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1 Introduction

The cost of capital has been declining in most industries as documented by Cummins

and Violante (2002). The rate of decline and, in particular, the variability over time of

that decline varies across industries. This paper shows that this behavior of capital goods

prices can lead to investment spikes as measured e.g., by Doms and Dunne (1993), Ilyina

and Samaniego (2011) and Kehrig and Vincent (2018).

We model an industry that may be competitive or a monopoly in which, as a result of

technological progress the cost of capital declines exogenously and irregularly over time.

Innovations in the capital-goods producing industries reduce the cost of investment for a

while, but then the phase of decline ends and costs of investment remain constant until the

next innovation phase starts. The model’s three main implications are investment spikes,

a rising inter-spike hazard, and a coexistence of falling costs of capital with investment

inactivity; let us outline them in turn.

Investment spikes occur when the rate of progress slows down. The intuition is that

declining investment costs imply declining product prices and represent bad news for

owners of capital and makes investment relatively unattractive. First, as costs are declin-

ing, prices of output are expected to decline as well, which reduces the present value of

investment. Second, as costs will be lower tomorrow, it is better to postpone investment

till then. Once the rate of progress slows down, investment becomes more attractive,

hence the spike.

The inter-spike hazard rises because after the spike, once costs begin to decline again,

as time passes, the cost is more and more likely to reach the point where it will again be

profitable to invest.

When investment is irreversible, periods of zero investment coexisting with falling

costs of capital arise in our model because, following a spike, the value of capital declines

below its cost. Thus investment only becomes profitable again once the cost of capital

drops suffi ciently to catch up.

These phenomena have been shown to also arise for other reasons. The leading ex-

planation is that there are fixed costs of investment. Cooper and Haltiwanger (2006),

Caballero and Engel (2000), Khan and Thomas (2008) and Jovanovic and Stolyarov

(2000) all associate spikes with fixed investment costs. A rising inter-spike hazard ob-

tains because the passage of time generally raises the distance between the actual and

desired capital stocks, and in the simplest version of the models, between spikes there is

no investment.

Second, vintage-capital models can generate spikes in the form of capital replacement

echoes, as Boucekkine, Germain and Licandro (1997) and Jovanovic and Tse (2011) show.

In those models, the inter-spike hazard falls as less productive or more labor intensive

older vintages become increasingly unprofitable.
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Third, demand shocks and productivity shocks can cause spikes. Guo, Miao, and

Morellec (2005) generate spikes from positive surprises in demand growth, and Abel

and Eberly (2012) generate them when the productivity of capital jumps up discretely.

By contrast, in our model it is a drop in the rate of technological progress that causes

the spike. Moreover, we show that this occurs even when the drop in technological

progress is fully foreseen. Related, Jorgenson (1963) shows that when capital investment

is reversible, changes in the rate of capital obsolescence can lead to sudden changes in

the capital stock, but not to a coexistence between declining capital goods prices and an

inactivity of investment.

Fourth, cyclical variation in product demand has been shown to affect the occurrence

of spikes. In a fixed-cost model Caballero and Hammour (1996) find that reallocation

should occur during recessions, when the opportunity cost of doing so is lowest. And in

a vintage capital models in which the productivity of a new vintage depends on learning

by doing, Klenow (1998) finds that technology updates are more likely in a boom than in

a recession since a high rate of production enables faster learning. Cooper, Haltiwanger

and Power (1999) incorporate both vintage effects and fixed costs and find that spikes

are procyclical.

In our model, the presence of spikes requires that there be variability and persistence in

the rate of decline of capital-goods prices. In particular, without fixed costs, no investment

spikes occur when capital prices decline steadily. By contrast, in the fixed-cost model,

a faster decline in the cost of capital relative to revenues raises the desired capital stock

faster and produces more frequent spikes. And in vintage capital models a steady rise in

the quality of capital causes more frequent replacement echoes. Our evidence shows that

at the industry level, higher variability positively affects the frequency of spikes and thier

size.

The plan of the paper is as follows: Section 2 describes the model and derives some

of its properties. Section 3 shows that the implications are robust with respect to having

reversible investment and physical depreciation, to adding monopoly power, and that if

modified to include idiosyncratic productivity shocks it can generate differences between

firm-level and industry-level spikes. Section 4 reports tests of some of the implications,

and a more detailed comparison to what other models imply, and Section 5 concludes the

paper. The Appendix contains most of the proofs.

2 A competitive industry

We formulate the model in continuous time so that spikes are jumps in the capital stock

which otherwise changes continuously over time.

There is a competitive industry with free entry in which each unit of capital invested

produces one unit of a homogenous product in perpetuity at marginal cost zero. In-
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vestment is irreversible; we discuss the implications of reversible investment in Section

3.1.

To highlight the effect of value obsolescence, we assume that capital does not depre-

ciate. The accumulated capital stock at date t is kt, and investment at date t is denoted

xt = dkt/dt. The market price of output at any date is determined as

pt = D(kt). (1)

where D is a decreasing demand function. By k we mean capital held collectively by all

the measure-zero firms in the industry, i.e., k =
∫
k (i) di.

Value of capital in place.– Conditional on the output-price sequence, at date t this

value is

vt = Et

∫ ∞
t

e−r(s−t)psds. (2)

where Et is the expectation operator as of date t, and r is the rate of interest.

Exogenous technological progress.– The cost of capital declines at the rate gt so that

ct = c0 exp

(
−
∫ t

0

gsds

)
. (3)

We assume that there are two levels for g and we normalize the lower one to be zero:

gt ∈ {0, g}. When gt = 0, the cost of capital is “stagnant,”whereas when gt = g > 0, the

cost is declining and we have “progress.”

Since there are no adjustment costs and the industry is competitive,

xt > 0⇒ vt = ct, (4)

and

vt < ct ⇒ xt = 0.

Definition of a spike.– An investment spike is a discontinuity in kt and pt; an upward

jump in kt and a downward jump in pt.

Let T1, T2, ... be exogenous transition dates at which costs stop declining and become

stagnant, i.e., gt falls from g to 0 at Tn. Let un be the duration of the n’th epoch of

stagnation, i.e., gt = 0 from Tn until Tn + un. Let wn > 0 be the duration of the nth

epoch of cost decline, i.e., gt = g from Tn + un until Tn + un + wn = Tn+1.

Let the transition dates be unknown and assume that wn and un are random so that

Tn are random as well. Specifically, we assume that wn are i.i.d. with CDF 1−e−λL t, and
un are i.i.d. with CDF 1− e−λH t. In other words the hazard of escaping from stagnation
is λL and the hazard of termination of progress is λH. We sometimes refer to epochs of

declining costs as state H and epochs of stagnant costs as state L.
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Let vLt and v
H
t denote the values of capital in the two technological states. Then for

i, j ∈ {L,H}, Eq. (2) reads

vit =

∫ ∞
t

(∫ T

t

e−r(s−t)psds+ e−r(T−t)vjT

)
λie
−λi(T−t)dT. (5)

Given (pt)
∞
t=0, the function v

i
t is differentiable in t, and satisfies the Bellman equations

rvit = pt + λi

(
vjt − vit

)
+
dvit
dt
. (6)

Lemma 1 For t ∈ (Tn, Tn + un]

xt = 0. (7)

Proof. The escape hazard λL is constant. Since for t ∈ (Tn, Tn + un] ct = cTn , there

can be no investment at t ∈ (Tn, Tn + un] that was not profitable at date Tn, and which

therefore would have happened at Tn.

We now establish that except at transition dates there are no spikes. Appendix A

proves

Lemma 2 A spike cannot occur at t 6= Tn.

The following proposition states that if by a certain time during a period of progress

investment has taken place, the very next transition into stagnation will generate an

investment spike. Appendix B proves the following:

Proposition 1 If xt > 0 for some t ∈ (Tn−1 + un−1, Tn), an investment spike will then

occur at t = Tn.

Proposition 1 establishes that there are spikes. Spike size is defined as

kT − kT−
kT−

=
D−1(pT )

D−1 (pT−)
− 1 > 0, (8)

where kT− = limt↗T kt and pT− = limt↗T pt. Before proceeding with the analysis of the

main model, we can obtain some insight by considering a simpler example in which the

transition dates are deterministic.

2.1 The case where un = u and wn = w are known constants

Suppose that the durations un = u > 0, and wn = w > 0 are repeating constant durations

that are known with certainty in advance as then are the transition dates Tn. We will

show that investment spikes occur when costs actually stop declining, each time that this

event occurs, even though it is fully anticipated beforehand.
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Figure 1: ct > vt on the interval (0, τ)

The behavior of c and v is depicted in Fig. 1. First, vt < ct after the spike because the

spike causes the price to drop while the cost initially remains high. Then vt is decreasing

even before progress resumes because as we draw nearer to the resumption of progress -

and declining costs - investment becomes even less valuable. Therefore, as established by

lemma 1, there is no investment for t ∈ (Tn, Tn + un] and moreover, as v < c even after

progress resumes at Tn + un, investment only begins again at τ > Tn + un. This is stated

more formally in proposition 2 and proved in Appendix C.

Proposition 2 If w is suffi ciently large, (i) there is an investment spike at each tran-

sition date Tn, and (ii) continuous investment resumes τ periods later, where τ > u

uniquely solves:
r

g
=

1− e−rτ
eg(τ−u) − 1

. (9)

(iii) τ is decreasing in g and in r, (iv) ∂τ/∂u > 1, and (v) the spike size in (8) is

increasing in u.

The condition in Proposition 2 that w be “suffi ciently large”is parallel to the condition

in Proposition 1 that “ xt > 0 for some t ∈ (Tn−1 + un−1, Tn)”. In both cases, a spike

will occur at the end of a period of progress only if progress has gone on long enough for

investment to become profitable again. In the deterministic case, this is guaranteed if w

is suffi ciently long. Otherwise, several epochs of progress may be needed before a spike

will occur, which means that there will be investment spikes at some but not all Tn. Such

will also be the case in the stochastic version, where w is random.

The intuition for (iv) in the proposition is that the longer is the stagnation delay,

u, the more costs have to decline before investment begins again. Therefore we have to
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wait longer until c is low enough for investment to be profitable again. And the longer

the duration during which there will be no post-spike investment, the more attractive

investment is at the spike date, and therefore the greater the spike. The comparative

statics in the Proposition 2 is consistent with our simulation results for the stochastic

case (where we cannot derive the comparative statics analytically).

Having explained why there is no investment following a spike, we now explain why

there are spikes in the first place; when progress stops the value of investment jumps

up, therefore investment also increases discontinuously, thus the capital stock spikes. We

have vt = ct whenever investment occurs. Differentiating (2) at the resumption date leads

to the Jorgenson user cost formula

pt = (r + gt) ct. (10)

If there was no investment spike a drop in g would cause a downward jump in p, but that

would be impossible unless k were to jump up, i.e., unless there was an investment spike.

2.2 Waiting time distributions

In this section we seek to characterize the distribution of the no-investment epoch and

the inter-spike distribution. We begin, however, with the random variable w + u, the

“inter-kink”waiting time which has a known closed form solution.

2.2.1 The inter kink distribution

Let H denote the inter-spike CDF. We do not have a closed form expression for H but

we do have it for the inter-kink CDF that we shall denote by G. This is the distribution

of w + u, i.e., the time between the successive dates T .1

Proposition 3 The inter-kink distribution is that of a sum of two exponentially distrib-

uted random variables. It has CDF G,density g, and hazard η given by

G (t) = 1−
(
λwe

−λL t − λue−λH t
λH − λL

)
, (11)

g (t) = λLλH

(
e−λL t − e−λH t
λH − λL

)
, and (12)

η (t) = λLλH

(
e−λL t − e−λH t

λHe−λLt − λLe−λH t

)
. (13)

Two properties of η.– The following are derived in Appendix E:

1The derivations of Eqs. (11)-(13) are in Oguntunde et al. (2014).
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1. η (0) = 0, η′ > 0, η′′ < 0 and

lim
t→∞

η (t) =

{
λL if λH > λL

λH if λH < λL
.

Thus, although we have assumed constant hazards λL and λH, we get an increasing

inter-kink hazard.

2. When λL = λH,

η (t) = λ

(
1− 1

1 + λt

)
→ λ as t→∞.

We shall plot η in Fig. 2 along with the inter-spike hazard to which we turn next.

2.2.2 The inter-spike distribution

To simplify the notation, we shall normalize the spike date Tn = 0, in which case τ

becomes the duration of the no-investment epoch, the CDF of which will be denoted

by F (τ). Let s be the cumulative time in state H from the spike date until τ when

investment resumes and let

θ = e−gs =
cτ
c0

, (14)

and let F (τ | θ) be the CDF of τ conditional on θ, i.e., the probability that ct reaches θc0

before date τ . Appendix D proves the result in Proposition 4 and shows that θ satisfies

θ−1 = 1 +
g

r

∫ ∞
0

(
1− e−rτ

)
dF (τ | θ) . (15)

Proposition 4 Investment does not resume immediately when ct starts to decline again,
i.e.

τ > u. (16)

This result implies that we cannot guarantee that xt will be positive in each period of

progress, because the latter could be quite short and could end before investment becomes

profitable again.

Deriving F (τ).– There are two building blocks to deriving F . Because τ can span

more than one epoch H and because there is an L epoch between any two H epochs we

shall use a renewal equation approach. Let ωI, t be the cumulative time spent in state H

up to date t starting in state I ∈ {L,H}. Let

Ψ (ω | t) = Pr (ωL,t ≤ ω) and

A (ω | t) = Pr (ωH,t ≤ ω) .
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Figure 2: η (t) (solid) and H ′/ (1−H) (dashed) at λL = 0.6, λH = 0.4, r = 0.05, and
g = 0.1

The relation between the two probabilities is in the renewal equation

Ψ (ω | t) = e−λL (t−ω) +

∫ t−ω

0

A (ω | t− u)λ Le
−λLudu, (17)

because, if we start in state L, we spend less than ω periods in H if we have spent at least

t − ω periods in L in our current visit to L (the probability of which is e−λL (t−ω)) or we

spent less than ω periods in H after our first visit to H.

Starting in L, we spent at least −1
g

ln θ periods in state H before date τ was reached.

Therefore

F (τ | θ) = 1−Ψ

(
−1

g
ln θ | τ

)
, (18)

We shall use F to derive the inter-spike distribution that underlies the plots in Figs. 2, 3,

4 and 5. We note that neither θ nor s are random variables but τ is. Appendix F solves

for the value θ∗ that satisfies Eq. (15) and Eq. (18), and then we write F (τ | θ∗) ≡ F (τ).

The inter-spike CDF H.– No investment takes place for t < τ . The probability that

the next spike will occur before date t is

H(t) =

∫ t

0

∫ t−τ

0

λHe
−λHwdwdF (τ). (19)

After date τ , the very next transition to state L will generate a new spike, which explains

the inner integral. Note that F (τ) = 0 for τ < s and therefore H (t) = 0 for t < s.

Remarkably, the preceding solution for the vector (θ, s, F,H) does not depend on the

form of the demand function D () .We plot η (t) in (13) as the solid curve in Fig. 2; the

dashed curve is the inter-spike hazard, H ′ (t) / (1−H (t)) with H defined in Eq. (19).

The inter-spike hazard rises because as time passes following a spike, ct likely gets

closer to cτ and to the resumption of investment. By contrast, in the lumpy cost models,

the hazard rises because as time passes the distance between the actual and desired capital
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Figure 3: The effect of g at λL = 1, λH = 0.4, r = 0.05

stock rises, justifying new investment. At the parameter values in Fig. 2, long-run average

progress is E (g) = gλL/ (λL + λH) = 0.06.

2.3 Comparative statics results

This subsection describes how equilibrium responds to changes in g, in λL and in r.

2.3.1 Varying g

Fig. 3 illustrates the effect of changes in g on distribution of τ , the inter spike distribution

and the inter spike hazard. As g increases, the distribution of τ shifts to the left, implying

a shorter waiting time until investment resumes. This is the analog of part (iii) of

Proposition 2 in the deterministic section. There will be a spike after investment resumes,

therefore, when the distribution of τ shifts to the left, the inter spike distribution and

inter spike hazard will both shift to the left, as shown in Fig. 3.

Spike size and g.– At the post-spike capital stock k′, the equilibrium price (at T and

at τ , both) is D(k′) = p0 = (r + g)θc0. On the other hand, at the pre-spike capital stock

k, the equilibrium price is D(k) = (r + g)c0. If demand is isoelastic, i.e. D(k) = k−γ,

with γ < 1, then we have (
k′

k

)−γ
=

(r + g)θc0

(r + g)c0

⇒ k′

k
= θ−1/γ. (20)

Thus, the size of the spike is decreasing in θ. Table 1 shows that spike size rises with g,

and that s,the cumulative time in state H from the spike date until investment resumes,

decreases with g:

Table 1: The effect of g
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Figure 4: The effect of λL at λH = 0.4, g = 0.1, r = 0.05

λL= 1, λH= 0.4, r = 0.05

g = 0.05 g = 0.1 g = 0.2

θ 0.723 0.613 0.507

s 6.5 4.9 3.4

This is the analog of Proposition 2 in the deterministic section. That θ declines means

that the decline in c must be larger, but this is more than offset by the faster decline in

costs due to the larger g.

2.3.2 Varying λL

Fig. 4 shows how changes in λL affect the distribution of τ , the inter spike distribution

and the inter spike hazard. As λL increases, the distribution of τ shifts to the left,

implying a shorter waiting time until investment resumes. Analogously to part (v) of

Proposition 2 which showed that τ is increasing in u, here a larger λL means the time

spent in state L is shorter, i.e., u is smaller.

Spike size and λL.– Table 2 shows that spike size decreases with λL:

Table 2: The effect of λL

λH = 0.4, g = 0.1, r = 0.05

λL= 0.4 λL= 0.6 λL= 1 λL= 2

θ 0.472 0.534 0.613 0.726

s 7.5 6.3 4.9 3.2

As λL rises, θ rises and s falls. This is because a larger λL makes investment less attractive

because obsolescence will set in earlier. The spike size will, as a result, be smaller: At the
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Figure 5: The effect of r at λL = 1, λH = 0.4, g = 0.1

post-spike capital stock k′, the equilibrium price (at T and at τ , both) is D(k′) = p0 =

(r + g)θc0. On the other hand, at the pre-spike capital stock k, the equilibrium price is

D(k) = (r + g)c0.Thus, the size of the spike is

k′

k
=
D−1((r + g)θc0)

D−1((r + g)c0)
,

which is decreasing in θ. Thus, the size of the spike is decreasing with λL.

Since the spike size is decreasing in λL, this confirms Dixit and Pindyck (1994) who

argued that irreversible investment is discouraged by the ability to resolve uncertainty

by waiting.

2.3.3 Varying r

Fig. 5 shows the effect of changes in r on the distribution of τ , the inter spike distribution

and the inter spike hazard. As r increases, the distribution of τ shifts to the left, implying

a shorter waiting time until investment resumes. This is the analog of part (iii) of

Proposition 2.

Spike size declines with r.– This is seen in Table 3:

Table 3: The effect of r

λL= 1, λH= 0.4, g = 0.1

r = 0.01 r = 0.05 r = 0.1

θ 0.507 0.613 0.698

s 6.8 4.9 3.6

Raising r reduces investors’patience. The table shows that ∂θ
∂r
> 0. The less patient one

is, the less valuable investment is, thus the less one wants to invest at the spike date and
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therefore the target c at which investment resumes rises, waiting time falls. If demand is

D(k) = k−γ with γ < 1, then once again k′

k
= θ−1/γ, and the size of the spike is decreasing

in θ and, since ∂θ
∂r
> 0, decreasing in r.

3 Robustness

We show robustness to four possible changes to the model: adding reversibility of invest-

ment, having a monopoly instead of competition, adding physical depreciation of capital,

and to adding firm specific TFP shocks and resulting investment rates and spikes.

3.1 Reversible investment

We now show that the reversible-k case will also be characterized by investment spikes

(positive and negative ones), but not by periods of falling costs accompanied by zero

investment as Proposition 4 showed. Reversibility implies that the value of capital must

be the same inside the industry and outside it. I.e., regardless of whether xt > 0, we

must have

vit = ct, for i ∈ {L,H}

for all t which together with Eq. (6) means that

rct = pt +
dct
dt

= pt − gtct.

because vjt − vit = 0. And, since p = D (k) ⇒ k = D−1 (p),

kt = D−1 ([r + gt] ct)

E.g., let D (Q) = Q−α. Then kt = ([r + gt] ct)
−1/α.

Since ct is continuous (and differentiable) in t whereas gt jumps between zero and g,

whenever gt jumps (either up or down), kt jumps in the opposite direction. Therefore,

when we enter stagnation and gt drops from g to zero, kt jumps up (i.e., there is a spike)

and when gt rises from zero to g, kt drops, as firms take their capital and put it to other

use (because it is fully reversible). This is the dashed red line in Fig. 6.

3.2 Monopoly

The preceding has analyzed a competitive industry with free entry, in which individual

firms and the industry are the same in the sense that they produce the same product and

that they face the same cost of capital. To address firm level heterogeneity more in line

with the data, we would need a model of an imperfectly competitive industry. This brief
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Figure 6: reversible k (dashed red line) and irreversible k (black line)

section shows that the model could be applied to such a setup by showing that the basic

results in Sec. 2 apply to monopoly firms as well.

We now extend the model to the monopoly case. Let k denote a monopolist’s capital

stock in a market with demand function D (k). We now define the monopolist’s marginal

revenue as

m (k) =
d

dk
kD (k) = D (k) + kD′ (k) . (21)

and the marginal present value of capital as

Mt = Et

∫ ∞
t

e−r(s−t)msds. (22)

Then the same equations hold for the monopoly:

Proposition 5 A monopolist has the same Bellman equations (6) in state H and the

same spike conditions as a competitive industry, but with p = D (k) replaced by m (k)

defined in (21) and vt replaced by Mt defined in (22).

Proof. We start by taking the random sequence (kt) as given. Then we will derive the

conditions that kt must satisfy in the case of monopoly. Let

mt = m (kt)

Conditional on the marginal revenue sequence, at date t, Then let ML
t and M

H
t denote

the monopoly’s discounted marginal revenue products of capital in the two states. Then

for i, j ∈ {L,H}, (22) reads

M i
t =

∫ ∞
t

(∫ T

t

e−r(s−t)msds+ e−r(T−t)M j
T

)
λie
−λi(T−t)dT. (23)
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In differential form the Bellman equations are

rM i
t = mt + λi

(
M j

t −M i
t

)
+
dM i

t

dt
. (24)

Eqs. (23) and (24) are same functional form as (5) and (6) with (pt, vt)
∞
0 replaced by

(mt,Mt)
∞
0 .

In other words, given the same (ct)
∞
0 , the model yields the same solution for (mt)

∞
0

as for (pt)
∞
0 . And therefore the same spike dates apply. The θ analysis of Eqs. (52)-(54)

applies with p0 replaced by m (k0)

The next result refers to two different market structures (i.e., monopoly and compe-

tition) facing the same demand function.

Corollary 1 If DM (k) = DC (k) = k−γ, and if the capital cost (ct)
∞
0 sequence is the

same, then

kMt = (1− γ)1/γ kCt . (25)

Proof. By Proposition 5 we know that
(
kCt , k

M
t

)
must be such that

m
(
kMt
)

= pt =
(
kCt
)−γ

.

We also have

m
(
kMt
)

= DM
(
kMt
)

+ kMt D
M′ (kMt ) = (1− γ)

(
kMt
)−γ

.

Combining the two equations gives:

(1− γ)
(
kMt
)−γ

=
(
kCt
)−γ

,

i.e., (25).

Thus, given the same demand function, the monopolist will at each date have a smaller

kt, which implies that the spikes (measured as proportion of the stock) will be the same

for a monopoly as for a competitive market. Given a particular (ct) series, spikes dates

are the same for monopoly and competition.

Corresponding to a D (·) for the competitive case, one can find an alternative demand
function that would generate identical Bellman equations for the monopoly case and

identical solutions for (kt)
∞
0 .

Example.– Suppose the demand of the competitive industry is D (k) = k−γ with

γ < 1 so that demand is elastic. Then pt = D (kt). Let DM (k) be the demand for the

monopolist’s product. Then if DM (k) = 1
1−γD (k), then

m (kt) = D (kt) = pt. (26)
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3.3 Physical depreciation

We now show that the main implications survive adding physical depreciation of capital

δ > 0 so that instead of Eq. (2), the value of capital is

vt = Et

∫ ∞
t

e−(r+δ)(s−t)psds. (27)

We then consider the following three implications

1. Spikes happen only at the end of an episode of progress.– This is still true; p is

constant and if a spike did not occur at Tn, p would remain constant for t ∈ (Tn, Tn +un]

(see point 2 below) and vTn would rise discretely and exceed cTn
2. No flow investment occurs while c is constant.– This changes to “only replacement

investment while c is constant.”Since now xt = δkt > 0 for t ∈ (Tn, Tn + un], differenti-

ating (27) and setting vt = ct leads to (r + δ) ct = pt +
dct
dt
. And since for t ∈ (Tn, Tn +un]

dct/dt = 0, price is also constant at pt = (r + δ) ct which implies that kt is also constant

so that only replacement investment occurs.

3. No investment for a while even after c starts to fall again.– Still true in the general

version because v falls discretely to vHTn+un
< vLTn+un

, a period of zero investment exists.

It will be shorter the larger is δ, but it is positive no matter how large δ is.

3.4 Firm vs. industry spikes

The main model of section 2 is a representative firm model with no well-defined firm

size and, whether under perfect competition or monopoly, any time a firm experiences a

spike or zero investment, so does the industry. With heterogeneity among firms (or even

among plants of a single firm as Kehrig and Vincent 2018 document) we would expect a

fraction of the spikes to wash out with aggregation up to the industry level.

Suppose the production function shows diminishing returns in k and a serially uncor-

related firm-specific shock z, and that

output = y = zkα, (28)

where α < 1 and so that profits are y − cx. Let ρ be the Poisson event at which a new
z′ is drawn independently from the CDF Ψ′ and so for I, J ∈ {L, H},

rvIt (z, k) = max
x≥0

{
zkα − ctx+ λI

(
vJt (z, k)− vIt (z, k)

)
+ ρ

(∫
vIt (z′, k) dΨ− vIt (z, k)

)
+
∂vI

∂t
+
∂vI

∂k
x

}
Firms all face the same c, but now irreversibility of k implies that some low-z firms will

be at a corner where ∂vI

∂k
< c, i.e., where the value of an additional unit of k is less than

the cost. By contrast, in the model of Sec. 2, all firms have the same incentives to invest.
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For the same (z, k), investment is more valuable at a spike than otherwise, for the

same reason as before. Therefore, although an individual firms might invest more during

stagnation than at a kink if it is then hit with a high z, on average aggregate investment

should be greater when progress stops. Thus it will still be true that investment spikes

at the kinks at the industry level, but some low-z firms will not take part in that spike.

Another difference will be that during epoch L some firms will draw high zs and their

capital will rise, thereby raising industry output. Thus, instead of being a constant during

epoch L as was the case in the homogeneous firm model of Sec. 2, pt would now decline

although more slowly than it did in state H. Nevertheless, such a slower decline in p

invites the spike.

Thus in spite of the idiosyncrasies of the productivity shocks, common shocks to the

price of capital still create spikes at the industry level. A completely stated discrete time

version of this extended model is in Appendix H

4 Tests

The results in Proposition 2 for the deterministic case and in Table 1 for the stochastic

case state that spike size increases in g, the rate of cost decline in state H. To test this,

we need a measure of spikes, and a measure of the process g for an industry (as in Sec.

2) or a firm (as in Sec. 3).

4.1 Three measures of spikes

We use three industry-specific definitions of spikes: One is from Ilyina and Samaniego

(2011, henceforth IS) and two are from Kehrig and Vincent (2018, henceforth KV-A and

KV-B)

1. IS measure the lumpiness of investment as the fraction of years that an industry

experiences investment in excess of 30% of the capital stock. The Ilyina-Samaniego

data cover 1970-1999.

2. KV-A: E[xt/kt | xt/kt > 0.2]; i.e., a spike means simply that investment rates are

large.

3. KV-B: E[xt/kt | xt/kt > 0.2, xt/kt > 2xt−1/kt−1, xt+1/kt+1 < 0.5xt/kt]; i.e. the

investment in a spike year must be at least twice as large as the investment rate

in the adjacent years, i.e., and jump up and down over time (which may be more

consistent with a fixed investment adjustment cost).2

2Since the Census moments have not been offi cially disclosed, these were computed using Compustat
data. The investment spikes according to definition B are quite similar in the Compustat and Census
data; investment spikes according to Definition A are positively correlated but not as close.

17



Note that the data are not direct measures of industry-level spikes but aggregates of

spikes in more micro data. Kehrig & Vincent’s data are annual Census data on manufac-

turing establishments, and they define spikes as establishment investment rates exceeding

15 percent. Ilyina & Samaniego’s spikes are large investments undertaken by Compustat

firms, in particular, annual capital expenditures exceeding 30 percent of a firm’s stock of

fixed assets; they arrive at industry measures by reporting the average or median firm

statistics for each industry.

Table 4 reports the cross-industry correlations between the variables. Definition A is

not highly correlated with the other two definitions.

Table 4: Correlations of the three Spike Measures
IS KV-A .KV-B

IS 1

KV-A 0.217 1

KV-B 0.776 0.221 1

The high correlation between IS and KV-B suggests that years in which the investment

rate exceeds 0.3 also are years when it is at least twice as large as investment in the

adjacent years.

4.2 Two measures of g

To correspond to the model we shall classify each industry’s observations into state H,

and state L, and to estimate the parameter g for each industry. Our tests will assume that

λL and λH are identical across industries, and that only g differs among them. Quality-

adjusted capital-goods prices at the industry level are provided by Cummins and Violante

(2002 —henceforth CV). We now reports test results based on these industry-level data

which provide annual time series for 2-digit SIC industries for the years 1947- 1999 except

for motor vehicles which is three digit (SIC 371).

We use the capital-goods prices as a measure of technological change at the industry

level, i.e., as a measure of ct in different industries. These data will serve as a measure of

the of g̃i,t, the random growth rate for industry i. That is, we use the CV quality-adjusted

price pi,t, and then compute gi,t = − ln (pi,t/pi,t−1) .

We construct two alternative industry measures that conform to the two-states g̃i,t ∈
{0, ĝi} as follows: 3

ĝi,1 = E [gi,t | gi,t > 0] .

I.e., our first measure, ĝi,1, simply calculates an average, over all dates, among the positive

realizations of gi,t in industry i. According to this measure, gi,t > 0 corresponds to state

3We now use a hat to denote the industry’s gi in state H. I.e., ĝi corresponds to g > 0 in the model.
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Figure 7: IS spikes and ĝ1

H, and gi,t ≤ 0 corresponds to state L.

Our second measure is similar to the first measure, except that ĝi,2 is the average,

again over all dates, but among the realizations of gi,t that are above the median:

ĝi,2 = E [gi,t | gi,t > gi, median]

As for ĝ2, we note that the stationary probability of being in state H is λL/ (λL + λH) ;

then ĝ2 would be the correct measure if λL = λH so that exactly half of the observations

are predicted to be in the high state.

4.3 Results

Both ĝ1 and ĝ2 show a positive relationship with each spike measure, consistent with our

comparative statics results. Figs 7, 8, and 9 plot the relationship between ĝ1 and spike

size. The regressions are reported in Table 5.

Figs 10, 11, and 12 plot the relationship between ĝ2 and spike size. The regressions

are also reported in Table 5.

Weighted regressions.– In our regressions industries are weighted by their size. We use

an industry’s total investment expenditure coming from the NAICS-CES Manufacturing
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Figure 8: KV-A spikes and ĝ1

Figure 9: KV-B spikes and ĝ1

20



Figure 10: IS spikes and ĝ2

Figure 11: KV-A spikes and ĝ2
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Figure 12: KV-B spikes and ĝ2

database as a proxy for its size.4

Table 5 : Regression results using ĝ1, ĝ2 and ḡ

IS KV-A KV-B IS KV-A KV-B IS KV-A KV-B

ĝ1 1.376*** 0.059*** 0.105***

(0.266) (0.016) (0.027)

ĝ2 0.492** 0.010 0.044***

(0.204) (0.012) (0.015)

ḡ 0.332* 0.004 0.033**

(0.176) (0.011) (0.013)

Const. -1.49** 0.16*** 0.24*** 0.63 0.28*** 0.39*** 1.91*** 0.31*** 0.50***

(0.611) (0.041) (0.064) (0.493) (0.028) (0.035) (0.177) (0.011) (0.015)

# Obs. 20 20 20 20 20 20 20 20 20

R2 0.52 0.39 0.38 0.34 0.05 0.34 0.18 0.01 0.22

The model performs well: The estimated coeffi cients remain significant except for the

effect of ĝ2 on KV-A. The results are similar if we do not use industry weights —these

results are in Appendix G, Table A1. The estimated coeffi cients remain significant except

for the effect of ĝ2 on KV-A.

4The use of other weights such as capital stock, value added, and total sales leads to similar results.
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Figure 13: IS spikes and ḡ

4.3.1 Spikes and average progress, ḡi

We now plot the relationship of spike size and average growth rate ḡi over the period

1947 to 1999. The reason for doing so is that both the echoes and the fixed costs models

imply there should be more spikes when ḡ rises whereas in our model the effect of ḡ on

spikes is ambiguous.

The effect of ḡ in our model.– The stationary probability of being in state H is

λL/ (λL + λH) ; the model predicts the mean of g to be

E (ḡ) =
λL

λL + λH
ĝ. (29)

Thus, if ḡ rises, that does not mean that ĝ rises. The two become identical if λH = 0 so

that progress is uninterrupted. Indeed, when λH = 0 our model implies no spikes because

there never is a switch to the no-progress state. More generally ḡ can be higher due to

higher λL or higher ĝ, but the two channels have opposite effect on spike size, as a result,

the effect of ḡ on spike size is ambiguous.

Echoes and ḡ.– A higher ḡ should speed up the growth of capital. If there are vintage-

capital related echoes, the fraction of capital that is of older vintages is smaller, and this

should reduce the fraction of capital that exhibits spikes due to replacement. Both the

scatter plots and the last three columns of Table 5 show that spikes seem to be larger in

industries where the price of capital declines faster.

Fixed costs of investment and ḡ.– The fixed cost model yields spikes if growth in the

desired capital stock, call it k∗t , is positive. To take a simple example, let C be the fixed

cost of adjustment of capital. If competition yields a product price declining at the same
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Figure 14: KV-A spikes and ḡ
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Figure 15: KV-B spikes and ḡ
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rate as ct so that pt = e−ḡt, and if D (p) = 1 − ln p, then with each firm’s k∗t growing in

proportion to quantity supplied we would have dk∗

dt
= ḡ, also constant. The Baumol-Tobin

formula states that each firm would raise its capital at discrete intervals,5as follows:

jump up by ∆ =

√
2Cḡ

r
every

∆

ḡ
=

√
2C

rḡ
periods. (30)

In other words, while our model generates spikes only if technological progress is variable,

the fixed-cost model generates them even if progress is constant.

Comparing the regression results in Tables 5, ĝ1 does a better job explaining spikes

than ḡ —the effect of ḡ on spike size is insignificant except for the KV-B measure.

5 Conclusion

In a model with no fixed investment costs we have shown that spikes occur when a sudden

reduction in technological progress occurs, both at the level of the firm and at industry

level. In our model investment spikes occur when progress stops. Following a spike, the

decline in price causes investment to stop until costs decline suffi ciently to justify further

investment. As time passes after a spike, the hazard rate for the next spike rises, just as

it does in the lumpy costs models.

The model predicts that higher variability leads to greater investment spikes and the

data confirm it; in industries where the variability of progress is higher, spikes are larger.

Future empirical work may consider combining other motives for spikes such as fixed

costs, vintage capital, and demand shifts, and assess the relative contribution of each.

A Appendix

A. Proof of Lemma 2

Proof. Suppose that, on the contrary, a spike did occur at t 6= Tn. By Proposition 1,

xt = 0 on (Tn, Tn+un]. Therefore the only place where such a hypothesized spike can occur

is on (Tn + un, Tn+1) . That is, the spike must occur in the interior of the epoch of progress,

i.e., in state H. Let t̂ be the spike date, and by contradiction let t̂ ∈ (Tn + un, Tn+1) so

that dc
dt

= −gct̂ < 0. Now, letting Et denote the expectation operator conditional on

information available at t,

vHt̂ =

∫ ∞
t̂

e−r(s−t̂)Et̂ (ps) ds

5Jumps ∆ would be spread out over firms so as not to create any jumps in the industry’s total capital
stock.
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so that v is everywhere differentiable and its derivative at t̂ is dvH/dt = rvt̂− pt̂. If there
is a spike at t̂, then vt̂ = ct̂, and limt↗t̂ pt > pt̂. Then

lim
t↗t̂

dv

dt
= rvt − lim

t↗t̂
pt < lim

t↘t̂

dv

dt
= rvt − lim

t↘t̂
pt

But limt↘t̂ ct = ct̂ since c is continuous and since there is a spike at t̂. This means

that limt↘t̂(dv/dt) > limt↘t̂ ct, which implies vt̂+ε > ct̂+ε for ε small enough, and this

contradicts investment incentives. In other words, the derivative of v has an upward

jump at the hypothesized spike date, and if that date is in the interior of the progress

epoch, this leads to the contradiction.

B. Proof of Proposition 1

Normalize time so that gt = g at date t = 0, and let T be the date at which gt switches

to g = 0. To prove the proposition 1, we first establish the following two Lemma.

Lemma 3 If for some t < T , xt > 0, then

xs > 0, (31)

for all s ∈ (t, T ) and

vHs = cs. (32)

for all s ∈ (t, T ].

Proof. Positive xt implies vt = ct. As long as ct is strictly decreasing and since, by

Lemma 2 there are no investment spikes, xs > 0 for all s ∈ (t, T ); if not, we would have

vHs > cs. This implies that vHs = cs for all s ∈ (t, T ) which proves (31) and (32) except for

s = T . Finally, since vHt and ct are both continuous, v
H
T 6= cT would imply that vHs 6= cs

for some s < T , a contradiction.

Lemma 4 If xt > 0 just before T , then if there is no spike at T ,

vLT = cT . (33)

Proof. In equilibrium, vLt ≤ ct. Suppose that vLT < cT, then rvH = p+ λH
(
vL − vH

)
−

gc < p− gc, ⇒
vHT = cT <

pT
r + g

. (34)

Then (34) implies
pT
r
> cT . (35)
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Now Lemma 1 states that for t ∈ [T, T + u), xt = 0, which implies that kt = kT and

pt = pT . Then since Lemma 3 says that vHT = cT, and since there is no spike at T and since

Lemma 1 says that xt = 0 on the interval (T, T + u), this means that kT+u = limt↗T kt

and then the state of the industry as described by the triple (c, k, I) is the same at T +u

as it was just prior to T and that therefore

vHT+u = cT+u = cT,

then

cT > vLT =

∫ ∞
0

(
pT

∫ T+u

T

e−r(s−T )ds+ e−ruvHT+u

)
λLe

−λLudu

=

∫ ∞
0

(
pT

∫ T+u

T

e−r(s−T )ds+ e−rucT+u

)
λLe

−λLudu (36)

Then

vLT =

∫ (pT
r

(
1− e−ru

)
+ e−rucT

)
λLe

−λLudu

>

∫ (
cT
(
1− e−ru

)
+ e−rucT

)
λLe

−λLudu (using (35))

= cT ,

which contradicts (36).

(PROOF OF THE PROPOSITION). For s ∈ (t, T ) , Eq. (6 ) reads

rvHs = ps + λH
(
vLs − vHs

)
− dvHs

dt

Substituting for vHs from (32) implies that for s ∈ (t, T ),

rcs = ps + λH
(
vLs − cs

)
− gcs (37)

Suppose no spike occurs at T . Then pt is continuous at T. Taking limits in (37) as s↗ T ,

rcT = pT + λH
(
vLT − cT

)
− gcT (38)

Since vLt and v
H
t are differentiable,

(
vJt − vIt

)
is continuous at T .

Evaluating Eq. (6) at I = L, for s ∈ (T, T + u)

dvLs
dt

= 0, as s↘ T, (39)
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and rvLT = pT + λL
(
vHT − vLT

)
. By (39), dvLs /dt = 0, so that

rcT = pT. (40)

But (38) implies that

rcT = pT − gcT . (41)

Thus (41) contradicts (40), i.e., it contradicts the supposition that no spike occurs at T .

C. Proof of Proposition 2

Proof. Proof of (ii).– Let t = 0 be a transition date into stagnation so that progress

resumes at date u. By Lemma 1, x = 0 at 0 < t < u. At any date t 6= T at which x > 0,

differentiating (2) and setting vt = ct leads to6

rct = pt +
dct
dt
. (42)

And, since dct/dt = −gct, (42) implies

pt = (r + gt)ct. (43)

Since by assumption xt = 0 for t < τ, it must be that pt = p0 for 0 ≤ t < τ. At date τ ,

when investment resumes, the PV of earnings = cτ . Thus the PV of earnings at date 0

satisfies:

c0 =

∫ τ

0

p0e
−rtdt+ e−rτcτ = p0

1− e−rτ
r

+ e−rτc0e
−g(τ−u),

Let ζ0 ≡
p0

c0

. Then, dividing the preceding equation by c0, gives:

1 =
1− e−rτ

r
ζ0 + e−(r+g)τ+gu. (44)

Also, since pτ = p0, by (43), pτ = p0 = (r + g) cτ = (r + g) c0e
−g(τ−u), i.e.,

ζ0 = (r + g) e−g(τ−u). (45)

Substituting ζ0 from (45) into (44) gives:

1 =
1− e−rτ

r
(r + g) e−g(τ−u) + e−(r+g)τ+gu.

6Eq. (42) leads to Jorgensen’s (1963) user-cost formula.
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Multiplying by reg(τ−u), and rearranging gives

r
(
eg(τ−u) − 1

)
= g

(
1− e−rτ

)
,

i.e., (9).

Note that if τ ≤ u, then the RHS of (9) ≤ 0, which, since r
g
> 0, is a contradiction.

Thus τ > u .

To complete the proof of (ii) we now show that if w is suffi ciently large, a solution

for τ ∈ (u, u+ w) exists and is unique. To this end, note that the RHS of (9) is: i) a

continuous function of τ , which → ∞ as τ → u, and → 0 as τ → ∞ and ii) strictly

decreasing in τ . In fact:

dRHS

dτ
=

re−rτ

eg(τ−u) − 1

(
1− eg(τ−u)+rτ

)
< 0

because g (τ − u) + rτ > 0. So, since τ doesn’t depend on w, τ satisfying this constraint

exists if w is large enough.

Proof of (i).– Let w > τ−u so that τ (the date at which investment resumes) occurs
before the next transition date, i.e., before the next stagnation begins. Let ζT =

pT
cT
.

Then, by reasoning analogous to the derivation of ζ0 in Eq. (45), ζT = ζ0, i.e., ζT is just

a function of τ and exogenous parameters, independent of T . Thus pT/cT = p0/c0. Since

cT = c0e
−gw

pT
p0

=
c0e
−gw

c0

= e−gw → pT = e−gwp0. (46)

Note that pt = p0 for all t ∈ [0, τ ] and only starts to decline when investment starts at

date τ . Thus pt = pτe
−g(t−τ) = p0e

−g(t−τ) for t ∈ [τ , T ).

Let pT− ≡ limt↗T pt. Then

pT− = p0e
−g(T−τ) = p0e

−g(u+w−τ). (47)

Thus, using (46) and (47),

pT
pT−

=
e−gwp0

p0e−g(u+w−τ)
= e−g(τ−u) < 1. (48)

That is, the price jumps down at the transition date T implying that capital jumps up,

i.e., a spike.

Proof of (iii).– Cross multiplying in (9) we obtain r(eg(τ−u) − 1) = g (1− e−rτ ).
Differentiating it with respect to g,

∂τ

∂g
=
eg(τ−u) (1− (τ − u) g)− 1

g2 (eg(τ−u) − e−rτ ) . (49)
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the denominator is always positive. Then ∂τ
∂g

< 0 iff the numerator is negative i.e.

eg(τ−u) (1− (τ − u) g)− 1 < 0. Note that at τ = u the equality holds, whereas

dnumerator
dτ

= −g2eg(τ−u) (τ − u) g < 0

i.e. eg(τ−u) (1− (τ − u) g)− 1 < 0 for all τ > u. So we conclude that ∂τ
∂g
< 0.

Using the same steps as before but differentiating (9) with respect to r,

∂τ

∂r
=

e−rτ (1 + rτ)− 1

r2 (eg(τ−u) − e−rτ )

the denominator is again always positive. Then ∂τ
∂r
< 0 iff the numerator is negative i.e.

e−rτ (1 + rτ)− 1 < 0. Note that at τ = 0 the equality holds, whereas

dnumerator
dτ

= −r2τe−rτ < 0,

i.e. e−rτ (1 + rτ)− 1 < 0 for all τ > 0. So we conclude that ∂τ
∂r
< 0.

Proof of (iv).– From (9) we have r
(
eg(τ−u) − 1

)
= g (1− e−rτ ). Differentiating it

with respect to u,

rgeg(τ−u) ∂

∂u
(τ − u) = rg

∂τ

∂u
⇒ ∂τ

∂u
=

eg(τ−u)

eg(τ−u) − 1
> 1.

or alternatively ∂(τ−u)
∂u

> 0, i.e., (iv) . Finally

∂ (τ − u)

∂u
> 0 =⇒ d

du

(
pT
pT−

)
< 0,

i.e., the fall in price at the spike rises with u and thus the size of the spike (kT−kT-)/kT-also
rises with u, i.e., (v).

D. Proof of Proposition 4.

Proof. Let s be the cumulative time in state H from the spike date Tn until τ when

investment resumes, so that

cτ = c0e
−gs, (50)

where c0 is the cost at the spike date. I.e., s it is the waiting time (in state H) for ct to

reach cτ = θc0. With θ defined in Eq. (14), we need to show that θ < 1.

At the spike date cost equals discounted revenue. Then, as there is no further invest-

ment until τ , pt = p0 for t ∈ [0, τ ]. At that date we are in state H, and since continuous

investment resumes at τ , vHτ = cτ . And since obsolescence is higher in state H, vHt ≤ vLt .
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And since vt cannot exceed ct this means that vHτ = vLτ = cτ . Eq. (6) then reads

rcτ = pτ − gcτ . (51)

where pτ = p0 is the price established at the last spike. When investment resumes at τ

the value of the unit of capital created will equal cτ , and thus with F (τ | θ) the CDF of
τ conditional on θ, we have

c0 =

∫ ∞
0

(
p0

1− e−rτ
r

+ e−rτcτ

)
dF (τ | θ) . (52)

Using (50), Eq. (52) reads

1 =

∫ ∞
0

(
ζ

1− e−rτ
r

+ θe−rτ
)
dF (τ | θ) , (53)

where

ζ ≡ p0

c0

. (54)

Since p0 = pτ = (r + g) θc0 where the second equality follows from (51), we have ζ =

(r + g) θ which, when substituted into (53) yields

1 = θ

∫ ∞
0

((
1 +

g

r

) (
1− e−rτ

)
+ e−rτ

)
dF (τ | θ) .

i.e., we have an equation in θ alone. Expanding the value inside the integral, we have(
1 + g

r

)
(1− e−rτ ) + e−rτ = 1 + g

r
(1− e−rτ ) , and so the equation for θ is

θ−1 = 1 +
g

r

∫ ∞
0

(
1− e−rτ

)
dF (τ | θ)

i.e. Eq. (15) in the text. We shall complete the proof by showing that θ < 1. Since τ ≥ u,

and since the CDF of u is 1−e−λLu, F (τ | θ) ≤ 1−e−λL τ . Since the term 1−e−rτ is non-
negative and strictly increasing in τ and since F (τ | θ) first-order dominates 1− e−λL τ ,∫ ∞

0

(
1− e−rτ

)
dF (τ | θ) ≥

∫ ∞
0

(
1− e−rτ

)
λLe

−λL τdτ =
r

λL + r

so

θ−1 ≥ 1 +
g

r

r

λL + r
⇒ θ ≤ λL + r

λL + r + g
< 1,

and that completes the proof of Proposition 4.

31



E. Properties of the inter-kink hazard (13)

Property 1: The hazard rate is increasing in t,

η′ (t) = λuλw (λw − λu)2 e(λw−λu )t

(λwe(λw−λu )t − λu)2 ≥ 0,

and it is concave in t:

η′′ (t) = −λuλ w

(
λw − λu

λwe(λw−λu )t − λ u

)2

e(λw−λu )t
(
λwe

(λw−λu )t + λu
) λw − λu
λwe(λw−λu )t − λu

≤ 0

To derive the limit it helps to write η (t) as follows:

η (t) = λu

(
1− (λw − λu) e−λw t

λwe−λu t − λue−λw t

)
= λu

(
1− λw − λu

λwe(λw−λu )t − λu

)
,

Property 2. The expression simplifies when λu = λw = λ; in that case

g (t) = λ2te−λt

because

G (t) =

∫ t

0

sλ2e−λsds = λ2

(
s
−e−λs
λ

∣∣∣∣t
0

+
1

λ

∫ t

0

e−λsds

)
= λ2

(
−te−λt
λ

+
−e−λs

λ2

∣∣∣∣t
0

)
= 1− e−λt − λte−λt

and hazard rate simplifies to

η (t) =
g

1−G =
λ2te−λt

e−λt + λte−λt
=

λ2t

1 + λt
= λ

(
1− 1

1 + λt

)
which increases from η (0) = 0 to λ.

F. Steps taken to derive F

The definition of F in Eq. (18) requires that we have Ψ which, in turn, uses A. This

appendix first present the solution for A following which it verifies the corner conditions

and limiting properties of the resulting solutions for (A,Ψ).

Proposition 6

A (ω | t) =

{
e−λHω−λL (t−ω)

∑∞
n=1

(λHω)n

n!

∑n
i=1

(λL (t−ω))i−1

(i−1)!
. for 0 < ω < t

1 for ω ≥ t
. (55)
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Proof. Denote H(t) = 1 − e−λH t, and L(t) = 1 − e−λH t,using Theorem 2.1 of Zacks

(2012), we have

A (ω | t) =


0 for ω < 0

1−
∑∞

n=0[H(n)(ω)−H(n+1)(ω)]L(n)(t− ω) for 0 < ω < t

1 for ω ≥ t

(56)

where H(n)(·) is the n-fold convolution of H(·). Consider any exponential distribution
F = 1− e−λt,

F (2)(t) =

∫ t

0

λe−λw
(∫ t−w

0

λe−λudu

)
dw = 1− e−λt −

∫ t

0

λe−λtdw = F (1)(t)− λte−λt

Similarly, substituting the value of F (2)(t) into F (3)(t) and simplifying gives

F (3)(t) =

∫ t

0

λe−λwF (2)(t− w)dw = F (2)(t)−
∫ t

0

λ2 (t− w) e−λtdw = F (2)(t)− 1

2
λ2t2e−λt

and

F (4)(t) =

∫ t

0

λe−λwF (3)(t− w)dw = F (3)(t)−
∫ t

0

λ
1

2
λ2 (t− w)2 e−λtdw = F (3)(t)− 1

3!
λ3t3e−λt

We now guess that

F (n+1)(t) = F (n)(t)− (λt)n

n!
e−λt. (57)

If F (n)(t) satisfies (57), then we have:

F (n+1)(t) =

∫ t

0

λe−λwF (n)(t− w)dw

=

∫ t

0

λe−λw

(
F (n−1)(t− w)− λn−1 (t− w)n−1

(n− 1)!
e−λ(t−w)

)
dw

=

∫ t

0

λe−λwF (n−1)(t− w)dw −
∫ t

0

λe−λw

(
λn−1 (t− w)n−1

(n− 1)!

)
e−λ(t−w)dw

= F (n)(t)−
∫ t

0

λn (t− w)n−1

(n− 1)!
e−λtdw = F (n)(t)− (λt)n

n!
e−λt,
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which also satisfies (57). Thus, for 0 < ω < t, we have

A (ω | t) = 1−
∞∑
n=0

(λHω)n

n!
e−λHωL(n)(t− ω)

= 1− e−λHωL(0)(t− ω)−
∞∑
n=1

(λHω)n

n!
e−λHωL(n)(t− ω)

= 1− e−λHω −
∞∑
n=1

(λHω)n

n!
e−λHω

(
1−

n∑
i=1

(λL(t− ω))i−1

(i− 1)!
e−λL (t−ω)

)

= 1− e−λHω
∞∑
n=0

(λHω)n

n!
+

∞∑
n=1

(λHω)n

n!
e−λHω

n∑
i=1

(λL(t− ω))i−1

(i− 1)!
e−λL (t−ω)

= 1− e−λHωeλHω +
∞∑
n=1

(λHω)n

n!
e−λHω

n∑
i=1

(λL(t− ω))i−1

(i− 1)!
e−λL (t−ω)

= e−λHω−λL (t−ω)

∞∑
n=1

(λHω)n

n!

n∑
i=1

(λL(t− ω))i−1

(i− 1)!
. (58)

REMARKS: We check that the solution in Eq. (55) satisfies several corner and limit

conditions that A(ω | t) and the resulting Ψ (ω | t) in Eq. (17) should also satisfy

lim
λL→∞

A (ω | t) =

{
0 for ω < t

1 for ω = t
(59)

lim
λL→∞

Ψ (ω | t) =

{
0 for ω < t

1 for ω = t

lim
λL→0

A (ω | t) = 1− e−λHω

lim
λL→0

Ψ (ω | t) = 1

lim
λH→∞

A (ω | t) = 1

lim
λH→∞

Ψ (ω | t) = 1

lim
λH→0

A (ω | t) =

{
0 for ω < t

1 for ω = t

lim
λH→0

Ψ (ω | t) = e−λL (t−ω) (60)

Conditions (59)-(60) were checked.

Simulation steps for Ψ, F , and H–We substitute into (17) from (55), we can solve

for Ψ (ω | t). Using equation (18), we can get F (τ | θ). Recall that θ satisfies
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θ−1 = 1 +
g

r

∫ ∞
0

(
1− e−rτ

)
dF (τ | θ).

Denote the solution for the above by θ∗. Then the lower bound of τ is τmin = 1
g

ln θ∗ = s

and the distribution of τ is then F (τ | θ∗) with F (τ | θ) as defined in Eq. (18).

G. Unweighted Regressions

We now present the analog of Table 5, but without industry weights:

Table 6. Unweighted Regression results using ĝ1 and ĝ2

Dep. var. IS KV-A KV-B IS KV-A KV-B

ĝ1 1.110*** 0.063*** 0.084**

(0.336) (0.018) (0.036)

ĝ2 0.438** 0.022* 0.043***

(0.174) (0.01) (0.015)

Constant -0.991 0.164*** 0.277*** 0.596 0.260*** 0.374***

(0.763) (0.045) (0.084) (0.385) (0.025) (0.035)

Observations 20 20 20 20 20 20

R2 0.35 0.38 0.20 0.25 0.22 0.24

As mentioned in the text, the estimates remain significant except for the effect of ĝ2

on KV-A.

H. Firm vs. Industry spikes

We augment the discussion in Sec.3.4 with a discrete time model with an equilibrium

with a Markov structure. There is a continuum of firms with no entry or exit. In state

H, costs decline so that next period cost c′ is

c′ = γχc, (61)

where γ < 1 and where

χ =

{
0 if J = L

1 if J = H
. (62)

In other words, state L costs do not change and c′ = c so that χ = 0 means there will

be no progress and χ = 1 means there will be progress. For I, J ∈ {L, H}, let λI =
Pr(I → J) so that the Markov transition matrix for χ is

χ′
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0 1

χ
0

1

[
1− λL λL

λH 1− λH

]
(63)

A firm’s production function is as given in Eq. (28), i.e., zkα, and its profit is py− cx,
with x denoting the firm’s investment. The firm’s k evolves as

k′ = k + x, (64)

and its z is again drawn from the CDF Ψ each period, independently of other firms’

z values and of its past z realizations. Next period’s value z —call it z′ —is perfectly

foreseen one period ahead.

The industry state is S ≡ (c, χ,Φ) , and for the firm state we include s ≡ (z, z′, k).

Market clearing.– The market-clearing price solves for p in the equation

D (p) =

∫
zkαdΦ (z, k) . (65)

It depends only on Φ and not on {c, χ} and is denoted by p = p (Φ) .

The state of the system is the cost of capital, and its projected evolution and the

cross-firm distribution Φ (z, k) .

Evolution of the aggregate state.– The pair (c, χ) evolves exogenously as the sentence

after Eq. (61) explains and as Eq. (63) specifies. Let us hypothesize the evolution for Φ

to be

Φ′ = ξ (S) (66)

and later make it consistent with firms’decisions. The Timing of decisions is as follows:–

1. When the period opens, everyone learns whether next period J will be H or L, and

every firm learns its z′. Therefore the firm’s state (s, S) is in place.

2. Each firm then chooses its x and collects its profit pzkα − xc
Then

v (s, S) = p (Φ) zkα + max
k′≥k

{
−c (k′ − k) +

1

1 + r
E [v (s′, S ′) | s, S]

}
, (67)

with the FOC

c ≥ 1

1 + r

∂

∂k
E [v (s′, S ′) | s, S] , (68)

with equality if k′ > k. Applying the envelope theorem,

∂v (s, S)

∂k
= p (Φ) zαkα−1 + c. (69)

Updating (s, S) to (s′, S ′) on the RHS of Eq. (69) and rearranging, Eq. (68) becomes
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c ≥ 1
1+r

(
p (ξ (S)) z′α (k′)α−1 + γχc

)
, i.e.,

p (ξ (S)) z′α (k′)
α−1 ≤ (r + 1− γχ) c. (70)

The LHS of Eq. (74) is the expected marginal product of capital and the RHS is the

Jorgenson user cost consisting of the interest cost rc plus the obsolescence term (1− γχ) c.

The inequality is strict if k′ < k. Exact equality in Eq. (70) holds when k′ > k; denote

its solution for z′ as a function of a hypothetical k′ by

Z (k′, S) =
(r + 1− γχ) c

p (ξ (S))α
(k′)

1−α
. (71)

This solution exists for all k′ if the support of Ψ is RR+.
The aggregate law of motion in Eq. (66).– For a given value k′, any firm with k >

k′ will have more capital than k′ in the next period. And so will a firm with a value z′

exceeding Z (k′), and so

ξ (S) =

∫ z′

0

I{z≤Z(k′,S)}ψ(z)dz︸ ︷︷ ︸
firms with z̃′≤z′ and z̃′≤Z(k′)

×
∫ k′

0

∫ ∞
0

φt (z, k) dzdk︸ ︷︷ ︸
firms with k<k′

. (72)

Equilibrium consists of the 3 functions (p, v, ξ) describing aggregates and their law of

motion, and the firms decision rules for k′.

Spikes.– To show that a spike results from the cessation of progress we start two

hypothetical economies at the same (c,Φ), but one with χ = 1 (tech. progress) and the

other with χ = 0. Solving (70) for k′,

k′ = max

(
k,

αp (ξ (S)) z′

(r + 1− γχ) c

)
. (73)

When χ alone among the aggregate states changes, the user cost drops from (r + 1− γ) c

to rc. Then if p did not fall, the RHS of Eq. (73) would rise for all firms, except some

for which z′ is significantly below the zero investment boundary. Such firms must exist if

the lower bound of the support of Ψ is zero as would be the case, for example, if Ψ was

the log normal distribution

The zero-investment boundary.– The value of z′ at which the firm with current capital

k is indifferent between investing and not investing at all is Z (k, S), i.e., the expression

in Eq. (71) evaluated at k′ = k.

Size of spike.– Since p (ξ (c, 0,Φ)) < p (ξ (c, 0,Φ)) the industry’s output must rise;

the rise in the industry’s capital stock is larger the more elastic is the demand for the

product.

One would expect that if χ remains at zero and the low-progress state persists for a
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long time, the RHS of (73) would remain unchanged at max
(
k, αpz′

(r+1−γχ)c

)
, firms with

higher z′ values will still invest driving the p further down (but by less than initially),

but not by much so that firms with low z′ realizations get further and further below their

zero investment boundaries. Asymptotically investment should cease and p approach a

constant.
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