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1 Introduction

In electricity markets, generators are rewarded both for providing energy and for enabling

grid reliability. The two functions are compensated in separate markets – energy provision

is compensated in the energy market, while grid reliability is compensated in the ancillary

service market. To date, the economics literature has largely focused on energy provision

markets, even as other academic literatures, policymakers, and grid regulators have more

carefully considered ancillary service markets. Ancillary service markets are interesting and

important in their own right: they procure services that prevent brownouts and blackouts

and ensure power quality. Moreover, changes in ancillary services markets can impact the

behavior of generators in the much-larger energy market. While these market interactions

have been extensively studied by engineers using optimization models and simulations, quasi-

experimental evidence is largely lacking. In this paper, we show that exogenous policy

changes implemented in the ancillary services portion of a large East Coast electricity market

have changed the behavior of conventional (coal and natural gas) generators in the energy

market, and as a result have had unintended environmental impacts. Changes to ancillary

services markets are being considered as policymakers look for ways to lower the carbon

emissions of electricity supply – as such, unintended CO2 emissions changes in this context

are particularly policy-relevant.

Specifically, we focus on the frequency regulation market in PJM. PJM is the largest

wholesale electricity market in the US, serving major population centers on the East Coast

and dispatching nearly one fifth of all generation capacity in the lower 48 states. Frequency

regulation refers to the short-timescale balancing of supply and demand by grid operators;

we describe it in depth below. We leverage policy-induced quasi-experimental variation in

the amount of frequency regulation required by grid operators. As a result, we identify how

changes in the provision of frequency regulation by conventional power plants impact the

electricity market as a whole. We show that increases in the required frequency regulation

capacity induce changes in the composition of power plants providing energy generation. For

a 100 MW increase in the frequency regulation requirement, we estimate an additional 390

MWh from combined cycle plants over the course of one hour in the energy market and a

corresponding decrease from boiler units.1 These results are qualitatively similarly across a

broad suite of robustness checks, with estimated increases of combined cycle units of around

1We use megawatts (MW) throughout to measure capacity, and megawatt-hours (MWhs) to measure
generation. A 1 MW unit operating at its full capacity for one hour generates 1 MWh of electricity. The
regulation requirement is a market-wide capacity or power requirement and is thus measured in MWs.
Electricity generation is sold as a function of energy provided over the course of some time frame and is thus
measured in MWhs.
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300 to 490 MWh.

Because combined cycle plants primarily use natural gas whereas boiler units use coal,

we also see a change in the fuel used to provide energy. Specifically, we find that increases

in the regulation requirement lead to an increase in natural gas usage and a decrease in coal

and oil. As a result, for every 100 MW of increased frequency regulation, CO2 emissions fall

by 250 metric tons per hour in our sample, with robustness checks showing a range of 180

to 350 tons. This represents a decrease of 0.5% of CO2 emissions, or an annual total of 2.2

million tons of reduced CO2. This is roughly equal to the total emissions of around one to

four additional coal-fired units (at around one or two plants) in PJM. Valued at the IWG

Social Cost of Carbon, the short-term generation changes from an increase in the regulation

requirement would reduce climate damages by nearly $100M per year.2 Recent peer-reviewed

estimates would place the value even higher (Pindyck, 2017; Moore et al., 2017; Ricke et al.,

2018; Bastien-Olvera and Moore, 2020). For the time period we study, the PJM market

implemented several changes to decrease the regulation requirement. While doing so can

reduce the system-wide private cost of electricity provision, in this case it inadvertently led

in the short term to higher CO2 emissions and increased climate damages.

At first glance, the magnitude of the generation mix change is surprising – it is a greater

than one-to-one effect. We next provide a simple model to analyze the mechanisms behind

this. Key features of the model include (1) conventional power plants are multi-product

suppliers; (2) conventional power plants tend to operate within a somewhat narrow opera-

tional range defined by non-zero minimum and maximum constraints; (3) policy and market

changes can cause conventional power plants to switch from fully off to operating at min-

imum load. Importantly, the minimum load at many generators (a physical constraint) is

non-negligible – while the related literature frequently ignores this constraint, it may be as

high as 50 percent or more of capacity. To summarize, changes along the extensive margin

– which units are turned on – can lead ancillary services markets to have outsized impacts

on generation markets. We discuss qualitatively whether the changes in the generation mix

that we observe would be expected to occur in other markets or other time periods, arguing

that the mechanisms we study will generally be relevant, although the magnitudes (and the

direction of CO2 changes) are context-specific.

We then provide empirical evidence of extensive margin changes. We show that increasing

the regulation requirement causes boilers to be dispatched at lower levels of generation in

our sample (i.e., a change along the intensive margin). However, combined cycle plants are

dispatched more frequently (i.e., a change along the extensive margin). These effects are

2We use the 2015 SCC from the Interagency Working Group on Social Cost of Greenhouse Gases (2016)
and convert to 2019 dollars using the CPI, implying a value of $44 per metric ton.
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consistent both with the overall generation impacts and with the stylized model.

These results make several contributions to the energy and environmental economics and

the industrial organization literatures. First, we contribute to a still-small empirical liter-

ature in energy economics that analyzes electricity markets other than the energy market.

One strand of the economics and engineering literature explores ancillary services markets

with optimization models or simulation approaches (Hirst and Kirby, 1998; Just and Weber,

2008; Yu and Foggo, 2017). However, empirical analysis of ancillary services markets, par-

ticularly in how they interact with energy markets, is limited,3 despite there being a large

empirical literature on wholesale electricity markets.4 We show that ignoring the ways that

energy markets interact with these other markets can lead to incorrect conclusions about

the impacts of policy changes.

Second, we contribute to a strand of the electricity literature that emphasizes the impor-

tance of understanding how technical constraints impact power plant behavior, especially

when considering generators as multi-product firms. Perhaps most closely related is Mansur

(2008), which shows that ignoring intertemporal constraints gives an inflated estimate of the

welfare impact that restructuring electricity markets had in the late 1990s. Previous empiri-

cal papers had focused on merit-order dispatch without considering intertemporal constraints

such as minimum load, startup costs, and ramping. Also related is Reguant (2014), which

estimates markups using firms’ bidding behavior in the presence of these intertemporal con-

straints. Similarly to these papers, we show that minimum load constraints can have a large

impact on plant behavior. We additionally show that the existence of multiple markets can

have significant impacts on plant behavior. We argue that power plants should be considered

multi-product firms, and that limiting attention to just one of the markets might lead to

incorrect or incomplete conclusions about plant behaviors.

The behavior of multi-product firms has been the focus of a growing body of work in

industrial organization and in international trade. Researchers have shown that examining

how firms optimize across different products plays a key role in understanding productivity

differences across firms; the behavior of firms with market power; and the impacts of trade

policy, exchange rate movements, demand shocks, and more (Johnson and Myatt, 2006;

3The primary exceptions are: Doraszelski, Lewis and Pakes (2018), which estimates models of firm
learning and convergence to equilibrium in a newly deregulated frequency response market in the UK;
Knittel and Metaxoglou (2008), which examines ancillary services in the context of the California electricity
crisis; and Schwenen (2015), which examines New York’s capacity market. Jha and Wolak (2020) examines
the impact of “explicit virtual bidding” on the cost of electricity provision, focusing on fuel costs but also
incorporating the costs of ancillary services provision.

4See Borenstein, Bushnell and Wolak (2002); Fabrizio, Rose and Wolfram (2007); Reguant (2014); Boren-
sten and Bushnell (2015); Cicala (2015); Cullen and Mansur (2017); Davis and Hausman (2016); Holland
et al. (2016a); Hortacsu et al. (2019), among many others.
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Eckel and Neary, 2010; De Loecker, 2011; Chatterjee, Dix-Carneiro and Vichyanond, 2013).

Nonetheless, studies of the electricity market have tended to treat firms as providers of a

single good – electricity generation – rather than multiproduct firms, with the exception

of an older literature on the optimal regulation of natural monopolies that provide multi-

ple goods (for instance, Mayo, 1984). Our ability to model the production of electricity

with an engineering-based model makes clear how the degree of complementarity versus

substitutability in production matters for outcomes in multi-product firms. Given the large

number of industries with multi-product features (refining, airlines, freight transportation,

manufacturing, to name a few), these mechanisms are of widespread relevance.

Third, this paper contributes to policy discussions about several ongoing developments

in electricity markets: changes in the way frequency regulation is procured and compen-

sated, the introduction of utility-scale batteries, and the increasing deployment of renewable

electricity (MIT Energy Initiative, 2011; Department of Energy, 2013, 2016; Hledik et al.,

2017). Across the country, frequency regulation markets have seen multiple changes in recent

years. In 2011, the Federal Energy Regulatory Commission (FERC) issued Order 755 (Fed-

eral Energy Regulatory Commission, 2011), which required grid operators to change their

frequency regulation compensation mechanisms; we give details below. Various electricity

markets across the US have responded with differing changes to their frequency regula-

tion markets (Department of Energy, 2013; Tabari and Shaffer, 2020). These compensation

mechanisms favor some resource types more than others, so supply in the regulation market

(and therefore dispatch in the energy market) is likely to be affected. The extent to which

these changes in compensation mechanisms have impacted electricity markets has not been

thoroughly analyzed in the energy economics literature.

Moreover, there has been a growing interest in energy storage devices, such as utility-scale

batteries, to provide frequency regulation and other grid support services. Within the PJM

market we study, batteries have largely been deployed for frequency regulation, rather than

for the intertemporal arbitrage5 potential explored in energy economics papers (Carson and

Novan, 2013; Antweiler, 2021; Holladay and LaRiviere, 2018; Kirkpatrick, 2018; Ambec and

Crampes, 2019; Linn and Shih, 2019; Castro, 2020).6 Worldwide, a primary use of battery

storage is for frequency regulation (International Renewable Energy Agency, 2017; Deloitte,

2018). The behavior of batteries providing ancillary services may differ tremendously from

that of batteries providing arbitrage – both because of the way the relevant markets are

5For batteries, arbitrage involves charging from the grid when the price is low and selling electricity to
the grid when the price is high. As we discuss later, this is not the primary use of most grid-connected
batteries in PJM.

6There is also a related literature on the use of hydroelectric facilities for storage, again focusing on
storage for arbitrage purposes; see e.g. Liski and Vehvilainen (2020).
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designed and because of the timescale of use (e.g., seconds versus hours).

Our empirical results on the impact of changes to the regulation requirement provide a

useful analogy for the entry of batteries in the regulation market, since their entry will lower

the residual demand for regulation from conventional generators. Many proponents argue

that the entry of batteries for grid reliability will lead to lower emissions (Federal Energy

Regulatory Commission, 2011). In contrast, engineering models and simulations show the

possibility of increased emissions when batteries provide frequency regulation (Ryan et al.,

2018), for which our analysis provides the first empirical corroboration.7 However we caution

that the magnitude of the fuel mix changes (and therefore a CO2 emissions change) is likely

to change as secular coal retirements continue.

Finally, the rise of intermittent renewables such as wind and solar generation can increase

the amount of frequency regulation required in electricity markets (Kirby, 2004; MIT Energy

Initiative, 2011).8 As generating technologies continue to evolve and batteries and renewable

resources play a larger role in both markets, the interactions between energy and ancillary

services markets are likely to continue to be important.

2 Background

2.1 Ancillary Services and Frequency Regulation

Electricity markets are actually made up of numerous separate markets: energy, capacity, and

several types of ancillary services markets.9 The energy market is the most studied and best

understood by economists – this is where firms are compensated for generating electricity to

be used by residential, commercial, and industrial customers. In ancillary service markets,

generators are compensated for providing services that enable grid reliability – for example,

frequency regulation and other types of reserves. Because the same generators participate

in both the energy market and ancillary services market, the structure of ancillary service

markets may have important spillovers in the energy provision market. Despite this, there

7Our paper thus also relates to the literature on spillover effects from other non-fossil technologies,
such as from solar to fossil power plants (Bushnell and Novan, 2021) and from hydro to fossil power plants
Archsmith (2018).

8Ovaere and Gillingham (2019) examines the empirical impact of renewables on the cost of ancillary
services provision.

9By energy market, we refer to the sale of electricity, in MWh, in a wholesale market. In PJM, this is
called simply the “energy market.” In this paper, we sometimes refer to “energy provision” to distinguish
it from energy markets more generally such as natural gas and oil markets. Since the electricity economics
literature frequently does not cover ancillary services markets, it frequently uses terms like “electricity
market,” “power market,” and “wholesale market” without specifying whether the market is for providing
energy or capacity or ancillary services or some combination thereof.
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has been very little empirical research into ancillary service markets. In this paper, we focus

on frequency regulation, motivated by ongoing policy changes in this market.

Electricity markets are unique in that demand must constantly equal supply, a respon-

sibility that falls on grid operators. However, there are frequent fluctuations in demand

and supply, creating small mismatches between the two. When supply exceeds demand,

frequency (the number of cycles per second of the alternating current) rises above the nom-

inal frequency (i.e., 60 Hz in North America); when demand exceeds supply, frequency falls

below the nominal frequency. If the grid frequency departs enough from the nominal level,

it can cause damaged equipment or brownouts and blackouts for customers (Federal Energy

Regulatory Commission, 2011).

To prevent this from happening, system operators have created markets to regulate the

frequency of the grid, a service called “frequency regulation,” “regulation reserves,” “load

frequency control, “secondary frequency control,” or simply “regulation.”10 In the typical

market, the system operator sets a frequency regulation requirement – this is the total

capacity (in MW) that must be set aside for provision of frequency regulation. It is sometimes

time-invariant, sometimes a function of forecasted demand, or possibly also a function of

renewables forecasts. Generators can then bid a portion of their capacity to be available

to grid operators to either increase or decrease generation (relative to their set point) at

any time (within the frequency regulation contract duration), depending on the needs of the

grid. The independent system operator11 sends out a signal (automatic generation control,

or AGC) to participating units, to which they automatically make small adjustments in

their generation to balance supply and demand.12 Typically, these small adjustments are

made within seconds (Zhou, Levin and Conzelmann, 2016). An example signal is shown in

Figure 1.

Some system operators use separate signals for “regulation up” versus “regulation down.”

The PJM market that we study does not use separate signals for up and down movements.

For the time period we analyze, this signal is energy-neutral within a short time-frame (15

minutes), so that units always return to their initial set point (Monitoring Analytics, 2018).

To participate in the market, a power plant must have the technical capability to follow

the operator’s regulation signal. It must also be dispatched at a non-zero level of generation,

with headroom and footroom to follow the signal. That is, it cannot be operating at its

10Background on frequency regulation and other ancillary services is provided in Hirst and Kirby (1997);
Kirby (2004); Hummon et al. (2013); Tacka (2016); Zhou, Levin and Conzelmann (2016).

11An independent system operator is non-profit entity that operates the wholesale electricity market.
12Specifically, FERC Order 755 defines frequency regulation as “the capability to inject or withdraw real

power by resources capable of responding appropriately to a system operator’s automatic generation control
signal in order to correct for actual or expected Area Control Error needs” ((Federal Energy Regulatory
Commission, 2011), p 67266).
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Figure 1: Example Regulation Signals

(a) RegA Signal (b) RegD Signal

Note: This figure shows the RegA and RegD signals in PJM from 4 pm to 5 pm on July 19, 2019. Data are
from PJM.

minimum or maximum constraints because it must be able to move up and down in response

to the operator’s signal (Kirby, 2004). The resource mix contributing to frequency regulation

varies across regions. In PJM, it is a mix of coal, natural gas, hydro, and battery storage

(Monitoring Analytics, 2018).

Generators take several cost considerations into account when deciding whether and how

to bid in a regulation market. Small fluctuations around the generator’s set point impact

the plant’s heat rate, thus changing fuel costs. Providing regulation also imposes wear and

tear on the plant (Hirst and Kirby, 1997; Hummon et al., 2013) and can change SO2 and

NOx emissions, which in some markets are priced.13

Over time, system operators have moved towards rewarding regulation providers for

both the capacity committed to regulation and the quality of regulation services provided.14

Specifically, some units, such as coal-fired boilers, have significant physical inertia that pre-

vents them from responding quickly to regulation signals. In contrast, units such as bat-

teries, hydro generators, and some natural gas generators are able to respond very quickly

to the signal, which gives the system operator greater flexibility and speed in restoring the

system-wide frequency to its desired level. To incorporate this difference across suppliers,

13The exact cost associated with additional wear and tear is not generally known for individual generators;
simulations typically assume a cost that varies across fuel types (see, e.g., Hummon et al. (2013)).

14This has been spurred by FERC Order 755 (FERC 2011), which requires that independent system
operators change their frequency regulation compensation mechanisms to “pay for performance” systems
that recognize the differential speed and accuracy with which different resources respond to the regulation
signal. Each independent system operator has designed its pay for performance compensation mechanisms
differently (Department of Energy, 2013; Tabari and Shaffer, 2020).
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PJM uses a more complicated set of payments.15 First, PJM sends out two separate regula-

tion signals, one termed “RegA” (for slower-responding units) and one termed “RegD” (for

faster-responding units). Moreover, units receive payments both for their capability (i.e.,

the quantity of MWs offered) and for their performance (the accuracy with which the unit

responds to the operator’s signal). In Section 5, we discuss how the compensation of both

capability and performance might impact our results. We explore the entry of utility-scale

batteries for frequency regulation in Section 7.

2.2 Related Literature

One strand of the economics and engineering literature explores ancillary services markets

with optimization models and simulations (Hirst and Kirby, 1998; Just and Weber, 2008;

Yu and Foggo, 2017). In particular, Hirst and Kirby (1997) notes that the minimum and

maximum constraints of individual generators, when combined with the need to provide

headroom and footroom for regulation provision, can lead to a dispatch of units across

the system that would not appear least-cost if one only considered the marginal cost of

energy provision, and it can also lead to significant complexity in which units are dispatched.

Simulations showing changes in dispatch to meet regulation requirements are also given in

Hummon et al. (2013). This informs our stylized model in Section 5.

A small number of ex-post empirical papers examine how additional operational con-

straints can lead to out of merit dispatch (Mansur, 2008; Reguant, 2014); these papers focus

on dynamic constraints related to startup costs and ramping. However, empirical analysis of

ancillary services markets, particularly in terms of how they interact with energy markets,

is limited, despite there being a large literature on wholesale electricity markets (Reguant

(2014); Borensten and Bushnell (2015); Hortacsu et al. (2019) to name a few prominent

recent papers).

Several papers use optimization models and/or small-scale simulations to show how fre-

quency regulation markets and other ancillary services markets interact with energy markets.

Notably, one report (Atanacio et al., 2012) simulates the impact of storage providing regula-

tion in the PJM system.16 Specifically, it looks at the emissions changes expected to result

across the PJM system when fast-acting storage devices provide 10 percent, 25 percent, or 50

percent of frequency regulation services. It is not clear if the study’s proprietary simulation

model includes the unit commitment and/or economic dispatch algorithms used by PJM. So,

it is not clear if storage providing frequency regulation can impact commitment in the model,

15This payment mechanism in PJM was established in October 2012, following FERC Order 755.
16Papers from the empirical economics literature exploring other aspects of the PJM market include

Mansur (2008); Mansur and White (2012); Abito et al. (2018).
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nor how exactly it impacts dispatch. The simulation results show small emissions reductions

from storage entry, because conventional plants operate less efficiently when providing reg-

ulation services. However, the report noted that the interaction between the energy market

and the frequency regulation market are complicated and could limit the emissions benefits

of storage, and the study’s analysis of California’s system showed the potential for increased

CO2 emissions (Atanacio et al., 2012).

Two additional papers that examine emissions impacts of using storage for frequency

regulation are Lin, Johnson and Mathieu (2019) and Ryan et al. (2018). Ryan et al. (2018)

uses a small test system to show that changes in the frequency regulation market can lead

to changes in the fuel mix and therefore emissions changes. Indeed, the authors find that

“[c]hanges in generator commitment and dispatch caused by the addition of energy storage

were the most significant contributors to the energy storage system’s environmental impact”

(p 10172). Hummon et al. (2013) also explores the interaction between reserve markets and

energy markets using a simulation approach, although the paper does not examine emissions

outcomes. Cho and Kleit (2015) explores the optimal bidding strategy for a storage device

that can provide ancillary services. And finally, in Yu and Foggo (2017), “[s]imulation results

with a realistic battery storage system reveal that the majority of the market revenues comes

from frequency regulation services” (p 177).

While several of these papers examine ancillary service markets, and even consider

spillovers into the energy provision market, this paper is the first to our knowledge to show

quasi-experimental evidence of these spillover effects, which lead to fuel use changes and

therefore changes in emissions.

3 Data

We collect data from the Environmental Protection Agency’s Continuous Emissions Moni-

toring System (CEMS) on hourly generation (MWh) and CO2 emissions (metric tons)17 at

the generator level, for fossil-fuel-fired units.18 From CEMS, we also observe the primary

17The CEMS-reported CO2 emissions are missing for approximately 9% of observations with non-zero
heat input data, representing 2% of generation. In place of these missing values, we assume an emissions
rate (per mmBtu of fuel used) equal to the median rate at the unit, typically around 0.093 metric tons per
mmBtu for coal-fired units and 0.054 for natural gas fired units. In the Appendix, we show results using
CEMS-reported CO2 emissions.

18CEMS reports gross generation rather than net, i.e. not accounting for the generation used by the plant
itself (or instance, to run pollution control equipment). Net generation is the variable of interest, since that
is what is sold in the electricity market. Following Cicala (2017), we scale each unit’s generation down from
gross to net using monthly generation data from the Energy Information Administration’s (EIA) form 923
dataset. This approach also solves a problem we see with some combined cycle units: they do not report the
full value of their electrical output in the CEMS data. Finally, some units report only steam load in CEMS,

9



fuel source used by a generator each year (coal, natural gas, or oil) and the technology type

of the generator (boiler, combined cycle, or combustion turbine). From EIA-860 data, we

observe whether units are located in PJM. We also observe in EIA-860 whether units are

operated by electric utilities, independent power producers, or as part of a commercial or

industrial operation. We drop all commercial and industrial units, as they are unlikely to

sell into the electricity market. We report our primary results for four technology categories

of PJM units: boilers, combined cycle (CC) units, combustion turbine (CT) units, and all

other PJM CEMS units aggregated. We also report results across four fuel types: coal,

natural gas, oil, and others aggregated.19

The CEMS data do not provide information on non-fossil units (e.g., nuclear, hydro, wind,

municipal solid waste), nor does CEMS cover fossil-fuel fired units with capacity less than 25

MW. (For context, units smaller than 25 MW are quite small; the average capacity in EIA-

860 data is over 350 MW for steam units in PJM.) To observe the behavior of these units, we

calculate a residual category of generation (in MWh), equal to the difference between total

demand reported by PJM and total generation reported in CEMS. This residual variable

thus covers PJM units not in CEMS as well as net imports into PJM from other regions.

We collect hourly data, from PJM, on regulation market activity. Our primary explana-

tory variable is the hourly regulation requirement, in MW. The regulation requirement refers

to a pre-determined quantity of regulation capacity that the independent system operator

announces it will purchase. As we describe below, this amount varies over time because of

several policy changes. We also observe the quantity of frequency regulation provided by

slow-responding resources (RegA) versus fast-responding resources (RegD), two variables to

which we return later in our analysis.

We collect several additional variables that serve as controls. From EIA, we observe the

daily price of natural gas, measured at Henry Hub and the daily price of oil (West Texas

Intermediate).20 We observe the hourly requirement (in MW) for other types of ancillary

services: synchronized and non-synchronized reserves. We observe total hourly electricity

demand across PJM, in MWh. We observe the forecasted peak and valley demand for each

day, also from PJM. We collect hourly data on wind generation (MWh, from PJM). Also,

we observe daily average temperature at the Philadelphia airport (degrees Fahrenheit, from

NOAA), a relatively central location within PJM.

but report non-zero net generation in EIA-923. We similarly scale from steam load to net generation for
these units; they account for 4% of our final net generation variable. Details are in the Appendix.

19The category “other technology types” is composed entirely of a small number of units that changed
their technology type over this time period. The category “other fuel types” includes, for instance, wood-
fired units, as well as a small number of units that changed their fuel type over this time period. Details are
in the Appendix.

20Coal prices paid by power plants were essentially flat over this time period.
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For placebo tests, we collect hourly generation and CO2 emissions data at the generator

level for two other types of units: fossil-fuel-fired units not in PJM but in surrounding states;

and units in CEMS data that that are not categorized by CEMS as electrical generating units

(e.g., refineries).

Finally, we note that the last decade has seen a secular decline in coal generation and rise

in natural gas, a product primarily of the fracking revolution (Linn and McCormack, 2019).

As such, we collect coal plant retirement dates and capacities from the EIA-860 dataset.

We also collect retirement dates for other plant types (for instance, natural gas and oil),

although they are smaller in magnitude.

Summary statistics are provided in Appendix Tables A1, A2, and A4. A time-series

of generation by fuel types and technology types is provided in Appendix Figure A2. The

sample is characterized by a reliance on coal generation and on natural gas generation. Other

fuel types are present (oil-fired generations; etc.), but are a very small portion of the energy

market.

As expected, Appendix Figure A2 shows that the period 2012-2018 is characterized by

a decline in coal generation and a rise in natural gas. By the end of the sample, the two

are responsible for roughly equal quantities of generation. However, within the main sub-

period which we will focus on (2012-2014), coal-fired generation holds roughly constant, so

we anticipate that secular trends in the mix of gas versus coal will not be a major problem

for identification.

4 Empirical Evidence on Generation and Emissions

4.1 Identifying Variation

We are interested in how exogenous changes in the frequency regulation market spill over

into the behavior of generators in the energy market. As such, we leverage policy changes in

PJM’s regulation market. We begin by focusing on a short time window with limited battery

capacity: October 1, 2012 to December 31, 2014. Over this period, we leverage quasi-

experimental variation in the total regulation requirement set by the independent system

operator, which changes several times. The benefit of focusing on this period is twofold:

battery capacity for frequency regulation is limited and conventional generator entry and

exit is small. This allows us to focus on the total regulation requirement and its impact on

conventional generators. In Section 7, we explore variation in battery capacity.

As of October 1, 2012, the regulation requirement was set at 0.78% of forecasted peak

load. On November 22, 2012, the requirement was reduced to 0.74% of forecasted peak
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load, then to 0.70% on December 18, 2012. More important than these minor changes is the

change on December 1, 2013: the regulation requirement was changed from a percentage of

the forecasted peak load to a requirement of 700 MW of effective regulation during peak hours

and 525 effective MW during off-peak hours.21 This variation in the regulation requirement

can be seen in Figure 2. A PJM report from 2011 describes the motivation behind these

changes: “[d]ecreasing regulation requirements reduces regulation payments” and “[f]ewer

resources providing regulation means more resources available for the energy market.”22

In Section 2, we discuss how the regulation signal at any point in time is a function

of mismatch between supply and demand, and how the signal varies at a very fine scale

(e.g., two seconds). Thus the signal itself is endogenous to market activity. However, the

regulation requirement is a pre-determined capacity procurement – set in advance by policy

– and thus is not endogenous to day-to-day or hour-to-hour market activity, once we control

for the variables used in the pre-determined requirement-setting process (e.g., forecasted

peak load).

Unfortunately, we do not observe individual participation in the regulation market, as

this is considered sensitive market information and is not published by PJM. However, we

can use CEMS data to observe how generation behavior in the energy market changes over

this period as a function of the total regulation requirement.

For expositional purposes, we focus on generation aggregated up to a prime mover type

(e.g., boiler) or a fuel type (e.g., coal), but the regression analysis could also be done at

the individual unit level. We treat the regulation requirement as random variation, but

we control for observables that may be correlated with the regulation requirement. Most

importantly, we control for forecasted peak load, as it directly determines the regulation

requirement in the first part of the sample. The policy change thus allows us to separately

identify the impact of forecasted peak load from the impact of the regulation requirement.

Essentially, the second half of our sample (when the regulation requirement is fixed)

helps identify the effects of control variables that may be correlated with the regulation

requirement in the first half of the sample. In the Appendix, we provide a simulation of this

identification strategy, where we directly control the data-generating process. Finally, we

note that also apparent in Figure 2 is the substantial variation in the regulation requirement

over this time period, from less than 500 to around 1000 MW.

21Source: http://www.monitoringanalytics.com/reports/pjm_state_of_the_market/2013/

2013-som-pjm-volume2.pdf. “Effective” regulation is a measurement that takes into account the
performance of the units providing regulation and the substitutability across RegA and RegD units; see
https://pjm.com/~/media/documents/manuals/m11.ashx.

22https://www.pjm.com/-/media/committees-groups/committees/mrc/20110915/

20110915-item-13-rpstf-update-presentation.ashx
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Figure 2: Regulation Requirement in PJM

Note: The regulation requirement changes across hours within a day, hence
the two different levels plotted on each day. Peak hours are defined 4 a.m.
to midnight, and off-peak hours as midnight to 4 a.m. In the raw data, one
hour (on 4/2/2013) is listed as having a regulation requirement of zero; this
hour is dropped from the regressions. Data source is PJM.

The regression takes the form:

Gi,t = αi + βiRt +XtΘi + εi,t, (1)

where Gi,t is generation at unit type i in hour t, R is the regulation requirement, and Xt is

a vector of controls. The parameters are allowed to vary by unit type. Standard errors are

clustered by sample week.23

Note this is estimated as a single time-series, but we index G with unit type i, since we

can separately estimate the regression for multiple unit types. While we do not have panel

variation in the variable of interest R, we do observe a policy change mid-way through our

sample, clearly depicted in Figure 2. Moreover, the policy change does not appear correlated

with a simple time trend; there are levels of the regulation requirement in the pre-period

that lie both above and below the post-period levels. We include a dummy for the policy

change in how the regulation requirement was set, which occurred on December 1, 2013 –

but again, this is not expected to be critical for identification, since the policy change was

23Clustering by week accounts for serial correlation in unobservables, such as an exogenous multi-day
outage at a plant.
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not simply a level shift in the regulation requirement, and since we are not aware of any

other policy changes on that date.

We include a number of additional controls, both to minimize potential bias from cor-

related observables and to improve precision. Most importantly (see the simulations in the

Appendix), we control for daily forecasted peak and valley levels.24 In the first part of the

sample, these directly influence the regulation requirement. It is possible that generators

behave differently when the peak load is forecasted to be high rather than low, so we include

these controls to minimize potential bias.

We also control for the amount of reserves required in the two other reserve markets

in PJM: synchronized reserves and primary reserves. PJM sets requirements both for the

territory as a whole and for the Mid-Atlantic Dominion area; we control for both sets of

requirements. None of these variables were directly tied to policy changes on December 1,

2013, and they are not generally correlated with the frequency regulation requirement (the

correlation coefficient between each of these variables and the regulation requirement is less

than 0.1), so these controls are not expected to be important for identification.

We also control for the total generation by PJM units appearing in the CEMS data.

This follows Davis and Hausman (2016) and helps to isolate compositional effects within

conventional units. It is equivalent to controlling for total demand net of nuclear, solar,

wind, biomass, and other renewable or non-CEMS generation. We also control for total

demand in PJM. In combination with the total CEMS generation variable, this is akin to

controlling for the aggregation of non-CEMS (nuclear, solar, wind, etc.) generation. Given

that we are controlling for total CEMS generation, this is less critical for bias – it essentially

treats nuclear and renewable generation as exogenous, and it may aid with precision.

Following the related empirical literature, we add controls for the Henry Hub natural

gas price and West Texas Intermediate oil price. These are not expected to be directly

correlated with the treatment variable of interest, but they may aid with precision and may

also help with bias if they happen to be correlated with the regulation requirement. Similarly,

we control for weather, measured as daily heating degree days and cooling degree days in

Philadelphia, a central location in our geographic region.

We control for a quadratic time trend. Again, this is not expected to be crucial for

identification since the identifying variation in Figure 2 is not following a simple trend. We

include a vector of time effects: day of week, hour, and month effects to reduce noise from,

e.g., seasonality.

24Specifically, we use the day-ahead forecasted peak load in hours for which the peak regulation require-
ment applies (4 a.m. to midnight) and set the variable equal to zero in off-peak hours. Similarly, we use the
day-ahead forecasted valley load in hours for which the off-peak regulation requirement applies (midnight to
4 a.m.) and set the variable equal to zero in peak hours.
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Table 1: The Impact of the Regulation Requirement on the Energy Market

Boiler (MWh) CC (MWh) CT (MWh) Other tech. (MWh)

Regulation requirement, 100 MW -363.8** 390.5** -0.1 -26.7
(180.2) (149.9) (184.7) (20.0)

Load controls Yes Yes Yes Yes
Other reserves controls Yes Yes Yes Yes
Retirement controls Yes Yes Yes Yes
Quadratic time trend Yes Yes Yes Yes
Fuel price controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Month, day of week, and hour effects Yes Yes Yes Yes

Observations 19,680 19,680 19,680 19,680
Within R2 0.92 0.71 0.49 0.56
Mean of dep. var. 40,188 14,293 849 554

Note: This table shows estimates from four separate time-series regressions. In all columns, the dependent variable is total MWh
of electricity generated per hour in the PJM market by units that appear in CEMS data (where each column aggregates across all
units of a particular type). Coefficients on control variables are shown in the Appendix, Table A5. The unit of analysis is an hour.
Standard errors are clustered by sample week.

Finally, we include controls for the total capacity retired, by fuel type, over this time

period. As shown in Table A4, this period saw a substantial amount of generation capacity

retired; primarily from coal-fired and oil-fired generators. Again, given that the identifying

variation in the regulation requirement is policy-induced and not following any particular

trend, these controls are not expected to matter for bias.

4.2 Regression Results

We first show regression results aggregated by technology type, in Table 1 (coefficients on

control variables are shown in the Appendix, Table A5). We see that when more regulation

is required, the unit types providing services in the energy market change, with decreased

generation from boiler units and increased generation from combined cycle units. Specifi-

cally, for each 100 MW of additional regulation capacity required by the system operator,

boiler units decrease their generation by 360 MWh and combined cycle units increase their

generation by 390 MWh, both statistically significant at the five percent level. The differ-

ence between these two comes from a small number of units with other technology types

(right-most column).

Because different technology types use different primary fuel sources, the results in Table 1

will have implications for fuel use and therefore environmental impacts. We next show
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Table 2: The Impact of the Regulation Requirement on the Energy Market

Coal (MWh) Natural gas (MWh) Oil (MWh) Other fuel (MWh) CO2 (tons)

Regulation requirement, 100 MW -313.9 441.3** -101.4 -26.1 -246.1***
(215.8) (181.9) (63.5) (19.9) (81.8)

Load controls Yes Yes Yes Yes Yes
Other reserves controls Yes Yes Yes Yes Yes
Retirement controls Yes Yes Yes Yes Yes
Quadratic time trend Yes Yes Yes Yes Yes
Fuel price controls Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes
Month, day of week, and hour effects Yes Yes Yes Yes Yes

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.90 0.82 0.46 0.56 0.98
Mean of dep. var. 39,821 14,910 571 581 45,220

Note: This table shows estimates from five separate time-series regressions. For the first four columns, the dependent variable is
total MWh of electricity generated per hour in the PJM market by units that appear in CEMS data (where each column aggregates
across all units of a particular fuel type). For the right-most column, the dependent variable is CO2 emissions (tons) per hour for
all PJM units in CEMS (i.e. combining across the four unit types from the first four columns). Coefficients on control variables are
shown in the Appendix, Table A6. The unit of analysis is an hour. Standard errors are clustered by sample week.

regression results aggregated by fuel type, in Table 2. Most PJM boiler units burn coal,

although some burn natural gas or oil. Similarly, most combined cycle units and combustion

turbines use natural gas, but some use oil. Consistent with the boiler results in Table 1,

we see a decrease in coal-fired generation and oil-fired generation in Table 2. Similarly,

consistent with the combined cycle results, we see an increase in natural gas generation.

To understand the implications of this change in the generation mix, we can estimate a

similar regression with CO2 emissions as the dependent variable. We now aggregate CO2

emissions across all units in CEMS. We see in the right-most column of Table 2 that CO2

emissions fall when the regulation requirement is raised: for every 100 MW increase in the

regulation requirement, we estimate 250 fewer tons of CO2 are emitted by units participating

in the energy market, statistically significant at the one percent level. This is in line with the

fuel use changes described above. Specifically, the PJM-wide emissions rate for natural gas

units (combining CC and CT units) in our sample is 0.42 tons CO2 per MWh; the emissions

rate for coal and other units combined is 0.95. This difference implies that a shift of 440

MWh from coal to gas would lead to a decrease in CO2 emissions of around 230 tons, close

to our estimate of 250 tons in Table 2.25

25The difference between this back-of-the-envelope calculation and our estimate may be due to differential
heat rates of marginal versus average units, and/or to a heat rate effect of regulation provision that we
describe below.
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4.3 Robustness Checks

In the Appendix, we explore a suite of robustness checks and placebo regressions. First, we

show (Figure A5) sensitivity of the generation mix changes and CO2 emissions results to

the removal of various control variables. One might worry about oversaturation in our time-

series regression, but these results provide reassurance that the effects we estimate are not

driven by the inclusion of too many controls. The estimates are generally centered around

the main results we report in Tables 1 and 2. Moreover, we show that the sparsest possible

specification (which controls only for peak and valley forecasts, which are a determinant

of the regulation requirement in the first part of the sample) shows qualitatively similar

results.26

Next, we limit the sample to hours for which there is overlap in the peak and valley

forecasts between the first and second half of the sample (Table A7). These peak and

valley forecast controls are important as the regulation requirement is a direct function of

them for some of the sample. One might worry about extrapolating the impact of these

covariates beyond the range observed in the second half of the sample. Results are, however,

qualitatively similar. Across all nine outcome variables (four technology, four fuel types,

and CO2 emissions), some of the individual coefficients do change, but we continue to see

increases in combined cycle generation and decreases in emissions.27

We also show that the CO2 results are similar across a suite of additional control vari-

ables. Given the identification strategy, which relies primarily on the peak and valley forecast

controls (as shown in the Appendix simulations), these are not expected to be important

identification checks - and indeed, our results are similar across this broad range of specifi-

cation checks. Specifically, the additional specifications are as follows. We include linear or

cubic time trends, rather than quadratic. Next, we more flexibly control for system-wide load

using a spline. Then we add weather controls for Chicago, whereas the main specification

uses only Philadelphia weather. Next, we use a more flexible fuel price control: splines with

three knots for natural gas prices and for oil prices. We then control more flexibly for PJM

load and the natural gas price using non-parametric controls. Finally, we control for the

standard deviation of the regulation requirement over the previous 72 hours in two different

ways.28

26An exception is the “other technology” and “other fuel” results, for which most estimates with fewer
controls are very similar, although the sparsest possible specifications yield somewhat different results. How-
ever, this does not change any of our main conclusions about the changes to boilers versus combined cycle
units, nor about the changes to coal versus natural gas.

27As the model in the next section shows, some heterogeneity across the regulation requirement, and
therefore across the peak and valley forecast controls, is to be expected.

28One might be concerned that our main results are driven by the change in the variance of the regulation
requirement from the first to second half of our sample, visible in Figure 2. Some of this will be absorbed by
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In addition to these specifications with additional controls, we examine several other

specification checks. First, we collapse to a daily specification to allow for across-hour effects

as in Bushnell and Novan (2021). Second, we use only CEMS units that do not retire

during our sample period, to ensure that the main results are driven by these non-retiring

units as opposed to units that retired (perhaps for secular reasons) over this time period.

Next, we calculate alternative standard errors, specifically Newey-West standard errors with

a maximum lag length of 168 hours (one week).29

Finally we examine a number of checks to ensure that our data cleaning measures do

not drive the results. These are expected to yield very similar point estimates, and indeed

they do. First, we use a constructed regulatory requirement variable, from PJM reports on

policy changes, rather than the reported regulatory requirement variable (these two variables

are equivalent in most hours, but occasionally the reported regulatory requirement variable

deviates from policy). Second, we use reported gross generation rather than our re-scaled

net generation. Third, we ignore steam load when re-scaling to net generation. Fourth, we

use the raw variables originally reported in Eastern Prevailing Time rather than correcting

to Eastern Standard Time, to ensure that the associated data cleaning does not drive our

results.

Across all of these specifications, we estimate fuel use shifts (coal to natural gas), with

magnitudes and statistical significance comparable to what we display in Tables 1 and 2.

We also estimate a negative and statistically significant impact of the regulation requirement

on CO2 emissions. Overall, across these sixteen robustness checks, we estimate qualitatively

similar fuel use shifts (increased generation by natural gas units of 260 to over 500 MWh )

and CO2 reductions (180 to 350 tons).

We also show CO2 results using reported rather than constructed emissions (Table A8).

With this variable, we again estimate statistically significant emissions reductions.

Additional regressions in the Appendix show estimated effects at a number of placebo

units (Table A9). We run our primary regression using generating units in nearby states that

do not participate in the PJM wholesale energy market.30 We also separately use CEMS-

our post-change dummy. Nonetheless, we also estimate specifications that control directly for the standard
deviation of the regulation requirement. Including the standard deviation does not, however, qualitatively
change our results - providing reassurance that this change in the variance of the requirement does not drive
our estimated impacts. The change in variance may be of interest in its own right, which we leave for future
researchers to analyze.

29If there is cross-day correlation, then a rule of thumb like N1/4 (in this case = 12 hours) would be
insufficient, so we use a more conservative lag length.

30Specifically, our full dataset contains data on all CEMS units in Delaware, Illinois, Indiana, Kentucky,
Maryland, Michigan, North Carolina, New Jersey, Ohio, Pennsylvania, Tennessee, Virginia, Washington DC,
and West Virginia. These states are covered in part by PJM. However, in states such as Indiana, only a
minority of the plants participate in the PJM market, with the rest primarily participating in the MISO
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reporting units that are classified as part of commercial or industrial operations; this includes

generation from facilities such as hospitals and petroleum refineries. We also estimate our

main specification with wind generation as the dependent variable. Finally, we consider a

“residual” category of generation as the dependent variable. Following Davis and Hausman

(2016), we estimate the effects of the regulation requirement on the amount of generation

that would be needed to satisfy total demand, after accounting for the generation quantity

reported in CEMS. This category accounts for nuclear generation, hydro generation, net

imports, and small units not reported in CEMS. Across all of these categories, we estimate

only very noisy effects of the regulation requirement.

We also estimate a series of two-way fixed effects regressions, in which the plants in nearby

states serve as “control” units, allowing us to remove day-of-sample effects (Table A10). Re-

sults are qualitatively similar, with comparable point estimates but larger standard errors.31

Finally, we note that our results incorporate an additional effect on CO2 emissions. When

a power plant supplies frequency regulation, its heat rate is impacted – the amount of fuel

it must use per unit of electricity sold. This is for two reasons. First, the heat rate at an

individual generator depends on its generation level; it is non-linear (and frequently modeled

as quadratic). Thus because generators are operating at new set points (the point around

which they move in response to the regulation signal), their heat rate could change. Second,

the generator must move up and down around its operating set point, rather than holding

steady at a given level of output. This will worsen the heat rate, i.e. require greater heat

input (and therefore more CO2 emissions) per unit of electricity sold (Hirst and Kirby, 1997;

Hummon et al., 2013). Our regressions implicitly incorporate these two effects. Because our

CO2 emissions rate is time-varying, our left-hand side variable in Table 2, Column 5 will

vary as the heat rate changes. These two effects do not appear to be the main drivers of our

results, given the magnitude of the generation mix changes we observe and how closely our

back-of-the-envelope CO2 calculations line up, above.

Overall, our empirical estimates show that when more frequency regulation is needed,

substantial fuel use changes occur in the energy market. In particular, coal units sell less

in the energy market while natural gas units sell more. This leads to an overall decrease in

wholesale market. Our placebo sample consists therefore of, e.g., MISO-participating units in states such as
Indiana.

31This two-way fixed effects specification does not serve as our main specification for a couple of reasons,
as described in the Appendix. Even in this specification, our primary source of identification is the switch
from a varying regulation requirement in the first half of the sample to a flat requirement in the second half.
Thus “control” units in other states are not expected to provide much additional help with identification.
The time-series specifications are a more transparent way to implement this identification strategy. The
two-way fixed effects can help if there additional regional or national secular trends that are not adequately
controlled for, and as such it is reassuring that they yield qualitatively similar estimates.
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CO2 emissions, holding generation constant. This magnitude is quite large – why would a

100 MW change in the regulation market lead to a roughly 400 MWh change in the energy

market? To understand the magnitude and the mechanism behind it, we turn to a simplified

model.

5 Stylized Model of the Electricity Market

5.1 The System Operator’s Optimization Problem

In this section, we develop a stylized model of the regulation and energy markets, following

Kirschen and Strbac (2004). The goal is not to fully represent all the complexities of the

electrical grid, but to show some of the mechanisms by which an increase in the regulation

requirement will change generation decisions in the energy market. Specifically, we elucidate

how a system operator optimally procures energy and regulation services, especially in the

presence of constraints over minimum generation. We use a stylized version of the system

operator’s problem, which is essentially a single-period unit commitment problem.32 While

we focus on regulation provision, the model has features that apply to reserves markets in

general.

We assume that there are multiple heterogeneous thermoelectric generating units partic-

ipating in an energy market and a regulation market. We evaluate how the plants operate

before and after the regulation requirement increases. We use the following notation:

• xi - generation for energy market for unit i33

• yi - one-sided capacity committed to the regulation market for unit i34

• px - energy market price per MWh

• py - regulation market price per MW

• mi - marginal cost of generation for unit i, a function of fuel use and wear and tear

32Note we do not model the bidding behavior of individual plants. We are essentially assuming that
there is no market power, and so plants bid their marginal costs. This is realistic if there are many firms
and/or if regulators are able to observe marginal cost and thus punish anti-competitive bidding. The lat-
ter is especially likely to be true in our context. Annual market monitoring reports state that the ex-
ercise of market power has not generally been observed in PJM’s frequency regulation and energy mar-
kets (for instance, https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2014/

2014-som-pjm-volume2-sec1.pdf, and other years’ reports).
33This is the set point around which regulation will be provided, if the generator offers frequency regula-

tion.
34By one-sided, we mean the capacity available in either direction. The generator must be available to

deviate up or down from its set point xi by the amount yi.

20



• ni - marginal cost of regulation for unit i, a function of wear and tear

• Mi - minimum generation for unit i, a physical constraint

• Ci - maximum generation for unit i, a physical constraint

• ri - maximum regulation for unit i, a physical constraint35

Additionally, we make the following assumptions:

• Firms are sufficiently small that their actions do not influence the market price in

either the regulation or the energy market (i.e. no market power).

• Constant marginal costs of generation and of regulation for each unit, with no fixed

costs. These are heterogeneous across plants, a function of the technology installed

(fuel choice, prime mover type, etc).36

• ri < Ci −Mi for each unit i.37

Focusing on the energy market and leaving aside (for now) minimum constraints, this

yields a short-run marginal cost curve that is a step function, as shown in the left-hand panel

of Figure 3. The height of each step is the marginal cost mi for each fuel and technology

combination, and the width is the maximum generation Ci for each fuel and technology

combination. Typically natural gas combined cycle units and coal-fired units are the cheapest

to operate, and natural gas combustion turbines operate at much higher cost and with smaller

capacities.

Many papers in the economics literature focus on the energy market and elide minimum

constraints, yielding a supply curve much like the left-hand panel in Figure 3 (Borenstein,

Bushnell and Wolak, 2002; Davis and Hausman, 2016). Dispatch order would then follow a

least-cost framework, in which the lowest cost units are dispatched, up until demand (ex-

ogenously determined) has been fulfilled. In such a supply curve, when demand exogenously

changes, one can examine whether a different unit is on the margin to examine price impacts

as well as emissions impacts. This kind of framework is also used in the literature to examine

35A typical conventional power plant can commit at most 10 to 20 percent of its capacity to regulation
(Makarov et al., 2008; Atanacio et al., 2012).

36A fully realistic model of the electric grid would allow for non-linear costs within each unit, as in Hirst
and Kirby (1997). However, constant marginal costs are frequently assumed in the electricity economics
literature (Borenstein, Bushnell and Wolak, 2002; Mansur, 2008; Davis and Hausman, 2016) and are sufficient
to illustrate the mechanisms at play in our model.

37This is reasonable to assume in our empirical setting. As noted above, a power plant can typically
commit 10 to 20 percent of capacity to regulation. Typical minimum constraints are around 30 to 50 percent
of maximum capacity. For further discussion of this constraint, see Kirschen and Strbac (2004).
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Figure 3: Short-Run Marginal Cost Curves

(a) Energy Market (b) Regulation Market

Note: These figures show stylized marginal cost curves for a hypothetical energy market and regulation
market, with four types of participating generating units.

what happens when fuel price changes lead to a re-ordering of the dispatch, i.e. a change in

which units are least-cost.

Focusing on the regulation market, our framework implies a similar short-run marginal

cost curve, again a step function (right-hand panel of Figure 3). Here the height of each

step is the marginal cost ni for each fuel and technology combination, and the width is the

maximum regulation ri for each fuel and technology combination.

Solving for the competitive equilibrium in the energy market when there is no regulation

market and there are no minimum constraints is simple, as described above. However, when

the system operator is minimizing the cost across these two markets and when minimum

constraints are incorporated, we have a more complicated mixed integer linear programming

problem:

min
xi,yi

 ∑
i∈(1,2,...I)

mixi + niyi

 s.t.
∑

xi = demand;

∑
yi = regulation requirement;

xi + yi ≤ Ci ∀i;

xi − yi ≥Mi or xi = yi = 0 ∀i;

0 ≤ yi ≤ ri ∀i;

The operator minimizes the total cost of generation and regulation provision, subject to a
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number of constraints. The total demand and regulation requirements must be satisfied.38

Units cannot commit more than their total capacity across the two different markets; they

must have sufficient headroom if they offer regulation. The system operator can choose not

to dispatch any particular unit, but if the unit operates, it must be at least at its minimum

constraint. As a result, if it commits non-zero capacity to the regulation market, it must be

at its minimum constraint plus its regulation provision in the energy market, i.e. xi−yi ≥Mi

(i.e. have footroom). These minimum constraints are frequently elided in empirical papers,

but they are nontrivial. The typical unit in our data has a minimum constraint of 30 to

50 percent of its maximum capacity.39 The constraint is related to technical restrictions –

operating a plant below minimum load can damage plant equipment.40

In this model, corner solutions are possible for many individual generating units. For

instance, a unit might operate at maximum capacity in the energy market (xi = Ci) and not

participate in the regulation market (yi = 0). It might instead operate just below maximum

capacity to fully participate in the regulation market, i.e. with xi = Ci − ri and with

yi = ri. It might similarly operate just above minimum capacity to fully participate in the

regulation market, with xi = Mi + ri and with yi = ri. There may also be marginal units

with generation levels between minimum and maximum capacity, and/or with regulation

commitments between 0 and ri.

Now suppose that the regulation requirement is exogenously increased, and that the

change is large enough that the marginal unit cannot provide the additional regulation.

The system operator will procure regulation from an additional unit. Suppose this does

not require a change in which plants are dispatched in the energy market (an unrealistic

assumption to which we return momentarily). Then the system operator might change the

energy and regulation procurement from an individual generating unit in multiple ways, as

shown in Table 3.

To be able to provide regulation services, it is possible that a unit that had previously

been operating at maximum capacity Ci would need to back down from maximum. This

could occur if the regulation price change is large enough to outweigh the lost revenues

from participating less in the energy market. This outcome is demonstrated in the first

row of Table 3. It is also possible, however, that a unit that had not been participating in

38The magnitude of the regulation requirement refers to the one-directional capacity needed across all
units.

39The median PJM combustion turbine in our data has a minimum constraint at 50 percent of its max-
imum; the median non-CT in our PJM data has a minimum constraint at 30 percent of its maximum
capacity.

40Minimum load constraints are sometimes determined by environmental compliance, if emissions rates
are very high at low levels of generation. Cost considerations can also be a factor, if fuel efficiency is very
low at low levels of generation.
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Table 3: Some Potential Effects of an Increase in Regulation Requirement

Pre-period xi Post-period xi Change in xi Pre-period yi Post-period yi Change in yi

xi = Ci xi = Ci − ri −ri yi = 0 yi = ri ri
xi = 0 xi = Mi + ri Mi + ri yi = 0 yi = ri ri

Note: This table shows two potential effects of an increase in the regulation requirement on a
generating unit participating in the energy market. In the first row, the generating unit backs
down from maximum capacity C to have enough headroom to provide regulation. In contrast, in
the second row, the generating unit enters the energy market to have enough footroom to offer
regulation. In both cases, the generating unit increases its regulation provision (from zero to r).
However the cases show effects in opposite directions and of differing magnitudes in the energy
market. Other outcomes are possible as well – for instance if the generating unit had previously
been offering some quantity between zero and C in the energy market, or because of market-wide
re-dispatch in the energy market.

either market could be induced to enter both markets. In this scenario, a unit would move

from zero generation in the energy market to at least a bit above its minimum operational

constraint, operating at Mi +ri (or more) to be able to sell ri regulation services. This could

occur if its marginal energy cost mi is above the market clearing energy price px, but the

additional revenues in the regulation market make up for losses in the energy market. This

outcome is demonstrated in the second row of Table 3. In short, an increase in the regulation

requirement could lead an individual unit to either increase or decrease the energy it sells in

the energy market. Moreover, it is possible for the change in the energy market to be larger

than the change in the regulation market, if a unit is induced to move from not generating

at all to generating above its minimum constraint.

We must also consider the follow-on changes for other units in the energy market. Since

energy demand is exogenous and inelastic, any changes induced by one unit, as described

in Table 3, must be offset by an equal amount across all other units (neglecting changes in

losses due to changes in power flows, which we have not modeled). That is, the change in

the regulation requirement could induce not only changes in py but also changes in px and

therefore a different set of plants committed, and different dispatch levels for those plants,

in both the regulation and energy markets. The system as a whole could move to a different

equilibrium with different inframarginal units, and with some units changing by more than

the regulation requirement change. How the system changes will depend on the ways short-

run operating profits in one market (e.g., px−mi) compare to short-run operating profits in
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the other market (e.g., py − ni) across the entire set of generators.

5.2 Simulated Market

We construct a four-unit model, showing that a regulation requirement change can have a

wide range of impacts in the energy market. We then solve for the equilibrium, exogenously

changing the regulation requirement to show how changes occur along the extensive margin

for various plants. The four units represent three baseload units, with differing marginal costs

of energy and regulation, and one peaker unit with higher marginal cost for both services

(details in Appendix). All four units have minimum operational constraints.41 All four units

are capable of following the regulation signal, which is an energy-neutral signal (units return

to their initial set point within a specified time frame). The four units combined must

meet an exogenous perfectly inelastic demand requirement as well as a perfectly inelastic

regulation requirement.

Figure 4 shows how each unit changes its generation (top row) and regulation provision

(bottom row) as the regulation requirement is scaled up (results are also shown in table

form in the Appendix, Table A11). In the top row, note the axes are scaled differently across

units.

If there were no minimum constraints and no regulation requirement, Units A and B

would provide energy at their maximum (25,000 MWh each) as they have the lowest marginal

costs of energy provision. However, the minimum constraints and the regulation requirements

change the equilibrium in qualitatively important ways.

Consider first the setting where the regulation requirement is set at 500 MW. Unit A

produces the maximum possible energy (25,000 MWh), but Unit B provides only 24,550. It

then uses its remaining capacity (450 MW) to provide regulation. Unit C is not dispatched

to fill in the remaining 450 MWh to satisfy energy demand. Instead, the most expensive

unit, Unit D, provides 450 MWh of energy and 50 MW of regulation services. This is

because Unit D, a peaker, has a lower minimum generation requirement than does Unit C

– in fact, it operates just at its minimum generation requirement. This illustrates how the

minimum generation constraints can alter the dispatch order. (We caution that the results

are particularly “lumpy” in that the minimum generation has an especially pronounced

impact because there are only four generators; results would be less lumpy in a large market.)

Next, consider what happens as the regulation requirement increases from 500 to 550

or 600 MW. Unit B decreases its energy a bit, to be able to provide additional regulation

41The minimum is the same for the three low-cost plants. The high-cost unit has a smaller minimum
operational constraint, representing the fact that the peaking portion of the electricity market is made up
of many small peaker units that can each be dispatched at quite small levels of generation.
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Figure 4: Simulated Four-Unit Model

(a) Unit A (b) Unit B (c) Unit C (d) Unit D

Note: This figure displays the equilibrium results for a four-unit model with energy and regulation output.
The top row shows generation outcomes with a black line, surrounded by the regulation band in grey. Gen-
eration is in MWh provided (over one hour). The bottom row shows the capacity committed to regulation.
Units are ordered left to right from least to most expensive, with the ranking the same across the generation
and regulation markets (Unit A has the lowest marginal cost for both services; Unit D the highest). All
four units face minimum and maximum constraints. Energy demand is held constant, while the regulation
requirement varies exogenously across the x-axis. Discontinuities and kinks are shown with vertical grey
lines, at a regulation requirement of 600, 615, and 1000 MW. Quantities are given in table form, along with
cost and constraint details, in Appendix Table A11.

– it must decrease energy provision to do so, since it had been operating at its maximum

constraint when combining both energy and regulation. Unit D also provides a bit more

regulation, but to do so, it must increase its generation, to maintain status above its mini-

mum constraint. This illustrates how a unit wishing to provide additional regulation could

conceivably increase or decrease its energy provision, depending on which (if any) of its

constraints are binding.

Once the regulation requirement is increased to 601 MW, Unit A begins to decrease

its energy, to be able to provide regulation. This is because Unit B is providing as much

regulation as possible (500 MW) and cannot provide additional regulation. As the regulation

requirement continues to increase, up to 615 MW, additional 1-unit changes in the regulation

requirement lead to Unit A decreasing its energy provision and increasing its regulation

provision.

The most interesting change occurs when the regulation requirement increases to 616

MW. At this point, the least-cost solution involves dispatching Unit C at its minimum

generation. Thus Unit D exits both markets. Previously, this had not been least-cost

because of Unit C’s minimum constraint. However, it is now least-cost for Unit C to operate

at its minimum constraint, rather than to be turned off. So a change in the regulation
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requirement from 615 MW to 616 MW leads to a very different equilibrium across all units.

Unit A decreases its energy provision by around 100 MWh and increases its regulation

provision by around 100 MW. Unit B decreases its energy provision by around 300 MWh

and maintains the same amount of regulation provision. Unit C increases from 0 to 4000

MWh of energy, but does not provide any regulation. Unit D drops from over 500 MWh to 0

MWh of energy, and also exits the regulation market. This illustrates how a small change in

the regulation requirement can lead to oversized changes in the energy market if it changes

whether a unit switches between zero generation and operating at its minimum constraints.

Finally, the last change to occur in this figure is when the regulation requirement goes

from 1000 to 1001 MW. Unit C provides the marginal regulation. To do so, it must increase

its energy provision since it had been operating at its minimum constraint. Recalling that

total generation is fixed, we see that Unit B decreases its energy provision as a result.

We make several caveats regarding the generalizability of our model. We have deliberately

presented a stylized version of the energy and regulation markets, to show some of the

ways that minimum constraints combine with the multi-product nature of power plants. In

practice, there are two different regulation prices in the PJM market: units are rewarded

separately for the quantity of MWs offered and for the accuracy with which they respond to

the regulation signal. This will impact the mix of, for instance, natural gas combined cycle

units versus coal units in the regulation market, since they have differing levels of accuracy.

The mix of coal versus natural gas units in the regulation market will also be impacted by

secular changes in fuel prices and thus the generation mix of the broader electrical grid.

Also, we have not modeled other features of the market that could interact with the

minimum constraints. For instance, our model is static, and dynamic constraints such as

minimum up and down times could matter. How exactly they would interact with frequency

regulation provision would depend on demand profiles across the day, among other things.

Moreover, in reality PJM runs multiple optimization algorithms because there are markets on

different timescales: the system operator must make decisions at the day-ahead, hour-ahead,

and real-time levels. How regulation interacts with unit commitment will be determined by

what algorithms the system operator uses across these different timescales. Also, transmis-

sion congestion can matter; as Ryan et al. (2018) write, “we cannot make generalizations

about the effects of congestion because, in practice, results would be strongly dependent on

grid topology and parameters, generator sizing and location, and so on” (p 10172). Finally,

our model consists of only four units; in practice PJM is of course much larger. More gener-

ating units will mean that supply is less “lumpy” and so one might expect less discontinuous

changes than what is observed in Figure 4; however in a real-world market, transmission

congestion could shrink the number of units that are able to respond.
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Overall, there are four primary takeaways from this stylized model: (1) there are potential

nonlinearities in the impacts of a regulation requirement change; (2) high marginal cost units

can be dispatched over cheaper units because of minimum constraints; (3) an increase in the

regulation requirement can either increase or decrease generation at a given unit; and (4)

changes in generation at an individual unit can be bigger than the change in the regulation

requirement. Thus we see that minimum constraints can be quite important here in that they

create lumpiness in how the market responds to exogenous changes, although the economics

literature tends to elide them for simplicity. Moreover, the two output markets can interact

in surprising ways, with outsized impacts of the regulation market on the energy market.

Finally, the specific changes that will be observed following a regulation market change will

depend on a suite of parameters.42 As such the effects empirically observed in a real-world

scenario will be sensitive to the particular time period and electricity market studied.

6 Evidence of Changes Along Extensive Versus Inten-

sive Margins

To connect our modeling results to our empirical results, we next estimate various intensive

versus extensive margin changes. We separate hourly generation into five bins for each unit:

Off, Below Minimum Constraint, At Minimum Constraint, Between Minimum Constraint

and Maximum Capacity, and At Maximum Capacity. Then we count the number of units of

each fuel type in each bin in each hour, giving us a time series of bin-level counts for each

fuel type. Details of the data and variable construction are in the Appendix.

We regress the count of generators falling into each bin on the regulation requirement

and a vector of controls separately for each fuel/mover type. The regressions take the form:

Ni,t = α + βRt +XtΘ + εi,t (2)

where Ni,t is a count of units of fuel type i in hour t that have generation levels falling in

a particular bin (e.g., the number of coal boiler units at 5 a.m. on November 1, 2012 with

capacity factors below their minimum constraint). Again Rt is the regulation requirement

and Xt is a vector of controls (the same controls as in the generation regressions above).

42The fact that we see these non-linearities suggests that even within a given geographic region or broad
time period, one might expect to see heterogeneity in the impact of a change to the regulation requirement
across different levels of demand or different ex-ante levels of the regulation requirement itself. Unfortunately,
we have insufficient power for exploring this heterogeneity ourselves. But, future work could look at this
in depth with either additional sources of identifying variation or with additional simulations calibrated to
various markets.
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Standard errors are clustered by sample week.

Table 4 shows the results of these regressions for each of the three units types of interest:

boiler, combined cycle, and combustion turbine (results for “other” units are shown in the

Appendix, Table A12). These effects are in line with both the generation changes shown

in Table 1 and with the stylized model. Panel A shows that boilers are less likely to be at

their maximum (Column 5) and more likely to operate within their main operational range

(Column 4) when the regulation requirement is higher. Specifically, a 100 MW increase

in the regulation requirement causes one fewer units to be at maximum capacity. This is

consistent with this unit providing additional regulation, and needing its set point to be

below its maximum to have the flexibility for upward movements in response to a regulation

signal. It is also consistent with the boiler decreasing its energy provision to accommodate

additional energy provision by combined cycle plants.

Panel B shows that combined cycle units are more likely to be dispatched when the reg-

ulation requirement is higher. For every 100 MW additional regulation requirement, around

two combined cycle units are more likely to be dispatched and in their main operational

range (Column 4). This could be consistent either with dispatching with positive generation

to be able to themselves provide frequency regulation, or with needing to fill the gap left by

reduced boiler generation, shown in Panel A.

Panel C shows that combustion turbines are also more likely to be operating within their

main operational range, some combination of units being less likely to be off (Column 1)

and less likely to be at their maximum capacity (Column 5). This could be because they

move to the middle of their range to provide frequency regulation, because they are newly

dispatched to fill in for lost boiler generation, or some combination of both.

As shown in the Appendix, results are robust to an alternative construction of the mini-

mum constraint variable. Results are also robust to using ten bins, identically spaced across

the capacity of each unit (0 to 10 percent of capacity, 11 to 20 percent of capacity, etc.),

rather than a minimum constraint definition.

Overall, the primary effect we see when the regulation requirement is higher is that

more units operate within their main operational range, rather than being off or at the

maximum constraint. This is consistent with the stylized model in the previous section.

The magnitudes are also consistent with a back-of-the-envelope calculation of the number of

units that would be needed to provide 100 MW of regulation. Recall that the typical unit

can commit 10-20 percent of its capacity to regulation. In our sample, the average boiler or

combined cycle unit has a capacity of around 230-280 MW, implying that two to four units

would be needed to provide 100 MW of regulation. Combustion turbine units in our sample

have a capacity of around 80 MW, so more of these plants would be needed to provide the

29



Table 4: The Regulation Requirement and Extensive Versus Intensive Margins

Panel A. Boilers Off Below min At min Above min At max

Regulation requirement, 100 MW 0.30 0.16 -0.09 0.66 -1.03**
(0.97) (0.15) (0.35) (0.81) (0.39)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.77 0.17 0.41 0.50 0.79
Mean of dep. var. 199 5 11 99 29

Panel B. Combined Cycle Plants Off Below min At min Above min At max

Regulation requirement, 100 MW -1.71** -0.46* 0.13 2.40*** -0.36*
(0.80) (0.27) (0.21) (0.65) (0.21)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.65 0.28 0.13 0.62 0.35
Mean of dep. var. 56 13 9 55 2

Panel C. Combustion Turbines Off Below min At min Above min At max

Regulation requirement, 100 MW -1.63 -0.04 0.29 2.55 -1.17**
(2.98) (0.42) (0.29) (2.13) (0.49)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.48 0.31 0.28 0.45 0.22
Mean of dep. var. 410 3 1 8 1

Note: This table shows estimates from 15 separate regressions. The dependent variable is a variable
representing the count of units of each type generating at each level in PJM. The unit of analysis is
an hour. Effects for other unit types are shown in the Appendix, Table A12. Standard errors are
clustered by sample week.

same amount of regulation.

We see empirically that generators behave in intuitive ways along both the intensive and

extensive margins when the regulation requirement is exogenously changed. Because they

are multi-product firms, they adjust their outputs in multiple markets. Indeed, recall that

one of the motivations behind the policy changes to the regulation requirement was to allow

more resources to move their availability from the regulation market to the energy market

(Section 4). Moreover, minimum and maximum constraints can lead to changes in the energy

market that are outsized in comparison with the change in the regulation requirement.
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7 Implications for Battery Deployment

Our results on frequency regulation markets have important implications for utility-scale

battery storage. There is a growing interest in using energy storage, including batteries,

flywheels, and loads coordinated to behave like storage, to help operate the electrical grid.

While the energy economics literature has focused on the use of batteries for arbitrage, bat-

teries can also be used to provide ancillary services such as frequency regulation (Department

of Energy, 2013; International Renewable Energy Agency, 2017; Deloitte, 2018; Ryan et al.,

2018). Utility-scale batteries, typically sized at 1 to 10 MW,43 can charge and discharge

according to an operator’s command. This can be used for intertemporal arbitrage, for in-

stance to charge when demand is low (at night) and discharge when demand is high (the

late afternoon). It can also be used at a faster timescale, to provide grid reliability services.

Batteries are often better-suited to provide frequency regulation than are conventional gen-

erators, since they are able to very quickly and accurately respond to the system operator’s

regulation signal.

PJM has been at the forefront of incorporating storage into ancillary service markets;

storage providers found the RegD system particularly lucrative when it was first introduced.44

Indeed, nearly all storage capacity in PJM is built for the provision of frequency regulation.

While the academic literature in economics has focused on storage for energy market arbi-

trage, 22 of PJM’s 27 facilities list “frequency regulation” as a service; only five facilities

list “load management” and just one lists “arbitrage” as a service, according to Energy

Information Administration data.45

Storage for frequency regulation or other ancillary services has been investigated in

the academic literature through an engineering lens;46 via a techno-economic model;47 and

through a theoretical economics lens.48 These papers have generally focused on the private

incentives of operators using storage for frequency regulation, and have not documented

the emissions impacts of storage used for frequency regulation. Lin, Johnson and Mathieu

(2019); Ryan et al. (2018) examine emissions impacts of using storage for frequency reg-

43EIA-860 data for 2018 give the 25th and 75th percentiles nationwide as 1 and 10 MW. For PJM, the
25th and 75th percentiles are 2 and 20 MW. The largest battery listed is 40 MW.

44See Maloney (2017), “Is the bloom off the RegD rose for battery storage in PJM?” in Utility Dive, https:
//www.utilitydive.com/news/is-the-bloom-off-the-regd-rose-for-battery-storage-in-pjm/

503793/.
45Source: EIA-860 data for 2018.
46See Castillo and Gayme (2013); Mégel, Mathieu and Andersson (2013); Xi, Sioshansi and Marano (2014);

Cho and Kleit (2015); Mégel, Mathieu and Andersson (2015a,b); Moreno, Moreira and Strbac (2015); Wu
et al. (2015); De Sisternes, Jenkins and Botterud (2016); He et al. (2016); Busic, Hashmi and Meyn (2017);
Namor et al. (2018); Shi et al. (2018); Watson et al. (2018); Kern, Johnson and Mathieu (2019).

47See Stephan et al. (2016).
48See Cho and Kleit (2015).
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ulation using simple test systems, not calibrated to the PJM market, rather than ex-post

empirical evidence. Thus our results may be informative for providing novel empirical evi-

dence on the interaction between frequency regulation and energy markets, with implications

for battery deployment.

For instance, with respect to the operations of conventional generators, changes to the

regulation requirement over this period are analogous to the entry and exit of batteries used

for frequency regulation, where a decrease in the regulation requirement can be thought of as

the entry of a battery. Consider a battery entering the market in order to participate in the

regulation market. Suppose this battery is inframarginal – batteries generally have high fixed

costs but low marginal costs – and suppose that the battery does not participate in the energy

market (recall from above that batteries in PJM generally do not provide arbitrage in the

energy market). If this battery participates in each period, its entry represents a reduction in

the residual regulation requirement faced by conventional generators, by a magnitude equal

to the capacity of the battery. Hence, examining changes to the regulation requirement will

provide insights into how conventional generators are likely to respond to changes to their

residual regulation requirement, whether those changes are the result of policy or the entry

and exit of batteries.

Thus we expect, based on our analysis of the PJM regulation market, that the entry of

batteries in PJM would lead to generation mix changes and emissions changes in the energy

market. For the time period we study (2012-2014), we could infer that battery entry (akin

to a reduction in the regulation requirement) would lead to increased CO2 emissions, with

a gas to coal shift. However, caveats are in order. First, note that reducing the regulation

requirement for other generators could lead to a lowering of private generation costs; whether

or not this outweighs the external climate damages is an empirical question.

Moreover, recall that in the stylized model, we see that the changes in regulation can

have many potential impacts on the energy market. Thus our regression results are not

necessarily externally valid: the results cannot be simply extrapolated to alternative time

periods in PJM nor to other system operators. Different fuel costs or the secular retirements

of power plants could mean very different impacts of changes to the regulation market.49 In

particular, the retirement of coal plants may imply less fuel switching in recent years than

what we estimate for the 2012-2014 period in Table 2.

49Note we also expect two additional impacts of battery entry. Battery entry can impact the heat rates
of conventional generators, similar to how frequency regulation impacts the heat rate, a point we discuss in
Section 2. Furthermore, we note that batteries are net users of electricity (they do not have 100% round-
trip efficiency), and so their entry impacts the amount of conventional power plant generation required
(Department of Energy, 2016). This mechanism will not be captured with the regression approach we have
taken, which conditions on total quantity demanded across the system.
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Ideally, we would next empirically estimate the impact of battery entry into the frequency

regulation market in PJM. Empirical analysis is, unfortunately, limited in several ways.

First and most importantly, battery capacity over this time period essentially follows an

upward trend. Moreover, coal plants are retiring and there is a secular shift from coal to

gas nationwide in the electricity market. The simple correlation of the battery capacity

variable with a linear time trend is 0.9, as is the correlation between battery capacity and

coal retirements in PJM. Without additional variation, this will make it difficult to identify

the causal effect of changes in battery capacity.

One could instead leverage discontinuities in battery entry, similar to the approach taken

in Davis and Hausman (2016). However, the entry dates for new battery capacity differs

somewhat across the two government sources we observe, making us less confident in the

exact entry dates. Moreover, some of the entry dates coincide with coal plant retirement

dates. To address this uncertainty, we explore using a variable available from PJM: the

amount of self-scheduled RegD participating in the frequency regulation market. If one is

willing to assume that batteries self-schedule (and hydro may as well), but that combustion

turbines bid a non-zero marginal cost; and if one is willing to assume that batteries (and

hydro) participate in RegD whereas boilers and combined cycle units participate in RegA,

then the amount of self-scheduled RegD participating may serve as a useful proxy for battery

and hydro participation that crowds out fossil fuel generator participation.

A final identification challenge is that we have reason to suspect that the impact of battery

entry over the 2012-2018 time period is time-varying, based on documentation from the PJM

market monitor. The 2017 State of the Market describes that RegA was being used to offset

RegD movements.50 That is, for the latter part of our sample, it is possible that increased

battery capacity could lead to more regulation provided by conventional units, with batteries

and conventional plants moving in opposite directions to follow their respective regulation

signals.

All of these together make identification extremely challenging. With that caveat in

mind, in the Appendix we provide a series of empirical results. We regress generation by fuel

type (as we did in the previous sections) on battery capacity. We show results using both

indicators of battery capacity entry, which have slightly different dates, and the self-scheduled

RegD measure. Not surprisingly, the results are unstable in sign, magnitude, and statistical

significance across specifications. Moreover, in placebo regressions using generators in nearby

50Specifically, the report states: “PJM’s current regulation market design is severely flawed and does not
follow the appropriate basic design logic. . . RegA is now explicitly used to support the conditional energy
neutrality of RegD. The RegD signal is now the difference between ACE and RegA. RegA is required to
offset RegD when RegD moves in the opposite direction of that required by ACE control in order to permit
RegD to recharge” (pp 472-473).
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states, we see specifications with similar magnitudes. This is not surprising, given the

identification challenges described above.

In sum, our results have qualitatively important implications for battery deployment.

The generation mix changes that could result will have impacts on CO2 emissions. Future

empirical work in this area will be important as more batteries are deployed.

8 Discussion and Conclusion

Overall, we see that changes in the structure and makeup of the frequency regulation market

impact conventional generators that participate in the energy market. Specifically, we find

that for every additional 100 MW reduction in frequency regulation required of plants in

PJM, there is an approximately 400 MWh increased use of natural gas power plants in

the energy market, and a corresponding decrease in the use of coal and other units. This

leads to an increase in carbon emissions of 250 tons per hour, implying climate damages on

the order of $100 million or more per year. In this context, relaxing a constraint on the

system (the regulation requirement) can allow for a lower cost solution to the optimization

problem – but notably, the optimization problem in practice ignores external costs such as

CO2 emissions. The results are directionally robust to considering alternative controls and

various alternative specifications. Results also pass a series of placebo tests using generators

outside of the PJM market.

We use a simple model to demonstrate the mechanisms behind the observed generation

mix change. The model considers generators as multi-product suppliers, and makes the real-

istic assumption that units are constrained by non-zero minimum and maximum constraints.

With these assumptions, we show that policy and market changes can cause conventional

power plants to move from fully off to operating at non-negligible minimum load, and vice-

versa. These changes along the generators’ extensive margins can explain the magnitude

of our results. Moreover, our model and results suggest that generating units should be

thought of as multi-product firms participating in multiple markets, and that the concept of

a “marginal” firm is much more complex after considering both minimum constraints and

multiple markets.

Furthermore, we consider how changes in the frequency regulation market are related to

the entry and exit of batteries. While the academic economic literature has focused on energy

storage as an energy market arbitrage opportunity, the vast majority of batteries within PJM

(and the country) are used for frequency regulation and not for arbitrage. Changes to the

regulation requirement within PJM can be thought of as analogous to changes in battery

capacity available for frequency regulation. While identification challenges prevent us from
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directly measuring the impacts of battery entry and exit on conventional generators, the

generation mix change that occurs due to changes in the regulation requirement suggests

that battery entry might lead to increased CO2 emissions.

The direction of these results matches evidence in the engineering literature about the

entry of batteries in frequency regulation (Ryan et al., 2018). That research uses a unit

commitment and dispatch model of a small power system to show the life-cycle impacts

of batteries, and finds similar fuel switching. The magnitude of our results is larger than

that in Ryan et al. (2018). The magnitudes in this paper makes sense given what we find

for extensive margin changes in the number of plants participating in each market. Future

engineering work could build test systems that more closely match PJM parameters to

explore the difference between our magnitudes and those in Ryan et al. (2018). Effects of

the sort described above are expected to be sensitive to the size of the system and the number

of generators modeled in a unit commitment model. Such a test system could also allow for

simulations under alternative grid conditions, such as increased coal retirements, increased

deployment of renewables, etc.

Note that the magnitude and potentially the direction of these effects is context-specific,

as described in depth in Ryan et al. (2018). In different regions of the country, different fuel

types might be inframarginal and changes to the regulation requirement might have very

different impacts.51 In markets with carbon pricing, one would also expect very different

impacts. In addition, the long-term impact of batteries could be different from the short-

term impacts we measure. As batteries crowd conventional generators out of the regulation

market, the profitability of fossil-fuel fired plants could decline and some of these conventional

plants could be more likely to retire (and/or new conventional plants could be less likely

to enter). Whether this increases or decreases CO2 emissions in the long run of course

depends on whether profitability is impacted at coal or natural gas units. Future work could

investigate plant retirements in this context using modeling of the sort used in Linn and

McCormack (2019). Future work could also investigate how battery storage enables greater

deployment of intermittent renewables such as wind and solar generation.

However, this paper does demonstrate that ancillary markets and energy markets are far

more intertwined than economics researchers might have previously thought. The structure

and policy details of ancillary service markets have important impacts for generators and

for the energy market, and more careful research across the country is necessary to better

understand these complexities in different settings. Future economics research could use

structural methods to estimate power plant costs in both markets and evaluate market

51For related mechanisms in the context of wind energy, see Callaway, Fowlie and McCormick (2018); in
the electric vehicle context, see Holland et al. (2016a,b).
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power after accounting for the existence of both minimum constraints and multiple markets.

Finally, while our results point to the possibility that batteries lead to increased CO2

emissions, the results are not to say that batteries are in general harmful for climate change.

First, as described above, the results are specific to a particular set of costs across fossil fuel

fired plants. Moreover, they are specific to a second-best world in which CO2 emissions are

not priced. Finally, batteries may be desirable for supporting renewables integration and

thus decreasing emissions. However the results do point towards the complexities inherent

in designing second-best greenhouse gas abatement policy. As policy-makers continue to

grapple with whether and how to support batteries and other new technologies, the realities

of the electrical grid and its markets cannot be ignored.
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A1 Appendix

A1.1 Data Appendix

A1.1.1 Gross to Net Conversion

As described in the main text, we must re-scale the CEMS-reported hourly generation to

account for both in-house load and incomplete reporting of combined cycle units. Specifically,

we do as follows.

In the EIA-923 dataset, we observe annual generation by plant. While EIA-923 reports

monthly generation, it is imputed for some units. Thus we focus on the annual generation

variable, which is not imputed. EIA-923 reports generation at a somewhat finer scale: prime

mover by fuel type within a plant (e.g., aggregating across all coal boilers within a plant).

However, we are most confident in the matching at the plant level as opposed to the prime

mover by fuel type level, since there may be some differences in the reporting of technology

between EIA and CEMS.

We merge annual CEMS data with annual EIA data at the plant level. For each plant-

year, we calculate the ratio of net to gross generation. At plant-year combinations with small

generation quantities, this may lead to outliers, so we take the median across years for each

plant. We also winsorize the upper and lower 2% to deal with outliers – the 2nd percentile is

0.4 and the 98th percentile is 2.3. Across all electrical generating units in PJM, the median

is 0.95, fairly consistent with (Cicala, 2017). The median for boilers is 0.92. The median

for combustion turbines is 0.98. The distribution for combined cycles is bimodal, with one

mass at around 0.97 (consistent with reporting both cycles) and one mass at around 1.5

(consistent with reporting only one cycle).

A1.1.2 Minimum Constraints

First, we estimate the minimum constraint for each generator, using EIA-860 data on mini-

mum operational constraints. We observe reported minimum operational constraints for the

years 2013-2014; they are not reported in the 2012 EIA-860. Unfortunately, a comprehensive

merge between EIA-860 and CEMS at the unit level does not exist. However, merging at the

plant level, or even at the plant by prime mover by fuel type level, is straightforward. Accord-

ingly, we bring in minimum operational data as follows. For around half of generator-year

combinations at electrical generating units in PJM, the minimum operational constraint

is the same across all units within a plant (when expressed as a percentage of maximum

capacity), so merging at the plant level is appropriate. For the remaining generator-year

combinations, we use the median operational constraint within the plant at the prime mover
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by fuel type level. Some units (representing 3% of generation) do not appear in the mini-

mum constraints data in EIA-860, and for these units we use the median constraint by prime

mover and fuel type across all PJM plants.

Example plots of hourly capacity factors show that these minimum constraints are visible

in hourly data (Figure A3). Here we show nine histograms – one unit at three large plants

for each of our three main technology types. A vertical black line depicts the minimum

operational load in EIA-860 data. For most of these units, the vertical line is close to a

discontinuity in the hourly histogram.

However, in a robustness check, we construct an alternative minimum operational load

using the unit-level observed behavior, as follows. We calculate the portion of hours a plant

is generating at a capacity factor of 0, a capacity factor between 0 and 10 percent, between

10 and 20 percent, etc. We then use as the minimum operational load whatever is the

smallest bin in which at least 5 percent of non-zero generating hours fall. This is a proxy

for the discontinuities observed visually in the histograms. We generally calculate minimum

operational loads of around 40 to 60 percent for the boilers and CC plants, although we also

observe units with a very small minimum constraint (0-10% of capacity), especially for the

CT units. (Regression results using this alternative minimum constraint measure are shown

in Table A13.)

Once we have a measure of minimum constraints for each unit, we proceed as follows.

We calculate the capacity factor of each unit in each hour, defined as net generation divided

by maximum observed generation. We then place each unit-hour observation into one of five

bins: Off (capacity factor of zero), Below Minimum Constraint (capacity factor between 0%

and less than 5% of the minimum constraint to maximum capacity ratio), At Minimum Con-

straint (capacity factor within 5% of the minimum to maximum ratio), Between Minimum

Constraint and Maximum Capacity, and At Maximum Capacity (capacity factor between

95% and 100%).

A1.1.3 RegD Data for Battery Regressions

While our data do not allow us to directly identify battery participation in the regula-

tion market, we can draw some inferences based on the technical capabilities of batteries.

First, PJM documentation implies that batteries participate exclusively in RegD rather than

RegA.52

52See, e.g., the 2015 presentation “Performance, Mileage and the Mileage Ratio”
at https://www.pjm.com/-/media/committees-groups/task-forces/rmistf/20151111/

20151111-item-05-performance-based-regulation-concepts.ashx, or Figure 10-19 in the 2015
State of the Market report, at http://www.monitoringanalytics.com/reports/PJM_State_of_the_

Market/2015/2015-som-pjm-volume2-sec10.pdf.
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Second, because batteries typically have very low marginal costs and because there is no

evidence of market power exertion in regulation markets,53 we infer that batteries typically

use self-scheduling, rather than pool procurement. It is possible that units will switch in

and out of self-scheduling and pool procurement, as a function of activity in the energy

market. To address this, we use the daily maximum of self-scheduled RegD provision as our

independent variable. As Figure A4 shows, this measure experiences a number of discrete

large jumps over this time period, consistent with the entry of new batteries. However, we

note that the results in Table A15 should be taken as only suggestive because of the data

limitations in this setting.

A1.1.4 Fuel Types and Unit Types

From CEMS, we observe fuel types and unit types. The raw CEMS data lists 37 unique

primary fuel types. The most common are coal, pipeline natural gas, and diesel oil. Less

common categories include, e.g., “residual oil” “process gas,” “wood,” etc., as well as com-

binations of these fuels, e.g., “coal, natural gas.” We generate four categories: “coal” (which

aggregates across coal as well as a small number of units using “coal refuse” or “petroleum

coke”), “pipeline gas” + “natural gas,” “oil” (diesel, residual, or other oil), and “other,”

where “other” aggregates across, e.g., wood, units listing combinations of fuels, and units

for which we do not have a fuel type.

The raw CEMS data similarly lists 22 different technology types, with the most common

being “combustion turbine”, “dry bottom wall-fired boiler,” and “combined cycle.” We

generate four categories: “boiler” (an aggregation of all boilers, stokers, and tangentially-

fired units), “combined cycle,” “combustion turbine,” and “other.” The latter includes a

small number of other technology types, a small number with unreported technology type,

and some units that changed technology over this 2012-2014 sample.

For our 2012-2014 sample, total gross generation by category is shown in Table A1.

A1.1.5 CEMS Versus EIA Generation Data

In addition to the net-versus-gross distinction described above, the CEMS and EIA data

differ in their coverage across plants. EIA data include hydro, nuclear, solar, wind units,

etc. EIA data also include small coal, gas, and oil units not in CEMS. Total generation

by fuel type can be compared in Tables A1 and A2. The difference between CEMS and

EIA data is accounted for by the “residual” generation variable we construct, equal to the

53See, e.g., the 2019 State of the Market report, at http://www.monitoringanalytics.com/reports/

PJM_State_of_the_Market/2019/2019-som-pjm-sec10.pdf.
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Table A1: Total Annual Generation by Unit Type, CEMS Data, 2012-2014

Unit Type Generation, TWh

Coal, Boiler 347
NG, CC 127
NG, CT 8
Switch 4
Oil, Boiler 3
Oil, CC 2
NG, Boiler <1
Oil, CT <1
Other, Boiler <1

Note: This table shows annual gener-
ation over 2012-2014 for the aggrega-
tions of fuel by technology type that
we have used. Data coverage is all
CEMS-reporting electrical generating
units in PJM. Data source is CEMS
for generation, fuel type, technology
type; and EIA for electrical generat-
ing unit designation and PJM desig-
nation.

difference between total demand reported by PJM and total generation reported in CEMS.

This residual variable thus captures the behavior of nuclear, etc. units; as well as in-house

load and imports and exports between PJM and other ISO/RTOs.

A1.1.6 Hour Naming Conventions

PJM data are reported in both Coordinated Universal Time (UTC) and Eastern Prevail-

ing Time (EPT). CEMS data, in contrast, are reported in local, standard time (Central or

Eastern, depending on the plant’s location). We convert all PJM data to Eastern Standard

Time (EST). For CEMS units in Illinois and parts of Indiana, Kentucky, Michigan, and Ten-

nessee, we convert from Central Standard Time (CST) to Eastern Standard Time. Thus all

regressions use variables in Eastern Standard Time. Regression results (Table A7, Columns

6 and 11) are similar if one uses the raw data, mixing EPT, CST, and EST across variables

and plants.

A1.1.7 Other

We drop one hour (5 a.m. on April 2, 2013) when the regulation requirement is listed as

zero. This represents less than 0.01 percent of our sample (19,689 hours).
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Table A2: Total Annual Generation by Fuel Type, EIA Data, 2012-2014

Unit Type PJM Generation, TWh
Coal 336
Nuclear 276
Natural Gas 142
Wind 16
Waste Coal 9
Hydroelectric Conventional 7
Biogenic Municipal Solid Waste and Landfill Gas 5
Distillate Petroleum 2
Other (including nonbiogenic MSW) 1.8
Petroleum Coke 1
Wood and Wood Waste 0.9
Other Gases 0.7
Solar PV and thermal 0.6
Residual Petroleum 0.3
Waste Oil 0.2
Other Renewables <0.01
Hydroelectric Pumped Storage -2

Note: This table shows annual generation over 2012-2014. Data coverage is all
PJM units in EIA-923 data operating as independent power producers or elec-
tric utilities. Data source is EIA for generation, fuel type, sector, and PJM
designation.

A1.2 Simulated Dataset to Illustrate the Identification Strategy

As is shown in Figure 2 in the main text, and discussed in Section 4.1, the bulk of our

identifying variation comes from a policy change mid-way through our sample, in which the

regulation requirement changes from being a function of forecasted peak and valley load

(which change daily) to a flat requirement (albeit with separate levels in peak versus off-

peak hours). In addition, as a secondary source of variation, we leverage two policy changes

that modified the multiplier used to convert from forecasted peak and valley load to the

regulation requirement

Thus, the second half of our sample, during which the regulation requirement does not

vary across days, allows us to identify the effects of control variables (including the forecasted

peak and valley load, as well as other things that may be correlated with these forecasts)

separately from the effects of the regulation requirement, our variable of interest.

To illustrate how this works, we conduct a simulation in which we directly control the

data-generating process. We set our sample size to 20,000, roughly equal to the sample size

in Tables 1 and 2. We construct a peak forecast variable, normally distributed with mean

zero and standard deviation equal to one.54 We then construct a treatment variable, equal

to the peak forecast variable in the first half of the sample and equal to zero in the second

half, as shown in Figure A1. The outcome variable is a function of a constant, the peak

54For simplicity, we use only a peak forecast variable and not separate peak and valley forecasts across
hours.
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forecast, the treatment variable, and random noise (also normally distributed with mean

zero and standard deviation equal to one):

yt ≡ 1 + 1 · peakt + 1 · treatmentt + εt.

A successful identification strategy will thus recover a coefficient on the peak variable

equal to one, and a coefficient on the treatment variable equal to one. Table A3 illustrates a

series of regressions. In Column 1, the regression is correctly specified, including the entire

sample and controlling for the peak forecast variable. As expected, all three coefficients are

estimated to be 1.0, with a high degree of precision.

Columns 2 through 5 illustrate how identification is achieved by displaying specifications

that are not identified. In Column 2, only the first half of the sample is included. Thus

the effects of the peak forecast and treatment variable cannot be estimated. The software

has dropped the coefficient on the treatment variable because of perfect collinearity, and the

effects of both variables have been rolled into the coefficient on “Peak,” which is now biased

upwards.

In Column 3, only the second half of the sample is included. The software has again

dropped the coefficient on the treatment variable because of perfect collinearity. The effect

of the peak forecast variable can be correctly estimated, but the treatment effect of interest

cannot be recovered.

In Column 4, the entire sample is included, but the crucial “Peak” control has been left

out by the researcher. Again, the effects of both variables have been rolled into the coefficient

on “Peak,” which is now biased upwards.

Columns 2 through 4 thus show how having the policy change as well as the peak control

variable are the crucial components for identification. The second half of the sample allows

the researcher to estimate the “Peak” effect, which can then be controlled for to allow the

researcher to estimate the “Treatment” effect. This is comparable to our main specification

in Tables 1 and 2, for which we observe a policy change mid-way through the sample, and

where we know (both based on policy documentation and what we observe in the data itself)

that the treatment variable is a direct multiplier of the peak variable.

Finally, Column 5 illustrates that identification is not achieved via just a simple pre/post

comparison. In this example, the mean level of the treatment variable has not changed from

the pre-period to the post-period, and indeed a simple regression on a post-period dummy

would not uncover the coefficient of interest.
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Figure A1: Treatment Variable for Simulation
of Identification Strategy

Note: This figure shows the treatment variable constructed for
the simulation exercise. It is normally distributed with mean
zero and standard deviation equal to one for the first part of the
sample, and it is equal to zero for the second part of the sample.

Table A3: Simulated Dataset to Illustrate the Identification Strategy

Correctly specified First half Second half Dropping peak control Only dummy

Treatment 0.99*** 1.99***
(0.01) (0.01)

Peak 1.01*** 1.99*** 1.01***
(0.01) (0.01) (0.01)

Post dummy -0.01
(0.03)

Constant 1.01*** 1.02*** 1.01*** 1.01*** 1.01***
(0.01) (0.01) (0.01) (0.01) (0.02)

Observations 20,000 10,000 10,000 20,000 20,000
R2 0.72 0.80 0.50 0.57 0.00

Note: This table shows five regressions using a simulated dataset constructed by the researchers. The true data-
generating process is yt ≡ 1 + 1 · peakt + 1 · treatmentt + εt, where “peak” and ε are each normally distributed
with mean zero and standard deviation equal to one. The “treatment” variable is equal to “peak” in the first
half of the sample and equal to zero in the second half. The first Column includes the entire sample and both the
Treatment variable of interest and the Peak control variable; it correctly uncovers all three coefficients. This col-
umn mimics the identification strategy used in the main text for the impact of the regulation requirement on the
generation mix. Dropping either half of the data or not including the “Peak” control leads to mis-specification,
as shown in the second through fourth columns. Estimation using a only a post-period dummy is not possible,
as the mean value of the Treatment variable is constant throughout the sample, as shown in the last column.
***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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A1.3 Additional Tables and Figures

This section contains additional tables and figures referenced in the text, including summary

statistics, robustness checks, etc.

Figure A2: Monthly Generation

Note: This figure shows monthly generation by unit type for
PJM units that appear in CEMS data. Vertical lines display
our primary sample window (October 2012 through December
2014).
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Figure A3: Minimum Constraints

Note: These are nine units at large plants, three for each technology type. The top row shows three
coal-fired boilers, with the plant id and unit id given at the top of each histogram. The second row
shows natural gas combined cycle plants, and the bottom row shows natural gas combustion turbines.
In the bottom row, zeros are not displayed – because CTs operate infrequently, displaying zeros makes
it difficult to visualize the non-zero portion of the histogram. Vertical lines are placed at the minimum
operating constraint constructed from EIA data (which in some cases is a plant-level proxy, rather
than measured at the individual unit level - that may be why some panels appear to show measurement
error). See Appendix text for details.

Figure A4: RegD

Note: The left-hand panel show the total amount of self-scheduled and pool-procured RegD at the hourly level. While discrete
jumps (perhaps from policy changes or from battery entry) and a general trend upwards (consistent with increasing battery
deployment) are observed, it is clear that total RegD is not driven solely by the contribution of new batteries. The right-hand
panel plots the daily maximum MW of self-scheduled RegD, for which the discrete jumps are clearer. Data source is PJM.
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Table A4: Summary Statistics

Mean Std. Dev. N

Regulation requirement, 100 MW 6.78 1.06 19693
Generation, by technology:

Boilers, MWh 40184.7 8233.9 19728
Combined cycle, MWh 14289.3 3635.1 19728
Combustin turbine, MWh 847.9 1923.4 19728
Other unit types in CEMS, MWh 553.4 294.7 19728

Generation, by fuel type:
Coal generation, MWh 39818.1 7934.4 19728
Natural gas generation, MWh 14906.0 4836.5 19728
Oil generation, MWh 570.1 699.0 19728
Other fuel types in CEMS, MWh 581.0 295.1 19728

CEMS CO2 emissions, tons 45215.2 9378.2 19728
Wind generation, MWh 1721.4 1118.9 19723
Generation not in CEMS, MWh 34044.3 4568.1 19728
PJM load, MWh 89919.5 15730.8 19728
Peak forecast, in peak hours, MWh 104021.8 15040.0 15618
Valley forecast, in off-peak hours, MWh 74386.2 10460.2 4106
Coal steam retirements, MW 2536.5 2027.1 19728
Natural gas CT retirements, MW 38.6 65.2 19728
Other retirements, MW 412.7 305.0 19728
Henry hub natural gas price 3.97 0.64 19728
Oil price 94.7 10.3 19728
Cooling degree days in Philadelphia 3.15 5.29 19728
Heating degree days in Philadelphia 13.1 13.5 19728

Note: Data cover the period October 1, 2012 through December 31, 2014.
Unit of observation is one hour. Data sources: PJM, EPA, and EIA. Peak and
valley forecasts apply only in the peak (4 a.m. to midnight) and valley (mid-
night to 4 am) hours, respectively. A small number of observations (<1%)
are missing for the regulation requirement, wind generation, and peak/valley
forecast variables.
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Table A5: Displaying Control Coefficients: The Impact of the Regulation Requirement on
the Energy Market

Boiler CC CT Other
Regulation requirement, 100 MW -363.77** 390.50** -0.08 -26.65

(180.17) (149.86) (184.69) (19.95)
PJM load, MWh -0.17*** 0.02 0.16*** -0.00

(0.02) (0.02) (0.02) (0.00)
CEMS units generation, MWh 0.77*** 0.23*** -0.01 0.01**

(0.02) (0.02) (0.01) (0.00)
Peak forecast, in peak hours, MWh 0.03*** -0.01 -0.02*** 0.00**

(0.01) (0.01) (0.01) (0.00)
Valley forecast, in off-peak hours, MWh 0.04*** -0.00 -0.04*** 0.00*

(0.01) (0.01) (0.01) (0.00)
Coal steam retirements, MW -0.21 0.12 -0.03 0.12**

(0.45) (0.38) (0.19) (0.06)
Natural gas CT retirements, MW 45.04* -61.24*** 12.36 3.84

(24.70) (21.54) (10.66) (2.79)
Other retirements, MW -16.90** 21.02*** -3.23 -0.89

(7.15) (6.09) (3.29) (0.84)
Time trend 13.08*** -16.34*** 2.50 0.76

(3.92) (3.65) (1.83) (0.49)
Time trend, quadratic (centered) -0.01 0.01 0.00 -0.00

(0.00) (0.00) (0.00) (0.00)
Primary reserve req., RTO-wide, MW 1.27 -0.14 -1.34*** 0.22*

(0.94) (0.93) (0.44) (0.11)
Synchronized reserve req., RTO-wide, MW 0.04 -0.25 0.27 -0.06

(0.62) (0.59) (0.22) (0.06)
Primary reserve req., MAD sub-zone, MW -0.05 -2.94 3.29*** -0.31**

(1.83) (2.04) (0.87) (0.15)
Synchronized reserve req., MAD sub-zone, MW -0.76 2.31 -1.67*** 0.11

(1.25) (1.47) (0.59) (0.11)
Dummy, equal to one beginning December 1, 2013 -1541.75 2485.22* -618.14 -325.33

(1536.36) (1340.05) (775.01) (211.25)
Henry hub price 714.91*** -788.21*** 134.91 -61.61**

(265.76) (246.78) (135.15) (24.44)
WTI price 18.89 -31.10 8.64 3.57

(23.33) (19.03) (11.69) (3.38)
Cooling degree days in Philadelphia 6.41 -26.92 21.63 -1.11

(24.07) (19.73) (16.57) (3.46)
Heating degree days in Philadelphia 20.63** 6.57 -29.14*** 1.94

(10.32) (9.96) (9.25) (2.00)
Observations 19,680 19,680 19,680 19,680
Within R2 0.92 0.71 0.49 0.56

Note: This table shows coefficients on the control variables for the regression results shown in the main
text in Table 1. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Table A6: Displaying Control Coefficients: The Impact of the Regulation Requirement on
the Energy Market

Coal NG Oil Other CO2
Regulation requirement, 100 MW -313.87 441.35** -101.43 -26.05 -246.10***

(215.79) (181.94) (63.50) (19.86) (81.83)
PJM load, MWh -0.21*** 0.17*** 0.04*** -0.00 -0.06***

(0.02) (0.02) (0.01) (0.00) (0.01)
CEMS units generation, MWh 0.78*** 0.22*** -0.01* 0.01** 0.80***

(0.03) (0.02) (0.01) (0.00) (0.01)
Peak forecast, in peak hours, MWh 0.02 -0.03*** 0.01*** 0.00** 0.03***

(0.01) (0.01) (0.00) (0.00) (0.00)
Valley forecast, in off-peak hours, MWh 0.02** -0.04*** 0.01*** 0.00* 0.03***

(0.01) (0.01) (0.00) (0.00) (0.01)
Coal steam retirements, MW -0.31 0.16 0.04 0.12** -0.07

(0.47) (0.46) (0.11) (0.06) (0.25)
Natural gas CT retirements, MW 35.04 -46.36* 7.51 3.81 35.74***

(25.49) (24.86) (5.15) (2.80) (13.13)
Other retirements, MW -14.50* 17.16** -1.78 -0.87 -12.52***

(7.50) (7.28) (1.52) (0.84) (3.94)
Time trend 12.85*** -13.52*** -0.09 0.76 8.32***

(3.98) (3.99) (0.84) (0.49) (2.21)
Time trend, quadratic (centered) -0.01 0.01 -0.00 -0.00 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Primary reserve req., RTO-wide, MW 1.73* -1.81* -0.13 0.21* 0.90*

(0.94) (1.01) (0.18) (0.11) (0.53)
Synchronized reserve req., RTO-wide, MW -0.02 0.14 -0.06 -0.05 -0.35

(0.62) (0.67) (0.10) (0.06) (0.34)
Primary reserve req., MAD sub-zone, MW -1.18 0.62 0.88* -0.31** 0.49

(1.61) (1.80) (0.47) (0.15) (0.95)
Synchronized reserve req., MAD sub-zone, MW -0.15 0.49 -0.46 0.11 -0.47

(1.08) (1.27) (0.35) (0.11) (0.67)
Dummy, equal to one beginning December 1, 2013 -1605.04 1790.00 142.99 -327.94 -1484.04*

(1609.00) (1550.62) (351.41) (211.12) (865.12)
Henry hub price 755.19*** -633.47** -62.11 -59.61** 596.01***

(260.94) (250.87) (72.25) (24.75) (152.98)
WTI price 26.45 -27.28 -2.80 3.63 18.61

(25.05) (23.64) (5.04) (3.38) (12.38)
Cooling degree days in Philadelphia -22.81 5.04 18.77*** -1.00 28.72**

(26.20) (24.65) (6.86) (3.45) (13.07)
Heating degree days in Philadelphia 28.78** -25.59** -5.10 1.92 6.43

(11.71) (10.70) (3.94) (2.00) (6.47)
Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.90 0.82 0.46 0.56 0.98

Note: This table shows coefficients on the control variables for the regression results shown in the main text in Table 2.
***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Figure A5: Robustness to Fewer Controls: The Impact of the Regulation Requirement on
the Energy Market

Note: These figures show histograms of the estimated treatment effect of interest when various covariates are dropped, for
comparison with the regressions displayed in the main text in Tables 1 and 2. All specifications control for peak and valley
forecasts, but we loop over every other combination of control variables. To simplify somewhat, we group together some of the
covariates (for instance, if we include cooling degree days, we also include heating degree days). We estimate nearly 25,000
specifications for each outcome variable. Red lines display the estimates from the main text, Tables 1 and 2. Black lines
show the 95 percent confidence intervals from those specifications. Orange lines show the estimate from the sparsest possible
specification, which controls only for peak and valley forecasts.
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Table A8: Alternative CO2 Measurement: The Impact of the Regulation Requirement on
the Energy Market

Panel A. CO2 Variable in Main Text, Metric Tons
Coal NG Oil Other Total

Regulation requirement, 100 MW -331* 156 -76 5 -246***
(195) (112) (51) (7) (82)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.90 0.79 0.44 0.43 0.98

Panel B. CO2 as Reported, Metric Tons

Regulation requirement, 100 MW -336* 128 -71 1 -278***
(194) (112) (48) (7) (83)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.90 0.78 0.45 0.47 0.98

Panel C. Using Unit-Level Emissions Rates, Metric Tons

Regulation requirement, 100 MW -333* 185* -71 -0 -219***
(193) (108) (50) (7) (80)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.90 0.79 0.45 0.43 0.98

Note: Panel A shows the CO2 emissions results by fuel type (Columns 1 through 4)
and aggregated (Column 5), matching the specifications used in the main text, Table
2. Panel B shows analogous specifications, but using CEMS-reported CO2 emissions
(which are occasionally missing) rather than emissions constructed from the heat input
variable. Panel C uses the unit-level emissions rate for all hours, not just hours with
missing CO2 data. All panels are reported in metric tons (i.e., in Panel B we convert
CEMS-reported short tons into metric tons). ***, **, * indicate significance at the 1%
and 5% and 10% level, respectively.
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Table A9: Placebo and Residual Units: The Impact of the Regulation Requirement on the
Energy Market

Non-PJM Non-PJM Non-PJM Non-PJM PJM PJM PJM
Coal NG Oil Other Comm+Ind Wind Residual

Regulation requirement, 100 MW 310.1 25.9 -15.5 -2.7 -7.1 -125.9* 243.9
(211.5) (141.2) (17.3) (5.0) (8.0) (75.1) (185.2)

Load controls Yes Yes Yes Yes Yes Yes Yes
Other reserves controls Yes Yes Yes Yes Yes Yes Yes
Retirement controls Yes Yes Yes Yes Yes Yes Yes
Quadratic time trend Yes Yes Yes Yes Yes Yes Yes
Fuel price controls Yes Yes Yes Yes Yes Yes No
Weather controls Yes Yes Yes Yes Yes Yes No
Month, day of week, and hour effects Yes Yes Yes Yes Yes Yes Yes
Observations 19,680 19,680 19,680 19,680 19,680 19,679 19,680
Within R2 0.71 0.68 0.14 0.32 0.32 0.18 0.53

Note: This table shows estimates from seven separate regressions, analogous to those presented in the main text, Tables 1 and
2. The dependent variable in the first four columns is MWh of electricity generated per hour for the electrical generating units
that are located in PJM states but are not part of PJM; see footnote 30. The dependent variable in the fifth column is MWh
of electricity generated by commercial and industrial units in PJM. The dependent variable in the sixth column is MWh of wind
generation in PJM. The dependent variable in the seventh column is the difference between PJM-wide demand and the generation
reported by electrical generating units in CEMS; this accounts for fuel types not in CEMS (nuclear, wind, solar, etc.), small units
not in CEMS, and net imports. The unit of analysis is an hour. ***, **, * indicate significance at the 1% and 5% and 10% level,
respectively. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Table A10: Specifications with Two-Way Fixed Effects

Panel A. Time Effects, Location Effects, and Peak/Valley Forecast Controls
Boiler CC CT Other tech Coal NG Oil Other fuel CO2

Reg. req., 100 MW, in PJM -478 331* 80 -125*** -471 371 20 -111*** -256
(374) (190) (151) (27) (381) (233) (81) (28) (370)

Observations 39,388 39,388 39,388 39,388 39,388 39,388 39,388 39,388 39,388
Within R2 0.22 0.38 0.10 0.24 0.16 0.41 0.28 0.19 0.35

Panel B. Plus Additional Controls
Boiler CC CT Other tech Coal NG Oil Other fuel CO2

Reg. req., 100 MW, in PJM -230 285* -45 -9 -111 245 -127* -7 -124
(145) (171) (119) (18) (155) (151) (65) (20) (114)

Observations 39,360 39,360 39,360 39,360 39,360 39,360 39,360 39,360 39,360
Within R2 0.83 0.67 0.27 0.61 0.82 0.74 0.49 0.54 0.94

Note: Panel A shows specifications in which plants in nearby states (see footnote 30) serve as controls. The unit of observation
is an hour in a region (PJM, or nearby states grouped together). The variable of interest takes on the value of the regulation
requirement in PJM, and a value of zero in nearby states, as the regulation requirement does not directly affect them. Controls
are: hour-of-sample effects, region effects, and two interaction variables. These latter controls are (1) peak forecasted load in-
teracted with a PJM dummy, and valley forecasted load interacted with a PJM dummy; these may be important for removing
bias as the regulation requirement is a direct function of these forecasts in the first half of the sample. Panel B includes the
same controls, but also adds all the controls from the main specification in Tables 1 and 2 interacted with a PJM dummy for
additional precision. As shown when moving from Panel A to Panel B, these additional controls aid with precision even in the
two-way fixed effects specification. This is intuitive if the response to control variables such as the natural gas price varies be-
tween regions, in which case hour of sample effects will not fully account for the natural gas price effect across the two regions.
This limitation of the two-way fixed effects specification – it is still aided by additional control variables – combined with the
fact that identification is less transparent than it is in the time-series regression, is why our primary specification in the main
text is a time-series regression. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Table A11: Four-Unit Model

Generation in Equilibrium Regulation in Equilibrium

Regulation Unit A, Unit B, Unit C, Unit D, Unit A, Unit B, Unit C, Unit D,
Requirement $35/MWh $37/MWh $40/MWh $60/MWh $5/MW $6/MW $7/MW $10/MW

500 25000 24550 0 450 0 450 0 50
550 25000 24525 0 475 0 475 0 75
599 25000 24500.5 0 499.5 0 499.5 0 99.5
600 25000 24500 0 500 0 500 0 100
601 24999.5 24500 0 500.5 0.5 500 0 100.5
602 24999 24500 0 501 1 500 0 101
610 24995 24500 0 505 5 500 0 105
615 24992.5 24500 0 507.5 7.5 500 0 107.5
616 24884 21116 4000 0 116 500 0 0
620 24880 21120 4000 0 120 500 0 0
624 24876 21124 4000 0 124 500 0 0
625 24875 21125 4000 0 125 500 0 0
650 24850 21150 4000 0 150 500 0 0
675 24825 21175 4000 0 175 500 0 0
700 24800 21200 4000 0 200 500 0 0
750 24750 21250 4000 0 250 500 0 0
800 24700 21300 4000 0 300 500 0 0
850 24650 21350 4000 0 350 500 0 0
900 24600 21400 4000 0 400 500 0 0
950 24550 21450 4000 0 450 500 0 0
999 24501 21499 4000 0 499 500 0 0
1000 24500 21500 4000 0 500 500 0 0
1001 24500 21499 4001 0 500 500 1 0
1050 24500 21450 4050 0 500 500 50 0
1100 24500 21400 4100 0 500 500 100 0
1150 24500 21350 4150 0 500 500 150 0
1200 24500 21300 4200 0 500 500 200 0

Note: Table A11 lists the equilibrium results for a four-unit model with energy and regulation output. Units A, B,
and C face a maximum capacity of 25,000 MW each. They also face a minimum constraint, when generating, of
4,000 MW. Unit D faces a maximum capacity of 25,000 MW and a minimum when generating of 400 MW. (This
lower minimum operational constraint is meant to represent the fact that the peaking portion of the electricity mar-
ket is made up of many small peaker units that can each be dispatched at quite small levels of generation.) Marginal
costs of energy and regulation provision are listed in the table. For both services, Unit A is cheapest, Unit B next
cheapest, etc. Energy demand is held constant at 50,000 MWh, while the regulation requirement varies exogenously
across rows. The equilibrium is found using the online tool https://online-optimizer.appspot.com/. We check
whether results are global, not just local, solutions by forcing individual units on or off, finding that alternative so-
lutions do not achieve a lower system-wide cost. We further explore whether the solutions are unique (as opposed
to, e.g., having a flat objective function) by imposing additional constraints forcing an individual unit’s generation
or regulation to be ε = 0.001 higher than the optimal solution in an effort to find other equal-cost solutions – how-
ever, for all cases we explored, doing so yields a higher total system cost (or no feasible solution) indicating that the
reported solutions are likely unique.
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Table A12: Showing Other CEMS Units: The Regulation Requirement and Inten-
sive/Extensive Margins

Panel A. Boilers
Off Below min At min Above min At max

Regulation requirement, 100 MW 0.30 0.16 -0.09 0.66 -1.03**
(0.97) (0.15) (0.35) (0.81) (0.39)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.77 0.17 0.41 0.50 0.79

Panel B. Combined Cycle Plants
Off Below min At min Above min At max

Regulation requirement, 100 MW -1.71** -0.46* 0.13 2.40*** -0.36*
(0.80) (0.27) (0.21) (0.65) (0.21)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.65 0.28 0.13 0.62 0.35

Panel C. Combustion Turbines
Off Below min At min Above min At max

Regulation requirement, 100 MW -1.63 -0.04 0.29 2.55 -1.17**
(2.98) (0.42) (0.29) (2.13) (0.49)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.48 0.31 0.28 0.45 0.22

Panel D. Other Units
Off Below min At min Above min At max

Regulation requirement, 100 MW 0.34** -0.15*** -0.09*** -0.17 0.07
(0.16) (0.06) (0.02) (0.13) (0.04)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.58 0.06 0.07 0.59 0.08

Note: This table expands on Table 4 by showing results at other units. ***, **, * indicate significance
at the 1% and 5% and 10% level, respectively.

A-19



Table A13: Alternative Minimum Constraints Data: The Regulation Requirement and In-
tensive/Extensive Margins

Panel A. Boiler
Off Below min At min Above min At max

Regulation requirement, 100 MW 0.30 -0.84* -0.19 1.76** -1.03**
(0.97) (0.45) (0.62) (0.88) (0.39)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.77 0.36 0.55 0.69 0.79

Panel B. Combined Cycle
Off Below min At min Above min At max

Regulation requirement, 100 MW -1.71** -0.05 -0.04 2.16*** -0.36*
(0.80) (0.32) (0.38) (0.72) (0.21)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.65 0.22 0.19 0.61 0.35

Panel C. Combustion Turbine
Off Below min At min Above min At max

Regulation requirement, 100 MW -1.63 -0.01 0.09 2.73 -1.17**
(2.98) (0.19) (0.28) (2.38) (0.49)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.48 0.21 0.42 0.44 0.22

Panel D. Other Tech
Off Below min At min Above min At max

Regulation requirement, 100 MW 0.34** -0.16** 0.18*** -0.43*** 0.07
(0.16) (0.06) (0.06) (0.14) (0.04)

Observations 19,680 19,680 19,680 19,680 19,680
Within R2 0.58 0.07 0.19 0.55 0.08

Note: This table is analogous to Table 4, but uses an alternative variable to construct the minimum
constraint. Rather than EIA-reported minimum constraints, it uses the smallest bin with at least
5 percent of non-zero generating hours. Note this alternative definition does not impact the “off”
or “at max” counts. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Table A14: Bins: The Regulation Requirement and Intensive/Extensive Margins

Panel A. Boiler
0 10 20 30 40 50 60 70 80 90 100

Reg. req., 100 MW 0.18 0.06 0.01 -0.04 -0.55* -0.06 -0.05 0.41 0.28 0.21 -0.57
(1.00) (0.10) (0.14) (0.13) (0.29) (0.32) (0.33) (0.27) (0.25) (0.37) (0.72)

Observations 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680
Within R2 0.77 0.06 0.09 0.26 0.47 0.38 0.23 0.12 0.10 0.40 0.84

Panel B. Combined Cycle
0 10 20 30 40 50 60 70 80 90 100

Reg. req., 100 MW -1.69** -0.16*** -0.08*** 0.03 -0.27*** -0.12 -0.10 1.18*** -0.41 1.44*** 0.21
(0.80) (0.03) (0.02) (0.03) (0.08) (0.13) (0.27) (0.35) (0.40) (0.42) (0.41)

Observations 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680
Within R2 0.64 0.06 0.05 0.07 0.16 0.10 0.21 0.14 0.09 0.56 0.49

Panel C. Combustion Turbine
0 10 20 30 40 50 60 70 80 90 100

Reg. req., 100 MW -1.75 -0.08 0.01 0.06 0.05 0.23 0.45* 0.57 1.67** 0.24 -1.57**
(2.97) (0.12) (0.09) (0.08) (0.10) (0.20) (0.26) (0.39) (0.84) (0.73) (0.66)

Observations 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680
Within R2 0.48 0.15 0.15 0.14 0.15 0.23 0.27 0.29 0.40 0.42 0.27

Panel D. Other Tech
0 10 20 30 40 50 60 70 80 90 100

Reg. req., 100 MW 0.34** -0.04 -0.03 -0.12*** 0.01 0.24*** -0.07 -0.16** -0.38*** -0.08 0.29***
(0.16) (0.03) (0.02) (0.03) (0.05) (0.07) (0.05) (0.06) (0.09) (0.07) (0.09)

Observations 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680 19,680
Within R2 0.58 0.02 0.03 0.11 0.06 0.11 0.08 0.27 0.40 0.21 0.23

Note: This table is analogous to Table 4, but rather than using data on minimum constraints, it simply counts the number of units generating
at 0 percent of capacity, 0 to 10 percent of capacity, etc. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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Table A15: Regressing Generation on Alternative Battery Capacity Variables, by Fuel Type

RegD Self-Scheduled EIA Battery Capacity DOE Battery Capacity
PJM Placebo PJM Placebo PJM Placebo

Coal 162.46 965.36 -1457.75* -2965.16*** -281.40 -2570.32***
(673.65) (948.95) (767.03) (856.35) (697.80) (843.37)

NG -169.78 -353.23 1457.64* 1977.91*** 269.79 1133.37***
(673.30) (387.05) (763.78) (324.70) (692.57) (351.59)

Oil 55.93 -12.38 80.38 70.88 54.88 36.13
(129.53) (35.03) (223.96) (50.70) (191.00) (45.05)

Other -46.89 28.71 -27.27 -46.30 -113.16 -1.11
(130.98) (62.22) (201.61) (92.23) (175.38) (65.37)

Note: This table shows estimates from 24 separate regressions. The dependent variable
is CEMS generation. In Columns 1 and 2, the independent variable of interest is Self-
Scheduled RegD, in 100 MWs. In Columns 3 and 4, the independent variable of interest
is EIA-reported battery capacity, in 100 MWs. In Columns 5 and 6, the independent
variable of interest is battery capacity, in 100 MWs, from a DOE storage database.
Columns 1, 3, and 5 use our PJM sample of interest. Columns 2, 4, and 6 use a placebo
sample: non-PJM electrical generating units in PJM states (e.g., MISO units in Indi-
ana; see footnote 30). The sample is limited to the years 2014-2016. The unit of analysis
is an hour. Control variables are the same as for Table 2. Standard errors are clustered
at the monthly level, which is the level of variation for the EIA and DOE battery vari-
ables. ***, **, * indicate significance at the 1% and 5% and 10% level, respectively.
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