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Abstract

We study innovation and di usion of technology at the industry level. We
derive an industry’s evolution, from birth to its maturity, and we characterize
how di usion a ects the incentive to innovate. The model implies that protec-
tion of innovators should be only partial due to the congestion externality in
the meetings in which idea transfers take place. We Þt the model to the early
experiences of the automobile and the personal computer industries, both of
which show -shaped growth of the number of Þrms.

1 Introduction

Innovation and di usion are fundamental drivers of technological progress and long-
run growth. An innovation cannot fulÞll its potential without being widely adopted,
but rapid di usion and imitation may reduce the incentive to innovate. In this paper,
we study the interplay between innovation and di usion in a competitive industry
setting, and discuss welfare and policy implications.

The model features an industry with a Þxed demand curve for a homogeneous
product and a group of zero measure potential producers. An innovation or “idea”
enables an agent to produce the good at zero cost subject to a capacity constraint.
At the outset, agents decide whether to pay a sunk cost to innovate. Some will do so
immediately; others may consider innovating later, or wait to imitate the innovation.

Imitation occurs in random pairwise meetings between those who have the idea
and those who do not. Imitation is costless, but the imitator may have to pay a fee
to the idea seller and the fee is determined by the latter’s bargaining share.

We study two regimes regarding the payment for ideas. In Regime 1, imitators
cannot resell ideas to other imitators. A potential adopter can copy an idea from an
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imitator but the fee goes to the idea’s original innovator and not to the imitator — this
scenario is typically seen in patent licensing or franchising. In Regime 2, by contrast,
imitators can resell ideas to other imitators and keep the proceeds, a scenario which
is often relevant for non-patented know-how.

Our model leads to the following Þndings. First, under either regime, innovators
enter the industry only at the beginning and the number of imitators then follows
an -shaped logistic di usion curve over time. More innovators enter in Regime 1 or
when idea sellers’ bargaining share is larger, resulting in faster industry growth.

Second, socially optimal compensation for innovators should be only partial. In-
novators do generate positive knowledge spillovers, but they also generate a meeting-
congestion externality, and from the welfare viewpoint, they should be compensated
but not fully. Moreover, the socially optimal bargaining share of idea sellers is larger
in Regime 2 where innovators collect the payo of ideas partly indirectly.

Third, a policy restricting the speed of di usion reduces welfare. It may encourage
entry of innovators and raise initial industry capacity, but it lowers imitation and
leads to slower growth of capacity. Non-compete contracts restrict idea di usion and
we show their enforcement in Massachusetts but not in California may explain why
venture activity on Route 128 was overtaken by that in Silicon Valley.

We Þt the model to the early experiences of the U.S. automobile and personal
computer industries, both of which show -shaped growth in the number of producers
in the period before the shakeout, a pattern shared by many industries. We thus add
to the literature on industry life cycles — e.g., Gort and Klepper (1982), Utterback
and Suarez (1993), Jovanovic and MacDonald (1994), Klepper (1996), Filson (2001),
and Hayashi, Li, and Wang (2017). Those studies focus on explaining the shakeout of
Þrms, while our study explains the expansion of Þrm numbers prior to the shakeout.
We Þnd that the auto and the PC industries both face highly elastic demands, under
which entry of imitators can drive prices down only slowly. Because this encourages
innovation and exacerbates the congestion externality, the socially optimal bargaining
share of idea sellers should be low for both industries, and lower for the more price
elastic PC.

In our model, random meetings between agents who have ideas and those who do
not give rise to a logistic di usion process. This is consistent with prior work that
features logistic di usion curves in the technology di usion literature (e.g., Griliches
1957, MansÞeld 1961, Bass 1969, 2004, Young 2009),1 as well as in the epidemics
studies (e.g., Atkeson 2020, Garibaldi, Moen, and Pissarides 2020, among many
applications of the SIR model to the spread of the COVID-19 disease). And the
quadratic matching function underlying the logistic di usion was recently studied by
Lauermann, Nöldeke, and Tröger (2020).

1Our model focuses on the di usion process driven by information spillovers from prior to future
adopters, which has been a classic approach for studying di usion in the literature (see Young 2009
for a review). There are also models where di usion is driven by falling prices of inputs; e.g., David
(1968) and Manuelli and Seshadri (2014).
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Saxenian (1994), Gilson (1999) and Franco and Mitchell (2008) discuss the role of
non-compete contracts in the overtaking of Route 128 by Silicon Valley. Our model
generates this overtaking via the discouragement e ect that banning non-competes
has on innovation and via the o setting e ect on imitation.

We add to several other strands of the literature. First, the work on competitive
innovation; Boldrin and Levine (2008) provide evidence that such innovation is per-
vasive and they argue that in both theory and practice, capacity constraints provide
incentives to innovate in a competitive marketplace. They consider a single innova-
tor’s entry decision in a market where the number of imitators grows at a constant
rate. By contrast, our model endogenizes the entry number of innovators and gener-
ates -shaped growth in the number of imitators, and we also consider compensation
from imitators to innovators, and our policy implications are di erent.

Second, our Þnding that protection of innovators should be only partial agrees with
Þndings in some recent papers on aggregate growth. For example, Hopenhayn and
Shi (2020) show that due to matching congestion, the growth-maximizing bargaining
share of innovators is sensitive to the parameters in the matching function. Benhabib,
Perla, and Tonetti (2021) show that innovators’ licensing income becomes highly
elastic with regard to the license price when innovators’ bargaining power is too
strong and that this can lower licensing income, the return to innovation, and growth.
These models compare aggregate growth rates at steady states whereas our model
studies transitional dynamics of industry evolution and two policy-relevant regimes
concerning idea resale.

In our model, innovation generates a payo that depends partly on the use of
the idea in production, and partly on the value the idea yields when it is sold. Idea
sales occur in bilateral meetings and our model relates to models in which agents
search for a production partner after one has invested, such as Burdett and Coles
(2001), Mailath, Samuelson, and Shaked (2000) and Nöldeke and Samuelson (2015).
In these models, payo s in a match depend on partners’ investments and this a ects
investment incentives.

In the model, owners of ideas use them to compete in the product market and
thus the ßow value of an idea depends on how many others use it. Manea (2021) also
assumes ideas are sold in bilateral meetings and uses bargaining to allocate rents, but
in his model the ßow value of an idea to its user does not depend on how many others
have it or use it.

The paper is organized as follows. Section 2 lays out the model and Section 3
characterizes the equilibrium. Section 4 conducts welfare analysis, and Section 5 Þts
the model to data for the U.S. automobile and personal computer industries. Section
6 analyzes a limiting version of our model that relates to Boldrin and Levine (2008)
and Quah (2002), and Section 7 concludes. The proofs of model propositions and
robustness checks of empirical studies are in the Appendix.
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2 Model

Consider a competitive market in continuous time. There is a measure of potential
producers. At date 0, a measure 0 who we call “innovators,” each invest an amount

in an innovation that results in the ability to produce one unit of a new good
each period at zero cost. They then immediately become producers. After that, the
innovation spreads to others. At any date 0 the measure of producers is and
the remaining agents are “outsiders.” We normalize outsiders’ earnings to zero
and denote as an outsider’s option value at date for entering the industry in the
future.

The total output of the homogeneous good is , and the product price is

= (1)

where is a market size parameter and 0 is the inverse demand elasticity.
Two types of producers.– All producers have the idea and all are equally pro-

ductive, but some are “innovators” while the others are “imitators.” An innovator
has paid a direct cost to invent the idea. An imitator who at date has copied a
producer’s idea, has paid a fee equal to

= (2)

where is the value of becoming an imitator at The parameter [0 1] is an
idea seller’s bargaining share.2

2.1 Di usion process

Di usion occurs through random pairwise meetings between the producers and the
outsiders in which outsiders learn and imitate the innovation. The matching

function is assumed to be quadratic, and each meeting results in a new producer. An
outsider can also enter as an innovator after date 0, but Propositions 1 and 2 will
show that no one will want to do so. Thus, for 0 meetings are the only way
that agents will in equilibrium become producers, and the number of producers then
evolves as

= ( ) (3)

2Hopenhayn and Shi (2020) show that the bargaining share could result from an enforcement
threat game, in which the Þrms split the imitator’s surplus from idea transfer. This bargaining
protocol is di erent from Nash bargaining, where the innovator and imitator would split the joint
surplus from the idea transfer. This alternative bargaining is easier to enforce than a Nash
bargain because the courts need to know only and not the imitators’ outside options. Section 6
will show that coincides with the Nash bargaining share in a limiting version of the model where

= 0 as .
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where 0 is a parameter. The solution to (3) is

=
+

0
1

(4)

Matching function speciÞcation.–The matching function (3) features increasing
returns to scale. However, the assumption on returns to scale is inessential for our
analysis.3 The labor search literature often assumes a Cobb-Douglas matching func-
tion:

= ( )1

where 0 1 However, the Cobb-Douglas formulation does not appear to Þt data
better, and more importantly, it does not have a closed-form solution for the time
path of . Therefore the logistic formulation has analytical advantages.
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Fig. 1. Diffusion Models: Fitting Time Paths of Firm Numbers

3To show why, let us generalize Eq. (3) to

= ˆ ( ) where ˆ = (5)

The solution of then becomes

=
ˆ

ˆ +
0

1
=

1

1 +
0

1
(6)

By rescaling the di usion parameter with a constant 1 , the matching function features increasing
returns to scale if 1, constant returns if = 1, and decreasing returns if 1. We shall assume
that = 0, but our analysis and Þndings would hold for any because a time series study takes
and as given; the value of plays no role except in a counterfactual that would involve changing
the value of .
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Figure 1 shows that the estimated logistic di usion model (cf. Eq. (4)) matches
the time paths of Þrm numbers well for U.S. automobile and PC industries. Compar-
ing with the symmetric Cobb-Douglas counterpart (i.e., = 0 5), logistic di usion
shows a more pronounced inßection point and Þts better for the PC industry, as
shown in the top panels. In the bottom panels, we compare logistic di usion with the
best Þtting Cobb-Douglas formulation for each industry without restricting . The
former still Þts better for the PC industry.4

2.2 Two regimes

We shall analyze two regimes that di er in how much revenue innovators get from
idea sales.

Regime 1: Imitators cannot resell ideas

In Regime 1, the original innovators receive all of their ideas’ sale revenues; at each
date they are divided among the innovators. While an imitator may have learned the
innovation from any incumbent producer, he has to pay the idea’s original innovator.
This type of idea transfer often occurs under franchising or patents that do not allow
sublicensing.

Since an imitator cannot resell the innovation, his only revenue comes from selling
the good, and his value satisÞes

= + (7)

where is the interest rate.
An innovator receives revenues from selling both the good and the idea. We

will prove that at equilibrium, innovators only enter at date 0. Accordingly, the
number of ideas sold at is ( ) and the total date- revenue from these
sales, ( ) , is divided among the 0 innovators. Therefore, the date-
value of an innovator satisÞes

= +
( )

0
+ (8)

An outsider’s hazard rate for meeting a producer is ( ) = Therefore,
his lifetime value at date , , satisÞes

= [(1 ) ] + (9)

The free entry condition requires that = for = 0.

4The Cobb-Douglas di usion curves plotted in Fig. 1 are ones that minimize the sum of the
squares of the prediction errors. The data Þtting suggests that Cobb-Douglas curves Þt slightly
better in the auto case ( 2 = 0 985 when = 0 5 and 2 = 0 987 when = 0 55) than the
logistic curve ( 2 = 0 975), but the logistic curve Þts better in the PC case ( 2 = 0 981) than the
Cobb-Douglas curves ( 2 = 0 936 when = 0 5 and 2 = 0 969 when = 0 90).
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Regime 2: Imitators can resell ideas

In Regime 2, imitators do get paid for ideas that they resell. An incoming idea buyer
pays the agent from whom he copies the idea. This may capture the cases of patents
that allow sublicensing and also the spread of non-patented know-how.

Any producer (innovator or imitator) that sells an idea can keep the proceeds.
Then all producers now have the same value = . Again, we will prove that at
equilibrium, innovators only enter at date 0. The revenue from a single idea sale is

, and total revenue from idea sales, ( ) , is now shared by all the
producers. Therefore, now satisÞes

= + ( ) + (10)

The value of an outsider becomes

= ((1 ) ) + (11)

Motivation for two regimes.–In a frictionless world, innovators would prefer Regime
2, as it does not require them to track the idea they sold and enforce the no-reselling
constraint on imitators. But in Regime 2 an imitator needs to pay for an idea with a
higher fee that incorporates his future revenues from reselling. This can be challenging
for new entrants in an emerging industry who often face tight Þnancial constraints.
Regime 1 requires a smaller up-front payment by the buyer of the idea each time
the idea is transferred. Of course, the use of no-reselling constraint relates to its
enforceability; Regime 1 would better reßect patented innovations than non-patented
ones.

In our model, imitators’ ability to resell ideas or not resell ideas does not a ect the
meeting process, but it a ects the incentive to innovate, and it thus a ects market
allocation and welfare, as will be shown in the following analysis.

3 Characterization

In this section, we characterize equilibrium under each regime.

3.1 Market equilibrium

We Þrst solve the equilibrium for each regime. We Þnd that in either Regime 1 or 2,
innovators only enter at date 0. Accordingly, the time path of Þrm numbers is given
by Eq. (4).

In Regime 1, if a measure-0 outsider were to deviate from the equilibrium and
enter as an innovator at date 0, its value at date , denoted as , would
satisfy

= +
( )

+ (12)
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This di ers from in Eq. (8) because at any date , this new entrant always
has a chance 1 (where is the number of incumbent Þrms at his entry date )
to share the industry’s total idea sale revenues from new imitators. Because Þrm
numbers continue to rise over time, it does not pay an innovator to enter at a later
stage.

Solving the equilibrium for Regime 1, we derive the full dynamic paths of , ,
, and pin down 0 (See Appendix A.1 for details). The results yield Proposition

1. To distinguish Regimes 1 and 2, we will use the superscripts I and II.

Proposition 1 (A) In Regime 1, innovators enter only at date 0. (B) The number
of innovators I

0 solves

1

0

Z

0

µ

0
+ (1 ) 1

¶
1

| {z }
=

0 0

(13)

where is given by Eq. (4).

Proof. See Appendix A.1.
In Regime 2, if any innovator were to enter the industry after date 0, he would

share the same value as an incumbent, be it an innovator or an imitator. The free
entry condition requires that = for = 0 and one can verify at equilibrium

for any 0 so that even in Regime 2, innovators enter only at date 0.
Solving the equilibrium for Regime 2, we derive the full dynamic paths of , and
pin down 0 (See Appendix A.2 for details). The results yield Proposition 2.

Proposition 2 (A) In Regime 2, innovators enter only at date 0. (B) The number
of innovators II

0 solves

1

0

Z

0

Ãµ

0

¶ µ ¶1
1

!
1

| {z }

=

0 0

(14)

where is given by Eq. (4).

Proof. See Appendix A.2.
The isoelastic form for demand in Eq. (1) implies that 0 0 in either regime,

otherwise 0 would be inÞnite. But additional conditions are needed for 0 to be
strictly below :

Proposition 3 In either regime, the entry number of innovators is below (i.e.,
I

0 and II

0 ) if and only if the following condition holds:

( + )

( + )
(15)
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Proof. See Appendix A.3.
Assuming condition (15) holds, a comparison of Eqs. (13) and (14) yields the

Þndings stated in Propositions 4 and 5:

Proposition 4

(A) I

0 and II

0

½
increase with and ,
decrease with and .

(16)

(B) All parameters being equal across the two regimes,

I

0
II

0

=

½
1 for {0 1}

1 for (0 1)
(17)

Proof. See Appendix A.4.
Equation (16) follows because a larger market size or a higher compensation

share encourages innovation, while a bigger innovation cost or a higher interest
rate does the opposite. The Þrst line of Eq. (17) holds because the innovators who
enter at date 0 either receive no revenue from selling ideas at all (if = 0) or get all
the revenues (if = 1), and in either scenario whether imitators can or cannot resell
the innovation would not matter. For (0 1), however, innovators’ revenues get
discounted if they collect the payo of ideas indirectly, so fewer enter in Regime 2
than in Regime 1. Because the two regimes share the same di usion process, industry
output is higher for all under Regime 1 due to its larger entry of innovators at date
0.

Next, we obtain additional insights into how the di usion rate a ects innovation.

Proposition 5 The e ect of the di usion rate on innovation I

0 and II

0 hinges on
the values of and . Particularly,

• For inelastic demand 1,

I

0
II

0 decrease with given that 1

• For unit elastic demand = 1,

I

0
II

0 decrease with when = 1
I

0
II

0 do not vary with when = = 1

• For elastic demand 1,

I

0

decreases with if 0 1

I
0

(1 )+
1

increases with if 1 +
I

0 (1 ) 0

and

II

0

(
decreases with if 0 +

II

0 (1 ) 1

increases with if 1
³

II

0

´
(1 ) +
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Proof. See Appendix A.5.
The Þndings of Proposition 5 are intuitive. There are two channels through which

di usion a ects innovation. One is the negative price e ect, captured by — the
faster the di usion, the lower the revenue from selling the good. Another is the
positive idea-selling e ect, captured by — the faster the di usion, the more idea-
selling revenue for the innovators. When demand is inelastic ( 1), a faster inßow
of imitators would reduce the industry revenue stream, so the price e ect dominates
and the innovators’ value at date 0 would drop even with the highest bargaining
share ( = 1). This is also true for the unit demand elasticity case when = 1.
When demand is elastic ( 1), a faster inßow of imitators would increase the
industry revenue stream. If is su ciently high compared with , the idea-selling
e ect dominates, which raises the incentive to innovate. Otherwise, the price e ect
dominates which dampens innovation.

3.2 Market equilibrium: Illustration and applications

The Þndings of our model help explain some industry observations and suggest policy
impacts.

Intellectual property rights The protection of intellectual property rights raises
innovation: Proposition 4 shows that more innovators enter in Regime 1 than in
Regime 2 and in each regime, the higher the compensation share , the more inno-
vators enter.

The Þndings can be visualized using an explicit example. Consider a unit demand
elasticity case where = 1. We normalize = 1 and assume = . Equations (13)
and (14) can then be simpliÞed as

2 I

0

(1 + )
= (18)

1 II

0

II

0

(2 )( II

0
)

µ³
1
II

0

´2 ³
1
II

0

´ ¶
1

= (19)

Figure 2 plots the solutions of I

0 and II

0 . The solid lines stand for I

0 and the
dashed lines stand for II

0 . Cases with di erent values of are plotted in di erent
colors. The Þgure shows that both I

0 and II

0 increase in and but decrease in .
It also shows that, I

0 =
II

0 for {0 1}, and that I

0
II

0 for (0 1) Moreover,
with the assumed parameter values, condition (15) stated in Proposition 3 can be
simpliÞed as 2

1+
, which needs to hold for I

0 and II

0 to have interior solutions
( = 1) as illustrated by the Þgure.
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Fig. 2. Entry of Innovators: Model Implications

Restricting entry of imitators Proposition 5 sheds light on the impact of imita-
tion on innovations, which has important bearings on industry policies. For example,
one may consider employee spin-o s as imitators, who copy their previous employ-
ers’ ideas but do not provide su cient compensation.5 In this setting, the di usion
parameter in our model may reßect the enforcement of non-compete contracts —
the stricter the enforcement, the lower the .6 Klepper (2010), Samila and Sorenson
(2011) and Cabral, Wang, and Xu (2018) Þnd that employee spin-o s lead to indus-
try clusters and that a ban on non-compete contracts is an important contributing
factor. According to Saxenian (1994), Gilson (1999) and Franco and Mitchell (2008),
because California bans non-compete contracts while Massachusetts enforces them,
Silicon Valley overtook Massachusetts’ Route 128 in developing high-tech industry.

Indeed, our model shows a mechanism that produces such an overtaking pattern.
Suppose that Route 128 and Silicon Valley each specialize in some high-tech sectors,
and the two locations face the same environment (i.e., same and ) except
that, because California bans non-compete contracts, is higher than in Massa-
chusetts where non-competes are enforced. Therefore, Route 128 would o er higher

5While our model does not include labor inputs in production, one may think of employees as
people who meet innovators and learn about their innovation. For example, they could work in the
same company but do not have to directly produce the new product.

6Non-compete contracts require that employees who leave incumbent Þrms may not conduct
business to compete against their previous employers for a period of time. Among others, Shi (2022)
analyzes the e ects of non-compete contracts which in her model restrict the mobility of managers
and reduce welfare. In practice, the enforcement of non-compete contracts varies substantially across
the 50 U.S. states (See Bishara, 2011).
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incentives to innovators that result in a higher initial entry rate of Þrms (i.e., a higher

0) than Silicon Valley. Later on, Silicon Valley’s higher imitation rate would lead to
its overtaking Route 128.7

Fig. 3. Industry Overtaking: Data and Model

The left and right panels of Fig. 3 show the data from Saxenian (1994) and our
model simulation, respectively. In the simulation, we assume = 1 and = 0 in
both locations.8 Equations (13) and (14) then imply that 0 = I

0 = II

0 =
( + )

,

which together with (4) yields

=
+ ( + ) 1

We assume = 3, = 1000, = 0 05, and plot in two locations: One with a
high di usion rate ( = 0 09), the other with a low one ( = 0 06). As a result,
the location with the lower has more Þrms early on, but it gets overtaken by the
other location after about ten years. In the following welfare analysis, we will show
that a higher also yields higher welfare in this simulation (cf. Proposition 10).

7Enforcing non-compete contracts may also increase the bargaining share of innovators. If that
happens, the entry of initial innovators will be larger in the enforcing location and the timing of
overtaking will be postponed compared with the case where both locations have the same value of

.
8One could think in one location, non-compete contracts are banned so innovators do not receive

any compensation from their employee spin-o s. In another location, non-compete contracts are
strictly enforced and the bilateral negotiation to buy out those contracts is too costly for the parties
involved, so that spin-o entrants are largely blocked. As a result, both locations have = 0 at
equilibrium but the di usion speed di ers.
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4 Welfare analysis

We now study the welfare implications of the model. Consumers’ utility from con-
suming output is the integral under the demand curve. For (0 1), aggregate
utility at output is

( ) =

Z

0

=
1

1 (20)

For 1 the above integral is inÞnite; to ensure consumer surplus is Þnite, we
put a maximum, , on the willingness to pay. Let ( ) = min

¡ ¢

and deÞne aggregate utility as ( ) =
R
0

( ) =
³R

0
+
R ´

where

¿ . Accordingly, for = 1 we have

( ) = (ln + 1 ln ) (21)

and for 1, we have

( ) =
1

1 +
1

1 (22)

4.1 Planner’s problem

The social planner would like to maximize social welfare 0 given by

0 =

Z

0

( ) 0 (23)

where satisÞes Eq. (4).

Proposition 6 (A) It is socially optimal to innovate only at date 0. (B) The socially
optimal number of innovators 0 solves

Z

0

( + )

µ

0

¶2

| {z }
=

marginal social return to 0

(24)

(C) The socially optimal entry number of innovators is an interior solution (i.e.,

0 ) if and only if the following condition holds:

( + )
(25)

Proof. See Appendix A.6.
The results of Proposition 6 are intuitive. As of date 0, the social return to

innovation is

=

Z
( ) ( )
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and one can verify that the marginal social return is strictly decreasing in
. So if 0 is chosen so that 0 0 = at date 0, thereafter for

any 0. Hence, it is socially optimal to innovate only at date 0. And the condition

0 0 = yields Eq. (24). Finally, the social welfare given by Eq. (23) is strictly
concave in 0, so for 0 to hold, one needs

0

0
|
0= 0

which yields condition (25). This condition is satisÞed whenever condition (15) holds.
In what follows we shall assume that condition (25) always holds.

Denote the socially optimal welfare by 0 . We have the following comparative-
static results.

Proposition 7 All else being equal,

(A) 0

increases with
decreases with and

decreases with if 1 0

0

.
(26)

(B) 0

½
increases with and ,
decreases with and .

(27)

Proof. See Appendix A.7.
Thus 0 and 0 both increase in market size but decrease in innovation cost

and interest rate . Moreover, 0 decreases with the di usion rate if the demand is
not too elastic, while 0 always increases with .

4.2 Three policy instruments

For a given level of , we now show that a planner can achieve 0 by choosing the
bargaining share of idea-sellers, , or by choosing an innovation subsidy (or tax) .
And if the planner could raise by certain policies, we show that doing so would be
desirable.

Optimal bargaining share.– Denote the socially optimal bargaining shares for
Regimes 1 and 2 by I and II . A comparison of Eqs. (13), (14) and (24) yields
the following result:

Proposition 8
0 I II 1 (28)
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Proof. See Appendix A.8.
The Þndings of (28) hold because if I = II = 0, no innovator would internalize

knowledge spillovers they create for imitators, so fewer innovators enter than the
social optimum. On the other hand, if I = II = 1, innovators would not fully
internalize the congestion externality they impose on one another, so more innovators
enter than the social optimum. The congestion arises because an innovator’s meeting
rate = ( ) decreases with while an imitators’ meeting rate =

increases with .9

Optimal innovation subsidy or tax.–Whenever 6= in each regime, the planner
can use a subsidy (or a tax if the subsidy is negative) to achieve the social optimum.
Denote the socially optimal subsidy for Regimes 1 and 2 by I and II . We obtain
the following result:

Proposition 9 Social optimum implies I II for (0 1), I = II 0 for
= 0, and I = II 0 for = 1

Proof. See Appendix A.9.
The intuition for Proposition 9 is as follows. Whenever 6= in each regime,

the number of innovators 0 di ers from the social optimum 0, in which case o ering
an innovation subsidy (i.e., 0 whenever ) or a tax (i.e., 0 whenever

) to adjust the innovation cost would help restore the social optimum. Recall
that when {0 1}, Regimes 1 and 2 coincide. When = 0, too fewer innovators
enter than the social optimum, so both regimes would need a positive subsidy to
reduce to achieve 0. When = 1, a negative subsidy (i.e., a tax) is needed.
Moreover, for (0 1) according to Proposition 4(B), if a given pair of and
( I ) lead to the social optimum 0 in Regime 1, the same parameter values would
result in a II

0 0 in Regime 2. Therefore, a higher subsidy (or a smaller tax) II

is needed for adjusting to achieve 0 in Regime 2 given that II

0 decreases with as
shown by Proposition 4(A).

Optimal di usion rate.–Suppose that incumbents are not compensated by imita-
tors for spreading ideas, so that = 0. From the social welfare point of view, should
the planner reduce the di usion speed (e.g., by restricting entry of imitators) to
enhance incentives for innovation?

9Assuming a Cobb-Douglas matching function, Hopenhayn and Shi (2020) show that the socially
optimal compensation share for innovators should be the innovators’ share in the matching function,
as in Hosios (1990). However, the same condition would not mechanically apply to our case where
we assume a quadratic matching function and solve for the full dynamic path in contrast to a steady
state equilibrium. In fact, it is easy to see when is Þnite, the parallel to Hosios’ condition does not
hold. In the quadratic matching function, the shares of and are equal, which also happens
in the Cobb-Douglas case when = 1 2. Yet as we show in this section, the socially optimal
does not have to be 1/2, and it varies by regime and with other parameters in the model.
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Note that if = 0, Proposition 5 shows that the entry of innovators decreases
with for any 0. Therefore, a policy that reduces the di usion rate would
boost the entry of innovators. Such policy, however, does not necessarily increase
welfare. In fact, we prove the following result for the unit demand elasticity case
(i.e., = 1).

Proposition 10 For = 0 and = 1, social welfare always increases with the
di usion rate for Regimes 1 and 2.

Proof. See Appendix A.10.
Recall that Regimes 1 and 2 coincide when = 0 as shown in Proposition 4. Note

that
0
=

0

0

0
+

0
(29)

From Proposition 8, we know that = 0 is below the socially optimal level , so
0

0
0. Proposition 5 shows that 0 0 for = 0, so 0

0

0 0. However,

holding 0 Þxed, 0 0. Ultimately, Proposition 10 Þnds that the positive e ect

of 0 (i.e., gains from knowledge spillovers) dominates the negative e ect of 0

0

0

(i.e., disincentives to innovation). This Þnding suggests that in the numerical example
above (cf. Fig. 3), a higher value of not only helps Silicon Valley overtake Route 128
in industry size, but also yields higher social welfare. In the simulation exercises in
Section 4.3 and empirical analysis in Section 5, we Þnd that the result of Proposition
10 actually holds more generally for other values of and .

4.3 Welfare analysis: Illustration and applications

We illustrate our welfare analysis with the following examples and applications.

Optimal compensation for idea sellers One can solve for (0 1) that yields
the social optimum. Consider an explicit example used in the above analysis, where
= 1 = 1 and = . In this example, Eq. (24) simpliÞes to

(1 0)
2

1

0

1 ln 1

0

= (30)

In Regime 1 where imitators cannot resell the innovation, Eqs. (18) and (30) imply
that

I =
2(1 0 + 0 ln 0)

(1 0)
2 1 (31)

Alternatively, in Regime 2 where imitators can resell ideas, Eqs. (19) and (30) imply
that II solves

1

0

(2 )(1
0
)

µ³
1

0

´2 ³
1

0

´ ¶
1

=
1 0

1

0

1 ln 1

0

(32)
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Fig. 4. Properties of the Social Optimum

Figure 4 illustrates this example. Assuming ( ) = 0 3, Fig. 4A plots the
relation between 0 and 0, given by Eq. (23).10 The result shows that welfare
maximizes at 0 = 0 22. Note that Fig. 4A has the planner controlling 0 directly, so

plays no role. Figure 4B shows that this welfare maximum can be implemented via
market equilibrium by either setting I = 0 47 under Regime 1 or setting II = 0 57
under Regime 2. Figures 4C and 4D extend the results to the full domain of ( )
where 0 has an interior solution. Figure 4C plots the relation between 0 and ( )
given by Eq. (30), and Fig. 4D traces out the relation between 0 and that satisÞes
Eqs. (31) or (32). The negative relation between two endogenous variables, 0 and

, is induced by changes in ( ) – as ( ) rises, so does 0 but falls.11 For
a given value of 0 (or the corresponding ( )), the value of I is always smaller
than II .

Optimal innovation subsidy or tax Alternatively, if the planner does not control
, he could use an innovation subsidy if is below or an innovation tax if .

Consider again the case where = 1 = 1 and = . In Fig. 5A, we plot Eq.
(30) using a black solid line and overlay it on Fig. 2 introduced in Section 3.2. Figure

10Equations (21) and (23) show that and are just scaling parameters and they do not a ect
the maximization of 0, so without loss of generality we set = 1 and = 0 0001 for plotting Figs.
4A and 4B.

11Intuitively, a lower or a higher leads to a higher
0

at the social optimum, and because such
conditions also encourage entry of innovators at market equilibrium and exacerbate the congestion
externality, they would require a lower to achieve 0 (see Section 5.3.1 for more discussion of the
comparative statics for ).
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5A shows that for a given level of , 0 always exceeds the market equilibrium level
(i.e., I

0 or II

0 ) when = 0, but falls short when = 1. Moreover, for any value of
(0 1), the socially optimal entry 0 can be achieved by adding an appropriate

subsidy or tax to In the Þgure, the di erence between a market equilibrium path
(associated with a particular and a regime) and the socially optimal path indicates
the amount of adjustment to (i.e.,

( I )
or

( II )
) needed to achieve each

socially optimal level of 0. Figure 5B plots the subsidy (scaled by the innovation
cost ) needed to achieve the social optimum. The Þgure shows that the scaled
subsidies, I and II , both decrease in and , and can turn negative (i.e.,
become taxes) if or becomes su ciently large. Moreover, I = II 0 (i.e., a
subsidy) for = 0, I = II 0 (i.e., a tax) for = 1, and I II for 0 1.

Fig. 5. Socially Optimal Subsidy or Tax

Optimal di usion rate Our model also sheds light on di usion policies. Propo-
sition 10 shows that from the social welfare point of view, the planner may not want
to slow down the di usion speed (e.g., by restricting entry of imitators) even when
it could enhance incentives for innovation.

Figure 6 extends the discussion to other values of for the unit elastic demand
case (i.e., = 1).12 The Þgure shows that in both Regimes 1 and 2, for any in
the unit interval, a lower di usion rate raises the entry of innovators 0 but always
lowers social welfare 0. In fact, one can prove the result formally for Regime 1.

12For illustration, we assume = 1, ( ) = 0 3, = 0 05 in the simulation, and we compare a
high ( = 0 5) case versus a low ( = 0 25) case.
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Proposition 11 For = 1 and for any [0 1], social welfare always increases
with the di usion rate in Regime 1.

Proof. See Appendix A.11.

Fig. 6. Effects of the Diffusion Rate

This exercise suggests that the planner may not want to slow down di usion by
lowering even when I

0 and II

0 are below Rather, the planner should address the
compensation to innovators (i.e., ) directly. This Þnding highlights the importance of
technology di usion to welfare and lends support to public policies that accommodate
di usion. In Section 5, we carry the analysis to empirical studies on the U.S. auto
and PC industries where demands are price elastic (i.e., 1) and show this Þnding
continues to hold.13

5 Empirical applications

In this section, we apply our model to data. We consider two historically important
industries: automobile and personal computer, where idea di usion played an impor-
tant role in the industries’ development.14 Using model calibration and counterfactual
exercises, we evaluate and quantify our theoretical predictions.

13Note that the Þnding does not rule out the possibility that policymakers can exploit the welfare
gain of temporarily restricting . For example, policymakers could promise to restrict initially
to achieve the socially optimal entry of innovators , and then free up the limitation. However,
such a policy is time-inconsistent and would be futile if market participants anticipate that ex post
policymakers cannot commit to that promise (Kydland and Prescott, 1977). Presumably policy
must apply more broadly, not just to one instance, but to future products and future instances of .

14E.g., Klepper (2010) documents how the spawning of employee spin-o s and entry by Þrms in
related industries drove the development of the automobile and the semiconductor industries.
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5.1 Parameter estimation

We Þrst estimate the model parameters using auto and PC industry data. The data
comes from the following sources:

Auto.– Smith (1970) lists every make of passenger cars produced commercially
in the United States from 1895-1969. Smith’s list of car makes is used to derive the
number of auto Þrms each year. Thomas (1977) provides annual data of average car
price and output from 1900-1929.

PC.– Firm numbers are from Stavins (1995) and the Thomas Register of Ameri-
can Manufacturers, which include desktop and portable computers. Price and quan-
tity information is from the Information Technology Industry Data Book.

In addition, Williamson (2020) provides annual data of U.S. population, real GDP,
and the GDP deßator.

5.1.1 Auto Industry

The U.S. automobile industry started in 1890s and grew from a small infant industry
to a major sector of the economy in a few decades. Starting with 3 Þrms in 1895, the
number of auto producers exceeded 200 around 1910. A shakeout then followed when
a major process innovation, the assembly line, was introduced in the early 1910s. As
a result, the number of Þrms declined sharply while the industry output expanded
tremendously. Eventually, only 24 Þrms survived into 1930s. Figure 7 plots the
number of Þrms and output per Þrm in the U.S. auto industry from 1895-1929.

Our model describes the auto industry development well for the pre-shakeout
period (1895-1910). As shown in Fig. 7, during that period, the time path of Þrm
numbers followed an -shaped curve and the average output per Þrm stayed ßat
which reßects Þrms’ production capacity constraint. To calibrate the model, we focus
on the pre-shakeout era. We assume the shakeout to be an unexpected shock in the
benchmark analysis, and we then extend the model to incorporate the shakeout as
an anticipated shock in Section 5.4.2.

0
5
0

1
0
0

1
5
0

2
0
0

1 8 9 0 1 9 0 0 1 9 1 0 1 9 2 0 1 9 3 0

F i r m  N u m b e r s

0
5
0

1
0

0
1

5
0

2
0

0

1 8 9 0 1 9 0 0 1 9 1 0 1 9 2 0 1 9 3 0

O u t p u t  P e r  F i r m  ( 1 , 0 0 0 )

Fig. 7. Auto Firm Numbers and Output Per Firm
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Di usion estimation We Þrst use the data of Þrm numbers in the pre-shakeout
period, 1895-1910, to estimate the di usion parameters. In doing so, we rewrite Eq.
(4) to estimate the di usion process of as follows:

ln = + (33)

where = ln 0

0
and = 15

We assume that the shakeout started after almost all the potential Þrms had
entered the industry. Accordingly, we set = 210 and run the regression model.16

The result shows that

ln = 4 13
(0 26)

+ 0 53
(0 03)

(34)

and the standard errors are reported in the parentheses. The estimates of and
are both statistically signiÞcant at 1% level (noted by three stars), and adjusted
2 = 0 96 The Þt of estimation is shown in Fig. 8. Based on the estimates of

di usion parameters, we calibrate = 0 53 and 0 = 3 31 (i.e., ln 0

0
= 4 13).

For robustness checks, we also estimated the di usion process using the matching
function (3) which allows di erencing the data. The regression results, reported in
Appendix B.1, are consistent with the estimates above.

Demand estimation We then estimate the auto demand function using annual
data of real auto prices (in 2012 price) and industry output from 1900—1929.
Equation (1) suggests a simple log-log demand function:

ln( ) = ln( )

To address potential endogeneity of the price variable, we use the output per
Þrm (lagged by a year) as an instrumental variable to estimate the demand elasticity
parameter in a two-stage least-squares regression. Output per Þrm, while assumed
Þxed in our theory, did grow over the long term in data due to technological progress.
As a result, it can serve as a valid supply shifter to trace out the demand curve.

The Þrst-stage regression result (adj. 2 = 0 87) is given by

ln( ) = 11 37
(0 14)

0 24
(0 02)

× ln(output per Þrm) 1

and the second-stage regression result ( 2 = 0 82) is

ln( ) = 47 05
(2 75)

3 61
(0 29)

× ln( ) (35)

All the estimates are statistically signiÞcant at 1% level (noted by three stars). The
Þt of estimation is shown in Fig. 8.

15Note that Eq. (4) implies =
0

1
which leads to Eq. (33).

16We try an alternative assumption for in Section 5.4.1 as a robustness check.
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Fig. 8. Auto Diffusion and Demand Estimates

The IV estimation gives = 3 61 and = 47 05. Because our model speciÞes an
inverse demand function (1) that implies

ln =
1
ln ˜ 1

ln

this yields that = 0 28 (i.e., 1 = = 3 61) and ˜ = 45 737 (i.e., 1 ln ˜ = 47 05).17

For robustness checks, we also re-ran the IV regressions by controlling changes
of population and per capita income over time, and the results are very similar (see
Appendix B.2). Cabral, Wang and Xu (2018) estimated the auto demand function
for the same sample period. They used a di erent instrumental variable, the share
of spin-o Þrms in the auto industry. The idea is that the founders of spin-o Þrms
are more experienced than de novo entrants, so spin-o Þrms tend to perform better
(Klepper, 2010). They show that their instrument variable performs well and the
estimated demand elasticity = 3 39, which is very close to ours.

5.1.2 PC industry

The personal computer industry was developed 80 years later than the automobile
industry, but the industry evolution was not much di erent. Starting with two Þrms
in 1975, the number of PC producers exceeded 430 in 1992. A shakeout then started
when the number of Þrms fell sharply while the industry output continued to expand.
Figure 9 plots the number of Þrms and output per Þrm in U.S. PC industry from
1975-1999. Like in the auto industry case, our model describes the pre-shakeout
period (1975-1992) of the PC industry well. As shown in Fig. 9, during that period,
the time path of Þrm numbers followed an -shaped curve and the average output
per Þrm stayed ßat.

17In the model, we normalize a Þrm’s output to 1, so = and the inverse demand function
is = . In the empirical analysis, we denote a Þrm’s output by , so = and the

corresponding inverse demand function becomes = ˜ .
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Fig. 9. PC Firm Numbers and Output Per Firm

Di usion estimation We Þrst use the data of Þrm numbers in the pre-shakeout
period, 1975-1992, to estimate the di usion parameters. We assume the shakeout
started after almost all the potential PC Þrms had entered the industry. Accordingly,
we set = 435 and run the following regression model (36).18 The result shows that

ln = 5 49
(0 29)

+ 0 58
(0 03)

(36)

with the standard errors reported in the parentheses. All the coe cient estimates
are statistically signiÞcant at 1% level, and adjusted 2 = 0 96 The Þt of estimation
is shown in Fig. 10. Based on the estimates of di usion parameters, we calibrate

= 0 58 and 0 = 1 78 (i.e., ln 0

0
= 5 49).

For robustness checks, we also estimated the di usion process using the matching
function (3) which allows di erencing the data. The regression results, reported in
Appendix B.3, are consistent with the estimates above.

Demand estimation We then estimate the PC demand function using annual
data of real PC prices (in 2012 price) and industry output from 1975-1992. As
before, in order to address potential endogeneity of the price variable, we use average
output per Þrm (lagged by a year) as an instrumental variable to estimate the demand
elasticity .

The Þrst-stage regression result (adj. 2 = 0 23) is given by

ln( ) = 9 62
(0 50)

0 12
(0 05)

× ln(output per Þrm) 1

and the second-stage regression result ( 2 = 0 94) is

ln( ) = 137 15
(12 52)

14 58
(1 49)

× ln( ) (37)

18We try an alternative assumption for in Section 5.4.1 as a robustness check.
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Standard errors are reported in the parentheses, with two and three stars indicating
statistical signiÞcance at 5% and 1% levels, respectively. The Þt of estimation is
shown in Fig. 10.

The IV estimation gives = 14 58 and = 137 15. This yields = 0 07 (i.e.,
1 = = 14 58) and ˜ = 12 170 (i.e., 1 ln ˜ = = 137 15). For robustness checks,
we also re-ran the IV regressions by controlling changes of population and per capita
income over time, and the results are very similar (see Appendix B.4).

Fig. 10. PC Diffusion and Demand Estimates

5.2 Model calibration

To calibrate the model, we Þrst pick values for , and 0 from the di usion
estimation for the auto and the PC industries, respectively. We then pick values
for and from the demand estimation. Note that in the model, a Þrm’s output
is normalized to 1 per period. While this does not a ect the theoretical analysis,
we account for a Þrm’s production size in the empirical applications. In doing so,
we denote a Þrm’s output and the industry output, so = at date .
Accordingly, we revise Eqs. (13), (14) and (24) as follows by replacing with ˜ 1

(where ˜ and are from the demand function estimation above):

Regime 1:
1

0

Z

0

µ

0
+ (1 ) 1

¶
˜ 1 1 = ; (38)

Regime 2:
1

0

Z

0

Ãµ

0

¶ µ ¶1
1

!
˜ 1 1 = ; (39)

Social optimum:

Z

0

( + )

µ

0

¶2
˜ 1 = . (40)

In the auto case, a Þrm on average produced less than 1,000 cars a year up to
1910, and we calibrate = 900 based on output per Þrm in 1910 and ˜ 1 = 61 28
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(million). In the PC case, using output per Þrm in 1992, we calibrate = 27 500 and
˜ 1 = 163 63 (million).

We then set = 0 05. The two remaining parameters are and Because we have
no direct information about them, we assume = 0 to pin down in the benchmark
analysis. Since Regimes 1 and 2 coincide when = 0, one can use either Eq. (38)
or Eq. (39) to solve for . Table 1 summarizes the benchmark parameter values
calibrated for the auto and the PC industries. Because the values of , and are
chosen by assumption, we will consider alternative values for them in Section 5.4 for
robustness checks.

Table 1. Model Parameterization

0
˜ 1

Auto 0 0 05 210 0 53 3 31 0 28 61 28
PC 0 0 05 435 0 58 1 78 0 07 163 63

Figure 11 plots the calibrated model dynamics for the auto industry. The number
of Þrms grows along a logistic curve. Meanwhile, decreases while increases
over time.19 The initial di erence 0 0 equals the innovation cost Auto = $173 73
million (in 2012 price). By 1910, the value of a producer comes down to $274
million and the value of a future imitator rises to $250 million. Because almost all
the potential entrants have entered the industry by then, the total value of Þrms

1910 1910 is very close to the present value of the industry revenue 1910 1910 .
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Fig. 11. Model Calibration: Auto

19Because we assume = 0 in the benchmark calibration, Regimes 1 and 2 coincide. The model-
implied time paths of and are consistent with the proof in Appendix A.1, which shows that
decreases in when = 0 and increases in when 1. More broadly, for (0 1), Regimes 1
and 2 do not coincide and the time paths of and may look di erently between the two regimes.
For example, with certain parameter values, in Regime 1 may initially increase and later decrease
in , but in Regime 2 always decreases in . Regardless, no innovator would enter after date 0 in
either regime because the entry value of an innovator minus his option value of waiting to imitate
always decreases in , as shown in the proofs in Appendix A.1 and A.2.
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Figure 12 plots the calibration results for the PC industry. Again, the number of
Þrms grows along a logistic curve, and decreases while increases over time.
The initial di erence 0 0 equals the innovation cost PC = $ 986.87 million (in
2012 price). By 1992, the value of a producer comes down to $2 14 billion and
the value of a future imitator rises to $1 97 billion. Because almost all the potential
entrants have entered the industry by then, the total value of Þrms 1992 1992 is very
close to the present value of the industry revenue 1992 1992 .
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Fig. 12. Model Calibration: PC

5.3 Counterfactual analysis

Given the calibrated model parameter values, we then conduct counterfactual analysis
and evaluate welfare.

5.3.1 Optimal compensation for idea sellers

We Þrst evaluate the e ect of the compensation share in Regimes 1 and 2, and
start with the auto industry. Given the innovation cost Auto derived from the model
calibration, we solve the equilibrium industry dynamics for each counterfactual value
of (0 1]. Particularly, Eqs. (38) and (39) allow us to pin down the counterfactual
entry number of innovators 0 at date 0. Figure 13 shows that 0 strictly increases
with for both Regimes 1 and 2 when 0 0 61 and Regime 1 has a higher
value of 0 than Regime 2 For 0 61, the values of 0 in both regimes reaches the
corner solution 0 = Equation (40) pins down the socially optimal entry number
of innovators 0 to be 0 151, which can be achieved by choosing I

Auto = 0 07 in
Regime 1 and II

Auto = 0 167 in Regime 2. The social optimum yields a social surplus

0,Auto = $64 45 billion (in 2012 price).
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Fig. 13. Effect of : Auto

We then look into the PC industry. Given the innovation cost PC derived from
the model calibration, Eqs. (38) and (39) pin down the entry number of innovators 0

for each counterfactual value of (0 1]. Figure 14 shows that 0 strictly increases
with for both Regimes 1 and 2 when 0 0 42 and Regime 1 has a higher
value of 0 than Regime 2 For 0 42, the values of 0 in both regimes reaches
the corner solution 0 = The socially optimal entry number of innovators 0 is
0 164, which can be achieved by choosing I

PC = 0 055 in Regime 1 and II

PC = 0 135
in Regime 2. The social optimum yields a social surplus 0,PC = $798 9 billion (in
2012 price).

Fig. 14. Effect of : PC

Comparative statics for .–Figure 15 plots comparative statics for the socially
optimal compensation share under Regimes 1 and 2 based on the auto calibration.
The results show the following:
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• increases with .–A higher means a lower price elasticity, which leads
price to decline faster which discourages 0. This makes the congestion exter-
nality less of a concern, so rises.

• decreases with (holding Þxed, when is su ciently large).–A higher
implies a better imitation technology, so the planner would need less innovation
when is su ciently large and so falls.

• rises with but falls with ¯ ( ˜ 1 ).–A higher or a lower ¯ discourages

0. This makes the congestion externality less of a concern, so rises.

• rises with (holding = Þxed).–A higher leads to faster price
decline which discourages 0. This, together with a larger pool of potential
adopters , makes the congestion externality less of a concern, so rises.

• Comparison of Regimes 1 and 2 .– is higher under Regime 2 than under
Regime 1, and the di erence rises with , , ¯ and .

Fig. 15. Comparative Statics for under Regimes 1 and 2

The comparative statics help explain the di erence in between the auto and the
PC industries. Compared to the auto, the PC industry has a smaller and a larger

, and these two dominate the o setting forces of the larger ¯ and larger and
hence PC Auto under each regime. Quantitatively, by comparing counterfactuals
that let one industry take on the other industry’s parameter values, we Þnd that the
smaller (i.e., the higher price elasticity) accounts most for the smaller PC.
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5.3.2 Optimal innovation subsidy

Given = 0, the entry of innovators is lower than the socially optimal level. Providing
innovators a subsidy , instead of setting a socially optimal , can also help achieve
the social optimality.

Note that with the subsidy, is the net entry cost for innovators. Figure 16
plots the e ect of on the entry of innovators 0 and welfare 0. The results show
that 0 increases with , and the social welfare peaks at = 0 61 for the auto
industry and = 0 62 for the PC industry.

Fig. 16. Effect of the Subsidy

5.3.3 Optimal di usion rate

We can similarly evaluate the e ects of varying the di usion rate (holding Þxed).
Consider again the scenario where incumbents are not compensated by imitators, so
= 0. Should the planner slow down the di usion?

Fig. 17. Effect of the Diffusion Rate
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Figure 17 shows that for both the auto and the PC industries, 0 decreases with
while 0 increases with . Therefore, if the planner were to push down , the entry
of innovators 0 would increase but social welfare would decline. The intuition is that
while slowing down di usion could encourage entry of innovators, it would forego too
much free learning and the welfare e ect of the latter dominates.

5.4 Robustness checks

For robustness checks, we redo the above exercises with alternative assumptions on
and . The results are consistent with our previous Þndings.

5.4.1 Pool of potential entrants

In the benchmark analysis, we assumed that the shakeout started after almost all the
potential Þrms had entered the industry. Alternatively, one could consider that the
shakeout started in the middle of the di usion process, so there might be a larger
pool of potential entrants. For example, we may assume = 1 000 (instead of 210)
for the auto case and = 2 000 (instead of 425) for the PC case. In each case, we
then obtain a smaller from the di usion estimation. The new estimates imply
that it would take 30 years for each industry to reach 99% adoption rate among
potential producers had the shakeout not happened, doubling what is assumed in the
benchmark calibration.

We then re-do the calibration and counterfactual exercises with the alternative
. Regarding the socially optimal compensation for idea sellers, we now Þnd for the

auto case, I

Auto = 0 134 under Regime 1 or II

Auto = 0 309 under Regime 2, while
for the PC case, I

PC = 0 095 under Regime 1 or II

PC = 0 215 under Regime 2.
These estimates of are larger than those found in the benchmark analysis, due to
the larger and smaller and higher from the re-calibrated models, which is
consistent with the prediction of our comparative-statics analysis (cf. Fig. 15). We
also Þnd that the social optimum can be achieved by subsidizing 65 7 percent of the
innovation cost in the auto case, or 62 1 percent in the PC case.

5.4.2 Anticipated shakeout

Our model can also be extended to allow the shakeout being anticipated. SpeciÞcally,
we could assume that the industry expects a disruptive innovation to arrive at a
Poisson rate . This innovation would make obsolete existing technologies and drive
Þrm values to zero.20

20For example, an industry may expects a disruptive innovation (e.g., the assembly line in the
auto case) to arrive at a Poisson rate . This innovation would require an incumbent Þrm to incur a
big capital investment to produce a newly designed product at a large scale. When that innovation
does arrive, the new (and lower) equilibrium price can only support the capital investment made by
a few Þrms and the rest have to exit. As a result, the present value of an investing Þrm (net of its
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Accordingly, the value of an incumbent Þrm under Regime 2 satisÞes

= + ( ) +

i.e.,

( + ) = + ( ) + (41)

Note that 0 in Eq. (41) is equivalent to raising to + in Eq. (10). Similarly,
we can revise the value function conditions for outsiders as well as for Regime 1 and
for the social planner’s problem. The original functional forms of our model hold,
except that becomes +

Considering that the shakeout occurred in the 16th year for the auto industry and
in the 18th year for the PC industry, we take the average and calibrate = 1 17 =
0 06. Accordingly, we set + = 0 05 + 0 06 = 0 11 and redo the model calibration
and counterfactual analysis.

Regarding the socially optimal compensation for idea sellers, we now Þnd in the
auto case, I

Auto = 0 147 under Regime 1 or II

Auto = 0 296 under Regime 2, while
in the PC case, I

PC = 0 115 under Regime 1 or II

PC = 0 235 under Regime 2. The
values of are larger than the benchmark analysis due to the higher discount +
in spite of lower implied by the re-calibrated models. We also Þnd that the social
optimum can be achieved by subsidizing 59 2 percent of the innovation cost in the
auto case or 58 4 percent in the PC case.

5.4.3 Idea sellers’ bargaining share

We assumed = 0 in the benchmark model calibration. For robustness checks, we
re-do the calibration for other values (0 1]. The results are plotted in Fig. 18.

Fig. 18. Assumed and Implied

investment costs) is zero, and the value of an exiting Þrm is also zero.
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Note that the larger value we assume in the calibration, the higher innovation
cost must be to rationalize the observations. But then, as Fig. 18 shows, the implied
rise in means that rises, consistent with our comparative-statics analysis shown
in Fig. 15.

Moreover, Fig. 18 shows that (0 1) and that it crosses the 45-degree line. In
the range where , an innovation subsidy could help improve welfare; otherwise,
a tax would do so.

Finally, for all [0 1], remains small in Regime 1 between 7%-12.6% for
the auto and between 5.6%-9.3% for the PC. In Regime 2, as the assumed gets
larger, does increase quite a bit for both industries and the optimal for the PC
eventually exceeds that for the auto as the e ect of starts to dominate. However, to
the extent that Regime 2 applies naturally to scenarios of non-patented know-how, a
small value of assumed is more realistic, which would also imply a small . Note
that both autos and PCs appear to have highly elastic demand curves — we estimate

PC and Auto to be quite small. Imitator entry then drives prices down slowly, and
that encourages innovation, and raises the congestion externality that innovators face.
Then Auto and PC should both be low, especially PC because PC demand is more
price elastic.

6 The limit

In this section, we study a limiting version of our model as which yields a
constant growth of Þrm numbers. Because the limiting model does not incorporate the
congestion externality in the di usion process, it implies that letting initial innovators
extract the entire rents (i.e., = 1) is socially optimal.

The special case where does not Þt the industry data well, but we present
it here because of its simplicity and because it relates to earlier models of competitive
innovation: Boldrin and Levine (2008) and Quah (2002) assume a simple di usion
process

= (42)

so that
= 0 (43)

The following proposition connects our model with theirs. We shall now characterize
the limiting model by letting get large while at the same time reducing so that
the logistic di usion process (3) converges to the one in Eq. (42):

Proposition 12 Let 0 and in such a way that 0 a constant.

The incumbents’ meeting rate then converges to a constant:
¯̄
¯ for all

0
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Proof. See Appendix A.12.
Therefore, a constant growth of Þrm numbers can be seen as a limiting version

of the logistic di usion studied in our model as . In what follows we shall
assume that

(44)

to ensure that social welfare derived from the innovation is bounded.

6.1 Equilibrium when

The following propositions characterize the equilibria for the limiting model.

Proposition 13 If condition (44) holds, in Regime 1 an innovator’s value at date
is

= 0

+
+ 0

( + ) ( + ( 1) )
( 1)

an imitator’s value is

= 0

+

and an outsider’s value is
= 0

Entry of innovators at date 0 is

I

0 =

µ
( + ( 1) + )

( + ) ( + ( 1) )

¶ 1

(45)

which is valid for 1 or for all 0 if = 0. No innovator enters after date 0.

Proof. See Appendix A.13.

Proposition 14 If condition (44) holds, in Regime 2 the value of a producer (inno-
vator or imitator) at date is

= 0

+ ( )

and an outsider’s value is
= 0

Entry of innovators at date 0 is

II

0 =

µ

( + ( ) )

¶ 1

(46)

which is valid for all 0. No innovator enters after date 0.
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Proof. See Appendix A.14.

Comparing the two regimes, we have the following Þndings.

Proposition 15

(A) I

0 and II

0

increase with and ,
decrease with and ,

decreases with if

(B) All parameters being equal across the two regimes,

I

0
II

0

=

½
1 for {0 1}

1 for (0 1)

Proof. See Appendix A.15.

Proposition 15 shows that the limiting model yields comparative statics for 0

consistent with our previous Þndings. However, the welfare implications can be quite
di erent, as shown in the following.

6.2 Welfare analysis when

Optimal compensation for idea sellers The limiting model implies that allowing
the original innovators to extract the entire rents from succeeding imitators would
yield the socially optimal incentive for innovation. This result holds for both Regimes
1 and 2. Formally, we assume that condition (44) holds and prove the following result:

Proposition 16 (A) It is socially optimal to innovate only at date 0. (B) The so-
cially optimal number of innovators is

0 =

µ

( + ( 1) )

¶ 1

(47)

(C) Social optimum implies = 1 for both Regimes 1 and 2.

Proof. See Appendix A.16.

Why does the limiting model yield an optimal compensation share for idea sellers
di erent from our previous Þnding? The key is that in the model with logistic di usion
there is a congestion externality that an innovator creates and ignores — He reduces the
meeting rate for other innovators. However, in the limiting model, the meeting rate
for an innovator is Þxed (cf. = ). Therefore, by considering a more realistic
logistic di usion process, we not only Þt the industry evolution pattern better but
also uncover novel implications of congestion externalities that take place during the
idea di usion process.
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Optimal innovation subsidy Given that the optimal compensation for idea sellers
is = 1, the planner could o er an innovation subsidy 0 to achieve the social
optimum whenever 1. With our solutions for I

0,
II

0 and 0 (cf. Propositions 13,
14 and 16), we prove the following result:

Proposition 17 Social optimum implies 0 I II for (0 1), I = II =

+
0 for = 0, and I = II = 0 for = 1

Proof. See Appendix A.17.
Note that the socially optimal subsidy never goes negative (i.e., becomes a tax),

which is in contrast to our Þnding with logistic di usion. Again, this is because the
limiting model incorporates only knowledge spillovers but not the meeting congestion.

Optimal di usion rate Parallel to the Þnite- case where we showed that the
planner does not want to reduce , here the planner does not want to reduce , as
shown in the following claim:

Proposition 18 For any values of and permitted by the limiting model, social
welfare increases with for both Regimes 1 and 2.

Proof. See Appendix A.18.

7 Conclusion

We modeled an innovation and its di usion in one industry and discussed policy and
welfare. Capacity constraints imply that licensing raises the revenues of innovators
and that licensing is also socially beneÞcial to a degree. We showed that the welfare
outcome depends on whether imitators can resell the innovation, and on how much
the innovators are compensated for transferring the innovation.

The socially optimal bargain allocation hinges on the di usion process, particu-
larly the congestion externality in meetings between innovators and imitators. Our
analysis also showed that slowing down di usion encourages innovation and raises
initial capacity, but that it lowers imitation so that capacity grows more slowly. We
argued that this may help explain why Silicon Valley overtook Route 128.

We calibrated the model to data for the U.S. automobile and personal computer
industries. Though starting nearly one century apart, the industries shared the basic
feature of an -shaped di usion prior to the shakeout. Our empirical Þndings match
well the expansion of Þrm numbers prior to the shakeout in each industry and quantify
the theoretical predictions of the model.
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Appendix to “Idea Di usion and Property Rights”

Boyan Jovanovic and Zhu Wang

A. Proofs.

A.1. Proof of Proposition 1

Proof. Solving the di erential equations (7)-(9) directly is only feasible for special
cases, so we develop an alternative approach to prove Proposition 1. We then provide
a special-case example for which we solve the di erential equations (7)-(9) directly
for a cross check.

(A) In Regime 1, imitators cannot resell ideas to other imitators. A potential
adopter can copy an idea from an imitator but the fee goes to the idea’s original
innovator. We Þrst assume that at equilibrium, innovators only enter at date 0, so
the time path of Þrm numbers is determined by Eq. (4) that

=
+

0
1

We then check if any agent would want to deviate by entering as an innovator at a
date 0.

The entry of a measure-zero innovator at 0 would not change the industry
quantity and price through Eq. (4). Upon entry, the value of this innovator is
determined by two sources: One is that he will receive a fraction 1 of the total
industry revenues 1 at each date by selling goods; the other is that he
will get a chance 1 to collect idea-sale revenues from new imitators at each date

(Note that is the number of incumbent Þrms, including both innovators and
imitators, at his entry date ). At each date , a fraction of Þrms in the
industry are imitators who enter between date and date , so this new innovator
at his entry date expects to have 1 chance to receive the discounted sum of
the fraction ( ) of the total industry revenues 1 as idea-sale revenues
starting from date .21

Therefore, the value of a new innovator at his entry date , denoted by , can
be written as

=

Z
( )

µ
1
+ ( )

¶
1 (48)

Note that the entry value of an innovator varies by entry date because the
number of existing Þrms increases with . Also, is di erent from the value of an

21In Regime 1, is an imitator’s date- present value of revenues from selling goods. It is not
feasible to characterize by calculating the integral of over time except for special cases (e.g.,
= 1). Instead, we calculate the date- present value of imitators’ shares of industry revenues.
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existing innovator at date who entered before . In fact, an innovator who enters
at date 0 should have the value at date :

0 =

Z
( )

µ
1
+

0
( )

¶
1 (49)

so 0 for any 0, and = 0 for = 0
Equation (4) implies that for any date ,

=
( )

( ) + ( 1)
(50)

and

=
( )

+ ( ( ) 1)
(51)

We can rewrite Eq. (48) as

=

Z
( )

µ
1 +

¶
(52)

DeÞning = , Eq. (52) becomes

=

Z

0

µ
1 +

+

¶

+ (53)

Note that Eqs. (50) and (51) imply that

+
=

+ ( 1) + =

Ã

+ ( 1)

!

which both decrease in . In Eq. (53), because increases in , + and +

decrease in , and hence decreases in
Similarly, because an imitator can keep (1 ) share of his output, the total value

of outsiders ( ) at date equals the imitators’ share of the total discounted
industry revenues from date and onward. Therefore, we have

( ) =

Z
( )

µ
(1 )( )

¶
1

which implies

=

Z
( )

µ
(1 )( )

( )
)

¶
1 (54)

Inserting Eq. (51) into Eq. (54), we derive

=

Z
( )

Ã
(1 )

¡
( ) 1

¢

( )

!
1 (55)
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Again, deÞning = , Eq. (55) becomes

=

Z

0

Ã
(1 )

¡
1
¢!

1
+ (56)

Equation (56) yields that if = 1, is a constant that does not vary with ; if
1, 1

+ decreases with so decreases with ; and if 1 1
+ increases

with so increases with . Moreover, combining Eqs. (53) and (56), we have

=

Z

0

Ã

1 +
+ (1 )

¡
1
¢

+

!

+ (57)

Within the integral of Eq. (57), both terms

µ
1 + +

(1 )( 1)
+

¶

and + decrease in so decreases with . Therefore, given the free entry
condition 0

0 0 = , we have for any 0, so no innovator would enter
the industry after date 0.

(B) Note that 0 =
0
0. Equations (49) and (54) yield that

0 0 =
1

0

Z

0

µ

0
+ (1 ) 1

¶
1 (58)

The free entry condition 0 0 = then pins down the entry of innovators 0 at
date 0, as shown by Eq. (13).

Full dynamic paths.– The proof above conÞrms that innovators only enter at
date 0, so the time path of Þrm numbers is given by Eq. (4). Following that, the full
dynamic paths of , and for any 0 can be derived. Besides, the time path
of has been solved above (cf. Eq. (56)). Recall Eq. (7) that

= +

which yields that

=

Z
( ) =

Z
( ) (59)

Because increases in , declines in
Consider a marginal innovator who enters at date 0 From any date ,

he collects in each period by selling goods, and collect a fraction ( )

of the total industry revenues 1 from new entrants after date by selling ideas.
Therefore, his value at date is determined by

=

Z
( ) +

Z
( ) (1 ) 1 (60)
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Because increases in , declines in .
Finally, Eq. (60) suggests that an innovator who entered at date 0 has value

for any 0 :

= 0 =

Z
( ) +

0

Z
( ) (1 ) 1 (61)

Equation (61) suggests that the time path of depends on parameter values. For
example, it is easy to see decreases in when = 0 or when 1, and one can
also prove that may initially increase and later decrease in if is close to 1, is
close to zero, and is large enough (A formal proof is available upon request).

A special-case example.– The di erential equations (7)-(9) can be solved directly
when demand is unit elastic (i.e., = 1). We show the result is consistent with our
general solution above. Again, we start with the conjecture that at equilibrium no
agent would enter as an innovator after date 0, so the number of Þrms evolve as
described by Eq. (4). To simplify the notation, we deÞne =

0
1.

An imitator’s value satisÞes the ordinary di erential equation (ODE) intro-
duced by Eq. (7):

= + = (
+

) 1 +

The ODE has the unique bounded solution satisfying that

= +
( + )

(62)

An innovator’s value satisÞes the ODE introduced by Eq. (8):

= +
0

+

= (
+

) 1 +
(1 + )

( + )2

µ
1
+

( + )

¶
+

Solving the ODE and imposing is bounded as yields

= +

¡
( + + ) + 2

¢

( + )( 2 + )
(63)

Equation (63) implies that at date 0, we have

0 = +
( + )

( + )
(64)

and the value of being an innovator declines over time (i.e., 0).
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The option value of being an outsider satisÞes the ODE introduced by Eq. (9):

= [(1 ) ] +

=
+

(1 )

µ
+

( + )

¶ ¸
+

The unique bounded solution for is a constant:

= =
(1 )

2 +
(65)

Note that if an agent deviates from the equilibrium and enters at date 0, he
would have a lower value than an innovator who entered at date 0 (i.e., 0)
because the latter would have a larger family of imitators to disseminate his idea and
collect idea-sale revenues. Therefore, the Þnding that declines in implies that

at any date 0 so no agent would enter as an innovator after date 0.
At = 0, given the free entry condition requires 0 0 = , Eqs. (64) and (65)

yield

=
( + )

( + )

Since =
0

1, we derive the equilibrium entry of innovators at date 0, denoted by
I

0 for Regime 1, to be

I

0 =
( + )

( + )
(66)

which is consistent with the general solution above, shown by Eq. (13) for = 1

A.2. Proof of Proposition 2

Proof. (A) In Regime 2, all Þrms at date- share the same value regardless of
their entry date or type. In this case, we can characterize the di erential equations
(10)-(11) directly. We Þrst conjecture that no agent would enter as an innovator after
date 0, so the time path of Þrm numbers is determined by Eq. (4) that

=
+

0
1

Then, is determined by Eq. (10) that

= + ( ) +

[ ( ) ] = (67)
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DeÞning = exp
¡R

[ ( ) ]
¢
, we can rewrite Eq. (67) as

( )
=

which yields the general solution

= 1

Z
+ 1

where is a constant of integration.
Given that =

+
0
1

we can solve :

= exp

µZ
[ ( ) ]

¶
=

µ
0

0
+ 1

¶

Accordingly,

=

µ
0

0
+ 1

¶ Z µ
0

0
+ 1

¶

+

µ
0

0
+ 1

¶

which requires = 0 given that needs to be bounded as . We then solve
as follows:

=

µ
0

0
+ 1

¶ Z µ
0

0
+ 1

¶

=

µ
0

0
+ 1

¶ Z µ
0

0
+ 1

¶

=

Z
( )

Ã
0

0
+ 1

0

0
+ 1

!

=

Z
( )

Ã

1
1 ( )

0

0
+ 1

!

(68)

DeÞning = we can rewrite Eq.(68) as

=

Z

0

Ã

1
1
0

0
+ 1

!

+

In the integral, both terms

µ
1 1

0

0
+1

¶
and + = + decrease in .

Therefore, decreases with .
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Next, we show decreases with . Recall that in Regime 2, is determined
by Eq. (11) that

= ((1 ) ) +

which, together with Eq. (10), implies that

( )
= ( + )( ) ( + ) (69)

DeÞning , we can rewrite Eq. (69) as

( + ) = ( + )

DeÞne = exp
R

( + ) . We then have

( )
= ( + )

which yields the general solution

= 1

Z
( + ) + 1

where is a constant of integration.
Given that =

+
0
1

we can solve :

=
0

0 + 0

Again, needs to be bounded as , so = 0. We then have

= 1

Z
( + )

=
0 + 0

0

Z
0

0 + 0
( + )

=
0 + 0

0

Z
0

0 + 0
( + )

=

Z
( )

Ã

1
( ) 1

( 0

0
) + ( )

!

( + ) (70)

DeÞne = . We can rewrite Eq. (70) as

=

Z

0

Ã

1
1

( 0

0
) +

!

( + + + )
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Note that in the integral, both terms

µ
1 1

( 0

0
) +

¶
and ( + + + )

decrease in , hence = strictly decreases with . Given the free entry
condition that 0 0 = at date 0, we know at any date 0 so no
agent would enter as an innovator after date 0.

(B) Equation (68) implies that

=

Z
( )

µ ¶

so that

0 =

Z

0

µ

0

¶
(71)

At date 0, the total industry discounted revenue,
R
0

1 is shared by the
two groups — the initial incumbents 0 and the outsiders 0. With the free entry
condition 0 = 0 we have

Z

0

1 = 0 0 + 0 ( 0) = 0 ( 0) (72)

Plugging Eq. (71) into Eq. (72) yields Eq. (14).

A.3. Proof of Proposition 3

Proof. In Regime 1, I

0 is determined by Eq. (13) that

1

0

Z

0

µ

0
+ (1 ) 1

¶
1 =

Note that as 0 , we have . So both the numerator and the denominator
of the left hand side of Eq. (13) goes to 0 as 0 . Applying L’Hôpital’s rule, the
left hand side converges to

lim
0

R
0

³
0
+ (1 ) 1

´
1

0

=

lim
0

R
0

³
2

0 (1 ) 2

0

´
1

+
³

0
+ (1 ) 1

´
(1 )

0

1

= lim
0

Z

0

¡
+ (1 )

¢
=

+

( + )

Proposition 4 shows that I

0 0 Therefore, the model has an interior solution
I

0 in Regime 1 i ( + )
( + )
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Similarly, II

0 is determined by Eq. (14) that

1

0

Z

0

Ãµ

0

¶ µ ¶1
1

!
1 =

As 0 , applying L’Hôpital’s rule, the left hand side of Eq. (14) converges to
+

( + )
Proposition 4 shows that II

0 0 Therefore, the model has an

interior solution II

0 in Regime 2 i ( + )
( + )

A.4. Proof of Proposition 4

Proof. (A) We Þrst prove that I

0 increases with and , but decreases with and
. Rewrite Eq. (13) as

=

Z

0

( ; 0) = 0

where

( ; 0) =
1

0

µ

0
+ (1 ) 1

¶
1

and

=
+

0
1

We verify that ( ; 0)

0
0, so that

0
0 Therefore,

I

0 =
I

0

0;
I

0 =
I

0

0 ;

I

0 =
I

0

0;
I

0 =
I

0

0

Similarly, with Eq. (14), we can prove that II

0 increases with and , but
decreases with and .

(B) First, it is straightforward to verify Eqs. (13) and (14) are identical when
{0 1} so I

0 =
II

0

Second, for any (0 1) and 0, we can apply the mean-value theorem and
derive

µ

0

¶ µ ¶1
=

µ ¶µ

0

¶
=

µ ¶Ã

1 +

µ 0

0

¶ 1
( 0)

0

!

where
0

0. Therefore,
µ

0

¶ µ ¶1 µ ¶µ
1 +

( 0)

0

¶
=

0
+ (1 ) (73)

47



Given that I

0 and I satisfy Eq. (13) that

Z

0

1
I

0

µ

I

0

+ (1 )
I

1

¶
( I)1 =

the same I

0 and I would not satisfy Eq. (14). Instead,

Z

0

1
I

0

Ãµ

I

0

¶ µ

I

¶1
1

!

( I)1 (74)

given the inequality (73).
The left-hand side of Eq. (14) can be written as

=

Z

0

( ; 0)

where

( ; 0) =
1

0

Ãµ

0

¶ µ ¶1
1

!
1

and

=
+

0
1

We verify that ( ; 0)

0
0, so that

0
0. Therefore, the solution II

0 that satisÞes

(14) has to satisfy II

0
I

0

A.5. Proof of Proposition 5

Proof. (i) We Þrst prove the results for Regime 1. Rewrite Eq. (13) as

=

Z

0

( ; )
1

= 0

where

( ; ) =
1

( 0)

µ

0
1 + (1 )

µ
1 + (

0
1)

¶¶µ
1 + (

0
1)

¶ 1

Note that

( ; ) (1 )
³
1 + (

0
1)

´

³
0

1 + (1 )
³
1 + (

0
1)

´´
( 1)
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Therefore, for 1, we have 0 (except = 0 when = = 1)
Recall that 0 0 from the proof of Proposition 4, so we derive

I

0 =
I

0

0 (except
I

0 = 0 when = = 1)

In contrast, for 1

( ; )
0 (1 )

µ
1 + (

0
1)

¶
(

0
1)(1 )

which holds for any 0 if

(1 ) (
0

1)(1 )
1

0
(1 ) +

Therefore, we have

I

0 =
I

0

0 if
1

I

0

(1 ) +

Similarly, for 1

( ; )
0 (1 )

µ
1 + (

0
1)

¶
(

0
1)(1 )

which holds for any 0 if

(1 )

µ

0

¶
(

0
1)(1 ) +

0
(1 )

Therefore, we have

I

0 =
I

0

0 if +
I

0 (1 )

(ii) We now prove the results for Regime 2. Rewrite Eq. (14) as

=

Z

0

( ; )
1

= 0

where

( ; ) =

Ãµ

0

¶ µ
1 + (

0
1)

¶1
1

!µ
1 + (

0
1)

¶ 1

49



Note that

( ; )

³
0

´
(1 )

³
1 + (

0
1)

´1

+

µ³
0

´ ³
1 + (

0
1)

´1
1

¶
(1 )

Therefore, for 1, we have 0 (except = 0 when = = 1)
Recall that 0 0 from the proof of Proposition 4 so we derive

II

0 =
II

0

0 (except
II

0 = 0 when = = 1)

In contrast, for 1

( ; )
0

µ

0

¶ µ
1 + (

0
1)

¶1
( ) (1 )

which holds for any 0 if

µ

0

¶
( ) (1 )

0
(1 ) +

Therefore, we have

II

0 =
II

0

0 if
II

0 (1 ) +

Similarly, for 1

( ; )
0

µ

0

¶ µ
1 + (

0
1)

¶1
( ) (1 )

which holds for any 0 if

µ

0

¶
( ) (1 )

µ
0

¶
(1 ) +

Therefore, we have

II

0 =
II

0

0 if

µ
II

0

¶
(1 ) +
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A.6. Proof of Proposition 6

Proof. (A) Consider the case 1 Þrst. For any date 0, if no further innovators
enter, the number of Þrms at dates is

=
( )

( ) + 1
for (75)

As of date , the social return to innovation is

=

Z
( )

1
1 (76)

The current cost of innovation is per unit, and its marginal social return (even if
no further innovations are made) is

=

Z
( ) (77)

where

=
2 ( )

( + ( ( ) 1) )
2

which is strictly decreasing in . And since is increasing in ,

( )

is also decreasing in . Therefore is also strictly decreasing in and so if at

date zero 0 is chosen so that 0

0
= , thereafter . Similarly, we can prove

the result holds for 1. Hence, it is socially optimal to innovate only at date zero.
(B) Since it is socially optimal to innovate only at date zero, the planner should

choose 0 to maximize social welfare:

max
0

½Z

0

( ) 0

¾
(78)

subject to Eq. (4). We can verify that the objective function is strictly concave in

0, so the socially optimal number of innovators 0 is pinned down by the Þrst-order
condition which is Eq. (24) for any 0

(C) Given that the social welfare function (78) is strictly concave in 0, for 0

to hold, one needs ©R
0

( ) 0

ª

0
|
0= 0

which yields condition (25).
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A.7. Proof of Proposition 7

Proof. (A) Rewriting Eq. (24), we deÞne

=

Z

0

( + )
2
0

Ã

+ (
0

1)

!2
= 0

It follows that
0 =

0

0

Similarly, we can prove 0 0 and 0 0.
The sign of 0 depends on and requires some discussions.

Z

0

(1 )
³
1 + (

0

1)
´ 2 ³

+ (
0

1)
´ 1

(
0

1)
³
1 + (

0

1)
´ 1 ³

+ (
0

1)
´ 2

This implies 0 if 1 When 1, the sign of 0 if (1 )(
0

1)

A su cient condition is that

(1 )(
0

1) 1

1 0

0

(B) Social planner’s problem (78) requires 0

0
= 0. Applying the envelope theo-

rem, we have

0 = 0

0

0
+ 0 =

Z

0

( )
0

for any 0. Similarly, we can prove 0 0, 0 0 and 0 0.

A.8. Proof of Proposition 8

Proof. Given that condition (25) holds, we have 0 . Proposition 6 shows that
the socially optimal innovation 0 satisÞes Eq. (24) that

Z

0

( + )

µ

0

¶2
=
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When = 0, condition (25) is equivalent to condition (15). We have I

0 =
II

0

and they satisfy Eq. (13) or Eq. (14) so that

Z

0

1

0

µ
1

¶
1 =

Z

0

( + )

µ
0

¶µ

0

¶2
= (79)

Note that the left hand side of Eq. (79) is smaller than the left hand side of Eq.
(24) given that 0 1 for 0. Therefore, the solution I

0 =
II

0 to Eq. (79) would
cause the left hand side of Eq. (24) greater than . Because the left hand side of (24)
decreases with 0, the value of 0 needs to be larger. Proposition 4(A) shows that

I

0 0 and II

0 0, which implies that I 0 and II 0.
When = 1, if condition (15) holds, we have I

0 =
II

0 and they satisfy Eq.
(13) or Eq. (14) so that

Z

0

( + )

µ

0

¶2
=

Z

0

( + )

µ
0 0

+ 1

¶µ

0

¶2
= (80)

Note that the left hand side of Eq. (80) is greater than the left hand side of Eq. (24)
given that 0 0 +1 1 for 0. Therefore, the solution I

0 =
II

0 to Eq. (80)
would cause the left hand side of (24) smaller than . Because the left hand side of
Eq. (24) decreases with 0, the value of 0 needs to be smaller. Proposition 4(A)
shows that I

0 0 and II

0 0, therefore I 1 and II 1. Note that
in case condition (15) does not hold when = 1, we have I

0 =
II

0 = and a smaller
value of 1 is needed to achieve 0 .

Because Eqs. (13) and (14) are continuous functions, there exist 0 I 1
and 0 II 1 to achieve 0 in Regime 1 and 2, respectively. Proposition 4(B)
shows that for any given (0 1), we have I

0
II

0 . Accordingly, if the bargaining
share I leads to the social optimum I

0 = 0 in Regime 1, the same bargaining share
would lead to a II

0 0 in Regime 2. This implies that a higher bargaining share
II I is needed to achieve 0 in Regime 2 given that II

0 0 as shown by
Proposition 4(A).

A.9. Proof of Proposition 9

Proof. In Regime 1, for a given value of , Eq. (13) yields the market equilibrium
entry of innovators I

0. Proposition 8 suggests that whenever 6= I , the number of
innovators I

0 from Eq. (13) di ers from the social optimum 0, in which case o ering
an innovation subsidy (or tax) to adjust the innovation cost would help restore the
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social optimum. This implies that 0 can be achieved by a subsidy (or a tax if the
subsidy is negative) I as follows:

1

0

Z

0

µ

0

+ (1 ) 1

¶
1 = I

The same logic applies to Regime 2 that

1

0

Z

0

Ãµ

0

¶ µ ¶1
1

!
1 = II

Recall that when {0 1}, Regimes 1 and 2 coincide. When = 0, both regimes
would need more entry of innovators, so a positive subsidy is needed to achieve that,
and when = 1, a negative subsidy (tax) is needed. Moreover, for (0 1)
according to Proposition 4(B), if a given pair of and ( I ) lead to the social
optimum 0 in Regime 1, the same parameter values would result in a II

0 0 in
Regime 2. Therefore, a higher subsidy (or a smaller tax) II is needed for adjusting

to achieve 0 in Regime 2 given that II

0 decreases with as shown by Proposition
4(A).

A.10. Proof of Proposition 10

Proof. This is a special case of Proposition 11 by taking = 0, and Regimes 1 and
2 coincide in this case.

A.11. Proof of Proposition 11

Proof. With = 1 under Regime 1, Eq. (13) can be simpliÞed as

I

0 =
( + )

( + )
(81)

Given Eq. (81) and = 1, social surplus is

0 =
(1 )

( + )
+

Z

0

ln

µ
+

( + )

( + )
1

¶¸
+constant.

This suggests that

0
=

(1 )

( + )2
+

Z

0

Z

0

+
2

( + )
( + ) 2

( + )2

+ ( + )
( + )

1
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We then verify that

+
2

( + )
( + ) 2

( + )2

+ ( + )
( + )

1
µ

(1 )

( + )

¶µ
+

( + )

( + )
1

¶

µ
+

( + )

( + )

( + )2

¶
( + )

0

for any 0. Equation (81) implies that ( + )
( + )

for I

0 to be interior solution

(i.e., I

0 ). Accordingly, given that ( + )
( + )

, we have

Z

0

+
2

( + )
( + ) 2

( + )2

+ ( + )
( + )

1

Z

0

"
+

+ ( + )

#

Therefore,

0 (1 )

( + )2
+

Z

0

Z

0

"
+

+ ( + )

#

=
(1 )

( + )2 ( + )

µ

+ ( + )

¶

=
( + )

µ
1

+

1

+

¶
0 for any [0 1]

A.12. Proof of Proposition 12

Proof. Equations (3) and (4) imply that for given ,

= ( ) = (1
+

0
1
) (82)

Given that the demand curve is downward slopping, 0 has to be Þnite as ;
otherwise 0 0, and no innovator would enter at date 0. Therefore, Eq. (82)
implies that ¯̄

¯̄ (83)

i.e., the incumbents’ meeting rate converges to a constant.
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A.13. Proof of Proposition 13

Proof. Assume that condition (44) holds (i.e., ) so that social welfare derived
from the innovation is bounded. We start with the conjecture that no agent would
enter as an innovator after date 0, so Þrm numbers evolve as described by Eq. (43).
Given that an imitator cannot resell the idea, his only revenue comes from selling the
good, and his value satisÞes the ordinary di erential equation (ODE):

= + = ( 0 ) + (84)

The ODE has the unique bounded solution

= 0

+
(85)

which decreases at the rate .
An innovator receives revenues from selling both the good and the idea. The

number of ideas sold at is and the total date- revenue from these sales,
is divided among the 0 innovators. Thus , the value of being an innovator at date
, follows the ODE:

= +
0

+ = ( 0 ) + 0
(1 )

+
+ (86)

Unless = 0, innovators receive a fraction of revenues from idea sales, and we shall
need to restrict the elasticity of demand to be below unity which means 1.
Imposing the boundary condition yields the unique solution to Eq. (86):

= 0

+
+ 0

( + ) ( + ( 1) )
( 1) (87)

Recall that denotes the option value of becoming a future imitator. At = 0
the free entry condition requires 0 0 = The pool of outsiders being inÞnite, an
outsider’s chance of meeting an incumbent is zero so that = 0 for all , implying
that 0 = Since decreases over time, we verify the conjecture that no one would
pay to become an innovator at any date 0. Note that if an agent deviates from
the equilibrium and enters at date 0, he would have a lower valuation than an
innovator who entered at date 0 (i.e., 0) because the latter would have a larger
family of imitators to disseminate his idea and collect idea-sale revenues. Therefore,
the Þnding that declines in implies that at any date 0.

Combining 0 = with Eq. (87) yields

0 =
0

+
+ 0

( + ) ( + ( 1) )
= (88)
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Equation (88) then determines the entry of innovators at date 0 to be

I

0 =

µ
( + ( 1) + )

( + ) ( + ( 1) )

¶ 1

(89)

which is valid for 1 or for all 0 if = 0.

A.14. Proof of Proposition 14

Proof. Assume that condition (44) holds (i.e., ) so that social welfare derived
from the innovation is bounded. We conjecture that no agent would enter as an inno-
vator after date 0. Given that imitators can resell the innovation, all the incumbents
(be they innovators or imitators) share the same value . The revenue from an idea
sale is and the total date- revenue from these sales, , is shared equally
among all the incumbents. Then follows the ODE:

= + + = ( 0 ) + + (90)

The general solution of Eq. (90) is

= 0

+
+ 0

( )

where is a constant of integration. Given that , the boundary condition
requires = 0 and yields

= 0

+ ( )
(91)

Equation (91) shows decreases with . Also, because the pool of outsiders is
inÞnite, an outsider’s chance of meeting an incumbent is zero so that = 0 for all
. Hence, we verify the conjecture that innovators only enter at = 0. At = 0 we

again have 0 = , thus

0 =
0

+ ( )
= (92)

Equation (92) then determines the entry of innovators at date 0 to be

II

0 =

µ

( + ( ) )

¶ 1

(93)
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A.15. Proof of Proposition 15

Proof. (A) It is straightforward to verify from Eqs. (89) and (93) that

I

0 0 I

0 0 I

0 0 I

0 0
II

0 0 II

0 0 II

0 0 II

0 0

Moreover, Eq. (89) shows I

0 0 for 1 or for any = 0, and
I

0 = 0 for = = 1. Equation (93) shows II

0 S 0 if T .

The e ect of .–The e ect of di usion speed on innovation depends on and
. SpeciÞcally, in Eq. (93), II

0 falls with if because the e ect of entry of
competitors on reducing (summarized by ) exceeds the beneÞt (summarized by

) that incumbents derive from selling the idea. The e ect of on II

0 turns positive
if , and it vanishes if = . In Regime 1 where imitators cannot resell ideas
(cf. Eq. (89)), I

0 falls with for 1 or for any = 0, and the e ect of
on I

0 vanishes when = = 1
(B) Equations (89) and (93) imply that

µ
I

0
II

0

¶
= 1 +

(1 ) 2

( + ) ( + ( 1) )
=

½
1 for {0 1}
1 for (0 1)

(94)

A.16. Proof of Proposition 16.

Proof. Recall that the planner would like to maximize social welfare

0 =

Z

0

( ) 0

where

( ) =
1

1 if (0 1)

(ln + 1 ln ) if = 1

1
1 +

1
1 if 1

and
= 0

We assume that condition (44) holds (i.e., ) so that social welfare 0 is bounded.
(A) Consider the case 1 Þrst. For any date 0, if no further innovators

enter, the number of Þrms at dates is

= ( ) for

As of date , the planner’s return to innovation is

=

Z
( )

1
1
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The current cost of innovation is per unit, and its marginal social return (even if
no further innovations are made) is

=

Z
( ) =

Z
( )( ) (95)

DeÞne = , we can rewrite Eq. (95) as

=

Z

0

( )
+ =

Z

0

( )
¡ ¢

which is strictly decreasing in Therefore, if at date zero 0 is chosen so that
0

0
= , thereafter . Similarly, we can prove the result holds for 1.

Hence, it is socially optimal to innovate only at date 0.
(B) The social planner chooses 0 to maximize social welfare:

0 =

Z

0

( ) 0

We verify that the social welfare function is strictly concave in 0, so the Þrst-order
condition yields the socially optimal number of innovators 0 :

0 =

µ

( + ( 1) )

¶ 1

(96)

(C) Comparing (96) to the expressions in Eqs. (89) and (93), 0 = I

0 = II

0 i
= 1.

A.17. Proof of Proposition 17.

Proof. Recall that the solutions for I

0,
II

0 and 0 are given by Propositions 13, 14
and 16, respectively. Given that the optimal compensation for idea sellers is = 1,
the planner could improve social welfare by o ering an innovation subsidy whenever

1. Accordingly, the net entry cost of innovators becomes . Under Regime
1, Eqs. (89) and (96) pin down the optimal subsidy I so that

[ + ( 1) + ] = ( I ) ( + )

which yields

I =
(1 )

+
(97)

Under Regime 2, Eqs. (93) and (96) pin down the optimal subsidy II so that

[ + ( 1) ] = ( II )[ + ( ) ]
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which yields

II =
(1 )

+ ( )
(98)

The result (97) and (98) suggest that in the limiting model, 0 I II for any
0 1; I = II = 0 for = 1; and I = II =

+
for = 0.

A.18. Proof of Proposition 18

Proof. Recall that the solutions for I

0 and II

0 are given by Propositions 13 and 14,
respectively. According to Eqs. (89) and (93),

I

0 =

µ
( + ( 1) + )

( + ) ( + ( 1) )

¶ 1

; II

0 =

µ

( + ( ) )

¶ 1

In each regime, the number of Þrms grows at a constant rate (i.e., I = I

0 and
II = II

0 ). The planner would like to maximize social welfare

0 =

Z

0

( ) 0

where

( ) =
1

1 if (0 1)

(ln + 1 ln ) if = 1

1
1 +

1
1 if 1

We assume that condition (44) holds (i.e., ) so that social welfare 0 is bounded.
Denote I

0 and II

0 as the social welfare under Regimes 1 and 2, respectively.
With free knowledge spillovers ( = 0), we have I

0 = II

0 = 0 where

0 =

1 1 1

µ
( + )

1 1

(1 )( (1 ))
( + )

1

¶
if (0 1)

ln
( + )

+ 2 ( + )
+ (1 ln ) if = 1

1 1 1

µ
( + )

1 1

(1 )( (1 ))
( + )

1

¶
+

( 1)
1 if 1

(99)

It is straightforward to show that for any 0 0 0
This Þnding can be extended to any (0 1], for which we have

I

0 =

N/A if (0 1)

ln
³

( + )
( + )

´
+ 2

( + )
( + )

+ (1 ln ) if = 1

1 1 1

1
(1 )

³
( +( 1) + )

( + )

´ 1

( + ( 1) )
1

³
+( 1) +

( + )( +( 1) )

´ 1

+
( 1)

1

if 1

(100)
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II

0 =

1 1 1

µ
( +( ) )

1 1

(1 )( (1 ))
( + ( ) )

1

¶
if (0 1)

ln
( +(1 ) )

+ 2 +(1 )
+ (1 ln ) if = 1

1

1 1

µ
( +( ) )

1 1

(1 )( (1 ))
( + ( ) )

1

¶

+
1

( 1)

if 1

(101)

We then conÞrm from Eqs. (100) and (101) that
I

0 0 for 1 and
II

0 0 for
0

B. Regressions.

B.1. Auto di usion estimation: Robustness checks

For robustness checks, we estimate the matching function directly by rewriting
Eq. (3) into a discrete-time version:

1

1
= 1 (102)

Note that the left-hand side of Eq. (102) is the hazard rate of adopting the new
product. We set = 210 and run the regression model (102) using auto Þrm number
data from 1895-1908. The result shows that

1

1
= 0 0028

(0 0004)
1

and the standard error is reported in the parentheses. The estimate of is statistically
signiÞcant at 1% level and adjusted 2 = 0 77 The estimate = 0 0028 implies that

= 0 59, which is similar to the estimate from Eq. (34).
We also redo the exercise by estimating an extended version of Eq. (102) that

1

1
= + 1 (103)

proposed by Bass (1969). The Bass model allows the hazard rate of adoption to
be inßuenced by both the coe cient of innovation and the coe cient of imitation

. In our context, captures the hazard rate of entry by innovators independent of
incumbents while 1 captures the hazard rate of entry by imitators. The regression
result shows that

1

1
= 0 0292

(0 069)
+ 0031
( 0007)

1

and the standard errors are reported in the parentheses. The estimate = 0 0031
(which implies = 0 64) is statistically signiÞcant at 1% level, but the estimate
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of is not statistically signiÞcant, which is consistent with our theoretical prediction
that innovators only enter at the beginning of the industry.

B.2. Auto demand estimation: Robustness checks

For robustness checks, we estimate the auto industry demand function by control-
ling for changes of population and per capita income over time. In doing so, we use
annual data of auto prices and output from 1900—1929 to estimate a per capita
demand function:

ln( ) = ln( )

The dependent variable is auto demand per capita (where is U.S. population at
year ), and we control for log U.S. GDP per capita (as a proxy for income) in the
demand intercept . Both auto price and GDP per capita are in real terms.

As before, to address potential endogeneity of the price variable, we use the output
per Þrm (lagged by a year) as an instrumental variable to estimate the demand
elasticity parameter in a two-stage least-squares regression.

The Þrst-stage regression result (adj. 2 = 0 89) is given by

ln( ) = 8 56
(1 09)

+ 1 66
(0 64)

× ln( ) 0 29
(0 03)

× ln(output per Þrm) 1

and the second-stage regression result ( 2 = 0 83) is

ln( ) = 32 37
(7 16)

+ 0 28
(2 10)

× ln( ) 3 33
(0 38)

× ln( )

Standard errors are reported in the parentheses, with three stars and two stars repre-
senting statistical signiÞcance at 1% and 5% level, respectively. The estimate = 3 33
is highly statistically signiÞcant and the implied inverse demand elasticity = 1 = 0 3

is similar to the estimate from Eq. (35).

B.3. PC di usion estimation: Robustness checks

For robustness checks, we estimate the matching function (102) for the PC indus-
try:

1

1
= 1

We set = 435 and run the regression using PC Þrm number data from 1975-1991.
The result shows that

1

1
= 0 00092

(0 00025)
1

and the standard error is reported in the parentheses. The estimate of is statistically
signiÞcant at 1% level and adjusted 2 = 0 44 The estimate = 0 00092 implies
that = 0 40.
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We also redo the exercise by estimating a more general version (cf. Eq. (103))
that

1

1
= + 1

proposed by Bass (1969). In our context, captures the hazard rate of entry by
innovators independent of incumbents, while 1 captures the hazard rate of entry
by imitators. The regression result shows that

1

1
= 0 04721

(0 08398)
+ 0 00078
(0 00036)

1

and the standard errors are reported in the parentheses. The estimate = 0 00078
(which implies = 0 34) is statistically signiÞcant at 5.1% level, but the estimate
of is not statistically signiÞcant, which is consistent with our theoretical prediction
that innovators only enter at the beginning of the industry.

B.4. PC demand estimation: Robustness checks

For robustness checks, we estimate the PC industry demand function by control-
ling for changes of population and per capita income over time. In doing so, we use
annual data of PC prices and output from 1975—1992 to estimate a per capita
demand function:

ln( ) = ln( )

The dependent variable is PC demand per capita (where is U.S. population at
year ), and we control for log U.S. GDP per capita (as a proxy for income) in the
demand intercept . Both auto price and GDP per capita are in real terms.

As before, to address potential endogeneity of the price variable, we use the output
per Þrm (lagged by a year) as an instrumental variable to estimate the demand
elasticity parameter in a two-stage least-squares regression.

The Þrst-stage regression result (adj. 2 = 0 95) is given by

ln( ) = 12 44
(0 23)

0 95
(0 06)

× ln( ) 0 07
(0 01)

× ln(output per Þrm) 1

and the second-stage regression result ( 2 = 0 95) is

ln( ) = 143 18
(29 00)

2 90
(2 63)

× ln( ) 15 57
(2 40)

× ln( )

Standard errors are reported in the parentheses, with three stars indicating statistical
signiÞcance at 1% level. The estimate = 15 57 is highly statistically signiÞcant and
the implied inverse demand elasticity = 1 = 0 06 is similar to the estimate from

Eq. (37).
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