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1 Introduction

A government’s ability to achieve goals such as tax collection, low crime rates, or environmen-

tal protection depends on its capacity to enforce mandated behavior on agents that refuse

to comply. In many cases, government capacity is limited: a government has the manpower

to enforce rules only for a small number of non-compliers. For instance, in the United States

the IRS has the capacity to audit under 1% of tax returns every year.1 In addition damages

for non-compliance are often limited, ruling out enforcement through large probabilistic pun-

ishments à la Becker (1968).2 In the case of the IRS, penalties for negligent underreporting

of income amount to 20% of unpaid taxes. Such limited enforcement capacity can lead to

multiple equilibria. If most agents comply with government policy, then limited enforcement

is sufficient to dissuade isolated agents from misbehaving. If many agents do not comply,

overstretched enforcement capacity has a minimal impact on incentives and behavior. The

goal of this paper is to better understand the extent to which divide-and-conquer enforce-

ment strategies can help select a high compliance equilibrium in the presence of realistic

compliance frictions.

We study the problem of a government entitled to collect an amount of taxes D from

each of N agents. The government is able to forcefully collect the amount D, but only after

conducting an audit of the targeted agent. The difficulty is that: (i) the government is only

able to audit a share α ∈ (0, 1) of agents; (ii) upon audit, the maximum amount of damages

the government can claim is D. Instead of collecting taxes through audits, the government

can offer agents to settle their taxes for a given price P . Agents who accept to settle (or

comply) are not audited. Audit capacity is spent on auditing non-complying agents. The

government’s main policy instrument is to commit to an auditing rule, i.e. an order in which

to audit non-compliant agents.

We first establish benchmark results in a static frictionless environment in which agents

1This varies by income bracket, from under .5% to roughly 5%. See IRS statistics for updated numbers.
2In the US, the Eighth Amendment affords protections against excess punishment in order to limit the

scope for abuse by the state itself.
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are able to settle with probability 1, and the amount of tax they owe is common-knowledge.

We contrast uniform auditing rules, in which a number αN of agents are randomly cho-

sen from non-complying agents, with prioritized auditing rules, in which agents are given

common-knowledge priorities ahead of settling and non-complying agents are audited in

order of priority. We show that uniform random auditing leads to multiple equilibria, in-

cluding: high collection equilibria in which the government charges a settlement price P

slightly below D, and all agents settle; and low collection equilibria in which the government

charges a settlement price P = αD, and agents all settle at that price, but refuse to settle

if the government charges a higher price. The reason for this multiplicity is that incentives

to settle depend on how many agents choose to settle or not. If most agents settle, then

even limited auditing capacity is sufficient to enforce compliance. If instead few agents are

expected to settle, auditing capacity is spread thinly across many non-complying agents so

incentives to settle are very weak. In contrast, under prioritized auditing, a unique, high col-

lection equilibrium is selected. The reason for this is that regardless of the overall behavior

of agents, incentives are tightly focused on a small group of marginal agents: it is dominant

for the αN agents with the highest priority to settle. Given this, it is a best response for the

2αN agents with the highest priority to settle, and so on.

Our next set of results considers the impact of frictions on the effectiveness of prioritized

audits. Specifically, we assume that with exogenous probability q an agent is simply unable to

settle.3 Then, agents mechanically unable to settle risk interrupting the unraveling argument

described above. We show that as the number of agents N gets large, there is essentially a

unique equilibrium. With probability approaching 1, the share α/q of agents with the highest

priority settle (if they can), while remaining agents do not. In order to get full collection,

audit capacity α must be larger than settlement friction q. We show that when taxes owed

D, and frictions q are heterogenous among agents, it is optimal to rank agents according to

3This may be interpreted as the impact of psychological payoff shocks along the lines of quantal response
equilibrium (McKelvey and Palfrey, 1995). Alternatively, if the taxes owed determined by an audit are
uncertain and simply predicted, then q may be the share of agents for whom settlement price P is less than
the taxes D they really owe.
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score D/q.

Finally, we let settlement decisions take place over time and study the impact of providing

agents information about the settlement decisions of others. This analysis is motivated by

a recent empirical literature evaluating such policies in the context of taxation (Del Carpio,

2014, Castro and Scartascini, 2015, Dwenger et al., 2016), as well as recent interest in the

value of information design in equilibrium (Kamenica and Gentzkow, 2011). We establish

an irrelevance benchmark result: as the number of agents N gets large, for any information

structure with probability 1, the share α/q of agents with the highest priority settle as soon

as they are able to. This implies that any effect of information on play must be assigned to

either behavioral forces, or non-equilibrium play.

We complement our theoretical analysis of the auditing strategies for three reasons. First,

prioritized auditing need not improve on uniform random auditing if agents somehow coordi-

nate on a high collection equilibrium. Second, the effectiveness of prioritized auditing relies

on agents being able to perform many rounds of iterated best-response ahead of choosing

their play. Prioritized auditing may be much less effective in environments where players

exhibit bounded rationality. Third, in the presence of bounded rationality, information that

helps players make better individual choices may improve the effectiveness of prioritized

auditing.

Experimental data collected from an implementation of our dynamic settlement game

both supports and qualifies the theory. Prioritized auditing does improve over uniform

random auditing. However, agents do not systematically coordinate on a low settlement

equilibrium under uniform auditing, and settlement under prioritized auditing falls short of

our theoretical benchmark. Additionally we find that contrary to predictions of our irrele-

vance result, information can significantly improve settlement rates, but that this depends

on the nature of the information. Information targeted to individual agents clarifying their

effective rank given settlement by others is more effective than aggregate information simply

reporting the overall share of agents that have settled. This suggests that information design

plays an important role out-of-equilibrium by helping players approach equilibrium play.
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Our work contributes to the literature on full implementation in mechanism design

(Maskin, 1999, Jackson, 1992) that emphasizes implementation of desirable outcomes in

all equilibria. In particular, the work of Abreu and Matsushima (1992) on virtual implemen-

tation highlights the value of more sophisticated divide-and-conquer schemes to achieve full

implementation. Divide-and-conquer schemes also play an important role in the literature

on contracting with externalities, including Segal (2003), Winter (2004) and more recently

Halac et al. (2019, 2020). Halac et al. (2020) also studies the impact of information design,

but allows for schemes in which the rank of agents is not common knowledge. In contrast

to our results (which pertain to revealing information about the compliance of others), they

find that appropriately designed information about others’ rank can increase the principal’s

surplus. Our experimental findings suggest that it may be worth investigating the validity of

such results in realistic non-equilibrium settings, and that the details of how the information

is conveyed to agents’ may be of considerable importance in practice.

The paper also contributes to the literature on out-of-equilibrium mechanism design.

A large body of experimental work reviewed in Chen and Ledyard (2010) has emphasized

the learning properties of mechanisms, and in particular dominance solvable mechanisms.

Among others, Healy (2006) shows that in repeated public goods mechanisms, contribution

behavior is well explained as a best-response to recent play. Mathevet (2010), Healy and

Mathevet (2012) emphasize design steps that can be taken to ensure a mechanism is super-

modular, ensuring more stable learning dynamics. Crawford and Iriberri (2007) shows that

a level-k model can explain overbidding in experimental auctions. More recently De Clippel

et al. (2019) studies implementation using k iterations of best reply as a solution concept.

We emphasize the value of information design out-of-equilibrium.

Most importantly, the paper hopes to stimulate and guide the evaluation of divide-and-

conquer mechanisms in real-life settings. Operation Ceasefire, introduced in Boston in the

mid-1990s to reduce gang violence, and applied in several dozen cities, illustrates the value of

divide-and-conquer strategies in practice. As described in Braga et al. (2001) and Kennedy

(2011), a key aspect of Operation Ceasefire was to commit dedicated police resources to deal
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with the first few gang related murders that would happen after a specific call in date during

which gang members were invited together and commonly informed of these new policies.4

By treating the next few murders differently from pre-existing cases, Operation Ceasefire

refocused a police force, overstretched by the crack epidemic, to unravel the equilibrium

logic of violence: if no gang wants to initiate violence, then no violence happens. Chassang

and Chen (2020) evaluate more than 20 years of evidence across dozens of cities and show that

Operation Ceasefire had a significant impact on homicide rates, especially when evaluated

as a real option. In addition, recent work has demonstrated the real-life effectiveness of

mechanism design steps in improving governance: Duflo et al. (2013) evaluate the value of

cross validating messages from multiple environmental inspectors in India, Del Carpio (2014)

studies the importance of information about group compliance on own compliance, similarly

Pomeranz (2015) highlights the usefulness of the value-added tax in generating actionable

information about the profits of other firms permitting cross validation. We hope that by

clarifying the impact of realistic frictions and how to address them, this paper serves as

a blueprint for the implementation of divide-and-conquer strategies to improve governance

capabilities in real-life environments.

The paper is structured as follows. Section 2 sets up a simple model in the context of

tax collection. It establishes benchmark results clarifying the value of common-knowledge

enforcement priorities in a static setting with fully responsive agents. Section 3 clarifies the

impact of agent non-response on the effectiveness of enforcement priorities. Section 4 casts

compliance decisions in a dynamic context, and shows that schemes that provide agents

with information about the compliance of others have a negligible impact on collection as

the number of agents gets large. Section 5 describes our experimental hypotheses and the

corresponding design. Section 6 describes our findings. Section 7 discusses applications

besides tax collection. A subset of player instructions is included in Appendix A.

4Operation Ceasefire included other important steps, such as involving respected community members,
and convincingly demonstrating the police and district attorney’s ability to deliver on their commitments.
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2 Static Enforcement without Errors

2.1 Framework

We flesh out our model in the context of tax auditing, and discuss other applications in

Section 7. N agents indexed by i ∈ I ≡ {1, · · · , N} each owe a principal a fixed amount D.

The principal can potentially collect D from each agent, but can only do so following a due

process requiring a formal audit. The agents and the principal are all risk-neutral.

The difficulty is that the principal has limited capacity. Specifically, the principal can

only audit αN ≥ 1 agents with α ∈ (0, 1). If the principal audits an agent, he collects D but

can do nothing more. With experimental evaluation in mind, we are interested in a specific

class of collection mechanisms. The principal can make settlement offers and commit to an

audit schedule according to the following extensive-form game:

(i) The principal gives each agent the possibility to settle at a common price P .

Agents who accept are spared from audits.

(ii) Agents simultaneously decide whether or not to settle and pay price P or not.

(iii) The principal audits agents who have not settled according to a complete order

≺ over I. An audited agent pays D.

We consider two possible enforcement priorities ≺:

• Random priorities ≺R: audited agents are drawn sequentially ex post (i.e. period (iii)),

with uniform probability and without replacement;

• Common knowledge priorities ≺CK : the ordering is specified ex ante (i.e. period

(i)) and is common knowledge among players. For simplicity, we assume that non-

compliant agents are audited in order of their index i ∈ {1, · · · , N}.5
5Halac et al. (2020) show in a related context that incomplete information over rank can increase the

principal’s surplus. Since we have experimental implementation in mind, we prefer to focus on a relatively
simpler class of mechanism. Even under this simpler class of mechanism, common knowledge of rationality
does not appear to hold in our data.
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Payoffs and solution concept. We denote by si ∈ {0, 1} agent i’s decision to settle for

the principal’s offer. The principal’s total payoff is

Π ≡ 1

N

∑
i∈I

siP.

Note that payoffs exclude the proceeds from directly audited agents. This simplifies compu-

tations and reflects the fact that the net benefits of audits may be ambiguous: investigation

costs may be well above the amount that can be legally collected from agents. This also

clarifies that the value of audits comes from incentive provision rather than actual collection.

We use both Bayes Nash Equilibrium and rationalizability as solution concepts.

Modeling assumptions. In our model, audits are free to the principal but constrained

in number. This assumption implies that the principal cannot commit to audit every agent

that does not settle. Our result would continue to hold if the principal could freely choose

auditing capacity at a variable cost, provided that the cost is paid regardless of whether

audits happen or not (investigators must be hired, trained, and paid even if there are no

crimes to investigate). Alternatively, even if auditors are only paid in the event an actual

audit happens, then limited capacity may capture limits on the principal’s ability to commit

to run expensive audits ex post.

We note that we do not allow for dissuasive punishments in the style of Becker (1968).

Our results would be changed if arbitrarily high punishments were available, but not if only

intermediate punishments were available. If arbitrarily high punishments are allowed, they

can compensate for very limited enforcement capability. However, in practice, there are

limits to legitimate levels of punishments. In the US where the Eighth Amendment limits

the punishments that both federal and state governments can apply. In the case of tax

collection, the maximum penalty that the IRS can apply in case of underreported income is

20%.

In principle, the use of prioritized audits may raise fairness concerns. Indeed, similar
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agents can be treated differently when they do not accept settlement. However, because set-

tlement price P applies uniformly to all agents, agents that comply are treated identically.

We believe this is a socially acceptable relaxation of fairness constraints. In contrast we

think that charging similar agents a different settlement amount would not be socially ac-

ceptable because it would treat similar compliant agents differently.6 In other terms, unequal

treatment of equals strikes us as much more acceptable off-of-the-equilibrium-path, than on-

the-equilibrium-path. Ortner and Chassang (2018) make a similar point in the context of

counter-corruption measures.

2.2 The Value of Common-Knowledge Enforcement Priorities

The following results clarify the value of prioritized enforcement: it selects a high collection

equilibrium as the unique rationalizable strategy profile; in contrast, random enforcement

induces multiple equilibria involving both high and low collection levels.

Proposition 1 (multiple equilibria under random enforcement). Under random enforcement

order ≺R, for any settlement offer P ∈ [αD,D], there exists a Nash equilibrium such that

the principal makes offer P , all agents accept offers below or equal to P and reject any offer

higher than P . There does not exist an equilibrium such that the principal makes an offer

P /∈ [αD,D].

Proof. We first establish that for any P ∈ [αD,D], the profile of strategies such that the

principal offers settlement price P , while agents accept any offer less than P and reject all

options higher than P is a Nash equilibrium. Offering P is a best response for the principal

since lower offers yield lower collections and a higher offer leads to no collection at all.

Accepting an offer P ′ ≤ P is a best response for an agent if and only if P ′ ≤ D, which holds

since P ≤ D. Rejecting an offer P ′ > P is a best response provided that P ′ ≥ αD, using the

6Note that charging different agents a different price may increase the amount of revenue that could
be raised. This point is emphasized in a joint production context by Winter (2004), and in a fund-raising
context by Halac et al. (2019).
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fact that under random order ≺R, an agent is audited with probability α when all agents do

not comply.

There can be no equilibrium such that P > D, since in that case, it is dominant for agents

not to settle, and the principal collects an amount equal to zero. In addition, there cannot

be an equilibrium such that P < αD, since when the principal offers any P ′ ∈ (P, αD), it

is dominant for all agents to accept: a non-compliant agent gets audited with probability at

least α, regardless of the behavior of other players. �

A corollary of Proposition 1, is that for any given settlement amount P ∈ (αD,D),

random enforcement is consistent with two corner equilibria: a high compliance equilibrium

in which all agents comply so that even limited enforcement capacity is enough to discipline

Proposition 2 (equilibrium selection via common-knowledge priorities). Under common-

knowledge enforcement order ≺CK, a unique strategy profile survives iterated elimination of

dominated strategies. The principal makes an offer P , which all agents accept.

Proof. We show that for every settlement offer P < D, it is iteratively dominant for all

agents to settle, so that the principal collects an amount NP . The proof is by induction on

the priority of agents. The induction hypothesis is that in all strategy profiles that survive

k-iterations of elimination of dominated strategies, all agents with priority higher than k

choose to settle. The induction hypothesis holds for k = 0 since the highest priority agent is

audited with probability 1 in the event they do not comply. In turn, if the hypothesis holds

for k ≥ 0, then an agent of rank k + 1 that does not comply is audited with probability 1.

Hence, it is conditionally dominant for an agent of rank k + 1 to comply, which establishes

the induction step.

In turn, it is dominant for all agents to refuse any offer P > D regardless of how other

agents behave. It follows that setting P = D maximizes the principal’s payoff. �

The proof makes clear that the important aspect of ≺CK is that players know their own rank,

and this is common knowledge. Since players are symmetric, whether or not they know the
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rank of others does not change Proposition 2.

It is also worth noting that in the absence of frictions, prioritized enforcement is extremely

effective: an auditing capacity of one is enough to induce any arbitrary number of agents to

settle. Sections 3 and 4 study how realistic frictions perturb the effectiveness of prioritized

enforcement.

3 Static Enforcement with Errors

Proposition 2 suggests that even with very limited enforcement capacity (αN = 1), priori-

tized enforcement can ensure a high compliance equilibrium. However, the argument relies

on the principal’s ability to essentially “recycle” enforcement capacity, and relies on a high

degree of confidence that higher ranked agents will not exhaust the principal’s enforcement

capacity. We now consider a variant of the game introduced in Section 2 in which agents are

exogenously and independently unable to settle with probability q. This friction naturally

reduces the effectiveness of prioritized audits.

Exogenous non-compliance rate q can be interpreted in different ways. In practice, the

agent may simply not be aware of the collection problem, or experience liquidity shocks

preventing any payment. Alternatively, the agent may know that the amount collected by

the principal is erroneous, and that an investigation will prove she does not owe money. Such

errors are especially likely in a setting where the principal attempts to predict owed taxes on

the basis of informative but imperfect data. In such settings, it may be reasonable to assume

that non-compliance rate q is an increase function of price P , or that both non-compliance

rate q and taxes due D are heterogeneous across agents. We discuss these extensions below.

Going forward, it is convenient to index an agent with rank i ∈ I by her scaled rank

ρ = i/N . This facilitates the statement of asymptotic results as the number N of agents

grows large.

Proposition 3. Consider prioritized enforcement order ≺CK. Set a settlement price P ∈

(0, D), and fix ε > 0. For N large enough, under all rationalizable strategy profiles,
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(i) agents with rank ρ > α
q

+ ε do not comply;

(ii) agents with rank ρ < α
q
− ε comply if they are able to settle.

Proof. We first show that for N large enough, it is dominant for agents with rank ρ > α
q

+ ε

not to comply. For any given strategy profile, let us denote by

A(ρ) ≡ 1

N

ρN∑
i=1

1si=0

the realized share of agents with rank less than ρ who do not settle. By the Law of Large

Numbers, with probability approaching 1 as N gets large, for any strategy profile, A(α
q

+ε) >

α. This implies that uniformly over strategy profile, an agent with rank ρ > α
q
+ε gets audited

with probability 0. Hence, for N large enough, it is dominant to refuse any settlement offer

P > 0.

Now consider the case of agents with rank ρ < α
q
− ε. We define the sequence ρK ≡

α
∑K

k=0(1− q)k. Note that ρK converges to α
q

as K gets large.

For any k ∈ N and ν > 0, we establish the following hypothesis HK,ν :

(i) uniformly over strategy profiles surviving K iterated elimination of dominated

strategies, with probability 1 as N gets large, A(ρK − (K + 1)× ν) ≤ qρK .

(ii) as N gets large enough, for all strategy profiles surviving K iterated elimination

of dominated strategies, agents with rank ρ < ρK −K × ν settle if they can.

Consider the case where K = 0. Since ρ0 = α, it is dominant for all players with rank

ρ ≤ ρ0 to comply if they can. Since the exogenous non-compliance rate is q, it follows that

with probability 1 as N gets large, A(ρ0 − ν) ≤ qρ0.

We now show that HK,ν implies HK+1,ν . Indeed, since A(ρK − (K + 1)× ν) ≤ qρK with

probability approaching 1, this means that spare audit capacity that can be used on agents

with rank greater that ρK − (K + 1)ν is greater than α − qρK with probability one. This

implies in all strategy profiles surviving K+1 iterations of iterated elimination of dominated
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strategies, non-complying agents with rank less that ρK−(K+1)ν+α−qρK = ρK+1−(K+1)ν

get audited with probability 1. Hence, all strategy profiles surviving K + 1 rounds are such

that agents with rank less than ρK+1− (K + 1)ν settle. By the Law of Large Numbers, this

implies that A(ρK+1 − (K + 2)ν) ≤ qρK+1 with probability 1 as N gets large.

To conclude, observe that we only need a fixed number of induction steps to establish

point (ii). Consider K large enough that ρK ≥ α
q
− ε

2
, and set ν = ε

2K
. The induction

hypothesis HK,ν implies point (ii). �

Corollaries. Proposition 3 admits two corollaries that are relevant for applications. First,

in a realistic context, the principal may be able to estimate a “demand curve” for settlement

Q(P ), mapping settlement offer P to a non-compliance rate q = Q(P ). For instance, if

there was uncertainty about the actual amount of taxes due, we would have q = Q(P ) =

prob(D > P ). In this context, Proposition 3 implies the following:

Corollary 1 (endogenous frictions). As N gets large, it is approximately optimal to make

a settlement offer P solving

max
P

P × (1−Q(P ))×min

{
α

Q(P )
, 1

}
. (1)

The expression for profits differs from the usual expression for revenue P × (1 − Q(P ))

because of the endogenous externality across agents. Non-compliant agents not only fail to

settle, but they reduce the incentives of lower priority agents to settle.

Another realistic possibility is that agents are heterogeneous. Assume that agents belong

to a finite number of groups indexed by g ∈ {1, · · · , G}, associated with population weights

mg (summing to 1), settlement offers Pg and non-compliance rates qg. In addition, the

auditing difficulty of different groups may vary, so that auditing an agent from group g

consumes λg from the principal’s auditing capacity.
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Corollary 2 (heterogeneous agents). As N gets large, the maximum profit Π the principal

can achieve under any prioritized enforcement mechanism is asymptotically equal to

max

{
G∑
g=1

δgmg(1− qg)Pg

∣∣∣∣∣ (δg)
G
g=1 ∈ [0, 1]G such that

G∑
g=1

δgmgqgλg ≤ α

}
. (2)

This maximum is achieved by prioritizing groups in order of decreasing score (1−qg)Pg

qgλg
,

and setting an arbitrary ordering of agents within each group.

4 Dynamic Settlement

In this section, we embed the decision to comply or not over time. This is realistic: in

practice agents need some time to respond. In addition this allows us to explore two relevant

policy dimensions: discounts for early settlement of taxes (equivalent to penalties for late

payment), as well as revealing information about the compliance of others as in Del Carpio

(2014), Castro and Scartascini (2015), Dwenger et al. (2016).

We consider the following variant of the static game introduced in Section 3. Time t ∈

[0, 1] is continuous. The principal commits to a deterministic settlement schedule (Pt)t∈[0,1].

Each agent i ∈ {1, · · · , N} becomes able to settle according to a Poisson process with

intensity 1 − q. If an agent is able to settle at date t, she is able to settle at all further

dates t′ ∈ (t, 1]. Settlement decisions are irreversible. We denote by si,t ∈ {0, 1} the agent’s

compliance status at time t. Once date t = 1 is reached, the principal investigates non-

compliers according to common knowledge enforcement priorities ≺CK .

We allow the principal to commit to arbitrary information policies over the past settle-

ment behavior of agents. Specifically, in each period t, given a history of settlement decisions

ht = (si,t′)i∈{1,··· ,N},t′<t each agent i obtains a signal zi,t measurable with respect to ht. This

may include revealing the entire set of agents who have settled, revealing the highest rank

of agents that have settled, or any other statistic of history ht.

The following benchmark is useful. If (i) the path of settlement prices is constant, i.e.
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Pt = P for all t ∈ [0, 1], and (ii) no information is provided to agents over time, then equilib-

rium settlement in this game will be identical to equilibrium settlement in the static game

with frictions of Section 3. The timing of settlement, however, will be indeterminate: agents

may settle as early as possible, or right at the end of the game. From this benchmark, pro-

viding price discounts would incentivize early settlement. In contrast, providing information

about the settlement of others would delay settlement (so that players can capture the option

value of information). This suggests that both discounts and information policy may have a

non-trivial effect on settlement behavior. We show that this is not the case: to a first order

approximation, both information and discount design are irrelevant in equilibrium.

Definition 1. We say that a price schedule (Pt)t∈[0,1] is strictly discounted if P0 > 0,

P1 < D, and for all ε > 0, there exists η > 0 such that for all t ∈ [0, 1],

Pt+ε − Pt ≥ η.

Proposition 4 (irrelevance of design). Take as given a strictly discounted price schedule,

and an information policy. For any ε > 0, as N becomes large, under any rationalizable

strategy profile,

(i) with probability approaching 1, an agent with rank ρ < α
q
− ε settles within a

delay ε of being able to settle;

(ii) with probability approaching 1, an agent with rank ρ > α
q

+ ε does not settle.

Proof. The proof is closely related to that of Proposition 3. We first establish point (ii).

Consider an agent with rank ρ > α
q

+ ε. The number of agents with rank ρ′ < ρ who cannot

settle is greater than αN with probability approaching 1 as N becomes large. This implies

that the payoff from never settling approaches 0 as N gets large, or, using Landau notation,

is of order o(1). Denote by Settles the event that the agent settles at some point. The agent’s

expected payoff is bounded above by −P0× prob(Settles). By revealed preferences, we must
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have o(1) ≤ −P0 × prob(Settles), which implies that prob(Settles) = o(1). Hence, a single

round of rationality is sufficient to establish point (ii).

Let us turn to point (i). We proceed by induction. Let A(ρ) ≡ 1
N

∑ρN−1
i=1 (1− si,t=1)

denote the ultimate mass of agents with rank less than ρ who get audited. For K ∈ N, let

ρK ≡ α
∑K

k=0(1 − q)k. Our induction hypothesis at K ∈ N is that for all ε > 0, and for all

agents with rank ρ ≤ ρK − ε, the probability that the agent ultimately settles if possible

approaches 1 as N becomes large.

Consider first agents with rank ρ ≤ α. Those agents know they will be audited with

probability one if they do not settle. Since the price schedule is strictly discounted, their

best response is to settle immediately. This establishes the induction hypothesis for K = 0.

We now show that the induction hypothesis at K−1 implies the induction hypothesis at

K. We establish in passing that it also implies vanishing delays. Pick ε > 0 and consider an

agent with rank ρ < α
∑K

k=0(1−q)k−ε. The induction hypothesis at K−1 implies that with

probability approaching 1, all agents with rank ρ strictly below α
∑K−1

k=0 (1− q)k ultimately

settle. This implies that the mass of audits A(ρK−1) converges to qρK−1 as N grows large.

This means that the spare audit capacity (scaled by 1/N) that can be assigned to agents with

rank ρ ≥ ρK−1 is asymptotically equal to α−qρK−1. Since ρK = ρK−1 +α−qρK−1, it follows

that with probability 1 as N becomes large, A(ρK − ε) ≤ α with probability approaching 1.

Since audit is almost certain for such players it is intuitive that they should settle with very

little delay with probability approaching 1. Under strict discounting any amount of delay is

costly, and not settling is almost certainly a losing proposition. We now provide a formal

argument.

Regardless of the agent’s strategy, she is unable to settle with probability q, leading to

a payoff −qD. Since this component of payoffs is independent of the player’s strategy, we

focus on payoffs conditional on the event that the agent is ultimately able to settle.7 Let

¬Settle denote the event that the agent never settles, Delay denote the event that the agent

7In other terms, payoffs conditional on being able to settle at some point are an affine transformation of
unconditional payoffs.
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settles but with a delay greater than ε, and let t∗ denote the first date at which the agent is

able to settle.

By settling immediately, the agent is able to guarantee herself a payoff equal to E[−P ∗t ].

The payoff from the agent’s subjectively optimal strategy is bounded above by

E[−Pt∗ × (1− 1Delay − 1¬Settle)]− E[Pt∗+ε1Delay]− E[D1¬Settle1A(ρK−ε)≤α].

By optimality, this implies that,

E[−P ∗t ] ≤ E[−Pt∗ × (1− 1Delay − 1¬Settle)]− E[Pt∗+ε1Delay]− E[D1¬Settle1A(ρK−ε)≤α].

Observe that prob(¬Settle and A(ρK − ε)) ≤ α) ≥ prob(¬Settle) − prob(A(ρK − ε) > α).

Since prices are strictly discounted, this implies that there exists η > 0 such that

E[−P ∗t ] ≤ E[−Pt∗ × (1− 1Delay − 1¬Settle)]− E[(Pt∗ + η)1Delay]

− E[(Pt∗ + η)1¬Settle] +D × prob(A(ρK − ε) > α)

⇒ η[prob(Delay) + prob(¬Settle)] ≤ D × prob(A(ρK − ε) > α).

As we noted above, the induction hypothesis at K−1 implies that prob(A(ρK−ε) > α) goes

to 0 as N gets large. Since η > 0 is fixed independently of N , this proves that the induction

hypothesis holds at K and that delay also vanishes as N gets large. This concludes the

proof. �

5 An Experiment

Our theoretical analysis makes three potentially important points for practice:

(i) random enforcement can lead to multiple equilibria, and in particular to a low

collection equilibrium;
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(ii) prioritized enforcement selects a high enforcement equilibrium that can improve

on random enforcement, even in the presence of frictions;

(iii) information design (as well as discounts for early settlement) has a negligible

impact on collection.

However, properties of prioritized enforcement rely crucially on agents being able to

perform many iterated eliminations of dominated strategies. In contrast, experimental work

identifying levels of rationality (see for instance Camerer et al., 2004, Costa-Gomes and

Crawford, 2006) suggests that in many settings, a majority of players engage in less than

two rounds of iterated best-reply.8 This section investigates the extent to which points (i),

(ii), and (iii) hold in experimental data. We show that prioritized enforcement improves over

random enforcement, but that prioritized enforcement falls short of theoretical expectations,

likely because of bounded rationality frictions. In this context, we show that information

has a role to play by making it easier for players to optimize, and anticipate the behavior of

others.

Baseline game. We implement essentially as is the dynamic settlement game of Section

4, with the experimenter playing the role of the principal, and recruited participants playing

the role of agents. Parameters were specified as follows: the number N of agents was set

to 10. All agents received an initial endowment of 100 points and owed the same amount

D = 100pts. The initial and final settlement prices P0 and P1 were set to P0 = 80pts and

P1 = 92pts. Settlement prices evolved linearly over time. Time t = 1 corresponded to 30

seconds.

The probability q with which an agent is exogenously unable to settle was set to q =

20%. The principal’s audit capacity was also set to α = 20%. This implies that under the

benchmark of Proposition 4, in principle, the share of agents able to settle who do so should

be close to 1.

8Nonetheless, in dominance-solvable games, a non-zero share of players seems to play in equilibrium.
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The key departure from Section 4 is that we constrained the realization of times after

which agents were able to settle. This would not change our findings for large numbers of

players. Our restrictions seek to reduce sampling noise by ensuring that all realizations are

typical enough. Specifically we took the following steps. In each realization of the game,

exactly 2 players were exogenously unable to settle: one uniformly selected player with rank

less than 5, and one uniformly selected player with rank strictly greater than 5. Among

players able to settle, 3/4 were able to settle (at a uniformly drawn date) within the first 15

seconds of the game, and 1/4 were able to settle (at a uniformly drawn date) within the last

15 seconds.

Treatments. We experimented with four treatments corresponding to different enforce-

ment policies and different information designs. In a random enforcement treatment, partic-

ipants were not informed of the order in which they would be audited, and did not receive

information about the settlement behavior of others. Players were simply made aware of

when it was possible for them to settle, and at what price.

We implemented three prioritized enforcement treatment. In each of these treatments,

participants were informed of their rank in the audit line. The treatments differed in the

additional information provided to participants about the settlement behavior of others:

• In the priority only treatment, players were given no information about the realized

settlement of others.

• In the aggregate information treatment, players were informed of the aggregate settle-

ment rate in their group. This matches taxpayer information experiments (Del Carpio,

2014, Castro and Scartascini, 2015), as well as experiments seeking to increase pro-

social behavior through norms (Allcott, 2011). Additionally, such information may

foster learning if a majority of players settle, and some behavioral players choose their

play by imitating others.

• In the targeted information treatment, players are informed of both the aggregate set-
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tlement rate in their group, and of their real time effective rank, i.e. their audit rank

after taking into account settlement by other players. This targeted information has

an immediate strategic interpretation for players: if their effective rank is 1 or 2, it is

dominant for players to settle immediately.

Protocol. Experimental sessions took place on MTurk between March 2020, and August

2020. The experiment design was filed with the AEA RCT registry under ID number

AEARCTR-0004802. The experiment was programmed in oTree (Chen et al., 2016) and

experimental instructions were conveyed to players through their browser. Screenshots of

instructions are reproduced in Appendix A.9

We ran 20 sessions, with 40 participants in each session. Participants were randomly

assigned to the 4 treatment groups, and played the collection game 4 times. The first

collection game did not count towards participants’ final payoff. Points earned in the last

three collection games were averaged across games, and converted to cash at the rate of

USD8 for 100pts. Players were not reallocated across different treatments over time. To

reduce noise due to sampling, the realization of the times at which players can start settling,

which we call wake-up times, was kept the same across different treatments of a given session.

On average, completing the experiment took 23 minutes. Participants earned a USD3.5

fee for showing up at a pre-announced time. As subset of 40 participants was selected from

this group to continue with the experiment. Participants earned between USD0 and USD8

from their play in the collection game, with mean earnings at USD3.2. For reference the

mean payoff from settling as soon as possible was equal to USD.992.

Participants were selected from a pool of US adults over 18 years old, with an MTurk

approval rate over 98% and who had completed at least 50 tasks on MTurk.10 Experiments

were all run between 11am and 4pm EST, Monday to Friday.

9A preliminary version of the experiment (excluding the targeted information treatment) ran in a phys-
ical lab for 12 sessions before the COVID19 pandemic started. Findings from this preliminary round are
qualitatively similar.

10These selection criteria are meant to filter out bots.
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6 Findings

Throughout this section, we report findings for payoff relevant games. We begin with the

treatment effect of different enforcement mechanisms on settlement behavior.

6.1 Treatment Effects
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Figure 1: Mean settlement rate by treatment conditional on waking up.

mean
settlement

rate

pct point
diff over
random

pct diff
over random

random 0.477
priority only 0.544 6.8 (.02) 14.2%
aggregate info 0.596 11.9 (.002) 25.0%
targeted info 0.666 18.9 (.000) 39.7%

Table 1: Settlement rates across treatment conditional on waking up.

Two-sided p-values in parentheses. Treatment effect estimates include session fixed-effects; standard-errors
are clustered at the (treatment, session) level.
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Mean settlement by treatment. Figure 1 and Table 1 display the mean settlement rate

across treatments in the population of agents that are able to settle at some point. The key

takeaways are the following:

• Roughly 50% of players settle under random enforcement, halfway between the high

compliance equilibrium, and the low compliance equilibrium.

• Prioritized enforcement improves significantly over random assignment, but does not

attain the theoretical 100% settlement rate.

• Contrary to the prediction of Proposition 4, information, and especially targeted in-

formation, helps improve settlement rates.
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Figure 2: Cumulative distribution function of settlement rate by treatment.

The distribution of settlement rates. Figure 2 plots the c.d.f. of group-level settlement

rates by treatment. The most noticeable fact is that prioritized enforcement doesn’t just in-

crease the mean settlement rate, but induces a first-order stochastic dominance (FOSD)

increase in settlement rates. This means that even if the principal is risk averse over settle-

ment and collection outcomes, prioritized enforcement improves on random enforcement.
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Focusing on prioritized enforcement treatments, there is no FOSD ranking of the priority

only treatment and the priority with aggregate information treatment. Specifically, the

aggregate information treatment seems to increase the mean settlement rate, but perhaps

at the cost of a small increase in the spread of the distribution of settlement rate. In

contrast, the targeted information treatment generates a first order increase in settlement

shares compared with any other treatment.

Finally, we note that the distribution of settlement under random enforcement is uni-

modal. This suggests that the data is not well explained by a mixture of agents coordinating

on low and high enforcement equilibria.

Collection. Figure 3 shows that the findings of Figure 1 are also reflected in average

collection amounts. Collection averages to 40.1pts under random enforcement, and respec-

tively increases to 46.2, 50.9, and 56.8 under prioritized enforcement alone, with aggregate

information, and with targeted information.
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Figure 3: Mean settlement amount by treatment.
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6.2 Delay

In principle, giving players more information may delay settlement: the anticipation of

receiving information creates an option value for waiting since it may reveal that other

players are in fact not settling.

Information does not delay settlement. We define settlement delay as the difference

between the time at which a player wakes up and the time at which they settle. Figure 4

illustrates the distribution of settlement delay for players who do wake up. The settlement

delay of players who choose not to settle is set to 30s. Figure 4 shows that prioritized
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Figure 4: CDF of settlement delay conditional on waking

enforcement causes a FOSD reduction in delay compared to random enforcement. The

impact of aggregate information on delay is more ambiguous: under prioritized enforcement,

no information yields a higher mass of settlement times under 5s than providing aggregate

information, but the difference is small. Targeted information yields a more sizeable FOSD

reduction in delay relative to all other treatments.
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Information delays settlement, conditional on settlement. While information does

not increase delay, Figure 4 suggests that both targeted information and aggregate infor-

mation increase the mass of players settling after some delay, say after 10s from waking

up. This is confirmed by Figure 5 which plots the CDF of settlement delay conditional on

settling.
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Figure 5: CDF of settlement delay conditional on settling

Conditional on settlement, prioritized enforcement without information decreases set-

tlement delay compared to random enforcement. In contrast, prioritized enforcement with

either aggregate or targeted information increases settlement delay compared to random

enforcement. Targeted information causes the largest increase in delay.

6.3 Rationality

The impact of information on settlement and delay suggests that information is effective

through its interaction with players’ rationality. We are specifically interested in under-

standing the rationality of players in prioritized enforcement treatments with no information
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and targeted information since they correspond to very clearly interpretable information

environments.

In principle, several possible forces may be active. First, information can reduce the

strategic difficulty of decision problems faced by agents. Keeping rationality the same, this

may increase convergence to equilibrium behavior. Second, information may affect rational-

ity. It may increase rationality by making the incentives of other players more transparent.

Alternatively it may decrease rationality. For instance, targeted information may lead players

to stop thinking about the incentives of others and instead adopt the rule-of-thumb consist-

ing in settling whenever their effective rank (i.e. their rank net of higher ranked agents who

have settled) drops to 2.

Correspondingly, we are interested in distinguishing the three following scenarios:

A. Information decreases the rationality of players; as a result agents settle only when it is

dominant to do so.

B. Information does not affect the rationality of players, but increases the likelihood of

information sets at which settling is a best-response given the rationality of players.

C. Information increases the rationality of players.

As Proposition 4 shows, the game is essentially dominance solvable, with higher rank

players requiring more iterated eliminations of strategies to settle. Correspondingly, we can

use players’ rank at time of settlement as an indicator of rationality.

We are interested in both the players’ effective rank and max rank at the moment they

wake up, and at the moment they make a settlement decision, if they do. Effective rank

corresponds to a player’s initial rank net of the number of players ahead of them who have

chosen to settle. Effective rank is the same across both treatment but is only in the informa-

tion set of players in the targeted information treatment. In contrast, max rank corresponds

to the maximum effective rank consistent with the player’s information. Under the targeted

information treatment, max rank and effective rank are identical. Under the priority only

treatment, max rank is equal to a player’s initial rank. Settlement at effective rank 1 or 2

26



indicates a single round of best-reply. Settlement at ranks 3 or higher indicates strategic

thinking taking into account the behavior of others.

Rank at settlement is ambiguous. Figure 6 displays the proportions of the overall

population choosing to settle at different effective ranks.11 Targeted information results in

more agents settling at most ranks. There is a particularly large increase in the number of

agents settling at effective rank 2, but also a noticeable increase in the number of agents

settling at effective ranks 3 and 4.
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Figure 6: Share of population settling by effective rank at settlement.

Considering players’ max rank at the time of settlement is a better reflection of rationality

since players in the no information treatment do not receive information about their effective

rank. The only hard information they have is their initial rank. Figure 7 displays the

proportions of the overall population choosing to settle at different max effective ranks. As

expected, the max rank of agents settling under priority only is shifted upwards. There is

a greater mass of agents settling with max rank equal to 3 under targeted information, but

11The population shares displayed do not sum to 1: players who choose not to settle are the excluded
category.
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the mass of agents settling with rank 4 are similar across treatments. This suggests that

targeted information acts mainly through reducing the difficulty of decision problems, and

not by increasing rationality. This hypothesis is confirmed by further analysis.
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Figure 7: Share of population settling by max rank at settlement.

Targeted information reduces max rank at wake. Figure 8 illustrates the distribution

of agents’ max rank at wake (population shares sum to one since we condition on agents’

waking). This is not informative of their rationality. Rather, it clarifies that targeted

information leads to a different distribution of decision problems than the no information

treatment: mass assigned to difficult problems, corresponding to a rank of 8 or higher, is

shifted to relatively simpler problems of a rank 4 or less.

We note that for both treatments, the distribution of max rank at wake for players with

a max rank below 4 is approximately uniform. This means that focusing on the subset of

events where an agent wakes up with a max rank less 4 allows us to control for the impact

of information on the difficulty of problems faced by agents, and identify the impact of

information on rationality.
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Figure 8: Distribution of max rank at wake.

Settlement given max rank at wake, and rationality. Figure 9 displays the settlement

rate of agents conditional on their max rank at wake, for max rank at wake less than 4.

Conditioning on max ranks such that both no information and targeted information have

the same distribution of max rank lets us partial out the effect of information on the strategic

difficulty of decision problems agents face.

Figure 9 shows that controlling for the difficulty of decision problems entirely removes

the increase in settlement rates associated with targeted information. The no information

and targeted information treatment lead to the same ultimate settlement behavior. In other

terms, targeted information does not act by increasing the strategic sophistication of players.

Figure 10 confirms this conclusion. It plots the distribution of players’ max rank at

settlement, conditional on settling, and their max rank at wake being less than 4. If any-

thing, the settlement behavior of players under targeted information reflects lower strategic

sophistication than the settlement of players under no information.

This decomposition of the aggregate effect of information suggests that scenario B is in
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Figure 9: Settlement rate by max rank at wake (max rank at wake ≤ 4).
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Figure 10: Distribution of max rank at settlement (max rank at wake ≤ 4).

fact the most plausible. Targeted information acts by reducing the strategic difficulty of

problems faced by agents. It does not change the strategic sophistication of players (by

improving or reducing it) in a large way. If anything, targeted information may slightly

reduce the strategic sophistication of players.

30



7 Discussion

We believe that divide and conquer schemes have wide applicability. Chassang and Chen

(2020) provides evidence that divide-and-conquer can be effective in practice based on Op-

eration Ceasefire programs implemented in a large number of US cities over the last 25 years

(Braga et al., 2001, Kennedy, 2011, 2012). Operation Ceasefire was initiated in Boston in the

mid-90s during a wave of gang related homicides. It first clarified to gangs that the police

were in fact fairly good at associating homicides with gang, even though bringing together

actionable evidence valid in a court of justice was much more difficult. Second, it shifted

some police resources away from uniform enforcement, and instead, promised that a signifi-

cant share of police effort was going to be directed towards making life difficult for the first

gang suspected of committing a murder. This is a clever prioritized enforcement strategy

that uses a natural common-knowledge rank: the time at which a murder is committed.

Besides debt collection, we believe that prioritized enforcement offers particular promise

in fighting widespread corruption or misbehavior (including discrimination, verbal abuse,

and sexual harassment) in organizations. If misbehavior is widespread, it may be effectively

impossible to fire all misbehaving agents without seriously crippling an organization: for

instance, it may be that cops who take bribes are better than no cops at all. Prioritized

enforcement provides a way to initiate organizational change without firing all misbehavers.

Proposition 2 provides potential guidance on how to rank agents: prioritized high offenders

most likely to comply if given a take-it or leave-it offer.

We conclude with a discussion of limits and possible extensions to our theoretical and

experimental analysis.

Dissuasive punishment. The analysis of Sections 3 and 4 assumes that collection in the

event of a successful audit is equal to the amount owed D. It turns out that the asymptotic

collection rate α/q is not affected if a penalty is applied, so that the amount collected

following an audit is (1+γ)D with γ > 0. The reason for this is that agents with normalized
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rank ρ > α/q have a probability 0 of being audited. As a result, raising penalties has

a negligible effect on them. However, when the population is finite and fixed, dissuasive

penalties certainly raise settlement rates.

Information is relevant in a Level-k model. The experimental results of Section 6 fal-

sify the theoretical prediction of Section 4: information, and especially targeted information,

has a large impact, likely because it simplifies the decision problems faced by agents. This

observation is amenable to theoretical modeling. Specifically, we can use k-iterated-best-

response as our solution concept (with values of k relatively small, say 3 or 4). In that case,

even as the sample size N grows large, information design makes a difference. Whenever

α < q, then under no information, the fraction of agents who settle will be bounded away

below the rationalizable threshold α/q, even as the population size N gets large. In contrast,

under targeted information, it is sufficient that players be capable of best-replying in order

to guarantee that the share who settle approaches α/q as N gets large.

Incomplete information over rank. Halac et al. (2020) show that providing players

incomplete information over their rank can improve the effectiveness of divide-and-conquer

strategies. Our analysis suggests that information can be quite helpful if it does not require

high degrees of sophistication to be interpreted. We believe that there may be ways of

providing information that exploit both ideas. For instance, under targeted information, it

is likely unimportant that lower ranked players know their rank. It may be more effective

to keep such players in some amount of doubt.

Aggregate uncertainty about the settlement rate. In Section 4, providing infor-

mation about the settlement behavior of other players has little impact because there is

essentially no aggregate uncertainty to be uncovered. This would not be the case if the

friction level q was uncertain and needed to be learned. In that case, providing information

about friction rate q would have an impact. In the context of our experiment, the aggregate
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information treatment would provide such information.

Preliminary analysis suggests that providing information about q would raise expected

collection. Indeed, consider the extreme case where a small sample of the overall large pop-

ulation is used to estimate q, which is then revealed to remaining agents. The continuation

game is the one studied in Section 4, so that a share α
q

agents choose to settle. Since this is

a convex function of q providing such information raises the expected collection rate.

Small versus large groups. The analysis of Sections 3 and 4 considers games in which

agents are put together in a single large group, and follow a single order. An intuitive

practical question is whether it is helpful to split agents in many fixed size groups in which

a small fixed number of agents can be audited.

Theory suggests that the effect is at best ambiguous. Consider the case of targeted

information in the case where α ≥ q. Proposition 4 implies that all agents who are able

to settle will settle. This is not the case in the small group case: due to random variation,

some small groups will have their audit capacity exhausted, leading low rank individuals not

to settle. As a result, under a many-small-groups design a positive share of agents who can

settle will choose not to.

What would happen in an experiment or in the field is less clear. Intuitively, it may

be that smaller group help place agents in a context where they think strategically. Also

if players react with delay, it may be that large groups cause very large settlement delays.

In contrast small groups may allow for parallel processing. We speculate that this force is

important in practice.
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A Player instructions

This section reproduces instructions given to participants in different treatments.

A.1 Instructions for Random Treatment
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During the game, players were shown the following screen. Whenever a player was unable

to settle, the “Accept Offer” button was deactivated.

A.2 Instructions for Priority Treatment

The instructions are identical to the random treatment, except for the description of the

collection stage (and the snapshots page).
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During the game, players were shown the following screen, reminding them of their initial

rank.

A.3 Instructions for Priority with Aggregate Information Treat-

ment

The instructions are identical to the priority treatment, except for an added description of

the information (and the snapshots page).
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During the game, players were shown the following screen, informing them of both their

initial rank, and of the aggregate share of players in their group who had settled.

A.4 Instructions for Priority with Targeted Information Treat-

ment

The instructions are identical to the priority treatment, except for an added description of

the information and an updated version of the collection stage (and the snapshots page).
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During the game, players were shown the following screen, informing them of their effec-

tive rank.
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