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1 Introduction

Are learning episodes similar to times when shock volatilities rise? We study this

question in a general-equilibrium model for an economy that is subject to recurrent

structural breaks, breaks that create parameter uncertainty. Our model is based on

an Ak growth model with two aggregate shocks, a neutral TFP shock in the final-

goods sector and an investment-specific technology shock that affects production of

capital goods. We deal only with aggregate shocks and abstract from idiosyncratic

risk.

Structural breaks are introduced as occasional shifts in the parameters governing

technology shocks. A break alters medium- and long-run forecasts of the level of

technology and initiates a period of higher parameter uncertainty. We examine how

this uncertainty affects savings, investment, and growth. Under uncertainty, beliefs

over the distributions of future shocks are an aggregate state that responds to current

shock realizations. Shocks thus have wealth effects through the beliefs channel —a

channel that is absent in models where the change in the shock distributions is known,

and one that creates both a quantitative and a qualitative difference between the two

classes of models.

To motivate interest in structural breaks, figure 1 plots empirical counterparts of

the shock processes1 along with NBER recession dates, shown as vertically shaded

areas. Ten-year rolling standard deviations are depicted in the bottom row.

TFP is shown in the upper left panel. As highlighted by Gordon (2016, pp.

545-548), productivity surges in the 1940s and never returns to its pre-war level.

Although TFP also varies procylically, the mid-century surge is the dominant source

of volatility and presumably also of uncertainty. For instance, the rolling 10-year

standard deviation is about 5 times higher around the years of the rise than at

‘normal’times.2

1In our model, TFP equals the ratio of real output to real capital. Appendix A describes our
data sources for y/k.
Data for aggregate q come from Wright (2004). His “equity q”measure covers the period 1900-

2002, and we extend this through 2018 by ratio splicing the Federal Reserve Board’s measure of
equity q (Financial Accounts of the United States - Z.1, table B.103, line 45).

2The same pattern holds if multifactor TFP is used instead of the output-capital ratio: Fig. 16-5
of Gordon (2016) shows that the growth of TFP over the 1940-50 decade was about twice as high
as it was over the adjacent decades, and about four times as high as it was over the other decades
since 1900.
Data in Piketty (2014) suggest that structural breaks in Y/K also occurred in Britain and France,

although perhaps at different times (compare Piketty’s tables 3.1 and 3.2 for Britain and France
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Figure 1: TFP, z, and investment cost, q, over a century. Levels are
depicted in the top row, and 10 year rolling standard deviations are
shown in the bottom. Shaded areas mark the dates of nber recessions.

The case for a structural break in the investment-specific technology shock —shown

in the upper right panel —is less obvious, but an argument could be made that the

run-up in the 1990s and early 2000s represented a shift in its mean. For instance, the

peak and trough after 1995 are two and three times higher, respectively, than those

of the previous 90 years, and the trough in 2002 is almost as high as the peaks in

the 1920s and 1960s. The volatility associated with this shift is comparable to that

experienced in earlier years, neither dominating nor being dominated by ordinary

cyclical variation.3

Our goal is to understand how shifts such as these affect savings, investment, and

growth in general equilibrium. Our analysis is based on three assumptions. The first

is that if a structural break has occurred in the past, others are possible in the future.

Furthermore, agents are aware of this possibility and account for it when formulating

their plans. Structural shifts are not complete surprises and as Sims (1982) argued

with his table 4.6 for the US).
3We acknowledge that this is not the only respectable interpretation of the data. Alas, because

statistical tests for structural breaks have low power, a decisive characterization is unlikely.
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in a related context, regime shifts can be viewed as outcomes of a rule that agents

understand. This contrasts with anticipated-utility models in which agents update

beliefs after a structural break but fail to account for the possibility of future breaks

when formulating plans (e.g., Kreps 1998 or Evans and Honkapohja 2001).

Second, history never repeats itself exactly. Regime realizations do not necessarily

cycle between a small number of possible states, as in the literature on Markov-

switching models. Entirely new regimes can and do emerge. The timing of the shift

follows a Poisson process and conditional on a structural break new parameter values

are drawn from a distribution conditioned on the previous parameter realizations; the

exact nature of regimes is first-order Markov process on the space of shock-distribution

parameters.

Third, because each realization is distinct, a structural break initiates a period

of uncertainty. The new regime is not suddenly revealed after a break. On the

contrary, agents must learn the new parameters governing the shocks. It follows that

a structural break also raises uncertainty. A structural break combines a persistent

change in the level of technology with a transitory increase in uncertainty. Both

affect behavior and macroeconomic outcomes. Using our model, we can quantify and

disentangle them.

The model has no heterogeneity among agents, and our study is therefore limited

to the effects of macro uncertainty and macro risk. The model also has no financial

sector and would be inappropriate for analyzing the great recession, and our sam-

ple ends in 2006. On the other hand, the model is solved in closed form, without

any linearization. Moreover the Ak structure allows a direct mapping between the

observables and the shocks, and the endogeneity of growth amplifies the transitional

dynamics will be different —precautionary savings will, for instance, have a stronger

effect on future output.

For plausible calibrations, we find that uncertainty episodes entail lower consump-

tion and higher growth compared the economy that is identical except that agents

know the parameters of the distributions governing the shocks. Uncertainty prompts

precautionary savings that insures agents against an unfavorable change. Consump-

tion falls and the higher savings then raise growth above its no-uncertainty level. Each

type of learning, be it about TFP or about investment effi ciency, has an expansionary

effect on growth, although the effect is smaller in the second case. Uncertainty about

TFP leads to more saving because in our closed economy low-TFP realizations lead
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to consumption disasters whereas high-investment-cost realizations do not because

agents can reduce investment accordingly.4

To isolate the effects of a rise in uncertainty, however, we then ask whether these

effects arise because agents live through episodes during which they are learning the

parameters of shock distributions, or whether they would occur even if agents simply

faced higher shock variances. The effect on growth of a mean-preserving increase

in variance (MPS) that agents immediately understand can go in either direction.

An MPS activates two forces: higher investment as a consequence of precautionary

savings versus lower investment because of the option to wait (e.g., Dixit and Pindyck

1994). Shock persistence matters, however, because waiting is more attractive when

shocks are weakly persistent. Since Bayesian learning makes one of the state variables

a martingale (Doob 1948), a strongly persistent state is present in all our learning

models. The presence of a persistent state variable weakens incentives to wait and

brings the precautionary-savings motive to the fore.5

The next step is to compare the magnitude of responses associated with subjective

and objective uncertainty. Toward that end, we equate the sequences of one-step-

ahead marginal distributions of shocks in the two cases. Under learning, subjective

uncertainty falls over time, and the no-learning economy is put on the same footing by

assuming a corresponding decline in the conditional variance of shocks. For plausibly

calibrated models, consumption and growth respond more strongly under learning:

after ten years, output is permanently higher by two percent. In contrast, a mean-

preserving increase in variance matching the profile of subjective uncertainty has very

little effect on savings or growth.

Models featuring TFP and investment-effi ciency shocks but without learning in-

clude Greenwood, Hercowitz, and Krusell (2000), Fisher (2006), Justiniano, Primiceri

and Tambalotti (2010) and Jovanovic and Rousseau (2014). Gilchrist and Williams

(2005) find that a rise in dispersion of shocks over vintages of capital is expansionary

because labor reallocates to the more productive vintages, but their MPS is cross-

sectional. Bloom (2014) summarizes results on time-varying risk when shifts in the

4Even a bad TFP realization would not cause a consumption disaster in an open economy because
agents can then borrow abroad. Baxter and Jermann (1997) note, however, that investors do not
diversify internationally to any significant extent.

5Collin-Dufresne, et al. (2016) also emphasize the importance of this martingale state. They
study implications for asset pricing in economies in which consumption growth is exogenous, whereas
we study production economies in which uncertainty influences consumption and investment.
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distributions of shocks are known.

Endogenous growth models have studied how growth responds to volatility in

aggregate TFP shocks (Jones, Manuelli, Siu and Stacchetti 2005) and to policy shocks

(Hopenhayn and Muniagurria 1996). We find that the qualitative effects of shocks to

the effi ciency of investment are similar to those of investment taxes or subsidies.

Among related models with learning, Huffman and Kiefer (1994) and Koulovan-

tianos, Mirman and Santugini (2009) studied learning the TFP process in the produc-

tion of final goods, but not that of capital goods. Bernanke (1983) and Stokey (2015)

study partial equilibrium models with delayed information arrival about investment

profitability. As in our model, learning occurs exogenously, as a result of the passage

of time alone. It does not depend on actions that agents take —on how much to in-

vest, for instance. This is in contrast to Chamley and Gale (1994), Veldkamp (2005),

and Pastor and Veronesi (2009) whose models imply, as ours does, that the effects of

learning differ from a rise in shock volatility.

Parameter learning also implies momentum effects on stock prices —serially cor-

related price changes caused by learning. As Lewellen and Schanken (2002) have

shown, parameter uncertainty drives a wedge between the distribution perceived by

investors and the distribution estimated by empirical tests. Following a regime shift,

an econometrician should expect to find predictability of returns. As agents learn the

parameters stock prices in general start to reflect this. For instance, if a regime shift

lowered the distribution of TFP, returns would initially be low, reflecting the fall in

dividends and would then gradually rise as stock prices fall to reflect the lower mean

of the dividend process.

In our model momentum effects arise for the risk-free rate, but not for stock

prices. If investment is positive, Tobin’s Q (the market value of capital relative to its

replacement cost) is unity. Only when investment hits zero can Q fall below unity.

As Sargent (1980, p. 111) puts it, roughly speaking, Q drops farther below unity as

the constraint that investment be irreversible becomes more binding.

In that case parameter uncertainty also leads to a temporary rise in the volatility

of the stock market, and some regime changes may raise the possibility of disasters

as in Veronesi (2004), Gourio (2008) and Wachter (2013). Regime shifts also raise

uncertainty and if we had ambiguity-averse agents regime shifts would depress stock

prices and raise returns that would gradually decline as learning takes place, as in

Epstein and Schneider (2008).
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The paper that is closest to ours is Bianchi and Melosi (2016). They study a

family of DSGE models with Markov switching and Bayesian learning about latent

states. Importantly, unlike anticipated-utility models of learning (Kreps 1998, Evans

and Honkapohja 2001), their agents take regime shifts and learning fully into account

when forming plans. For a real-business-cycle model in which TFP growth switches

between high or low values, Bianchi and Melosi demonstrate that the anticipated-

utility assumption is not innocuous because past mistakes about TFP growth are

built into the capital stock and thus have persistent effects on output, consumption,

and investment.6 We extend their analysis by breaking free of the assumption that

there are finite number of potential states. In our model, there is a continuum of

possible future states, and entirely new regimes can emerge. Because there are no

best or worst possible states and period utility is unbounded, the potential influence

of uncertainty is magnified.7

Last but not least, what we call “parameter uncertainty”differs from Knightian

uncertainty because agents can still form predictive distributions over variables —

they are Bayesians. Knight’s definition would more appropriately apply to boundedly

rational agents. For example, Pintus and Suda (2018) feature adaptive learning and

find, as we do for Bayes learning, that the responses of output, investment, and other

aggregates under adaptive learning are significantly larger than when the agents know

the parameters governing the shocks.8 One could also analyze the effects of shifts

when agents have ambiguous beliefs (Hansen and Sargent 2001; Bianchi, Ilut, and

Schneider 2018).

The paper is organized as follows. Section 2 describes an Ak growth model with

these features and characterizes decision rules and the equilibrium law of motion.

Section 3 presents a number of simple examples to build intuition. Section 4 solves

and simulates calibrated versions in order to assess the strength of various forces,

especially those governing uncertainty and precautionary behavior.

6Bianchi and Melosi (2018) use similar methods to examine the role of policy uncertainty in a
new Keynesian model with recurrent shifts in the monetary-policy rule.

7For endowment economies, Geweke (2001) and Cogley (2009) examine the consequences for
expected utility and the market price of risk, respectively.

8However, their adaptive-learning framework shuts down precautionary effects associated with
uncertainty.
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2 Model and Planner’s Solution

Technology.– The model has two sectors: a final goods sector and a capital-goods

sector. The production function for the final good is

Y = zk, (1)

where Y is the output of final goods, k the capital-good input, and z a shock to the

final goods technology. Capital depreciates at the rate δ; the law of motion for capital

is

k′ = (1− δ)k +
1

q
X, (2)

and the aggregate resource constraint is

Zk = C +X, (3)

where X is final goods devoted to the production of capital, and q is the shock to the

capital-goods technology.

Preferences.– A representative agent has recursive preferences as in Epstein and

Zin (1989) and Weil (1989),

Ut =

[
(1− β)C1−ρt + β

((
Et[U

1−γ
t+1 ]

) 1−ρ
1−γ

)] 1
1−ρ

, (4)

where β is the subjective discount factor, γ is the coeffi cient of relative risk aversion,

and ρ is the inverse of the elasticity of intertemporal substitution.9 Expectations are

taken with respect to subjective beliefs.

Aggregate resource constraint.– The Ak production structure in Eqs. (1) and (3)

along with the homothetic preferences in Eq. (4) allows us to drop k from the set of

states and scale variables by k as follows

c = C/k, x = X/k, y = Y/k and g = k′/k, (5)

and write the law of motion for k in (2) as

g = 1− δ +
1

q
x, (6)

and the aggregate resource constraint in (3) as

z = c+ x. (7)

9This simplifies to time-separable isoelastic preferences when ρ = γ.
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Law of motion of the shocks.– Let S = (q, z) follow a Markov process with dis-

tribution ψ(S ′ | S, θ) where θ represents the parameters of the transition law. Some
components of θ will be unknown. We will be interested in comparing the behavior

of an economy in which agents learn about θ over time to an economy in which θ is

known.

Updating of beliefs when there is no regime shift.– A “regime” is denoted by θ.

Let µ (θ) denote beliefs over θ. Each period the agents observe St and update µ using

Bayes law. After observing the value S ′,

µ′no shift (θ) =
ψ (S ′ | S, θ)µ (θ)∫
ψ (S ′ | S, θ) dµ (θ)

≡ b (θ | S ′, S, µ) , (8)

Regime shifts.–We assume that each period a regime shift occurs with probabil-

ity λ. We expect λ to be close to zero given the above discussion of the probable

infrequency of regime shifts. The simplest treatment is to posit a transition law for

regimes upon a shift. So we assume that the distribution of the new regime θ′ condi-

tional on being in regime θ and conditional on there being a regime shift is π (θ′ | θ)
with θ ∈ Θ and π a measure on Θ. In some examples we shall assume that Θ is a

finite set so that θ follows a discrete-state Markov process as in Hamilton (1989),

Bianchi and Melosi (2016), and Foerster et al. (2016).

Timing of a regime shift.–When a shift occurs, it does so at the start of the

production period so that agents update by observing S and that χ = 1.10

Updating of beliefs after a regime shift.–We shall assume that agents know the

law π (·) and whether a regime shift has just occurred, but that they know neither θ
(over which they hold beliefs µ) nor θ′.In that case11

µ′shift (θ′) =

∫
π (θ′ | θ) b (θ | S ′, S, µ) dθ. (9)

I.e., S ′ is generated by the pre-regime-shift θ via the likelihood ψ.

General updating.– Letting χ = 1 denote a regime shift and χ = 0 denote no shift

µ′ (θ) = (1− Iχ=1)µ′no shift (θ) + Iχ=1µ
′
shift (θ) . (10)

10In Sec. 3.2 we compare to the case where the regime shift dates are not observed.
11The assumption that break dates are known is for tractability. Some of our examples are simple

enough to handle unobserved regime shifts (e.g. the finite-state Markov model in section 3.2.2), but
others are not. For instance, in the models of section 4, time since the last break is a state variable.
If break dates were unobserved, the distribution over time since the last break would be a state
variable, and the resulting curse of dimensionality would make the calculations intractable. We are
still thinking about ways to address this issue.
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Plan for the analysis.– Because the model features no monopoly power and has no

externalities, the (recursive) competitive equilibrium will coincide with the planner’s

solution. Of course the planner too has to learn θ by observing st in the same way

as private agents do. We shall therefore solve the planner’s problem first, and then

discuss the markets for goods, for capital and for assets that decentralize the optimum.

2.1 Planner’s solution

Let µ denote the planner’s belief and S the current shock. Denote the augmented

state by s ≡ (S, µ).12 The next period’s state is s′ = (S ′, µ′). The distribution of S ′

is
∫

Ψ(S ′ | S, θ)dµ(θ) and it is the same whether a regime occurs or not. The only

thing that affected by a regime shift is µ′. Therefore,

F (s′ | s, χ′) =

{
F (S ′, µ′shift | s) if χ′ = 1
F (S ′, µ′no shift | s) if χ′ = 0.

(11)

so the planner’s predictive distribution is

F (s′ | s) = λF (S ′, µ′shift | s) + (1− λ)F (S ′, µ′no shift | s), (12)

and it underlies the expectations operator in the next two equations and in Appendix

B. The planner’s state vector is (s, k). He chooses C and X to maximize his value

function V

V (st, kt) = max
Ct,Xt

[
(1− β)C1−ρt + β

((
Et[V (st+1, kt+1)

1−γ]
) 1−ρ
1−γ
)] 1

1−ρ
,

subject to (7), (2), (10) and (12).

Because production has constant returns and preferences are homogeneous of de-

gree 1 − ρ, we can eliminate scale, k, from V and deal in terms of s alone. More

precisely, suppose there exists a function w(s) that satisfies the recursion

w(s) =

(
β

1− β

) 1
ρ

[
E

(
(z′ + q′(1− δ))

[
(1− β)(1 + q′1−

1
ρw(s′))ρ

] 1
1−ρ
)1−γ

| s
] 1−ρ
ρ(1−γ)

.

(13)

Proposition 1 • The value function takes the form

V (s, k) = v(s)k, (14)

12Since χ is i.i.d. and since beliefs µ update right after χ is observed, including µ as a part of the
state means that χ drops out of the state vector.
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where

v(s) = (z + q(1− δ))
[
(1− β)(1 + q1−

1
ρw(s))ρ

] 1
1−ρ

. (15)

• Consumption c takes the form

c =
z + q(1− δ)
1 + q1−

1
ρw(s)

. (16)

• Growth g takes the form

g = 1− δ +
zq−

1
ρw(s)− (1− δ)

1 + q1−
1
ρw(s)

. (17)

The proof is in Appendix B. The relative simplicity of the value in (15) and the

policy rules in (16) and (17) stems from the model’s Ak structure. The proposition

helps because the right-hand side of (13) contains no max operator; only the level of

w and not its derivatives enter the solutions in (15), (16) and (17), and this will help

characterize them.

3 A special case

This section specializes the model so as to focus on two specific questions. We

assume that

(i) ρ = γ so that utility is the time additive CRRA form E
∑∞

0 β
t 1
1−γ c

1−γ
t , and

(ii) S is i.i.d. conditional on θ, i.e., ψ (S ′ | S, θ) is independent of S.
We shall analyze parameter learning about the distribution of z separately from

that of parameter learning about the distribution of q. I.e., we shall analyze them

one at a time. When learning about the distribution of z we shall assume that

z = az +
Az

1 + e−xz
, (18)

where xz ∼ N (θz, σ
2
z). The parameters az, Az and σ

2
z will be known, and θz will be

unknown. And when learning about the distribution of q we shall assume that

q = aq +
Aq

1 + e−xq
, (19)

where xq ∼ N
(
θq, σ

2
q

)
, where

(
aq, Aq, σ

2
q

)
are known, and θq is unknown. We shall

henceforth drop the z and q subscripts from x and from the parameters (a,A, θ). We

now ask two questions:
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1. How does a learning-about-θ episode compare to an episode in which θ is known

but in which the variance of the shocks x temporarily rises? Sec. 3.1 will

show that uncertainty induced by structural breaks has substantially larger

and qualitatively different effects than uncertainty triggered by volatility of the

exogenous shocks. This is because uncertainty about the parameters of the data

generating processes has larger effects on agents’lifetime utility.

2. Second, how does the case were the occurrences of regime shifts, χ, are observed

differ from the case when they are not observed? Sec. 3.2 will show that the

value of being informed about regime shifts is about twice as large for the case

of z as it is for the case of q.

3.1 Parameter learning vs. higher shock volatility

Suppose that a structural break has just occurred, and that agents know this.

They also know that thereafter there will be no more breaks, so that λ = 0. Following

the structural break the prior variance over θ rises implying a temporary rise in the

variance of the predictive distribution over s.

To put the two cases on a comparable footing, we equate the one-step ahead

marginal distributions of the shocks at each t. We wish to compare mean preserving

spreads in the distributions of shocks to learning, while keeping the means the same

for the two cases. We shall make the comparison for a single learning episode that is

not interrupted by a new regime shift (λ = 0).

The learning economy.– Agents (or the social planner) know the exact values of

the parameters {θL, θM, θH}, but they do not know the regime in place, they have to
learn that. Let ht = (xs)

t−1
s=0 denote the history of realizations of x,

13 and let L (ht | θi)
denote the likelihood of ht. Assuming that the prior over {θL, θM, θH} is 1/3,1/3,1/3,
Bayes rule yields the posterior probability that θ = θi as

µi
(
ht
)

=
L (ht | θi)∑

j∈{L, M, H} L (ht | θj)
,

13Agents see zt or qt and can recover xt by inverting (18) or (19) to get

xt = ln

(
zt − a

A− zt + a

)
.
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and the posterior mean and variance as

θ̄
(
ht
)

=
∑

θjµj, and (20)

σ2θ (µ) =
∑(

θj − θ̄
[
ht
])2

µj.

Suppose that the draw following the regime shift is θ = θM, although this will only

gradually become apparent to agents as they learn. We condition the distribution of

the history on θ = θM, so that xt = θM + εt. The total variance of x is

σ2x,t = σ2θ,t + σ2ε, (21)

where σ2θ,t is the expected variance conditional on θM,

σ2θ,t =

∫
σ2θ (µ [t, u])

√
t

σε
√

2π
exp

(
−(u− θM)2

2σ2εt
−1

)
du. (22)

The no-learning economy.– In this economy agents know that θ = θM, and they

face a time-varying variance of ε given by the RHS of Eq. (21), σ2ε,t = σ2x,t. We shall

use the symbol Ft to denote the resulting sequence of time-varying distributions. We

treat z learning and q learning one at a time. The treatment of the two is parallel,

and we illustrate the treatment of the varying risk value function for the case where

z is fixed and only q varies and only q is subject to a possible regime shift. Since the

shock variances now depend on t, so does the value:

Vt(q, k) = max
C,X

{
C1−γ

1− γ + β
∫
Vt+1(q

′, k′)dFt(q
′)

}
= vt(q)k

1−γ
t

where, using the aggregate resource constraint (7) and law of motion for capital (2),

vt(q) = max
x

{
(z − x)1−γ

1− γ + β

(
1− δ +

1

q
x

)1−γ ∫
vt+1(q

′)dFt(q
′)

}
, (23)

= max
x

(z − x)1−γ

1− γ + β

(
1− δ + 1

q
x
)1−γ

σε,t
√

2π

∫
vt+1(q

′) exp

(
−(q′ − θM)2

2σ2ε,t

)
dq′

 .

For the known-θ case, ct and gt are computed directly from equations (13), (16), and

(17).14

14The Proof Proposition 1 does not impose the constraint that g ≥ 1− δ ⇐⇒ x ≥ 0 (see Eq. (6))
but the inequality always holds in our simulations.
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Parameters are calibrated so that the time series means of (c, g) in the learning

economy match c = C/K = 0.3 and g = 1.02 per annum. Results are shown in table

3.1. The same parameters are used for the known case at θ = θM .

Table 3.1: Parameters used for figure 2
γ β δ q z A a θL θM θH

Vary z 4 0.95 0.05 1 random 0.113 0.167 −0.780 −0.428 0.213
Vary q 4 0.95 0.05 random 0.340 0.932 1.355 −0.523 −0.124 0.521

The top row of figure 2 compares the two economies when the injected uncertainty

is over the distribution of z. After 10 years, cumulative growth is 18.49% in the

learning economy and 16.61% in the MPS case. Since the two economies have the

same C/K ratios after a decade andK is 1.88 percent higher in the learning economy,

it follows that consumption is permanently higher by 1.88 percent.
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Figure 2: Comparison of learning (RED) and MPS (BLUE) when the
shock distribution is unknown. top row, z. bottom row, q.

The bottom row does the same thing for learning about the distribution of q.

In this case, the results go in the opposite direction. Cumulative 10-year growth is

14



22.22% for the MPS and 21.45% for the learning economy. The difference amounts

to a permanent consumption dividend of 0.77 percent per annum for agents in the

MPS economy.

Precautionary saving and investment versus the option to wait.– The marginal

distributions of the shocks are equated so that σ2ε,t = σ2x,t, but since beliefs are a

Martingale in the learning economy, there is a permanent component to shocks that

is absent in the MPS economy. Thus in the top two panels a shock to z has a longer

expected duration in the learning case, and to prepare for this agents save more than

in the MPS case. In the bottom two panels it is the shock to q that now has a longer

expected duration in the learning case, and in Sec. 4 we will find that under learning,

precautionary savings dominates the option to wait, but by much less for learning

about q than it does for learning about z.15 In line with that finding, learning now

generates more consumption and less growth than does MPS.

3.2 Observed vs. unobserved χt when breaks recur

We now assume breaks are recurrent (λ > 0), and that there are only two regimes

θ ∈ {θL, θH}. Agents again know the parameters {θL, θH}, but they do not know the
regime in place.

With just two possible values of θ, beliefs can be summarized by the real num-

ber µ = Pr (θ = θH) or, equivalently, by the expectation E (θ) = µθH + (1− µ) θL.

Moreover, we assume θL = −1 and θH = 1, so that

As in the previous subsection, we shall study regime shifts as shifts in the distri-

bution of one of the shocks alone, keeping the value of the other shock fixed. In light

of (18) and (19) for z, the favorable state is θH whereas for q, the favorable state is

θL.

3.2.1 Observed break dates

When a break occurs, each regime is equally likely; in other words, π (θ′ | θ) = 1
2
for

all θ and θ′. Following a regime shift, E (θ) = 0, and then E (θ) drifts towards the

realized θ ∈ {−1, 1} unless the next regime shift occurs in which case E (θ) reverts

to zero.

Fig. 3 portrays expected consumption and growth for various values of λ. On

15Compare the top-left panel of figures 7 and 10.
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the horizontal axis is E (θ). At higher λ the belief µ matters less because the regime

is more likely to soon change. As λ rises, regime persistence falls and the curves

portrayed in the left-hand panels become flatter. A higher λ lowers consumption and

raises growth in ‘good’regimes and does the opposite in ‘bad”regimes. For z, the

‘good’θ state is θH and consumption and savings (and growth) both rise as beliefs

shift towards the regime θH. For q the good state is θL and so the curves slope down,

but the consumption curve again flattens out as λ rises.
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Figure 3: λ, c and g when χ is observable. Top Row: only θz varies,
Bottom Row: only θq does.

3.2.2 Unobserved break dates

We now assume the Markov transition probabilities,

θz
θL
θH

θ′z
θL θH[
πzLL πzLH
πzHL πzHH

]
, θq

θL
θH

θ′q
θL θH[
πqLL πqLH
πqHL πqHH

]
,

16



where
(
θ′z, θ

′
q

)
are mutually independent.16 We also allow the structural break indi-

cator χt to be observed or unobserved. If the χt are not observed, situations may

arise in which agents think that a break occurred, while in fact it did not.17 For this

example, we are mainly interested in building intuition about the consequences of

assuming that agents know when a break has occurred.

Observability of χ adds nothing if λ ∈ {0, 1} . When λ = 0 the regime never

changes and when λ = 1 it changes every period. In these extreme cases, however,

there are de facto no regime shifts since even if λ = 1, θ is absorbed into an i.i.d.

component of the residual. We therefore derive the consequences for λ ∈ (0, 1).

If χt is observable, we have

µ′shift (θ′) =
∑

θ∈{θL ,θH }

µ′no shift (θ) πθ,θ′ when χ = 1,

= µno shift (θ′) when χ = 0.

Defining µ ≡ µ (θH), it follows that

µ′ = (1− λ) b (θH | S ′, µ) + λ (b (θL | S ′, µ)πLH + b (θH | S ′, µ)πHH) (24)

Then w (s, µ) is defined via (8), (9), (12) and (13).

On the other hand, if χt is unobserved, beliefs are updated as follows. Agents

start the period with a prior µ over θ = θH. An observation S leads to the posterior

belief

µ (θH | S, µ) =
L (S | θH)µ

L (S | θH)µ+ L (S | θL) (1− µ)
≡ b (S, µ) .

Then next-period belief is

µ′ = λ (πHHb (S, µ) + πLH [1− b (S, µ)]) + (1− λ) b (S, µ) (25)

The joint distribution of (µ′, s′) in Eq. (11) now changes as follows. In F (s′, µ′ |
s, µ), χ is no longer a state so that s = S. Then µ′ = b (S, µ) is not random once

we condition on (S, µ) because we no longer have µ′shift and µ
′
no shift induced by an

observation of χ′, and in Eq. (13) F (s′, µ′ | s, µ) is replaced by

F (S ′ | S, µ) =

{
L (S ′ | θH) w. prob. µ′

L (S ′ | θL) w. prob. 1− µ′ .

16In Appendix C we study the alternating-regime case (in which πLL = πHH = 0) analogous to
that of Hopenhayn and Muniagurria (1996).
17Bianchi and Melosi (2016) study such a scenario, but with a different learning mechanism.
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where µ′ is given in (25). The decision rules remain as in Eqs. (16) and (17). The

unconditional long-run expectation of θ is

Ê (θ) =
πL,H

πL,H + πH,L
θH +

πH,L
πL,H + πH,L

θL. (26)

Beliefs remain non-degenerate.– Unless θ is forever fixed and that agents know

that it is fixed, beliefs will remain non-degenerate. When χ is unobserved the agents

never learn which of the two values of θ is operative: Beliefs remain a non-degenerate

stochastic process even if (unbenownst to the agents) θ remained forever fixed at

θH, say. If agents’beliefs placed all weight on θH, say, at t − 1, they would become

non-degenerate at t, because of the positive probability λπH, L that θ will have shifted

due to a possible regime shift. In other words, although they know the set {θL, θH},
agents will typically not know which regime θ is in place.

For example, suppose parameters are fixed as in table 3.2.2. These parameters are

based on the following accounting: The NBER data indicate 215 expansions, of which

204 (94.88%) are followed by an expansion, and 11 (5.1%) are followed by a recession.

On the other hand, there are 41 recessions, of which 11 (26.8%) are followed by an

expansion, and 30 (73.1%) are followed by another recession. We use the notation

πL,H and πH,L for both cases —learning about z and learning about q since here they

are obtained by the same accounting method.

Table 3.2.2: Parameters chosen for figure 4
θL θH πL,H πH,L λ
−1 1 0.27 0.05 0.29

With these parameters, Ê (θ) = 0.68, which is indicated by the vertical lines in

figure 4. Not observing χ means that the planner acts on the basis of less information

than in the observable-χ case. This appears to imply more uncertainty over the

future realizations of (z, q) , and we expected to see a rise in precautionary savings

in response. For most values of µ, this occurs when learning about shifts in q (see

the bottom row) but not for shifts in z (shown in the top row). The learning-about-z

model has the surprising outcome that for most values of µ, agents consume more

when regime switches are not observed.

3.2.3 The value of being able to observe χ

As noted above, the ability to observe χt is of no value if λ ∈ {0, 1} , because then
one would know that the regime never changes (when λ = 0) or that it changes every

18



­0.5 0 0.5
 * H + (1­ )* L

0.2095

0.21

0.2105

0.211

0.2115

Expected Consumption

Unobservable shift
Observable shift

­0.5 0 0.5
 * H + (1­ )* L

1.01

1.015

1.02

1.025

1.03

1.035
Expected Growth

Unobservable shift
Observable shift

­0.5 0 0.5
 * H + (1­ )* L

0.12

0.13

0.14

0.15

0.16
Expected Consumption

Unobservable shift
Observable shift

­0.5 0 0.5
 * H + (1­ )* L

1

1.01

1.02

1.03

Expected Growth

Unobservable shift
Observable shift

Figure 4: λ, c and g when χ is unobservable. Top Row: only θz varies,
Bottom Row: only θq does.

period (when λ = 1). Thus we expected the value of information to be highest for

values of λ around 1/2.

Figure 5 shows, however, that the value of information is seemingly maximized at

values of λwell below 1/2, and closer to a value of 1/3 or even 1/4, depending on the

value γ. This is probably because, with Ê (θ) = 0.68, beliefs about θ drift upwards

and the value of knowing about regime changes becomes less valuable. The rate of

the decline in the value of information over time is increasing in λ.

Figure 5 portrays the relative value of information vI (s, µ) /vU (S, µ) as λ varies.

The experiment fixes µ = 0.5 and sets z = 0.34 and q = 1. With γ > 0, vI (s, µ) and

vU (s, µ) are both negative. Then vI (s, µ) > vU (s, µ) =⇒ vI (s, µ) /vU (S, µ) < 1.

At λ = 0 and 1, the ratio is equal to 1. For intermediate values of λ, being informed

about regime shifts raises v(s, µ). Provided that λ ∈ (0, 1) , the value of information

rises with the degree of risk aversion.
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Figure 5: Value of information about regime shifts

4 A model with non-recurrent structural breaks
and autoregressive shocks

Next we turn to examples in which shocks are autoregressive processes,

ln zt = µzt + ρz ln zt−1 + σzεzt, (27)

ln qt = µqt + ρq ln qt−1 + σqεqt.

To keep things simple, we activate one at a time. The first example features neutral

technology shocks with a constant level of q, while the second fixes z and activates

investment shocks. Letting at represent the active shock, the autoregressive parameter

ρa and conditional standard deviation σa are assumed to be known, and the intercept

µat is unknown. Agents must learn about µat.

The intercept is subject to occasional structural breaks,

µat = µat−1 w/ pr 1− λ, (28)

= mt ∼ N(m,σ2m) w/ pr λ.

A Bernoulli random variable χt governs whether a structural break occurs. With

probability 1 − λ, no break occurs (χt = 0), and the intercept remains unchanged.

With probability λ, a break occurs (χt = 1), and a new intercept is drawn from a

normal distribution. The random variables εat, χt,mt are mutually independent, and

the parameters θ = [λ,m, σm, ρa, σa] are known.
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Agents observe χt and at, but not µat ormt. Because χt is observable, agents know

when a break occurs, but they don’t know whether µat has increased or decreased or

by how much. They update beliefs about µat by applying Bayes theorem.

To fit this example into our general framework, let s = [a, χ] represent the observ-

able states, and write the Markov transition equation as Ψ(st+1, µt+1|st, µt, θ). The
predictive density is

F (st+1|st, θ) =

∫∫
Ψ(st+1, µt+1|st, µt, θ)p(µt+1, µt|st, θ)dµt+1dµt, (29)

where p(µt+1, µt|st, θ) is the posterior for the unobserved intercept. Proposition 1
goes through with this specialization of notation. All that remains is to derive the

posterior p(µt+1, µt|st, θ) and solve the integral equation 13. Appendix D addresses
these problems.

4.1 Neutral technology shocks

Table 4.1 calibrates parameters for an economy in which the neutral technology

shock z is active and q is constant. The discount factor β is set a priori to a standard

RBC value for annual data, and the coeffi cient of relative risk aversion γ is set to 4.

Consumers are myopic if γ = 1, and a higher value is needed for learning to matter.

However, Pratt-style thought experiments suggest that γ should not be much higher

than 1. A value of 4 seems like a reasonable compromise.

Table 4.1: Calibration for structural breaks in TFP
β γ ρ δ ρz σz λ m σm z̄ q̄

1.01−4 4 12.95 0.119 0.8867 0.0422 0.0091 −0.0893 0.0234 0.464 1

Parameters governing ln z are estimated by combining the data shown in figure

1 with informative priors over (ρz, σz, λ,m, σm). In a nutshell, the process for ln z

can be expressed as a non-Gaussian state-space model whose log likelihood function

can be evaluated via a particle filter. Because structural breaks are infrequent, λ

and σm are weakly identified in a frequentist sense. We therefore add an informative

prior and maximize the log posterior. Details can be found in appendix E. Table 4.1

reports the posterior mode for (ρz, σz, λ,m, σm), and z̄ is the implied unconditional

geometric mean. Since no model for ln q is on the table at this point, q̄ is set to 1.

21



Even with structural breaks, ln z is a stationary random process, although it would

be hard to distinguish from an integrated process in samples of 100 or 200 years. That

breaks are rare means that agents face long-run risks analogous to those of Bansal

and Yaron (2004). The left hand column of figure 6 illustrates the long-run risk

by comparing unconditional distributions for processes with and without structural

breaks.18 When structural breaks are absent (solid lines), ln z is unconditionally

normal with mean m/(1− ρz) and variance σ2z/(1− ρ2z). With rare structural breaks
(λ = 0.0091, dashed lines), the distribution is still centered on m/(1 − ρz), but the
tails are fatter. In fact, in the tails, the log density for the rare-break process is 10

times greater than that of the no-break process.
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Figure 6: Unconditional shock distributions

The remaining parameters — ρ and δ — are calibrated by matching aspects of

the deterministic steady state.19 When all shocks are deactivated (σz = λ = 0),

steady-state growth and the consumption-income ratio are

gd = β1/ρ
(
z̄

q̄
+ 1− δ

)1/ρ
, (30)(

C

Y

)
d

= 1 + (1− δ − gd)
q̄

z̄
.

18The ln q calibration and stochastic volatility model are discussed below.
19Results are similar if ρ and δ are calibrated to the mean of a stochastic sequilibrium in which

shocks to ln z are active but structural breaks are not (σz 6= 0, λ = 0).
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The parameters ρ and δ are chosen to match gd = 1.02 and (C/Y )d = 0.7.20 The

solution for δ = 0.119 is close to the standard RBC calibration for annual data. The

solution for ρ = 12.95 implies that the elasticity of intertemporal substitution (EIS)

is 0.077 which is broadly consistent with estimates based on micro data (e.g., Hall

1988, Vissing-Jorgensen 2002, Yogo 2004, and Havranak 2015). For instance, in a

meta-analysis of 169 publications, Havranak (2015, p.1196) reports a ‘best practice’

estimate of 1/ρ = 0.33 with a confidence interval of (-0.2,0.8). It follows that our

consumers have a strong preference for smooth consumption streams.

The EIS is lower than typical calibrations in the finance literature; e.g., Bansal

and Yaron (2004) assume a value of 1/ρ = 1.5. As they emphasize, a model with

EZW preferences requires both long-run risk and an EIS greater than 1 to resolve

asset pricing puzzles. Structural breaks generate long run risk, but our model could

not hit the macro targets gd = 1.02 and (C/Y )d = 0.7 if the EIS were greater than

1. Furthermore, attempts to calibrate to the risk-free rate plus one of the macro

targets were unsuccessful, with moment conditions either failing to solve altogether

or resulting in implausible values for other parameters. We chose the calibration in

table 4.1 so that the model generates plausible macro outcomes, but we acknowledge

that the model will not match asset prices with an EIS close to zero.

As a point of departure, we deactivate structural breaks and parameter uncer-

tainty and compute the REE for a conventional AK model. The black lines in the

top row of figure 7 depicts policy functions for C/Y and g when µz is constant and

known with certainty. As expected, the consumption-output ratio is decreasing in

ln z, and growth is increasing. The former reflects consumption smoothing, because

a low current value of ln z signals higher future productivity. The latter just reflects

that an increase in the investment share raises growth in an AK model.

The other curves in the top row portray slices of the policy functions when struc-

tural breaks and learning are active. This model has three state variables, ln z, the

posterior mean µt|t, and the posterior precision Pt|t. In the top row, the posterior

mean µt|t is held constant at the true µz, and precision Pt|t is indexed by time since

the last break, with uncertainty being highest in year 1 and diminishing with t.

20The target for the consumption-income ratio is based on US data for the period 1950-2015.
Consumption is measured by real expenditures on nondurable goods and services, and investment
is real gross private domestic investment plus expenditures on consumer durables. Because the
model has no government or net exports, output is measured by C+ I. If government spending were
included and split between consumption and investment, the mean C/Y ratio would be around 0.75.
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Figure 7: Policy functions, z active and q inactive.

Uncertainty promotes precautionary saving and shifts the policy function for C/Y

downward. Because capital is the only aggregate store of wealth, the additional

savings are channeled into investment, and g increases. As parameter uncertainty di-

minishes, precautionary savings decline, and the policy functions shift toward those

for the benchmark no-break model.

Since the model has complete markets, a safe asset is implicit. One might wonder

why agents don’t park their precautionary savings there to await more information.

The answer is that the safe asset is in zero net supply and hence is not a store of

aggregate wealth. The risk-free rate and return on capital adjust so that agents do

not park precautionary savings in the safe asset. In principle, inventories or other

durable commodities could serve as an aggregate store of precautionary wealth, but

they are not riskless.

The second row illustrates how variation in point estimates µt|t influence C/Y

and g with ln z held constant at its unconditional mean. We limit attention to

plausible ranges by plotting µt|t over intervals of ±3 posterior standard deviations
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around the true value. Variation in µt|t matters a lot, especially shortly after a break

when point estimates can bounce all over the place. Conditional on no future break,

µt|t is a martingale under the subjective probability law (Doob 1948), so a revision

of the point estimate shifts the agent’s long run forecast for productivity. Hence,

consumption responds more strongly than to a transitory innovation εzt. Although

the estimates eventually settle down as t increases, this channel continues to amplify

volatility for a long time.

The magnitude of precautionary effects can be seen more clearly in the third

row. Here, C/Y and g are depicted as functions of the posterior standard deviation

P
−1/2
t|t with the posterior mean µt|t and technology shock ln z held constant at their

unconditional means. The peak effect occurs in the year of a break (shown at the far

right of each panel). The consumption-income ratio is about 1 percentage point lower

than in the benchmark no-break model, and growth is about 40 basis points higher.

As uncertainty is resolved (moving from right to left), the investment share falls and

growth slows. It takes about 5 years to move halfway across the graph and 20 years to

move two-thirds of the way. Beyond that point, the policy functions become flatter,

and the effects of parameter uncertainty diminish. Most of the precautionary effects

occur in the first two decades. The effects of variation in µt|t persist beyond that

point, however.

Further insight can be obtained by simulating the model. Figure 8 compares out-

comes for economics with identical sequences of (scaled) TFP shocks. The simulations

are initialized by setting ln z0 at its unconditional mean, drawing 10,000 sample paths

for ln zt, and then calculating outcomes for c, g by plugging the simulated shocks into

the policy functions. Blue lines in the top row portray the median and interquartile

range at each date for the structural-break model, while black lines depict those for

the baseline REE. The second row depicts differences across sample paths on which

standardized realizations of εzt are held constant.

In addition to conventional innovations in TFP (εzt ), the learning economy is also

subjected to a ‘pure uncertainty’shock at date zero. To create a pure uncertainty

shock, we posit a structural break in which the newly drawn value of µz happens to

coincide with the old value and the prior mean; i.e., χt = 1, mt = µt−1 = m. In other

words, a pure uncertainty shock is fake news: agents believe a structural break has

occurred when in fact it has not.
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Figure 8: Fan charts, z active and q inactive. In the first row, blue
lines portray the median and interquatile range for a pure uncer-
tainty shock, while black and red lines depict those for the baseline
ree and a ree with stochastic volatility, respectively. The second
row depicts differences between the learning and stochastic volatil-
ity models relative to the benchmark ree model, with solid lines
showing the mean and dashed lines the interquartile range.

A structural break activates two belief states, µt|t, and Pt|t. A fake news shock

creates uncertainty about µz, raising the posterior variance P
−1
t|t and increasing the

sensitivity of the conditional mean µt|t to incoming data. Their combined effect is to

depress the average consumption share, raise average growth, and amplify consump-

tion volatility.

The precautionary effects can be seen most clearly in the second row. Solid lines

portray cross-sectional average differences between the structural-break model and

the no-break economy. Because no actual break has occurred, averaging across sample

paths removes the effects of µt|t and isolates the influence of Pt|t.
21 Furthermore,

because the posterior variance is a deterministic function of time since the last break,

it is the same on all sample paths. The cross-sectional average therefore illustrates

21I.e., µt|t averages to µzt across sample paths. Since there are no actual breaks, µzt remains
constant at m.
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how higher uncertainty about µz influences C/Y and g with the mean of µt|t held

constant at the true µz. The peak differences occur in the first 5 years, when the mean

consumption share is 0.8 to 1.1 percentage points lower and mean growth is 25 to 45

basis points higher. By the end of the second decade, the effects of µz uncertainty are

weaker, but the risk of a future break remains. Consequently, the mean consumption

share remains about 25 basis points lower than in the baseline REE, and mean growth

is about 5 basis points higher. These small growth effects continue to add up, and

after 50 years the mean capital stock is 4.75 percent higher than in the REE.22

The structural-break model also features greater consumption volatility, due largely

to variation in the conditional mean µt|t. Because µt|t evolves as a martingale (con-

ditional on no future break), it has a strong influence on permanent income. Hence

variability in µt|t strongly amplifies consumption volatility. For a model like ours,

Jones, et al. (2005) report that consumption would be too smooth under REE for an

EIS as low as ours. This is also true in our model (the black fan chart in the upper

left panel is so narrow that it looks like a single line). When µt|t is active, however,

the model exhibits plenty of consumption volatility despite the low EIS (see the blue

fan chart in the upper left panel). Indeed, on many sample paths, the pure precau-

tionary effect is swamped by movements in permanent income. In other words, while

average C/Y is lower in the learning model, there are many sample paths on which it

is higher than in the REE (compare the means and interquartile ranges in the second

row). Of course, variation in µt|t is itself a consequence of the higher uncertainty

because µt|t would be less sensitive to incoming data if P
−1
t|t did not rise.

Since a pure uncertainty shock is somewhat contrived in this environment, we also

look at the combined effects a structural break along with the associated increase

in uncertainty. Figure 9 illustrates the differences between a fake news shock and

breaks of magnitude ±1σm. As in the second row of figure 8, the solid lines represent

mean differences across sample paths, with realizations of εzt held constant, while the

dashed lines represent the interquartile range.

After a signal that χt+1 = 1, the posterior variance rises by the same amount

for both shocks, and the precautionary effects net roughly to zero when differencing

22A higher EIS would amplify the response of precautionary savings because consumers would be
more willing to trade lower present consumption for higher future consumption. For instance, for
1/ρ = 0.33 (Havranak’s point estimate), the mean consumption share would be 140 basis points
lower than in the REE at impact, mean growth would be 55 basis points higher, and the capital
stock would be 8 percent higher after 50 years.
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Figure 9: Fake news about µzt versus actual breaks

across sample paths. What remains are the effects of µt|t. When µz rises (top row),

agents attribute the increase in productivity partly to an increase in µz and partly to

a positive innovation in εz. The former raises the consumption share, while the latter

depresses it. Relative to a fake news shock, more of the increase in ln zt is attributed

to µz. As a consequence, the net impact effect on the mean C/Y ratio is positive.

As agents gradually verify that µz is actually higher, both C/Y and g rise. After 50

years, the mean consumption share is 4 percentage points higher than for a fake news

shock, average growth is about 90 basis points higher, and the mean capital stock is

about 30 percent higher. The effects of a downward shift in µz are similar but have

the opposite sign (bottom row).

Last but not least, we contrast uncertainty about µz with uncertainty about future

innovations εzt.We do this by introducing stochastic volatility in a model in which µz
is constant and known with certainty. In the structural-break model, the prediction

error variance for ln zt is

var(ln zt+1| ln zt, χt+1 = 1) = σ2z + σ2m, (31)

var(ln zt+1| ln zt, χt+1 = 0) = σ2z + P−1t|t ,
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where t indexes time since the last volatility break. To put a stochastic volatility

model on the same footing, we assume that the conditional variance for εzt jumps to

σ2z +σ2m with probability λ and then declines with probability 1−λ to σ2z +P−1t|t . The

red lines in figure 8 portray outcomes for the stochastic volatility model.

Adding stochastic volatility to the REE model matters slightly, but does not

change the big picture. This is especially clear in the second row, where red lines

depicts differences across sample paths relative to the REE economy. When shown on

the same scale as sample-path differences for the structural-break economy, those for

the stochastic-volatility model are too small to see. The reason why structural breaks

are more important is that they generate more persistent variation in the conditional

mean. As a consequence, they have a greater impact on permanent income.

Furthermore, stochastic volatility creates less long-run risk. As shown in figure 6,

structural breaks fatten the tails of the unconditional distribution of lnz more. In-

deed, the long-run risk depicted there depends mainly on variation in the conditional

mean. Matching the conditional variance of εzt to the prediction-error variance of

the structural-break process fattens the tails on the unconditional distribution only

slightly.

To summarize, structural breaks have big effects in this model, as do movements

in the conditional mean µt|t. Movements in the conditional variance P
−1
t|t matter,

but their effects are smaller in magnitude. Smaller still are the effects of stochastic

volatility in εzt.

4.2 Investment-specific technology shocks

Results for a model in which q is active and z is inactive are qualitatively similar.

An uncertainty shock promotes savings and growth, and the responses are larger in

magnitude than those associated with a comparable increase in conditional variances.

Parameters for this model are shown in table 4.2. The subjective discount factor

β, coeffi cient of relative risk aversion γ, and steady-state value of z are the same as

in the previous section. The parameters governing ln qt are estimated by maximizing

the log posterior for the data shown in figure 1, with priors as described in appendix

E.3. Given these parameters, the inverse-EIS ρ and depreciation rate δ are chosen so

that the deterministic steady states for C/Y and g are 0.7 and 2 percent per annum,

respectively. Once again, the implied EIS is close to zero.
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Figure 10: Policy functions, q active and z inactive.

Table 4.2: Calibration
β γ ρ δ ρq σq λ m σm z̄ q̄

1.01−4 4 13.8045 0.129 0.81 0.198 0.0111 −0.013 0.048 0.464 0.934

The black lines in the top row of figure 10 portray policy functions for a version

that abstracts from breaks and learning. As q increases, the capital-goods technol-

ogy becomes less effi cient, and each unit of investment is transformed into fewer

units of new capital. To compensate, agents feed more investment goods into the

capital-goods sector. Thus, the consumption share decreases with q. The rise in the

investment share only partly offsets the decline in the effi ciency of the capital-goods

technology, however, implying that the capital stock also grows more slowly as q

increases.

The colored lines in the top row illustrate the effects of uncertainty. In this panel,

the posterior mean µt|t is held constant at the true µq, and precision Pt|t is indexed

by time since the last break, with uncertainty being highest immediately after a

structural break. The qualitative effects are the same as for a neutral TFP shock:

uncertainty promotes precautionary saving, increases the investment share, and shifts

the policy function for g upward. As uncertainty is resolved, precautionary savings

decline, and the policy functions shift toward those for the no-break benchmark.
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The middle row illustrates how variation in µt|t influences C/Y and g with ln q

held constant at its unconditional mean. Attention is limited to plausible values by

plotting µt|t over intervals of ±2 posterior standard deviations around the true value.

Variation in µt|t matters a lot, especially shortly after a break when point estimates

are most sensitive to realizations of ln qt. Recall once more that µt|t is a martingale

conditional on no break, so the agents’s (conditional) long run forecast for ln qt reacts

strongly to this state variable. Hence, consumption and growth also respond strongly.

This effect is nonlinear, being largest for high values of µt|t.

The third row isolates the influence of Pt|t.Here C/Y and g are plotted as functions

of the posterior standard deviation P−1/2t|t with ln q and µt|t held constant at their

respective unconditional means. Because P−1/2t|t declines deterministically with time

since the last break, time runs from right to left in this row. The points closest to the

origin illustrate the effects of background uncertainty associated with conventional

shocks to lnq and potential future breaks. Since C/Y = 0.7 and g = 1.02 in the

deterministic steady state, background uncertainty reduces the consumption share

and raises growth by roughly 120 and 60 basis points, respectively. The points on the

on the far right depict the impact effects of an uncertainty shock. In the year of a

structural break, the consumption share falls by another 90 basis points and growth

increases by a further 45 basis points. As uncertainty is resolved, the investment

share declines back toward its stochastic steady state, and growth declines.

The next figure compares outcomes for economies with and without structural

breaks. There are two of the latter, one in which the conditional variance of εqt is

constant and another in which it is calibrated to match the prediction-error variance

of the structural-break model (cf. the discussion surrounding equation 31). To create

a pure uncertainty shock, we again imagine that agents believe a structural break

has occurred when in fact it has not. As before, the three simulations used the same

scaled εqt shocks, so shocks are held constant on all sample paths.

In the top row, blue lines portray the median and interquartile range for the

structural-break model, while black and red lines depict those for the benchmark

REE and stochastic-volatility models. The fact that the black and red lines lie on top

of one another implies that stochastic volatility matters very little when µq constant

and known with certainty. In contrast, in response to a pure uncertainty shock, the

median consumption share falls by about 100 basis points and then rises gradually

as uncertainty is resolved. The median growth rate rises by about 45 basis points at
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Figure 11: Fan charts, Q active and Z inactive. In the first row, blue
lines portray the median and interquatile range for a pure uncer-
tainty shock, while black and red lines depict those for the baseline
ree and a ree with stochastic volatility, respectively. The second
row depicts differences between the learning stochastic volatilty
models relative to the benchmark ree model, with solid lines show-
ing the mean and dashed lines the interquartile range.

impact, and declines slowly.

The second row highlights differences between the economies. Solid lines por-

tray cross-sectional average differences relative to the REE and stochastic-volatility

economies, while dashed lines depict the interquartile range. As before, the cross

sectional average illustrates how higher uncertainty influences C/Y and g with the

mean of µt|t held constant at the true µq. For the structural-break model, the biggest

differences occur in the first 5 years, when the mean consumption share is about 100

basis points percentage points lower and mean growth is 30 to 50 basis points higher.

By the end of the second decade, the effects uncertainty are weaker, but the risk of a

future break remains. Consequently, the mean consumption share remains about 80

basis points lower than in the REE, and mean growth is about 25 basis points higher.

Although this might not seem like much, the cumulative effect over 50 years is an 11

percent increase in the level of the capital stock.
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As before, when breaks are absent, outcomes for a stochastic-volatility economy

are essentially the same as for the benchmark REE model with constant conditional

variances. Differences across sample paths are too small to see when graphed on the

same scale as the structural-break economy. Structural breaks matter more because

they activate persistent variation in the conditional mean of ln q.

Finally, figure 12 illustrates the differences between structural breaks of magnitude

±1σm and a fake news shock. Solid lines again represent mean differences across

sample paths, with realizations of εqt held constant, while the dashed lines represent

the interquartile range.
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Figure 12: Structural breaks in µq versus. fake news

Since the effects of positive and negative structural breaks are approximately

symmetric, it suffi ces to discuss the effects of a structural break that increases µq
(top row). Recall that the posterior variance rises by the same amount for actual

breaks and fake news, implying that the precautionary effects net roughly to zero

when differencing across sample paths. Thus, the differences primarily reflect the

influence of µt|t. After both shocks, agents attribute the decrease in capital-goods

productivity partly to an increase in µqt and partly to a positive innovation in εqt,

but more to µqt when there is an actual break. After an actual break, as agents

gradually verify that µqt is higher, the decline in C/Y is magnified. After 50 years,
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the mean consumption share for an actual break is 6 percentage points lower than

for a fake-news shock. The effects on g are similar, but with some over-shooting in

the medium run.

5 Conclusion

This paper analyzed learning by agents of two aggregate-shock distributions. The

economy is competitive and has no external effects. We solved the planner’s problem

and then explained how decentralization would effect the same outcome.

We contrasted the learning economy to the standard no-learning economy with two

shocks. Under no learning, a mean-preserving increase in the variance of TFP shocks

increases long-run growth by raising precautionary savings. By contrast, a mean-

preserving increase in the variance of investment shocks lowers growth because it

raises the option value of waiting to invest, thereby reducing savings. Such a contrast

does not arise in the learning economy: For the case of TFP shocks, the qualitative

effects of learning work in the same direction as a permanent rise in variance. For

shocks to the effi ciency of investment, the qualitative effects can go in the opposite

direction. in the learning economy growth rises whereas in the shock-variance-spreads

economy the growth rate falls.

Endogeneity of growth reverses the implications for the risk-free rate: As in stan-

dard models, a rise in uncertainty raises precautionary savings, but because growth

is endogenous, the rise in the growth rate is accompanied by a rise in the real interest

rate, in contrast to what happens in an endowment economy.

When we compare the learning economy to one in which shock variances increase

and equate the marginal distributions of the shocks at each date, the qualitative

effects in the two cases do go the same way for TFP shocks, but quantitatively the

effects are larger in the case of learning because expected lifetime utility varies more

as beliefs respond to the shocks.
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A Measuring the Output-Capital Ratio

In our model, TFP is the ratio of real output to the real capital stock. The

left-hand column of figure 13 portrays raw data on real private-sector GDP and

capital (upper panel) along with their ratio (lower panel).23 As highlighted in the

introduction, there is a structural break in the capital-output ratio in the 1940s.
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Figure 13: Output, Capital, and the Output-Capital Ratio

23Data files and a program for calculating these measures are available on request.
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The ratio of nominal capital to nominal output is shown in the upper right panel.

Unlike the real ratio, the nominal ratio appears to be stationary, fluctuating around a

value of 3.0. Since the nominal ratio is equal to the real ratio divided by the relative

price of capital to output,
Ynt
Knt

=
zt

PKt/PY t
,

this would be a valid measure of TFP if PK/PY were always equal to 1. For instance,

this would be true in a one-sector Ak model in which output could be costlessly

transformed into capital and vice versa. Alas, the assumption that PK/PY = 1 is not

supported by the data. On the contrary, PK/PY trends upward (see the upper right

panel). The nominal ratio therefore confounds TFP with other shocks that move the

relative price of capital to output.

Our measure of capital is constructed from data on equipment and structures.

The lower right panel drills down by portraying the relative price of each component

to output. Although the relative price of equipment to output declined sharply after

1980, the relative price of structures kept rising. Our measure of PK is a Fisher

ideal price index for the two components, and an upward trend emerges because

the steadily rising price of structures more than counterbalanced the rise and fall

in equipment prices. An upward trend in PK/PY does not contradict evidence of a

downward trend in PE/PY .24

24Our relative-price data differ from those used in a number of influential papers in the literature.
For instance, Jovanovic and Rousseau (2005) report a downward trend in the relative price of
equipment for the entire period between 1885 and 1996. In contrast, our data show a rising relative
price from 1925 to 1960 and a decline thereafter.
The difference is mainly due to how equipment prices are measured. Building on work by

Krussell, et al. (2000), Jovanovic and Rousseau start with Gordon’s (1990) data on quality-adjusted
equipment prices for 1947-83, then extend it forward and backward in time by appending VAR
forecasts and historical data (see Jovanovic and Rousseau 2005, footnote 9, p. 1196). We do not
use Gordon’s (1990) data. Instead, we follow Gordon (2016) by using NIPA data on chain-weighted
price indices. These chain-weighted series incorporate many of Gordon’s (1990) proposals, such
as adjusting for quality by comparing like units in adjacent years and aggregating by computing
superlative price indices. Coverage of equipment types is also broader; e.g. for 1967, Gordon (1990)
reports that categories amounting to 23 percent of private domestic equipment was missing from his
1990 series. The new BEA data also cover a longer time span, 1925-2015 vs. 1947-93 for Gordon
(1990), making forward and backward extensions unnecessary. Last but not least, Gordon (1990)
collected no data on structures. Since our sources report comparable chain-weighted price indices
for structures, we can construct a broader measure of aggregate capital.
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A.1 Real private-sector GDP

The data are annual and cover the period 1889-2015. Two sources are spliced

together at 1929. Data for the period 1889-1929 are taken from Kendrick (1961),

while those for the period after 1929 were downloaded from the Bureau of Economic

Analysis. Kendrick’s series were rescaled so that they coincide with BEA measures

at the splice date.

• 1889-1929: Real gross private domestic product was taken fromKendrick (1961),
Appendix A, Table A-III, column 8.

• 1929-2015: Real GDP was taken from BEA Table 1.1.6, line 1. To adjust for

government, nominal GDP and nominal government spending were downloaded

from BEA Tables 1.1.5 (line 1) and 3.1 (line 26), respectively. The government

share sgt was measured as the ratio of nominal government spending to nominal

GDP. Then real private GDP was calculated as

Yps,t = (1− sgt)Yt,

where Yt is total GDP and Yps,t is private-sector GDP.

A.2 Real Private-Sector Capital

The capital stock is defined as private fixed assets, structures plus equipment.

Intellectual property was excluded because it was not available before 1925. Data for

the period 1889-1925 come from Kendrick (1961), while those for the period 1925-

2015 are from the Bureau of Economic Analysis. The two series are spliced in 1925,

and Kendrick’s series was again rescaled so that it coincides with the BEA measure

at the splice date.

• 1889-1929: Real Structures and Equipment were taken from Kendrick, Appen-

dix A, Table A-XVI, columns 7 and 9.

• 1925-2016: Index numbers for structures and equipment were downloaded from
BEA Table 2.2, lines 2 and 41. The indices were converted to 2009 dollars by

multiplying by nominal structures and equipment for that year. The latter can

be found in BEA Table 2.1, lines 2 and 41, respectively. Following Whelan

(2002), price and quantity indices for capital were computed by constructing

Fisher ideal indices from the indices on equipment and structures.
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B Proof of Proposition 1

Start with the planner’s Bellman equation,

V (st, kt) = max
Ct,Xt

[
(1− β)C1−ρt + β

((
Et[V (st+1, kt+1)

1−γ]
) 1−ρ
1−γ
)] 1

1−ρ
,

then substitute the conjectured value function V (s, k) = v(s)k along with the identi-

ties C = ck and k′ = gk:

v(s)k = max
C,X

[
(1− β)(ck)1−ρ + β

((
E[v(s′)1−γ(gk)1−γ]

) 1−ρ
1−γ
)] 1

1−ρ
, (32)

= max
C,X

[
(1− β)(ck)1−ρ + β(gk)1−ρ

(
E[v(s′)1−γ]

) 1−ρ
1−γ
] 1
1−ρ

,

= max
C,X

[
(1− β)c1−ρ + βg1−ρ

(
E[v(s′)1−γ]

) 1−ρ
1−γ
] 1
1−ρ

k.

The aggregate resource constraint and law of motion for capital imply

ct = zt − qt(gt − 1 + δ), (33)

We use equation (33) to express the right-hand maximization problem in terms of

growth,

v(s) ≡ max
g

[
(1− β)(z − q(g − 1 + δ))1−ρ + βg1−ρ

(
E[v(s′)1−γ]

) 1−ρ
1−γ
] 1
1−ρ

. (34)

The first-order condition is[
(1− β)(1− ρ)(z − q(g − 1 + δ))−ρq

]
= β(1− ρ)g−ρ

(
E[v(s′)1−γ]

) 1−ρ
1−γ , (35)

(1− β)qc−ρ = βg−ρ
(
E[v(s′)1−γ]

) 1−ρ
1−γ . (36)

After substituting the conjectures for c(s) and g(s) in equations (17) and (16), we

find

(1− β)q

(
z + q(1− δ)
1 + q1−

1
ρw(s)

)−ρ
= β

(
1− δ +

zq−
1
ρw(s)− (1− δ)

1 + q1−
1
ρw(s)

)−ρ (
E[v(s′)1−γ]

) 1−ρ
1−γ .

(37)
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Multiplying both sides by (1 + q1−
1
ρw(s))−ρ,

(1− β)q (z + q(1− δ))−ρ = β
[
(1− δ)(1 + q1−

1
ρw(s)) + zq−

1
−ρw(s)− (1− δ)

]−ρ
×
(
E[v(s′)1−γ]

) 1−ρ
1−γ ,

= β
[
(1− δ)q1−

1
ρw(s) + zq−

1
ρw(s)

]−ρ (
E[v(s′)1−γ]

) 1−ρ
1−γ ,

= βw(s)−ρ
[
(1− δ)q1−

1
ρ + zq−

1
ρ

]−ρ (
E[v(s′)1−γ]

) 1−ρ
1−γ ,

= βw(s)−ρq [z + (1− δ)q]−ρ
(
E[v(s′)1−γ]

) 1−ρ
1−γ . (38)

Multiplying both sides by w(s)ρ and cancelling like terms implies

w(s)ρ =
β

1− β
(
E[v(s′)1−γ]

) 1−ρ
1−γ , (39)

w(s) =

(
β

1− β

) 1
ρ

[
E

(
(z′ + q′(1− δ))

[
(1− β)(1 + q′1−

1
ρw(s′))ρ

] 1
1−ρ
)1−γ] 1−ρ

ρ(1−γ)

,

This delivers a recursion for w(s) that satisfies the FOC.

Now we need to verify that the conjectured solution satisfies the Bellman equation.

Notice that

v(s) =

[
(1− β)(z + q(1− δ))

(
z + q(1− δ)
1 + q1−

1
ρw(s)

)−ρ] 1
1−ρ

,

=
[
(1− β)(z + q(1− δ))c−ρ

] 1
1−ρ . (40)

If our guess holds, then (14) and (15) imply

[
(1− β)(z + q(1− δ))c−ρ

] 1
1−ρ =

[
(1− β)c1−ρ + βg1−ρ

(
E[v(s′)1−γ]

) 1−ρ
1−γ
] 1
1−ρ

,

(1− β)(z + q(1− δ))c−ρ = (1− β)c1−ρ + βg1−ρ
(
E[v(s′)1−γ]

) 1−ρ
1−γ

z + q(1− δ)
c

= 1 +
(g
c

)1−ρ β

1− β
(
E[v(s′)1−γ]

) 1−ρ
1−γ

z + q(1− δ)
c

= 1 +
(g
c

)1−ρ
w(s)ρ (41)
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Plugging the conjecture for consumption in the left hand side yields

1 + q1−
1
ρw(s) = 1 +

(g
c

)1−ρ
w(s)ρ

q1−
1
ρw(s) =

(g
c

)1−ρ
w(s)ρ

q1−
1
ρw(s)1−ρ =

(g
c

)1−ρ
q−

1
ρw(s) =

g

c
(42)

Using the conjectured decision rules for c and g, the right-hand side can be written

as

g

c
=

(
z + q(1− δ)
1 + q1−

1
ρw(s)

)−1(
1− δ +

zq−
1
ρw(s)− (1− δ)

1 + q1−
1
ρw(s)

)

=
(1− δ)(1 + q1−

1
ρw(s)) + zq−

1
ρw(s)− (1− δ)

z + q(1− δ)

=
q1−

1
ρ (1− δ) + zq−

1
ρ

z + q(1− δ) w(s)

= q−
1
ρw(s) (43)

From (42) and (43), it is clear that the conjectured value function and decision rules

satisfy the Bellman equation.

C Alternating regimes when θ ∈ {θL, θH}
Next we investigate a model with alternating regimes analogous to that of Hopen-

hayn and Muniagurria (1996, henceforth HM). A break occurs with probability λ.

Conditional on a break, values of θ alternate with transition-probability matrix

π =
θL θH

θL 0 1
θH 1 0

. (44)

In other words, the timing of the shift is still random, but its character is deterministic.

In the case of θq, this exercise is roughly that of HM, except that in their model

a higher q is caused higher taxation (accompanied by a lump-sum redistribution)

instead of higher investment cost.25 As in HM, λ is an inverse measure of policy
25HM study an Ak model that features policy shocks instead of investment-specific technology

shocks. In their model, an investment subsidy is periodically put in place for a random length of
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persistence. Higher variability then implies more frequent changes in consumption

and investment.

Let us illustrate for the case where θz is fixed and θq oscillates as in (44). When

we write “H”we mean the regime in which θq = θqH. Beliefs are degenerate at the

true θz, θq, and so (14) and Proposition 1 simplify as follows. For I, J ∈ {L, H} ,
(here We also assume CRRA preferences (ρ = γ), as in Sec. 3.

V I(s, k) = max
C,X

{
C1−γ

1− γ + β
∫ (

λV J(s′, k′) + (1− λ)V I
)
dF I(s′)

}
= vI(s)k1−γ.

where

vI(s) =
(z + (1− δ)q)1−γ

1− γ (1 + q1−γ
−1
wI(s))γ

and where instead of (13), we have

wI(s) =
{
β
∫

(z′ + (1− δ)q′)1−γ(1 + q′1−γ
−1 (

λwJ(s′) + (1− λ)wI (s′)
)
)γdF I(s′)

}1/γ
The optimal policies are

cI (s) =
z + (1− δ)q

1 + q1−γ−1wI (s)
, and gI (s) = 1− δ +

zq−1/γwI(s)− (1− δ)
1 + q1−γ−1wI(s)

.

Then using again the parameters values in Table 3.1, Figure 14 plots the three aver-

ages

cL (smed.) + cH (smed.)

2
,

gL (smed.) + gH (smed.)

2
and

wL (smed.) + wH (smed.)

2

as functions of λ, evaluated at the median value of s.

When θq varies with θz fixed, more frequent policy shifts raise consumption and

welfare because they allow agents to substitute investment from periods when in-

vestment is costly and into periods when it is cheap —see the bottom row of figure

14. This allows consumption to rise on average without an increase in its volatility.

Welfare therefore goes up even though growth declines. On the other hand, regime

changes that affect θz simply raise consumption volatility with no offsetting benefit

from intertemporal substitution of investment —see the top row of figure 14.

As λ rises and as one moves from left to right along the horizontal axis in Fig. 14,

future regimes become harder to predict as do future shock realizations. Although a

time. This raises the growth rate similarly to how a fall in q raises growth in our model. We proceed,
as HM do, under CRRA preferences (ρ = γ), as in Sec. 3.
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0 0.5 1
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0.14
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Consumption, alternate z

0 0.5 1
1
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Growth, alternate z

0 0.5 1
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­1500

­1000
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Welfare, alternate z

0 0.5 1
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0.21

0.215

0.22

0.225
Consumption, alternate q

0 0.5 1
1.015

1.02

1.025

1.03
Growth, alternate q

0 0.5 1
­400

­350

­300

­250
Welfare, alternate q

Figure 14: the effect of λ when θ alternates. Top Row: only θz alter-
nates, Bottom Row: only θq does.

rise in λ does not represent an MPS in the distributions of future shocks, these results

are qualitatively similar to those in Sec. 3.1 that deal with MPSs for given and known

values of θ. In Figure 2 shocks become less forecastable as we move from right to

left on the horizontal axes in each of the four quadrants; consumption and growth

respond in qualitatively the same way as in Fig. 14. But if the marginal distributions

of the sequences of future shocks are the same for the two sets of cases, the agent is

better off when regimes alternate because shocks are negatively autocorrelated and

thus are easier to forecast in the alternating regime case.

D Solving the model with non-recurrent structural
breaks and autoregressive shocks (section 4)

D.1 Agents use a pair of Kalman filters to learn about µt

The posterior p(µt+1, µt|st, θ) can be calculated recursively with a pair of Kalman
filters. To simplify notation, define xt ≡ ln at − ρa ln at−1. Because the history at
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is observable and ρa is known, xt is observable. Conditional on µat, xt is normally

distributed with mean µat and variance σ
2
a.

Suppose a structural break occurs at date t.26 Knowing that a new intercept is

about to be drawn, agents adopt the unconditional distribution of mt as their prior,

p(µt|χt = 1) = N(m,σ2m). (45)

Next, agents observe xt and update beliefs about µt. According to Bayes theorem,

p(µt|xt, χt = 1, θ) ∝ p(xt|µt, χt = 1, θ)p(µt|χt = 1). (46)

Because χt affects xt only through µt, it carries no incremental information about xt
beyond that contained in µt. Hence the likelihood simplifies to

p(xt|µt, χt = 1, θ) = p(xt|µt, θ). (47)

Since the prior and likelihood are both Gaussian, this is a conjugate updating problem

whose solution can be found by applying the Kalman filter,

p(µt|xt, χt = 1, θ) = N(µmt|t, 1/P
m
t|t). (48)

A superscript m indicates that the mean and precision, µmt|t and Pm
t|t , update the

break-date prior (equation 45).

The predictive density at date t serves as the prior for t+1. To find this predictive

density, we first condition on χt+1 and then marginalize with respect to it. With

probability λ, another structural break will occur at t+ 1, in which case µt+1 will be

distributed as

p(µt+1|χt+1 = 1) = N(m,σ2m). (49)

The new drawmt+1 is independent of the histories xt or χt,making them irrelevant for

prediction or updating.27 With probability 1−λ, no break will occur, and µt+1 = µt.

For that scenario, the conditional predictive density is

p(µt+1|xt, χt, χt+1 = 0) = N(µkt+1|t, 1/P
k
t+1|t), (50)

26The model is set up so that histories xt−1, χt−1 are cleared when there is a structural break, so
this starting point involves no loss of generality.
27This is why histories are cleared at break dates.
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where superscript k indicates that the predictions are based on the output of Kalman

updating at date t (equation 48). We marginalize with respect to χt+1 by taking a

probability weighted mixture,

p(µt+1|xt) = λp(µt+1|χt+1 = 1) + (1− λ)p(µt+1|xt, χt, χt+1 = 0), (51)

= λN(m,σ2m) + (1− λ)N(µkt+1|t, 1/P
k
t+1|t).

This serves as the prior for date t+ 1.

At t+1, agents observe realizations of xt+1, χt+1 and update beliefs. The likelihood

function is

p(xt+1, χt+1|µt+1, θ) = p(xt+1|χt+1, µt+1, θ) · p(χt+1|µt+1, θ), (52)

= p(xt+1|µt+1, θ) · p(χt+1|λ).

In the second line, χt+1 drops out of the first term because it conveys no incremental

information about xt+1 beyond that contained in µt+1. In addition, µt+1 drops out

of the second term because χt+1 is an exogenous Bernoulli random variable whose

success probability does not depend on the intercept.

Multiplying the likelihood by the prior delivers the posterior kernel,

p(µt+1|xt+1, χt+1, xt, χt, θ) ∝ p(xt+1|µt+1, θ) · p(χt+1|λ) (53)

·
[
λp(µt+1|χt+1 = 1) + (1− λ)p(µt+1|xt, χt, χt+1 = 0)

]
.

Since p(χt+1|λ) does not depend on µt+1, this term can be absorbed into the normal-

izing constant, yielding

p(µt+1|xt+1, χt+1, xt, χt, θ) ∝ p(xt+1|µt+1, θ) (54)

·
[
λp(µt+1|χt+1 = 1) + (1− λ)p(µt+1|xt, χt, χt+1 = 0)

]
.

After substituting expressions for the priors, we find

p(µt+1|xt+1, χt+1, xt, χt, θ) ∝ p(xt+1|µt+1, θ)×N(m,σ2m) if χt+1 = 1, (55)

∝ p(xt+1|µt+1, θ)×N(µkt+1|t, 1/P
k
t+1|t) if χt+1 = 0.

Both components involve a Gaussian prior and likelihood, so piecewise conjugacy is

preserved. Hence the posterior is a mixture of normals, and each component can be

updated via a Kalman filter.
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In the event of a break, the prior is re-initialized to (45) and updated as at date

t,

p(µt+1|xt+1, χt+1 = 1, θ) = N(µmt+1|t+1, 1/P
m
t+1|t+1). (56)

Absent a break, the posterior is found via a standard Kalman update,

p(µt+1|xt+1, χt, χt+1 = 0, θ) = N(µkt+1|t+1, 1/P
k
t+1|t+1), (57)

where xt+1 represents the history going back to the last break date.

The predictive density for t+2 has the same form as that for t+1. With probability

λ, another structural break will occur at t+ 2, in which case µt+2 will be distributed

as

p(µt+2|χt+2 = 1, θ) = N(m,σ2m). (58)

With probability 1 − λ, no break will occur, and µt+2 = µt+1. In that case, the

conditional predictive density is

p(µt+2|χt+2 = 0, xt+1, χt+1, θ) = N(µkt+2|t+1, 1/P
k
t+2|t+1), (59)

where xt+1, χt+1 are histories going back to the last break date. The predictive density

is again a mixture of the two,

p(µt+2|xt+1, χt+1, θ) = λp(µt+2|χt+2 = 1, θ) + (1− λ)p(µt+2|χt+2 = 0, xt+1, χt+1, θ),

= λN(m,σ2m) + (1− λ)N(µkt+2|t+1, 1/P
k
t+2|t+1). (60)

This closes the loop. Updating and prediction at date t + 2 have the same form as

for t+ 1.

The updating densities are normal, and the predictive densities are mixtures of

normal. Since conjugacy is preserved for each component of the mixture, the Kalman

filter can be used to update conditional means and variances. Care must be taken

about the prior being updated, but otherwise Kalman’s logic goes through. When

a break occurs, histories of x, χ are cleared, and the prior is re-initialized using the

unconditional distribution. When no break occurs, histories of x going back to the

last break date are retained, and updating is done with a Kalman filter.

D.2 How the integral equation is approximated

The state vector consists of the active shock ln a plus the posterior mean and

precision, µt|t and Pt|t, that emerge from the Kalman filter. Because Pt|t is a deter-

ministic function of time since the last break, it can be subsumed in a time index for
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w(·). We therefore look for a sequence of functions wt(ln at, µt|t) for t = 0, ...,∞ that

satisfy equation 13 and are consistent with Bayes updating and the law of motion for

the shocks.

To simplify notation, define

f(s, w(s)) ≡ v(s)1−γ,

and write equation 13 as

w(s) =

(
β

1− β

) 1
ρ

[Ef(s′, w(s′)|s)]
1−ρ

ρ(1−γ) . (61)

For a model with recurrent structural breaks, the expectation term has two branches,

Ef(s′, wt+1(s
′, µ′))|s) = (1− λ)

∫
f
([
s′, wt+1(s

′, b̂nobreak(s
′, µ))

])
pnobreak(s

′|s)ds′

+λ

∫
f
([
s′, w0(s

′, b̂break(s
′))
])
pbreak(s

′|s)ds′. (62)

A prime denotes next period’s value, and t indexes time since the last break. pbreak(s′|s)and
pnobreak(s

′|s) represent the Bayesian predictive densities derived in the previous sub-
section, and b̂break(s′) and b̂nobreak(s′, µ)) signify that beliefs are updated according to

Bayes rule. Substituting back into equation 13 yields

wt(s, µ) =

(
β

1− β

) 1
ρ

× (63)

{(1− λ)

∫
f
([
s′, wt+1(s

′, b̂nobreak(s
′, µ))

])
pnobreak(s

′|s)ds′

+λ

∫
f
([
s′, w0(s

′, b̂break(s
′))
])
pbreak(s

′|s)ds′}
1−ρ

ρ(1−γ)

If λ were zero, the third line would vanish, and the first two would define a backward

recursion for wt(·). When λ > 0, the break date function w0(·) affects the solution
for wt(·) for all non-break dates. The main challenge in solving equation (63) is the
simultaneity between wt(·) and w0(·).
Our algorithm combines a backward recursion for the wt(·) functions with a fixed

point problem involving w0(·). To find a good initial guess for the fixed-point prob-
lem, we adopt a method of successive approximation. Imagine a sequence of models

indexed by λi, i = 1, ..., n, starting from λ1 = 0 and increasing until the desired value

λn is reached. We first solve the λ = 0 model, iterating backward until w0,λ1(·) is
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found. That solution is used to approximate wt(·) for a model in which λ2 ≈ 0. We

gradually raise λ to the desired value, approximating w0(·) with the solution from
the previous step. I.e., for i = 2, ..., n, we solve

wt,λi(s, µ) =

(
β

1− β

) 1
ρ

× (64)

{(1− λi)
∫
f
([
s′, wt+1,λi(s

′, b̂nobreak(s
′, µ))

])
pnobreak(s

′|s)ds′

+λi

∫
f
([
s′, w0,λi−1(s

′, b̂break(s
′))
])
pbreak(s

′|s)ds′}
1−ρ

ρ(1−γ)

This breaks the simultaneity between wt(·) and w0(·) and delivers a straightforward
backward recursion for wt(·). When the desired λ is reached, we iterate on

wt,λn(s, µ) =

(
β

1− β

) 1
ρ

× (65)

{(1− λn)

∫
f
([
s′, wt+1,λn(s′, b̂nobreak(s

′, µ))
])
pnobreak(s

′|s)ds′ds′

+λnβ

∫
[z′ + (1− δ)q′]1−γ w0,λn(s′, b̂break(s

′))pbreak(s
′|s)ds′}

1−ρ
ρ(1−γ) .

until a fixed point for w0(·) is found.

D.2.1 Solving the λ = 0 model

With λ = 0, one component of the mixture is deactivated, updating and prediction

reduce to a conventional Kalman filtering problem, and equation (63) reduces to an

infinite horizon backward recursion in wt(·). We approximate its solution with that
of a long but finite horizon problem.

The first step is to approximate the terminal value wT (ln aT , µT |T ). Because the

λ = 0 model involves decreasing gain learning, µt|t will eventually converge in prob-

ability to the true value. Agents don’t know the true value, but they can calculate

a rational expectations solution for w(·) for any value of µa in the support of the
prior. Toward that end, we define grids for ln at and µa, set T equal to 1000 years,

and shut down parameter uncertainty for year T and beyond by fixing P−1T = 0. For

points on the grid, a fixed point for w(ln a, µa) is found by iterating on the rational

expectations version of the integral equation,

w(s, µ) =

(
β

1− β

) 1
ρ
{∫

f ([s′, w(s′, µ)]) p(s′|s, µ)ds′
} 1−ρ

ρ(1−γ)

. (66)
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Values at ordinates between the nodes are approximated by fitting and interpolating

a Chebychev polynomial. This delivers a family of rational expectations solutions

indexed by µa that approximates the terminal solution wT (ln aT , µT |T ).

This approximation initializes a backward recursion. For periods before T, pa-

rameter uncertainty is restored by updating Pt|t via the Kalman filter, and wt(·) is
calculated by iterating backward on equation 63. Notice that the integrand on the sec-

ond line involves wt+1(ln at+1, µt+1|t+1). Next period’s estimate µt+1|t+1 is calculated

using the Kalman filter, and wt+1(·) is evaluated from the Chebychev approximation

computed in the previous step of the backward recursion. The right-hand integral

is then computed via quadrature. Values at ordinates between the nodes are again

approximated by fitting and interpolating a Chebychev polynomial. Continuing back

to date 0 delivers the desired sequence of wt(·) functions.

D.2.2 Approximating equation (64)

Next we raise λ slightly and substitute w0,λ=0(·) into equation (64). Since w0,λ=0(·)
is held constant, this equation also defines a backward recursion for wt,λ1(·), which is
solved in essentially the same way as the λ = 0 model. We run through the sequence

of models, gradually increasing λ, until an initial guess for w0,λn(·), is obtained.

D.2.3 Solving the fixed point problem

We substitute the initial guess for w0,λn(·) into the second line of equation (65), then
compute Chebychev approximations to wt,λn(·) by backward iteration, until a new
guess for w0,λn(·) is found. Then we substitute the new guess for w0,λn(·) into the
second line of equation (65) and re-solve the backward recursion, eventually finding

yet another guess for w0,λn(·). We continue until the maximum absolute difference

between old and new guesses for w0,λn(·) is negligible.

E Estimating parameters governing the shock processes

The shocks follows autoregressive processes with occasional shifts in the intercept,

lnxt = µt + ρx lnxt−1 + σxεxt, (67)

where xt = zt or qt. A Bernoulli random variable χt governs whether a structural

break occurs. With probability 1 − λ, no break occurs (χt = 0), and the intercept
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remains unchanged. With probability λ, a break occurs (χt = 1), and a new intercept

is drawn from a normal distribution,

µt = µt−1 with pr 1− λ, (68)

= mt ∼ N(m,σ2m) with pr λ.

The random variables εxt, χt,mt are mutually independent.

The parameters θ = [λ,m, σm, ρx, σx] are estimated from data on lnxt. A pre-

liminary examination of the likelihood surface indicated that λ and σm are weakly

identified in the frequentist sense. This is not surprising, since the sample might

contain only a single structural break. Consequently, we add informative priors and

find point estimates by maximizing the log posterior.

E.1 The likelihood function

As usual, the likelihood function can be factored as

p(lnxT |θ) = p(lnx1|θ)
∏T

t=2
p(lnxt| lnxt−1, θ). (69)

Because the state-space representation is non-Gaussian, a particle filter is used to

evaluate the likelihood function. Our particle filter is a straightforward modification

of the Gordon, et al. (1993) bootstrap filter. It consists of three steps: predicting

the state one period ahead, evaluating the period t component of the likelihood by

Monte Carlo integration, and updating the date-t posterior for the hidden state.

E.1.1 State prediction

Suppose an evenly weighted sample from the p(µt−1| lnxt−1, θ) is available at the end
of period t− 1.With probability 1− λ, these particles will survive and move forward
to date t. With probability λ, they will be extinguished and replaced with a draw

µt = mt ∼ N(m,σ2m). The predictive distribution p(µt| ln zt−1, θ) is a mixture of the
two:

p(µt| lnxt−1, θ) = (1− λ)p(µt = µt−1| lnxt−1, θ) + λp(µt = mt). (70)

Because λ could be close to zero, we oversample the break distribution. Oversam-

pling serves two purposes, injecting diversity into the particle cloud at each date and

improving the accuracy of the monte carlo integration in step 2. Let

f(µt| lnxt−1, θ) = (1− λ̃)p(µt = µt−1| lnxt−1, θ) + λ̃p(µt = mt) (71)
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represent a proposal density for p(µt| lnxt−1, θ) with λ̃ > λ. Our implementation sets

λ̃ = 1/2. Importance weights are adjusted below to compensate.

E.1.2 Evaluating the period t component of the likelihood

The period t component of the likelihood is

p(lnxt| lnxt−1, θ) =

∫
p(lnxt| lnxt−1, θ, µt)p(µt| lnxt−1, θ)dµt, (72)

=

∫
p(lnxt| lnxt−1, θ, µt)

p(µt| lnxt−1, θ)
f(µt| lnxt−1, θ)

f(µt| lnxt−1, θ)dµt.

Armed with a proposal sample for µt from step 1, this can be approximated by

p(lnxt| lnxt−1, θ) ≈ N−1
∑N

i=1
p(lnxt| lnxt−1, θ, µit)

p(µit| lnxt−1, θ)
f(µit| lnxt−1, θ)

. (73)

where N is the number of particles,

ln p(lnxt| lnxt−1, θ, µit) = − lnσx −
(lnxt − µit − ρx lnxt−1)

2

2σ2x
,

and

p(µit| lnxt−1, θ)
f(µit| lnxt−1, θ)

=
λ

λ̃
for draws from the break component, (74)

=
1− λ
1− λ̃

for draws from the no-break component.

Our implementation sets N = 2000.

E.1.3 Updating the posterior for µt

The loop is closed by updating p(µt| lnxt, θ). This is also done via importance sam-
pling. The proposal density is the same as in step 1, and the target is the product of

the conditional prior p(µit| lnxt−1, θ) and the conditional likelihood p(lnxt| lnxt−1, θ, µit).
Unnormalized importance weights are the ratio of the target to proposal,

w̃it = p(lnxt| lnxt−1, θ, µit)
p(µit| lnxt−1, θ)
f(µit| lnxt−1, θ)

.

Sum and renormalize so that the weights sum to 1,

wit =
w̃it∑
i
w̃it

.
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Then resample the proposal sample with weights wit to get an evenly weighted sample

from the date-t posterior p(µt| lnxt, θ).
The particle filter then advances to period t + 1. Looping over t delivers a value

for p(lnxT |θ).

E.2 Priors over TFP parameters

We assume prior independence, p(θ) =
∏

i p(θi), and calibrate marginal priors for

each parameter.

• p(λ) = beta(8.98, 791). A beta prior is adopted so that λ ∈ (0, 1). The prior

mode was determined by counting trend breaks in the GDP data in Cogley

(1990).28 Casual inspection suggests roughly 1 trend break per 100 years in

countries other than the US; hence the prior mode for λ was set to 0.01. Upper

and lower values for a 95 percent prior confidence interval were set at values

twice and half as large as the mode, respectively. A beta density with α = 8.98

and β = 791 delivers the desired mode and confidence interval (see Gelman, et

al., p. 476-77).

• p(ρz) = beta(86.26, 13.74). A beta prior was also adopted to constrain ρz to

the unit interval. The mode was found by simulating a conventional RBC

representation for quarterly data,

ln zt = 0.95 ln zt−1 + 0.006εt. (75)

Since the time period in our model is a year, we simulate a long quarterly series,

transform into annual data by summing across quarters, and then estimate an

AR(1) model for the annual data. The result implies a prior mode of ρz = 0.87.

The prior 95 percent confidence interval was then set to ρz ∈ [0.79, 0.925]. A

beta density with α = 86.26 and β = 13.74 delivers the desired mode and

confidence interval.

• p(σz) = IG1(25, 0.0387). The time aggregation in the last bullet point delivered

an estimate of σz = 0.0368 for time-aggregated annual data. We also target

a prior 95 percent confidence set of σz ∈ [0.03, 0.055]. An IG1 density with

shape coeffi cient 25 and scale parameter 0.0387 delivers the desired mode and

approximates the confidence set for σz.
28A mean shift in TFP generates a trend break in an AK growth model.
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• p(m) = N(−0.0901, 0.0033). Given the other prior parameters, p(m) was cali-

brated so that the center of the unconditional distribution for structural breaks

is near K/Y = 2.

• p(σm) = IG1(30, 0.0158). Similarly, the prior for σm is calibrated so that the

structural break distribution concentrates on K/Y ∈ (1, 3) with high probabil-

ity.

The priors on (m,σm, ρz) jointly imply the following structural break distribution

for the capital-output ratio. The prior allows both growth miracles and growth disas-

ters after a structural break. It is also asymmetric, skewed toward growth disasters.
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Figure 15: Implied prior for structural breaks in the capital-output ratio

E.3 Priors over investment shock parameters

We again assume prior independence, p(θ) =
∏

i p(θi) and calibrate marginal priors

for each parameter.

• Lacking better information, the prior for λ is the same as above, p(λ) =

beta(8.98, 791). This puts the mode at λ = 0.01 with a 95 percent prior credible

set of λ ∈ (0.005, 0.02).
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• p(ρq) = beta(5, 5). A beta prior constrains ρq to the unit interval. The hyper-

parameters were chosen so that the mode is 0.5 and a prior 95 percent credible

set is ρq ∈ (0.2, 0.8). This prior is weakly informative, and ρq is relatively well

identified by the data, so this component of the prior is less influential than

some of the others.

• p(σq) = IG1(5, 0.24). This prior is also weakly informative, with a prior mode

of 0.2 and a 95 percent credible set of σq ∈ (0.13, 0.5). Our main concern was

to allow transient innovations to be highly volatile, reflecting the high volatility

of market valuations.

• p(m) = N(0, 0.025). Given the other prior parameters, p(m) was calibrated so

that the center of the unconditional distribution for m is close to 0.

• p(σm) = IG1(10, 0.0229). Last but not least, the prior for σm is calibrated so

that, after a structural break, the new anticipated-utility long-horizon forecast

for q lies between 0.5 and 1.5 with probability 0.99.

The priors on (m,σm, ρq) jointly imply the following structural break distribution

for conditional long-horizon forecasts of q.
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Figure 16: Implied prior on conditional long-horizon forecasts for q
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