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1 Introduction

Investors worldwide have delegated the investment of almost $100 trillion to asset manage-
ment firms. Portfolio managers at these firms are invariably paid based on how their fund
performs relative to a benchmark.1 There is little academic research analyzing why the
compensation contracts take this form and there is no standard explanation for this phe-
nomenon. We provide a theoretical framework that offers an explanation for the common
use of benchmarking in asset management. More importantly, we use this framework to
assess the welfare implications of benchmarking and explore its unintended consequences.

To study these questions, we embed an optimal-contracting model into a general-
equilibrium setting. We show that when the fund managers incur a private cost in managing
portfolios, optimally designed contracts for the managers involve benchmarking. Because
of this private cost, managers underinvest. Conditioning the managers’ compensation on
the performance of a benchmark portfolio partially protects them from risk and thus boosts
their incentives to invest. In general equilibrium, the use of such incentive contracts creates
a pecuniary externality through their effect on asset prices. Benchmarking inflates asset
prices and reduces expected returns. This in turn reduces the marginal benefit of using
incentive contracts for others. We show that a constrained social planner, who internalizes
this externality, would opt for less incentive provision and less benchmarking.

Here is how our model works. Some agents in the economy—direct investors—manage
their own money and others—fund investors—delegate their investment choice to fund
(or portfolio) managers. All agents are risk averse. Critically, the managers’ portfolios are
unobservable to fund investors and the cost of managing a portfolio is private. The managers
are paid based on incentive contracts designed by the fund investors.2 We focus on linear
contracts, which include a fixed salary, a fee for absolute performance, and potentially a fee
for performance relative to a benchmark.

We assume that the managers can potentially generate superior returns (or “alpha”)
relative to those of the direct investors through various sophisticated strategies. These
include lending securities, conserving on transactions costs (e.g., from crossing trades in-
house or by obtaining favorable quotes from brokers) or providing liquidity (i.e., serving as
a counterparty to liquidity demanders and earning a premium on such trades). While these

1For example, Ma, Tang, and Gómez (2019) report that around 80% of U.S. mutual funds explicitly
base compensation on performance relative to a benchmark (usually a prospectus benchmark such as the
S&P 500, Russell 2000, etc.).

2We abstract from the asset management firm and assume that the firm acts in the interest of the
fund investors, so that effectively the fund investors directly control the compensation arrangements for the
portfolio managers. This is consistent with the fund trustees having a fiduciary obligation to their investors.
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activities augment returns, they are associated with a private cost for a portfolio manager.
We assume the costs are increasing in the size of the fund’s risky portfolio. The simplest
way to justify these assumptions is to appeal to the time costs involved in the activities
and to interpret the rising costs as reflecting the additional time required for managing a
larger fund/portfolio. An alternative interpretation that we discuss in Section 3 is that the
manager has to exert costly effort to augment returns.3

Fund investors design the manager’s compensation contracts to incentivize the manager
to take the risk associated with the sophisticated strategies. The presence of the private
cost calls for a contract that rewards the manager based on fund performance and gives
her a larger share of the returns than if risk sharing were all the contract was aimed at
achieving. However, this element of the contract exposes the manager to additional risk
(because stock returns are stochastic). This risk, if unmitigated, means that the manager
will underinvest. Adding a benchmark to the contract partially protects the manager from
this risk and therefore will be used by fund investors to improve the manager’s incentives.

Our paper’s main contribution is analyzing the unintended welfare consequences of
benchmarking. When all fund investors use incentive contracts, they change the total
demand for assets. In particular, benchmarking leads all managers to invest more in assets
that are compatible with the return-augmenting strategies and in assets that are in their
benchmarks. The managers’ demand boosts prices of such assets and lowers their expected
returns. In other words, benchmarking contracts give rise to crowded trades.

Importantly, individual fund investors in our model take asset prices as given and do
not internalize the effects of contracts they design on equilibrium prices. Crowded trades
resulting from the contract-induced incentives are a pecuniary externality. Because of the
agency frictions, markets are incomplete, so this pecuniary externality leads to an ineffi-
ciency. Specifically, the use of benchmarking contracts by a group of investors reduces the
effectiveness of contracts designed by other investors through crowded trades. This happens
because asset prices enter the fund managers’ incentive constraints. Each manager still has
to incur the full private cost of managing assets but the benefits of doing so are reduced
because of the crowded trades.

In light of this, a natural question to ask is how does the incentive contract chosen
by a social planner, who is subject to the same restrictions as individual investors but
recognizes the effect of contracts on prices, differ from the privately optimal one? We show

3We show in Appendix C that our main insights carry over to this case, however, we cannot get closed-
form solutions for that version of the model. So in the main text we proceed with a simpler model that
allows us to focus on the role of the essential friction—the unobservability of the portfolio choice—that is
responsible for our main results.
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that individual investors underestimate the cost of incentive provision relative to the social
planner, who internalizes the negative externality of incentive contracts. As a result, the
planner opts for less incentive provision. Specifically, we show that both the performance
sensitivity (“skin in the game”) as well as the level of benchmarking are lower in the socially
optimal contract than in the privately optimal one. This ameliorates the price pressure that
portfolio managers exert and reduces the crowdedness of trades.

Our model informs the debate as to whether costs of asset management are excessive
and whether returns delivered by the fund managers justify these costs. We use the model
to compare the managers’ costs and expected returns under privately and socially optimal
contracts. We find that, from the socially optimal point of view, fund investors excessively
rely on contracts and make their managers invest too much at too high a cost.4 In the
equilibrium with privately optimal contracts, asset prices are higher and consequently ex-
pected per-share returns are lower than those under socially optimal contracts. Key to these
implications is that, in contrast to fund investors, the planner internalizes the pecuniary
externality arising from crowded trades.

While prices under the privately optimal contracts are higher than in the constrained
optimum, they are lower than in the first best, where the portfolio choice is observable.
Intuitively, it is optimal to invest more in assets with higher abnormal returns when there
are no agency costs, so in this case prices would be higher and expected returns lower. If
the portfolio choice is observable, crowded trades create no externality, and thus pose no
problem.

We also investigate how benchmarks ought to be designed. We show that both privately
and socially optimal benchmarks put more weight on assets for which portfolio management
adds more value as well as on assets for which incentive misalignment is most severe.
The relative tilt in the weights, however, is different in the privately and socially optimal
benchmarks. For example, the planner puts relatively less weight on assets with large costs
compared to fund investors. This is because the planner understands that contracts are less
effective at providing incentives than fund investors perceive, and is therefore less willing
to use benchmark weights for incentive provision.

Finally, we discuss the implications of the model for the active regulatory debate re-
garding the structure of compensation in the asset management industry. Our model shows
why there can be a pecuniary externality coming from crowded trades, but this possibility
is hardly discussed in regulatory conversations. Instead those debates tend to focus on

4While the cost is borne by the manager, it ultimately gets passed on to the fund investor, who needs
to compensate the manager enough to ensure her participation.
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issues such as the split between variable, at-risk pay, and fixed pay. Absent the externality,
there would be no reason why socially and privately optimal compensation contracts would
diverge, meaning that in our model there would be no reason for any regulation. So perhaps
the possibility of crowded trades ought to get more attention.

The remainder of the paper is organized as follows. In the next section, we review
the related literature. Section 3 presents our model, and Section 4 analyzes the model
and derives our main results. Section 5 links the model’s implications to some ongoing
regulatory discussions about compensation in the asset management industry. Section 6
concludes and outlines directions for future research. Omitted proofs and derivations are
in the appendices.

2 Related Literature

Our work builds on the vast literature on optimal contracts under moral hazard, and in par-
ticular on seminal contributions of Holmstrom (1979) and Holmstrom and Milgrom (1987,
1991). Holmstrom (1979) argues that including in a contract a signal that is correlated with
the output of the manager—in our case, such signal is the benchmark’s performance—is
beneficial to the principal. In our paper, the contract designer optimally chooses the signal
to include in the contract. But more importantly, the benefit of including the signal is
endogenous through the general-equilibrium effect on prices. To our knowledge, ours is the
first paper that endogenizes the effectiveness of including such an additional signal in an
incentive contract.

Holmstrom and Milgrom (1991) introduce a tractable contracting setting with moral
hazard, with which our model shares many similarities. The standard implication in this
literature is that increasing the agent’s share in the output of a project helps provide
incentives to the agent. In the context of delegated asset management though, giving
the agent a larger share of portfolio return encourages her to scale down the risk of the
(unobservable) portfolio by reducing risky asset holdings. Stoughton (1993) and Admati
and Pfleiderer (1997) show that the manager is able to completely “undo” her steeper
incentives by such scaling, and her incentives to collect information on asset payoffs remain
unchanged. In our paper, we design a contract that provides desired incentives, despite
the endogenous portfolio response of the manager, and show that it involves benchmarking.
Another notable difference from the aforementioned literature is that we embed optimal
(linear) contracts in a general-equilibrium setting and study interactions between contracts
and equilibrium prices, and the implications of these interactions on welfare.
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Our work is also related to the literature in asset pricing and corporate finance theory
that explores the general-equilibrium implications of benchmarking. The pioneering work
of Brennan (1993) shows that benchmarking leads to lower expected returns on stocks
included in the benchmark. Cuoco and Kaniel (2011) and Basak and Pavlova (2013) study
benchmarking in dynamic models, and show that the positive price pressure on benchmark
stocks pushes up their prices and lowers their Sharpe ratios. Basak and Pavlova also show
that benchmarking leads to excess volatility and excess co-movement of returns on stocks
inside the benchmark. Kashyap, Kovrijnykh, Li, and Pavlova (2020) focus on implications of
benchmarking portfolio managers for firms’ corporate decisions and demonstrate that firms
in the benchmark have a higher valuation for investment projects or merger targets than
firms outside the benchmark. These papers take the benchmarking contract of managers
to be exogenous. The three papers that do not, Buffa, Vayanos, and Woolley (2014),
Cvitanic and Xing (2018), and Sockin and Xiaolan (2020), study asset-pricing implications
of benchmarking in an environment with endogenous contracts.5 In the first two papers,
benchmarking helps reduce diversion of cash flows from the fund by managers. Our rationale
for benchmarking is to reward activities that generate superior returns. Sockin and Xiaolan
study costly information acquisition by managers, and, like us, highlight the pecuniary
externality that emerges because of the effect of contracts on equilibrium prices. In contrast
to us, they show that a constrained social planner, who internalizes this externality, opts
for more incentive provision and more benchmarking.

Our paper also relates to the literature on pecuniary externalities in competitive equi-
librium settings with incomplete markets, for example, Lorenzoni (2008), He and Kondor
(2016), Gromb and Vayanos (2002), Davila and Korinek (2018), Di Tella (2017), Biais, Hei-
der, and Hoerova (forthcoming), and Acemoglu and Simsek (2012), among others.6 Loren-
zoni (2008) studies a model of credit booms in which a pecuniary externality arises from
the combination of limited commitment and asset prices being determined in spot markets.
Decentralized equilibria feature over-borrowing relative to what is constrained optimal (al-
though there is always under-borrowing compared to the first best). Borrowing less ex
ante is welfare improving because it leads to an increase in asset prices in the low-output

5See also Ozdenoren and Yuan (2017) who conduct a related analysis in the context of an industry equi-
librium, in a classical moral-hazard setting with many principal-agent pairs. They show that benchmarking
is privately optimal but it creates overinvestment and excessive risk-taking at the industry level. Albu-
querque, Cabral, and Guedes (2019) present a related model of industry equilibrium, enriched further with
strategic interactions among firms in the industry, and show that benchmarking against peer performance
induces agents to take correlated actions.

6This literature goes back to Hart (1975), Greenwald and Stiglitz (1986), and Geanakoplos and Pole-
marchakis (1996).
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state, which allows entrepreneurs to transfer resources to the low-output state. Both our
setting and mechanism are very different, but we share a similar prediction that asset prices
in the decentralized equilibrium fall between those in the constrained and unconstrained
optima. However, the actual comparison of prices is reversed in our model—decentralized-
equilibrium prices are higher than in the constrained optimum (lower in his paper), but
lower than in the first best (higher in his paper).

He and Kondor (2016) study a model in which individual firms’ liquidity management de-
cisions generate investment waves. These investment waves are constrained inefficient when
future investment opportunities are noncontractible, and the social and private value of liq-
uidity differs. In their model, overinvestment occurs during booms and underinvestment
occurs during recessions. Gromb and Vayanos (2002) analyze a model in which competitive
financially constrained arbitrageurs supply liquidity to the market, and fail to internalize
the fact that changing their positions affects prices. A change in prices effectively moves
resources across time and states and thus can bring the marginal rates of substitution closer
together. A social planner can achieve a Pareto improvement by either reducing or increas-
ing the arbitrageurs’ position. Davila and Korinek (2018) highlight a distinction between
“distributive externalities” that arise from incomplete insurance markets and “collateral ex-
ternalities” that arise from price-dependent financial constraints. The externality that we
emphasize in our paper falls into the second category, broadly defined, although in our case
the inefficiency arises from the incentive problem rather than financial constraints. Di Tella
(2017) studies optimal contracts in a model where financial intermediaries trade capital on
behalf of households and can divert cash flows. He shows that, due to a pecuniary external-
ity, the competitive equilibrium is constrained efficient and can lead to the concentration
of aggregate risk on financial intermediaries’ balance sheets.7

Biais, Heider, and Hoerova (forthcoming) analyze a model in which protection buyers
trade derivatives with protection sellers and there is moral hazard on the side of protection
sellers. In their model, although prices enter incentive constraints, a pecuniary externality
does not lead to constrained inefficiency as it does in our model. The reason is that in
their setup investors optimally supply insurance against the risk of fire sales. In Acemoglu
and Simsek (2012), firms trade off providing insurance to workers and incentivizing them
to exert effort. The authors show that, under certain conditions, equilibrium prices can
tighten incentive constraints. They mainly focus on inefficient sharing of idiosyncratic risk.
Instead, our focus is on the inefficient use of an additional signal—return of the benchmark

7In a follow-up paper, Di Tella (2019) characterizes the optimal financial regulation policy in such an
economy and shows that the socially optimal allocation can be implemented with a tax on asset holdings.
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portfolio—in the incentive contract. Fershtman and Judd (1987) look at contract design
in an equilibrium setting, but in an oligopoly rather than a competitive equilibrium, as in
our model. In their paper, there is strategic manipulation of agents’ incentives, because
owners realize that the contracts they give to their managers affect contracts chosen by
other owners. In our competitive setting (in a very different environment), private agents
ignore their effects on others.

Finally, there is some empirical evidence that benchmarking creates crowded trades.
Lines (2016) observes that in times of high-market volatility, portfolio tracking error rises.
This mechanically leads portfolio managers to rebalance their portfolios towards bench-
mark stocks. He finds that this trading behavior leads to lower returns for the rebalanced
portfolios.

3 Model

We embed a linear optimal-contracting problem into a general-equilibrium asset-pricing
framework. In this section we set up the model and provide justification for our main
assumptions.

3.1 Economy

Except for portfolio managers and their clients, our environment is standard. There are
two periods, t = 0, 1. Investment opportunities are represented by N risky assets (stocks)
and one risk-free bond. The risky assets are claims to cash flows D̃, realized at t = 1, where
D̃ ∼ N(µ,Σ). The variables D̃ and µ are N × 1 vectors and Σ is an invertible positive
semi-definite N ×N matrix. The risk-free bond pays an interest rate that is normalized to
zero. The risky assets are in a fixed supply of x̄ > 0 shares, where x̄ is an N × 1 vector.
The bond is in infinite net supply. Let S, an N × 1 vector, denote asset prices.

There is a continuum of agents in the economy, of three types. First, there are “direct”
investors—constituting a fraction λD of the population—who manage their own portfolios.
There are also portfolio or fund managers—a fraction λM—and fund investors who hire
those managers—a fraction λF , with λD + λM + λF = 1. We assume for simplicity that
each fund investor employs one manager, so that λM = λF .8 Fund investors can buy the
bond directly, but cannot trade risky assets, so they delegate the selection of their portfolios
to managers. Managers can invest the delegated funds in risky assets and the bond, but

8The extension where one manager is hired by multiple investors acting collectively is straightforward.
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are restricted to invest their personal wealth in the bond.
Each agent has a constant absolute risk aversion (CARA) utility function over final

wealth (or compensation) W , U(W ) = −e−γW , where γ > 0 is the coefficient of absolute
risk aversion. Agents of type j ∈ {D,F,M} are endowed with xj−1 shares of risky assets,
where

∑
j∈{D,F,M} λjx

j
−1 = x̄.

For fund investors, delegating investment to a portfolio manager has costs and bene-
fits. On the one hand, as we will discuss in the next subsection, managers can potentially
outperform direct investors. On the other hand, the manager’s portfolio choice is unobserv-
able meaning that fund investors cannot perfectly control it. This is a realistic assumption
because even when managers are required to disclose their portfolios at particular points
in time, their actual portfolios between the disclosure dates typically differ from their re-
ported portfolios (Kacperczyk, Sialm, and Zheng, 2008), and a fund investor cannot obtain
detailed information on the manager’s trades. Furthermore, the managers incur a private
cost in managing a portfolio. The combination of the private cost and the portfolios being
unobservable will be the central friction in our model.

We do not model an agent’s choice to become a direct investor or a fund investor—the
fractions of different investors in the population are exogenous. One could endogenize this
choice, for example, by assuming heterogeneous costs of participating in the asset market.
In Remark 4 at the end of Section 4 we describe the additional considerations that arise
in this kind of an extension, but we do not consider it here to maintain our focus on the
central message of the paper.

3.2 Value Added and Costs of Asset Management

We assume that portfolio managers can potentially outperform direct investors. The (per-
share) return for a direct investor’s portfolio x is given by x>(D̃ − S). The manager’s
returns are

rx = x>(∆ + D̃ − S) + ε, (1)

where ∆ ≥ 0 is an exogenous vector and ε ∼ N(0, σε) is a (scalar) noise term. The manager
incurs a private portfolio-management cost x>ψ, where ψ > 0 is an exogenous vector.9

9Implicit in our expressions for the returns on the fund in (1) and the portfolio-management cost is
that they scale linearly with the size of the portfolio. This is seemingly inconsistent with Berk and Green
(2004) who assume that there are decreasing returns to scale in asset management, but it is not. Berk and
Green explicitly attribute decreasing returns to scale to the price impact of fund managers. The bigger the
portfolio invested in an alpha-opportunity, the smaller the return on a marginal dollar invested. Berk and
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So managers in our model incur costs to generate excess returns of x>∆ + ε that we call
“alpha.”

In this formulation, the managers’ alpha has nothing to do with superior information,
which gives rise to stock-selection and market-timing abilities. If it did, then any direct
investors who happened to buy the same assets or traded at the same time, without any
knowledge of the ∆’s, would earn the same returns. So this setup is consistent with the
vast literature (e.g., Fama and French, 2010) that casts doubt on the ability to generate
abnormal returns by stock picking or market timing.

Instead, the managers’ alpha comes from activities such as lending securities, deliver-
ing lower transactions costs (e.g., from crossing trades in-house or by obtaining favorable
quotes from brokers) or providing liquidity (i.e., serving as a counterparty to liquidity
demanders and earning a premium on such trades). We refer to these opportunities as
“return-augmenting” activities.

There is a wealth of evidence establishing that securities lending, trading cost mini-
mization, and liquidity provision are profitable activities for asset managers. For example,
securities lending contributed 5% of total revenue of both BlackRock and State Street in
2017. While it has recently become possible for some retail investors to participate in securi-
ties lending, they earn lower returns for this activity and do not have the same opportunities
as a large asset management firm. It is also well established that portfolio managers can
profit from providing immediacy in trades, by either buying assets which are out of favor
or selling ones that are in high demand.10 It would be prohibitively expensive for retail
investors to try to do this. Finally, Eisele, Nefedova, Parise, and Peijnenburg (2020) present
evidence that trades crossed internally within a fund complex are executed more cheaply
than comparable external trades.

The noise term ε in (1) captures the fact that the return-augmenting activities do
not produce a certain return each period. For example, the demand for liquidity, the
opportunities to lend shares and the possibility of crossing trades all fluctuate, so even a
very alert and skilled manager will have some randomness in her returns. Also for securities
that are lent, there is a risk that they will not be returned in a timely manner or potentially

Green’s model is in partial equilibrium and their price impact is simply an exogenous function of fund size.
Ours is a general-equilibrium model, in which the price impact endogenously arises from a higher aggregate
demand of portfolio managers for high-∆ assets.

10In a classic paper, Keim (1999) estimates an annual alpha of 2.2% earned by liquidity provision activities
of a fund. Rinne and Suominen (2016) document that the top decile of liquidity providing mutual funds
outperform the bottom decile by about 60 basis points per year. Anand, Jotikasthira, and Venkataraman
(2018) find similar estimates using a different sample of funds over a different time period.
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at all.11

We close this section by discussing some important assumptions in the model and al-
ternatives that we could have made instead. One is that the manager incurs a private cost
in order to deliver the abnormal returns. The existence of the costs seems very clear cut.
For instance, to successfully buy and sell at the appropriate times to provide liquidity, the
manager has to be actively monitoring market conditions while markets are open. For secu-
rities lending, the manager would also have to decide whether to accommodate requests to
borrow shares. In some cases, these demands arise because the entity borrowing the shares
wants to vote them and the manager must decide whether to pass up that choice.12

It is also plausible that the benefits and costs associated with the return-augmenting
activities are increasing in the size of the holdings.13 For example, in terms of the liquidity
provision and trade-crossing, the wider the range of securities in the portfolio and/or the
more a fund holds on any particular security, the easier it would be to provide liquidity or
more likely it would be that a trade can be offset. For securities lending, a larger portfolio
opens up additional lending opportunities. As mentioned earlier, it is simplest to think of
the costs as being tied to the time it takes to undertake the various activities. Thought of
this way, if the opportunities to augment returns increase as the portfolio expands, then
the costs of realizing them would naturally grow too.

We could instead assume that the private cost arises because the manager needs to exert
costly effort to generate the excess returns, as is often done in the contracting literature
(e.g., Holmstrom and Milgrom, 1987, 1991). Incorporating effort makes the algebra much
more involved.14 However, under certain assumptions our main insights extend to this case.
Importantly, it is the unobservability of the portfolio holdings and not the unobservability
of effort that is central to our mechanism. To make this clear and to focus on the key
friction, in our main model we we do not include an effort choice. We analyze an extension
that incorporates effort in Appendix C and show that our main insights carry over.

Lastly, for simplicity we assume that ∆ (the expected per-share return coming from the

11One might wonder what happens of the noise is proportional to x (that is, the noise term is εx instead
of ε). This is a special case of the extension that we analyze in Appendix C. The algebra is more involved
in this case, but the main mechanism is the same.

12Most managers also incur some costs that are observable and can be passed on directly to fund investors.
Examples would include custody, audit, shareholder reports, proxies and some external legal fees. Our main
results continue to hold in a model in which some costs are observable.

13Linearity allows us to solve the model in closed form, but what is important conceptually is that the
cost is increasing in x. We show in Appendix C that while the algebra is messier, under some assumptions
our main analysis extends to the case of more general specifications of the return and cost.

14Our results trivially extend if effort is bounded from above (e.g., if there is a time constraint), and the
optimal solution is at the upper bound.
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return-augmenting activities) is exogenous. One might argue that because of congestion
that arises in general equilibrium when many agents engage in an activity, ∆ should decline.
Our mechanism would work through an endogenous ∆ the same way as it works through the
equilibrium price S: fund investors, taking the (per-share) returns ∆+D̃−S as given, ignore
the fact that their contracts push down the equilibrium returns.15 Thus endogenizing ∆
would, if anything, strengthen our results. In fact, mechanically all of our results go through
even if ∆ is zero (while the cost ψ is positive, at least for some stocks). However, it seems
implausible to assume that the asset management industry would exist if using portfolio
managers involved only costs and no benefits.

3.3 Managers’ Compensation Contracts

To provide incentives for the managers to invest in the risky assets and to generate alpha, the
fund investors design compensation contracts. The managers receive compensation w from
fund investors. This compensation has three parts: one is a linear payout based on absolute
performance of the manager’s portfolio x, the second part depends on the performance
relative to the benchmark portfolio, and the third is independent of performance.16 Then

w = ârx + b(rx − rb) + c = arx − brb + c, (2)

where rx is the performance of the manager’s portfolio defined in (1) and rb = θ>(D̃ − S)
is the performance of the benchmark portfolio θ. The contract for a manager is (â, b, c, θ)—
or, equivalently, (a, b, c, θ)—where â (or a), b, and c are scalars, and θ is an N × 1 vector
of benchmark weights such that

∑
i θi = 1. We refer to â as the sensitivity to absolute

performance and b as the sensitivity to relative performance. Our main analysis and the
intuitions that follow will be in terms of a rather than â. We refer to the variable a as the
manager’s “skin in the game.”17 The contract for a particular manager is optimally chosen
by the fund investor who employs her. As we mentioned earlier, the manager is restricted
to investing her personal wealth in the bond and so she cannot “undo” her contract via

15A way of explicitly modeling the market for the return-augmented activities would depend on which
exact activity is considered. Since we attempt to capture several of such activities, we abstract from fully
modeling such a market.

16This part captures features such as a fee linked to initial assets under management or a fixed salary or
any fixed costs.

17We assume here that returns from dividends and return-augmenting activities are not observed sepa-
rately. In some cases, e.g., in the case of securities lending, it might be possible to observe them separately.
We illustrate in Appendix D that our mechanism still applies in that case.
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trading in her personal account.18

We think of a manager’s contract as a compensation contract between a portfolio man-
ager and her investment-advisor firm (e.g., BlackRock, who we assume is acting in the
interests of the fund investors). The structure of the contract in (2) is consistent with em-
pirical evidence. For example, Ma, Tang, and Gómez (2019) analyze mandatory disclosures
by U.S. mutual funds and find that around 80% of the funds explicitly base managers’
compensation on performance relative to a benchmark (usually the prospectus benchmark,
e.g., S&P 500, Russell 2000, etc.). Managers also have a fixed salary component, but the
fraction of fund managers whose entire compensation consists of only fixed salary is very
small.19

The restriction to linear contracts warrants discussion. We assume linearity for the
purpose of tractability.20 Characterizing fully optimal contracts is hard in general. It is
even harder in our case since we solve for them in a general-equilibrium model in which
contracts affect equilibrium prices and thus in turn affect the contract chosen by each fund
investor. The restriction to linear contracts allows us to find optimal contracts in closed
form. However, the argument behind our main mechanism—individual contracts change
demand functions, causing the equilibrium prices to change, which dampens the effect of
contracts on demands, and thus makes contracts less effective—is general. We have no
reason to believe that this mechanism would not apply with fully optimal contracts.

18In practice, portfolio managers have a fiduciary duty to their investors. This precludes them from
taking actions that harm the investors, or engaging in any activity that creates a conflict of interest between
the manager and the fund investors. Compliance departments at asset management firms attempt to deal
with these problems by requiring pre-approval of many types of trades by the manager or banning them
altogether, and restricting when trading can occur. A trade such as shorting a manager’s benchmark would
be blocked by these policies.(See U.S. Securities and Exchange Commission, 2004 for details.)

19The performance-based bonus exceeds the fixed salary for 68% of the funds in the sample, constituting
more than 200% of fixed salary for 35% of funds. In contrast, Ibert, Kaniel, Van Nieuwerburgh, and Vestman
(2017) find surprisingly weak sensitivity of manager pay to performance for Swedish mutual funds.

20There is a literature that justifies the use of linear contracts in environments with CARA preferences
and normally-distributed returns. Holmstrom and Milgrom (1987) show that, in a specific dynamic setting,
the solution of the optimal-contracting problem is as if the problem were a static one and the principal were
constrained to use a linear compensation rule that depended on the final outcome. Holmstrom and Milgrom
restrict the agent’s action to affect only the mean of the random process but not the variance, which is not
the case in our model (the portfolio choice affects both the mean and the variance of the return). Sung
(1995) establishes the robustness of the Holmstrom and Milgrom’s linearity result by allowing the agent to
also control the variance.
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4 Analysis

4.1 Direct Investors’ and Managers’ Problems

At t = 0, each direct investor chooses a portfolio of risky assets, x, and the risk-free bond
holdings to maximize his expected utility −Ee−γW . Since his return on the portfolio is
x>(D̃ − S), the resulting time-1 wealth is W =

(
xD−1

)>
S + x>(D̃ − S). It is well known

that a direct investor’s maximization problem is equivalent to the following mean-variance
optimization:

max
x

x>(µ− S)− γ

2x
>Σx.

Each portfolio manager chooses a portfolio of risky assets x and the risk-free bond
holdings to maximize −E exp{−γ[arx − brb + c − x>ψ]}, where the quantity inside the
square brackets is her compensation net of private cost. This maximization problem is
equivalent to the following mean-variance optimization:

max
x

ax>(∆− ψ/a+ µ− S)− bθ>(µ− S) + c− γ

2
[
(ax− bθ)>Σ(ax− bθ) + a2σ2

ε

]
.

Note that the manager receives a fraction a of the per-share abnormal return on the assets,
∆, but pays the entire cost ψ per share. (We later show that a < 1.)

Both the direct investors and managers take asset prices as given. Lemma 1 reports the
optimal portfolio choices of the direct investors and managers arising from their optimiza-
tions.

Lemma 1 (Portfolio Choice). The direct investors’ and managers’ optimal portfolio
choices are as follows:

xD = Σ−1 µ− S
γ

, (3)

xM = Σ−1 ∆− ψ/a+ µ− S
aγ

+ bθ

a
. (4)

A direct investor’s portfolio is the standard mean-variance portfolio, scaled by his risk
aversion γ. A manager’s portfolio choice differs from that of a direct investor in three
dimensions. First, managers split their risky-assets investments between two portfolios:
the (modified) mean-variance portfolio and the benchmark portfolio. The latter arises
because the manager’s compensation is exposed to fluctuations in the benchmark. To
mitigate this risk, she holds a hedging portfolio that is (perfectly) correlated with the
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benchmark, i.e., the benchmark itself.21 The split between the two portfolios is governed
by the strength of the relative-performance incentives, captured by b. The higher b is, the
closer the manager’s portfolio is to the benchmark. Second, because our managers have
access to return-augmenting strategies, they perceive the mean-variance tradeoff differently
from the direct investors and tilt their mean-variance portfolios towards high-∆ assets (i.e.,
they try to produce alpha). Consistent with this result, Johnson and Weitzner (2019) report
that fund managers’ portfolios in their sample overweight assets with high securities-lending
fees. Finally, the manager scales her (modified) mean-variance portfolio by 1/a relative to
that of a direct investor. The reason for the scaling is that, as we can see from the first
term in (2), for each share that a manager holds, she gets a fraction a of the total return.

Substituting portfolio demands from Lemma 1 into the market-clearing condition for
assets, λMxM + λDx

D = x̄, we find the expression for the equilibrium asset prices:

S = µ− γΣΛx̄+ γΣΛλM
bθ

a
+ ΛλM

a

(
∆− ψ

a

)
, (5)

where Λ ≡ [λM/a+ λD]−1 modifies the market’s effective risk aversion.
Because contracts affect the managers’ demand functions, the equilibrium asset prices

will depend on these contracts. Benchmarking and the tilt towards high-∆ assets push
up prices, thus lowering the expected returns. Unlike the social planner, individual fund
investors take prices as given and do not account for this pecuniary externality. We turn
to the fund investors’ problem next.

4.2 Fund Investors’ Problem

Each fund investor chooses the contract (a, b, c, θ) and portfolio x = xM to maximize his
expected utility subject to the manager’s participation and incentive constraints. The
latter is the manager’s first-order condition (4), capturing the fact that the portfolio x is
the manager’s private choice.

To write the fund investor’s problem formally, it is convenient to express payoffs in
terms of the following variables. Denote y = ax − bθ and z = x − y, which are effective
allocations of asset holdings to the manager and fund investor, respectively. Then the fund

21This implication is very general, and we share it with other models that analyzed benchmarking, both
in two-period and multi-period economies and for other investor preferences specifications. This result first
appeared in Brennan (1993) in a two-period model. Cuoco and Kaniel (2011) and Basak and Pavlova (2013),
among others, obtain it in dynamic models with different preferences.
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investor’s and manager’s utilities (in the mean-variance form) can be written as follows:

UF
(
a,
bθ

a
, y, S

)
= x>(1− a)∆ + z>(µ− S)− γ

2
[
z>Σz + (1− a)2σ2

ε

]
− c+

[
xF−1

]>
S,

UM
(
a,
bθ

a
, y, S

)
= x>(a∆− ψ) + y>(µ− S)− γ

2
[
y>Σy + a2σ2

ε

]
+ c,

where x and z are given by

x = y

a
+ bθ

a
, (6)

z = 1− a
a

y + bθ

a
. (7)

Then the fund investor’s problem can then be written as follows:22

max
a,b,c,θ,y

UF

s.t. UM ≥ u0, (8)

y = Σ−1 ∆− ψ/a+ µ− S
γ

. (9)

Constraint (8) is the manager’s participation constraint, where u0 is (the mean-variance
equivalent of) the value of manager’s outside option.23 Equation (9) is the manager’s
(modified) incentive constraint.

We next discuss the roles that the contract parameters a, b, and θ play in the fund
investor’s maximization problem.

4.3 Contracts and Incentives

As a point of reference, consider the first best where the manager’s portfolio choice is
observable and contractible. The first-best contract involves efficient risk sharing between
the (equally risk-averse) fund investor and manager and no benchmarking, a = 1/2 and
b = 0.24 If the manager were facing the first-best contract but chose the portfolio privately,
she would underinvest, especially in assets with high ψ. A higher a reduces the manager’s

22The formulation of the fund investor’s problem in terms of the exponential utilities (rather than in the
mean-variance form) can be found in Appendix A.

23We do not model explicitly what this outside option is, as it does not matter for our main results. It
can be exogenous, or it can be endogenized. Notice also that because of the contract’s constant component
c, in the mean-variance formulation utility becomes transferable, and the fund investor effectively maximizes
the total utility of the fund investor and the manager subject to the manager’s incentive constraint. The
manager’s participation constraint is then trivially satisfied by adjusting the constant c.

24See Lemma 5 in Appendix A for the formal analysis.
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effective cost ψ/a, which increases her demand for risky assets. However, a higher a also
exposes the manager to more risk, which makes her scale down xM , as reflected in the
denominator(s) of (6). Thus the use of performance pay creates a tension between incentive
provision and risk sharing.

The use of benchmarking, together with an appropriate benchmark selection, alleviates
this tension by mitigating the adverse effect of a. Benchmarking shields the manager from
risk by reducing variance in her compensation for a given portfolio choice.25 As a result,
(for the same a) the manager invests more. In addition, if the benchmark portfolio puts a
relatively higher weight on certain assets, the manager’s exposure to risk is reduced more
for those assets, and she will invest proportionally more in them. That is, benchmarking
protects the manager from risk, and an appropriate choice of the benchmark portfolio can
help to improve incentives for alpha-production.

4.4 Privately Optimal Contracts

Notice that the fund investor fully internalizes the manager’s cost of managing the fund.26

But since the manager bears the cost privately and only receives fraction a of the return,
for her the effective cost is higher, which is why ψ/a appears in (9). The actual (from
the social perspective) and perceived (by the manager) marginal costs, ψ and ψ/a, being
different plays an important role in our analysis.

Notice that b enters into the fund investor’s and manager’s problems only though bθ/a.
Therefore we take the first-order condition with respect to bθ/a, and later derive the ex-
pression for b separately. The first-order condition with respect to bθ/a is given by27

∂(UF + UM )
∂(bθ/a) = ∆− ψ + µ− S − γΣz = 0. (10)

It captures the marginal effect on the total utility of the fund investor and the manager due
to a higher demand by the managers in response to more benchmarking. This equation can

25By reducing the manager’s risk exposure, benchmarking makes it cheaper for the fund investor to
implement any particular portfolio choice.

26Formally, this can be seen by taking the first-order condition with respect to c, which implies that the
Lagrange multiplier on the participation constraint equals one.

27We show in Lemma 6 in Appendix A that the second-order conditions hold in both privately and
socially optimal cases.
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be rewritten as28

γΣbθ = (2a− 1) (∆− ψ + µ− S) + (1− a)
(1
a
− 1

)
ψ. (11)

The two terms on the right-hand side of equation (11) capture two considerations that fund
investors have in mind when designing the benchmark. Note two extreme cases: a = 1/2
when efficient risk-sharing is achieved, and a = 1 when the private and social costs are
aligned. As we will show later, in the optimal contract a ∈ (1/2, 1), so both terms on
the right-hand side of (11) are positive. The first term, (2a− 1) (∆− ψ + µ− S), arises
because the fund investor recognizes that benchmarking increases the total expected surplus
net of cost. Since a > 1/2, the manager is exposed to more risk than is efficient, so the fund
investor uses benchmarking to make her invest more, in particular in assets with a higher
value added ∆−ψ. The second term, (1−a)(1/a−1)ψ, reflects the incentive-provision role
of bθ. By protecting the manager from risk, benchmarking provides her with incentives to
invest more. Such incentive provision is especially important for high-ψ assets because the
manager is the most reluctant to invest in them.

Next, let us consider the first-order condition with respect to a, which is given by

0 =− (2a− 1)γσ2
ε + 1− a

a
ψ>

∂y

∂a
= −(2a− 1)γσ2

ε + (1− a)ψ
>Σ−1ψ

γa3 . (12)

Notice the appearance of ∂y/∂a in (12). It captures how a marginal increase in a affects
the surplus through the direct response of the manager’s (modified) demand for the risky
assets, y. This is the incentive-provision channel. The other terms in (12) govern how risk
is split between the fund investor and the manager (and thus also how much of the risky
asset the manager buys). This is the risk-sharing channel.

Unlike in (11), the incentive-provision term and the risk-sharing term have different
signs. This means that there is a tradeoff between incentive provision and risk sharing.
A higher a is beneficial as it provides incentives for alpha-production, but is also costly
because it exposes the manager to too much risk.

Substituting the expression for S, we obtain closed-form expressions for equilibrium
contracts given in part (i) of the next lemma.

Lemma 2. In the equilibrium with the privately optimal contract,

28See the proof of Lemma 2 in Appendix A for the derivations.
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(i) a = aprivate, b = bprivate, and θ = θprivate are given by

0 = (1− a)ψ
>Σ−1ψ

γa3 − (2a− 1)γσ2
ε , (13)

b = (2a− 1) 1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[1
a
− λM

a
− λD

]
1>Σ−1

γ
ψ, (14)

θ = 2a− 1
b

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a

b

[1
a
− λM

a
− λD

] Σ−1

γ
ψ; (15)

(ii) the asset prices are given by

Sprivate = µ− γΣx̄+ λM

(
2∆− ψ − ψ

a

)
, (16)

and the fund portfolio is

xMprivate = 2x̄+ Σ−1

γ
λD

(
2∆− ψ − ψ

a

)
. (17)

Notice that there is a recursive structure to these conditions. The expression in (13) is
a function solely of a. Then given a, (14) delivers the expression for b, and finally, given
a and b, (15) gives us expression for the benchmark weights θ. Note that it immediately
follows from (13) that aprivate ∈ (1/2, 1).

It is worth pointing out that as σ2
ε goes to zero, a in the privately optimal contract

approaches 1, and the allocation approaches the first-best one (see Lemma 5 in Appendix
A.) Indeed, it is crucial for our results that the fund investor does not “sell the project”
to the manager, i.e., a < 1. As an alternative to the assumption of σ2

ε > 0, there are
other modeling choices that would ensure that a < 1, for example, a lower-bound on c, the
constant part of the contract.

Let us briefly comment on the expression for the equilibrium prices given by (16).
Absent fund managers, the equilibrium prices would be S = µ− γΣx̄. Prices are higher in
the presence of managers due to their higher demands as they engage in return-augmenting
activities, as captured by the last term in (16). Notice that the term in parentheses is
a sum of ∆ − ψ and ∆ − ψ/a, which are the (marginal) extra expected returns net of
costs as perceived by the fund investors and by the managers, respectively. Similarly, the
equilibrium asset holdings of managers in (17) are higher when the opportunities for alpha-
production are better. Notice that managers hold exactly 2x̄ when λD = 0. We will discuss
this special case further in subsection 4.5.
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For some of our results on benchmarking, we will need to impose the following assump-
tions.

Assumption 1. Suppose that
(i) 1>

[
x̄+ λDΣ−1(∆− ψ)/γ

]
> 0,

(ii) 1>Σ−1ψ > 0.

These assumptions are mild technical restrictions. They are trivially satisfied when the
variance-covariance matrix Σ is diagonal or when ∆’s and ψ’s are the same for all assets (and
given that ∆− ψ ≥ 0). When Σ is not diagonal (which implies that cross-price elasticities
of the manager’s demand function are not zero), it is useful to interpret Assumption 1 as
follows. Part (i) is a necessary and sufficient condition for the sum of shares (over all assets)
that the manager holds in the first best to be positive (which is trivially satisfied if, for
example, there is no short-selling).29 Part (ii) means that if the private cost ψ increases by
the same percentage for all assets, then the sum of shares (over all assets) that the manager
holds in equilibrium goes down. In other words, the manager reduces total holdings when
the cost is higher.

Using Assumption 1 and the equilibrium expression for b presented in Lemma 2, we
have the following result:

Proposition 1 (Benchmarking is Optimal). Suppose that Assumption 1 holds. Then
the privately optimal contract involves benchmarking, that is, bprivate > 0.

Proposition 1 is essentially a version of Holmstrom’s (1979) famous sufficient-statistic
result—the use of an additional signal (in this case, the benchmark return) helps the con-
tract designer provide incentives to the manager in a more effective way. Holmstrom’s result
is general and does not require contract linearity, so while we have restricted our attention
to linear contracts, we would expect that the manager’s compensation would depend on the
benchmark return even with more general contracts. While Holmstrom’s result suggests
that b is different from zero in general, our Assumption 1 allows us to determine when b is
strictly positive, which is the relevant case given this application.

The above proposition helps us understand why benchmarking in the asset management
industry is so pervasive. Benchmarking is useful to fund investors because it incentivizes the
manager to engage more in risky return-augmenting activities by partially protecting her
from risk. In the language of the asset management industry, benchmarked managers are

29See the proof of Lemma 5 in Appendix A.
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being protected from “beta” (i.e., the fluctuations in the return of the benchmark portfolio)
while being rewarded for alpha.

Next, we discuss the properties of the privately optimal benchmark weights. Using
equation (15), the lemma below shows how these weights differ across assets with different
value added or cost of alpha-production, which are ∆− ψ and ψ respectively.

Lemma 3. Consider two assets, i and j, that have the exact same characteristics except
∆i−ψi ≥ ∆j−ψj and ψi ≥ ψj, with at least one inequality being strict. Then in the privately
optimal contract, asset i has a larger weight in the benchmark than asset j: θprivatei >

θprivatej .

The reason for this result is intuitive: fund investors recognize that manipulating bench-
mark weights allows them to provide more incentives for investment in assets where alpha-
production is the most valuable. The effect of a larger ψ on the benchmark weight is
ambiguous, as can be seen from (15). On the one hand, the incentive problem is the most
severe for assets with a larger ψ, and thus setting higher weight is most valuable for those
assets. On the other hand, a larger ψ reduces the total expected return, which reduces
the marginal benefit of using bθ for protecting the manager from extra risk. However, for
the same (or a larger) value added, higher-cost assets would have a higher weight in the
privately optimal benchmark.

Fund investors design contracts to influence the manager’s demand for risky assets.
Through the aggregate demand of the managers, contracts influence equilibrium asset
prices, as given by (5). Prices then affect the marginal cost/marginal benefit tradeoff
of contracts for all fund investors. Since fund investors take prices as given, they do not in-
ternalize how their choices of contracts (once aggregated) change the effectiveness of other
fund investors’ contracts. In other words, fund investors impose an externality on each
other through their use of contracts. In the next subsection, we ask what contract a plan-
ner, who is subject to the same restrictions as fund investors, would choose to internalize
this externality.

4.5 Socially Optimal Contracts

We define the problem of such a constrained social planner as follows. The planner max-
imizes the weighted average of fund investors’ and direct investors’ utilities subject to the
participation and incentive constraints of the managers, as well as the constraint that direct
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investors choose their portfolios themselves.30 As before, this problem can be equivalently
rewritten in terms of mean-variance preferences.31 Define UD =

(
xD−1

)>
S +

(
xD
)>

(µ −

S)− (γ/2)
(
xD
)>

ΣxD. Then the social planner’s problem is

max
a,b,c,θ,y,xD

ωFU
F + ωDU

D

subject to (8), (9), and (3).
The social planner’s first-order condition with respect to bθ/a is

0 =
[
ωF
(
xF−1 − xM

)>
+ ωD

(
xD−1 − xD

)>] ∂S

∂(bθ/a)

+ ωF

[
∂(UF + UM )
∂(bθ/a) + ∂UF

∂y

∂y

∂S

∂S

∂(bθ/a)

]
. (18)

The terms in the first line of (18) capture what we call the redistribution effect. Depending
on the initial endowments and the Pareto weights, the social planner has incentives to
use benchmarking to move prices so as to benefit one or the other party based on this
redistribution motive. We discuss the redistribution effects in Remark 1 at the end of this
section. To isolate the planner’s motive to correct the externality, we want to neutralize
this redistribution motive. To do this, we set the Pareto weights ωF = ωD.32 Then by
market clearing, ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)
= 0, so the term in the first line of (18)

is zero. Rewriting the term in the second line, (18) yields

0 = (∆− ψ + µ− S − γΣz)> + 1− a
a

(∆ + µ− S − γΣz)> ∂y
∂S

∂S

∂(bθ/a) , (19)

or, equivalently,

∆− ψλM/a+ λD
λM + λD

+ µ− S − γΣz = 0. (20)

Compare (19) or (20) with (10). The second term in (19) captures the externality that
the planner is trying to correct, and it is negative. The planner realizes that benchmarking

30Equivalently, instead of imposing the manager’s participation constraint, her utility can be included
into the planner’s objective function with a Pareto weight ωM . For the transfer c to be finite, we must have
ωM = ωF . This is analogous to noticing that the Lagrange multiplier on the participation constraint, which
effectively acts as the Pareto weight on the manager, equals ωF .

31We provide the original formulation in terms of exponential utilities in Appendix A.
32Choosing Pareto weights to cancel out the redistribution effects is equivalent to allowing the social

planner to use transfers. The planner will then use transfers to equate the marginal utilities (weighted by
Pareto weights) of different agents.
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inflates prices and thus reduces expected returns. Hence for the social planner the benefit
of alpha-production is smaller due to this crowded-trades effect, or, equivalently, the cost
is higher for the same unit of benefit: ψ(λM/a + λD)/(λM + λD) > ψ in (20) instead of
ψ in (10). So from the planner’s point of view, alpha-production is less beneficial/more
expensive, which, as we will see, will make her do less of it.

The planner’s first-order condition with respect to a can be written as

(1− a)ψ
>Σ−1ψ

γa3
λD

λM + λD
− (2a− 1)γσ2

ε = 0. (21)

(See the proof of Lemma 4 in Appendix A for the derivations.) Compare this equation to
its analog in the private case, equation (12). Notice that the benefit of incentive provision
captured by the first term in (21) is smaller than the corresponding term in (12). It is then
easy to see that the social planner will use a lower a than individual fund investors. We will
formalize this result later in Proposition 2. While this result is immediate given equations
(12) and (21), the derivation of (21) is quite involved, so the result about the comparison
between the coefficients a in the two cases is rather subtle and crucially relies on the use of
benchmarking. We will come back to this in the discussion of Proposition 2.

Substituting the equilibrium prices into the first-order conditions and using the defini-
tion of z, we arrive at the following lemma, which describes the equilibrium contract and
prices in closed form.

Lemma 4. In the equilibrium with the socially optimal contract,
(i) a = asocial, b = bsocial and θ = θsocial are given by33

0 = (1− a)ψ
>Σ−1ψ

γa3
λD

λM + λD
− (2a− 1)γσ2

ε , (22)

b = (2a− 1)1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[1
a
− λM/a+ λD

λM + λD

]
1>Σ−1

γ
ψ, (23)

θ = 2a− 1
b

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a

b

[1
a
− λM/a+ λD

λM + λD

] Σ−1

γ
ψ; (24)

(ii) the asset prices are given by

Ssocial = µ− γΣx̄+ λM

(
2∆− λM/a+ λD

λM + λD
ψ − ψ

a

)
, (25)

33From (22), 1/2 ≤ asocial < 1, where the first inequality is strict so long as λD > 0.
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and the fund portfolio is

xMsocial = 2x̄+ Σ−1

γ
λD

(
2∆− λM/a+ λD

λM + λD
ψ − ψ

a

)
. (26)

Equations (22)−(26) are the analogs of (13)−(17). As expected, the two sets of equa-
tions coincide when λM = 0, and hence there is no externality. But so long as there are
managers, the socially and privately optimal contracts are different. Our analysis below
will reveal how exactly they compare to each other.

We are now ready to present the central result of the paper.

Proposition 2 (Socially vs. Privately Optimal Contracts). (i) Compared to the
privately optimal contract, the socially optimal contract involves less “skin in the game,”
that is, asocial < aprivate;
(ii) Suppose that Assumption 1 holds. Then compared to the privately optimal contract, the
socially optimal contract involves less benchmarking, that is, bsocial < bprivate.34

As we have seen in our analysis, the use of contracts inflates prices and thus reduces
the marginal benefit of incentive provision for everyone else. The social planner internalizes
this effect, and opts for less incentive provision than fund investors.

An interesting special case is when there are no direct investors, λD = 0. In this case,
each fund will hold exactly 2x̄ shares and the total alpha in the economy is fixed, equal to
2x̄>∆. The planner understands that incentive provision is unnecessary in this case, so there
is no tradeoff between incentive provision and risk sharing. Indeed, by substituting λD = 0
into (22)−(23), it immediately follows that the socially optimal contract is a = 1/2 and
b = 0, which coincides with the first-best one (see Lemma 5 in Appendix A). Interestingly,
the fund investors ignore the fact that, in equilibrium, their contracts will not help them
generate higher returns, and use contracts with a > 1/2 and b > 0, as can be seen from
(13)−(14).

To further emphasize that benchmarking is crucial for the comparison between privately
and socially optimal contracts, consider a case where benchmarking is exogenously set to
zero, b = 0. In this case, all incentive provision and risk sharing has to be done through a.
As we discussed earlier, an increase in a has two opposing effects on the managers’ demands
and hence prices. As a result, it can be shown that with b = 0 the comparison between
asocial and aprivate is ambiguous. Intuitively, both the marginal benefit of a (incentive
provision) as well as its marginal cost (exposing the manager to more risk) are lower for the

34We also show in the proof of Proposition 2 that bsocial/asocial < bprivate/aprivate.
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social planner who internalizes the effect of a on prices. Depending on which reduction is
bigger, the planner can choose a higher or a lower a than the fund investors do. Thus, only
because of benchmarking (b 6= 0) can we be sure of the direction of the externality and are
able to say that privately optimal contracts deliver excessive incentive provision.

We now show that excessive incentive provision and excessive benchmarking give rise
to crowded trades and excessive costs.

Proposition 3 (Crowded Trades and Excessive Costs of Asset Management).
Compared to the equilibrium corresponding to the privately optimal contract, in the equilib-
rium corresponding to the socially optimal contract
(i) the asset prices are lower, Ssocial < Sprivate;
(ii) the managers’ costs are lower, ψ>xMsocial < ψ>xMprivate.

As Proposition 3 shows, excessive use of incentive contracts by fund investors inflates
prices and reduces returns per share. In addition, the costs of asset management are
excessively high. Our model thus contributes to the debate on whether costs of asset
management are excessive and whether returns delivered by the managers justify these
costs.

Finally, we discuss the benchmark weights. Lemma 3 continues to be valid in the
economy with socially optimal contracts. In addition, we can compare the tilts to high
value-added and/or high-cost assets in the privately and socially optimal contracts.

Proposition 4 (Comparison of Benchmark Weights). Suppose that Assumption 1
holds. Then the privately optimal benchmark underweights assets with higher value-added
and overweights assets with higher costs compared to the socially optimal benchmark. For-
mally, consider two assets i and j, that have the exact same characteristics except ∆i−ψi ≥
∆j − ψj and ψi ≤ ψj, with at least one inequality being strict. Then θsociali − θsocialj >

θprivatei − θprivatej .

The intuition behind this result is a little tricky. Compare (15) and (24), and recall
that the role of bθ is to protect the manager from risk as well as provide incentives. The
first term in each equation captures the insurance consideration, while the second relates
to incentive provision. The planner understands that the incentives are less powerful than
the fund investors believe. The need to provide incentives is driven by ψ, and hence the
planner is more reluctant to use benchmark weights to provide incentives for high-ψ assets.
And as the role of bθ in protecting the manager from risk is relatively more important than
incentive provision, the planner will tilt the benchmark more towards high-value-added
assets than individual fund investors would.
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Remark 1 (Redistribution Effects). Through our choice of weights in the social welfare
function, we have shut down the contracts’ redistribution effects and isolated the pecuniary
externality that the planner desires to correct. For certain applications, such as those
related to wealth inequality, however, it could be interesting to analyze the transfers from
one set of agents to another that benchmarking generates. Allowing for redistribution
changes outcomes depending on whether an agent is a (net) buyer of assets or a (net)
seller. As we have argued, benchmarking boosts asset prices. This benefits (net) sellers of
the assets at the expense of (net) buyers. If the social planner favors investors who have
high endowments of assets and are planning to sell (e.g., the older generations), she has
incentives to use more benchmarking in order to inflate prices to assist them, and vice versa
if she favors net buyers (who are typically the younger generations).

Remark 2 (Prices Relative to the First Best). According to Proposition 3, Ssocial <
Sprivate. Surprisingly, the asset prices in the first-best case exceed equilibrium prices under
both privately and socially optimal contracts, that is, Ssocial < Sprivate < SFB.35 So,
equilibrium prices in the constrained optimum are not closer to the unconstrained-optimum
prices than the decentralized-equilibrium ones, but are instead further away.36 While this
might be surprising at first glance, this result is in fact quite intuitive. Under the first best,
the portfolio is observable and it is optimal to choose high-alpha portfolios. This, of course,
will push up the asset prices and reduce expected returns. But, crowded trades are not a
problem per se, because a pecuniary externality does not lead to an inefficiency in this case.
In contrast, when the contract needs to provide incentives because the portfolio cannot be
observed, a pecuniary externality does lead to an inefficiency, and crowded trades pose a
problem as they reduce the effectiveness of incentive provision. While the comparison to
the first best may not be relevant for practical purposes (as the first best is unattainable),
it is helpful to highlight how exactly the mechanism that we explore works.

Remark 3 (Achieving Social Optimum with Taxes). Given that privately optimal
contracts result in an externality, it is natural to ask whether some sort of taxes could
implement the constrained social optimum. We provide a detailed analysis of this question
in Appendix B. We find the following. First, the manager’s compensation needs to be

35The expression for the first-best asset prices is given in Lemma 5 in Appendix A. Comparing it to
Sprivate given in Lemma 2 immediately yields the result.

36This result parallels that in Lorenzoni (2008), where the decentralized equilibrium falls between the
constrained and unconstrained optima in terms of amount of borrowing and asset prices. However, in
Lorenzoni’s model the inequality signs in the price comparison are reverse—decentralized-equilibrium asset
prices are lower than in the constrained optimum (higher in our model) and higher than in the first best
(lower in our model).

25



(proportionally) taxed to make it more costly for the fund investor to provide incentives
to the manager. This type of tax mimics the higher cost of incentive provision for the
planner, who internalizes the externality. Second, the fund returns net of the manager’s
compensation—which is the same as the fund investor’s earnings in our model—should be
(proportionally) subsidized. While this might be counterintuitive, the subsidy motivates the
fund investor to lower a by increasing the benefit of keeping a larger 1− a. An alternative
to the subsidy is imposing a cap ā on the fund manager’s “skin in the game.” Of course, the
tax and subsidy rates (or, alternatively, the tax rate and the cap on a) has to be chosen at
particular levels that depend on the model parameters (see Appendix B for the formulas).

Remark 4 (Endogenizing the Choice of Becoming a Fund vs. Direct Investor). To
zero in on the main mechanism we consider in the paper, we exogenously fixed the fractions
of different agents in the population. One could endogenize the choice of becoming a fund
investor or a direct investor, for example, by assuming a heterogenous cost of participating
in the asset market. This type of extension would introduce another channel through which
crowded trades matter. The choices of individual investors of whether to be a fund investor
or a direct investor, in the aggregate, would determine the size of the asset management
sector. This in turn would affect the strength of the externality that we identify in the
paper (i.e., how much contracts affect prices and thus effectiveness of contracts designed
by others). When making their decisions, the individual agents ignore this effect while
the planner would account for this “extensive margin” of the externality when designing
contracts.

5 Regulatory Relevance

While we have simplified our model to make our main points as clearly as possible, we
believe it still delivers several robust implications that can inform some important ongoing
regulatory debates. Probably the most important one relates to the regulation of fund
managers’ remuneration.

The first robust implication of our analysis is that if fund investors are trying to incen-
tivize managers to take costly actions to generate superior returns (or alpha), then privately
and socially optimal contracts differ. The divergence occurs because the privately optimal
contracts fail to account for the effect of crowded trades, so that the planner wants to
provide less incentives for the manager to undertake the activities that create the superior
returns and the crowding.
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The second implication is that because managers are risk averse, making their pay
completely tied to realized returns would distort their portfolio choices. Benchmarking
helps protect the manager from risk, which generates a portfolio that is better for both the
manager and the fund investor. Thus, the optimal contracts involve both “skin in the game”
and benchmarking. We argue in Remark 3 that in order to replicate the social optimum,
one needs a pair of tools to target the choice of the two corresponding coefficients, a and b.

This observation is powerful because most of regulatory discussions of fund managers’
remuneration focus on the split of the compensation that is fixed versus variable.37 For
instance, in the United Kingdom, investment funds must have some component of pay that
is at risk. Furthermore, there is an ongoing debate between the United Kingdom and the
European Union over how much bonus pay should be permitted. In the notation of our
model, this kind of regulation could be mapped into a restriction on a. The model tells us
that in the presence of benchmarking, the value of a for the social planner will be lower
than private agents would choose.

One might be tempted to conclude that if a regulation were to lower a relative to what
privately optimal contracts would specify, this restriction would be welfare increasing. In
our model, however, merely adjusting the level of a can reduce or increase welfare relative
to the equilibrium with privately optimal contracts. It is therefore important to stress that
a regulation should also consider the role of the benchmark in determining compensation.

More generally, our analysis reflects a more fundamental problem with the standard
regulatory discussion: it ignores how altering the risk-taking incentives via the form of the
pay interacts with the crowded-trades problem. This is important, because if it were not
for the crowded trades, then socially and privately optimal contracts would not diverge
in the first place, so there would be no particular reason to worry about regulating these
contracts.

Our model is not designed to provide empirical guidance on the appropriate level to
which the regulations should be set. Nonetheless, it tells us that the basis for thinking
that privately optimal contracts could be improved upon is that they fail to account for the
externality that they can create in trying to generate proper incentives.

37There is also quite a bit of attention to the vesting rules for the variable pay, however, given that we
have no dynamics in our model, we cannot comment on that.
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6 Conclusions

We consider the problem of optimal incentive provision for portfolio managers in a general-
equilibrium asset-pricing model. The optimal contacts involve benchmarking. We show
that by ignoring the effects of contracts on equilibrium prices, fund investors impose an
externality on each other—the effectiveness of their incentive contracts is lower than they
perceive it to be. The reason is that contracts incentivize the managers to invest more
in stocks with higher alpha as well as stocks in the benchmark. This boosts prices and
lowers returns, making the marginal benefit of alpha-production lower for everyone. The
social planner, who internalizes the effects of contracts on equilibrium prices, opts for less
incentive provision, less benchmarking, and lower asset management costs.

In future work, it would be interesting to incorporate passive asset managers into the
model. However, such an extension does present challenges. The existing evidence on
the compensation contracts in the asset management industry covers only active funds.
Very little is known about contracts of managers in passive funds. Before engaging in
modeling of passive managers, it would be important to collect such evidence. A natural
starting point would be to analyze the Statements of Additional Information filed by the U.S.
mutual funds with the Securities and Exchange Commission, which contain information on
managers’ compensation structure. If contracts of passive managers turn out to be incentive
contracts, it would be interesting to understand the incentive problem they solve. It is not
obvious what kind of incentive problem would result in optimal contracts that make the
managers closely follow the benchmark. We leave this problem for future work.
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Appendix A: Proofs

Proof of Lemma 1. Equation (3) immediately follows from taking the first-order condition
of the direct investor’s problem with respect to x. Similarly, (4) follows from taking the
first-order condition of the manager’s problem with respect to x. �

Lemma 5 (First Best). If x is observable or if ψ = 0, then the optimal contract is a = 1/2
and b = 0, and the asset prices are given by SFB = µ− γΣx̄+ 2λM (∆− ψ) .
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Proof of Lemma 5. When x is observable, the problem of the fund investor is simply to
maximize UF + UM , or

max
a,b,θ,x

x>(∆− ψ + µ− S)

− γ

2
{

(ax− bθ)>Σ(ax− bθ) + [(1− a)x+ bθ]>Σ[(1− a)x+ bθ] +
[
a2 + (1− a)2

]
σ2
ε

}
.

The first-order condition with respect to x is

xM = Σ−1 ∆− ψ + µ− S
γ[a2 + (1− a)2] + (2a− 1) bθ

a2 + (1− a)2 .

The first-order condition with respect to bθ is γΣ(y − z) = 0, where y = ax − bθ and z =
(1−a)x+bθ. The first-order condition with respect to a is−γ [Σ(y − z)]> x+γ(1−2a)σ2

ε = 0,
which, using the first-order condition with respect to bθ, implies a = 1/2. Then setting
b = 0 satisfies the first-order condition with respect to bθ.

The portfolio choice evaluated at the optimal contract is xM = Σ−1(∆−ψ+µ−S)/(γ/2).
Using this, the first-best equilibrium asset prices are SFB = µ − γΣx̄ + 2λM (∆− ψ) .
Comparing with (16), SFB > Sprivate.

Finally, substituting the equilibrium prices into the demand function, the equilibrium
asset holdings of the manager are xMFB = 2

[
x̄+ Σ−1λD(∆− ψ)/γ

]
. Notice that if the

manager holds a positive amount of each asset in the first best, then part (i) of Assumption
1 must hold. Therefore part (i) of Assumption 1 is a necessary condition for no short-selling
to occur in the first best. �

The Fund Investor’s Problem in Terms of Exponential Utilities:

max
a,b,θ,c,x=xM

− E exp
{
−γ

[(
xF−1

)>
S + rx − (arx − brb)− c

]}

subject to the manager’s incentive constraint (4) and her participation constraint

−E exp {−γ [arx − brb + c]} ≥ û0, (27)

where û0 is the exponential-utility version of u0.38 It is well known that CARA utility
with normally-distributed returns can be rewritten in a mean-variance form, leading to the
problem described in Section 4.2.

38In particular, if the manager’s outside option is risk-free, then û0 = − exp(−γu0).
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Proof of Lemma 2. (i) The first-order condition with respect to bθ/a is given by (10).
Using (7) and (9), it can be rewritten as

0 = ∆− ψ + µ− S − γΣ
[
Σ−1 ∆− ψ/a+ µ− S

γ

(1
a
− 1

)
+ bθ

a

]
,

γΣbθ
a

=
(

2− 1
a

)
(∆− ψ + µ− S) +

(
1− 1

a

)(
1− 1

a

)
ψ.

Using the expression for prices given in (5), this implies

γΣbθ
a

=
(

2− 1
a

)[
∆− ψ + γΣΛ

(
x̄− λM

bθ

a

)
− λM

a
Λ
(

∆− ψ

a

)]
+
(

1− 1
a

)(
ψ − ψ

a

)
.

Rearranging terms and using the expression for Λ gives

γΣ
[
1 +

(
2− 1

a

)
ΛλM

]
bθ

a

= γΣΛ
(

2− 1
a

)
x̄+

(
2− 1

a

)
λDΛ(∆− ψ) +

[
1− 1

a
−
(

2− 1
a

)
λM
a

Λ
](

ψ − ψ

a

)
,

γΣΛbθ
a

= Λ
(

2− 1
a

)
[γΣx̄+ λD(∆− ψ)]−

[
λM
a

+ λD

(1
a
− 1

)]
Λ
(
ψ − ψ

a

)
, (28)

or

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[1
a
− λM

a
− λD

] Σ−1

γ
ψ.

The expressions for b and θ separately are then given by (14) and (15), respectively.
The first-order condition with respect to a is given by39

0 = ∂(UF + UM )
∂a

+ ∂UF

∂y

∂y

∂a

= −(2a− 1)γσ2
ε − (∆− ψ + µ− S − γΣz)> y

a2 + 1− a
a

(∆ + µ− S − γΣz)> ∂y
∂a

= −(2a− 1)γσ2
ε + 1− a

a
ψ>

∂y

∂a
, (29)

where the last equality follows from (10). Using ∂y/∂a = Σ−1ψ/(γa2) (obtained by differ-
entiating (9) with respect to a), we arrive at (13).

39Since the manager’s utility is maximized with respect to y, (∂UM/∂y)(∂y/∂a) does not appear in (29).
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(ii) Plugging (28) into the expression for prices (5), yields

Sprivate = µ− γΣΛx̄
[
1− λM

(
2− 1

a

)]
+ λM (∆− ψ) + λMΛ

a
[λM + aλD]

(
∆− ψ

a

)
= µ− γΣx̄+ λM

(
2∆− ψ − ψ

a

)
.

Substituting (11) into (4) and rearranging terms, implies γΣxM = (∆ − ψ + µ − S) +
(∆− ψ/a+ µ− S) . Substituting the expression for prices S = Sprivate derived above and
rearranging terms yields (17). �

Proof of Proposition 1. Immediately follows from (14) and Assumption 1. �

Proof of Lemma 3. Denote the (k, `)-th element of matrix Σ−1 by ek,`, where ek,` = e`,k

by symmetry. Since assets i and j are assumed to be identical (except for ∆’s and ψ’s), we
have ei,i = ej,j and ei,k = ej,k for all k 6= i, j (i.e., assets i and j have the same variance
and covariance with other assets). As a result,

θi − θj = [ei,i − ei,j ]
{2a− 1

bγ
λD[∆i − ψi −∆j + ψj ] + 1− a

bγ

[1
a
− λM

a
− λD

]
[ψi − ψj ]

}
.

Because Σ−1 is positive definite, we have ei,i > 0, ei,iej,j−e2
i,j > 0, ei,i > |ei,j |. As a result,

ei,i − ei,j > 0, and thus θi > θj whenever ∆i − ψi ≥ ∆j − ψj , ψi ≥ ψj , and at least one of
the inequalities is strict. With a slight modification, this proof also applies to the socially
optimal contract. �

The Social Planner’s Problem in Terms of Exponential Utilities:

max
a,b,θ,c,x=xM ,xD

− ω̃FE exp
{
−γ

[(
xF−1

)>
S + rx − (arx − brb)− c

]}
− ω̃DE exp

{
−γ

[(
xD−1

)>
S +

(
xD
)>

(D − S)
]}

subject to (3), (4), and (27), where ω̃i, i = S,C, are the modified Pareto weights.
From the first-order condition with respect to c it follows that the Lagrange multiplier

on the participation constraint equals ω̃FMUF /MUM , where MUi denotes the expected
marginal utility of agent i. This value is the effective Pareto weight on the manager’s
utility given that transfers between the fund investor and manager are allowed. Similarly, if
transfers between fund investors and direct investors are allowed, then ω̃FMUF = ω̃DMUD,

and the redistribution effects is zero. Without transfers, the Pareto weights that cancel out
the redistribution effects (in the formulation with exponential utilities) are equal to inverse
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marginal utilities, ω̃i = 1/MUi.
Rewriting the objective function and the participation constraint in the mean-variance

form gives the problem described in Section 4.5.

Proof of Lemma 4. (i) The planner’s first-order condition with respect to bθ/a is40

[
ωF
(
xF−1 − xM

)>
+ ωD

(
xD−1 − xD

)>] ∂S

∂(bθ/a)

+ ωF

[
(∆− ψ + µ− S − γΣz)> + (∆ + µ− S − γΣz)>

(1
a
− 1

)
∂y

∂S

∂S

∂(bθ/a)

]
= 0.

Canceling out the redistribution effects, using ∂y/∂S = −Σ−1/γ and ∂S/∂(bθ/a) = γΣΛλM ,
and the expression for z, the above equation (or (19)) becomes

0 = ∆− ψ + µ− S − γΣz − (∆ + µ− S − γΣz) 1− a
a

ΛλM ,

0 = ∆− ψ + µ− S − γΣ
[
Σ−1 ∆− ψ/a+ µ− S

γ

(1
a
− 1

)
+ bθ

a

]
− ψ (1/a− 1)ΛλM

1− (1/a− 1)ΛλM
.

Rearranging terms,

γΣbθ
a

= ∆− ψ + µ− S +
(

1− 1
a

)(
∆− ψ

a
+ µ− S

)
− ψ (1− a)/aΛλM

1− (1/a− 1)ΛλM
,

γΣbθ = (2a− 1) (∆− ψ + µ− S) + (1− a)
[1− a

a
− ΛλM

1− (1/a− 1)ΛλM

]
ψ,

γΣbθ = (2a− 1) (∆− ψ + µ− S) + (1− a)
(1
a
− 1
λM + λD

)
ψ. (30)

Alternatively, from (20),

γΣbθ
a

= ∆− λM/a+ λD
λM + λD

ψ + µ− S +
(

1− 1
a

)(
∆− ψ

a
+ µ− S

)
,

γΣbθ = (2a− 1)
[
∆− λM/a+ λD

λM + λD
ψ + µ− S

]
+ (1− a)

[1
a
− λM/a+ λD

λM + λD

]
ψ. (31)

Substituting the expression for prices into (30) leads to

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[1
a
− λM/a+ λD

λM + λD

] Σ−1

γ
ψ.

The expressions for b and θ separately are then given by (23) and (24).
40Because the manager’s and direct investor’s utilities are maximized with respect to y and xD, respec-

tively, by the Envelope theorem the only terms from their payoffs that enter the first-order conditions are
those entering the redistribution term.
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The planner’s first-order condition with respect to a is

0 = ∂(UF + UM )
∂a

+ ∂UF

∂y

[
∂y

∂a
+ ∂y

∂S

∂S

∂a

]
= (1− 2a)γσ2

ε − (∆− ψ + µ− S − γΣz)> y

a2

+ 1− a
a

(∆ + µ− S − γΣz)>
[
∂y

∂a
+ ∂y

∂S

∂S

∂a

]
.

Compared to (29), there is an additional term containing (∂y/∂S)(∂S/∂a). It reflects the
planner’s understanding that the contract affects prices, which in turn affect the managers’
demands and thus the marginal benefit of alpha-production. However, unlike in the first-
order condition with respect to bθ/a, we cannot sign this extra term—recall that the effect of
a on the manager’s incentives is ambiguous. That is, for a given bθ/a, the planner’s benefit
of using a can be higher or lower than that of an individual fund investor. Nonetheless, once
the planner takes into account the adjustment in the optimal bθ, the effect of a that reduces
xM (and thus lowers prices) is exactly offset by this adjustment. Thus the additional term
that remains in the first-order condition with respect to a is only the part that takes into
account how a higher a increases incentives for xM , which in turn increases prices and
reduces returns. Hence, the marginal benefit of a for the planner is lower than for fund
investors, and the possibility of benchmarking is crucial for this result.

To see this formally, use (19) to rewrite the above equation as follows:41

0 = −(2a− 1)γσ2
ε + 1− a

a

λM/a+ λD
λM + λD

ψ>
[
∂y

∂a
+ ∂y

∂S

∂S

∂a
+ y

a2
∂y

∂S

∂S

∂(bθ/a)

]
= −(2a− 1)γσ2

ε + 1− a
a

λM/a+ λD
λM + λD

ψ>
[
∂y

∂a
− ∂y

∂a

λM/a

λM/a+ λD

]
.

We can see that the effectiveness of incentive provision for the planner, captured by the
term proportional to ∂y/∂a, is smaller than for private fund investors in equation (12).
Finally, using ∂y/∂a = Σ−1ψ/(γa2), we obtain (22).

41To get the second line, differentiate the market-clearing condition λM (y/a + bθ/a) + λDx
D = 0

with respect to bθ/a and a and use ∂xD/∂S = ∂y/∂S to get
(
λM
a

+ λD
)
∂y
∂S

∂S
∂(bθ/a) + λM = 0 and(

λM
a

+ λD
)
∂y
∂S

∂S
∂a

− λM
y
a2 + λM

a
∂y
∂a

= 0 so that
(
λM
a

+ λD
) [

∂y
∂S

∂S
∂a

+ y
a2

∂y
∂S

∂S
∂(bθ/a)

]
+ λM

a
∂y
∂a

= 0.
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(ii) Following the same steps as in the proof of Lemma 2,

Ssocial = µ− γΣx̄+ λM (∆− ψ) + λM

(
∆− ψ

a

)
−
(1
a
− 1

)
λ2
M

λM + λD
ψ

= µ− γΣx̄+ λM

(
2∆− λM/a+ λD

λM + λD
ψ − ψ

a

)
. (32)

Substituting (31) into (4) and rearranging terms, gives

γΣxM =
[
∆− λM/a+ λD

λM + λD
ψ + µ− S

]
+
[
∆− ψ

a
+ µ− S

]
.

Substituting (32) and rearranging terms yields (26). �

Proof of Proposition 2. (i) Comparison asocial < aprivate follows straightforwardly from
comparing (13) and (22).

(ii) Denote a1 = aprivate and a2 = asocial. We first prove that bsocial/asocial < bprivate/aprivate.
From (14) and (23),

b1
a1

=
(

2− 1
a1

)
1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+
( 1
a1
− 1

)[ 1
a1
− λM

a1
− λD

]
1>Σ−1

γ
ψ,

b2
a2

=
(

2− 1
a2

)
1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]

+
( 1
a2
− 1

)[ 1
a2
− 1
λM + λD

(
λM
a2

+ λD

)]
1>Σ−1

γ
ψ.

Under Assumption 1, in order to show that b1/a1 > b2/a2, it is sufficient to show that
( 1
a1
− 1

)[ 1
a1
− λM

a1
− λD

]
>

( 1
a2
− 1

)[ 1
a2
− 1
λM + λD

(
λM
a2

+ λD

)]
,

which (given that both sides of the above inequality are positive) is equivalent to

(1− a1)/a2
1

(1− a2)/a2
2

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1. (33)

From (13) and (22) we have

1− a1
a3

1(2a1 − 1)
= 1− a2
a3

2(2a2 − 1)
λD

λM + λD
. (34)
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Substituting this into inequality (33), obtain

a1(2a1 − 1)
a2(2a2 − 1)

λD
λM + λD

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1.

Since a1 > a2, it suffices to show that

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

>
λD + λM

λD
,

which is equivalent to

λM (2a2 − 1)
λD(a1 − a2) > 1. (35)

To show (35), we will use equation (34). Rearranging (34) yields

1− a1
a3

1(2a1 − 1)
λM
λD

= 1− a2
a3

2(2a2 − 1)
− 1− a1
a3

1(2a1 − 1)
,

or, equivalently,

λM (2a2 − 1)
λD

= a3
1

1− a1

[(1− a2)(2a1 − 1)
a3

2
− (1− a1)(2a2 − 1)

a3
1

]
.

The right-hand side of the above equation equals

−a3
1 + 2a4

1 − 2a4
1a2 + a2a

3
1 − (−a3

2 + 2a4
2 − 2a4

2a1 + a1a
3
2)

(1− a1)a3
2

= (a1 − a2)
(1− a1)a3

2
[−(1 + 2a1a2)(a2

1 + a1a2 + a2
2) + 2(a1 + a2)(a2

1 + a2
2) + a1a2(a1 + a2)].

Rearranging terms and doing some more algebra, yields

λM (2a2 − 1)
λD(a1 − a2)

= (2a1 − 1)a2
1(1− a2) + (2a2 − 1)a2

2(1− a1) + (2a1 − 1)a1a2 + 2a1a
2
2(1− a1)

a3
2(1− a1)

.
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Since 1/2 < a2 < a1 < 1,

λM (2a2 − 1)
λD(a1 − a2)

>
(2a1 − 1)a2

1(1− a2) + (2a2 − 1)a2
2(1− a1) + (2a1 − 1)a1a2 + a3

2(1− a1)
a3

2(1− a1)
> 1,

and thus (35) holds. Therefore b1/a1 > b2/a2. Using this and a1 > a2(> 1/2), it follows
that b1 > b2. �

Proof of Proposition 3. (i) The result follows immediately from comparing (16) and
(25) and using part (i) of Proposition 2:

Sprivate − Ssocial = λM

( 1
asocial

− 1
aprivate

)
ψ +

( 1
asocial

− 1
)

λ2
M

λM + λD
ψ.

Since both terms on the right-hand side are strictly positive, Sprivate > Ssocial.
(ii) Using (17) and (26),

ψ>
(
xMsocial − xMprivate

)
= λDψ

>Σ−1

γ
ψ

[
1− λM/a

social + λD
λM + λD

+ 1
asocial

− 1
aprivate

]
.

Since Σ−1 is positive definite and the expression in square brackets is negative (because
asocial < aprivate < 1), we have ψ>

(
xMsocial − xMprivate

)
< 0. �

Proof of Proposition 4. Denote a1 = aprivate and a2 = asocial, and let ei,j be the (i, j)-th
element of matrix Σ−1 as defined in the proof of Lemma 3. Then

θprivatei − θprivatej = 2a1 − 1
b1γ

λD(ei,i − ei,j)[∆i −∆j − (ψi − ψj)]

+ 1− a1
b1γ

( 1
a1
− λM

a1
− λD

)
(ei,i − ei,j)(ψi − ψj),

θsociali − θsocialj = 2a2 − 1
b2γ

λD(ei,i − ei,j)[∆i −∆j − (ψi − ψj)]

+ 1− a2
b2γ

( 1
a2
− λM/a2 + λD

λM + λD

)
(ei,i − ei,j)(ψi − ψj).

Using similar steps as in the proof of b1 > b2 in part (ii) of Proposition 2 we can show that
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b1/(2a1 − 1) > b2/(2a2 − 1) and thus (2a1 − 1)/b1 < (2a2 − 1)/b2. Furthermore,

1− a1
b1

[ 1
a1
− λM

a1
− λD

]

=
[
1>Σ−1

γ
ψ + 2a1 − 1

(1− a1)(1/a1 − λM/a1 − λD)1>
(
x̄+ Σ−1

γ
λD(∆− ψ)

)]−1

,

1− a2
b2

[ 1
a2
− λM/a2 + λD

λM + λD

]

=
[
1>Σ−1

γ
ψ + 2a2 − 1

(1− a2) [1/a2 − (λM/a2 + λD)/(λM + λD)]1
>
(
x̄+ Σ−1

γ
λD(∆− ψ)

)]−1

.

From the proof of b1 > b2 in part (ii) of Proposition 2 we know that

2a1 − 1
(1− a1)(1/a1 − λM/a1 − λD) <

2a2 − 1
(1− a2) [1/a2 − (λM/a2 + λD)/(λM + λD)] ,

so that

1− a1
b1

[ 1
a1
− λM

a1
− λD

]
>

1− a2
b2

[ 1
a2
− λM/a2 + λD

λM + λD

]
.

Hence when ∆i − ψi ≥ ∆j − ψj and ψi ≤ ψj , and at least one inequality is strict, we have
θsociali − θsocialj > θprivatei − θprivatej . And conversely, if ∆i − ψi ≤ ∆j − ψj and ψi ≥ ψj , and
at least one inequality is strict, then we have θsociali − θsocialj < θprivatei − θprivatej . That is,
the socially optimal contract puts relatively less weight on incentive provision (compared to
the privately optimal contract) and thus relatively more weight on protecting the manager
from risk. �

Lemma 6. In both private and social optima, the second-order conditions are satisfied.

Proof of Lemma 6. Denote by Fbθ/a and Fa (the left-hand sides of) the first-order
conditions with respect to bθ/a and a, respectively. From the proofs of Lemmas 2 and 4,
once we plug in the first-order condition with respect to bθ/a in the first-order condition
with respect to a, the remaining terms only depend a. Thus we can write Fa in the following
form: Fa = g(a) + h(a, bθ/a)>Fbθ/a. The function g(a) is given by (the right-hand sides of)
equations (13) and (22) in the privately and socially optimal cases, respectively.
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Differentiating Fa with respect to a and bθ/a,

Faa = ∂Fa
∂a

= g′(a) + ∂h>(a, bθ/a)
∂a

Fbθ/a︸ ︷︷ ︸
=0

+h>(a, b)Fbθ/a,a,

Fa,bθ/a = ∂Fa
∂(bθ/a) = ∂h>(a, bθ/a)

∂(bθ/a) Fbθ/a︸ ︷︷ ︸
=0

+h>(a, bθ/a)Fbθ/a,bθ/a.

Notice that g′(a) < 0 (this follows from (13) in the privately optimal case and from (22)
in the socially optimal case). Suppose we knew that Fbθ/a,bθ/a is negative semi-definite.
Then we can show that the following determinant has opposite sign of det(Fbθ/a,bθ/a):

det

 Fbθ/a,bθ/a Fbθ/a,bθ/ah

h>Fbθ/a,bθ/a g′(a) + h>Fbθ/a,bθ/ah


= det(Fbθ/a,bθ/a) det

[
h>Fbθ/a,bθ/ah+ g′(a)− h>Fbθ/a,bθ/a(Fbθ/a,bθ/a)−1Fbθ/a,bθ/ah

]
= g′(a) det(Fbθ/a,bθ/a) = −det(Fbθ/a,bθ/a),

where the first equality follows from det

A B

C D

 = det(A) det(D − CA−1B).

It remains to prove that Fbθ/a,bθ/a is negative semi-definite. In the privately optimal
case, Fbθ/a,bθ/a = −γΣ/a. Since Σ is positive semi-definite, Fbθ/a,bθ/a is negative semi-
definite. Similarly, in the socially optimal case, Fbθ/a,bθ/a = −γΣΛλM −γΣ/a, also negative
semi-definite. �

Appendix B: Achieving the Social Optimum with Taxes
(for Online Publication)

This appendix analyzes how imposing taxes can implement the constrained socially optimal
allocation and prices in the equilibrium in which contracts are chosen by fund investors.
There are multiple ways of doing that, and we consider two alternatives here—one with
proportional income taxes (or subsidies) on the managers and fund investors, the other
with an income tax on the managers and a cap on a.

First, suppose there are proportional tax rates on the fund investors’ and managers’
incomes, denoted by t and t′, respectively. The tax revenue—which is uncertain, given
that the incomes are uncertain—is distributed to the fund investors as a lump-sum transfer
T . Denote the constant and stochastic part of the transfer by τ0 and τ so that T =
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τ0 + τ>(D̃ − S). How τ0 and τ are determined is discussed later.
Since we want to implement the constrained optimal allocation, the taxes and the lump-

sum transfer will be such that y = (1 − t′)[ax − bθ] and z = (1 − t)[(1 − a)x + bθ] + τ are
the same as in the constrained social optimum.

The utilities of the fund investor and manager with taxes can be written as

UF = (1− t)(1− a)x>∆ + z>(µ− S)− c(1− t) + τ0 −
γ

2
[
z>Σz + (1− t)2(1− a)2σ2

ε

]
,

UM = (1− t′)ax>∆− x>ψ + y>(µ− S) + c(1− t′)− γ

2
[
y>Σy + (1− t′)2a2σ2

ε

]
.

The manager’s demand function is

xM = Σ−1 ∆− ψ/[a(1− t′)] + µ− S
γa(1− t′) + bθ(1− t′)

a(1− t′) . (36)

To implement the social optimum, we need a(1− t′) = asocial and bθ(1− t′) = (bθ)social.
From the first-order condition with respect to c, the Lagrange multiplier on the man-

ager’s participation constraint is ξ = (1− t)/(1− t′). The fund investor maximizes

UF + ξUM = [(1− t)x+ τ ]> (∆ + µ− S) + τ0 −
1− t
1− t′x

>ψ

− γ

2

{
z>Σz + 1− t

1− t′ y
>Σy + (1− t)

[
(1− t)(1− a)2 + (1− t′)a2

]
σ2
ε

}

subject to the manager’s incentive constraint (36), y = (1− t′)[ax− bθ], and

z = (1− t)
[ 1

1− t′
1− a
a

y + bθ

a

]
+ τ.

The first-order condition with respect to bθ/a is

(1− t)(∆ + µ− S − γΣz)− 1− t
1− t′ψ = 0,

∆ + µ− S − γΣz − 1
1− t′ψ = 0. (37)

Recall that the planner’s first-order condition with respect to bθ/a is

∆ + µ− S − γΣz − ψλM/a
social + λD

λM + λD
= 0.
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To equate the two, we need 1− t′ = (λM + λD)(λM/asocial + λD), or

t′ = λM
λM/asocial + λD

1− asocial

asocial
. (38)

Intuitively, the positive tax on the manager’s income inflates his costs relative to returns,
which discourages him from investing in risky assets.

Notice, quite interestingly, that one tax rate, t′ equates N first-order conditions (pro-
vided that a(1− t′) = asocial), since θ is an N × 1 vector.

The first-order condition with respect to a is

(1− t)
[
(1− t)(1− a)− (1− t′)a

]
γσ2

ε + (∆ + µ− S + γΣz) 1− t
1− t′

1− a
a

∂y

∂a
= 0.

Dividing by 1− t and using (37), ∂y/∂a = Σ−1ψ/(γa2(1− t′)), and a(1− t′) = asocial, the
above condition can be rewritten as

[
(1− t)(1− a)− (1− t′)a

]
γσ2

ε + 1− a
(asocial)3

ψ>Σ−1ψ

γ
= 0.

Recall that the planner’s first-order condition with respect to a is

(1− 2asocial)γσ2
ε + 1− asocial

(asocial)3
ψ>Σ−1ψ

γ

λD
λM + λD

= 0.

To equate the two, we need

1− a
(1− t)(1− a)− (1− t′)a = λD

λM + λD

1− asocial

1− 2asocial , (39)

From a = asocial/(1−t′) = asocial(λM/asocial+λD)/(λM+λD), 1−a = (1−asocial)λD/(λM+
λD), and (39) simplifies to (1− t)(1− a)− (1− t′)a = 1− 2asocial, or

t(1− a) + t′a = 0. (40)

Using the expression for t′ given in (38) and a = asocial/(1− t′), we have

t = −λM/λD.

That is, in order to implement the constrained social optimum, the fund manager’s income
tax rate should be negative. Intuitively, in order to discourage the fund investor from setting
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a too high, the subsidy should be used so that the fund investor effectively retains a larger
share of the return for himself. His after-tax share of the return equals (1 − t)(1 − a) =
1 − (1 − t′)a. That is, it is as if he only has to give (1 − t′)a instead of a to the manager.
Thus the income tax rates t and t′ considered here effectively translate into the tax rates
of t′ imposed directly on a and bθ such that (1− t′)a = asocial and (1− t′)bθ = (bθ)social.

Finally, the transfer to the fund investor that balances the budget is

T = [t(1− a) + t′a]x>(∆ + D̃ − S) + (t− t′)[bθ>(D̃ − S)− c]

= (t− t′)[bθ>(D̃ − S)− c],

where the last equality follows from (40), and so τ0 = (t− t′)c and τ = (t− t′)bθ. Note that
while t − t′ < 0, the expected lump-sum transfer (t − t)′

[
bθ>(µ− S)− c

]
can be negative

or positive depending on the value of the manager’s outside option, which pins down c.
An alternative scheme that achieves the social optimum is a combination of the income

tax rate t′ given by (38) imposed on the manager together with a cap (an upper bound)
on the sensitivity of the manager’s compensation with respect to the fund performance, a,
at ā = asocial/(1 − t′), so that a ≤ ā = (λM + asocialλD)/(λM + λD). As before, the total
amount of tax revenue should be paid to the fund investor as a lump-sum transfer.

Appendix C: Incorporating the Manager’s Effort Choice
(for Online Publication)

In this appendix we extend the model in the main text to incorporate the manager’s choice
of effort. We will assume here that the effort choice is unobservable to the fund investor (the
analysis of the case with observable effort is similar). We still assume, as in the main text,
that the manager’s portfolio choice is unobservable as well. We will demonstrate that our
main insights extend in this case. In particular, the individual fund managers overestimate
the effectiveness of incentive provision relative to the planner, which results in crowded
trades.

For simplicity, we consider the case with one risky asset (and one risk-free bond). Con-
sider general functional forms, namely, suppose the benefit function is ∆̃(x, e), the cost
function is ψ̃(x, e), and the variance of the noise term is ε̃(x, e).
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The manager’s problem is

max
x,e

a∆̃(x, e)− ψ̃(x, e) + (ax− b)(µ− S)− γ

2σ
2(ax− b)2 − γ

2a
2ε̃(x, e) + c.

The first-order conditions with respect to e is

∂∆̃
∂e
− 1
a

∂ψ̃

∂e
− γ

2a
∂ε̃

∂e
= 0. (41)

Think of the optimal effort solving (41) as e∗(x, a).
We impose the following assumptions.

Assumption 2. Suppose that for each a ∈ [1/2, 1], the function

a∆̃(x, e)− ψ̃(x, e)− γa2

2
[
x2 + ε(x, e)

]
is concave in (x, e). Moreover, denote

df(x, e∗(x, a))
dx

= ∂f

∂e

∂e∗

∂x
+ ∂f

∂x
,

where function f is either ∆̃, ψ̃, or ε̃, and e∗(x, a) is implicitly defined by (41). Suppose
that for each a ∈ [1/2, 1],

dψ

dx
>
γ

2

∣∣∣∣ dεdx
∣∣∣∣ , d2ψ

dx2 ≥
γ

2

∣∣∣∣∣− d2ε

dx2

∣∣∣∣∣ .
The above inequalities require that the manager’s private cost is sufficiently increasing

and sufficiently convex in x (once the optimal effort choice is taken into account).
We now proceed with the analysis of the manager’s problem. The manager’s first-order

condition with respect to x (taking into account the fact that x affects the optimal choice
of effort according to e∗(x, a)) is

µ− S − γσ2(ax− b) + d∆̃
dx
− 1
a

dψ̃

dx
− γ

2a
dε̃

dx
= 0. (42)

Assumption 2 implies that the second-order conditions are satisfied, in particular,

SOCx ≡ −γσ2a+ d2∆̃
dx2 −

1
a

d2ψ̃

dx2 −
γa

2
d2ε̃

dx2 < 0.

In what follows, we will use expressions for the effects of b and a on x that we derive
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below. Differentiating (42) with respect to b,

γσ2 + SOCx
∂x

∂b
= 0,

∂x

∂b
= − γσ2

SOCx
= γσ2

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.

Denote dx
di
≡ ∂x

∂i
+ ∂x

∂S

∂S

∂i
, i ∈ {a, b}. Taking a full derivative of (42) with respect to b,

γσ2 − ∂S

∂b
+ SOCx

dx

db
= 0. (43)

Differentiating the market-clearing condition λMx+λDx
D = x̄ with respect to b (and using

the expression for xD in the main text),

λM
dx

db
+ λD

∂xD

∂S

∂S

∂b
= λM

dx

db
− λD

1
γσ2

∂S

∂b
= 0,

∂S

∂b
= γσ2λM

λD

dx

db
.

Substituting this into (43),

dx

db
= γσ2

γσ2λM
λD
− SOCx

= γσ2

γσ2
(
a+ λM

λD

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Notice that dx
db
≤ ∂x

∂b
, with strict inequality if λM > 0.

Similarly, differentiating (42) with respect to a,

− γσ2x+ 1
a2
dψ̃

dx
− γ

2
dε̃

dx
+ SOCx

∂x

∂a
= 0,

∂x

∂a
= 1

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

[
1
a2
dψ̃

dx
− γ

2
dε̃

dx

]
− x∂x

∂b
. (44)

The last term captures the negative effect of a on x because the manager is exposed to too
much aggregate risk—the effect which b offsets. There is a new effect that we did not have
before—a larger a reduces x if ε̃ is increasing in x because it exposes the manager to more
idiosyncratic risk, and this risk cannot be offset by an increase in b. Notice that without
it (as in the main text), we would have ∂x/∂a+ x∂x/∂b > 0, which captures the fact with
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b offsetting the negative effect of a on x, we are only left with the positive effect that is
coming from reducing the effective cost. We want to make sure that ∂x/∂a+ x∂x/∂b > 0.
Notice that if this was not the case, it would not be optimal for the fund investor to use a
for incentive provision purposes. Assumption 2 ensures that, and we have

∂x

∂a
+ x

∂x

∂b
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.

Similarly, we have

dx

da
+ x

dx

db
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2
(
a+ λD

λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

,

which is smaller than ∂x

∂a
+ x

∂x

∂b
.

We now turn to the analysis of the fund investor’s problem. Denoting y = ax − b and
z = x− y, this problem is

max
a,b,c,x

(1− a)∆̃(x, e∗(x, a)) + z(µ− S)− γσ2

2 z2 − γ(1− a)2

2 ε̃2(x, e∗(x, a))− c

subject to the manager’s participation constraint and incentive constraint (42) (in which
we substituted e∗(x, a) implicitly defined by (41)).

The fund investor’s first-order condition with respect to b is

d(UF + UM )
db

= ∂UF

∂x

∂x

∂b
+ ∂UM

∂x︸ ︷︷ ︸
=0

∂x

∂b
+ ∂(UF + UM )

∂b
= 0. (45)

The last term captures how b directly affects the social welfare by linearly transferring from
y to z. The first term captures the indirect effect of b on social welfare through its effect
on the manager’s demand x. Intuitively, notice that ∂UF /∂x should be positive, otherwise
b would not be positive. We will show that ∂UF /∂x > 0 formally below. The last term in
(45) is

∂(UF + UM )
∂b

= −γσ
2

2
∂(y2 + z2)

∂b
= γσ2(y − z) = γσ2 [(2a− 1)x− 2b] .
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We will show below that this term is negative (notice that this term would be zero under
perfect risk sharing a = 1/2 and b = 0.)

Using (42),

∂UF

∂x
= (1− a)

[
d∆̃
dx

+ µ− S − γσ2z − γ

2 (1− a) dε̃
dx

]

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
.

Then the investor’s first-order condition with respect to b becomes

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
∂x

∂b
+ γσ2(y − z) = 0, (46)

or equivalently

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
+ γσ2(y − z) = 0. (47)

Notice that since the first term is strictly positive by Assumption 2, the second term is
strictly negative. It then also follows that the term in the square brackets in 46 must be
strictly positive, that is, ∂UF /∂x = ∂(UF + UM )/∂x > 0. Intuitively, it means that it is
optimal for the fund investor to use contracts to provide incentives. It also then follows
that b > 0. Indeed, notice that at b = 0 and a ∈ [1/2, 1], the left-hand side of (47) is strictly
positive given Assumption 2, and thus b ≤ 0 cannot be optimal.

We will now compare the social planner’s first-order condition with respect to b to that
of an individual fund investor. The planner’s first-order condition with respect to b (after
canceling out the redistribution effects, as in the main text) is the same as the corresponding
first-order condition for an investor, but ∂x/∂b is being replaced with dx/db, namely

∂UF

∂x

dx

db
+ ∂(UF + UM )

∂b
= 0,

or

(1− a)dx
db

(1− a)dx
db

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
+ γσ2(y − z) = 0.
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Since dx/db < ∂x/∂b as long as λM > 0,

(1− a)dx
db

(1− a)dx
db

+ 1
<

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1
.

It then follows that under Assumption 2, the additional terms in the planner’s first-order
condition relative to the investor’s first-order condition are strictly negative.

Now consider the first-order condition with respect to a. In the privately optimal case,
it is

d(UF + UM )
da

= ∂UF

∂x

∂x

∂a
+ ∂UF

∂e

∂e

∂a
+ ∂(UF + UM )

∂a
= 0.

Rewrite this to get

d(UF + UM )
da

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
∂x

∂a

+ (1− a)
[
∂∆̃
∂e
− γ

2 (1− a)∂ε̃
∂e

]
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1).

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
∂x

∂a

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1) = 0.

where the second equality uses (41). Then using (46), we can rewrite the above condition
as follows:

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

](
∂x

∂a
+ x

∂x

∂b

)

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γε2(2a− 1) = 0.

Using (47), the fund investor’s first-order condition with respect to a becomes

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)
(1− a)∂x

∂b
+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

]
+ (1− a)

(
1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a

− γε2(2a− 1) = 0. (48)
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Notice that we need dψ̃/dx > 0 or ∂ψ̃/∂e > 0, otherwise a = 1/2 is optimal. This is
guaranteed by Assumption 2.

The social planner’s first-order condition with respect to a is obtained from (48) by
replacing

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)
(1− a)∂x

∂b
+ 1

=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2 − d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

by a strictly smaller term,

(1− a)
(
dx

da
+ x

dx

db

)
(1− a)dx

db
+ 1

=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2
(

1 + λD
λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Recall that the term in square brackets in (48) is strictly positive (by Assumption 2).
Therefore in the socially optimal case, there are additional negative terms (or the positive
terms are smaller) in the first-order condition with respect to a relative to that in the
privately optimal case.

As in the main model in the text, the planner recognizes that incentive provision is
weaker than how individual fund investors perceive it. This is captured by additional
negative terms in the first-order conditions for a and b. Establishing that this implies that
both a and b in the socially optimal case are smaller than those in the privately optimal case
is no longer straightforward, and requires imposing additional assumptions on the cross-
derivatives and third derivatives of the functions ∆̃, ψ̃ and ε̃, which are hard to interpret.
Intuitively though, b is used to undo some costs that arise from using a larger a, so we
would expect that the planner sets both a and b lower than those in the privately optimal
case.

We can still prove the crowded trades result, namely, Ssocial < Sprivate. Define k = (a, b),
W (k, S) = UF (k, S, x(k, S), e∗(k, x(k, S))) + UM (k, S, x(k, S), e∗(k, x(k, S))). The fund in-
vestor’s problem is to maximize W (k, S) with respect to k taking S as given. Since we
cancel out redistribution effects in the social planner’s problem, it is equivalent to maxi-
mizing W (k, S(k)) with respect to k.

Denote the optimal solutions in the privately and socially optimal cases by k∗private and
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k∗social, respectively. Notice that

W (k∗social, S(k∗social)) > W (k∗private, S(k∗private)) > W (k∗social, S(k∗private))

implying

W (k∗social, S(k∗social)) > W (k∗social, S(k∗private)). (49)

Differentiating W with respect to S (and canceling the redistribution effects),

dW

dS
= ∂UF

∂x

dx

dS
= (1− a)

{
γσ2 [(2a− 1)x(S)− 2b] + 1

a

dψ̃

dx
+ γ

2 (2a− 1) dε̃
dx

}
dx

dS
< 0.

Differentiating with respect to S one more time,

d2W

dS2 = dWs

dx

(
dx

dS

)2
+Ws

d2x

dS2︸︷︷︸
=0

=
[
γσ2(2a− 1)x+ 1

a

d2ψ̃

dx2 + γ

2 (2a− 1) d
2ε̃

dx2

](
dx

dS

)2
> 0

by Assumption 2. Since dW (k∗social, S)/dS < 0 at S = S∗social, this implies thatW (k∗social, S(k∗social)) <
W (k∗social, S) for S < S(k∗social). Given inequality 49, it must be the case S(k∗social) <

S(k∗private). It then also follows that x(k∗social) < x(k∗private). So the crowded trade results
from the main text extends to the case with unobservable effort.

Appendix D: Contractible Revenues of Return-Augmenting
Activities (for Online Publication)

In this appendix we consider what happens if the revenue from the return-augmenting
activities, x>∆ + ε, is contractible. We will show that our main results extend, namely,
benchmarking is still optimal, and socially and privately optimal contracts differ as the
planner recognizes that incentive provision is less effective than how fund investors perceive
it. This holds unless there is only one risky stock or all stocks are identical. Intuitively,
while the investors have one more instrument, this instrument is not enough to fine-tune
incentives for multiple stocks and reach the first best.
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Suppose the manager receives a fraction ã of it, so that her compensation is

w = (ax> − bθ>)(D̃ − S) + ã(x>∆ + ε) + c.

As in the main text, denote y = ax> − bθ>. Then the manager’s problem can be written
as follows:

max
y

(
y

a
+ b

a

)>
(ã∆− ψ) + c+ y>(µ− S)− γ

2y
>Σy + c− γã2σ2

ε

2 .

The manager’s first-order condition with respect to y is

y = Σ−1 (ã∆− ψ)/a+ µ− S
γ

,

and the equilibrium prices are

S = µ− γΣΛ
(
x̄− λM

b

a

)
− ΛλM

a

ã∆− ψ
a

.

Denoting z = y(1− a)/a+ θb/a, the fund investor’s problem is

max
a,ã,b,c,y

(
y

a
+ b

a

)>
(1− ã)∆ + z>(µ− S)− γ

2 z
>Σz − γ(1− ã)2σ2

ε

2 − c

s.t.
(
y

a
+ b

a

)>
(ã∆− ψ) + y>(µ− S)− γ

2y
>Σy + c− γã2σ2

ε

2 + c ≥ u0,

y = Σ−1 (ã∆− ψ)/a+ µ− S
γ

.

As in the main text, the first-order condition with respect to bθ/a is

∂(UF + UM )
∂(bθ/a) + ∂UF

∂y

∂y

∂(bθ/a) = 0,

∆− ψ + µ− S − γΣz = 0.

This is a vector, which is equal to zero element by element.
The planner’s first-order condition with respect to bθ/a (after canceling out redistribu-
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tion effects, as in the main text) is

∂(UF + UM )
∂(bθ/a) + ∂UF

∂y

[
∂y

∂(bθ/a) + ∂y

∂S

∂S

∂(bθ/a)

]
= 0,

(∆− ψ + µ− S − γΣz)> + [(1− ã)∆ + (1− a)(µ− S − γΣz)]> 1
a

∂y

∂S

∂S

∂(bθ/a) = 0.

The additional terms in the planner’s first-order condition with respect to bθ/a evaluated
at the privately optimal contract are

1
a

[(1− a)ψ + (a− ã)∆]> ∂y
∂S

∂S

∂(bθ/a) = 1− a
a2 ΛλM [(1− a)ψ + (a− ã)∆]> . (50)

Notice that this is a vector; for the additional terms to be zero, this vector would have to
be zero element by element.

The first-order condition with respect to a in the privately optimal contract (after
substituting the first-order condition with respect to bθ/a) can be written as

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂a

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1
(
ã∆
a
− ψ

a

)
. (51)

The right-hand side is a number. Notice that this equality does not imply that (50) is zero
element by element unless there is only one stock, or all stocks are identical. The first-order
condition with respect to a in the socially optimal contract is

∂(UF + UM )
∂a

+ ∂UF

∂y

[
∂y

∂a
+ ∂y

∂S

∂S

∂a

]
= 0,

which can be rewritten as

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂a

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1
(
ã∆
a
− ψ

a

)
λD

λM + λD
.

Compared to (51), the right-hand side is only scaled down by a constant, so for the same
ã, the planner’s choice of a coincides with the fund investor’s. However, we will see that
ãsocial 6= ãprivate.
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The first-order condition with respect to ã in the privately optimal contract is

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂ã

+ (1− 2ã)γσ2
ε

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1∆ + (1− 2ã)γσ2
ε .

Notice that because the vectors ∂y/∂ã and ∂y/∂a are different from each other, ã = 1/2
generally does not solve the above equation. The corresponding first-order condition in the
socially optimal contract is

∂(UF + UM )
∂ã

+ ∂UF

∂y

[
∂y

∂ã
+ ∂y

∂S

∂S

∂ã

]
= 0.

This can be rewritten as

0 = [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1∆ λD
λM + λD

+ (1− 2ã)γσ2
ε .

Notice that this implies that there are additional negative terms in the planner’s first-order
condition with respect to ã as compared to the privately optimal first-order condition. As
we saw above, the same is true for the fist-order condition with respect to bθ/a, while the
first-order condition with respect to a is undistorted.

Thus we conclude that, as in the main model, benchmarking is optimal and privately
and socially optimal contracts differ.
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