107 -0.0328

(0.00373) (0.00338) (0.00323) (0.0207) (0.0208)

Log(1 + No. Offers) -0.0640*** -0.0528*** -0.0409*** -0.0156 -0.0371**

(0.00203) (0.00183) (0.00182) (0.0113) (0.0115)

Offer Year FE x x x x x x

Registration Year FE x x x x

DSA FE and blood type FE x x x x x x x x x x

Years Waited at Offer FE x x x x x x x x x x

Patient Characteristics x x x x x x x x

Donor Characteristics x x x x

Match Characteristics x x x x

F-statistic 287.8 991.0 201.2 829.8 125.0 506.3

Number of Observations 912761 912761 912761 912761 900669 900669 64703 64703 63959 63959

R-Squared 0.101 0.109 0.169 0.174 0.265 0.268

Notes: * p<0.05, ** p<0.01, *** p<0.001. For Columns (1) through (6), we use the first 100 offers from each donor
between 2000 and 2009, and the dependent variable is accpetance of an offer. For Columns (7) through (10), we use
patients who received a transplant through deceased donor offers between 2000 and 2009. All regressions control for DSA
fixed effect, blood type fixed effect, and a fixed effect for the number of years waited at the offer. Patient characteristics
include Calculated Panel Reactive Antibody (CPRA) via indicators for CPRA=0, 0.8>CPRA>=0.2, CPRA>=0.8,
and CPRA missing; an indicator for female; indicators for age <=18, 18-35, 35-50, and 50-65; indicators and linear
controls for dialysis time 1-3, 3-5, 5-10, >10 years; and an indicator for diabetes. Donor characterstics include linear age,
indicators and linear controls for donor creatinine > 0.6 and >1.8, and indicators for diabetes, donation after cardiac
death, and expanded criteria donor. Match characteristics include the number of Human Leukocyte Antigen (HLA)
mismatches via indicators for 0 HLA mismatch, 0 and 1 DR antigen mismatch, identical blood type, local offers, and
linear controls for (+) and (-) age difference, interactions between CPRA indicators and # HLA mismatches, donor age
over 40 and pediatric patient, donor age over 55 and patient age 18-35, donor age over 60 and patient age 35-50, and
donor age below 60 and patient age 50-65. Columns (1) through (6) report standard errors clustered by DSA, offer year,
number of years waited at offer, and blood types in parentheses.

These instruments are relevant to decisions if these ex-post measures are correlated with

beliefs about future offer probabilities. Columns (1) to (6) of Table 4 show the results

from a linear probability model that regresses a dummy on whether an offer is accepted

on two measures of scarcity and a variety of controls. The sample is restricted to the

first one hundred offers made for a donor. Both measures of scarcity are negatively

correlated with acceptance. Columns (3) and (4) show that the number of donors or

number of offers to patients in the comparison group in the four quarters is negatively

correlated with acceptance rates, controlling for patient characteristics, and fixed effects

for DSA, allocation year, and years waited. This relationship is strong and robust to
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adding an extensive set of controls for donor and match-specific characteristics. Figure

D.1 in the appendix shows a residualized binscatter plot suggesting that this relationship

is monotonic.

These results indicate that our measure of scarcity has the expected relationship with

patient acceptance decisions while satisfying the required exclusion restrictions.

5 Identification and Estimation

The previous section introduced two sources of variation that are orthogonal to an

agent’s latent outcomes Yi0 and Yij – the potential offers that an agent could receive

and the scarcity faced by an agent, zi. We now show that these two sources of variation

can be used to identify the decision model and measure the sources of selection discussed

in Section 3. Our results condition on the agent type xi and omit it for simplicity of

notation. We assume the analyst observes the offer sequence Ji, the object types qj,

the choices Dij and the survival outcomes.

The argument proceeds in four parts. First, we show that variation in the offers received

by an agent can be used to learn the expected outcomes conditional on the value of

scarcity, assignment status, and the sequence of offer types. Second, we show that the

choice model described in equation (3.3) is identified conditional on scarcity. Third, we

use the variation in scarcity to identify the effect of selection on unobservables. The

second and third parts consider the case when all objects arrive at the same time as

the agent. The fourth part relaxes this restriction. All proofs are in Appendix C.

5.1 Identifying Conditional Expected Outcomes

The first result shows what can be learned about expected outcomes using variation in

offers. Let ji,n denote the n-th offer received by i, and let qji =
(
qji,1 , . . . , qji,|ji|

)
be the

associated sequence of offer types. We have the following result:

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied, and
(
qji,1 , . . . , qji,n

)
and(

qji,1 , . . . , qji,n−1

)
belong to the support of the distribution of offer-types induced by the
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distribution of Ji. If P
[
Tiji,n = 1|qji , z

]
> 0, then the quantities E

[
Yiji,n|Tiji,n = 1, qji , z

]
and E

[
Yi0|Tiji,n = 1, qji , z

]
are identified.

This result shows that we can identify the expected outcomes with and without assign-

ment for agents with an offer-type sequence qji who were assigned to the n−th offer. As-

signing agents with the offer sequence qji allows us to directly observe P
[
Tiji,n = 1|qji , z

]
.

Additionally, since we observe the outcome Yiji,n for agents with Tiji,n = 1, we also ob-

serve E
[
Yiji,n|Tiji,n = 1, qji , z

]
. The challenge is to recover the expected value of Yi0

for the group of agents who would have been assigned the n−th offer had they re-

ceived the offer sequence qji . We construct this quantity using the expected outcomes

of unassigned agents with offer-type sequences
(
qji,1 , . . . , qji,n

)
and

(
qji,1 , . . . , qji,n−1

)
.

The former group only includes agents with Tiji,n = 0 while the latter group includes

agents with both values of Tiji,nwith known probability P
[
Tiji,n = 1|qji , z

]
. These three

quantities can be combined to recover E
[
Yi0|Tiji,n = 1, qji , z

]
.

Although our formal result is stated for the conditional expectations of the outcome

variables, we can identify the whole distribution of Y . This follows from Lemma 1

because we can identify the conditional expectation of ψ (Y ) for any bounded function

ψ. This result is similar in spirit to those in the treatment effects literature (e.g. Imbens

and Angrist 1994; Heckman et al., 2010). A similar estimand has been the target in

Abdulkadiroglu et al. (2017) where offers in a school choice mechanism are used as

instruments to estimate treatment effects.

A limitation of this result is that only the expected outcomes for a selected set of

agents are identified. In particular, the assignment status, the types of offers an agent

receives, and the scarcity z introduce selection on the distribution of νi,D conditional

on transplant. For example, two agents with the same offer sequence who are assigned

to the n−th and the (n+ 1)−st offers likely differ in their selectivity, νi,D. Identifying

E
[
Yiji,n|Tiji,n = 1, qji , z

]
and E

[
Yi0|Tiji,n = 1, qji , z

]
is therefore not sufficient for evalu-

ating the expected values of Yiji,n and Yi0 under a counterfactual assignment of kidneys

to patients. Obtaining counterfactual predictions requires recovering the distribution

of outcomes conditional on unobservables, as we do below.
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5.2 Identifying the Choice Model

Our next result shows that we can use the variation in offers also to identify the function

gD (·).16 To fix ideas, focus on donor types whose arrival time coincides with the patient

arrival time. That is, if tij denotes the time difference between donor arrival and patient

arrival, we focus on the case when tij = 0 so that the distribution of νi is not selected

due to survival while waiting on the list. This assumption is relaxed in section 5.4

below. We normalize the marginal distributions of νi,D and εij,D to be uniform and

assume that z is supported in the unit interval. These normalizations are without loss

of generality because we have not yet placed restrictions on the functional form of gD (·).

We need to introduce more notation in order to develop our result. For each value

of z and donor type qj, consider two sets of pairs (νD, εD) such that one set yields

gD (qj, z, νD, εD) = 0 and the other yields gD (qj, z, νD, εD) = 1. Figure 2 illustrates

the regions for two representative values of z ∈ {zlow, zhigh}. The function v (εD; qj, z)

separates these two sets.17 Therefore, identifying the function v (εD; qj, z) is equivalent

to identifying gD (·).

Our results make the following assumptions on v (·; qj, z):

Assumption 3. For each qj and z, the function v (·; qj, z) is differentiable and its image

is the unit interval.

This assumption implies that extreme values of εD move any agent’s decision from

accept to reject or vice-versa given a fixed value of zi and νD ∈ (0, 1). Because gD is

non-increasing in νD and non-decreasing in εD, v (·; qj, z) is a weakly monotone function.

We can interpret v (εD; qj, z) as the fraction of agents that reject an offer of type qj with

probability at least εD when faced with scarcity z. Therefore, the assumption requires

that agent selectivity cannot overwhelm the effects of idiosyncratic preferences. If it did,

then there would be (interior) values of νD that would yield a degenerate acceptance
16The function gD(·) can be derived from micro-funded binary choice models with mean utilities

that depend on (qj , xi, zi, νi,D) and additive errors (Cosslett, 1983; Matzkin, 1991).
17Formally, define v (εD; qj , z) = sup

{
νD ∈

[
0, 1
]

: gD (qj , z, νD, εD) = 1
}
, where we adopt the con-

vention that the supremum of the empty set is 0.
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Figure 2: Acceptance and Rejection Regions

probability for a given value of z. In addition, the assumption places a weak smoothness

restriction on v (·; qj, z).

With these assumptions, we show that variation in offers can be used to identify the

function gD (·):

Lemma 2. Let qnj be a sequence composed by n offers of type qj with tij = 0, and

let vn−1 (·; qj, z) be the (n− 1)-st order Fourier-Legendre approximation of v (·; qj, z). If

Assumptions 1 - 3 are satisfied, and qnj is in the support of the distribution of offer-types

induced by Ji, then vn−1 (·; qj, z) is identified for each z ∈ (0, 1) and qj. In particular,

if the hypotheses hold for all n, then v (·; qj, z) and therefore P (Dij = 1| νi,D = νD) are

identified.

The main challenge for identification is that there are two latent reasons that drive an

agent’s decisions, namely νi,D and εij,D. We must also identify how each of these map to

acceptance decisions. For any n, we observe the probability P
(
Diji,1 = . . . = Diji,k = 0|qnj , z

)
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for all k ≤ n. Because v (εD; qj, z) is equal to the fraction of agents that reject an offer

of type qj with probability at most εD when faced with scarcity z, we can write

P
(
Diji,1 = Diji,2 = . . . = Diji,k = 0|qnj , z

)
=
∫ 1

0
εkDdv (εD; qj, z) .

Therefore, the quantity P
(
Diji,1 = Diji,2 = . . . = Diji,k = 0|qnj , z

)
is the k-th moment

of a random variable with cumulative distribution function v (·; qj, z). The problem

of recovering this function is therefore equivalent to solving the Hausdorff moment

problem (Casella and Berger, 2002). That is, we need to learn the CDF v (·; qj, z) with

information on its moments. This can be done if infinitely many moments are known.

In fact, our result is stronger: it shows that observing decisions of finite n is informative

even without variation in the number of offers. Formally, our result implies that v (·)

can be well-approximated by observing decisions from a given sequence of offer-types

qnj . We accomplish this by showing that the moments described above determine the

n-th order Fourier-Legendre approximation of v (·). Using a result in Pollard (1947),

we show that as n becomes large, this approximation converges to the true function

v (·; qj, z) in the L2 norm.

5.3 Identifying Selection on Unobservables

Next, we turn our attention to identifying the components that determine selection on

unobservables. This result requires an additional regularity assumption:

Assumption 4. (i) For each z ∈ (0, 1) and qj, the derivative v′ (·; qj, z)= ∂
∂εD

v (·; qj, z)

is a continuous, bounded, and strictly positive function of εD ∈ (0, 1).

(ii) For each z and qj, the functions E (Yi0|νD) and E (Yij|νD, εij,D ≥ εD, qj) are con-

tinuous, and the first and second moments of Yi0 and Yij exist.

The first part strengthens the monotonicity and differentiability of v (εD; qj, z) imposed

in Assumption 3 by requiring a strictly positive and bounded derivative. Given our

interpretation of v (·), observe that v′ (·; qj, z) is the density function of the distribution
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of the probability with which an agent rejects an offer of type qj. Therefore, the

assumption requires that this density function is bounded and is non-zero for all interior

values of εD and z. The second part imposes weak regularity assumptions on conditional

expectations and the moments of Yi0 and Yij.

With this assumption, we can identify the components resulting in selection:

Theorem 1. Suppose that Assumption 4 and the hypotheses for Lemma 2 hold for all n.

Then, the quantities E [Yi0|νi,D = νD] and E [Yij|νi,D = νD, εij,D ≥ εD] are identified for

all εD ∈ (0, 1) and νD ∈ (0, 1) such that there exists z in the support of its distribution

with νD = v (εD; qj, z).

This result shows non-parametric identification of the expected value of outcomes con-

ditional on values of selectivity and idiosyncratic preferences. The proof begins by using

results in Lemma 1 to identify the conditional expectations given scarcity z, offer-types

and assignment. Next, the proof rewrites these quantities in terms of the primitives

and uses arguments similar to those in Lemma 2 to recover quantities that depend on

both the outcomes model and the choices model. Next, we use the identification results

for v (·) in Lemma 2 to recover the objects of interest. For example, Lemma 1 implies

that E
(
Yi0 × 1 {Ti = 0} |qkj , zi

)
is identified from variation in offers. This quantity can

be re-written as

E
(
Yi0 × 1 {Ti = 0} |qkj , zi

)
=
∫ 1

0
E (Yi0|νD = v (εD; zi, qj)) εkDdv (εD; zi, qj) .

If we observe this quantity for all k ≤ n, then we can recover the n-th order Fourier-

Legendre approximation of E (Yi0|νD = v (εD; qj, z)) v′ (εD; qj, z) when viewed as a func-

tion of εD. Under the maintained assumptions, results in Talenti (1986) and Freud

(1971) imply that the Cesàro mean of this series converges uniformly to the true func-

tion. Finally, since v′ (εD; qj, z) > 0 and bounded and the function v (εD; qj, z) is iden-

tified (Lemma 2), we can identify E (Yi0|νD) for all νD ∈ (0, 1) if we can find values of z

and εD such that v (εD; qj, z) = νD. The intuition for identifying E (Yij|νD, εij,D ≥ εD)
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is similar in spirit, although a little more notationally involved.18

In this way, the scarcity instrument is used to “trace-out” the expected values of Yi0 and

Yij conditional on νD and εD (see also Heckman and Vytlacil, 2005; Lewbel, 2007; Heck-

man and Navarro, 2007). Notice that our results do not rely on values of z that push

choice probabilities to degenerate values that obviate the selection problem. Therefore,

we do not rely on an “identification at infinity” argument. As is common, however,

we can only identify the expected outcomes conditional on the latent variable νD for

values of νD that are spanned by variation in the observable z. Moreover, it is easy to

see that if the image of v (εD; ·, qj) across values in support of z is the unit interval,

then we can identify the unconditional values of the latent outcomes, namely E [Yi0]

and E [Yij]. Recall that this exercise implies identifying the analogous quantities for

any bounded transformation ψ (Y ) of the outcome, thereby implying identification of

the full distribution, not just the mean.

5.4 Dynamic Selection

The results in Lemma 2 and Theorem 1 above apply to objects qj that arrive at the

same time as the agent (tij = 0). We now extend our results to the case when tij > 0.

Considering negative values of tij is not necessary because patients cannot be assigned

donors that arrived before them. The main challenge in considering the case when

tij > 0 is that the distribution of νi,D conditional on waiting until tij is no longer uns-

elected. In our empirical example, selectivity may be correlated with survival without

a transplant. Therefore, we cannot normalize the marginal distribution to be uniform,

except at tij = 0.

We now extend the identification results to account for this type of dynamic selec-

tion. While the results in the previous subsection allow Yij and Yi0 to denote arbitrary
18Again, Lemma 1 implies that E

(
Yij × 1

{
Tiji,k = 1

}
|qkj , zi

)
is identified. It can be re-written

as
∫ 1

0 E (Yij |νD = v (εD; zi, qj) , εij,D ≥ εD) (1− εD) εk−1
D dv (εD; zi, qj) . As done above, we use this

expression to identify E (Yij |νD = v (εD; zi, qj) , εij,D ≥ εD) (1− εD) v′ (εD; qj , z) and finally recover
E (Yij |νD, εij,D ≥ εD) by finding a value of z such that νD = v (εD; qj , z). One qualitative difference
is that identifying E (Yi0|νD) allows us to use variation in either z or εD to trace-out νD, whereas the
result for E (Yij |νD, εij,D ≥ εD) must condition on εD.
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outcomes of interest, the results in this subsection explicitly assume that Yi0 denotes

survival. Therefore, we will assume that agent i may be assigned object j only if

Yi0 > tij. Using waiting time in the mechanism allows for selection in transplanted

survival outcomes.

Our main result requires an additional mild restriction on the conditional distribution

of Yi0:

Assumption 5. For any interval I ⊂ R+, P (Yi0 ∈ I| νD) is a continuous function of

νD.

With this assumption, we show the identification in the presence of dynamic selection:

Theorem 2. Suppose that Assumption 5 and the hypothesis of Theorem 1 hold, allowing

for tij > 0. Then, the probability P (Dij = 1| νi,D = νD, Yi0 ≥ tij) and the expectation

E (Yij| νi,D = νD, εij,D ≥ εD, Yi0 ≥ tij) are identified for all εD ∈ (0, 1) and νD ∈ (0, 1)

such that there exist z in the support of its distribution with νD = v (εD; qj, z) and

P (Yi0 ≥ tij| νD) > 0.

The argument is developed in two steps. In the first step, we identify the conditional

distribution of νD for agents that survive until time t. Lemma 6 in Appendix C.5 shows

that this function is identified. The proof applies Theorem 1 to show identification of

P (Yi0 ≥ t|νD) = E [1 {Yi0 ≥ t}| νD], which implies the identification of the conditional

distribution of νD for agents that survive until time t.

The second step takes this conditional distribution and combines it with the arguments

in Lemma 2 and Theorem 1. Specifically, we first identify the function v (εD; qj, zi),

which delimits the acceptance region in the (εD, νD)-space, by using the cdf of the

probability that a patient who survives until tij > 0 rejects a kidney of type qj.19 This

result is analogous to Lemma 2 for the case when tij > 0. Then, we use arguments

similar to those in Theorem 1.
19These two quantities were identical when νi,D was uniformly distributed on the unit interval, as

in the previous subsections. This was the relevant case when tij = 0.
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Taken together with Theorem 1, the result implies the identification of the quantities

E (Yij| νi,D = νD, εij,D ≥ εD, Yi0 ≥ tij) and E (Yi0| νi,D = νD, Yi0 ≥ tij) where the condi-

tioning on xi and qj has been subsumed for simplicity. These quantities are sufficient

for evaluating the expected survival with and without a transplant for any agent under

a counterfactual in which the agent is assigned object j by fiat. Because we have also

identified P (Dij = 1| νi,D = νD, Yi0 ≥ tij), we can use Bayes’ rule to identify the condi-

tional distribution of vD for agents that have or have not received an assignment under

the current mechanism by conditioning on their decisions and observed survival time.

Combined with E (Yij| νi,D = νD, εij,D ≥ εD, Yi0 ≥ tij) and E (Yi0| νi,D = νD, Yi0 ≥ tij),

we can obtain the expected survival with and without a transplant conditional on ob-

served decisions and survival duration. This latter quantity allows us to measure the

selection induced in the current mechanism.

5.5 Estimation

Non-parametric estimation is cumbersome because we would like to use a rich set of

observables when estimating the model. Moreover, our outcome data are censored. We

therefore estimate a parametrized version of equations (3.1) – (3.3).

yi0 = B (Yi0; ρ0) = xiβx + νi.0 (5.1)

yij = B (Yij; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εij,1 (5.2)

Dij = 1 {χ (xi, qj) γx,q + ziγz + ηj + νi,D + εij,D > 0} , (5.3)

where Yi0 is survival since registration without a transplant; Yij is survival since trans-

plantation if patient i is transplanted organ j; B (·; ρ) denotes a Box-Cox transformation

of the argument with parameter ρ (Box and Cox, 1964);20 χ (xi, qj) is a flexible func-

tion of agent observables xi and object types qj; ηj is distributed N
(
0, σ2

η

)
with the

20The Box-Cox transformation of y with parameter ρ is given by B (Y ; ρ) = Y ρ−1
ρ . A special case

when ρ = 0 is B (Y, ρ) = log Y . We set ρ by comparing an estimated survival curve using the non-
parametric Kaplan-Meier estimator to those implied by assuming that B (Y, ρ) is normally distributed.
Robustness of our headline results to our chosen values is presented in Table D.14.
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parameter σ2
η to be estimated; εij = (εij,D, εij,1)′ is distributed N (0,Σε) where Σε,11 is

normalized to 1 without loss of generality; and νi is a mean-zero multi-variate normal

with a distribution induced by the following factor structure:

νi,1 = δ1,Dνi,D + νi,f (5.4)

νi,0 = δ0,Dνi,D + δ0,fνi,f + ν̃i,0, (5.5)

where νi,D, νi,f and ν̃i,0 are independently distributed mean-zero normal random vari-

ables with variances to be estimated. This factor stucture is without loss given the

normality of νi.

This empirical model maps the patient and kidney types into characteristic space, which

allows us to keep the dimension of the parameter space manageable.21 It also allows us

to include ηj, which represents unobserved heterogeneity in organ quality. This term

can be seen as capturing the cumulative effect of organ characteristics observed by

patients and surgeons but not included in the empirical specifications.22

This choice of functional form is motivated by several considerations. First, we wish to

allow for and interpret the correlations between νi,0, νi,1, and νi,D and between εij,1 and

εij,D. For example, the factor νi,f captures the component of a patient’s unobserved

frailty that is not correlated with decisions. If δ0,f is small or negative, then, all else

being equal, transplanting a patient with lower fraility (higher νi,f ) results in higher

survival benefits.

Second, the decision model is similar to the probit binary choice used in Agarwal et al.

(2019b) for the kidney waitlist. These two considerations direct us to use multivariate

normals to model the distributions of νi and εij.

Third, we are interested in analyzing (censored) survival data, and appropriately fit-
21Our framework can also accomodate coarsely defined patient and donor types. In this case, xi

and qj would be a vector indicating to which a patient or donor belongs. As is common, introducing
a very large number of types would result in imprecise results.

22Agarwal et al. (2019b) argue, using an analogy to measurement error models (see Kotlarski’s
Theorem in Rao, 1992; Hu and Schennach, 2008), that the distribution of this variable can be identified
based on the correlation between acceptances of a given donor’s first and second kidney. For consistency
with the formal results presented in this paper, we will also estimate models that exclude this term.
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ting the shape of the survival curve is important for obtaining meaningful estimates.

Box-Cox transformations yield a tractable likelihood function while generalizing the

functional form (see Spitzer 1982, for example). We hold the Box-Cox transformation

parameters ρ0 and ρ1 fixed and conduct robustness analysis to alternative choices.

Estimating this model via maximum likelihood is difficult because the likelihood for

each patient’s data depends on the decisions over many donors as well as (potentially

censored) survival outcomes. Computing this requires integrating a nonlinear function

over a high dimensional space. Instead, we estimate the parameters of the model using

a Gibbs’ sampler (McCulloch and Rossi, 1994; Geweke et al., 2003; Gelman et al., 2014).

This method generates a sequence of draws of the model’s parameters, collected in θ, and

the latent variables νi, εij, and ηj given the parameters from their respective posterior

distributions. Our chosen parametrization is amenable to this approach because the

latent variables can be partitioned so that each group has a posterior distribution given

the draws of the other groups that can be solved in closed form.23 The distribution

this method generates is asymptotically equivalent to that of the maximum likelihood

estimator (see van der Vaart, 2000, Theorem 10.1 (Bernstein-von-Mises)). Details on

the method are provided in Appendix B.1.

An advantage of our approach is that it allows a rich set of patient-level covariates

xi and organ types qj, to be included in the model. This richness is important for

understanding the extent to which observables can capture the selection on outcomes

induced by choices. The cost of this approach is its somewhat heavier reliance on

parametric assumptions and computational burden. For example, Hull (2018) studies a

semi-parametric model and proposes a indirect inference method that targets a subset

of quasi-experimental moments that can be identified directly in a first step. The main

drawback of this alternative for our purposes is that the number of moments that need

to be estimated in the first step increases with the dimension of the parameter space,

making it hard to include the covariates xi and types qj.
23These considerations also motivate Geweke et al. (2003) to use a similar parametrization and

estimation approach when studying hospital quality in a selection model.
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6 Survival and Choice Estimates

We present estimates from four different specifications. The first specification only

relies on offer randomness and does not employ the scarcity instruments. The second

specification, which is our preferred one, includes the number of past donors as the

scarcity instrument. To assess robustness, we estimate a third specification with our

past offers instrument and a fourth one using future donors. All specifications include

a rich set of patient and donor covariates to capture medical history and match quality.

These include all characteristics used in the leading models for predicting pre- and post-

transplant survival for patients with kidney failure (see Wolfe et al., 2008, for example)

as well as characteristics used to determine patient priority on the transplant list.

6.1 Choice

Table 5 presents the marginal effects of select characteristics on the probability of

acceptance, equation (3.3). The table reports the effects for a one standard deviation

increase in a continuous characteristic or a unit change in an indicator.

Our results suggest that proxies for donor quality and match-specific benefits are posi-

tively correlated with acceptance. Patients are significantly more likely to accept kidney

offers from younger donors and donors who died of head trauma and less likely to ac-

cept offers from donors with a history of hypertension. Patients are also significantly

more likely to accept kidneys with which they have a perfect tissue-type match. Note

that patients are also significantly more likely to accept kidneys which have higher

unobservable quality, ηj, suggesting that decisions respond to information that is not

perfectly captured by the observable organ characteristics included in the model. This

information includes results from various medical tests and physical examination of the

kidney.

The last two rows record the scarcity instruments’ effects on the probability of accep-

tance. Consistent with the results in Table 4, each instrument has a significant negative

effect on the probability of acceptance. Other parameter estimates are similar across
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the three instrumented specifications. These co-efficients’ robustness across the last

three columns suggests that the choice between these two instruments is unlikely to be

an important driver of our final results.

6.2 Survival

In Table 6, Panels A and B present estimates for survival without and with a trans-

plant, respectively, as equations (3.1) and (3.2), showing the marginal half-life effects

associated with select characteristics.24

Observable proxies for baseline patient health predict survival both with and without

a transplant. A patient who is older, diabetic, or on dialysis at registration has a

significantly shorter half-life without a transplant. These patient characteristics also

have lower survival with a transplant, with effects that are slightly larger in magnitude.

For example, a diabetic patient’s half-life without transplant is lower than a non-diabetic

patient by 1.36 years and their half-life with a transplant is lower by 2.98 years.

We also find that the proxies for donor quality, waiting time, and tissue-type similarity

predict post-transplant survival, but donor characteristics have lower estimated effects

as compared to tissue-type matching and patient characteristics. For example, a donor

with a history of hypertension results in a lower half-life by 0.34 years, which is much

smaller than the patient effects described above. Receiving a kidney with a perfect

tissue-type match has a large effect on half-life, which is consistent with the fact that

an adverse immune reaction post-transplantation is less likely. These estimates are

quite stable across our instrumented specifications.

A comparison of estimates in Tables 5 and 6 indicates that many organ quality measures

positively affect both choice and survival. Tissue -ype match and donor death by head

trauma are both strongly associated with both choice and survival. That said, the

association is not perfect: organs from younger donors are more likely to be accepted

even though the survival effects are not significant. Likewise, the kidney unobservable
24We avoid marginal expected life-years in order to limit extrapolation into extremely long survival

durations. Our current dataset allows us to observe a patient for 16 years at most. This approach is
consistent with the medical literature (e.g. Wolfe et al., 2008).
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characteristic, ηj, has a significant effect on choice but a small, insignificant effect on

survival.

6.3 Selection on Unobservables

An advantage of our framework is that it can be used to measure the correlation be-

tween survival and choice induced by unobservable characteristics. The correlation on

observable characteristics discussed above suggests this channel may also be important.

Table 7 presents these effects for the three specifications that use the scarcity instru-

ments. The top panel shows how increased selectivity affects acceptance and survival.

We measure these effects by raising νi,D in equation (3.3) by one standard deviation.

The effects on survival are measured by computing the changes on unobserved frailties

νi,0 and νi,1 induced by their estimated correlation with νi,D. The bottom panel shows

the correlation between unobserved match-specific determinants of choice and survival.

We present these effects by reporting how one standard deviation higher εij,D impacts

choices and post-transplant half-lives.

We find that selective patients typically survive longer without a transplant and benefit

less from the typical transplant. A one standard deviation rise in νi,D selectivity lowers

the probability of acceptance by 3.9 percentage points. This magnitude is of a similar

order as the effect of a kidney from a donor with a history of hypertension. Therefore,

there is positive selection into treatment on the patient-specific component of survival

benefits. Comparing the specifications shows that our conclusion is not sensitive to

instrument choice.

In contrast to selectivity, patient-donor specific factors do not induce significant selec-

tion via choices. While we estimate the covariance between εij,D and εij,1 to be positive,

the effect is not statistically significant. This suggests there is limited positive selection

into specific treatments based on unobservable match-level benefits.
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Table 5: Choice Estimates
Acceptance Model (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3) (4)

Patient Characteristics

Diabetic -0.003 -0.005 -0.005 -0.006

(0.000) (0.001) (0.001) (0.001)

CPRA -0.008 -0.008 -0.008 -0.013

(0.000) (0.000) (0.000) (0.001)

On Dialysis at Registration 0.001 0.003 0.003 0.003

(0.001) (0.001) (0.001) (0.001)

Age at Registration 0.002 0.004 0.004 0.003

(0.000) (0.001) (0.001) (0.001)

Donor Characteristics

Age < 18 0.140 0.153 0.154 0.152

(0.008) (0.008) (0.008) (0.009)

Age 18-35 0.079 0.098 0.098 0.134

(0.008) (0.008) (0.008) (0.010)

Age 50+ -0.060 -0.071 -0.069 -0.072

(0.002) (0.003) (0.003) (0.003)

Cause of Death - Head Trauma 0.057 0.065 0.064 0.068

(0.006) (0.007) (0.007) (0.007)

History of Hypertension -0.025 -0.029 -0.028 -0.029

(0.001) (0.001) (0.001) (0.002)

0.000 0.224 0.219 0.219

(0.000) (0.002) (0.002) (0.002)

Offer Characteristics

Perfect Tissue Type Match 0.146 0.143 0.145 0.114

(0.008) (0.009) (0.009) (0.008)

Log Waiting Time (Years) 0.010 0.026 0.016 0.024

(0.000) (0.001) (0.001) (0.001)

Scarcity

Log(1+#Past Donors) -0.010

(0.001)

Log(1+#Past Offers) -0.020

(0.001)

Log(1+#Future Donors) -0.009

(0.001)

Instruments No Instruments # Past Donors # Past Offers # Future Donors

Unobservable (ηj)

Notes: This Table presents selected estimates of the marginal effect on the probability of acceptance of a one standard
deviation increase in each continuous covariate and a unit increase in each binary covariate. Marginal effects are computed
at the median value of observable covariates, integrating over the distribution of all unobservables. We generate 850000
draws and burn-in the first 50000 draws. We thin the chain by selecting every 10 draws. All columns control for DSA
fixed effects, blood type fixed effects, and registration year fixed effects. Other patient characteristics include dialysis
time at registration, BMI at departure, patient serum albumin, and indicators for female, diabetic, CPRA=0, and prior
transplant. Donor characteristics include indicators for other causes of death, expanded criteria donor, donation after
cardiac death, male, and bins of creatinine levels. Other offer characteristics include indicators for 2 A, 2 B, 2 DR
mismatches, not the same blood type but compatible, regional offer, local offer, and interactions between several patient
and donor characteristics. See Appendix Table D.11 through D.13 for detailed estimates.
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Table 6: Survival Estimates
Survival Model (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3) (4)

Panel A: Survival without Transplant

Patient Characteristics

Diabetic -1.380 -1.361 -1.361 -1.378

(0.030) (0.030) (0.030) (0.030)

CPRA 0.089 0.089 0.089 0.082

(0.031) (0.031) (0.031) (0.030)

On Dialysis at Registration -1.019 -1.013 -1.013 -0.902

(0.042) (0.041) (0.041) (0.039)

Age at Registration -1.070 -1.060 -1.060 -1.052

(0.025) (0.025) (0.025) (0.024)

Panel B: Survival with Transplant

Patient Characteristics

Diabetic -2.959 -2.980 -2.977 -3.212

(0.099) (0.113) (0.111) (0.110)

CPRA -0.027 -0.026 -0.031 -0.064

(0.098) (0.098) (0.097) (0.096)

On Dialysis at Registration -2.384 -2.395 -2.389 -2.075

(0.118) (0.125) (0.123) (0.115)

Age at Registration -3.183 -3.192 -3.181 -3.416

(0.118) (0.126) (0.124) (0.121)

Donor Characteristics

Age < 18 1.595 1.604 1.647 0.784

(0.906) (0.916) (0.916) (0.830)

Age 18-35 -0.267 -0.282 -0.249 -0.547

(0.973) (0.981) (0.980) (0.930)

Age 50+ 3.383 3.381 3.296 0.635

(2.243) (2.252) (2.241) (1.864)

Cause of Death - Head Trauma 0.662 0.665 0.691 0.673

(0.313) (0.316) (0.314) (0.317)

History of Hypertension -0.340 -0.342 -0.357 -0.410

(0.122) (0.124) (0.123) (0.125)

0.107 0.181 0.194

(0.183) (0.177) (0.176)

Offer Characteristics

Perfect Tissue Type Match 2.272 2.269 2.322 1.946

(0.944) (0.959) (0.954) (0.896)

Log Waiting Time (Years) -0.487 -0.543 -0.539 -0.646

(0.062) (0.168) (0.161) (0.155)

Instruments No Instruments # Past Donors # Past Offers # Future Donors

Unobservable (ηj)

Notes: Select estimates of the marginal effect on half-life of a one standard deviation increase in each continuous covariate
and a unit increase in each binary variable. Marginal effects are computed at the median value of observable covariates,
integrating over the distribution of all unobservables. The specifications have the same patient, donor, and offer covariates
as in Table 5 other than the scarcity instruments. Standard errors are in parentheses. See Appendix Table D.7 through
D.10 for detailed estimates.
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Table 7: Correlation Table
Unobservables Table (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3)

Probability of Acceptance -0.039 -0.039 -0.044

(0.001) (0.001) (0.001)

Post-Transplant Survival 0.008 -0.025 -0.121

(0.138) (0.134) (0.136)

Survival without a Transplant 0.330 0.323 0.229

(0.060) (0.059) (0.059)

Probability of Acceptance 0.068 0.066 0.068

(0.001) (0.001) (0.001)

Post-Transplant Survival 0.022 0.122 0.091

(0.258) (0.251) (0.253)

Instruments # Past Donors # Past Offers # Future Donors

Selectivity (ν i,D)

Match value (ε ij,D)

Notes: Estimates of how one standard deviation increase in choice unobservables affects acceptance and survival proba-
bilities. Survival durations are calculated using half-lives. Survival effects from changes in εij,D are computed using the
expected change in εij,1 from a one standard deviation rise in εij,D from zero, given the estimated covariance between
εij,D and εij,1. Likewise, survival effects from changes in νi,D are computed using the expected changes in νi,1 and
νi,0 from a one standard deviation increase in νi,D from zero, given the estimated covariances between νi,D, νi,1, and
νi,0. All effects are computed at the median value of observable covariates. Columns (1) through (3) use specifications
corresponding to columns (2) through (4) in Tables 6 and 5.
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7 LYFT in the Current Mechansism

7.1 Calculating Life Years from Transplant

Our model measures survival benefits for every potential transplant. For each patient-

donor pair, we compute the difference between the median survival time with a trans-

plant and median survival time without a transplant, measured from the date of trans-

plant. This measure is widely used in the literature on organ transplantation (Wolfe et

al., 2008) and is arguably the focal outcome for patients with kidney failure.

Specifically, for each pair (i, j), we define LYFT conditional on a set of covariates

Iij = {xi, qj, Dij, ηj, νi,D, νi,f} in our model as follows:

LY FT (Iij) = M(Yij|Iij)−M(Yi0 − tij|Iij, Yi0 > tij), (7.1)

where M(Y |X) is the median of random variable Y conditional on X and tij is the

time between patient i’s registration and the arrival of kidney j. We then use a Gibbs’

sampler to compute the expectation of LY FT (Iij) by drawing ηj, νi,D , and νi,f from

their conditional distributions given observables, decisions, and observed survival out-

comes.25 Therefore, this measure accounts for selection on unobservables induced by

the mechanism.

In order to assess the role of selection due to choices and due to other unobservables,

we also calculate expected LY FT (Iij) given only the observables xi and qj. In this

case, we integrate LY FT (Iij) over the unconditional distributions of ηj, νi,D, νi,f and

Dij.

7.2 Life Years from Transplant in the Mechanism

Table 8 presents the average estimated LYFT over all realized transplants. The first row

presents the average LYFT accounting for patient- and kidney-specific unobservables
25The sampler provides us with simulated draws of LY FT (Iij) from its distribution. To do this, we

generate a chain that fixes the parameters at the estimate θ̂. We generate 200,000 draws, burn-in the
first half, and take one of every 1,000 draws.



43

and the decision to accept. The second row presents the results conditioning only

on the observables. The columns correspond to the specifications in Tables 5 and 6.

The average LYFT from our preferred specification is 8.64 years (column 2). Ignoring

selection on unobservables yields an an average LYFT of 7.94 years. This difference

suggests there is positive selection on LYFT of patients into transplantation based on

unobservables. Column (1) reports analogous estimates from a specification that does

not use quasi-experimental variation from our scarcity instruments. The estimated

LYFT is biased and about two-thirds of a year less than our preferred estimate. This

suggests observational methods such as those in Wolfe et al. (1999) may underestimate

gains from transplantation.

Table 8: Life-Years from Transplant
lambda = 0.6 for transplanted survival; lambda = 0.5 for untransplanted survival

(1) (2) (3) (4)

Life Years from Transplant

Accounting for Unobservables 7.98 8.64 8.63 8.63

Observables Only 7.95 7.94 7.83 7.71

Untransplanted Survival

All Patients 6.89 6.95 6.95 6.86

Transplanted Patients 7.24 7.21 7.21 7.17

Post-Transplant Survival 15.22 15.84 15.84 15.80

Instruments No Instruments # Past Donors # Past Offers # Future Donors

Notes: Life years from transplant and survival durations presented in the table are calculated using half-lives. Future
donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4 for detailed definition). All
columns control for patient, donor, and offer characteristics, which are defined analogously as in Table 6 Panel B and
Table 5.

The second pair of rows of Table 8 report average survival without a transplant, sep-

arately, for all patients and the subset of patients who received a transplant. Across

specifications, the untransplanted survival for patients who are transplanted is higher

than for patients who are not. This postive selection on untransplanted survival aggre-

gates selection due to both choice and the mechanism.
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Figure 3: Patient Selection

7.3 Selection and LYFT

The positive selection on LYFT and untransplanted survival reported in Table 8 above

can take place along two margins: patients who are transplanted and kidneys to which

they are matched. This subsection further investigates these sources.

7.3.1 Patient Selection

To understand the importance of patient selection, we present the relationship between

(median) untransplanted survival and the average (median) transplanted survival from

all potential donors for each patient. Figure 3(a) presents the joint density between

these two quantities overlayed with a binscatter plot. Transplanted and untransplanted

survival are strongly correlated with a slope of the conditional mean that is larger than

one. Therefore, patients who are expected to live longer without a transplant also have

the largest life-year gains from a transplant. This result implies strong complementar-

ities between baseline health and transplantation.
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When combined with the observation in Table 8 that transplanted patients have higher

baseline survival, this complementarily suggests that patients who are transplanted

likely have higher LYFT due to selection on baseline health. However, there are ad-

ditional components of patient selection, from choice and from the priorities in the

mechanism.

The overall selection on LYFT by observed transplant status is presented in Figure 3(b).

This figure plots the distribution of predicted LYFT across all potential transplants.

This distribution is shifted to the right for transplanted patients. The mean LYFT for

this group is 1.2 years more than the untransplanted group.

Taken together, these results show that the mechanism selects patients with larger

average LYFT and that some of this selection comes from transplanting patients who

are relatively healthy at baseline. One way in which the mechanism achieves this is by

making patients wait, which induces positive dynamic selection.

7.3.2 Patient-Kidney Matching

The realized allocation also matches patients to kidneys from which they receive greater

survival benefits as compared to the average kidney. Figure 4(a) plots the joint dis-

tribution of LYFT from the realized donor for a transplanted patient against LYFT

from all potential donors. The binscatter is below the 45-degree line, indicating that

the realized transplants generate greater than average LYFT for a patient. This find-

ing that matches are selected advantageously complements the finding, described by

Figure 3, that the mechanism selects patients with higher than average gains from

transplantation.

The estimates of the choice and survival equations reported in Section 6 suggest that

part of this advantageous matching comes from the correlation of patients’ acceptance

decisions with LYFT. Figure 4(b) summarizes this relationship in binscatter plots of

kidney-patient acceptance probability against LYFT for all potential transplants, show-

ing two features. First, transplanted patients have a higher predicted probability of ac-

ceptance than untransplanted patients. This pattern is expected given that acceptance
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Figure 4: Patient-Kidney Matching

is necessary for a transplant to occur.

Second, the predicted probability of accepting an offer increases in LYFT. As our esti-

mates suggest, patients are more likely to accept kidneys with greater life-year benefits

(based on both observable and unobservable characteristics). A regression of acceptance

probability on average LYFT, controlling for patient and donor fixed effects, underlines

this point.26 A one standard deviation increase in the match-specific component of

LYFT raises the probability of acceptance by 0.59 percentage points.

In sum, we find that the allocation matches kidneys to patients based on LYFT and

that at least some of this selection is induced by choices in the mechanism.
26Specifically, we regressed the expected value of LY FTij conditional on {xi, qj , ηj , νi,D, νi,f} on the

probablility of acceptance given these same covariates, controlling for patient- and donor-specific fixed
effects.



47

7.3.3 Patient Selection vs. Rematching

Figure 4(a) also provides insight into which of these two assignment margins dominates.

The heterogeneity in survival across patients swamps the heterogeneity across donors

within a patient. In fact, a decomposition of the total variance in LYFT into patient-

specific, donor-specific, and match-specific components (the latter is the remainder)

shows that the patient-specific component contributes to 6.58 years of the standard

deviation in LYFT. The donor-specific and match-specific components are much smaller,

accounting for 1.04 years and 0.48 years, respectively.27

These results suggest that the potential for increasing life-years by improving the match

between patients and donors without changing which patients are transplanted (re-

matching) is limited. Therefore, distributional constraints may limit the potential

gains from improved matching. In particular, maximizing life-year gains may mean

reallocating transplants away from the most urgent cases towards patients with longer

expected survival without a transplant, suggesting a potential trade-off between equity

and efficiency.

8 Potential for Further Increasing LYFT

We now turn to evaluating the performance of the mechanism on LYFT and quantifying

the importance of patient selection versus rematching. We do this by comparing the

average LYFT achieved by the realized assignment to alternatives, ranging from a

random assignment to one that maximizes LYFT. To ease computation throughout

this exercise, we restrict the sample to the set of patients who registered in 2005.28

As we argued in Section 2, extending patients’ lives is a prima facie objective of the

medical profession. However, a planner’s objective may depend on other factors, or

the weights the planner places on life year gains may depend on how urgently sick a
27The standard deviation in LYFT is 6.68 years, which is the Pythagorean sum of the three compo-

nents.
28One of our exercises requires simulating the mechanism, a task not necessary during estimation.

The year 2005 is the earliest year for which we were able to do so reliably.
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patient is. To address this issue, we will compare the types of patients who are trans-

planted under the alternative assignments. The results provide insight into the trade

off between maximizing LYFT and distributional or ethical motivations for evaluating

an assignment.

We focus on results from our preferred specification. These results are not sensitive to

choice of instrument and to varying the Box-Cox shape parameters of our specification.

Detailed estimates from the alternative specifications are provided in Table D.14.

8.1 Comparison with Benchmark Assignments

We start with two extremal benchmarks: random assignment and optimal assignment:

• Random assignment is simulated by sorting patients in a random order and

successively assigning patients to kidneys at random from the set of feasible kid-

neys. For a kidney to be feasible for a patient, it must be biologically compatible

and should arrive between the patient’s registration date and a simulated death

date without a transplant. The latter is drawn from that patient’s predicted

survival distribution.

• Optimal assignment is computed by maximizing the total LYFT from all trans-

plants. This benchmark considers an omniscient planner who knows xi, qj, νi,D,

νi,f , ηj, each patient’s arrival and death dates, and each kidney’s arrival date.

The planner computes LYFT conditional on these characteristics and can dictate

assignments. Only feasible transplants are allowed and each patient can receive

at most one transplant.29

Comparison to the random assignment allows us to measure the increase in LYFT

achieved by the mechanism. Both selecting patients and advantageously matching kid-
29Specifically, we simulate the unobservables νi,D, νi,f , ηj from the distribution of these random

variables conditional on the estimated parameters and the decisions observed in the data. We also
draw a death date from the estimated untransplanted survival distribution. Call a simulated draw
for each patient/donor pair LY FT sij . Let aij = 1 if i is assigned j and aij = 0 otherwise. Let
cij = 1 if i is feasible for j and cij = 0 otherwise. We solve the problem maxa

∑
i,j aijLY FTij subject

to aij (1− cij) = 0,
∑
i aij ≤ kj , where kj is the number of kidneys available from donor j, and∑

j aij ≤ 1.
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neys to patients drove the difference. To decompose these sources, we evaluate an

alternative that allocated kidneys randomly among patients who were actually trans-

planted:

• The random amongst transplanted assignment is simulated by sorting trans-

planted patients in a random order and successively assigning only these patients

to a kidney at random from the set of feasible kidneys.

The increase in LYFT due to the mechanism results from both the mechanism’s priority

rules for kidney offers and the choices made by patients on the waiting list. To separate

theLYFT gain over the random allocation achieved by the mechanism targeting patients

from the LYFT gain from choice, we evaluate a counterfactual assignment with no

patient choice.

• The no choice assignment is computed by assigning each kidney to the pa-

tient with the highest priority among untransplanted patients. Offers cannot be

rejected by patients. Kidneys are assigned in a random order, and priority is

computed as in the existing mechanism.

Comparing the realized assignment to the optimal assignment reveals the maximum

theoretical gain in LYFT that could be achieved over the existing mechanism. As with

the comparison of the realized and random assignments, this gain is driven both by

selecting patients and matching patients to kidneys. To decompose these sources, we

evaluate an alternative that only reassigns kidneys among transplanted patients:

• The optimal rematching assignment is computed by maximizing the total

LYFT from all transplants under the same information set as in the optimal

assignment. In addition to the feasibility constraint, a patient in this assignment

can be transplanted only if she was transplanted in the data.30

30As in calculations of average LY FT (Iij), we simulate the unobservables from their conditional
distributions given the data of these random variables to generate draws LY FT sij . We then solve the
problem in footnote 29 above with the additional constraint aij = 0 if i was not transplanted in the
data.
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Figure 5: LYFT Under Counterfactual Allocations

The theoretical bounds based on optimal assignments use information about factors

that induce selection, νi,D, νi,f , and ηj. However, the factors νi,D and νi,f may not be

observed by the planner and may be hard to ellicit in a mechanism. Similarly, ηj may

be difficult to condition on. These observations motivate a benchmark that uses only

the information in the current set of observables:

• The optimal assignment based on observables is computed by maximizing

the total expected LYFT conditional on xi and qj by assigning patients to a feasi-

ble kidney. For tractibility, we assume the planner has foresight on when patients

arive and depart and when kidneys arrive.3132The solution describes the highest

possible LYFT that can be achieved by a planner who can dictate assignments

based on this information.

Figure 5 presents the results. The average LYFT for the realized assignment amongst

patients who registered in 2005 is 8.78 years. This is analogous to the results in Table

8 above.
31Relaxing foresight would require solving a dynamic assignment problem with uncertainty about

the future.
32We modify the problem in footnote 29 by replacing LY FT sij with its expectation given xi and qj .

The factors νi,D, νi,f , and ηj are drawn from their unconditional distributions.



51

The realized assignment achieves about 0.92 years or 11.6% improvement in average

LYFT over random assignment. Both selecting patients and matching patients to kid-

neys are important. If the transplanted patients were assigned a random kidney, then

the increase would only be 4.4 months. This quantity represents the rise relative to

random assignments that is accounted for by patient selection. The remainder is due

to patient-kidney matching.

Patient choice is a key contributor to the mechanism’s gains in LYFT over random as-

signment. The no choice assignment results in similar LYFT as the random assignment.

Thus, assignment to patients based on the existing priority rules without allowing pa-

tients to decline kidneys would achieve only 15.8% of the LYFT increase achieved by

the realized assignment.

Although the mechanism does better than a random assignment, there is significant

scope for further increasing LYFT. Under the optimal assignment, average LYFT is

13.84 years, about 5.1 years longer than the LYFT achieved in the realized assignment.

A significant fraction, 14.4%, of these potential gains only requires rematching patients

and kidneys while keeping the set of transplanted patients fixed. However, consistent

with Figure 4(a), most of the potential gains from the optimal allocation come from

changing the set of patients who are transplanted.

Finally, we find that a planner who can dictate assignments using the observable char-

acteristics could achieve a significant fraction, but not all, of the potential increase.

The observables in our model have been either used to determine priority or consid-

ered explicitly in proposed reforms.33 The average LYFT under the optimal assignment

based on observables is 10.48 years. Although this is 3.4 years less than the theoretical

maximum, it is about 1.7 years more than the average LYFT achieved by the mecha-

nism. Therefore, in principle, average LYFT could be substantially raised by targeting

transplants using observed characteristics rather than choices.
33This claim is based on the minutes of the OPTN Kidney Transplantation Committee. Determining

whether other health conditions can be used in the assignment system is beyond the scope of this paper.
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Table 9: Characteristics of Transplanted Patients

 Transplanted 
Patients LYFT

 Transplanted 
Patients LYFT

 Transplanted 
Patients LYFT

 Transplanted 
Patients LYFT

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Age < 18 3.1% 3.2% 13.29 5.9% 13.70 5.4% 14.89 5.4% 15.87
Age 18 - 35 11.6% 12.3% 10.63 11.9% 11.61 13.0% 12.45 16.8% 12.02
Age 36 - 59 54.8% 55.8% 7.50 53.0% 8.17 54.7% 8.86 57.5% 9.09
Age >= 60 30.5% 28.8% 4.64 29.2% 5.11 26.9% 5.61 20.3% 5.51
Diabetic 41.4% 40.2% 5.34 37.7% 5.80 33.3% 6.51 31.6% 6.45
On Dialysis at Registration 83.0% 82.3% 6.99 82.0% 7.74 80.2% 8.50 80.7% 8.90
0 HLA Mismatches - 0.0% 10.18 15.5% 8.18 12.5% 8.59 8.1% 11.16
0 DR Mismatches - 4.2% 7.35 35.6% 8.11 21.9% 8.86 13.1% 10.26
HLA Mismatches - 4.75 - 3.62 - 3.92 - 3.80 -
Untransplanted Survival 6.68 6.75 - 6.72 - 6.81 - 7.27 -

Optimal AssignmentNo Choice
All Patients

Random Assignment Realized Assignment

8.2 The Planner’s Dilemma

An important conclusion from Figure 5 is that LYFT could be increased by up to 57.6%.

However, acheiving this would require changing the set of patients who are transplanted.

We now argue that this change shifts the demographics and health conditions of trans-

planted patients, creating a potential barrier due to distributional considerations and

the need to weigh patient urgency.

The LYFT increases, from random assignment to the mechanism and finally to the

optimal solutions, require transplanting relatively healthy patients. Table 9 presents the

distribution of patient age, health, and untransplanted survival for patients transplanted

under the random assignment, the no choice assignment, the actual assignment, and

the optimal assignment. Patients who are transplanted under the realized assignment

are healthier than average – they are younger, less likely to be diabetic, less likely to be

on dialysis, and have longer untransplanted survival. Similarly, transplanted patients

are also healthier under the optimal assignment than under the realized assignment.

Comparing the realized assignment and the no choice assignment illustrates the role

of choice in increasing LYFT. The existing priority rules target transplants between

patients and donors with no HLA mismatches. Under the no choice assignment, 15.5%

of assignments are to zero-mismatch patients. Only 12.5% of assignments are to such

patients under the realized assignment and 8.1% under the optimal assignment. Yet

choice also dramatically changes the selection of who is transplanted, shifting the age
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distribution towards younger patients and those with longer untransplanted survival.

Both factors are correlated with higher LYFT. Therefore, while patients benefit from

kidneys with a perfect tissue-type match, reassigning kidneys to the right set of patients

without perfect tissue-type matches can increase LYFT.

These shifts highlight the distributional effects of optimizing LYFT. The realized out-

come increases LYFT over random assignment in part by selecting younger, health-

ier patients to transplant. The optimal assignment exacerbates these distributional

changes. These results are driven by the strong correlation between survival with and

without a transplant, illustrated in Figure 3(b). Thus, in order to maximize LYFT

given the scarcity of kidneys available, the planner must transplant healthier patients

and let sicker patients go untransplanted.

This stark trade-off represents a moral dilemma for several reasons. First, society may

have a moral imperative to transplant sick patients who may soon die, even if doing so

implies reducing total life years gained from transplantation. Second, there are concerns

about discriminating based on patient characteristics Our results suggest an optimal

assignment should target transplants for younger patients, thoughproposed age-based

priorities have conflicted with concerns about age discrimination when previous reforms

were being considered.

9 Conclusion

An hitherto overlooked goal in designing assignment mechanisms is to produce matches

that improve associated outcomes such as patient survival or student achievement. We

take a first step towards an empirical analysis that incorporates these outcomes by

studying the LYFT generated using the pool of deceased donor organs. To do this,

we show how to use variation generated in an assignment mechanism to estimate and

identify a model that jointly considers choices and outcomes.

We find that the waitlist mechanism used to allocate deceased donor kidneys does better

than a random allocation but leaves much scope for improvement. The mechanism
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transplants patients for whom life would be extended longer, as compared to the average

patient, and matches them to more suitable than average kidneys. However, average

LYFT could be boosted by a total of 5.1 years per kidney. The potential economic value

of realizing these gains is enormous. Approximately 14.4% of these benefits could be

accomplished if it were possible to dictate assignments based on observed patient and

donor characteristics. Aldy and Viscusi (2007) place the value of a statistical life year

at $300,000. At even half this value and ignoring costs savings on dialysis, the potential

benefits from 1 more year of life from the approximately 13,000 deceased donor kidneys

transplanted each year accrues to almost $2 billion per year.

Achieving most of these gains will require confronting important distributional consid-

erations. Specifically, we find that survival with and without a transplant is strongly

correlated and that most of the heterogeneity in benefits from a transplant is across

patients rather than match-specific. Therefore, the planner faces a dilemma between

transplanting the sick and transplanting those for whom life will be extended the longest.

Through this work we open several important avenues for further research. First, our

current approach evaluates benchmark assignments rather than the equilibria of alter-

native mechanisms that allow agents to express choice. It would be useful to combine

recent approaches for analyzing equilibria of alternative mechanisms with a model of

outcomes. Such a model would allow us to consider the selection induced via choices in

a counterfactual environment. Second, we focus on an aggregate measure of LYFT that

abstracts away from distributional considerations. Formalizing these constraints and

incorporating them into the design problem is valuable. Solving these two challenges

would allow a design approach that better speaks to the considerations central to poli-

cymaking. This trade-off between equity and efficiency, which is particularly central to

designing mechanisms when outcomes are the target, deserves further research in other

contexts as well.
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Appendix for “Choices and Outcomes in Assignment Mechanisms”

Nikhil Agarwal, Charles Hodgson, Paulo Somaini.

A Data Appendix

A.1 Obtainting Original Data Files

The data reported here have been supplied by UNOS as the contractor for the Organ

Procurement and Transplantation Network (OPTN). The interpretation and reporting

of these data are the responsibility of the author(s) and in no way should be seen as an

official policy of or interpretation by the OPTN or the U.S. Government.

We will retain copies of the data until permitted by our Data Use Agreement with the

Organ Procurement and Transplantation Network (OPTN). Further, we plan to send

OPTN a copy of our replication archive if and when we are required to destroy our

dataset. Researchers interested in using our dataset should directly contact OPTN to

obtain permission: https://optn.transplant.hrsa.gov/data/request-data/ We are happy

to provide copies of our data to researchers with permission and a data use agreement

with the OPTN.

A.2 Data Description

Our data on patients, donors, transplants, and offers are based on information submit-

ted to the Organ Procurement and Transplant Network (OPTN) by its members. The

main datasets are the Potential Transplant Recipient (PTR) dataset and the Standard

Transplantation Analysis and Research (STAR) dataset.

The PTR dataset contains offers made to patients on the deceased donor kidney wait-

list that were not automatically rejected based on pre-specified criteria. Information

includes identifiers for the donor, patient, and patient history record that generated

the offer; the order in which the offers were made; each patient’s acceptance decision;
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and if the offer was not accepted, a reason of rejection. Each offer record also contains

certain characteristics of the match, including the number of tissue type mismatches.

The STAR dataset contains separate files on deceased donor characteristics, patient

histories, patient characteristics and transplant outcomes, and follow-up data, which

are collected at six months and then annually, for kidney transplants. The patient and

donor characteristics from these datasets are used to estimate our models of acceptance

behavior and patient survival. The patient characteristics and transplant outcomes

dataset contains patient death information. For patients who received a transplant

through the deceased kidney donor waitlist, the follow-up dataset records whether the

patient is still alive at the follow-up point. This information allows us to compute

a survival duration for each patient. UNOS also provided supplemental information,

including the ordering of distinct match runs conducted for the same deceased donor;

the transplant centers of donors and patients in our dataset; and dates of birth for

pediatric candidates, who joined the waitlist before turning 18 years of age.

The data contain identifiers that allow us to link the offer and acceptance data to pa-

tient and donor characteristics. Each deceased donor has a unique identifier. Similarly,

each patient registration generates a unique patient waitlist identifier. Because patients

may move to different transplant centers or be registered in multiple centers simulta-

neously, some individual patients have multiple waitlist identifiers. For this study, we

focus on the earliest registration of each patient. The follow-up data contain a unique

identifier for each transplant, allowing us to connect the follow-up information to each

transplanted patient. The patient history file contains a unique patient record identifier

corresponding to a particular state of the patient on the waitlist, including the patient’s

CPRA, activity status, and pre-set screening criteria. Each offer in the PTR dataset

contains the identifiers for the donor, the patient registration, and the patient history

record that were used in the match run. When appropriate, we de-duplicate offers so

that each patient can receive at most one offer from each donor.
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A.3 Sample Selection

We consider the first waiting period for patients who were actively waiting for a deceased

donor kidney between January 1, 2000 and December 31, 2010. This restriction is to

avoid selection arising from patients that remain on the list at the begining of the

sample period. We omit patients who received a living donor transplant as their first

transplant or were cross-registered for other organs simultaneously. Most patients that

can receive a living donor receive one within the first year of registration and would

prefer such a transplant to a deceased donor transplant. The latter restriction is made

to focus on a more homogeneous group of patients.

In addition, we made a number of other more minor adjustments to work with a more

cohesive sample of patients. The number of patients that survive each step of the

sample selection process is described in Table A.1.

A small minority of patients are simultaneously registered in multiple donor service

areas – our analysis keeps only one waitlist record from each patient. If the patient

received a kidney transplant through the deceased donor waitlist before December 31,

2015, we keep the waitlist record with the earliest transplant date; if the patient re-

mained untransplanted as of December 31, 2015, we keep the waitlist record with the

earliest registration date.34 Next, we exclude a small number of patients who received

a prior kidney transplant to focus on survival effects from the first transplant. We also

exclude patients removed for administrative reasons. These are patients who were listed

on the waitlist by error, who departed because transplant took place but no transplant

was recorded in the STAR dataset, and who could no longer be contacted while waiting

on the waitlist. These departure reasons are recorded in the STAR patient and the

transplant outcome dataset.

Then, we keep the waitlist records with registration dates between Janurary 1, 2000 and

December 31, 2010 because we do not have data on offers prior to 2000. For example,

an untransplanted patient active between 2000 and 2010 may not be included in the
34We use transplant data through December 31, 2015 to be consistent with the sample period during

which we observe patient survival.
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final sample because said patient’s first waitlist registration is before 2000. This step

amounts to be one of the largest cuts.

Finally, we exclude patients who received a transplant through non-standard allocations

rules. This can occur, for example, if the donor is an armed service member; if the donor

specified a particular recipient (directed donation); if there is a medical emergency or

expedited placement attempt; if the kidney is not offered due to operational issue.

We identify these cases by analyzing the PTR data as a large number of offers will

be bypassed with a code indicating one of these reasons. In some cases, there is also

text specifying specific circumstances justifying a rejection, which we parse to identify

invalid offers in cases where the refusal code does not provide a specific reason.

Table A.1: Sample Selection: Patients

Patient's first waiting period that intersects the period 2000-2010 308,370 372,681 

Exclude patients who received living donor transplants in their first waiting period 241,209 295,075 

Exclude patients were waiting for other organs in their first waiting period 213,685 244,580 

Keep one kidney waitlist record for each patient 213,685 213,685 

Patients with multiple waitlist records 32,191 32,191 

Patients with single waitlist record 181,494 181,494 

Exclude patients who had a previous kidney transplant 212,258 -

Exclude patients with administrative waitlist removal reason 207,316 -

Restrict to patients whose remaining waitlist registration is between 2000 and 2010 178,944 -

Exclude patients who received non-standard kidney allocations 175,518 --

Number of 
Patients

Number of Wait 
List Records

Our sample of deceased kidney donors comes from the intersection of the STAR deceased

donor dataset and the PTR dataset. These are deceased donors whose kidneys were

allocated between January 1, 2000 and December 31, 2010 to patients on the waitlist.

We further exclude donors allocated using non-standard rules and restrict to donors

who were offered to patients in the sample.

Table A.2 details the number of donors that survive each filter. The largest cuts come

from the last step. This is because the priority for waiting time implies that many offers

are only given to patiens that registered prior to 2000.

We consider a sample of offers made betwee January 1, 2000 and December 31, 2010

that could have resulted in transplants between our patient and donor samples. The



5

Table A.2: Sample Selection: Donors

Number of Donors

Deceased donors offered to any kidney waitlist patients between 2000 and 2010 71,738 

Exclude deceased donors offered through non-standard kidney allocations 67,993 

Restrict to deceased donors offered to patients in the sample 61,453 

PTR dataset includes records of all initial patient contacts and patients skipped due to

administrative reasons irrespective of whether an offer was made. This happens mainly

for three reasons. First, some patients that were contacted have lower priority than the

patients that accepted and were transplanted the kidneys from a donor. In this case, we

determine the cutoff point for each donor, and exclude all offers made after the cutoff.

Second, some match runs were abandoned due to logistical reasons, and were re-run.

We only keep the offers from the last match run for a donor. Third, in some cases,

the PTR dataset records administrative or logistical reasons for skipping patients in

the offer sequence. This can occur, for example, if the kidney has antigens that would

result in an immune response; a patient was bypassed due to logistical reasons; or if the

kidney does not meet the patient’s minimum criteria. We also exclude non-responsive

offers, for example, because either the surgeon or the patient is unavailable or because

the patient is temporarily inactive/unsuitable for transplantation. Finally, we restrict

to offers made to the patients in the sample. This step cuts the offer sample by 41%

because many offers are made to patients that were not in our sample, for example, to

patients that registered prior to 2000. Table A.3 describes how we arrive at the final

sample of offers.

Table A.3: Sample Selection: Offers

Number of Offers

Offers made between 2000 and 2010 from donors in the sample 14,888,539 

Exclude non-responsive offers 14,239,214 

Restrict to offers made to patients in the sample 8,444,106 
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A.4 Patient Survival

The patient characteristics and transplant outcomes dataset collects patient death dates

from the waitlist record and periodically from the social security master file. In a small

minority of cases, death dates are inconsistent across multiple waitlist records for a

patient, in which case we assume that earlier death dates take precedence over later

ones. Transplant dates and death dates are truncated on December 31, 2015, because

death records after this date are inconsistently populated. For patients who received a

transplant or died after December 31, 2015, we treat them as untransplanted or alive,

respectively, as of December 31, 2015.

Among 175518 patients in the sample, we observe death dates before December 31,

2015 for 80168 of them. Of these, 55476 are untransplanted patients and 24692 are

transplanted. Patients from whom we do not observe death are censored with an

observed survival duration needs to be computed. The rules differ for transplanted

and untransplanted patients. For transplanted patients, we censor on the date of the

second transplant if a second transplant took place before December 31, 2015; on the

day after transplant if there is no follow-up information for the patient corresponding

to the transplant; on the date when the patient is lost to follow-up if the patient is lost

to follow-up prior to December 31, 2015; and on Decmeber 31, 2015 if the patient is

known to be alive as of December 31, 2015. For untransplanted patients, we censor on

December 31, 2015 if the patient is known to be alive as of December 31, 2015; and on

the date when the patient exits the waitlist if no death date is available and the exit

day is prior to December 31, 2015.

Table A.4 presents a break down of censor reasons and their corresponding censor dates

for the patient sample. Nearly one half of the patient sample is uncensored, and among

censored patients, the vast majority (73%) are censored on December 31, 2015. Since

December 31, 2015 is an exogenously determined date, patients censored on the date

should be similar to uncensored patients in terms of potential outcomes. We expect

that this censoring date does not induce selection bias that might confound our survival

analysis.
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Table A.4: Censor Reason

Censor Reason Censor Date # Patients

Transplanted Patients

Retransplant before Dec 31, 2015 Retransplant date 3,581

No follow-up information One day after transplant 979

Lost to follow-up before Dec 31, 2015 Date lost to follow up 5,856

Known to be alive as of Dec 31, 2015 December 31, 2015 57,215

Untransplanted Patients

Known to be alive as of Dec 31, 2015 December 31, 2015 12,370

No death date and depart the waitlist before Dec 31, 2015 Date departing waitlist 15,349

B Estimation Appendix

B.1 Gibbs’ Sampler

Recall that our model is given by

yi0 = B (Yi0; ρ0) = xiβx + νi,0

yij = B (Yij; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εij,1

Dij = 1 {yij,D = χ (xi, qj) γx,q + ziγz + ηj + νi,D + εij,D > 0} ,

where we allow for νi = (νi,D, νi,1, νi,2) ∼ N (0,Σν) and εij = (εij,1, εij,D) ∼ N (0,Σε).

There are several challenges in estimating this model. First, we often observed censored

values of yi0 and yij. We perform a data augmentation step given the parameters and

the censoring point to solve this issue. For yij, the data augmentation step is necessary

only in cases for which Tij = 1.

Second, Dij is a binary variable. As is standard in discrete choice models, we perform

a data augmentation step to draw yij,D given the observed decisions. This step is

necessary for the observed values of Dij.

Third, the model incorporates rich correlations between the different observations via ηj,

νi and εij. In particular, due to these terms, the covariance matrix between {yi0}i {yij}ij
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and {yij,D}ij conditional on the obserables and the parameters does not have a simple

block-diagonal structure that would allow us to compute simple posterior distributions.

To solve this problem, we re-write these variables using a factor structure such that the

posterior distribution of the parameters of each equation is conditionally independent

of the others given the factors. Specifically, we rewrite νi as

νi,D = fi,1

νi,f = fi,2

νi,0 = βν1fi,1 + βν2fi,2 + ε̃i0

where fi,1, fi,2 and εi0 are each independently distributed mean-zero normal random

variables with variances σ2
1, σ2

2 and σ2
ε̃,0. This structure places no restrictions on the

covariance matrix Σν . Similarly, we write εij as

εij,1 = αεfij,3 + ε̃ij,1

εij,D = fij,3 + ε̃ij,D

where fij,3, ε̃ij,1 and ε̃ij,D are independently distributed mean-zero normal random vari-

ables with variances σ2
3, σ

2
ε̃,1 and σ2

ε̃,D. We normalize the variances σ2
3, and σ2

ε̃,D to 1.

Finally, we set

ηj = fj,4

with variance σ2
4. The main difference between f·and ε̃· is that it is sufficient to condition

on the former in order to render the models above as conditionally independent.

Therefore, the parameters we are interested estimating in are the co-efficients in each

equation, β = (βx, βν1, βν2), α = (αx,q, αη, αν1, αε), γ = (γx,q, γz), and the variances

σ2
ε̃,0 = V (ε̃i0), σ2

ε̃,1 = V (ε̃ij,1) and σ2
l = V (fl) where l ∈ {1, 2, 4} is the l-th factor.

For simplicity of notation, we will collect the coefficients in the vector θ and the stan-

dard deviations in the vector σ, with σε̃ and σf denoting the sub-vectors for ε̃ and f

respectively. And, with some abuse of notation, we collect yi0, yij and yij,D for all i and
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j in y.

Following standard practice, we assume diffuse conjugate and independent priors for

each of these parameters. Specifically, we model the priors α, β and γ using a mean-

zero independent normal distribution with variances equal to 1000 and the prior for

the variances σ2
ε̃,0, σ2

ε̃,1 and σ2
l using independent inverse-Wishart distributions with

parameters (3, 3). These priors are diffuse; thus, they have a negligible impact on our

estimates.

The Gibbs’ sampler starts with an initial draw y0, θ0, σ0 and f 0 and generates a chain

of length K by iterating through the following steps for each k ∈ {0, . . . , K − 1}:

1. Data Augmentation: Sample yk+1
i0 , yk+1

ij for censored observations and yk+1
ij,D for

observed decisions given θk, σk and fk from truncated normal distributions.

2. Sample Coefficients: Sample θk+1 given yk+1, fk, the standard deviations σk

and the prior distribution from a multi-variate normal distribution.

3. Sample Variances: Sample σ2,k+1
ε̃,0 and σ2,k+1

ε̃,1 given yk+1, fk, the parameters

θk+1 and the prior distribution from a inverse-Wishart distribution.

4. Sample Factors: For each l ∈ {1, 2, 3, 4}, sample fk+1
·,l given yk+1, the parame-

ters θk+1, σk+1
ε̃ , σkf , and the remaining factors fk+1

·,1 , . . . , fk+1
l−1 and fk·,l+1, . . . , f

k
4 .

5. Sample Factor Variances: Sample σ2,k+1
l for l ∈ {1, 2, 4} given fk+1 and the

prior distribution from an inverse-Wishart distribution.

We draw a chain of length K =200,000 and burn 50,000 draws to allow the chain to

convergence. We only keep one every 10 draws to save some computation time and

reduce the autocorrelation in the resulting chain. We visually inspect the chains and

ensure that the potential scale reduction factor is below 1.1 for each of the parameters.

The distributions in each step can be solved for in closed-form as detailed below:

1. Conditional distributions for yi0, yij and yij,D given θ, f and σ:
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(a) For each i, j pair such that Dij is observed, the distribution of yij,D condi-

tional on γ, f and Dij is a one-sided truncated with mean E [gij,D|γ, fij] and

unit standard deviation. The distribution is truncated below at 0 if Dij = 1

and above at 0 otherwise.

(b) For each i such that yi0 is censored, the distribution of yi0 conditional on

β and f is a one-sided truncated normal with mean E [yi0|β, fi1, fi2] and

standard deviation σε̃,0. The distribution of yi0 is truncated below at the

censoring duration.

(c) For each observed transplant such that yij is censored, the distribution of yij
conditional on αk, fk is a one-sided truncated normal with mean E [yij|α, f ]

and standard deviation σε̃,1. The distribution of yij is truncated below at

the censoring duration.

2. Posterior distributions of the co-efficients α, β and γ given y, f , σ and the priors.

Since yi0, yij and yij,D are mutually independent conditional on f , the parame-

ters α, β and γ are each co-efficients in a linear regression model with normally

distributed errors. Therefore, the posterior distributions of each of these terms is

given by a multivariate normal distribution with closed-form means and variances

(see Gelman et al., 2014, Chapter 14.2).

3. Posterior distributions of σ2
ε̃,0 and σ2

ε̃,1 given y, f , σ and the priors. As argued

above, yi0, yij are mutually independent conditional on f . Therefore, the distri-

butions of σ2
ε̃,0 and σ2

ε̃,1 are inverse-Wishart with parameters given in Chapter 14.2

of Gelman et al. (see 2014).

4. Posterior distributions of f given y, θ and σ:

(a) The distribution of fi,1 conditions on the residual

fi,1 + 1
βν1

ε̃i0 = 1
βν1

(yi0 − (xiβx + βν2fi,2))
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and σ1 throughout; on the residual

fi,1 + ε̃ij,D = yij,D − [χ (xi, qj) γx,q + ziγz + ηj + fij,3]

for all j such that Dij is observed; and on the residual fi,1 + 1
αν1
ε̃ij,1 =

1
αν1

[yij − (χ (xi, qj)αx,q + αηηj + +fi,2 + αεfij,3)] if Tij = 1. These residuals

have prior mean zero and variances σ2
1 + σ2

ε̃,0
β2
ν1
, σ2

1 +σ2
ε̃,1 and σ2

1 + σ2
ε̃,1
α2
ν1

repectively.

The mean is the precision-weighted average of the residuals conditioned on,

and the variance is the inverse of the sum of σ−2
1 and the precisions of each

residual.

(b) The distribution of fi,2 is analogous, where we condition on the residual
1
βν2

(yi0 − (xiβx + βν1fi,1)) and σ2 throughout; and on the residual yij −

[χ (xi, qj)αx,q + αηηj + αν1fi,1] if Tij = 1.

(c) The distribution of fij,3 is analogous, where we conditions on αε throughout;

on yij,D− [χ (xi, qj) γx,q + ziγz + ηj + fi,1] for all j such that Dij is observed;

and on 1
αε

(yij − [χ (xi, qj)αx,q + αηηj + fi,2]) if Tij = 1. Observe that σ3 is

normalized to 1.

(d) The distribution of fj,4 is analogous, where we condition on σ4 throughout;

on yij,D−[χ (xi, qj) γx,q + ziγz + fi,1 + fij,3] for all i such that Dij is observed;

and on 1
αη

(yij − [χ (xi, qj)αx,q + fi,2 + αεfij,3]) if Tij = 1.

5. The variances σ2
l for l ∈ {1, 2, 4} follow an inverse-Wishart distributions given the

prior and respectively, {fi,1}, {fi,2} and {fj,4}.

C Theoretical Appendix

C.1 Proof of Lemma 1

For simplicity of notation, denote qn =
(
qji,1 , . . . , qjn

)
, qn−1 =

(
qji,1 , . . . , qji,n−1

)
, and

the vector D̃i,n =
(
Diji,1 , . . . , Dijn

)
. Assumption 2 implies that P

[
Tiji,n = 1|qji , z

]
=
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P
[
D̃i,n−1 = 0, Diji,n = 1|qji , z

]
is equal to the observed quantity P

[
Tiji,n = 1|qn, z

]
, and

is therefore identified. Similarly, if P
[
Tiji,n = 1|qji , z

]
> 0, then Assumption 2 implies

that

E
[
Yiji,n|Tiji,n = 1, qji , z

]
= E

[
Yiji,n|D̃in−1 = 0, Diji,n = 1, qji , z

]

is identified because it is equal to E
[
Yiji,n|Tiji,n = 1, qn, z

]
. Therefore, it remains to

show that E
[
Yi0|Tiji,n = 1, qji , z

]
is identified. First, re-write

E
[
Yi0|Tiji,n = 1, qji , z

]
Pr
[
Tiji,n = 1|qji , z

]
=E

[
Yi0|Tiji,n = 1, qn, z

]
Pr
[
Tiji,n = 1|qn, z

]
=E

[
Yi0|D̃i,n−1 = 0, Dijn = 1, qn, z

]
Pr
[
D̃in−1 = 0, Dijn = 1|qn, z

]
=E

[
Yi0|D̃i,n−1 = 0, qn, z

]
Pr
[
D̃i,n−1 = 0|qn, z

]
− E

[
Yi0|D̃i,n = 0, qn, z

]
Pr
[
D̃i,n = 0|qn, z

]
=E

[
Yi0|D̃i,n−1 = 0, qn−1, z

]
Pr
[
D̃i,n−1 = 0|qn−1, z

]
− E

[
Yi0|D̃i,n = 0, qn, z

]
Pr
[
D̃i,n = 0|qn, z

]

where the last expression is observed. The first equality above follows from Assumption

2, the second equality is definitional, the third equality follows from set inclusion and

the last from Assumption 2. Thefore, since Pr
[
Tiji,n = 1|qji , z

]
is identified and strictly

positive, E
[
Yi0|Tiji,n = 1, qji , z

]
is identified.

C.2 Proof of Lemma 2

For any k ≤ n, Assumptions 1 and 2 imply that the observed probability that Di,ji,1 =

Di,ji,2 = . . . = Di,ji,k = 0 can be re-written as follows:

P
(
Di,ji,1 = Di,ji,2 = . . . = Di,ji,k = 0|qnj , zi

)
=
∫ 1

0
εkDdv (εD; qj, zi) .
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Observe that ak =
∫ 1

0 ε
k
Ddv (εD; qj, zi) is identified for k ∈ {1, . . . , n}. Moreover, 3(i)

and (ii) together imply that

a0 =
∫ 1

0
1dv (εD; qj, zi) = 1.

Therefore, to complete the proof, we need to show that vn−1 (·; qj, zi) is determined

by the values of ak =
∫ 1

0 ε
k
Ddv (εD; qj, zi) for k ≤ n where vn−1 (·; qj, zi) is the (n− 1)-

st order Fourier-Legendre approximation of v (·; qj, z). In what follows, we will drop

conditioning on zi and qnj for simplicity of notiation.

To complete the proof, we write the co-efficients of (n− 1)−st Fourier-Legendre series

of v (·) in terms of ak. Let Γm (x) be the m-th shifted Legendre Polynomial. Observe

that each Γm (·) is given by

Γm (x) =
m∑
l=0

γm,lx
l,

with known co-efficients γm,l.35The m−th co-efficient in the (shifted) Fourier-Legendre

series of v (x) is given by

cm = (2m+ 1)
∫ 1

0
Γm (x) v (x) dx

= (2m+ 1)
[∫ 1

0
Γm (x) dx−

∫ 1

0

∫ x

0
Γm (y) dydv (x)

]
,

where the second equality follows from integration by parts. Observe that
∫ 1

0 Γm (x) dx =
35The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship∫ 1

0 Γm (x) Γn (x) dx = 1
2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials

are Γ0 (x) = 1, Γ1 (x) = 2x− 1, Γ2 (x) = 6x2 − 6x+ 1.
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∫ 1
0 Γm (x) Γ0 (x) dx = 0 for m > 0. Therefore, for m > 0,

cm = − (2m+ 1)
∫ 1

0

∫ x

0
Γm (y) dydv (x)

= − (2m+ 1)
∫ 1

0

∫ x

0

m∑
l=0

γm,ly
ldydv (x)

= − (2m+ 1)
∫ 1

0

m∑
l=0

γm,l
1

l + 1x
l+1dv (x)

= − (2m+ 1)
m∑
l=0

γm,l
1

l + 1

∫ 1

0
xl+1dv (x)

= − (2m+ 1)
m∑
l=0

γm,l
1

l + 1al+1. (C.1)

And, finally, we have

c0 =
∫ 1

0
Γ0 (x) v (x) dx

=
∫ 1

0
v (x) dx

= v (1)−
∫ 1

0
xdv (x) , (C.2)

where the last equality follows from integration by parts. The term v (1) = 1 since v (·)

is non-decreasing with image [0, 1]. Equations (C.1) and (C.2) imply that all cm for

m < n can be written in terms of the observed quantities a0, . . . , an. Therefore, vn−1 (·)

is identified.

Let Γ̃m (y) be the m-th unshifted Legendre Polynomial defined over [−1, 1] satisfying

Γ̃m (y) = Γm
(
y+1

2

)
.36 The (n − 1)-st order Fourier-Legendre approximation of ṽ (y) =

v
(
y+1

2

)
is ṽn−1 (y) = ∑n−1

k=0 c̃mΓ̃m (y) where,

c̃m = (2m+ 1)
2

∫ 1

−1
Γ̃m (y) ṽ (y) dy = cm,

where the last equality follows after a change of variables x = y+1
2 . Since the function

36The unshifted Legendre-Polynomials on [−1, 1] satisfy the orthogonality relationship∫ 1
0 Γ̃m (y) Γ̃n (y) dy = 2

2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials are
Γ̃0 (y) = 1, Γ̃1 (y) = y, Γ̃2 (x) = 1

2
(
3x2 − 1

)
.
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ṽ (·) has a compact domain and image, we have that
∫ 1
−1 ṽ (y)2 dy is bounded. Theorem

8.1 in Pollard (1947) shows that the Legendre polynomials form a basis in L2 (−1, 1),

or equivalently, that ṽn (y) converges in the L2-norm to ṽ (y) as n → ∞. Therefore,

‖vn−1 (·)− v (·)‖2 → 0 as n → ∞. Therefore, v (·) is identified if the hypotheses

of the Lemma are satisfied for all n. Since v (·; qj, zi) is increasing in its argument,

P (Dij = 1| νi,D = v (εD; qj, zi) ; qj, zi) is identified.

C.3 Preliminaries for Theorem 1

Lemma 3. Let fn and gn be sequences of functions such that fn → f and gn → g

pointwise. Assume that f is continuous.

(i) If fn converges to f uniformly in [a, b] and gn (x) ∈ (a, b) for all x, then fn (gn (x))

converges to f (g (x)) for each x in the domain of g.

(ii) If fn and gn respectively converge to f and g uniformly in [a, b] and infx∈[a, b] |g (x)| =

k > 0, then fn(x)
gn(x) converges to f(x)

g(x) uniformly in [a, b].

(iii) If fn converges to f uniformly in [a, b] and f is strictly increasing on [a, b], and the

function f−1
n (y) is defined as inf{x : fn (x) > y}, then for all x ∈ (a, b), f−1

n (f (x))→

x.

Proof. Part (i). By the triangle inequality, we have that

|fn (gn (x))− f (g (x))| ≤ |fn (gn (x))− f (gn (x))|+ |f (gn (x))− f (g (x))|

≤ sup
x∈[a,b]

|fn (y)− f (y)|+ |f (gn (x))− f (g (x))| .

The first term converges to zero since fn converges to f uniformly in [a, b]. The argument

of f in the second term, gn (x), converges to g (x). Since f is continuous, the sequential

definition of continuity implies that the second term also converges to zero. Therefore,

|fn (gn (x))− f (g (x))| → 0 as n→∞.



16

Part (ii). By the triangle inequality, we have that

sup
x∈[a,b]

∣∣∣∣∣fn (x)
gn (x) −

f (x)
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|fn (x)− f (x)| sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ .
+ sup

x∈[a,b]
|f (x)| sup

x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣
+ sup

x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|fn (x)− f (x)| .

By assumption, supx∈[a,b] |fn (x)− f (x)| converges to zero and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1 is

finite. Further, supx∈[a,b] |f (x)| if finite because f is continuous and [a, b] is a compact

set. Therefore, the left-hand side converges to zero as required if supx∈[a,b]

∣∣∣ 1
gn(x) −

1
g(x)

∣∣∣
converges to zero.

To show this, observe that

sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x)

∣∣∣∣∣ sup
x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|gn (x)− g (x)|

converges to zero. Since limn→∞ supx∈[a,b] |gn (x)− g (x)| = 0 and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1

exists by assumption, it is sufficient to show that supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ exists. Let N be such

that for all n > N , we have that supx∈[a,b] |g (x)− gn (x)| ≤ k
2 . Such a value of N exists

because gn converges to g uniformly in [a, b] and infx∈[a,b] |g (x)| = k > 0. Hence, for all

n > N , supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ < (
k
2

)−1
, which is finite.

Part (iii). Define f−1
n (y) = inf {x : fn (x) > y}. Fix x ∈ (a, b). For any ε > 0, define

ε̃ = min
{
ε
2 , x− a, b− x

}
and δε̃ = min {f (x+ ε̃)− f (x) , f (x)− f (x− ε̃)} . Observe

that ε̃ > 0 and δε̃ > 0 because and f is strictly increasing. Pick N such that for

all n > N supx′∈[a,b] |fn (x′)− f (x′)| < δε̃. Such an N exists because fn converges

to f uniformly in [a, b]. To complete the proof, we will show that for all n > N ,

f−1
n (f(x)) > x− ε and f−1

n (f(x)) < x+ ε.

Since f is strictly increasing, for all x′ < x − ε̃, f (x′) + δε̃ < f (x). Therefore, for all

n > N and x′ < x− ε̃, fn (x′) < f (x). Hence, f−1
n (f(x)) ≥ x− ε̃ > x− ε for all n > N .

Similarly, for all x′ > x + ε̃, f (x′) > f (x). Therefore, for all n > N and x′ > x + ε̃,
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fn (x′)− δε̃ > f (x). Hence, f−1
n (f(x)) ≤ x+ ε̃ < x+ ε for all n > N.

Lemma 4. Let g ∈ L2 (0, 1) be continuous and sn (g;x) be its Fourier-Legendre ap-

proximation of degree n evaluated at x. For any [a, b] ∈ (0, 1), the partial average

Sn (g;x) = 1
n

∑n−1
k=0 sk (g;x) converges to g (x) uniformly in [a, b].

Proof. The result is a corollary of Theorem IV.3.2 in Freud (1971). To apply this result,

we will use the cumulative distribution function of the uniform distribution on [0, 1] as

the function α (x).

Let pn (dα;x) for n = 0, 1, 2... be the sequence of orthogonal polynomials defined in

Theorem I.1.2 of Freud (1971). It is straightforward to check that, for our chosen α (x),

pn (dα;x) =
√

2m+ 1Γm (x) ,

where Γm (x) be the m-th shifted Legendre Polynomial on [0, 1],37

satisfied the conditions in Theorem I.1.2 because (i) each Γm (x) is a polynomial, (ii)

the leading co-efficient of Γm (x) is positive and (iii)
∫

Γn (x) Γm (x) dx = δmn where δmn
is the Kronecker delta. Moreover, pn (dα;x) is unique as noted in the remark below

Theorem I.1.2 in Freud (1971).

Therefore, it remains to show that pn (dα;x) satisfies requirement (3.2) in Chapter IV

of Freud (1971). As noted following this requirement, it is sufficient to show that for

every pair x2 and x1 in a neighborhood of x0 ∈ [a, b] ⊂ (0, 1),

α (x2)− α (x1)
x2 − x1

≥ m > 0,

for some constant m. This the case because for our chosen α (x), because the left hand

side is identically equal to 1 for every x1, x2 ∈ (0, 1) .

Finally, sk (g;x), as defined in equations IV(1.1) and IV(1.2) of Freud (1971) is the k−th

order shifted Fourier-Legendre approximation of g. Therefore, by a direct corollary
37The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship∫ 1

0 Γm (x) Γn (x) dx = 1
2n+1δm,nwhere δm,n is the Kronecker delta. The first few values are

Γ0 (x) = 1, Γ1 (x) = 2x− 1, Γ2 (x) = 6x2 − 6x+ 1.
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of Theorem IV.3.2 in Freud (1971), Sn (g;x) converges to g (x) uniformly in [a, b] ⊂

(0, 1).

Lemma 5. Let v′n (·; qj, z) be the n-th order Fourier-Legendre approximation of v′ (·; qj, z).

If the hypotheses of Lemma 2 are satisfied, then v′n (·; qj, z) is identified for each z ∈

(0, 1) and qj.

Proof. We drop the parameters z, qj for simplicity of notation as they are held fixed.

As argued in the proof of Lemma 2, Assumptions 1 and 2 imply that the quantities

ak =
∫ 1

0
εkDdv (εD; qj, zi)

are identified for all k ≤ n. Let bm be the (shifted) m−th Fourier-Legendre co-efficient

of v′ (·) defined on [0, 1]

bm = (2m+ 1)
∫ 1

0
Γm (x) v′ (x) dx

where Γm (·) is the m−th shifted Legendre polynomial on [0, 1]. Observe that each

Γm (·) is given by

Γm (x) =
m∑
l=0

γm,lx
l,

with known co-efficients γm,l. Therefore, the co-efficients

bm = (2m+ 1)
m∑
l=0

γm,l

∫ 1

0
xlv′ (x) dx

= (2m+ 1)
m∑
l=0

γm,lal,

are identified. The second equality follows from the definition of al.

C.4 Proof of Theorem 1

Identification of E (Yi0|ν). Define y0 (ν) = E (Yi0|ν). For a given ν, fix z such that

there exists εD ∈ (0, 1) with v (εD; qj, z) = ν and drop the conditioning on z in what
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follows, for simplicity of notation. As in the main text, we are also conditioning and

dropping xi from the notation.

Let s and s̃ be a pair of models satisfying the hypotheses of Theorem 1, and let

{y0 (·) , v (·)} and {ỹ0 (·) , ṽ (·)} be features that are associated with s and s̃ respec-

tively. We will show that if {y0 (·) , v (·)} 6= {ỹ0 (·) , ṽ (·)}, then there exists n, such that

if qkj is in the support of the distribution of offer types for all k ≤ n, then the joint dis-

tribution of Yi0,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj differs for some k ≤ n under models

s and s̃.

Consider a value of ν̄ ∈ (0, 1) such that y0 (ν̄) 6= ỹ0 (ν̄) and ν̄ = v (x̄; qj) for some x̄ ∈

(0, 1). Lemmas 2 and 5 imply that if either v (x̄; qj) 6= ṽ (x̄; qj) or v′ (x̄; qj) 6= ṽ′ (x̄; qj)

for some x̄ ∈ (0, 1), then there exists N such that for all n > N the joint distribution of{
Tiji,1 , . . . , Tiji,n

}
conditional on qkj for some k ≤ n differs for models s and s̃. Therefore,

it is sufficient to focus on the case when v (x̄; qj) = ṽ (x̄; qj) and v′ (x̄; qj) = ṽ′ (x̄; qj).

Moreover, since x̄ ∈ (0, 1), we have that v′ (x̄; qj) > 0 (Assumption 4(i)) implying that

it is sufficient to show that that if y0 (v (x̄; qj)) v′ (x̄; qj) 6= ỹ0 (v (x̄; qj)) v′ (x̄; qj), then

the joint distribution of Yi0,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj differs for some k ≤ n

under models s and s̃.

We prove this by showing that if y0 (v (x̄; qj)) v′ (x̄; qj) 6= ỹ0 (v (x̄; qj)) v′ (x̄; qj), then

there exists n such that if qkj is in the support of the distribution of offer types for all

k ≤ n, thenYi0,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj differs for some k ≤ n under models

s and s̃.

To do this, we first show that the Fourier-Lebesgue approximation of the function

u (x) = y0 (v (x; qj)) v′ (x; qj) can be determined from observables. Assumptions 1 and

2 imply that for each k ≤ n, we can re-write

E
(
Yi0 × 1 {Ti = 0} |qkj

)
=
∫ 1

0
E (Yi0|νD = v (x; qj))xkdv (x; qj)

=
∫ 1

0
xky0 (v (x; qj)) v′ (x; qj) dx.

The argument in the proof of Lemma 5 implies that the n−th order Fourier-Legendre
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approximation of u (x; qj) = y0 (v (x; qj)) v′ (x; qj), denoted as un (x; qj), is a function of

the observables
{
E
(
Yi0 × 1 {Ti = 0} |qkj

)}n
k=1

. Similarly, let ũn (x; qj) be the (shifted)

Fourier-Legendre series associated with model s̃ with associated feature {ỹ0 (·) , ṽ (·)}

such that ṽ = v.

Lemma 4 implies that for any subinterval [a, b] ⊂ (0, 1), 1
n

∑n−1
k=0 uk (x; qj) converges uni-

formly to u (x; qj) if u (x; qj) is square-integrable and continuous. Assumption 4(i) and

(ii) imply continuity of u (x, qj) since the product of continuous functions is continuous.

To show square-integrability of y0 (v (x; qj)) v′ (x; qj) observe that

∫ 1

0
y0 (v (x; qj))2 v′ (x; qj)2 dx =

∫ 1

0
E (Yi0|v (x; qj))2 v′ (x; qj)2 dx

≤ sup
x
|v′ (x; qj)|

∫ 1

0
E (Yi0|v (x; qj))2 v′ (x; qj) dx

= sup
x
|v′ (x; qj)|

∫ 1

0
E (Yi0|ν)2 dν,

where the second equality follows from a change of variables. Observe that Assumption

4(i) holds that supx |v′ (x; qj)| is finite. The term
∫ 1

0 E (Yi0|ν)2 dν is finite since

∫ 1

0
E (Yi0|ν)2 dν = V (E [Yi0|ν]) + E (E (Yi0|v))2

= V (E [Yi0|ν]) + E (Yi0)2

≤ V (Yi0) + E (Yi0)2 ,

where the inequality follows from the law of total variance. 4(ii) implies that the right

hand side is bounded. Therefore, ūn (x, qj) converges uniformly to u (x; qj). An identical

argument implies that 1
n

∑n−1
k=0 ũn (x; qj) converges uniformly to ũ (x; qj) over x ∈ [a, b].

Since x̄ ∈ (0, 1), we can pick [a, b] such that x̄ ∈ [a, b].

Now, let δ = |y0 (v (x̄; qj)) v′ (x̄; qj)− ỹ0 (v (x̄; qj)) v′ (x̄; qj)| > 0. Pick n such that

∣∣∣∣∣y0 (v (x̄; qj)) v′ (x̄; qj)−
1
n

n−1∑
k=0

uk (x̄; qj)
∣∣∣∣∣ < δ

2
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and ∣∣∣∣∣ỹ0 (v (x̄; qj)) v′ (x̄; qj)−
1
n

n−1∑
k=0

ũk (x̄; qj)
∣∣∣∣∣ < δ

2 .

Such an n exists because Lemma 4 implies that 1
n

∑n−1
k=0 uk (x̄; qj) and 1

n

∑n−1
k=0 ũk (x̄; qj)

converge to y0 (v (x̄; qj)) v′ (x̄; qj) and ỹ0 (v (x̄; qj)) v′ (x̄; qj) respectively. Therefore, if qkj
is in the support of the distribution of offer types for all k ≤ n, then

∣∣∣∣∣ 1n
n−1∑
k=0

uk (x̄; qj)−
1
n

n−1∑
k=0

ũk (x̄; qj)
∣∣∣∣∣ > 0.

Because each un (x̄; qj) and ũn (x̄; qj) is determined by the conditional expectations{
E
(
Yi0 × 1 {Ti = 0} |qkj

)}n
k=1

, we have shows that the joint distribution of Yi0,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj differs for some k ≤ n under models s and s̃.

Identification of E (Yij|νD, εij,D ≥ εD, qj). Define y1 (νD, εD; qj) = E (Yij|νD, εij,D ≥ εD, qj).

Consider a pair of models s and s̃. As argued above, we can restrict to pairs such that

v (x; qj, z) = ṽ (x; qj, z) for all x ∈ (0, 1) and all z. For a given ν ∈ (0, 1) and x̄ ∈ (0, 1),

and let z̄ be such that ν = v (x̄; qj, z̄). We will show that if y1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄) 6=

ỹ1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄), then there exists n such that if qkj is in the support of the

distribution of offer types for all k ≤ n, then the joint distribution of Yij,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj and z̄ differs for some k ≤ n under models s and s̃.

Assumptions 1 and 2 imply that for each k ≤ n, we can re-write the observed quantity

E
(
Yijk × 1 {Tijk = 1} |qkj , z̄

)
=
∫ 1

0
E (Yijn |νD = v (x; qj, z̄) , εij,D ≥ x, qj)xk−1 (1− x) dv (x; qj, z̄)

=
∫ 1

0
xk−1 (1− x) y1 (v (x; qj, z̄) , x; qj) v′ (x; qj, z̄) dx.

Arguments similar to those above imply that for any [a, b] ⊂ (0, 1), we can uniformly

approximate the function

u (x; qj, z̄) = (1− x) y1 (v (x; qj, z̄) , x; qj) v′ (v (x; qj, z̄) ; qj, z̄)



22

over x ∈ [a, b] ⊂ (0, 1) with 1
n

∑n−1
k=0 un (x; qj, z̄), where un (x; qj, z̄) is determined as a

function of observed conditional distributions given z̄ and qkj for k ≤ n. This claim

required continuity and square-integrability of u (v (x; qj, z̄) ; qj, z̄) in x. Continuity

follows because y1 (ν, x; qj), v (x; qj, z̄) and v′ (x; qj, z̄) are assumed to be continuous

(Assumption 4) and the composition and product of continuous functions is continuous.

Square integrability follows similarly to the argument above because

∫ 1

0
(1− x)2 y1 (v (x; qj, z̄) , x; qj)2 v′ (x; qj, z̄)2 dx

≤ sup
x
|v′ (x; qj)|

∫ 1

0
((1− x)E (Yij|v (x; qj, z̄) , εij,D ≥ x))2 v′ (x; qj, z̄) dx

= sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|v (x; qj, z̄) , ε)2 1 {ε ≥ x} v′ (x; qj, z̄) dxdε

= sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|ν, ε)2 1 {v (ε; qj, z̄) ≥ ν} dνdε

≤ sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|ν, ε)2 dνdε,

where the second equality follows from a change of variables and the fact that v (x; qj, z)

is strictly monotonic in x. As above, Assumption 4(i) implies that supx |v′ (x; qj, z)| is

finite and

∫ 1

0
E (Yij|ν, ε)2 dν = V (E [Yij|ν, ε]) + E (E (Yij|v, ε))2

= V (E [Yij|ν, ε]) + E (Yij)2

≤ V (Yij) + E (Yij)2 ,

Therefore, if δ = |(1− x̄) y1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄)− (1− x̄) ỹ1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄)|,

then, as argued above, Lemma 4 implies that there exists n such that

∣∣∣∣∣ 1n
n−1∑
k=0

un (x̄; qj, z̄)− 1
n

n−1∑
k=0

ũn (x̄; qj, z̄)
∣∣∣∣∣ > 0.

Because each un (x̄; qj, z̄) and ũn (x̄; qj, z̄) is determined by the conditional expecta-

tions
{
E
(
Yijk × 1 {Tijk = 1} |qkj , z̄

)}n
k=1

, we have shown that thejoint distribution of
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Yij,
{
Tiji,1 , . . . , Tiji,k

}
conditional on qkj and z̄ differs for some k ≤ n under models s and

s̃.

C.5 Dynamic Selection

Let ht (v) be the cdf of νD conditional on surviving until t. It is given by

ht (v) =
∫ v Pr (Yi0 ≥ t| νD)

Pr (Yi0 ≥ t) dνD.

Observe that the types νD of surviving patients will be uniformly distributed only if

the event Yi0 ≥ t is independent of νD.

Lemma 6. Suppose that the hypothesis of Theorem 1 hold. The function ht (v) =∫ v Pr(Yi0≥t|νD)
Pr(Yi0≥t) dνD is identified for every t ≥ 0.

Proof. Let qj be a donor-type that arrives at the same time time as patient i. Because

the image of v(·, qj, z) is the unit interval (Assumption 3), for any νD ∈ (0, 1) and

z, there exists εD ∈ (0, 1) such that νD = v (εD; qj, z). Theorem 1 implies that for

every t ≥ 0, P (Yi0 ≥ t|νD) = E [1 {Yi0 ≥ t}| νD] is identified. Thus, Pr (Yi0 ≥ t) and the

function ht (v) is identified.

Define the cdf of the probability that a patient which survives until tj rejects a kidney of

type qj as vj (εD; qj, zi) = htj ◦v (εD; qj, zi). Our next result shows that vj (εD; qj, zi) and

v (εD; qj, zi) are identified under additional smoothness assumptions on the distribution

of Yi0|νD. Lemma 2 discussed the identification of the function v (εD; qj, zi) for donor

types qj with tj = 0. We extend this result to the case when tj > 0.

Lemma 7. Suppose that Assumption 5 and the hypothesis of Theorem 1 hold. Then,

vj (εD; qj, zi) and v (εD; qj, zi) are identified for every εD such that

P (Yi0 ≥ tj|νD = v (εD; qj, zi)) > 0.

Proof. Fix εD is such that P (Yi0 ≥ tj|νD = v (εD; qj, zi)) > 0. Note that htj (·) is dif-

ferentiable because P (Yi0 ≥ tj|νD) > 0 and Assumption 5 is satisfied. Moreover, it
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is increasing in v and has image equal to the unit interval. Therefore, we have that

vj (εD; qj, zi) satisfies Assumption 3. By arguments identical to those in Lemma 2,

vj (εD; qj, zi) is identified. Assumption 5 implies that P (Yi0 ≥ tj|νD) is also positive

in a neighborhood around νD and that htj is strictly increasing at that point. Thus,

v (εD; qj, zi) = h−1
tj ◦ vj (εD; qj, zi) is identified because the terms on the right hand side

are identified.

We are now ready to prove our main identification result for donor types that arrive at

any tj > 0:

Proof of Theorem 2:

Proof. Take any εD ∈ (0, 1) and νD ∈ (0, 1) satisfying the stated hypotheses. As

argued in the proof of Lemma 7, vj (·; qj, zi) satisfies Assumption 3 and is identified.

Since vj (·; qj, zi) is increasing in its argument, P (Dij = 1| νi,D = v (εD; qj, zi) , Yi0 ≥ tj)

is identified.

By the chain rule ∂
∂ε
vj (εD; qj, zi) = ∂

∂ν
htj (νD) ∂

∂ε
v (εD; qj, zi). Note that ∂

∂ε
v (εD; qj, zi) is

continuous, bounded and strictly positive. Also, ∂
∂ν
htj (νD) = Pr(Yi0≥tj |νD)

Pr(Yi0≥tj) is continous,

bounded and strictly positive because the denominator is strictly positive by the as-

sumption that there exists νD with P (Yi0 ≥ tj|νD, xi) > 0 and Assumption 5. Therefore,
∂
∂ε
vj (εD; qj, zi) is continuous and bounded and strictly positive. Therefore, the function

∂
∂ε
vj (·; qj, zi) it is strictly positive in a neiborhood of εD. Arguments identical to those

used for proving Theorem 1 imply that E
(
Yij|htj (νi,D) = htj (νD) , εij,D ≥ εD, Yi0 ≥ tj

)
is identified. Because P (Yi0 ≥ tj|νD, xi) > 0, we have that htj (νD) is strictly increasing

at νD, the event htj (νi,D) = htj (νD) is equivalent to νi,D = νD.

D Additional Figures and Tables
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Table D.5: Top 10 offers: BalanceKDPI Balance log(1+num) cond

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% -0.0479 0.00134 -0.00158 -0.269* 0.0253

(0.0772) (0.00302) (0.00277) (0.108) (0.0732)
KDPI > 50% or Missing -0.0233 -0.00427 0.000269 0.104 0.0137

(0.0683) (0.00294) (0.00276) (0.101) (0.0819)

DSA FE, Year FE, and Blood Type FE x x x x x

Control for Pediatric at Listing x x x x x
CPRA Category Controls x x x x x

F-test p-Value 0.499 0.267 0.787 0.037 0.828

Number of Observations 128949 127414 128949 127363 126619

R-Squared 0.026 0.022 0.074 0.038 0.034

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is patients who registered between 2000 and 2008. Dependent variables are as indicated
in the column headers. All regressions control for DSA fixed effect, registration year fixed effect, blood type fixed effect,
an indicator for pediatric at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA
missing at registration. Standard errors, clustered by DSA, registration year, and blood type, are in parentheses. F-test
tests against the null hypothesis that the coefficients on the instruments are zero.
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Figure D.1: Scarcity Instrument: First Stage
Notes: Figures are plotted using binsreg (Cattaneo et al., 2019) with the same specification as Columns (5) and (6) in

Table 4. Dependent variable is acceptance of an offer. Independent variables include DSA fixed effect, offer year fixed

effect, number of years waited at offer fixed effect, blood type fixed effect, patient characteristics, donor characteristics,

and match characteristics.
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Table D.6: Scarcity Instruments: Balance
all KDPI Balance

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

Log(1 + No. Donors)

Patients Waited 0-1 years -0.319 0.00271 -0.00105 0.151 -0.254

(0.331) (0.0125) (0.0115) (0.516) (0.328)

Patients Waited 1-2 years 0.135 -0.0129 0.00164 0.330 0.0594

(0.299) (0.0117) (0.0109) (0.457) (0.307)

Patients Waited 2-3 years -0.256 0.000252 0.0130 -0.290 -0.0133

(0.272) (0.0104) (0.00902) (0.397) (0.269)

Patients Waited 3-4 years 0.286 0.0160 -0.0272*** 0.114 0.109

(0.223) (0.00910) (0.00800) (0.348) (0.225)

Patients Waited 4-5 years -0.0248 -0.0117 0.0120* -0.393 -0.212

(0.153) (0.00603) (0.00533) (0.220) (0.152)

Log(1 + No. Offers)

Patients Waited 0-1 years 0.395* 0.0165* -0.00352 0.301 0.350

(0.195) (0.00817) (0.00765) (0.323) (0.218)

Patients Waited 1-2 years -0.0375 0.0000856 -0.00111 -0.228 -0.174

(0.215) (0.00847) (0.00764) (0.328) (0.228)

Patients Waited 2-3 years 0.0897 0.000332 -0.00488 0.300 0.0110

(0.213) (0.00817) (0.00698) (0.315) (0.223)

Patients Waited 3-4 years -0.123 -0.0124 0.0189** -0.1000 -0.0956

(0.196) (0.00766) (0.00666) (0.299) (0.196)

Patients Waited 4-5 years 0.0748 0.0125* -0.0130** 0.234 0.114

(0.133) (0.00527) (0.00475) (0.197) (0.132)

Year FE, DSA FE, and blood type FE x x x x x

Control for Pediatric at Listing x x x x x

CPRA Category Controls x x x x x

F-test p-Value 0.319 0.166 0.201 0.555 0.692

Number of Observations 87205 87200 87205 86078 85500

R-Squared 0.025 0.021 0.076 0.036 0.038

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is adult patients who registered on the waitlist between 1999Q4 and 2005Q4. Each
regression is on patient level, where the dependant variable is the patient characteristics in the column header at
registration. Each regression has five regressors indexed by k = 0, 1, 2, 3, 4, where the kth regressor for patient i is
computed as the number of unique donors (offers) such that: the offer is made to patients who are in the same DSA as
i, have the same blood type as i, and have waited the same number of years as i; the offer is made between 4k + 1 and
4k + 4 quarters, inclusive, from the quarter when i registers (e.g. if i registers in 2002Q1, then the offer must be made
between 2003Q2 and 2004Q1 for k = 1. All regressions control for DSA fixed effect, registration year fixed effect, blood
type fixed effect, an indicator for pediatric at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >=
80, and CPRA missing at registration. Robust standard errors, clustered by DSA, registration year, and blood type, are
in parentheses. F-test tests against the null hypothesis that the coefficients on the five regressors are zero.
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Table D.7: Survival EstimatesSurvival Model
(All Covariates)

(1) (2) (3) (4)

Panel A: Survival without Transplant
Constant 0.286 0.282 0.282 0.240

(0.052) (0.052) (0.052) (0.050)
Patient Characteristics

Diabetic -0.054 -0.054 -0.054 -0.055
(0.001) (0.001) (0.001) (0.001)

CPRA 0.018 0.018 0.018 0.016
(0.006) (0.006) (0.006) (0.006)

CPRA >= 0.8 0.000 -0.001 -0.001 -0.004
(0.008) (0.008) (0.008) (0.008)

CPRA = 0 0.003 0.003 0.003 0.002
(0.002) (0.002) (0.002) (0.002)

CPRA - 0.8 if CPRA >= 0.8 -0.073 -0.067 -0.067 -0.035
(0.053) (0.053) (0.053) (0.051)

Intial CPRA Missing -0.129 -0.129 -0.129 -0.120
(0.005) (0.005) (0.005) (0.004)

Prior Transplant -0.041 -0.041 -0.041 -0.041
(0.005) (0.005) (0.005) (0.005)

On Dialysis at Registration -0.039 -0.039 -0.039 -0.035
0.002 0.002 0.002 0.002

Blood Type A 0.006 0.006 0.006 0.005
0.003 0.003 0.003 0.004

Blood Type O 0.019 0.020 0.020 0.018
0.003 0.003 0.003 0.003

Blood Type B 0.027 0.029 0.029 0.027
0.004 0.004 0.004 0.004

Age at Registration 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001)

Age - 18 if Age >= 18 -0.003 -0.003 -0.003 -0.004
(0.001) (0.001) (0.001) (0.001)

Age - 35 if Age >= 35 -0.002 -0.002 -0.002 -0.002
(0.000) (0.000) (0.000) (0.000)

Age - 50 if Age >= 50 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Age - 65 if Age >= 65 -0.001 -0.001 -0.001 0.000
(0.000) (0.000) (0.000) (0.000)

BMI at Departure 0.004 0.004 0.004 0.005
(0.003) (0.003) (0.003) (0.003)

BMI - 18.5 if BMI >= 18.5 0.001 0.001 0.001 0.000
(0.003) (0.003) (0.003) (0.003)

BMI - 25 if BMI >= 25 -0.004 -0.004 -0.004 -0.004
(0.001) (0.001) (0.001) (0.001)

BMI - 30 if BMI >= 30 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001)

BMI Missing 0.050 0.050 0.050 0.076
(0.053) (0.053) (0.053) (0.052)

Serum Albumin 0.043 0.042 0.042 0.042
(0.002) (0.002) (0.002) (0.002)

Serum Albumin - 3.7 if >= 3.7 0.011 0.011 0.011 0.012
(0.004) (0.004) (0.004) (0.005)

Serum Albumin - 4.4 if >= 4.4 -0.060 -0.059 -0.059 -0.060
(0.005) (0.005) (0.005) (0.005)

Serum Albumin Missing 0.148 0.147 0.147 0.148
(0.008) (0.008) (0.008) (0.008)

Log Dialysis Time at Registration (Years) -0.015 -0.015 -0.015 -0.015
(0.000) (0.000) (0.000) (0.001)

Log Dialysis Time at Registration x 1{> 5 years} 0.000 0.000 0.000 0.006
(0.005) (0.005) (0.005) (0.005)

Unobservable Characteristics
Selectivity 0.009

(0.002)
Survival 0.067

(0.032)
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Table D.8: Survival Estimates (Continued)

Panel B: Survival with Transplant
Constant 0.646 1.778 1.758 0.628

(0.089) (0.237) (0.237) (0.092)
Patient Characteristics

Diabetic -0.097 -0.233 -0.234 -0.100
(0.003) (0.010) (0.010) (0.004)

CPRA -0.010 -0.011 -0.013 -0.011
(0.017) (0.041) (0.041) (0.017)

CPRA >= 0.8 0.004 -0.011 -0.012 0.004
(0.021) (0.051) (0.051) (0.022)

CPRA = 0 0.003 0.007 0.007 0.003
(0.005) (0.012) (0.012) (0.005)

CPRA - 0.8 if CPRA >= 0.8 -0.072 -0.235 -0.242 -0.075
(0.144) (0.347) (0.347) (0.144)

Intial CPRA Missing -0.008 -0.033 -0.031 -0.011
(0.009) (0.028) (0.027) (0.010)

Prior Transplant -0.013 -0.044 -0.046 -0.016
(0.015) (0.040) (0.040) (0.016)

On Dialysis at Registration -0.063 -0.185 -0.185 -0.064
(0.004) (0.010) (0.010) (0.004)

Blood Type A -0.007 -0.019 -0.020 -0.008
(0.007) (0.017) (0.017) (0.007)

Blood Type O 0.001 0.003 0.000 0.000
(0.007) (0.018) (0.018) (0.007)

Blood Type B -0.008 -0.005 -0.006 -0.009
(0.008) (0.019) (0.019) (0.008)

Age at Registration -0.007 -0.013 -0.013 -0.006
(0.002) (0.004) (0.004) (0.002)

Age - 18 if Age >= 18 0.006 0.013 0.013 0.005
(0.002) (0.005) (0.005) (0.002)

Age - 35 if Age >= 35 -0.006 -0.017 -0.017 -0.007
(0.001) (0.003) (0.003) (0.001)

Age - 50 if Age >= 50 -0.002 -0.004 -0.004 -0.002
(0.001) (0.002) (0.002) (0.001)

Age - 65 if Age >= 65 -0.001 -0.002 -0.002 -0.001
(0.001) (0.002) (0.002) (0.001)

BMI at Departure 0.010 0.011 0.010 0.010
(0.005) (0.013) (0.013) (0.005)

BMI - 18.5 if BMI >= 18.5 -0.007 -0.001 -0.001 -0.007
(0.005) (0.014) (0.014) (0.005)

BMI - 25 if BMI >= 25 -0.003 -0.012 -0.012 -0.003
(0.002) (0.004) (0.004) (0.002)

BMI - 30 if BMI >= 30 -0.003 -0.004 -0.004 -0.003
(0.001) (0.003) (0.003) (0.001)

BMI Missing 0.205 0.271 0.268 0.205
(0.091) (0.235) (0.235) (0.090)

Serum Albumin 0.026 0.061 0.062 0.028
(0.006) (0.015) (0.015) (0.006)

Serum Albumin - 3.7 if >= 3.7 0.028 0.079 0.079 0.029
(0.011) (0.027) (0.027) (0.011)

Serum Albumin - 4.4 if >= 4.4 -0.056 -0.138 -0.138 -0.059
(0.010) (0.027) (0.027) (0.010)

Serum Albumin Missing 0.105 0.252 0.253 0.112
(0.020) (0.053) (0.053) (0.021)

Log Dialysis Time at Registration (Years) -0.016 -0.042 -0.042 -0.016
(0.001) (0.004) (0.004) (0.001)

Log Dialysis Time at Registration x 1{> 5 years} -0.070 -0.171 -0.171 -0.069
(0.012) (0.029) (0.029) (0.012)
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Table D.9: Survival Estimates (Continued)

Donor Characteristics
Age < 18 0.021 0.116 0.119 0.023

(0.024) (0.065) (0.065) (0.025)
Age 18-35 -0.017 -0.022 -0.020 -0.016

(0.029) (0.074) (0.074) (0.029)
Age 50+ 0.020 0.235 0.230 0.017

(0.055) (0.152) (0.152) (0.055)
Cause of Death - Anoxia 0.003 -0.001 0.000 0.004

(0.009) (0.023) (0.023) (0.010)
Cause of Death - Stroke 0.002 0.000 0.001 0.003

(0.009) (0.023) (0.023) (0.009)
Cause of Death - CNS 0.010 0.041 0.039 0.009

(0.019) (0.050) (0.050) (0.019)
Cause of Death - Head Trauma 0.018 0.049 0.051 0.020

(0.009) (0.023) (0.023) (0.009)
Creatinine 0.5-1.0 -0.005 -0.002 0.000 -0.004

(0.007) (0.018) (0.018) (0.007)
Creatinine 1.0-1.5 -0.013 -0.023 -0.021 -0.012

(0.007) (0.018) (0.018) (0.007)
Creatinine >= 1.5 -0.012 -0.027 -0.028 -0.013

(0.008) (0.020) (0.020) (0.008)
Expanded Criteria Donor (ECD) -0.019 -0.047 -0.049 -0.020

(0.006) (0.015) (0.015) (0.006)
Donation After Cardiac Death (DCD) -0.003 -0.007 -0.009 -0.004

(0.005) (0.013) (0.013) (0.005)
Male 0.001 0.001 0.001 0.001

(0.003) (0.007) (0.007) (0.003)
History of Hypertension -0.012 -0.026 -0.027 -0.013

(0.004) (0.009) (0.009) (0.004)
Offer Characteristics

Perfect Tissue Type Match 0.053 0.162 0.167 0.054
(0.025) (0.067) (0.067) (0.026)

2 A Mismatches -0.002 0.017 0.017 -0.002
(0.016) (0.039) (0.039) (0.016)

2 B Mismatches 0.001 -0.018 -0.019 0.001
(0.017) (0.042) (0.043) (0.017)

2 DR Mismatches 0.000 -0.006 -0.006 0.000
(0.016) (0.040) (0.040) (0.017)

ABO Compatible -0.008 -0.011 -0.013 -0.009
(0.012) (0.030) (0.030) (0.012)

Regional Offer -0.007 -0.014 -0.012 -0.007
(0.014) (0.036) (0.036) (0.014)

Local Offer 0.035 0.073 0.080 0.038
(0.021) (0.057) (0.057) (0.022)

Log Waiting Time (Years) -0.003 -0.008 -0.008 -0.003
(0.002) (0.005) (0.005) (0.002)

Log Waiting Time x 1{Over 1 Year} -0.003 -0.026 -0.025 -0.005
(0.008) (0.021) (0.021) (0.008)

Log Waiting Time x 1{Over 2 Years} -0.021 -0.055 -0.055 -0.027
(0.011) (0.032) (0.032) (0.013)

Perfect Tissue Type Match x Prior Transplant -0.003 0.012 0.012 -0.003
(0.032) (0.082) (0.082) (0.032)

Perfect Tissue Type Match x Diabetic Patient -0.008 -0.011 -0.010 -0.007
(0.008) (0.019) (0.019) (0.008)

Perfect Tissue Type Match x Patient Age 0.000 -0.002 -0.002 0.000
(0.000) (0.001) (0.001) (0.000)

Perfect Tissue Type Match x CPRA -0.016 0.011 0.012 -0.015
(0.027) (0.068) (0.068) (0.027)

Perfect Tissue Type Match x 1{CPRA > 80%} -0.015 -0.039 -0.039 -0.015
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Table D.10: Survival Estimates (Continued)

(0.031) (0.078) (0.078) (0.031)
Perfect Tissue Type Match x ECD Donor 0.019 0.044 0.042 0.018

(0.011) (0.030) (0.030) (0.011)
Perfect Tissue Type Match x DCD Donor -0.014 -0.044 -0.045 -0.014

(0.020) (0.050) (0.050) (0.020)
Perfect Tissue Type Match x Local Offer -0.027 -0.055 -0.056 -0.028

(0.020) (0.052) (0.052) (0.020)
Perfect Tissue Type Match x ABO Compatible 0.023 0.046 0.047 0.024

(0.015) (0.038) (0.038) (0.015)
Local Offer x 1{2 A Mismatches} -0.001 -0.022 -0.022 -0.002

(0.016) (0.040) (0.040) (0.016)
Local Offer x 1{2 B Mismatches} 0.000 0.022 0.022 0.000

(0.017) (0.043) (0.043) (0.017)
Local Offer x 1{2 DR Mismatches} -0.010 -0.011 -0.011 -0.010

(0.017) (0.040) (0.040) (0.017)
Local Offer x 1{Donor Age < 18} -0.036 -0.097 -0.099 -0.037

(0.017) (0.046) (0.046) (0.018)
Local Offer x 1{Donor Age 18-35} -0.017 -0.032 -0.033 -0.018

(0.013) (0.035) (0.035) (0.013)
Local Offer x 1{Donor Age 50+} -0.010 -0.022 -0.022 -0.010

(0.014) (0.035) (0.035) (0.014)
Patient Age x 1{Donor Age < 18} 0.000 0.000 0.000 0.000

(0.000) (0.001) (0.001) (0.000)
Patient Age x 1{Donor Age 18-35} 0.001 0.003 0.003 0.002

(0.001) (0.002) (0.002) (0.001)
Patient Age x 1{Donor Age 50+} -0.001 -0.008 -0.008 -0.001

(0.002) (0.004) (0.004) (0.002)
Patient Age - 35 if Age >= 35 x 1{Donor Age 18-35} -0.001 -0.002 -0.002 -0.001

(0.001) (0.002) (0.002) (0.001)
Patient Age - 35 if Age >= 35 x 1{Donor Age 50+} 0.002 0.008 0.008 0.001

(0.002) (0.005) (0.005) (0.002)
Unobserved Covariates

Selectivity 0.001 -0.002 -0.004
(0.012) (0.012) (0.004)

Survival 1.000 1.000 1.000
(0.000) (0.000) (0.000)

Match Value 0.002 0.009 0.002
(0.019) (0.019) (0.008)

Donor Quality 0.002 0.003 0.005 0.002
(0.001) (0.005) (0.005) (0.002)

Instruments No Instruments # Past Donors # Past Offers # Future Donors

Notes: Estimates of the survival equations are presented. The sample includes 7938854 offers made between 2000 and

2009 to patients in the sample. The chain length is 850000, which includes a burn-in of 50000 draws. We thin the chain

by taking every 10 draws. All columns control for dummies for DSA fixed effect, blood type fixed effect, and registration

year fixed effect. Future donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4

for detailed definition). Standard errors are in parenthese.
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Table D.11: Choice EstimatesAcceptance Model
(All Covariates)

(1) (2) (3) (4)

Constant -4.080 -4.895 -4.071 -5.266
(0.175) (0.356) (0.356) (0.381)

Patient Characteristics
Diabetic -0.043 -0.090 -0.093 -0.111

(0.006) (0.011) (0.011) (0.013)
CPRA -0.721 -1.072 -1.089 -1.504

(0.032) (0.064) (0.065) (0.067)
CPRA >= 0.8 -0.198 -0.181 -0.132 -0.162

(0.043) (0.086) (0.087) (0.087)
CPRA = 0 0.053 0.110 0.110 0.110

(0.009) (0.018) (0.019) (0.019)
CPRA - 0.8 if CPRA >= 0.8 -1.322 -3.142 -3.258 -2.839

(0.287) (0.563) (0.576) (0.569)
Intial CPRA Missing 0.632 1.178 1.177 1.214

(0.024) (0.047) (0.048) (0.045)
Prior Transplant -0.319 -0.468 -0.478 -0.578

(0.028) (0.052) (0.053) (0.057)
On Dialysis at Registration 0.012 0.050 0.054 0.060

(0.007) (0.013) (0.013) (0.014)
Blood Type A -0.307 -0.425 0.053 -0.477

(0.036) (0.063) (0.065) (0.063)
Blood Type O -0.553 -0.827 -0.183 -0.871

(0.037) (0.066) (0.068) (0.065)
Blood Type B -0.149 -0.652 -0.328 -0.713

(0.040) (0.067) (0.067) (0.070)
Age at Registration 0.057 0.084 0.083 0.082

(0.003) (0.005) (0.005) (0.005)
Age - 18 if Age >= 18 -0.055 -0.085 -0.083 -0.082

(0.003) (0.006) (0.006) (0.006)
Age - 35 if Age >= 35 0.002 0.008 0.009 0.008

(0.002) (0.004) (0.004) (0.004)
Age - 50 if Age >= 50 -0.003 -0.005 -0.005 -0.006

(0.001) (0.002) (0.002) (0.003)
Age - 65 if Age >= 65 -0.002 -0.002 -0.003 -0.003

(0.002) (0.004) (0.004) (0.004)
BMI at Departure -0.011 -0.010 -0.009 0.019

(0.009) (0.018) (0.018) (0.019)
BMI - 18.5 if BMI >= 18.5 0.007 0.000 -0.002 -0.033

(0.010) (0.020) (0.020) (0.021)
BMI - 25 if BMI >= 25 -0.007 -0.011 -0.011 -0.008

(0.003) (0.007) (0.007) (0.007)
BMI - 30 if BMI >= 30 -0.006 -0.008 -0.008 -0.012

(0.003) (0.005) (0.005) (0.006)
BMI Missing -0.593 -0.888 -0.860 -0.283

(0.164) (0.328) (0.333) (0.354)
Serum Albumin 0.001 -0.003 -0.002 0.018

(0.011) (0.022) (0.022) (0.024)
Serum Albumin - 3.7 if >= 3.7 0.067 0.102 0.102 0.115

(0.020) (0.040) (0.041) (0.042)
Serum Albumin - 4.4 if >= 4.4 -0.089 -0.149 -0.151 -0.159

(0.021) (0.041) (0.042) (0.041)
Serum Albumin Missing 0.082 0.138 0.146 0.216

(0.039) (0.078) (0.078) (0.084)
Log Dialysis Time at Registration (Years) 0.008 0.025 0.027 0.025

(0.002) (0.004) (0.004) (0.005)
Log Dialysis Time at Registration x 1{> 5 years} -0.008 0.050 0.039 0.025

(0.022) (0.044) (0.044) (0.050)
Donor Characteristics

Age < 18 1.169 1.930 1.957 1.907
(0.052) (0.081) (0.081) (0.085)

Age 18-35 0.752 1.359 1.380 1.728
(0.059) (0.095) (0.094) (0.098)

Age 50+ -1.176 -1.987 -1.990 -2.010
(0.085) (0.132) (0.132) (0.143)
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Table D.12: Choice Estimates (Continued)

Cause of Death - Anoxia 0.097 0.156 0.153 0.203
(0.054) (0.089) (0.086) (0.089)

Cause of Death - Stroke 0.409 0.678 0.677 0.736
(0.053) (0.088) (0.086) (0.090)

Cause of Death - CNS -0.589 -0.894 -0.876 -0.988
(0.100) (0.158) (0.154) (0.175)

Cause of Death - Head Trauma 0.573 0.969 0.967 0.998
(0.052) (0.089) (0.085) (0.089)

Creatinine 0.5-1.0 0.757 1.281 1.273 1.270
(0.038) (0.068) (0.067) (0.058)

Creatinine 1.0-1.5 0.523 0.898 0.890 0.912
(0.040) (0.072) (0.071) (0.060)

Creatinine >= 1.5 -0.577 -0.927 -0.926 -0.839
(0.041) (0.076) (0.074) (0.064)

Expanded Criteria Donor (ECD) -0.733 -1.203 -1.174 -1.247
(0.034) (0.053) (0.054) (0.052)

Donation After Cardiac Death (DCD) -0.438 -0.734 -0.737 -0.765
(0.028) (0.049) (0.048) (0.055)

Male 0.108 0.184 0.184 0.175
(0.016) (0.027) (0.027) (0.027)

History of Hypertension -0.351 -0.591 -0.588 -0.598
(0.023) (0.029) (0.029) (0.036)

Offer Characteristics
Perfect Tissue Type Match 1.208 1.828 1.876 1.520

(0.053) (0.091) (0.092) (0.091)
2 A Mismatches -0.027 -0.039 -0.040 -0.110

(0.013) (0.021) (0.020) (0.025)
2 B Mismatches 0.020 0.031 0.031 -0.022

(0.013) (0.023) (0.023) (0.026)
2 DR Mismatches -0.086 -0.143 -0.147 -0.152

(0.012) (0.018) (0.018) (0.024)
ABO Compatible -0.492 -0.820 -0.854 -0.866

(0.039) (0.066) (0.067) (0.066)
Regional Offer 0.477 0.812 0.817 0.134

(0.017) (0.025) (0.025) (0.030)
Local Offer 1.698 2.783 2.798 2.508

(0.030) (0.046) (0.045) (0.050)
Log Waiting Time (Years) -0.022 0.034 0.025 0.053

(0.004) (0.007) (0.007) (0.007)
Log Waiting Time x 1{Over 1 Year} 0.161 0.441 0.322 0.419

(0.016) (0.027) (0.027) (0.028)
Log Waiting Time x 1{Over 2 Years} 0.174 0.484 0.235 0.352

(0.023) (0.042) (0.043) (0.043)
Perfect Tissue Type Match x Prior Transplant -0.262 -0.639 -0.658 -0.598

(0.076) (0.148) (0.148) (0.147)
Perfect Tissue Type Match x Diabetic Patient 0.009 -0.037 -0.034 -0.016

(0.023) (0.042) (0.042) (0.042)
Perfect Tissue Type Match x Patient Age 0.002 0.005 0.005 0.005

(0.001) (0.002) (0.002) (0.001)
Perfect Tissue Type Match x CPRA 0.059 0.084 0.087 0.365

(0.073) (0.137) (0.137) (0.143)
Perfect Tissue Type Match x 1{CPRA > 80%} 0.086 0.057 0.031 0.123

(0.077) (0.147) (0.147) (0.156)
Perfect Tissue Type Match x ECD Donor -0.765 -1.229 -1.266 -1.033

(0.043) (0.069) (0.069) (0.071)
Perfect Tissue Type Match x DCD Donor -0.556 -0.957 -0.963 -1.057

(0.076) (0.128) (0.127) (0.129)
Perfect Tissue Type Match x Local Offer 0.147 0.379 0.360 0.699

(0.039) (0.061) (0.060) (0.063)
Perfect Tissue Type Match x ABO Compatible 0.482 0.850 0.875 0.908

(0.048) (0.085) (0.085) (0.082)
Local Offer x 1{2 A Mismatches} -0.007 -0.016 -0.015 0.042

(0.014) (0.023) (0.023) (0.027)
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Table D.13: Choice Estimates (Continued)

Local Offer x 1{2 B Mismatches} -0.114 -0.181 -0.183 -0.177
(0.015) (0.025) (0.026) (0.028)

Local Offer x 1{2 DR Mismatches} -0.149 -0.207 -0.211 -0.243
(0.014) (0.020) (0.020) (0.026)

Local Offer x 1{Donor Age < 18} -0.868 -1.416 -1.426 -1.284
(0.033) (0.054) (0.055) (0.058)

Local Offer x 1{Donor Age 18-35} -0.414 -0.706 -0.703 -0.960
(0.031) (0.050) (0.049) (0.052)

Local Offer x 1{Donor Age 50+} 0.100 0.134 0.134 0.024
(0.028) (0.043) (0.043) (0.050)

Patient Age x 1{Donor Age < 18} -0.013 -0.021 -0.021 -0.023
(0.001) (0.001) (0.001) (0.001)

Patient Age x 1{Donor Age 18-35} 0.003 0.003 0.003 0.000
(0.001) (0.002) (0.002) (0.002)

Patient Age x 1{Donor Age 50+} 0.015 0.028 0.028 0.032
(0.002) (0.004) (0.004) (0.004)

Patient Age - 35 if Age >= 35 x 1{Donor Age 18-35} -0.011 -0.016 -0.016 -0.014
(0.002) (0.003) (0.003) (0.003)

Patient Age - 35 if Age >= 35 x 1{Donor Age 50+} -0.006 -0.014 -0.014 -0.016
(0.003) (0.004) (0.004) (0.004)

Scarcity
Log(1+#Past Donors) -0.289

0.018
Log(1+#Past Offers) -0.297

0.008
Log(1+#Future Donors) -0.268

0.019

Instruments No Instruments # Past Donors # Past Offers # Future Donors

Notes: Estimates of the choice equation are presented. The sample includes 7938854 offers made between 2000 and 2009

to patients in the sample. The chain length is 850000, which includes a burn-in of 50000 draws. We thin the chain by

taking every 10 draws. All columns control for dummies for DSA fixed effect, blood type fixed effect, and registration

year fixed effect. Future donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4

for detailed definition). Standard errors are in parenthese.
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Table D.14: Robustness

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Realized Assignment 8.13 8.78 8.72 8.73 8.88 10.07 8.66 8.08 8.93
Random Assignment among

All Patients 7.27 7.87 7.71 7.56 7.91 8.92 7.74 7.16 7.81
Transplanted Patients 7.60 8.23 8.09 8.12 8.31 9.38 8.09 7.65 8.43

No Choice 7.99 8.01 7.90 7.83 8.00 8.85 7.86 7.05 7.56
Optimal Assignment among

Transplanted Patients 10.45 10.48 10.35 10.37 10.47 11.91 10.25 9.30 10.39
All Patients Based on Only Observables 8.74 9.51 9.42 9.29 9.59 10.95 9.39 8.71 9.69
All Patients 10.48 13.84 13.68 13.58 13.83 15.97 13.74 12.16 12.90

Box-Cox r
Survival without Transplant 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.6
Survival with Transplant 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.7 0.6

Instruments
# Past Donors x x x x x x
# Past Offers x
# Future Donors x

Donor Unobservables x x x x x x x x
Other Unobservables x x x x x x x x

Notes: Robustness of the results presented in Figure 5. The baseline specification is presented in column (2). The

remaining specifications vary the instruments, the presence of ηj , or the Box-Cox shape parameters as indicated in the

table.
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