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1 Introduction

Recent analyses of large panel data sets reveal that earnings fluctuate in ways that

cannot be captured by the linear models commonly used in the literature on earnings

dynamics. In particular, earnings data show occasional changes far larger than pre-

dicted by a log-normal distribution – see Guvenen, Karahan, Ozkan and Song (2015)

and Arellano, Blundell and Bonhomme (2017), henceforth GKOS and ABB respective-

ly.

These unusual events are routinely attributed to external shocks such as layoffs

triggering falls off the job ladder. Since large income fluctuations reduce the wel-

fare of risk-averse agents, it seems natural to conjecture that they are not initiated by

them. We show that career-concerned agents may in fact prefer to go through periods

of low and high effort. We call these oscillations reputation cycles.

We change the career concerns model of Holmström (1999) by assuming that the

agent is risk-averse and cannot borrow or lend. Since reputational investment pays

off only in the future, a worker’s incentive to maintain or improve her reputation de-

pends on her discount factor. If she is risk averse, her discount factor depends neg-

atively on her consumption growth. When the worker cannot smooth her consump-

tion by other means,1 this force can then give rise to cycles in her effort, and thus in

her earnings. The mechanism works as follows: When effort is low, the worker’s con-

sumption is low relative to her future consumption which means that her discount

factor is also low. This reduces her incentive to create a good reputation and low ef-

fort is self fulfilling. In other words, the discount factor and reputational concerns are

low because consumption growth is high. Conversely, in a period of high effort, cur-

rent consumption is higher than future consumption, which means that the discount

factor is also large and so high effort is self fulfilling too.

The model delivers several insights. First, evidence has shown that tangible in-

vestment is inhibited by liquidity constraints – Fazzari, Hubbard and Petersen (1988).

We find that the opposite may hold, at least as far as reputational investment – an in-

tangible – is concerned. Under the set of calibrated parameters, cyclical paths may

entail higher average reputation capital than does the rest point solution of the mod-

el, although cyclical paths exist only if the agent cannot borrow or lend.

Second, in terms of pure theory, we establish the existence of a new class of equi-

libria. Repeated games are known to have equilibria that shift from period to period

1Kaplan, Weidner and Violante (2014) estimate that one third of U.S. consumers are hand to mouth.
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with no change in the payoff functions in the stage game – e.g., Green and Porter

(1984), Mailath and Samuelson (2016, Sec. 4.3.1). In dynamic games with type uncer-

tainty of which ours is an example, Markovian equilibria can also entail fluctuating

effort – e.g., Board and Meyer-ter-Vehn (2013) and Cisternas (2018). With a risk averse

agent, however, we show that the Holmström model acquires a cyclical equilibrium.2

Moreover, cyclical equilibria can arise even though the agent has a publicly known

retirement date.

Third, we explore the model’s quantitative properties using micro-data on earn-

ings dynamics to calibrate its parameters. The variance coefficients can be recovered

from Lange’s (2007) estimates about the speed of employer learning. In the calibra-

tion of the model with stochastic cycles, income growth decomposes into small, fully

persistent changes and larger, mean-reverting changes (see Fig. 7). These prediction-

s are in line with recent evidence from U.S. panel data on earnings: GKOS and ABB

detect significant deviations from lognormality, with a small but noticeable share of

individuals experiencing very large changes. They also find that the degree of persis-

tence appears to be non-linear in the size of the shocks as large shocks exhibit much

stronger mean reversion than small shocks. Hubmer (2018) shows that a life-cycle

version of the standard job ladder model can capture the large negative skewness and

high excess kurtosis of earnings data. Our analysis indicates that endogenous fluc-

tuations in effort can also help to explain these large deviations from the log-normal

framework, while addressing the systematic correlation between the persistence and

the size of income shocks.

Finally, the model can generate a negative relation between exogenous income

noise and the volatility of earnings: Income can become more volatile when repu-

tational concerns rise in response to a reduction in the noise accompanying the re-

lation between effort and output. Agency theory suggests that a reduction in noise

raises the incentives to provide effort, and we show that this can trigger a rise in the

volatility of earnings. For cycles in effort to exist, incentives to provide effort can-

not be too weak. Noise with which the agent’s output is observed deters effort and

it also obstructs the formation of cycles. This bears on the question of why income

inequality has risen – Song, Price, Guvenen, Bloom, von Wachter (2018), henceforth

2The career concerns literature focuses on risk-neutral agents. A notable exception is Bouvard and
Levy (2019) who consider a problem where the sender’s payoff function is concave because she is
facing heterogenous receivers. Bouvard and Levy also find that concave preferences generate multiple
equilibria even though they do not analyze self-sustaining cycles but focus instead on the emergence
of an inefficient steady-state.
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SPGBW. Paradoxically, we find that an increase in inequality could have in part been

caused by a decline in exogenous volatility. In particular, a decline in the noisiness of

technology will strengthen reputational concerns and may raise equilibrium income

volatility. Hence what SPGBW measure as a rise in the volatility of observed income

may in fact be the result of a decline in exogenous output noise.

The plan of the paper is as follows. Section 2 lays out the model. Section 3 charac-

terizes the rest point of the model where effort remains constant, while Section 4 ex-

plains how and when cycles may emerge. We parametrize the model in Section 5 and

explore its quantitative implications. Then we review major hypotheses for endoge-

nous cycles in Section 6.1 so as to highlight the novelty of reputation cycles. Several

extensions are discussed in Section 6.2, while Section 7 concludes. All the proofs are

relegated to the Appendix.

2 Model

In Holmström (1999) a risk-neutral agent faces a spot market with risk-neutral buyer-

s. The unique equilibrium then entails a monotonic time path of effort. We will show

that if one assumes that the agent is risk averse, multiple equilibria arise and in some

of them effort follows a 2-period cycle. We assume the following:

A1. Non-contractible effort and output;

A2. Risk averse agent facing short-term risk-neutral buyers;

A3. Agent cannot borrow or lend.

We maintain these assumptions throughout.

Production.—Each period an agent produces output yt by exerting hidden effort

at:

yt = θt + at + εt. (1)

Here εt ∼ N (0, σ2
ε) is an i.i.d. shock. The variable θ is the agent’s efficiency; θ is

unknown, even to the agent, and the common prior isN
(
θ, σ2

θ

)
.

Earnings.—Contracts in which the period-t payment is contingent on yt are not

feasible. Instead, buyers pay the agent up front and the payment reflects the market

belief at the beginning of the period. Thus the agent exerts effort only so as to raise

her future income. Output has a persistent effect on prices because it affects the
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market’s belief about the agent’s efficiency which fluctuates over time as follows

θt = θt−1 + νt, with ν ∼ N
(
0, σ2

ν

)
. (2)

Information.—Each period the agent chooses an a from A while everyone ob-

serves y. The agent can also observe θ + ε but not its components. The market’s

participants observe y only, but since they will deduce a from equilibrium, they too

will be able to infer θ + ε. However, the market and the agent observe different sig-

nals whenever the agent deviates and take a different action than the one anticipated

by the market. We account for such divergence by using E∗ [·] and E [·] to denote the

market’s and the agent’s expectation, respectively.

Timing.—Within a period, events unfold as follows:

1. There are many identical and risk neutral potential buyers, and they get ze-

ro rents. Hence the up-front payment the agent gets is E∗ [yt | yt] , where yt ≡
{ys}t−1

s=0 is her public history.

2. The agent chooses at, privately.

3. Output yt is realized, and it becomes part of the publicly observed history yt+1.

Preferences.—The agent is risk averse and infinitely lived. Her preferences as of

date 0 read
∞∑
t=0

βtU (ct, at) ,

with β ∈ (0, 1) denoting the discount factor. To neutralize the wealth effect, we will

focus on per-period utility functions that exhibit constant absolute risk aversion so

thatU(c, a) = − exp(−γ(c− g(a))).

Equilibrium.—We will examine equilibria in pure strategies in which the agen-

t’s behavior along the path of play might depend on calendar time only but not on

the history of output.3 An equilibrium must satisfy the following three requirements.

First, payments are set competitively by the market. Second, the agent chooses her

effort so as to maximize expected payoffs. Third, the market conjecture a∗t is verified.

3Deterministic action profiles will be equilibrium strategies under the CARA-GHH preferences that
we shall use – see Proposition 2 and the associated discussion. For GHH preferences see Greenwood,
Hercowicz and Huffman (1988).
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Definition 1 A deterministic equilibrium is a profile {at, a∗t , ct}
∞
t=0 such that {at}∞t=0 is

a function of time only and:

1. Expected profits are zero in every period as ct = E∗ [yt | yt] = E∗ [θt + at | yt] .
2. Effort at is chosen optimally

at = arg max
ât∈A

Et

[
U (ct, ât) +

∞∑
s=1

βt+sU (ct+s, at+s)

]
, for all t = 0, 1, ... (3)

3. The market’s conjecture {a∗t}
∞
t=0 is correct, so that a∗t = at for all t = 0, 1, ...

Market beliefs.—In order to interpret the output signal, the market’s participants

need to conjecture the agent’s behavior. For a given conjecture {a∗s}
t−1
s=0, a sufficient

statistic for the information revealed about θt is the sequence xt = {xs}t−1
s=0, where

xt ≡ yt − a∗t = θt + at − a∗t + εt. (4)

The market treats x as the signal. On path, i.e., when at = a∗t , xt ∼ N (θt, σ
2
ε) . Because

ν and ε are normal, the posterior is also normal: θt ∼ N
(
mt, σ

2
θ,t

)
. The posterior

variance evolves deterministically

σ2
θ,t =

1

σ−2
θ,t−1 + σ−2

ε

+ σ2
ν , (5)

and converges in the long-run to σ̄2
θ, whose value is obtained setting σθ,t = σθ,t−1 in

(5) so that4

σ̄−2
θ =

σ−2
ε

2

(√
1 + 4

σ2
ε

σ2
ν

− 1

)
. (6)

We will focus on stationary learning (Holmström, 1999, Sec. 2.2). Hence we as-

sume that the agent’s initial θ is drawn fromN
(
θ, σ̄2

θ

)
. Then σθ,t = σ̄θ remain constant

and time is not a state. Let mt denote the mean of the market’s belief about θt, which

we will also refer to as the agent’s reputation. m obeys the following law of motion

mt+1 = E∗ [θt+1 | mt, xt] = λmt + (1− λ)xt, where λ ≡ σ2
ε

σ2
ε + σ̄2

θ

. (7)

4Observe that ∂σ̄−2
θ /∂σε < 0 and ∂σ̄−2

θ /∂σν < 0 as fluctuations in output and efficiency lower
stationary precision.

6



As (4) shows, by deviating from a∗t , the agent can raise xt, manipulate mt+1 and drive

a wedge between her own belief and that of the market. We now analyze the agent’s

incentives to do that.

2.1 Investment in reputation

The zero-profit condition for market’s participants is satisfied when ct = E∗ [yt | yt] =

mt + a∗t , with mt obeying the law of motion (7). We focus on equilibria in which a∗t is

deterministic. The agent’s action a∗ must solve:

a∗t = arg max
at∈A

Et

[ ∞∑
s=0

βt+sU
(
mt+s + a∗t+s, at+s

)]
, for all t = 0, 1, ... (8)

This requirement ensures that: (i) given the law of motion of beliefs derived in the

previous subsection, equilibrium strategies satisfying (8) maximize the agent’s utility;

(ii) given the equilibrium actions, beliefs are updated via Bayes rule which is well

defined for all a since all output levels occur with positive probability at a∗. Solutions

to problem (8) are therefore optimal.

We now establish a sufficient condition for the existence of deterministic equilib-

ria.5 Whenever the agent deviates, she drives a persistent wedge between her belief

and that of the market. Thus a deviation that is not attractive on the equilibrium path

might nonetheless be profitable off path, and so the necessary condition is not gen-

erally sufficient. We now show that this concern does not apply when U (·) is in the

CARA-GHH class.

Proposition 1 Assume that the per-period utility function is

U(c, a) = U (c− g(a)) = − exp(−γ(c− g(a))), (9)

with γ > 0, g′ (·) > 0 and g′′ (·) ≥ 0. A deterministic profile {a∗t}
∞
t=0 is an equilibrium

profile if and only if

−U2(ct, a
∗
t ) =

1− λ
λ

∞∑
s=t+1

(βλ)s−tE∗t [U1 (cs, a
∗
s)] . (10)

5Note that the dynamic stability we consider here is quite distinct from the notion of strategic sta-
bility explored by Kohlberg and Mertens (1986). The latter, defined for finite games, is concerned with
robustness to certain kinds of perturbations of the game in question, while we are looking at stable
solutions of a dynamic strategic system.
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The proof is in the Appendix and it proceeds in two steps. First, we establish

that optimal strategies are deterministic on and off the equilibrium path whenev-

er the market’s conjecture a∗t is deterministic.6 This result holds because shocks to

the agent’s reputation follow a martingale process, a requirement that holds in our

stationary learning model as well as in non-stationary environments. Then income

shocks, which reflect the history yt, will in turn drop out of the first-order condition

because buyers are risk neutral and their beliefs have the martingale property.7 Mar-

tingale types of shocks matter for the decisions of the agent only if her preferences

display a wealth effect, which can be turned off using the CARA-GHH specification.

We can therefore focus, without loss of generality, on sequences of deterministic ac-

tions. This restriction enables us to prove the concavity of the agent’s objective in the

space of action sequences, thus directly establishing the sufficiency of the first order

condition.8

The left-hand side of the necessary condition (10) is the marginal disutility, while

the right-hand side is the discounted benefit because a marginal increase in effort

raises the posterior mean at date s by ∂ms/∂at = (1− λ)λs−t−1, for all s > t.9 Since

c is increasing in m and m is a martingale, expected consumption depends on the

agent’s current reputation. Hence the optimality condition (10) varies with mt and

in general so would a∗t , contrary to our assumption that a∗t depends on t only. To

ensure that Et [U1(cs, a
∗
s)/U2(ct, a

∗
t )] is not affected by mt, we neutralize the wealth

effect by assuming that the agent’s utility function is CARA. This restriction ensures

that the agent’s discount factor no longer depends onmt because it is the forecastable

component of ms for all s > t.

Proposition 2 When the per-period utility function is CARA, a deterministic profile

6We consider Markov strategies where the agent’s action might depend on the history of the game
through calendar time t as well as the market’s and the agent’s beliefs. Allowing for arbitrary devia-
tions, we show in Lemma 1 that, when the utility function is CARA, optimal strategies on and off the
equilibrium path do not depend on the agent’s reputation. Hence they are independent of output
history and are a function of calendar time only.

7See the proof of Proposition 2 and, in particular, the derivation of (33) which holds because the
current level of m does not carry additional information about its evolution in the future. Note that
this would not anymore be the case if the agent’s type θt were to follow a mean-reverting process
instead of a random walk, as stipulated in (2) .

8A recent paper by Cisternas (2018) provides bounds guaranteeing sufficiency in more general set-
tings in which optimal actions may depend on the posterior m.

9Eq. (10) is the counterpart of Holmström’s (1999), eq. (22), with the essential addition of the terms
U2(ct, a

∗
t ) and E∗t [U1 (cs, a

∗
s)] .
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{a∗t}
∞
t=0 is an equilibrium profile with interior effort if and only if

g′ (a∗t ) =
1− λ
λ

∞∑
s=t+1

(rλ)s−t exp (γ [a∗t − g(a∗t )− (a∗s − g(a∗s))]) , (11)

where

r ≡ β exp

(
γ2σ2

ν

2

)
. (12)

The effective discount factor r is higher than β because consumption is stochastic

and the agent is prudent (U ′′′(·) > 0). A mean-preserving spread in consumption rais-

es expected marginal utility in future periods, and so makes the agent more patient.

This precautionary motive is stronger when the coefficient of risk-aversion γ is large

because γ governs the curvature of the marginal utility function. The discount factor

r is also increasing in σ2
ν because beliefs, and thus consumption, are more volatile

when types are less persistent. By contrast, r does not depend on the output variance

σ2
ε. This surprising result arises because σ2

ε has two countervailing effects. To describe

them, it is useful to recall thatmt+1 = λmt + (1− λ)xt, and that consumption is linear

in m as ct = mt + a∗t . Hence σ2
ε has a positive effect on consumption volatility since

it raises the variance of the market signal x. However, σ2
ε also raises the gain parame-

ter λ as the market puts less weight on recent observations when production is more

noisy. This additional inertia in the updating rule exactly compensates the direct im-

pact on the variance of the signal, thus leaving consumption volatility unchanged.10

In the remainder of the paper, we guarantee that expected returns are bounded by

focusing on cases where r < 1.11

3 Rest Point

Before analyzing cycles, we first show that the model has a rest point where effort

remains constant over time. Characterizing the stationary equilibrium has two main

benefits. First, it will enable us to compare its welfare properties with those of cycles.

Second, it will allow us to characterize the region where cycles occur by relating it to

the local stability of the rest point. To keep the analysis as general as possible, we

10Note that this finding holds because prior precision is set equal to its stationary level σ̄−2
θ . For any

other value, the conditional variance of m would not anymore be independent of σ2
ε.

11Another reason to rule out configurations where r > 1 is that they may exhibit excessive levels of
effort at the rest point instead of insufficient ones.
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distinguish two main configurations: those where the rest point is at a corner of the

feasible set because costs are linear in a, and those where the rest point lies in the

interior of the feasible set because costs are strictly convex in a.

3.1 Rest point with linear costs

Suppose that g(a) = κa with κ ∈ (0, 1) to ensure that effort raises output net of disu-

tility. We rule out infinite effort by imposing an upper-bound ā on the feasible set

A = [0, ā]. With linear costs, optimality can only be restored through changes in

the discount factor because both marginal costs and marginal returns are constant.

To see why, assume that both a∗t and a∗t+1 belong to the interior of A and substitute

g′
(
a∗t+1

)
on the right-hand side of (11) to obtain the recursive condition

g′ (a∗t ) = βE∗t

[
U ′
(
ct+1 − g(a∗t+1)

)
U ′ (ct − g(a∗t ))

] (
1− λ+ λg′

(
a∗t+1

))
. (13)

The recursive incentive constraint highlights that increasing at has two benefits:

(i) It raises t+ 1 earnings by (1− λ), and

(ii) it enables the agent to reduce her effort in period t + 1 by λ and undo the

deviation, thereby restoring the reputation associated to the equilibrium path in t+ 2

and beyond.

Both benefits are converted into today’s utils through multiplication by the sto-

chastic discount factor βEt
[
U ′
(
ct+1 − g(a∗t+1)

)
/U ′ (ct − g(a∗t ))

]
. Since the utility func-

tion is CARA, (13) reads

g′ (a∗t ) = r exp
(
γ
[
a∗t − g(a∗t )−

(
a∗t+1 − g(a∗t+1)

)]) (
1− λ+ λg′

(
a∗t+1

))
. (14)

Reinserting the linear cost function g(a) = κa into (14), we finally find that

U ′(a∗t+1(1− κ))

U ′(a∗t (1− κ))
=

κ

r(1 + λ(κ− 1))
. (15)

Taking expectations about a∗t+1 as given, a∗t adjusts until the equality is satisfied. The

equilibrium path is fully determined by the ratio of marginal costs to discounted mar-

ginal returns on the right-hand side of (15). Since this ratio is constant, all paths con-

verge to ā when it is lower than one or, conversely, converge to zero when it is higher
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than one. The dynamics become explicit if one uses (9) to rewrite (15) as

a∗t+1 = a∗t −
1

γ(1− κ)
log

(
κ

r(1 + λ(κ− 1))

)
. (16)

The law of motion is obtained projecting a∗t on a line parallel to the 45-degree line

with an intercept equal to the constant on the right-hand side of (16). As shown in

Appendix A.2, Fig. 10, in the knife-edge case where the intercept is zero, i.e., when

κ = (1−λ)/(r−1−λ), the dynamic map and 45-degree line coincide so that any action

in A is a potential rest point. Besides this particular case, the action path converges

to ā when the intercept is positive or to zero when the intercept is negative. Hence a∗t
can be constant solely at one of the boundary of the action set.

If marginal costs are low, so that κ < (1 − λ)/(r−1 − λ), agents are tempted to

raise their effort above that of the rest point â. Hence â is sustainable only if such

deviations are not feasible, that is if â = ā.12 This solution is also efficient because the

cost parameter κ < 1 while marginal productivity is one. Conversely, when marginal

costs are high, so that κ > (1 − λ)/(r−1 − λ), reputational concerns are too weak and

â = 0 is the only rest point.

3.2 Rest point with convex costs

We now generalize our setup by assuming that disutility is strictly convex in effort. If

(i) U (c, a) = U (c− g (a)), (ii) g′(0) = 0 and (iii)A = R+, the incentive constraint (10)

always admits an interior solution for a∗. Hence the recursive condition (14) holds.

We will show in the next section that many sequences a∗t satisfy it. The simplest one

is obtained setting a∗t+1 equal to a∗t to derive the rest point solution

â = g′−1

(
1− λ
r−1 − λ

)
.

Efficient effort would require instead that a = g′−1 (1). Thus, when r is smaller than

one, â < g′−1 (1) and effort at the rest point is suboptimal because costs are paid up-

12Formally, the incentive constraint (11) does not have to hold as an equality at the bounds of the
feasibility set. When κ < (1− λ) /

(
r−1 − λ

)
and a∗s = ā = â for all s > t, (11) holds as an equality

if a∗t = ā + 1
γ(1−κ) log

(
κ(r−1−λ)

1−λ

)
and as an inequality if a∗t = ā. Hence setting effort equal to â in all

future periods does not pin-down a unique effort level in the current period. The equilibrium path can
converge from below to the rest-point â or remain constant at â. In the latter case, the agent would like
to raise her effort but is constrained by the requirement that a ≤ ā.
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front, whereas reputational benefits accrue slowly over time. This delay explains why

the gap between efficient and actual effort is larger when the agent is more impatient.

4 Cycles

Having characterized the rest point, we now explain how and when cycles become

possible. As in the previous section, we follow a heuristic approach by focusing first

on the simpler model with linear costs.

4.1 Cycles with linear costs

Deterministic output.—To build our intuition, we first assume that output is deter-

ministic, i.e., σε = 0. Then σ̄2
θ = σ2

ν since all the uncertainty is due to the fact that

the agent’s type θ changes from period to period. If θ were to remain constant, each

type would be revealed once and for all after the first output realization. This simpli-

fied environment enables us to isolate the impact of the discount factor. As shown

in Proposition 3, the model exhibits stationary cycles of period two when agents are

sufficiently patient. Moreover, two-period cycles can Pareto dominate the rest point

â when it is inefficient, i.e., when â = 0 because effort costs are too high.13

Proposition 3 Assume that (i) costs are linear in effort (g(a) = κa with κ ∈ (0, 1));

(ii) a ∈ [0, ā]; and (iii) output is deterministic (σε = 0) . Two-period cycles in which

effort oscillates between 0 and ā become possible if and only if r ∈ (r, r̄), where r =

κ exp (−γ (1− κ) ā) and r̄ = κ exp (γ (1− κ) ā) . Moreover, whenever r ∈ (r, κ), the rest

point â = 0 is Pareto dominated by cycles.

Cycles arise because the discount factor fluctuates procyclically. High at = ā en-

tails above-normal consumption, leading to a low marginal utility U ′ (ct − g (at)). The

opposite is true next period as at+1 = 0 delivers low consumption and relatively high

marginal utility U ′ (ct+1 − g (at+1)). Thus Et [U ′ (cs − g (as)) /U
′ (ct − g (at))] is large to-

day, and this justifies the higher investment in reputation building. A similar but

13Consumers are indifferent between all the different equilibria because they always pay a fair price
for the services of the agent. Hence, raising the agent’s welfare is equivalent to a Pareto improvement
in the overall allocation.
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opposite mechanism operates in the next period, making low effort optimal. The os-

cillations of the discount factor capture the willingness of the agent to smooth con-

sumption. Since the benefits of her action only accrue in the following period, she

finds it optimal to transfer resources from good to bad times by overinvesting.

To better understand the forces at work, it is insightful to study the incentive con-

straint at the upper-bound ā. Full effort is incentive compatible if and only if14

κ ≤ r
U ′ (0)

U ′ ((1− κ) ā)
= r exp (γ (1− κ) ā) . (17)

Reputational returns are on the right-hand side of (17), and they are increasing in

effort ā because it raises the ratio of marginal utilities between bad and good times.

Quite intuitively, smaller oscillations become sustainable when the power of incen-

tives is strengthened. Take for example an increase in the discount factor β. It raises r

as patient agents tend to be more concerned by their reputation. Hence the required

wedge between marginal utilities is decreasing in β which allows the model to gen-

erate cycles for lower values of ā. A similar mechanism is triggered by changes in the

degree of risk aversion because the effective rate of time preference r is increasing in

γ. This effect is reinforced by the positive impact that γ has on the curvature of the

marginal utility function. When agents are more prudent, similar oscillations in con-

sumption generate greater swings in the discount factor, which lowers the value of ā

that restores incentive compatibility.

To sum-up, the agent must be sufficiently prudent and not too impatient for cy-

cles to emerge. Note that Proposition 3 also requires that agents are not too patient

since it imposes an upper-bound on the effective discount factor (r < κ). Although

cycles can emerge even when this requirement is violated, they will not be welfare

improving because, as explained before, the rest point is efficient when costs κ are

lower than r.15

Stochastic output.—We now consider the full model where output is stochastic.

When σε differs from 0, today’s action affects beliefs on-the-equilibrium path not on-

ly in the next period, but also in all future periods. The rate of decay of past obser-

vations is controlled by the parameter λ, whose value is equal to 0 when output is

noiseless. Proposition 4 takes into account the impact of λ by extending Proposition

14See proof of Proposition 4 for a derivation of (17).
15Remember that λ = 0 when σε = 0.
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3 to environments where output is noisy.

Proposition 4 Assume that (i) costs are linear (g(a) = κa with κ ∈ (0, 1)); and (ii)

a ∈ [0, ā]. There exists an interval (r, r̄), with r < κ
κ+(1−λ)(1−κ)

, such that two-period

cycles in which effort oscillates between 0 and ā become possible if and only if r ∈
(r, r̄) . Moreover, whenever r ∈

(
r, κ

κ+(1−λ)(1−κ)

)
, the rest point â = 0 is Pareto dominat-

ed by cycles.

As with deterministic output, welfare improving cycles can arise solely if the agent

is sufficiently patient and prudent. We can also show that they require output to not

be too noisy. Thus, although σε is, by the usual account, a measure of idiosyncratic

uncertainty, higher σε does not necessarily translate into more income volatility for

the agent. An increase in σε lowers the power of incentives because recent observa-

tions are less informative when realized output is a noisier measure of actual quality.

This implies in turn that cycles are not sustainable if σε is too high.

Proposition 5 There exists a unique output variance σε such that cycles of period two

are never sustainable when σε > σε. Moreover, (i) when κ > r, cycles are sustainable if

and only if ā ≥ log(κ/r)
γ(1−κ)

and σε ∈ [0, σε]; (ii) when κ ≤ r, there exists an output variance

σε ∈ [0, σε) such that cycles are sustainable for all σε ∈ [σε, σε].

According to Proposition 5, a reduction in the noisiness of the technology can

raise income volatility. This paradoxical behavior occurs if: (i) σε is initially higher

than the upper-bound σε, so that a∗t is at the rest point; and (ii) the drop in σε is large

enough to ensure that the new value is smaller than σε, so that effort may cycle be-

tween 0 and ā. Then the cross-sectional and conditional variance of income will be

negatively correlated with σε. As mentioned in the introduction, this relates to the

evidence on rising inequality in SPGBW.

The variance of income increments from period to period is given by16

Var
(
mt+1 + a∗t+1 − (mt + a∗t )

)
= (1− λ)2 (σ2

ε + σ̄2
θ

)
+ Var (a∗t )

= σ2
ν + Var (a∗t ) . (18)

The variance of a∗t is obviously equal to 0 at the rest point. It can jump to ā2/4 when

σε crosses the σε threshold from above if the agent selects the cycling equilibrium.

16See the proof of Proposition 2 in the Appendix for a derivation of the second equality.
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Notes: γ = 3, r = .8, κ = .9, συ = .4, δ = .3,A = [0, 1].

The drop in output uncertainty could therefore trigger an increase in the conditional

volatility of income.

To characterize its impact on the cross-sectional variance, we must first ensure

that a stationary distribution of types exists. The simplest way to do so is to assume

that agents randomly exit the market with probability δ per period. Since each agent’s

productivity is a geometrically distributed random variable and an additional period

of life adds σ2
ν to the variance of m, the time-invariant distribution of types Υ (m) is a

mixture of normal distributions with variance: Var(mt) = σ2
ν

∑∞
t=1 tδ (1− δ)t .17 Given

that income variance is equal to Var(mt)+Var(a∗t ), raising σε above the σε threshold

can reduce income variance. Provided that agents were coordinated on the reputa-

tion cycle, an increase in σε will trigger a switch to the rest point and a fall in the

cross-sectional variance, as depicted in Fig. 1. The impact of the other volatility pa-

rameter σν is less intriguing because it strengthens the power of incentives. It is there-

fore positively correlated with income variance since a switch to the cycling regime

will be triggered by an increase in σν , as opposed to a decrease in σε. Note that σν also

directly increases the volatility of income by augmenting the variance of income in-

crements from period to period (see Ed. (18)). As a result σν raises the discount factor

r, which further supports the emergence of cycles.

17More precisely, we know from (18) thatmt+1 ∼ N
(
mt, σ

2
ν

)
.Hence, the cross-sectional variance of

m among the cohort of agents that have been active for t periods is equal to tσ2
ν . The overall variance

of m is obtained summing up the variances across all cohorts and weighting them by the fraction,
δ (1− δ)t, of agents in each cohort t.
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4.2 Cycles with Convex Costs

We now turn our attention to the model with convex costs introduced in Section 3.2.

We first analyze the stability conditions under which all paths starting in the vicinity

of the rest-point converge back to it. Then we show that, when the cost function is

quadratic, deterministic 2-period cycles are sustainable whenever the rest point is

backward unstable.

Stability of the rest point.—Since today’s action a∗t is determined by tomorrow’s

action a∗t+1, we analyze the backward dynamics of the model. Hence we say that the

rest point is locally unstable when the paths that land in its vicinity gradually diverge

from the rest point as time unfolds backwards. Under risk neutrality, the rest point is

always backward stable.18 Any other anticipations than a∗t+1 = â generate diverging

trajectories, hence the unique deterministic equilibrium requires that a∗t = â for all

t. By contrast, the rest point can be backward unstable when the agent is risk averse.

Then, for any initial anticipation a1 in the neighborhood of â, there exists a determin-

istic path that converges to â. The condition under which equilibrium multiplicity

arises is laid-out in Proposition 6.

Proposition 6 Assume that g(a) is strictly convex with g′(0) = 0. Then the rest point â

is backward unstable if and only if(
1− λ+ 2λg′(â)

1− λ+ λg′(â)

)
g′′(â)

g′(â)
< 2γ(1− g′ (â)). (19)

Equation (19) depends on the action â at the rest point, and so only implicitly de-

scribes the parameter values under which multiple equilibria arise. We can nonethe-

less easily establish a couple of observations. First, when the coefficient of absolute

risk aversion γ goes to zero, condition (19) is violated and the rest point is backward

stable.19 Second, if â is efficient, the rest point is again backward stable. To see why,

note that the impact of γ, as measured by the term on the right hand side of (19),

is proportional to 1 − g′ (â). Thus risk aversion is irrelevant when g′ (â) = 1, that is

when the action is efficient. Intuitively, the curvature of the utility function matters

18Formally, let ϕ
(
a∗t+1

)
= a∗t denote the implicit map resulting from (14). The rest point is sta-

ble when the absolute value of the derivative of ϕ (at+1) at the rest-point is less than one, i.e., when
|dϕ (â) /da| < 1. See Fig. 2 for an illustration of the model’s dynamics under risk neutrality.

19This is not obvious from (19) because γ affects â through its impact on r. However, since r con-
verges to β when γ goes to zero, limγ→0 â (γ) = g′−1

(
(1− λ) /

(
β−1 − λ

))
. Hence the LHS of (19) con-

verges to a positive value, whereas the RHS goes to zero, and so (19) never holds in the limit.
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only to the extent that changes in a affect utility. Benefits and costs are set equal at

the first best and a marginal increase in effort leaves utility unchanged. However, we

have seen that â is inefficient whenever the agent discounts the future. Then raising

a lowers her marginal utility, thus making it attractive to provide more effort today in

order to raise tomorrow’s consumption. This is why an increase in effort is followed

by a drop and a return to the rest point if the curvature of the utility function is high

enough.

Cycles.—When the rest point is backward unstable, there exists a continuum of de-

terministic equilibria whose paths start in the vicinity of the stationary solution and

gradually converge to it. But the model can also generate more complex behaviors

with persistent oscillations. We now focus on the simplest equilibria in such class,

namely deterministic cycles of period two.

Proposition 7 When the costs function is quadratic, i.e., g(a) = a2/2, deterministic

2-period cycles are sustainable whenever the rest point is locally unstable.

The reason why cycles are sustainable is the same as in the model with linear cost-

s: Procyclical fluctuations in the discount factor make it optimal to work hard when

consumption is high and to reduce effort when consumption is low. This mecha-

nism is closely related to the one that renders the rest point backward unstable, and

Proposition 7 shows that the two phenomena are indeed concomitant when disutility

is quadratic in effort.

Inspecting the phase portrait generated by the incentive constraint (13) helps one

understand how cycles arise. We highlight the impact of risk aversion by also report-

ing the model’s dynamics when agents are risk neutral. Then, as shown in the left-

hand panel of Fig. 2, the mapping between a∗t and a∗t+1 is linear with a slope greater

than one. Hence the rest point â is the only effort level that does not generate diverg-

ing action paths.

We introduce risk aversion in the right-hand panel of Fig. 2. The dynamic map

solves the recursive equation (14) with a quadratic cost function g(a) = a2/2, and is

therefore equivalent to

exp
(
−γ(a∗t − a∗2t /2)

)
a∗t = r exp

(
−γ
(
a∗t+1 − a∗2t+1/2

)) [
1− λ+ λa∗t+1

]
. (20)

Let us first explain why small values of a∗t can never be incentive compatible. Let-

ting a∗t go to zero, we see that the expression on the left hand side of (20) also con-
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Figure 2: PHASE PORTRAITS WITH LINEAR AND CARA UTILITY.
Notes: λ = .7, β = .85, γ = 5, g(a) = a2/2.

verges to zero. By contrast, the expression on the right hand side of (20) has a pos-

itive minimum. By continuity, there always exists an a > 0 such that (20) does not

hold whenever a∗t ∈ [0, a]. In economic terms, there is no expectation about a∗t+1 that

sustains an effort level smaller than a. Intuitively, the dynamic map in Fig. 2 is empty

close to the origin because today’s marginal loss converges to 0 whereas tomorrow’s

marginal returns are bounded from below by 1− λ.

Besides this empty interval, we see that, instead of the one-to-one mapping pre-

vailing under risk neutrality, the dynamic map under risk aversion is a correspon-

dence which associates a pair of incentive compatible a∗t+1 to any a∗t . The incen-

tive constraint is satisfied by two different a∗t+1 because tomorrow’s effort shifts the

discount factor and the marginal costs in opposite directions. Increasing a∗t+1 rais-

es tomorrow’s consumption, which lowers the discount factor and counteracts the

increase in marginal costs g′(a∗t+1). When the elasticity of the discount factor with re-

spect to a∗t+1 is higher than that of the marginal costs, it is possible to perturb a pair

of sustainable actions and restore incentive compatibility by adjusting a∗t+1 until its

effect on the discount factor offsets the change in marginal costs.

Effort settles down at the rest point âwhen the expectation-formation mechanism

always selects the lower branch of the phase portrait. By contrast, 2-period cycles
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Figure 3: BACKWARD INSTABILITY OF THE REST POINT â AS A FUNCTION OF γ, β AND λ.

are regime switching equilibria whose actions oscillate between the upper and lower

branch.

Stability region.—Equation (19) enables us to identify the region with multiple

equilibria. The rest point is backward unstable and 2-period cycles arise whenever

the parameters fall inside the surface depicted in Fig. 3. We use two different angles

to depict the instability region because its shape is strongly asymmetric.

Looking first at the discount factor β, we see that it has an ambiguous impact as

cycles emerge only for intermediary values of β. When β goes to 0, so does the rest

point â because the agent is not anymore concerned by her reputation. Hence the

marginal disutility of effort g′(â) also converges to 0, and the instability condition (19)

is always violated. Reputational returns are so low that an increase in today’s effort

can be incentive compatible solely if the marginal disutility of effort in the next period

increases more than proportionally. Thus the slope of the relationship between a∗t+1

and a∗t is smaller than 1 when evaluated at â, which ensures that the rest point is

locally stable. Conversely, as β goes to 1, â converges to the efficient level of effort

which, as explained above, is always backward stable.

Comparing the impact of the coefficient of risk aversion γ in the right and left-

hand panels of Fig. 3, we notice that γ has a stronger effect on the instability region
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when β is low. This is because γ does not only increase risk aversion but also renders

the agent more prudent. As explained before, the precautionary motive increases the

level of effort at the rest point. When â is already close to its efficient level because β is

high, as in the right-hand panel of Fig. 3, then the precautionary channel counteracts

the risk aversion channel. By contrast, when β is low, as in the left-hand panel of Fig.

3, the risk aversion channel dwarfs the precautionary channel, so that raising γ makes

it much more likely for cycles to be sustainable.

The last variable included in Fig. 3 is the gain parameter λwhich controls the iner-

tia of beliefs. Remember that varying λ is equivalent to adjusting the output variance

σ2
ε, with σ2

ε going from 0 to infinity as λ goes from 0 to 1.20 As already discussed in Sec-

tion 4, decreasing λ makes it more likely that cycles arise by strengthening the power

of incentives. However, it also increases the value of the rest point, which may coun-

teract the direct impact of λ when the rest point is close to its efficient level. As was

the case for γ, this countervailing force explains why the instability region is much

less sensitive to changes in λ in the right-hand panel of Fig. 3, where β and thus â are

both close to one.

Output volatility and income variance.—Studying the model with linear costs, we

proved that a reduction in the noisiness of the technology may raise income variance.

A similar conclusion can be numerically established in the model with convex costs.

For instance, taking the parameters reported below in Table 1 and varying the value

of σε, we indeed find that income variance and output volatility can be negatively

correlated when effort fluctuates endogenously.

The upper panel of Fig. 4 reports effort in the high and low states of 2-period

cycles along with its value at the rest point. Cycles are sustainable when incentives

are strong enough. Hence they arise when λ, and consequently σε, are below a cer-

tain threshold.21 The cross-sectional variance of income increases as σε crosses this

bifurcation point because effort is not anymore the same across all agents. The bot-

tom panel is the analog of Fig. 1; this experiment confirms that an increase in in-

come variance can be caused by a reduction in the volatility of the underlying shocks.

Moreover, we see that the calibrated value of σε in Table 1 falls well within the region

20By contrast, the variance of types σ2
ν affects two parameters at once. Raising σ2

ν leads to a decrease
in λ as well as an increase in r, which is equivalent to raising β in Fig. 3. In general, these two adjust-
ments tend to reinforce each other, thus making it more likely that cycles are sustainable.

21Note that Fig. 3 shows that it is not always possible to generate cycles by lowering λ, especially
when β is close to one so that the rest point is not too far from its efficient level.
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where cycles are sustainable. This again relates to the evidence on rising inequality

in SPGBW.

5 Earnings Persistence

5.1 Deterministic cycles

Parametrization.—We have established that reputation cycles become possible when

the risk-aversion and the patience of the agent belong to some intermediate range.

To see whether these two requirements are likely to be met in practice, we use micro

data to pin down the parameters.

We now assume that agents are workers who maximize their expected utility, and

that a is a worker’s hidden labor supply. We focus on quadratic disutility so that

g(a) = a2/2 so that the model has only five parameters {γ, β, δ, σε, σν}. For the year-

ly discount factor, we set β = 0.95. The exit rate δ determines the average length of

a worker’s career. Assuming that reputation is occupation specific, we target Kam-

bourov and Manovskii’s (2008) finding that occupational mobility at the one-digit

level averaged 13% per year in PSID data over the 1968-1997 period.

The two variance parameters {σε, σν} are chosen to match the speed of employer

learning and the labor wedge. We rely on the labor wedge because it is the most wide-

ly documented measure of labor market inefficiency. Let τ denote the labor wedge
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which we define as the gap between the marginal product of labor (MPN) and the

marginal rate of substitution (MRS), so that τ ≡ 1−MRS/MPN. The labor wedge mea-

sures the extent to which agents underinvest in their reputation. In the absence of

distortions, τ = 0 because both MRS and MPN are equal to the wage. At the rest

point of our model, however, labor supply is inefficiently low and the MRS is lower

than the wage. Hence the labor wedge is positive and equal to22

τ̂ =
r−1 − 1

r−1 − λ ∈ (0, 1) , (21)

where λ and r are defined in (7) and (12). We write τ̂ for the wedge when labor supply

is at the rest point so that a = â. We set τ̂ = 0.4 to match the average labor wedge in

the US over the last fifty years, as documented by Shimer (2009).

For our second moment, we target the frequency at which the market updates its

beliefs, i.e., the speed with which information about the agent’s performance leaks

out to the general public. Its value has been estimated by Lange (2007) in his empiri-

cal analysis about the speed of employer learning. Using AFQT scores to infer ability,

Lange’s estimates of the learning speed implies that λ = .71.23

Together with Eqs. (7), (21), these estimates for λ and τ enable us to to pin down

σε and σν conditional on γ. The upper panel of Fig. 5 shows that reputation cycles are

consistent with our calibration strategy whenever γ ≥ 3.3. The amplitude of the oscil-

lations increases with γ, as greater fluctuations are required to offset the increase in

the curvature of the utility function. The lower panel of Fig. 5 shows that effort at the

rest point is always smaller than average effort in the cycling regime, thus substanti-

ating our claim that cycles can incentivize investment in reputation.24 Although γ is a

CARA-utility parameter, we can convert the requirement that γ ≥ 3.3 into a statement

about CRRA utility as follows: By adjusting average ability θ, we can normalize aver-

22The wage can be normalized to one without loss of generality. The technology being linear in
supplied labor a, the MPN is also equal to one and so the labor wedge at the rest point is equal to
τ̂ = 1−MRS/MPN= 1 − g′(â) = 1 − 1−λ

r−1−λ , i.e., (21). Note that the macro and micro labor wedges are
identical in steady-state because all agents behave in the same way. Hence our definition is consistent
with the aggregate measure provided by Shimer (2009).

23Lange (2007) uses K1 to denote the speed of learning parameter and defines it on page 11, eq.
(11). Comparing its expression with that of λ in (7), one sees that K1 = 1 − λ. Although learning in
Lange’s model is non-stationary, as types remain constant over time, the similarity between K1 and λ
holds becauseK1 captures the speed of learning during the first year of a worker’s career. Since ability
is occupation specific in our calibration, we have to correct the empirical estimate K̂1 by the rate at
which workers switch occupation, as K̂1 = K1 (1− δ) = (1− λ) (1− δ) .

24Note that cycles are not always welfare improving. Alternative calibrations show that they can also
push average effort below its value at the rest point.
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age consumption and output to unity at the rest point.25 Then γ also corresponds to

the average coefficient of relative risk aversion. Picking γ = 4, while setting σε = .117

and σν = .04, ensures that we exactly match our labor wedge and speed of learning

targets. Our choice of parameters is summarized in Table 1.

Earnings persistence.—We now explain why reputation cycles generate earnings

profiles with large shocks that are less persistent than small shocks, as documented

in GKOS and ABB. To relate mean reversion to the size of the shocks, we follow GKOS

in reporting today’s earnings changes against the expected value of future earnings

changes k years from now, for different values of k. The resulting impulse response

functions are depicted in Fig. 6. They measure the fraction of each shock that has

mean-reverted. The points that are on the horizontal line indicate perfect persistence

of today’s shocks, whereas those that are on the 45 degrees line indicate full mean

reversion.26

We first report in the left-hand panel of Fig. 6 the impulse responses when effort

is at the rest point. Then earnings shocks, whatever their sizes, are fully persistent be-

25More precisely, setting θ = 0.4 ensures that consumption at the rest point is on average equal to 1
since E [ĉ] = θ+ â = θ+ 1− τ̂ , and τ̂ has been set equal to 0.4 to match the evidence in Shimer (2009).

26The impulse response functions are estimated using a simulated panel dataset made of 100 waves,
each one of them containing 5.000 workers. We delete the first 50 waves to limit the impact of the initial
conditions, thus basing our estimates on 500.000 observations.
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Table 1: Calibrated Parameters

DIRECTLY CALIBRATED PARAMETERS

PARAMETER† VALUE INTERPRETATION SOURCE

β .95 Discount factor Standard
θ̄ .4 Mean initial ability Normalize consumption ĉ = 1
δ .13 Career switching rate Kambourov et al. (2008)

INDIRECTLY CALIBRATED PARAMETERS

PARAMETER† γ=4 γ=9.1 INTERPRETATION TARGET SOURCE

σε .117 .051 Output noise Labor wedge τ̂= .4 Shimer (2009)
σν .040 .017 Type volatility Speed of learning λ = .71 Lange (2007)

INDIRECTLY CALIBRATED PARAMETERS OF STOCHASTIC MODEL

PARAMETER† Value INTERPRETATION TARGET SOURCE

σξ .124 Volatility observable productivity Impulse response of log earnings changes Guvenen et al. (2015)
α .75 Switching probability Impulse response of log earnings changes Guvenen et al. (2015)
γ 9.1 Coefficient of risk aversion Impulse response of log earnings changes Guvenen et al. (2015)

Notes. †When applicable, parameter values are for yearly frequency.

cause beliefs, and thus wages, follow a martingale process. We introduce reputation

cycles in the right-hand panel of Fig. 6. Large shocks are now driven by changes in

effort, with cycles considerably widening the range of income fluctuations. Focusing

on horizons that are even (k = 1, 3, 5), large shocks are completely transitory because

they follow the agent’s effort whose value oscillates from one period to the next.

5.2 Three fit-improving extensions

The following three extensions improve the model’s fit to the impulse-response evi-

dence in GKOS.

1. Observed characteristics: Given that some output characteristics may be ob-

servable, we add a state pt such that the output of a worker with t years of occu-

pational experience reads

yt = θt + at + εt︸ ︷︷ ︸
Unobservable

+ pt︸︷︷︸
Observable

, (22)

where

pt = pt−1 + ξt, with ξt ∼ N
(
0, σ2

ξ

)
and p1 = 0.

Since pt is persistent, it drops out of the incentive constraints for the same rea-

son that mt does.
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log-earnings growth. Then, for workers in each group, we compute the average of log k-year earnings

growth, i.e.,E [log (ct+k/ct) |log (ct/ct−1)] for k = 1, 2, 3, 4, 5.

2. Some workers can borrow and lend: Cycling equilibria arise only if agents can-

not borrow and lend. According to Kaplan, Violante and Weidner (2014) only

one third of agents are so constrained. Hence we assume that two thirds of

workers can smooth their income and implement the rest point solution since

that is the only deterministic equilibrium that exists in that case. This adds no

new parameters.

3. Stochastic cycles: Our model exhibits a significant departure from GKOS data

as the degree of mean reversion dramatically changes when the forward horizon

k goes from even to odd. Whenever k is odd, shocks are fully persistent because

effort reverts to its original value. This suggests that, in order to reproduce the

data, one needs to consider cycles whose lengths are not deterministic.

Thus we allow agents to switch stochastically, instead of deterministically, be-

tween periods of low and high effort. Signals that raise at are “good news” be-

cause they bring the worker closer to first best, signals that lower at are bad

news.27 We continue to focus on action paths with two levels only, but assume

27This relates to the good-news and bad-news literature. By contrast to our signals, Board and
Meyer-ter-Vehn (2013), e.g., have endogenous signals to which effort can respond.
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that, at each level, effort changes state with probability α, or remains constant

with the complementary probability. This lowers the discount factor but other-

wise leaves incentives as before; details are in Appendix A.4. One coordination

device may be task assignment as in Bar-Isaac and Hörner (2014) – assignment

to a demanding task indicating an expectation that effort will be high, and vice

versa.

5.3 Extended calibration

We keep the baseline parameters reported in Table 1, and select the values of the

coefficient of risk aversion γ and of the two new parameters {α, σξ} that minimize

the distance between the persistence of earning shocks predicted by the model and

their empirical counterparts in GKOS.28 As reported in the third column of Table 1,

we obtain the best fit when α = .75, σξ = .124 and γ = 9.1.

Distribution of earnings growth.—The density of earnings changes predicted by

the model, and the one observed in GKOS data, are reported in the upper-panel of

Fig. 7. We also include a normal density with the same standard deviation as in the

data. Fig. 7 shows that the simulated and empirical densities display high kurto-

sis since they have much sharper peaks than the normal distribution. In our model,

the extra kurtosis is generated by reputation cycles because the two other sources of

income shocks, namely changes in reputation and observable productivity, are inde-

pendently drawn from normal distributions. The impact of reputation cycles is no-

ticeable on the shoulders of the simulated distribution, that is in the regions around

the positive and negative standard deviations, where the model generates slightly

more mass than in the data.

Persistence of earnings changes.—The impulse responses of median income work-

ers are reported in Fig. 7. The prediction of the model are now very much in line with

GKOS data. First, the impulse responses display similar shapes. According to our

model, the nonlinearity of the impulse response is explained by the fact that small

28More precisely, the empirical moments are summarized by the vector m̂ which contains the av-
erage persistence of earnings shocks at an horizon of 3 years for 20 equally-sized quantiles. Using
m(υ) to denote the simulated moments generated by the vector of parameters υ ≡{α, σξ, γ}, we
compute the quadratic distances d(υ) ≡ (m(υ)− m̂) · (m(υ)− m̂i) . Our calibrated vector υ̂ solves
υ̂ = arg minυ∈[0,1]×R2+ d(υ).
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Figure 7: HISTOGRAM OF LOG EARNINGS CHANGES AND IMPULSE RESPONSES OF STO-
CHASTIC CYCLES MODEL.
Notes: Parameters reported in Table 1. Following GKOS, we focus on the impulse response of median

income workers, i.e. workers whose income at t− 1 falls between the 46th and 55th percentile.
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to medium shocks are very persistent because they result from changes in reputa-

tion or observable productivity, which are permanent by assumption. By contrast,

large shocks are driven by reputation cycles that tend to revert over time. Given

that the empirical relevance of large transitory shocks could already be inferred from

GKOS, our contribution consists in providing a microfoundation for their emergence.

Adding a stochastic switching rate (α = .75) smooths the impulse responses, as one-

fourth of saving-constrained agents do not adjust their effort from one period to the

next.

Besides fitting the persistence of earnings shocks at each quantile, our simulation-

s also approximate the size of the shocks, log(ct)− log(ct−1), reported on the horizon-

tal axis of the lower panel of Fig. 7. Achieving a good fit along both dimensions was

made possible by the adjustment of the coefficient of risk aversion γ. As shown in Fig.

5, reputation cycles are wider when γ increases. Our calibration indicates that match-

ing the actual size of earning shocks requires setting the coefficient of risk aversion γ

around 9.

Earnings volatility.—According to our model, hand-to-mouth agents should ex-

hibit higher earnings volatility since they cycle between periods of low and high ef-

fort. This prediction is broadly consistent with the empirical findings in Ziliak et al.

(2011) and Dahl et al. (2011) according to which earnings volatility is much higher

among high school dropouts. They find that differences in earnings volatility across

educational groups are mostly accounted for by employment transitions, and argue

that further research should strive to assess whether the employment transitions that

lead to higher volatility are voluntary or not. Reputation cycles support the first inter-

pretation since high school dropouts are more likely to be saving-constrained, and as

such may find it optimal to supply different amounts of labor over time.

6 Discussion

6.1 Related models

We have shown that reputation cycles capture the non-linear persistence of income

shocks. To the best of our knowledge, no other explanation has yet been advanced.

Standard models of income dynamics may account for the non-linear persistence of
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either positive or negative shocks, but not both as our model does. Take for instance

search models with on-the-job search. The loss of a high-paying job can trigger a

large income loss that is not fully persistent as workers can search their way out of

low paying jobs. A positive income shock, on the other hand, is more persistent since

it is triggered by the find of a higher-paying job as in Burdett and Mortensen (1996)

for example. Hence on-the-job search does not explain the transitory nature of large

income gains. A natural candidate would be performance based bonuses since ex-

ceptional rewards are not likely to be awarded over two consecutive years. However,

bonuses being added to baseline earnings, they cannot account for the low persis-

tence of large negative shocks.

Our analysis demonstrates that oscillating effort provides a unified explanation

for both negative and positive shocks. Hence one may wonder whether canonical

models of human capital accumulation are able to generate effort paths that are ob-

servationally equivalent to reputation cycles. We now explain why this is not the case

by isolating the two unique features of our model:

(i) effort is below its output-maximizing level so that higher effort today raises

current earnings and utility,

(ii) higher effort today does not raise future output.

Properties (i) and (ii) combine to generate the movements in the effective discount

factor that are needed to sustain cyclical effort paths. By contrast, models of human

capital investment do not feature oscillating solutions because they include at most

one, but not both of these features.

Ben-Porath type of human capital investment.—Reputation, as we have modeled

it, differs from traditional models of the Ben-Porath (1967) type in which a worker

sacrifices current income in return for higher future earnings. In contrast to (i) and

(ii) such human capital investment lowers current earnings via a compensating dif-

ferential contrary to property (i), and it raises future earnings contrary to property

(ii).

Learning by doing investment.—Although it does not have property (ii) , LBD is

the closest-related line of research because it potentially shares with our model prop-

erty (i), namely the feature that higher learning today raises an agent’s income today.

That does not mean, however, that it also raises today’s utility. Here is a version of

LBD that compares closely to our model. Let k denote the stock of human capital
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and a the investment in human capital. Assume that

ct = kt + at and, (23)

kt = (1− δ)kt−1 + at−1, with δ ∈ (0, 1). (24)

Property (i) does not hold because agents set at beyond the point where today’s util-

ity U(ct − g(at)) is maximized.29 Hence increasing at reduces current utility instead of

raising it. Property (ii) does not hold either because, according to (24), higher effort

raises k′, and so increases tomorrow’s output. Thus the discount factor is decreasing

in at at the rest point, and LBD exerts a stabilizing force which prevents the emer-

gence of cycles.

When combined with technological choice as in Parente (1994) and Jovanovic and

Nyarko (1996), the LBD model can generate cycles resembling the asymmetric cycles

displayed in Fig. 9. It only generates large transitory negative shocks to earnings

growth, but not the corresponding positive ones that the evidence in Fig. 7 shows.

6.2 Extensions

1. Non-stationary learning and life-cycle profiles.—We now describe four extensions.

As a first check, we let the precision of the starting prior σ−2
θ,0 differ from its long-run

level σ̄−2
θ . We typically expect the precision of beliefs to increase over time, as is always

the case when types are constant since then σ−2
ν , and thus σ̄−2

θ , are both infinite. The

returns to effort are decreasing in posterior precision because it lowers the weight

that the market puts on recent observations. Hence the action path is also decreasing

over time as in Holmström’s model with risk-neutral agents. The negative correlation

between average earnings and labor market experience explains why we did not use

our model to analyze life-cycle profiles but instead focused on earnings changes.

Adding risk-aversion allows us to construct another equilibrium sequence which

oscillates around the regularly decreasing path, as shown in Fig. 8. This alternative

solution eventually coincides with the two-period cycles described in the previous

29Current output is maximized when a = g−1(1). Thus the observation that effort exceeds its output-
maximizing level directly follows from the first-order condition

g′ (at) = 1 +

∞∑
s=t+1

βs−t
U ′ (cs − g(as))

U ′ (ct − g(at))

∂ks
∂at

> 1. (25)
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Figure 8: NON-STATIONARY LEARNING GENERATING EVEN WIDER TAILS AT YOUNGER

AGES THROUGH CYCLING EFFORT.
Notes: g(a) = a2/2, β = .75, γ = 3, σε = .1, σν = .05, σθ,0 = .18.

section because the precision converges to its stationary level σ̄−2
θ . Moreover, the de-

creasing amplitude of the oscillations is consistent with empirical evidence about the

negative relationship between income volatility and worker age. Even along the regu-

larly decreasing “Holmström” path shown by the solid curve in Fig. 8, income volatil-

ity is decreasing with the worker age. Cycling at paths thus reinforce this decline by

subtracting mass from the tails of the growth rates’ distributions as the worker ages.

2. Asymmetric cycles and income-growth persistence.—Although we have focused

on cycles of period 2, the model can generate more complex patterns. For example,

it is possible to use the model with linear costs to generate cycles with more than

two states. As an illustration, Fig. 9 describes incentive-compatible cycles of peri-

od 3 where investment grows for two successive periods and then drops back to its

initial level. This is the simplest instance of asymmetric cycles featuring protracted

booms and sudden busts. A tendency for a time series to show large negative growth

rates followed by several smaller positive growth rates is known as “steep asymme-

try.” Moreover, the long-run frequency distribution of at places equal weight on the

points 0, 0.71, and 1, and thus has longer left tail. A tendency for a detrended time

series to have negative skew is known as “deep”.30

The longer period of growth is sustainable because investment costs κ are low, i.e.,

30See Fig. 4 in Jovanovic (2006) for a graphical distinction between the two types of asymmetry.
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Figure 9: ASYMMETRIC CYCLES WITH CARA UTILITY AND LINEAR COSTS.
Notes: σε=.1, σν=.2, β=.8, γ=4, κ=.75,A=[0,1].

κ < (1− λ)/(r−1− λ).31 As explained in Section 4, when this inequality holds, the rest

point is efficient because the agent always finds it profitable to raise her investment.

But now she is discouraged from doing so in the two low states by the fact that the

marginal utility of consumption will decrease in the following period. We show in

Appendix A.3 that this feature gives rise to asymmetric cycles similar to the one de-

picted in Fig. 9 whenever: (i) ā is high enough, and (ii) κ ∈ (κ, (1 − λ)/(r−1 − λ)) for

some κ > 0. The logic of the proof can be extended to cycles with more than 3 states.

3. Finite horizon does not eliminate cycles.—In contrasting our model to Holm-

ström’s benchmark, we have stressed that equilibrium uniqueness is not anymore

guaranteed. But one may argue that this distinction is not fundamental because it

stems from our focus on deterministic equilibria. Although this requirement is im-

plicitly assumed in much, if not all, of the career concerns literature, there can be oth-

er solutions if one allows for strategies that are history-dependent. However, whenev-

er the agent has a finite horizon, backward induction bites and the equilibrium under

risk neutrality is unique and deterministic. By contrast, multiple equilibria and rep-

utation cycles continue to arise in finite-horizon models with risk averse agents.32

31By contrast, asymmetric cycles with protracted slumps and sudden booms can be constructed
when the steady-state is inefficient, so that κ > (1− λ)/(r−1 − λ).

32This is particularly simple to check when disutility is linear. Let T denote the agent’s lifetime and

assume that, as in Proposition 4, κ ∈
(

1−λ
r−1−λ , 1

)
. Then a∗t = 0 for all t ∈ {1, 2, ..., T} is a deterministic

equilibrium. But it is not always unique. For example, a∗1 = ā and a∗t = 0 for all t ∈ {2, ..., T} is also a
deterministic equilibrium if the horizon T and the upper bound ā of the action set are large enough.
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4. CRRA utility function.—We have restricted our attention to CARA utility func-

tions because they do not display any wealth effect. As shown in the proof of Propo-

sition 1, this property implies that optimal effort does not depend on the agent’s rep-

utation, which enables us to demonstrate that the necessary condition (11) is also

sufficient. Establishing sufficiency is notoriously complicated in models with persis-

tent private information such as ours. Given that any deviation drives a long-lasting

wedge between the agent’s and the market’s beliefs, a strategy that is not attractive on

the equilibrium path might nonetheless be profitable off path. In other words, rul-

ing out one-shot deviations is not sufficient since it leaves open the possibility that

multiple deviations are profitable. Cisternas (2018) addresses this issue by deriving

necessary and sufficient conditions that hold across a broad class of nonlinear utili-

ty functions. Using these conditions, Cisternas establishes the existence of equilibria

where the agent’s equilibrium actions only depend on the market’s belief. A promis-

ing direction for further research would be to combine Cisternas’ approach with ours,

and assess the existence of equilibria where the agent’s actions depend not only on

the market’s belief but also, as in our model, on an exogenous signal.

The CARA restriction has therefore been imposed for technical reasons and is

not instrumental in generating endogenous fluctuations. If anything, introducing

a wealth effect would render agents more willing to take risks when their action and

consumption are high, thus reinforcing self-sustaining fluctuations in effort. This

was illustrated in the previous version of our paper (Jovanovic and Prat, 2016) where

the model was embedded into a general equilibrium setting. There we explained how

one recovers the same incentive structure if firms operate the technology described

in (1) and if risk-averse households fully diversify their purchases of goods over firms.

There are two fundamental differences between the partial and general equilibrium

settings. First, in the latter, cycles are in aggregate consumption. Hence the require-

ment that agents cannot smooth them becomes equivalent to the assumption that

the economy is closed with no access to outside finance. Second, agents being mem-

ber of a large representative household, they are insured against idiosyncratic shocks

to their wealth, which neutralizes the wealth effect for utility functions outside of the

CARA family. We show in Jovanovic and Prat (2016) that a calibrated version of the

macro model with CRRA utility produces realistic fluctuations in terms of peak-to-

trough movements in consumption and of the spacing of time between recessions,

thus illustrating that reputation cycles do not hinge on the CARA specification.
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7 Conclusion

We have shown that investment in reputation is not always discouraged by finan-

cial constraints. Cyclical paths are sustainable only if the agent cannot borrow or

lend, and they may entail higher earnings because average effort can be higher. This

contrasts sharply with the findings reported in a host of papers that financial con-

straints inhibit tangible investment. It is therefore possible, that when facing such

constraints, agents may substitute away from investing in physical capital and to-

wards reputation capital. The conditions under which cycles can emerge are stated

in Propositions 3 and 6, and the calibrated parameter values satisfy them comfort-

ably.

We have also shown that cyclical effort paths generate unusual shocks to earnings

and can help explain the evidence on their dynamics. By inducing a large switch in

effort, tail events in earnings growth emerge. As documented in the data, these large

shocks are less persistent than the smaller shocks to earnings growth. Given the styl-

ized design of our model and the indirect nature of the evidence, we do not claim

that the actual mechanism is the exact reputational mechanism that our model gen-

erates. Yet we have shown that the main alternative, learning by doing, is unlikely to

be helpful in this regard. Other candidates such as technological upgrading produce

large transitory negative shocks to income growth, but not large positive ones.

Further research should therefore strive to advance and evaluate competing ex-

planations. In this respect, embedding reputational concerns into a standard model

of income dynamics appears to be a promising avenue of research. As documented

in GKOS, such a richer model would include a mixture of autoregressive processes

with different degrees of persistence, along with transitory shocks and abrupt tran-

sitions capturing the risk of non-employment. A convincing test for this extended

framework would be to assess whether it matches the systematic differences in kur-

tosis and persistence of earnings growth across income and age groups that cannot

be captured by our stylized model. In particular, since the assumption that workers

are hand-to-mouth is more likely to hold at the bottom of the earnings distribution,

future research should particularly focus on the earnings dynamics of low-income

workers.

Finally, the model also offers a new perspective on changes in the volatility of in-

come, namely that a rise in income volatility could be the result of a rise in reputa-

tional concerns that, in turn could be called by a reduction in the noise accompany-

34



ing the relation between effort and output. Agency theory suggests that a reduction

in noise raises the incentives to provide effort, and we have shown that this can also

help explain the rise in the volatility of earnings.
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A Appendix

A.1 Proof of Proposition 1

We prove that, given the unique consumption function that satisfies the no-profit re-

quirement, the optimality of a conjectured deterministic profile can be established

by a first-order condition. In Holmström (1999) sufficiency of the necessary condi-

tion immediately followed from the linear impact of actions on payoffs. With concave

payoffs, we have to characterize the agent’s problem both on and off the equilibrium

path. Hence we consider arbitrary strategies and let δt ≡ at − a∗t denote the devia-

tion from conjectured effort at each date. We wish to relate the agent’s and market’s

posteriors about θ, which we denote ma and m, respectively. Bayes rule implies that

ma
t+1 −mt+1 =

1− λ
λ

t∑
s=0

λt−s (xas − xs) = −1− λ
λ

t∑
s=0

λt−sδs, (26)

where xat ≡ yt − at. Let ∆t denote the following weighted mean of past deviations

∆t = λ∆t−1 + (1− λ)δt−1 with ∆0 = 0. (27)

It follows from (26) that ma
t = mt − ∆t. We can use this relationship to specify the

agent’s expectations about the law of motion of beliefs. First notice that yt − ma
t =

θt −ma
t + at + εt. Since θt −ma

t is normally distributed with mean 0 and variance σ̄2
θ,

the innovation process from the agent’s standpoint is a normally distributed variable,

u ∼ N (0, σ̄2
θ +σ2

ε), such that yt = ma
t +at +ut. Reinserting this decomposition into the

law of motion of market’s beliefs, we find that

mt+1 = λmt + (1− λ)xt = mt + (1− λ)[δt −∆t + ut].

The normality of ut implies that the distribution of the posterior P (mt+1) satisfies

P (mt+1|mt,∆t, δt) = Φ

(
mt+1 − [mt + (1− λ)(δt −∆t)]

(1− λ)(σ̄θ + σε)

)
,

where Φ(·) is the standard normal CDF. Given the per-period utility functionU(m, a∗, δ) =

− exp(−γ[m + a∗ − g (a∗ + δ)]), the agent’s value function on and off the equilibrium
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path is given by the fixed point of the following functional equation

Vt (m,∆) = max
δ

{
U(m, a∗t , δ) + β

∫
Vt+1 (m′,∆′) dP (m′|m,∆, δ)

}
, (28)

s.t. m′ = m+ (1− λ)[δ −∆ + u],

∆′ = λ∆ + (1− λ)δ .

Lemma 1 Assume that the per-period utility function is CARA:

U(c, a) = U (c− g(a)) = − exp(−γ(c− g(a))), with γ > 0. (29)

Given a deterministic profile {a∗t}
∞
t=0, optimal strategies on and off the equilibrium

path are deterministic functions of time and of the stock of past deviations ∆t = λ∆t−1+

(1− λ)(at − a∗t ), where ∆0 = 0. In particular, they do not depend on the agent’s reputa-

tion mt nor on her output history.

Proof. The lemma follows from the fact that the value function is of the form

Vt (m,∆) = exp(−γm)Vt (0,∆) . (30)

To verify the conjecture, we change the variable of integration of the Bellman equa-

tion

Vt (m,∆) = max
δ

− exp(−γ[m+ a∗t − g (a∗t + δ)])

+β
∫
Vt+1 (m+ (1− λ)[δ −∆ + u],∆′) dΦ

(
u

σ̄θ+σε

)


= exp(−γm) max
δ

− exp(−γ[a∗t − g (a∗t + δ)])

+β
∫
Vt+1 ((1− λ)[δ −∆ + u],∆′) dΦ

(
u

σ̄θ+σε

)


= exp(−γm)Vt (0,∆) .

The second equality follows reinserting our guess (30) and using the fact that a∗t is de-

terministic and thus independent of m, while the third equality follows directly from

the Bellman equation (28) defining V . Since the functional equation is a contraction

mapping, the value function is unique and its policy function δ (∆, t) identical across

all market’s beliefs m. Hence, the agent chooses a sequence of deterministic actions

that only depend on the cumulative stock of past deviations ∆ and potentially on t.

In other words, optimal policies are deterministic on and off the equilibrium path.
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We are now in a position to prove Proposition 1. According to Lemma 1, there

is no loss of generality in focusing on sequences of deterministic actions. Let a ≡
{a0, a1, ...} denote a sequence of actions from date 0 onwards. Given that effort in

each period belongs to the feasibility set A ⊆ R+, sequences are element of the infi-

nite Cartesian productA∞ = {(at)∞t=0 |at ∈ A for all t = 0, 1, ...}. The market belief can

be computed using the Bayesian map

mt+1(a,xa|m0) = λtm0 +
1− λ
λ

t∑
s=0

λt−s (xas − a∗s + as) , (31)

where xa ≡ {xt}∞t=0. We use these notations to define the agent’s utility as a functional

in the space of action sequences

V0(0, 0) = max
a∈A∞

U(a) = max
a∈A∞

E

[
−
∞∑
t=0

βt exp(−γ[mt(a) + a∗t − g (at)])

]
,

wheremt(a) is a shorthand version ofmt(a,x
a|m0) introduced in (31).33 Sufficiency of

the necessary condition will follow if we can prove that U(a) is a concave functional.

We establish an even stronger requirement as concavity holds in all periods. To see

why, let pt(a) ≡ ct(a) − g(at) denote returns in period t, i.e., consumption net of the

disutility of effort. We have

pt(αa
1 + (1− α)a2) = mt(αa

1 + (1− α)a2) + a∗t − g(αa1
t + (1− α)a2

t )

≥ α
[
mt(a

1) + a∗t − g(a1
t )
]

+ (1− α)
[
mt(a

2) + a∗t − g(a2
t )
]

= αpt(a
1) + (1− α)pt(a

2),

for any α ∈ (0, 1) and all pair of sequences a1, a2 ∈ A∞. The first equality uses the fact

that the market conjecture a∗t is deterministic. The second inequality holds because

the disutility g is convex in a, while the Bayesian map for mt is linear in a, so that

mt(αa
1+(1−α)a2) = αmt(a

1)+(1−α)mt(a
2). Per-period utility is given byUt(a) = (U ◦

pt)(a), and since the composition of concave continuous functions is itself concave,

the strict concavity of U along with the convexity ofA imply that

Ut(αa
1 + (1− α)a2) > αUt(a

1) + (1− α)Ut(a
2),

33Since the innovation process xa and the prior m0 cannot be influenced by the agent, they can be
treated as exogenous when studying her optimal control problem.
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for any α ∈ (0, 1) and all pair of sequences a1 6= a2 ∈ A∞. We have therefore proven

that per-period utility is strictly concave in a, which ensures that

U(αa1 + (1− α)a2) = E

[ ∞∑
t=0

βtUt
(
αa1 + (1− α)a2

)]

> αE

[ ∞∑
t=0

βtUt(a
1)

]
+ (1− α)E

[ ∞∑
t=0

βtUt(a
2)

]
= αU(a1) + (1− α)U(a2).

Note that the inequality holds because the only source of randomness is the inno-

vation process xa defined from the agent’s standpoint so that its realizations are by

definition independent of a. We can therefore conclude that U is a strictly concave

functional in the space of action sequences. Thus any local maximum of U is also

a global maximum. A necessary condition for U to have a maximum at a∗ is that its

Gateaux derivative dU(a∗;h) = 0 for all h ∈ A∞. The existence of the Gateaux deriva-

tive being guaranteed by the convexity of A∞, this requirement yields the necessary

FOC (11) which, by strict concavity of the objective, is also sufficient.

A.2 Proofs of Propositions 2 to 7

Proof. Proposition 2: We wish to show that the necessary conditions (10) and (11)

are equivalent when the agent’s utility is CARA. Reinserting (9) into (10), we find that

(10) is satisfied when

g′ (a∗t ) =
1− λ
λ

∞∑
s=t+1

(βλ)s−tE∗t

[
U ′ (cs − g(a∗s))

U ′ (ct − g(a∗t ))

]

=
1− λ
λ

∞∑
s=t+1

(βλ)s−tE∗t [exp γ (mt + a∗t − g(a∗t )− (ms + a∗s − g(a∗s)))] . (32)

The posterior m cancels out from the expectation because

mt+1 = λmt + (1− λ)xt = mt + (1− λ) (θt −mt + εt) ,
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so that

E∗t [exp (γ (mt −ms))] = E∗t

[
exp

(
−γ(1− λ)

s−1∑
i=0

(θt+i −mt+i + εt+i)

)]

= exp

(
γ2(1− λ)2(σ2

ε + σ̄2
θ) (s− t)

2

)
. (33)

The first equality holds because mt is a martingale, while the second equality holds

because (i) θt ∼ N (mt, σ̄
2
θ), and (ii) εt is a normally distributed noise with variance σ2

ε.

The expression above can be simplified using the definition of σ̄2
θ in (6) and the fact

that λ = σ̄2
θ/ (σ2

ε + σ̄2
θ), hence

(1− λ)2(σ2
ε + σ̄2

θ) =
σ̄4
θ

σ2
ε + σ̄2

θ

=
4σ4

ε

(√
1 + 4σ2ε

σ2ν
− 1
)−2

σ2
ε

[
1 + 2

(√
1 + 4σ2ε

σ2ν
− 1
)−1
]

=
4σ2

ε(√
1 + 4σ2ε

σ2ν
− 1
)(√

1 + 4σ2ε
σ2ν

+ 1
) = σ2

ν .

Simplifying the expectation in (33) and replacing the resulting expression into (32),

we finally obtain

g′ (a∗t ) =
1− λ
λ

∞∑
s=t+1

(βλ)s−tE∗t

[
U ′ (cs − g(a∗s))

U ′ (ct − g(a∗t ))

]

=
1− λ
λ

∞∑
s=t+1

(βλ)s−t exp

(
γ2σ2

ν (s− t)
2

)
exp (γ [a∗t − g(a∗t )− (a∗s − g(a∗s))]) ,

which is indeed equivalent to (11) since βs−t exp (γ2σ2
ν (s− t) /2) = rs−t.

Proof. Propositions 3 and 4: Since Proposition 3 is a subcase of Proposition 4, we

directly focus on the general problem where σε > 0, so that output is noisy. We are

interested in 2-period cycles where a∗t = ā when t is even, and a∗t = 0 when t is odd.

Using the notation

S(a) ≡ exp (γ (1− κ) a) , (34)

and taking into account the feasibility constraint a ∈ [0, ā], we find that the Kuhn-
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Tucker conditions resulting from the incentive compatibility constraint (10) are

κ ≤ 1− λ
λ

 ∞∑
i∈{1,3,5,...}

(rλ)i S(ā) +

∞∑
i∈{2,4,6,...}

(rλ)i

 if t is even so that a∗t = ā, (35)

and

κ ≥ 1− λ
λ

 ∞∑
i∈{1,3,5,...}

(rλ)i S(ā)−1 +
∞∑

i∈{2,4,6,...}

(rλ)i

 if t is odd so that a∗t = 0. (36)

These two conditions can be re-written as

1

S(ā)
≤ f(κ, r, λ) ≤ S(ā), where f(κ, r, λ) ≡ κ

[
1− (rλ)2

r(1− λ)

]
− rλ. (37)

Let r1 ≡ κ/ [κ+ (1− λ) (1− κ)] and r0 ≡
√
κ/ [λ (1− λ (1− κ))] > r1, so that f (κ, r1, λ) =

1 and f (κ, r0, λ) = 0. Since f(κ, r, λ) is strictly decreasing in r with limr→0 f(κ, r, λ) =

+∞, there exists a unique r < r1 such that f (κ, r, λ) = S(ā) > 1.The strict monotonic-

ity of f(κ, r, λ) with respect to r also implies that there exists a unique r̄ ∈ (r1, r0) such

that f (κ, r̄, λ) = 1/S(ā). It is easily verified that the two inequalities in (37) are satis-

fied, and thus cycles are sustainable, whenever r ∈ (r, r̄) .

Cycles are welfare improving when the rest point â = 0. To show that this is the

case when r ∈ (r, r1), set a∗s = â for all s ≥ t in (11). The resulting incentive constraint

reads κ = r (1− λ+ λκ), a requirement that cannot be satisfied since r < r1 implies

that κ > r(1 − λ)/(1 − rλ). Hence any â > 0 cannot be incentive compatible as the

agent would like to deviate by investing less than â, as shown in Fig. 10. However,

such deviations are not feasible when a∗t = 0 for all t, and so â = 0 is indeed the only

rest point.

Finally, we consider the limit cases where σε = 0. Then λ is also equal to 0 and

so r1 = κ. Moreover since f(κ, r, 0) = κ/r, we have r = κ exp (−γ (1− κ) ā) and r̄ =

κ exp (γ (1− κ) ā), as stated in Proposition 3.

Proof. Proposition 5: We first prove that cycles can emerge solely if σε does not ex-

ceed a certain threshold. The first step consists in rewriting the necessary condition
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Figure 10: PHASE PORTRAITS FOR TWO DIFFERENT VALUES OF κ WHEN g(a) = κa.

(35) as follows

κ ≤ 1− λ
λ

 ∞∑
i∈{1,3,5,...}

(rλ)i S(ā) +
∞∑

i∈{2,4,6,...}

(rλ)i

 =
r (1− λ)

1− rλ

(
S(ā)− 1

1 + rλ
+ 1

)
.

The expression on the right-hand side is decreasing in λ and converges to 0 as λ goes

to 1. Hence there exists a λ ∈ (0, 1) such that the necessary condition (35) is not

satisfied whenever λ > λ. Given that λ is strictly increasing in σε, and that it goes

from 0 to 1 as σε goes from 0 to infinity,34 two-period cycles cannot be sustainable

whenever σε is greater than a certain value, which we denote by σε.

(i) Let’s now first consider cases where κ ≤ r. If λ = (r − κ)/[r(1 − κ)], the definition

of f in (37) implies that f(κ, r, λ) = 1. Given that S(ā) is greater than 1, condition (37)

is necessarily satisfied and so λ > (r − κ)/[r(1 − κ)]. Moreover, it follows from the

continuity of f and the proof of Proposition 4 that there exists a λ ≤ (r− κ)/[r(1− κ)]

such that the necessary condition is sufficient and satisfied for all λ ∈
[
λ, λ
]
. Given

the relationship between σε and λ, λ defines a unique σε such that two-period cycles

are sustainable for all σε ∈ [σε, σε].

(ii) We now consider cases where κ > r. The necessary condition is satisfied when

34Remember that λ = 1− σ−2ε
σ̄−2θ +σ−2ε

= 1− 2
(√

1 + 4
σ2ε
σ2ν

+ 1
)−1

.
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λ = 0 if and only if f(κ, r, 0) ≤ S(ā), i.e., when ā ≥ log (κ/r) /[γ (1− κ)]. Then we

also know from the first step of the proof that there exists a λ such that the necessary

condition will be satisfied for all λ ∈
[
0, λ
]
. Moreover, we have shown in Step 3 of

the proof of Proposition 4 that the necessary condition is also sufficient whenever

the rest point is inefficient, a property that is verified because κ > r. Finally, using

once again the relationship between σε and λ, we conclude that two-period cycles

are sustainable if and only if σε ∈ [0, σε].

Proof. Proposition 6: We want to characterize deterministic dynamics near the rest

point â. Let at = ϕ (at+1) denote the implicit map so that l (ϕ (a)) = h (a), where

l (a) ≡ g′ (a)U ′ (a− g (a)) and h (a) ≡ rU ′ (a− g (a)) [1− λ+ λg′ (a)]. Differentiating

the incentive constraint (13) at the rest point, we find that

ϕ′ (â) ≡ dat
dat+1

∣∣∣∣
at+1=â

=

λg′(â)
1−λ+λg′(â)

Ag (â)− AU (â− g (â)) [1− g′ (â)]

Ag (â)− AU (â− g (â)) [1− g′ (â)]
, (38)

where AU (x) = −U ′′(x)/U ′(x) and Ag (a) = g′′ (a) /g′ (a).

The rest point â is locally unstable if |ϕ′ (â) | > 1. Since the denominator in (38)

is always higher than the numerator, the instability condition can be satisfied sole-

ly if the numerator is negative. Let us focus first on cases where the denominator is

positive while the numerator is negative. Then it is easy to verify that ϕ′ (â) < −1

whenever (19) is satisfied. The other possibility is that both numerator and denomi-

nator are negative, so that

Ag (â) < AU(â− g (â))(1− g′ (â))⇔ ϕ′ (â) > 1, (39)

a condition that is always fulfilled when requirement (19) in Proposition 6 is satisfied.

Proposition 7 can be proved in a similar way to Proposition 4. Thus we first use a

direct approach by changing variable and defining a new fixed point problem.

Lemma 2 Let

a (s) ≡ r (1− λ)

1− (rλ)2 (rλ+ s) ,
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2-period cycles are sustainable when the fixed point problem

s = ψ(s) ≡ U ′(c(a(1/s))− g(a(1/s)))

U ′(c(a(s))− g(a(s)))
(40)

admits a solution s∗ 6= 1.

Proof. Lemma 2: We focus on 2-period cycles and denote this period action by a, next

period by a′, the period after by a, and so on. In other words, we have the discount

factors from today til tomorrow and from tomorrow til the day after, respectively,

s ≡ U ′(c(a′)− g(a′))/U ′(c(a)− g(a)), (41)

s′ ≡ 1/s (a, a′) . (42)

Therefore, if we start at t = 0, so that a is the action at t = 0, 2, 4, 6... and a′ the action

for t = 1, 3, 5, 7, ..., then the incentive constraint (10) is satisfied when (a, a′) solve the

following two equations

a =
1− λ
λ

( ∞∑
t=1,3,5,7,...

(rλ)t s+
∞∑

t=2,4,6,8,...

(rλ)t
)

=
1− λ
λ

(
rλs

1− (rλ)2 +
(rλ)2

1− (rλ)2

)
,

a′ =
1− λ
λ

( ∞∑
t=1,3,5,7,...

(rλ)t s′ +
∞∑

t=2,4,6,8,...

(rλ)t
)

=
1− λ
λ

(
rλs′

1− (rλ)2 +
(rλ)2

1− (rλ)2

)
.

These simplify to

a =
1− λ

1− (rλ)2 r (rλ+ s) , (43)

a′ =
1− λ

1− (rλ)2 r (rλ+ s′) . (44)

Thus there are 4 equations (41), (42), (43), and (44), and 4 unknowns, (a, a′, s, s′) .One

solution is (â, â, 1, 1) where â = (1 − λ)/(r−1 − λ), which is a version of Holmström’s

(1999) Proposition 1. Now let’s treat s as a parameter to begin with. The action a as a

function of s is given by (43) and (44). Thus our problem is equivalent to looking for

a fixed point in s of the function ψ (s) defined in (40).

Proof. Proposition 7: Since U(c) = −exp(−γc), it follows from the definition in (40)

of ψ (·) that ψ (1) = 1. Let s̄ ≡ 21−(rλ)2

r(1−λ)
− rλ, since c (s̄) = 0 and c (1/s̄) ∈ (0, 1), we have
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ψ (s̄) < 1. By continuity of the mapping ψ (·), there will be a fixed point s ∈ (1, s̄) if

ψ′ (1) > 1. Differentiating ψ (·), we obtain

ψ′ (s) = γ

(
1− a(s) +

1− a(1/s)

s2

)
r (1− λ)

1− (rλ)2 exp
(
γ

[
a(s)− a(s)2

2
−
(
a(1/s)− a(1/s)2

2

)])
,

and so

ψ′ (1) > 1⇔ 2γ [1− a(1)]
r (1− λ)

1− (rλ)2 > 1.

This expression can be simplified as a(1) = â = (1− λ)/(r−1 − λ) so that

r (1− λ)

1− (rλ)2 =
a(1)

1 + rλ
. (45)

Reinserting this equality into the previous equation we get

ψ′ (1) > 1⇔ 2γ [1− a(1)] a(1) > 1 + rλ,

which implies in turn that ∣∣∣∣∣
rλ
a(1)
− γ (1− a(1))

1
a(1)
− γ (1− a(1))

∣∣∣∣∣ > 1 .

This allows us to conclude that the rest point is unstable since equation (38) with

quadratic costs and CARA utility reads

ϕ′ (a(1)) =
dat
dat+1

∣∣∣∣
at+1=a(1)

=

1
1−λ
λ

+a(1)
− γ (1− a(1))

1
a(1)
− γ (1− a(1))

=

rλ
a(1)
− γ (1− a(1))

1
a(1)
− γ (1− a(1))

,

where the last equality follows from expression of the rest-point a(1) = (1−λ)/(r−1−
λ).

A.3 Asymmetric cycles.

Proposition 8 derives conditions under which cycles of period 3 can be constructed

using the partial equilibrium model with linear costs described in Subsection 4. It

focuses on asymmetric cycles with protracted booms and sudden busts. The logic

of the proof can be applied to study reverse cases and to show that cycles with pro-
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tracted slumps and sudden booms can be sustained when κ > (1 − λ)/(r−1 − λ).

Furthermore, it is cumbersome but relatively straightforward to extend the proof so

as to construct cycles with more than 3 states.

Proposition 8 Consider the partial equilibrium model with CARA utility and linear

costs, i.e., g(a) = κa. Assume that κ satisfies the compatible conditions

1− λ
r−1 − λ > κ >

r(1− λ)

1− (rλ)3

[
r2λ(1− λ+ λκ)

κ
+ (rλ)2

]
. (46)

Then there exists a unique āmin > 0 such that deterministic cycles of period three, where

a∗t =


ā when t = {0, 3, 6, ...}

0 when t = {1, 4, 7, ...}

ã ∈ (0, ā) when t = {2, 5, 8, ...},

are sustainable whenever ā ≥ āmin.

Proof. Proposition 8: We propose a constructive proof. We study each action in turn

and prove their incentive compatibility

1. a∗t = ā: Since we are focusing on cases where κ < r(1− λ)/(1− rλ), we have

κ ≤ 1− λ
λ

∞∑
i={1,2,...}

(rλ)i <
1− λ
λ

∑
i={1,2,...}

(rλ)i S(ā− a∗t+i). (47)

The last inequality follows from the definition of S(·) in (34) because ā ≥ a∗t+i

for all i, and so S(ā − a∗t+i) ≥ 1, with strict inequality for some i. Since the last

expression in (47) measures the discounted returns from effort at date t, the

feasibility constraint binds and a∗t = ā is indeed incentive compatible.

2. a∗t = 0: At the lower-bound of the feasibility set, costs must exceed returns so
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that

κ ≥ 1− λ
λ

∞∑
i=1,2,...

(rλ)i S
(
−a∗t+i

)
= S (−ã) r

1− λ+ λ

1− λ
λ

∑
i={2,3,...}

(rλ)i−1 S(ã− a∗t+i)


= S (−ã) r (1− λ+ λκ) .

The last equality follows from the fact that the incentive constraint must hold

with equality in the next period because a∗t+1 = ã ∈ (0, ā). The condition is

satisfied whenever

ã ≥ ãmin ≡
− log

(
κ

r(1−λ+λκ)

)
γ (1− κ)

> 0. (48)

3. a∗t = ã ∈ (0, ā): First, we assume that condition (48) holds as an equality and we

show that there exists a unique value of āwhich renders ãmin incentive compat-

ible. Since ã is interior, the incentive constraint has to hold exactly, i.e.,

κ =
1− λ
λ

∞∑
i=1,2,...

(rλ)i S
(
ã− a∗t+i

)
(49)

= S (ã− ā) r

1− λ+ λ

1− λ
λ

∑
i={2,3,...}

(rλ)i−1 S(ā− a∗t+i)


> S (ã− ā) r (1− λ+ λκ) > S (ã− ā)κ.

The first inequality follows from step 1 above, while the second one holds be-

cause κ < r(1 − λ)/(1 − rλ). It shows that S (ã− ā) has to be below one, thus

requiring that ā be strictly larger than ã. Keeping ã constant and differentiating

(49) with respect to ā, we find that returns are strictly decreasing in ā. Further-

more, if

κ >
1− λ
λ

[
(rλ)2r (1− λ+ λκ) /κ+ (rλ)3

1− (rλ)3

]
, (50)

there exists a unique value, which we denote āmin, such that ã = ãmin and (49) is
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satisfied. To verify that (50) is consistent with r(1− λ)/(1− rλ) > κ, notice that

r(1− λ)

1− rλ >
1− λ
λ

[
(rλ)2r (1− λ+ λκ) /κ+ (rλ)3

1− (rλ)3

]
⇔ 1 > rλ

[
r (1− λ+ λκ)

κ
− 1

]
.

This inequality is equivalent to κ > r2λ(1 − λ)/ [1 + rλ− (rλ)2], which yields a

lower-bound that is less than the term on the right-hand side of (46) as well as

to r(1− λ)/(1− rλ). Hence the two conditions in (46) are compatible since they

define a non-empty interval. As with period-2 cycles, low levels of effort can

never be incentive compatible when costs are too small.

We still have to prove that our cycles are sustainable when ā > āmin. Differenti-

ating (49) with respect to both ā and ã, one finds that ∂ã/∂ā ∈ (0, 1). The derivative

being positive, ã > ãmin if ā > āmin, and the condition (48) for incentive compatibility

of a∗t = 0 is satisfied. Furthermore, the derivative being smaller than one ensures that

ã remains within the interior of the feasible set as ā increases.

A.4 Stochastic cycles.

Proposition 9 : Let the effort pair (a (s) , ā (s)) be defined as follows

a (s) = r (1− λ)α

[
rλα + s+ (1− α) (1− rλ (1− α)) /α

(1− rλ(1− α))2 − (rλα)2

]
, (51)

ā (s) = r (1− λ)α

[
rλα + s−1 + (1− α) (1− rλ (1− α)) /α

(1− rλ(1− α))2 − (rλα)2

]
. (52)

If the fixed point problem

s =
U ′(c(ā (s))− g(ā (s)))

U ′(c(a (s))− g(a (s)))
(53)

admits a solution s∗ 6= 1, stochastic cycles where effort switches with probability α ∈
(0, 1) from a (s) to ā (s), or from ā (s) to a (s), are sustainable

Proof. Proposition 9: Let s = U ′(c(ā) − g(ā))/U ′(c(a) − g(a)) denote the discount

factor when effort switches from a to ā. Then the recursive incentive constraint (13)

is satisfied when the effort pair (a, ā) solves the following system of equations

a = r [(1− α) (1− λ+ λa) + αs (1− λ+ λā)] ,

ā = r
[
(1− α) (1− λ+ λā) + αs−1 (1− λ+ λa)

]
.
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Combining the two equations above yields (51) and (52). As expected, when α = 1,

we recover the expressions (43) and (44) in Lemma 2.
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